SemaDecl.cpp revision 7586a6e6b7d79d4be031d2d0d6a35d5996cd0db9
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1178  assert(D);
1179
1180  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1181    return false;
1182
1183  // Ignore class templates.
1184  if (D->getDeclContext()->isDependentContext() ||
1185      D->getLexicalDeclContext()->isDependentContext())
1186    return false;
1187
1188  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1189    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1190      return false;
1191
1192    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1193      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1194        return false;
1195    } else {
1196      // 'static inline' functions are used in headers; don't warn.
1197      if (FD->getStorageClass() == SC_Static &&
1198          FD->isInlineSpecified())
1199        return false;
1200    }
1201
1202    if (FD->doesThisDeclarationHaveABody() &&
1203        Context.DeclMustBeEmitted(FD))
1204      return false;
1205  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1206    // Don't warn on variables of const-qualified or reference type, since their
1207    // values can be used even if though they're not odr-used, and because const
1208    // qualified variables can appear in headers in contexts where they're not
1209    // intended to be used.
1210    // FIXME: Use more principled rules for these exemptions.
1211    if (!VD->isFileVarDecl() ||
1212        VD->getType().isConstQualified() ||
1213        VD->getType()->isReferenceType() ||
1214        Context.DeclMustBeEmitted(VD))
1215      return false;
1216
1217    if (VD->isStaticDataMember() &&
1218        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1219      return false;
1220
1221  } else {
1222    return false;
1223  }
1224
1225  // Only warn for unused decls internal to the translation unit.
1226  if (D->getLinkage() == ExternalLinkage)
1227    return false;
1228
1229  return true;
1230}
1231
1232void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1233  if (!D)
1234    return;
1235
1236  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1237    const FunctionDecl *First = FD->getFirstDeclaration();
1238    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1239      return; // First should already be in the vector.
1240  }
1241
1242  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1243    const VarDecl *First = VD->getFirstDeclaration();
1244    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1245      return; // First should already be in the vector.
1246  }
1247
1248  if (ShouldWarnIfUnusedFileScopedDecl(D))
1249    UnusedFileScopedDecls.push_back(D);
1250}
1251
1252static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1253  if (D->isInvalidDecl())
1254    return false;
1255
1256  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1257    return false;
1258
1259  if (isa<LabelDecl>(D))
1260    return true;
1261
1262  // White-list anything that isn't a local variable.
1263  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1264      !D->getDeclContext()->isFunctionOrMethod())
1265    return false;
1266
1267  // Types of valid local variables should be complete, so this should succeed.
1268  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1269
1270    // White-list anything with an __attribute__((unused)) type.
1271    QualType Ty = VD->getType();
1272
1273    // Only look at the outermost level of typedef.
1274    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1275      if (TT->getDecl()->hasAttr<UnusedAttr>())
1276        return false;
1277    }
1278
1279    // If we failed to complete the type for some reason, or if the type is
1280    // dependent, don't diagnose the variable.
1281    if (Ty->isIncompleteType() || Ty->isDependentType())
1282      return false;
1283
1284    if (const TagType *TT = Ty->getAs<TagType>()) {
1285      const TagDecl *Tag = TT->getDecl();
1286      if (Tag->hasAttr<UnusedAttr>())
1287        return false;
1288
1289      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1290        if (!RD->hasTrivialDestructor())
1291          return false;
1292
1293        if (const Expr *Init = VD->getInit()) {
1294          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1295            Init = Cleanups->getSubExpr();
1296          const CXXConstructExpr *Construct =
1297            dyn_cast<CXXConstructExpr>(Init);
1298          if (Construct && !Construct->isElidable()) {
1299            CXXConstructorDecl *CD = Construct->getConstructor();
1300            if (!CD->isTrivial())
1301              return false;
1302          }
1303        }
1304      }
1305    }
1306
1307    // TODO: __attribute__((unused)) templates?
1308  }
1309
1310  return true;
1311}
1312
1313static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1314                                     FixItHint &Hint) {
1315  if (isa<LabelDecl>(D)) {
1316    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1317                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1318    if (AfterColon.isInvalid())
1319      return;
1320    Hint = FixItHint::CreateRemoval(CharSourceRange::
1321                                    getCharRange(D->getLocStart(), AfterColon));
1322  }
1323  return;
1324}
1325
1326/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1327/// unless they are marked attr(unused).
1328void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1329  FixItHint Hint;
1330  if (!ShouldDiagnoseUnusedDecl(D))
1331    return;
1332
1333  GenerateFixForUnusedDecl(D, Context, Hint);
1334
1335  unsigned DiagID;
1336  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1337    DiagID = diag::warn_unused_exception_param;
1338  else if (isa<LabelDecl>(D))
1339    DiagID = diag::warn_unused_label;
1340  else
1341    DiagID = diag::warn_unused_variable;
1342
1343  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1344}
1345
1346static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1347  // Verify that we have no forward references left.  If so, there was a goto
1348  // or address of a label taken, but no definition of it.  Label fwd
1349  // definitions are indicated with a null substmt.
1350  if (L->getStmt() == 0)
1351    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1352}
1353
1354void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1355  if (S->decl_empty()) return;
1356  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1357         "Scope shouldn't contain decls!");
1358
1359  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1360       I != E; ++I) {
1361    Decl *TmpD = (*I);
1362    assert(TmpD && "This decl didn't get pushed??");
1363
1364    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1365    NamedDecl *D = cast<NamedDecl>(TmpD);
1366
1367    if (!D->getDeclName()) continue;
1368
1369    // Diagnose unused variables in this scope.
1370    if (!S->hasErrorOccurred())
1371      DiagnoseUnusedDecl(D);
1372
1373    // If this was a forward reference to a label, verify it was defined.
1374    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1375      CheckPoppedLabel(LD, *this);
1376
1377    // Remove this name from our lexical scope.
1378    IdResolver.RemoveDecl(D);
1379  }
1380}
1381
1382void Sema::ActOnStartFunctionDeclarator() {
1383  ++InFunctionDeclarator;
1384}
1385
1386void Sema::ActOnEndFunctionDeclarator() {
1387  assert(InFunctionDeclarator);
1388  --InFunctionDeclarator;
1389}
1390
1391/// \brief Look for an Objective-C class in the translation unit.
1392///
1393/// \param Id The name of the Objective-C class we're looking for. If
1394/// typo-correction fixes this name, the Id will be updated
1395/// to the fixed name.
1396///
1397/// \param IdLoc The location of the name in the translation unit.
1398///
1399/// \param DoTypoCorrection If true, this routine will attempt typo correction
1400/// if there is no class with the given name.
1401///
1402/// \returns The declaration of the named Objective-C class, or NULL if the
1403/// class could not be found.
1404ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1405                                              SourceLocation IdLoc,
1406                                              bool DoTypoCorrection) {
1407  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1408  // creation from this context.
1409  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1410
1411  if (!IDecl && DoTypoCorrection) {
1412    // Perform typo correction at the given location, but only if we
1413    // find an Objective-C class name.
1414    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1415    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1416                                       LookupOrdinaryName, TUScope, NULL,
1417                                       Validator)) {
1418      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1419      Diag(IdLoc, diag::err_undef_interface_suggest)
1420        << Id << IDecl->getDeclName()
1421        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1422      Diag(IDecl->getLocation(), diag::note_previous_decl)
1423        << IDecl->getDeclName();
1424
1425      Id = IDecl->getIdentifier();
1426    }
1427  }
1428  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1429  // This routine must always return a class definition, if any.
1430  if (Def && Def->getDefinition())
1431      Def = Def->getDefinition();
1432  return Def;
1433}
1434
1435/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1436/// from S, where a non-field would be declared. This routine copes
1437/// with the difference between C and C++ scoping rules in structs and
1438/// unions. For example, the following code is well-formed in C but
1439/// ill-formed in C++:
1440/// @code
1441/// struct S6 {
1442///   enum { BAR } e;
1443/// };
1444///
1445/// void test_S6() {
1446///   struct S6 a;
1447///   a.e = BAR;
1448/// }
1449/// @endcode
1450/// For the declaration of BAR, this routine will return a different
1451/// scope. The scope S will be the scope of the unnamed enumeration
1452/// within S6. In C++, this routine will return the scope associated
1453/// with S6, because the enumeration's scope is a transparent
1454/// context but structures can contain non-field names. In C, this
1455/// routine will return the translation unit scope, since the
1456/// enumeration's scope is a transparent context and structures cannot
1457/// contain non-field names.
1458Scope *Sema::getNonFieldDeclScope(Scope *S) {
1459  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1460         (S->getEntity() &&
1461          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1462         (S->isClassScope() && !getLangOpts().CPlusPlus))
1463    S = S->getParent();
1464  return S;
1465}
1466
1467/// \brief Looks up the declaration of "struct objc_super" and
1468/// saves it for later use in building builtin declaration of
1469/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1470/// pre-existing declaration exists no action takes place.
1471static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1472                                        IdentifierInfo *II) {
1473  if (!II->isStr("objc_msgSendSuper"))
1474    return;
1475  ASTContext &Context = ThisSema.Context;
1476
1477  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1478                      SourceLocation(), Sema::LookupTagName);
1479  ThisSema.LookupName(Result, S);
1480  if (Result.getResultKind() == LookupResult::Found)
1481    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1482      Context.setObjCSuperType(Context.getTagDeclType(TD));
1483}
1484
1485/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1486/// file scope.  lazily create a decl for it. ForRedeclaration is true
1487/// if we're creating this built-in in anticipation of redeclaring the
1488/// built-in.
1489NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1490                                     Scope *S, bool ForRedeclaration,
1491                                     SourceLocation Loc) {
1492  LookupPredefedObjCSuperType(*this, S, II);
1493
1494  Builtin::ID BID = (Builtin::ID)bid;
1495
1496  ASTContext::GetBuiltinTypeError Error;
1497  QualType R = Context.GetBuiltinType(BID, Error);
1498  switch (Error) {
1499  case ASTContext::GE_None:
1500    // Okay
1501    break;
1502
1503  case ASTContext::GE_Missing_stdio:
1504    if (ForRedeclaration)
1505      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1506        << Context.BuiltinInfo.GetName(BID);
1507    return 0;
1508
1509  case ASTContext::GE_Missing_setjmp:
1510    if (ForRedeclaration)
1511      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1512        << Context.BuiltinInfo.GetName(BID);
1513    return 0;
1514
1515  case ASTContext::GE_Missing_ucontext:
1516    if (ForRedeclaration)
1517      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1518        << Context.BuiltinInfo.GetName(BID);
1519    return 0;
1520  }
1521
1522  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1523    Diag(Loc, diag::ext_implicit_lib_function_decl)
1524      << Context.BuiltinInfo.GetName(BID)
1525      << R;
1526    if (Context.BuiltinInfo.getHeaderName(BID) &&
1527        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1528          != DiagnosticsEngine::Ignored)
1529      Diag(Loc, diag::note_please_include_header)
1530        << Context.BuiltinInfo.getHeaderName(BID)
1531        << Context.BuiltinInfo.GetName(BID);
1532  }
1533
1534  FunctionDecl *New = FunctionDecl::Create(Context,
1535                                           Context.getTranslationUnitDecl(),
1536                                           Loc, Loc, II, R, /*TInfo=*/0,
1537                                           SC_Extern,
1538                                           SC_None, false,
1539                                           /*hasPrototype=*/true);
1540  New->setImplicit();
1541
1542  // Create Decl objects for each parameter, adding them to the
1543  // FunctionDecl.
1544  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1545    SmallVector<ParmVarDecl*, 16> Params;
1546    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1547      ParmVarDecl *parm =
1548        ParmVarDecl::Create(Context, New, SourceLocation(),
1549                            SourceLocation(), 0,
1550                            FT->getArgType(i), /*TInfo=*/0,
1551                            SC_None, SC_None, 0);
1552      parm->setScopeInfo(0, i);
1553      Params.push_back(parm);
1554    }
1555    New->setParams(Params);
1556  }
1557
1558  AddKnownFunctionAttributes(New);
1559
1560  // TUScope is the translation-unit scope to insert this function into.
1561  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1562  // relate Scopes to DeclContexts, and probably eliminate CurContext
1563  // entirely, but we're not there yet.
1564  DeclContext *SavedContext = CurContext;
1565  CurContext = Context.getTranslationUnitDecl();
1566  PushOnScopeChains(New, TUScope);
1567  CurContext = SavedContext;
1568  return New;
1569}
1570
1571/// \brief Filter out any previous declarations that the given declaration
1572/// should not consider because they are not permitted to conflict, e.g.,
1573/// because they come from hidden sub-modules and do not refer to the same
1574/// entity.
1575static void filterNonConflictingPreviousDecls(ASTContext &context,
1576                                              NamedDecl *decl,
1577                                              LookupResult &previous){
1578  // This is only interesting when modules are enabled.
1579  if (!context.getLangOpts().Modules)
1580    return;
1581
1582  // Empty sets are uninteresting.
1583  if (previous.empty())
1584    return;
1585
1586  // If this declaration has external
1587  bool hasExternalLinkage = (decl->getLinkage() == ExternalLinkage);
1588
1589  LookupResult::Filter filter = previous.makeFilter();
1590  while (filter.hasNext()) {
1591    NamedDecl *old = filter.next();
1592
1593    // Non-hidden declarations are never ignored.
1594    if (!old->isHidden())
1595      continue;
1596
1597    // If either has no-external linkage, ignore the old declaration.
1598    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1599      filter.erase();
1600  }
1601
1602  filter.done();
1603}
1604
1605bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1606  QualType OldType;
1607  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1608    OldType = OldTypedef->getUnderlyingType();
1609  else
1610    OldType = Context.getTypeDeclType(Old);
1611  QualType NewType = New->getUnderlyingType();
1612
1613  if (NewType->isVariablyModifiedType()) {
1614    // Must not redefine a typedef with a variably-modified type.
1615    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1616    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1617      << Kind << NewType;
1618    if (Old->getLocation().isValid())
1619      Diag(Old->getLocation(), diag::note_previous_definition);
1620    New->setInvalidDecl();
1621    return true;
1622  }
1623
1624  if (OldType != NewType &&
1625      !OldType->isDependentType() &&
1626      !NewType->isDependentType() &&
1627      !Context.hasSameType(OldType, NewType)) {
1628    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1629    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1630      << Kind << NewType << OldType;
1631    if (Old->getLocation().isValid())
1632      Diag(Old->getLocation(), diag::note_previous_definition);
1633    New->setInvalidDecl();
1634    return true;
1635  }
1636  return false;
1637}
1638
1639/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1640/// same name and scope as a previous declaration 'Old'.  Figure out
1641/// how to resolve this situation, merging decls or emitting
1642/// diagnostics as appropriate. If there was an error, set New to be invalid.
1643///
1644void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1645  // If the new decl is known invalid already, don't bother doing any
1646  // merging checks.
1647  if (New->isInvalidDecl()) return;
1648
1649  // Allow multiple definitions for ObjC built-in typedefs.
1650  // FIXME: Verify the underlying types are equivalent!
1651  if (getLangOpts().ObjC1) {
1652    const IdentifierInfo *TypeID = New->getIdentifier();
1653    switch (TypeID->getLength()) {
1654    default: break;
1655    case 2:
1656      {
1657        if (!TypeID->isStr("id"))
1658          break;
1659        QualType T = New->getUnderlyingType();
1660        if (!T->isPointerType())
1661          break;
1662        if (!T->isVoidPointerType()) {
1663          QualType PT = T->getAs<PointerType>()->getPointeeType();
1664          if (!PT->isStructureType())
1665            break;
1666        }
1667        Context.setObjCIdRedefinitionType(T);
1668        // Install the built-in type for 'id', ignoring the current definition.
1669        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1670        return;
1671      }
1672    case 5:
1673      if (!TypeID->isStr("Class"))
1674        break;
1675      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1676      // Install the built-in type for 'Class', ignoring the current definition.
1677      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1678      return;
1679    case 3:
1680      if (!TypeID->isStr("SEL"))
1681        break;
1682      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1683      // Install the built-in type for 'SEL', ignoring the current definition.
1684      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1685      return;
1686    }
1687    // Fall through - the typedef name was not a builtin type.
1688  }
1689
1690  // Verify the old decl was also a type.
1691  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1692  if (!Old) {
1693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1694      << New->getDeclName();
1695
1696    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1697    if (OldD->getLocation().isValid())
1698      Diag(OldD->getLocation(), diag::note_previous_definition);
1699
1700    return New->setInvalidDecl();
1701  }
1702
1703  // If the old declaration is invalid, just give up here.
1704  if (Old->isInvalidDecl())
1705    return New->setInvalidDecl();
1706
1707  // If the typedef types are not identical, reject them in all languages and
1708  // with any extensions enabled.
1709  if (isIncompatibleTypedef(Old, New))
1710    return;
1711
1712  // The types match.  Link up the redeclaration chain if the old
1713  // declaration was a typedef.
1714  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1715    New->setPreviousDeclaration(Typedef);
1716
1717  if (getLangOpts().MicrosoftExt)
1718    return;
1719
1720  if (getLangOpts().CPlusPlus) {
1721    // C++ [dcl.typedef]p2:
1722    //   In a given non-class scope, a typedef specifier can be used to
1723    //   redefine the name of any type declared in that scope to refer
1724    //   to the type to which it already refers.
1725    if (!isa<CXXRecordDecl>(CurContext))
1726      return;
1727
1728    // C++0x [dcl.typedef]p4:
1729    //   In a given class scope, a typedef specifier can be used to redefine
1730    //   any class-name declared in that scope that is not also a typedef-name
1731    //   to refer to the type to which it already refers.
1732    //
1733    // This wording came in via DR424, which was a correction to the
1734    // wording in DR56, which accidentally banned code like:
1735    //
1736    //   struct S {
1737    //     typedef struct A { } A;
1738    //   };
1739    //
1740    // in the C++03 standard. We implement the C++0x semantics, which
1741    // allow the above but disallow
1742    //
1743    //   struct S {
1744    //     typedef int I;
1745    //     typedef int I;
1746    //   };
1747    //
1748    // since that was the intent of DR56.
1749    if (!isa<TypedefNameDecl>(Old))
1750      return;
1751
1752    Diag(New->getLocation(), diag::err_redefinition)
1753      << New->getDeclName();
1754    Diag(Old->getLocation(), diag::note_previous_definition);
1755    return New->setInvalidDecl();
1756  }
1757
1758  // Modules always permit redefinition of typedefs, as does C11.
1759  if (getLangOpts().Modules || getLangOpts().C11)
1760    return;
1761
1762  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1763  // is normally mapped to an error, but can be controlled with
1764  // -Wtypedef-redefinition.  If either the original or the redefinition is
1765  // in a system header, don't emit this for compatibility with GCC.
1766  if (getDiagnostics().getSuppressSystemWarnings() &&
1767      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1768       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1769    return;
1770
1771  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1772    << New->getDeclName();
1773  Diag(Old->getLocation(), diag::note_previous_definition);
1774  return;
1775}
1776
1777/// DeclhasAttr - returns true if decl Declaration already has the target
1778/// attribute.
1779static bool
1780DeclHasAttr(const Decl *D, const Attr *A) {
1781  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1782  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1783  // responsible for making sure they are consistent.
1784  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1785  if (AA)
1786    return false;
1787
1788  // The following thread safety attributes can also be duplicated.
1789  switch (A->getKind()) {
1790    case attr::ExclusiveLocksRequired:
1791    case attr::SharedLocksRequired:
1792    case attr::LocksExcluded:
1793    case attr::ExclusiveLockFunction:
1794    case attr::SharedLockFunction:
1795    case attr::UnlockFunction:
1796    case attr::ExclusiveTrylockFunction:
1797    case attr::SharedTrylockFunction:
1798    case attr::GuardedBy:
1799    case attr::PtGuardedBy:
1800    case attr::AcquiredBefore:
1801    case attr::AcquiredAfter:
1802      return false;
1803    default:
1804      ;
1805  }
1806
1807  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1808  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1809  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1810    if ((*i)->getKind() == A->getKind()) {
1811      if (Ann) {
1812        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1813          return true;
1814        continue;
1815      }
1816      // FIXME: Don't hardcode this check
1817      if (OA && isa<OwnershipAttr>(*i))
1818        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1819      return true;
1820    }
1821
1822  return false;
1823}
1824
1825bool Sema::mergeDeclAttribute(NamedDecl *D, InheritableAttr *Attr,
1826                              bool Override) {
1827  InheritableAttr *NewAttr = NULL;
1828  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1829  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1830    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1831                                    AA->getIntroduced(), AA->getDeprecated(),
1832                                    AA->getObsoleted(), AA->getUnavailable(),
1833                                    AA->getMessage(), Override,
1834                                    AttrSpellingListIndex);
1835  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1836    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1837                                  AttrSpellingListIndex);
1838  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1839    NewAttr = mergeDLLImportAttr(D, ImportA->getRange(),
1840                                 AttrSpellingListIndex);
1841  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1842    NewAttr = mergeDLLExportAttr(D, ExportA->getRange(),
1843                                 AttrSpellingListIndex);
1844  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1845    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1846                              FA->getFormatIdx(), FA->getFirstArg(),
1847                              AttrSpellingListIndex);
1848  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1849    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName(),
1850                               AttrSpellingListIndex);
1851  else if (!DeclHasAttr(D, Attr))
1852    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1853
1854  if (NewAttr) {
1855    NewAttr->setInherited(true);
1856    D->addAttr(NewAttr);
1857    return true;
1858  }
1859
1860  return false;
1861}
1862
1863static const Decl *getDefinition(const Decl *D) {
1864  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1865    return TD->getDefinition();
1866  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1867    return VD->getDefinition();
1868  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1869    const FunctionDecl* Def;
1870    if (FD->hasBody(Def))
1871      return Def;
1872  }
1873  return NULL;
1874}
1875
1876static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1877  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1878       I != E; ++I) {
1879    Attr *Attribute = *I;
1880    if (Attribute->getKind() == Kind)
1881      return true;
1882  }
1883  return false;
1884}
1885
1886/// checkNewAttributesAfterDef - If we already have a definition, check that
1887/// there are no new attributes in this declaration.
1888static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1889  if (!New->hasAttrs())
1890    return;
1891
1892  const Decl *Def = getDefinition(Old);
1893  if (!Def || Def == New)
1894    return;
1895
1896  AttrVec &NewAttributes = New->getAttrs();
1897  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1898    const Attr *NewAttribute = NewAttributes[I];
1899    if (hasAttribute(Def, NewAttribute->getKind())) {
1900      ++I;
1901      continue; // regular attr merging will take care of validating this.
1902    }
1903    // C's _Noreturn is allowed to be added to a function after it is defined.
1904    if (isa<C11NoReturnAttr>(NewAttribute)) {
1905      ++I;
1906      continue;
1907    }
1908    S.Diag(NewAttribute->getLocation(),
1909           diag::warn_attribute_precede_definition);
1910    S.Diag(Def->getLocation(), diag::note_previous_definition);
1911    NewAttributes.erase(NewAttributes.begin() + I);
1912    --E;
1913  }
1914}
1915
1916/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1917void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
1918                               AvailabilityMergeKind AMK) {
1919  if (!Old->hasAttrs() && !New->hasAttrs())
1920    return;
1921
1922  // attributes declared post-definition are currently ignored
1923  checkNewAttributesAfterDef(*this, New, Old);
1924
1925  if (!Old->hasAttrs())
1926    return;
1927
1928  bool foundAny = New->hasAttrs();
1929
1930  // Ensure that any moving of objects within the allocated map is done before
1931  // we process them.
1932  if (!foundAny) New->setAttrs(AttrVec());
1933
1934  for (specific_attr_iterator<InheritableAttr>
1935         i = Old->specific_attr_begin<InheritableAttr>(),
1936         e = Old->specific_attr_end<InheritableAttr>();
1937       i != e; ++i) {
1938    bool Override = false;
1939    // Ignore deprecated/unavailable/availability attributes if requested.
1940    if (isa<DeprecatedAttr>(*i) ||
1941        isa<UnavailableAttr>(*i) ||
1942        isa<AvailabilityAttr>(*i)) {
1943      switch (AMK) {
1944      case AMK_None:
1945        continue;
1946
1947      case AMK_Redeclaration:
1948        break;
1949
1950      case AMK_Override:
1951        Override = true;
1952        break;
1953      }
1954    }
1955
1956    if (mergeDeclAttribute(New, *i, Override))
1957      foundAny = true;
1958  }
1959
1960  if (!foundAny) New->dropAttrs();
1961}
1962
1963/// mergeParamDeclAttributes - Copy attributes from the old parameter
1964/// to the new one.
1965static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1966                                     const ParmVarDecl *oldDecl,
1967                                     Sema &S) {
1968  // C++11 [dcl.attr.depend]p2:
1969  //   The first declaration of a function shall specify the
1970  //   carries_dependency attribute for its declarator-id if any declaration
1971  //   of the function specifies the carries_dependency attribute.
1972  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
1973      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
1974    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
1975           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
1976    // Find the first declaration of the parameter.
1977    // FIXME: Should we build redeclaration chains for function parameters?
1978    const FunctionDecl *FirstFD =
1979      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
1980    const ParmVarDecl *FirstVD =
1981      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
1982    S.Diag(FirstVD->getLocation(),
1983           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
1984  }
1985
1986  if (!oldDecl->hasAttrs())
1987    return;
1988
1989  bool foundAny = newDecl->hasAttrs();
1990
1991  // Ensure that any moving of objects within the allocated map is
1992  // done before we process them.
1993  if (!foundAny) newDecl->setAttrs(AttrVec());
1994
1995  for (specific_attr_iterator<InheritableParamAttr>
1996       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1997       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1998    if (!DeclHasAttr(newDecl, *i)) {
1999      InheritableAttr *newAttr =
2000        cast<InheritableParamAttr>((*i)->clone(S.Context));
2001      newAttr->setInherited(true);
2002      newDecl->addAttr(newAttr);
2003      foundAny = true;
2004    }
2005  }
2006
2007  if (!foundAny) newDecl->dropAttrs();
2008}
2009
2010namespace {
2011
2012/// Used in MergeFunctionDecl to keep track of function parameters in
2013/// C.
2014struct GNUCompatibleParamWarning {
2015  ParmVarDecl *OldParm;
2016  ParmVarDecl *NewParm;
2017  QualType PromotedType;
2018};
2019
2020}
2021
2022/// getSpecialMember - get the special member enum for a method.
2023Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2024  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2025    if (Ctor->isDefaultConstructor())
2026      return Sema::CXXDefaultConstructor;
2027
2028    if (Ctor->isCopyConstructor())
2029      return Sema::CXXCopyConstructor;
2030
2031    if (Ctor->isMoveConstructor())
2032      return Sema::CXXMoveConstructor;
2033  } else if (isa<CXXDestructorDecl>(MD)) {
2034    return Sema::CXXDestructor;
2035  } else if (MD->isCopyAssignmentOperator()) {
2036    return Sema::CXXCopyAssignment;
2037  } else if (MD->isMoveAssignmentOperator()) {
2038    return Sema::CXXMoveAssignment;
2039  }
2040
2041  return Sema::CXXInvalid;
2042}
2043
2044/// canRedefineFunction - checks if a function can be redefined. Currently,
2045/// only extern inline functions can be redefined, and even then only in
2046/// GNU89 mode.
2047static bool canRedefineFunction(const FunctionDecl *FD,
2048                                const LangOptions& LangOpts) {
2049  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2050          !LangOpts.CPlusPlus &&
2051          FD->isInlineSpecified() &&
2052          FD->getStorageClass() == SC_Extern);
2053}
2054
2055/// Is the given calling convention the ABI default for the given
2056/// declaration?
2057static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2058  CallingConv ABIDefaultCC;
2059  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2060    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2061  } else {
2062    // Free C function or a static method.
2063    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2064  }
2065  return ABIDefaultCC == CC;
2066}
2067
2068/// MergeFunctionDecl - We just parsed a function 'New' from
2069/// declarator D which has the same name and scope as a previous
2070/// declaration 'Old'.  Figure out how to resolve this situation,
2071/// merging decls or emitting diagnostics as appropriate.
2072///
2073/// In C++, New and Old must be declarations that are not
2074/// overloaded. Use IsOverload to determine whether New and Old are
2075/// overloaded, and to select the Old declaration that New should be
2076/// merged with.
2077///
2078/// Returns true if there was an error, false otherwise.
2079bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2080  // Verify the old decl was also a function.
2081  FunctionDecl *Old = 0;
2082  if (FunctionTemplateDecl *OldFunctionTemplate
2083        = dyn_cast<FunctionTemplateDecl>(OldD))
2084    Old = OldFunctionTemplate->getTemplatedDecl();
2085  else
2086    Old = dyn_cast<FunctionDecl>(OldD);
2087  if (!Old) {
2088    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2089      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2090      Diag(Shadow->getTargetDecl()->getLocation(),
2091           diag::note_using_decl_target);
2092      Diag(Shadow->getUsingDecl()->getLocation(),
2093           diag::note_using_decl) << 0;
2094      return true;
2095    }
2096
2097    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2098      << New->getDeclName();
2099    Diag(OldD->getLocation(), diag::note_previous_definition);
2100    return true;
2101  }
2102
2103  // Determine whether the previous declaration was a definition,
2104  // implicit declaration, or a declaration.
2105  diag::kind PrevDiag;
2106  if (Old->isThisDeclarationADefinition())
2107    PrevDiag = diag::note_previous_definition;
2108  else if (Old->isImplicit())
2109    PrevDiag = diag::note_previous_implicit_declaration;
2110  else
2111    PrevDiag = diag::note_previous_declaration;
2112
2113  QualType OldQType = Context.getCanonicalType(Old->getType());
2114  QualType NewQType = Context.getCanonicalType(New->getType());
2115
2116  // Don't complain about this if we're in GNU89 mode and the old function
2117  // is an extern inline function.
2118  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2119      New->getStorageClass() == SC_Static &&
2120      Old->getStorageClass() != SC_Static &&
2121      !canRedefineFunction(Old, getLangOpts())) {
2122    if (getLangOpts().MicrosoftExt) {
2123      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2124      Diag(Old->getLocation(), PrevDiag);
2125    } else {
2126      Diag(New->getLocation(), diag::err_static_non_static) << New;
2127      Diag(Old->getLocation(), PrevDiag);
2128      return true;
2129    }
2130  }
2131
2132  // If a function is first declared with a calling convention, but is
2133  // later declared or defined without one, the second decl assumes the
2134  // calling convention of the first.
2135  //
2136  // It's OK if a function is first declared without a calling convention,
2137  // but is later declared or defined with the default calling convention.
2138  //
2139  // For the new decl, we have to look at the NON-canonical type to tell the
2140  // difference between a function that really doesn't have a calling
2141  // convention and one that is declared cdecl. That's because in
2142  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2143  // because it is the default calling convention.
2144  //
2145  // Note also that we DO NOT return at this point, because we still have
2146  // other tests to run.
2147  const FunctionType *OldType = cast<FunctionType>(OldQType);
2148  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2149  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2150  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2151  bool RequiresAdjustment = false;
2152  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2153    // Fast path: nothing to do.
2154
2155  // Inherit the CC from the previous declaration if it was specified
2156  // there but not here.
2157  } else if (NewTypeInfo.getCC() == CC_Default) {
2158    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2159    RequiresAdjustment = true;
2160
2161  // Don't complain about mismatches when the default CC is
2162  // effectively the same as the explict one.
2163  } else if (OldTypeInfo.getCC() == CC_Default &&
2164             isABIDefaultCC(*this, NewTypeInfo.getCC(), New)) {
2165    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2166    RequiresAdjustment = true;
2167
2168  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2169                                     NewTypeInfo.getCC())) {
2170    // Calling conventions really aren't compatible, so complain.
2171    Diag(New->getLocation(), diag::err_cconv_change)
2172      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2173      << (OldTypeInfo.getCC() == CC_Default)
2174      << (OldTypeInfo.getCC() == CC_Default ? "" :
2175          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2176    Diag(Old->getLocation(), diag::note_previous_declaration);
2177    return true;
2178  }
2179
2180  // FIXME: diagnose the other way around?
2181  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2182    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2183    RequiresAdjustment = true;
2184  }
2185
2186  // Merge regparm attribute.
2187  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2188      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2189    if (NewTypeInfo.getHasRegParm()) {
2190      Diag(New->getLocation(), diag::err_regparm_mismatch)
2191        << NewType->getRegParmType()
2192        << OldType->getRegParmType();
2193      Diag(Old->getLocation(), diag::note_previous_declaration);
2194      return true;
2195    }
2196
2197    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2198    RequiresAdjustment = true;
2199  }
2200
2201  // Merge ns_returns_retained attribute.
2202  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2203    if (NewTypeInfo.getProducesResult()) {
2204      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2205      Diag(Old->getLocation(), diag::note_previous_declaration);
2206      return true;
2207    }
2208
2209    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2210    RequiresAdjustment = true;
2211  }
2212
2213  if (RequiresAdjustment) {
2214    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2215    New->setType(QualType(NewType, 0));
2216    NewQType = Context.getCanonicalType(New->getType());
2217  }
2218
2219  if (getLangOpts().CPlusPlus) {
2220    // (C++98 13.1p2):
2221    //   Certain function declarations cannot be overloaded:
2222    //     -- Function declarations that differ only in the return type
2223    //        cannot be overloaded.
2224    QualType OldReturnType = OldType->getResultType();
2225    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2226    QualType ResQT;
2227    if (OldReturnType != NewReturnType) {
2228      if (NewReturnType->isObjCObjectPointerType()
2229          && OldReturnType->isObjCObjectPointerType())
2230        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2231      if (ResQT.isNull()) {
2232        if (New->isCXXClassMember() && New->isOutOfLine())
2233          Diag(New->getLocation(),
2234               diag::err_member_def_does_not_match_ret_type) << New;
2235        else
2236          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2237        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2238        return true;
2239      }
2240      else
2241        NewQType = ResQT;
2242    }
2243
2244    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2245    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2246    if (OldMethod && NewMethod) {
2247      // Preserve triviality.
2248      NewMethod->setTrivial(OldMethod->isTrivial());
2249
2250      // MSVC allows explicit template specialization at class scope:
2251      // 2 CXMethodDecls referring to the same function will be injected.
2252      // We don't want a redeclartion error.
2253      bool IsClassScopeExplicitSpecialization =
2254                              OldMethod->isFunctionTemplateSpecialization() &&
2255                              NewMethod->isFunctionTemplateSpecialization();
2256      bool isFriend = NewMethod->getFriendObjectKind();
2257
2258      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2259          !IsClassScopeExplicitSpecialization) {
2260        //    -- Member function declarations with the same name and the
2261        //       same parameter types cannot be overloaded if any of them
2262        //       is a static member function declaration.
2263        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2264          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2265          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2266          return true;
2267        }
2268
2269        // C++ [class.mem]p1:
2270        //   [...] A member shall not be declared twice in the
2271        //   member-specification, except that a nested class or member
2272        //   class template can be declared and then later defined.
2273        if (ActiveTemplateInstantiations.empty()) {
2274          unsigned NewDiag;
2275          if (isa<CXXConstructorDecl>(OldMethod))
2276            NewDiag = diag::err_constructor_redeclared;
2277          else if (isa<CXXDestructorDecl>(NewMethod))
2278            NewDiag = diag::err_destructor_redeclared;
2279          else if (isa<CXXConversionDecl>(NewMethod))
2280            NewDiag = diag::err_conv_function_redeclared;
2281          else
2282            NewDiag = diag::err_member_redeclared;
2283
2284          Diag(New->getLocation(), NewDiag);
2285        } else {
2286          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2287            << New << New->getType();
2288        }
2289        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2290
2291      // Complain if this is an explicit declaration of a special
2292      // member that was initially declared implicitly.
2293      //
2294      // As an exception, it's okay to befriend such methods in order
2295      // to permit the implicit constructor/destructor/operator calls.
2296      } else if (OldMethod->isImplicit()) {
2297        if (isFriend) {
2298          NewMethod->setImplicit();
2299        } else {
2300          Diag(NewMethod->getLocation(),
2301               diag::err_definition_of_implicitly_declared_member)
2302            << New << getSpecialMember(OldMethod);
2303          return true;
2304        }
2305      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2306        Diag(NewMethod->getLocation(),
2307             diag::err_definition_of_explicitly_defaulted_member)
2308          << getSpecialMember(OldMethod);
2309        return true;
2310      }
2311    }
2312
2313    // C++11 [dcl.attr.noreturn]p1:
2314    //   The first declaration of a function shall specify the noreturn
2315    //   attribute if any declaration of that function specifies the noreturn
2316    //   attribute.
2317    if (New->hasAttr<CXX11NoReturnAttr>() &&
2318        !Old->hasAttr<CXX11NoReturnAttr>()) {
2319      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2320           diag::err_noreturn_missing_on_first_decl);
2321      Diag(Old->getFirstDeclaration()->getLocation(),
2322           diag::note_noreturn_missing_first_decl);
2323    }
2324
2325    // C++11 [dcl.attr.depend]p2:
2326    //   The first declaration of a function shall specify the
2327    //   carries_dependency attribute for its declarator-id if any declaration
2328    //   of the function specifies the carries_dependency attribute.
2329    if (New->hasAttr<CarriesDependencyAttr>() &&
2330        !Old->hasAttr<CarriesDependencyAttr>()) {
2331      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2332           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2333      Diag(Old->getFirstDeclaration()->getLocation(),
2334           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2335    }
2336
2337    // (C++98 8.3.5p3):
2338    //   All declarations for a function shall agree exactly in both the
2339    //   return type and the parameter-type-list.
2340    // We also want to respect all the extended bits except noreturn.
2341
2342    // noreturn should now match unless the old type info didn't have it.
2343    QualType OldQTypeForComparison = OldQType;
2344    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2345      assert(OldQType == QualType(OldType, 0));
2346      const FunctionType *OldTypeForComparison
2347        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2348      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2349      assert(OldQTypeForComparison.isCanonical());
2350    }
2351
2352    if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2353      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2354      Diag(Old->getLocation(), PrevDiag);
2355      return true;
2356    }
2357
2358    if (OldQTypeForComparison == NewQType)
2359      return MergeCompatibleFunctionDecls(New, Old, S);
2360
2361    // Fall through for conflicting redeclarations and redefinitions.
2362  }
2363
2364  // C: Function types need to be compatible, not identical. This handles
2365  // duplicate function decls like "void f(int); void f(enum X);" properly.
2366  if (!getLangOpts().CPlusPlus &&
2367      Context.typesAreCompatible(OldQType, NewQType)) {
2368    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2369    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2370    const FunctionProtoType *OldProto = 0;
2371    if (isa<FunctionNoProtoType>(NewFuncType) &&
2372        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2373      // The old declaration provided a function prototype, but the
2374      // new declaration does not. Merge in the prototype.
2375      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2376      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2377                                                 OldProto->arg_type_end());
2378      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2379                                         ParamTypes.data(), ParamTypes.size(),
2380                                         OldProto->getExtProtoInfo());
2381      New->setType(NewQType);
2382      New->setHasInheritedPrototype();
2383
2384      // Synthesize a parameter for each argument type.
2385      SmallVector<ParmVarDecl*, 16> Params;
2386      for (FunctionProtoType::arg_type_iterator
2387             ParamType = OldProto->arg_type_begin(),
2388             ParamEnd = OldProto->arg_type_end();
2389           ParamType != ParamEnd; ++ParamType) {
2390        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2391                                                 SourceLocation(),
2392                                                 SourceLocation(), 0,
2393                                                 *ParamType, /*TInfo=*/0,
2394                                                 SC_None, SC_None,
2395                                                 0);
2396        Param->setScopeInfo(0, Params.size());
2397        Param->setImplicit();
2398        Params.push_back(Param);
2399      }
2400
2401      New->setParams(Params);
2402    }
2403
2404    return MergeCompatibleFunctionDecls(New, Old, S);
2405  }
2406
2407  // GNU C permits a K&R definition to follow a prototype declaration
2408  // if the declared types of the parameters in the K&R definition
2409  // match the types in the prototype declaration, even when the
2410  // promoted types of the parameters from the K&R definition differ
2411  // from the types in the prototype. GCC then keeps the types from
2412  // the prototype.
2413  //
2414  // If a variadic prototype is followed by a non-variadic K&R definition,
2415  // the K&R definition becomes variadic.  This is sort of an edge case, but
2416  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2417  // C99 6.9.1p8.
2418  if (!getLangOpts().CPlusPlus &&
2419      Old->hasPrototype() && !New->hasPrototype() &&
2420      New->getType()->getAs<FunctionProtoType>() &&
2421      Old->getNumParams() == New->getNumParams()) {
2422    SmallVector<QualType, 16> ArgTypes;
2423    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2424    const FunctionProtoType *OldProto
2425      = Old->getType()->getAs<FunctionProtoType>();
2426    const FunctionProtoType *NewProto
2427      = New->getType()->getAs<FunctionProtoType>();
2428
2429    // Determine whether this is the GNU C extension.
2430    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2431                                               NewProto->getResultType());
2432    bool LooseCompatible = !MergedReturn.isNull();
2433    for (unsigned Idx = 0, End = Old->getNumParams();
2434         LooseCompatible && Idx != End; ++Idx) {
2435      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2436      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2437      if (Context.typesAreCompatible(OldParm->getType(),
2438                                     NewProto->getArgType(Idx))) {
2439        ArgTypes.push_back(NewParm->getType());
2440      } else if (Context.typesAreCompatible(OldParm->getType(),
2441                                            NewParm->getType(),
2442                                            /*CompareUnqualified=*/true)) {
2443        GNUCompatibleParamWarning Warn
2444          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2445        Warnings.push_back(Warn);
2446        ArgTypes.push_back(NewParm->getType());
2447      } else
2448        LooseCompatible = false;
2449    }
2450
2451    if (LooseCompatible) {
2452      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2453        Diag(Warnings[Warn].NewParm->getLocation(),
2454             diag::ext_param_promoted_not_compatible_with_prototype)
2455          << Warnings[Warn].PromotedType
2456          << Warnings[Warn].OldParm->getType();
2457        if (Warnings[Warn].OldParm->getLocation().isValid())
2458          Diag(Warnings[Warn].OldParm->getLocation(),
2459               diag::note_previous_declaration);
2460      }
2461
2462      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2463                                           ArgTypes.size(),
2464                                           OldProto->getExtProtoInfo()));
2465      return MergeCompatibleFunctionDecls(New, Old, S);
2466    }
2467
2468    // Fall through to diagnose conflicting types.
2469  }
2470
2471  // A function that has already been declared has been redeclared or defined
2472  // with a different type- show appropriate diagnostic
2473  if (unsigned BuiltinID = Old->getBuiltinID()) {
2474    // The user has declared a builtin function with an incompatible
2475    // signature.
2476    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2477      // The function the user is redeclaring is a library-defined
2478      // function like 'malloc' or 'printf'. Warn about the
2479      // redeclaration, then pretend that we don't know about this
2480      // library built-in.
2481      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2482      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2483        << Old << Old->getType();
2484      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2485      Old->setInvalidDecl();
2486      return false;
2487    }
2488
2489    PrevDiag = diag::note_previous_builtin_declaration;
2490  }
2491
2492  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2493  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2494  return true;
2495}
2496
2497/// \brief Completes the merge of two function declarations that are
2498/// known to be compatible.
2499///
2500/// This routine handles the merging of attributes and other
2501/// properties of function declarations form the old declaration to
2502/// the new declaration, once we know that New is in fact a
2503/// redeclaration of Old.
2504///
2505/// \returns false
2506bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2507                                        Scope *S) {
2508  // Merge the attributes
2509  mergeDeclAttributes(New, Old);
2510
2511  // Merge the storage class.
2512  if (Old->getStorageClass() != SC_Extern &&
2513      Old->getStorageClass() != SC_None)
2514    New->setStorageClass(Old->getStorageClass());
2515
2516  // Merge "pure" flag.
2517  if (Old->isPure())
2518    New->setPure();
2519
2520  // Merge "used" flag.
2521  if (Old->isUsed(false))
2522    New->setUsed();
2523
2524  // Merge attributes from the parameters.  These can mismatch with K&R
2525  // declarations.
2526  if (New->getNumParams() == Old->getNumParams())
2527    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2528      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2529                               *this);
2530
2531  if (getLangOpts().CPlusPlus)
2532    return MergeCXXFunctionDecl(New, Old, S);
2533
2534  // Merge the function types so the we get the composite types for the return
2535  // and argument types.
2536  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2537  if (!Merged.isNull())
2538    New->setType(Merged);
2539
2540  return false;
2541}
2542
2543
2544void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2545                                ObjCMethodDecl *oldMethod) {
2546
2547  // Merge the attributes, including deprecated/unavailable
2548  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2549
2550  // Merge attributes from the parameters.
2551  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2552                                       oe = oldMethod->param_end();
2553  for (ObjCMethodDecl::param_iterator
2554         ni = newMethod->param_begin(), ne = newMethod->param_end();
2555       ni != ne && oi != oe; ++ni, ++oi)
2556    mergeParamDeclAttributes(*ni, *oi, *this);
2557
2558  CheckObjCMethodOverride(newMethod, oldMethod);
2559}
2560
2561/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2562/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2563/// emitting diagnostics as appropriate.
2564///
2565/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2566/// to here in AddInitializerToDecl. We can't check them before the initializer
2567/// is attached.
2568void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2569  if (New->isInvalidDecl() || Old->isInvalidDecl())
2570    return;
2571
2572  QualType MergedT;
2573  if (getLangOpts().CPlusPlus) {
2574    AutoType *AT = New->getType()->getContainedAutoType();
2575    if (AT && !AT->isDeduced()) {
2576      // We don't know what the new type is until the initializer is attached.
2577      return;
2578    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2579      // These could still be something that needs exception specs checked.
2580      return MergeVarDeclExceptionSpecs(New, Old);
2581    }
2582    // C++ [basic.link]p10:
2583    //   [...] the types specified by all declarations referring to a given
2584    //   object or function shall be identical, except that declarations for an
2585    //   array object can specify array types that differ by the presence or
2586    //   absence of a major array bound (8.3.4).
2587    else if (Old->getType()->isIncompleteArrayType() &&
2588             New->getType()->isArrayType()) {
2589      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2590      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2591      if (Context.hasSameType(OldArray->getElementType(),
2592                              NewArray->getElementType()))
2593        MergedT = New->getType();
2594    } else if (Old->getType()->isArrayType() &&
2595             New->getType()->isIncompleteArrayType()) {
2596      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2597      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2598      if (Context.hasSameType(OldArray->getElementType(),
2599                              NewArray->getElementType()))
2600        MergedT = Old->getType();
2601    } else if (New->getType()->isObjCObjectPointerType()
2602               && Old->getType()->isObjCObjectPointerType()) {
2603        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2604                                                        Old->getType());
2605    }
2606  } else {
2607    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2608  }
2609  if (MergedT.isNull()) {
2610    Diag(New->getLocation(), diag::err_redefinition_different_type)
2611      << New->getDeclName() << New->getType() << Old->getType();
2612    Diag(Old->getLocation(), diag::note_previous_definition);
2613    return New->setInvalidDecl();
2614  }
2615  New->setType(MergedT);
2616}
2617
2618/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2619/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2620/// situation, merging decls or emitting diagnostics as appropriate.
2621///
2622/// Tentative definition rules (C99 6.9.2p2) are checked by
2623/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2624/// definitions here, since the initializer hasn't been attached.
2625///
2626void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2627  // If the new decl is already invalid, don't do any other checking.
2628  if (New->isInvalidDecl())
2629    return;
2630
2631  // Verify the old decl was also a variable.
2632  VarDecl *Old = 0;
2633  if (!Previous.isSingleResult() ||
2634      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2635    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2636      << New->getDeclName();
2637    Diag(Previous.getRepresentativeDecl()->getLocation(),
2638         diag::note_previous_definition);
2639    return New->setInvalidDecl();
2640  }
2641
2642  // C++ [class.mem]p1:
2643  //   A member shall not be declared twice in the member-specification [...]
2644  //
2645  // Here, we need only consider static data members.
2646  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2647    Diag(New->getLocation(), diag::err_duplicate_member)
2648      << New->getIdentifier();
2649    Diag(Old->getLocation(), diag::note_previous_declaration);
2650    New->setInvalidDecl();
2651  }
2652
2653  mergeDeclAttributes(New, Old);
2654  // Warn if an already-declared variable is made a weak_import in a subsequent
2655  // declaration
2656  if (New->getAttr<WeakImportAttr>() &&
2657      Old->getStorageClass() == SC_None &&
2658      !Old->getAttr<WeakImportAttr>()) {
2659    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2660    Diag(Old->getLocation(), diag::note_previous_definition);
2661    // Remove weak_import attribute on new declaration.
2662    New->dropAttr<WeakImportAttr>();
2663  }
2664
2665  // Merge the types.
2666  MergeVarDeclTypes(New, Old);
2667  if (New->isInvalidDecl())
2668    return;
2669
2670  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2671  if (New->getStorageClass() == SC_Static &&
2672      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2673    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2674    Diag(Old->getLocation(), diag::note_previous_definition);
2675    return New->setInvalidDecl();
2676  }
2677  // C99 6.2.2p4:
2678  //   For an identifier declared with the storage-class specifier
2679  //   extern in a scope in which a prior declaration of that
2680  //   identifier is visible,23) if the prior declaration specifies
2681  //   internal or external linkage, the linkage of the identifier at
2682  //   the later declaration is the same as the linkage specified at
2683  //   the prior declaration. If no prior declaration is visible, or
2684  //   if the prior declaration specifies no linkage, then the
2685  //   identifier has external linkage.
2686  if (New->hasExternalStorage() && Old->hasLinkage())
2687    /* Okay */;
2688  else if (New->getStorageClass() != SC_Static &&
2689           Old->getStorageClass() == SC_Static) {
2690    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2691    Diag(Old->getLocation(), diag::note_previous_definition);
2692    return New->setInvalidDecl();
2693  }
2694
2695  // Check if extern is followed by non-extern and vice-versa.
2696  if (New->hasExternalStorage() &&
2697      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2698    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2699    Diag(Old->getLocation(), diag::note_previous_definition);
2700    return New->setInvalidDecl();
2701  }
2702  if (Old->hasExternalStorage() &&
2703      !New->hasLinkage() && New->isLocalVarDecl()) {
2704    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2705    Diag(Old->getLocation(), diag::note_previous_definition);
2706    return New->setInvalidDecl();
2707  }
2708
2709  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2710
2711  // FIXME: The test for external storage here seems wrong? We still
2712  // need to check for mismatches.
2713  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2714      // Don't complain about out-of-line definitions of static members.
2715      !(Old->getLexicalDeclContext()->isRecord() &&
2716        !New->getLexicalDeclContext()->isRecord())) {
2717    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2718    Diag(Old->getLocation(), diag::note_previous_definition);
2719    return New->setInvalidDecl();
2720  }
2721
2722  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2723    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2724    Diag(Old->getLocation(), diag::note_previous_definition);
2725  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2726    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2727    Diag(Old->getLocation(), diag::note_previous_definition);
2728  }
2729
2730  // C++ doesn't have tentative definitions, so go right ahead and check here.
2731  const VarDecl *Def;
2732  if (getLangOpts().CPlusPlus &&
2733      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2734      (Def = Old->getDefinition())) {
2735    Diag(New->getLocation(), diag::err_redefinition)
2736      << New->getDeclName();
2737    Diag(Def->getLocation(), diag::note_previous_definition);
2738    New->setInvalidDecl();
2739    return;
2740  }
2741
2742  if (!Old->hasCLanguageLinkage() && New->hasCLanguageLinkage()) {
2743    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2744    Diag(Old->getLocation(), diag::note_previous_definition);
2745    New->setInvalidDecl();
2746    return;
2747  }
2748
2749  // c99 6.2.2 P4.
2750  // For an identifier declared with the storage-class specifier extern in a
2751  // scope in which a prior declaration of that identifier is visible, if
2752  // the prior declaration specifies internal or external linkage, the linkage
2753  // of the identifier at the later declaration is the same as the linkage
2754  // specified at the prior declaration.
2755  // FIXME. revisit this code.
2756  if (New->hasExternalStorage() &&
2757      Old->getLinkage() == InternalLinkage)
2758    New->setStorageClass(Old->getStorageClass());
2759
2760  // Merge "used" flag.
2761  if (Old->isUsed(false))
2762    New->setUsed();
2763
2764  // Keep a chain of previous declarations.
2765  New->setPreviousDeclaration(Old);
2766
2767  // Inherit access appropriately.
2768  New->setAccess(Old->getAccess());
2769}
2770
2771/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2772/// no declarator (e.g. "struct foo;") is parsed.
2773Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2774                                       DeclSpec &DS) {
2775  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2776}
2777
2778/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2779/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2780/// parameters to cope with template friend declarations.
2781Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2782                                       DeclSpec &DS,
2783                                       MultiTemplateParamsArg TemplateParams) {
2784  Decl *TagD = 0;
2785  TagDecl *Tag = 0;
2786  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2787      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2788      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2789      DS.getTypeSpecType() == DeclSpec::TST_union ||
2790      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2791    TagD = DS.getRepAsDecl();
2792
2793    if (!TagD) // We probably had an error
2794      return 0;
2795
2796    // Note that the above type specs guarantee that the
2797    // type rep is a Decl, whereas in many of the others
2798    // it's a Type.
2799    if (isa<TagDecl>(TagD))
2800      Tag = cast<TagDecl>(TagD);
2801    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2802      Tag = CTD->getTemplatedDecl();
2803  }
2804
2805  if (Tag) {
2806    getASTContext().addUnnamedTag(Tag);
2807    Tag->setFreeStanding();
2808    if (Tag->isInvalidDecl())
2809      return Tag;
2810  }
2811
2812  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2813    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2814    // or incomplete types shall not be restrict-qualified."
2815    if (TypeQuals & DeclSpec::TQ_restrict)
2816      Diag(DS.getRestrictSpecLoc(),
2817           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2818           << DS.getSourceRange();
2819  }
2820
2821  if (DS.isConstexprSpecified()) {
2822    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2823    // and definitions of functions and variables.
2824    if (Tag)
2825      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2826        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2827            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2828            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
2829            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
2830    else
2831      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2832    // Don't emit warnings after this error.
2833    return TagD;
2834  }
2835
2836  if (DS.isFriendSpecified()) {
2837    // If we're dealing with a decl but not a TagDecl, assume that
2838    // whatever routines created it handled the friendship aspect.
2839    if (TagD && !Tag)
2840      return 0;
2841    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2842  }
2843
2844  // Track whether we warned about the fact that there aren't any
2845  // declarators.
2846  bool emittedWarning = false;
2847
2848  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2849    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2850        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2851      if (getLangOpts().CPlusPlus ||
2852          Record->getDeclContext()->isRecord())
2853        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2854
2855      Diag(DS.getLocStart(), diag::ext_no_declarators)
2856        << DS.getSourceRange();
2857      emittedWarning = true;
2858    }
2859  }
2860
2861  // Check for Microsoft C extension: anonymous struct.
2862  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2863      CurContext->isRecord() &&
2864      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2865    // Handle 2 kinds of anonymous struct:
2866    //   struct STRUCT;
2867    // and
2868    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2869    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2870    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2871        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2872         DS.getRepAsType().get()->isStructureType())) {
2873      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2874        << DS.getSourceRange();
2875      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2876    }
2877  }
2878
2879  if (getLangOpts().CPlusPlus &&
2880      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2881    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2882      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2883          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2884        Diag(Enum->getLocation(), diag::ext_no_declarators)
2885          << DS.getSourceRange();
2886        emittedWarning = true;
2887      }
2888
2889  // Skip all the checks below if we have a type error.
2890  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2891
2892  if (!DS.isMissingDeclaratorOk()) {
2893    // Warn about typedefs of enums without names, since this is an
2894    // extension in both Microsoft and GNU.
2895    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2896        Tag && isa<EnumDecl>(Tag)) {
2897      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2898        << DS.getSourceRange();
2899      return Tag;
2900    }
2901
2902    Diag(DS.getLocStart(), diag::ext_no_declarators)
2903      << DS.getSourceRange();
2904    emittedWarning = true;
2905  }
2906
2907  // We're going to complain about a bunch of spurious specifiers;
2908  // only do this if we're declaring a tag, because otherwise we
2909  // should be getting diag::ext_no_declarators.
2910  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2911    return TagD;
2912
2913  // Note that a linkage-specification sets a storage class, but
2914  // 'extern "C" struct foo;' is actually valid and not theoretically
2915  // useless.
2916  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2917    if (!DS.isExternInLinkageSpec())
2918      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2919        << DeclSpec::getSpecifierName(scs);
2920
2921  if (DS.isThreadSpecified())
2922    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2923  if (DS.getTypeQualifiers()) {
2924    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2925      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2926    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2927      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2928    // Restrict is covered above.
2929  }
2930  if (DS.isInlineSpecified())
2931    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2932  if (DS.isVirtualSpecified())
2933    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2934  if (DS.isExplicitSpecified())
2935    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2936
2937  if (DS.isModulePrivateSpecified() &&
2938      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2939    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2940      << Tag->getTagKind()
2941      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2942
2943  // Warn about ignored type attributes, for example:
2944  // __attribute__((aligned)) struct A;
2945  // Attributes should be placed after tag to apply to type declaration.
2946  if (!DS.getAttributes().empty()) {
2947    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2948    if (TypeSpecType == DeclSpec::TST_class ||
2949        TypeSpecType == DeclSpec::TST_struct ||
2950        TypeSpecType == DeclSpec::TST_interface ||
2951        TypeSpecType == DeclSpec::TST_union ||
2952        TypeSpecType == DeclSpec::TST_enum) {
2953      AttributeList* attrs = DS.getAttributes().getList();
2954      while (attrs) {
2955        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
2956        << attrs->getName()
2957        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2958            TypeSpecType == DeclSpec::TST_struct ? 1 :
2959            TypeSpecType == DeclSpec::TST_union ? 2 :
2960            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
2961        attrs = attrs->getNext();
2962      }
2963    }
2964  }
2965
2966  ActOnDocumentableDecl(TagD);
2967
2968  return TagD;
2969}
2970
2971/// We are trying to inject an anonymous member into the given scope;
2972/// check if there's an existing declaration that can't be overloaded.
2973///
2974/// \return true if this is a forbidden redeclaration
2975static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2976                                         Scope *S,
2977                                         DeclContext *Owner,
2978                                         DeclarationName Name,
2979                                         SourceLocation NameLoc,
2980                                         unsigned diagnostic) {
2981  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2982                 Sema::ForRedeclaration);
2983  if (!SemaRef.LookupName(R, S)) return false;
2984
2985  if (R.getAsSingle<TagDecl>())
2986    return false;
2987
2988  // Pick a representative declaration.
2989  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2990  assert(PrevDecl && "Expected a non-null Decl");
2991
2992  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2993    return false;
2994
2995  SemaRef.Diag(NameLoc, diagnostic) << Name;
2996  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2997
2998  return true;
2999}
3000
3001/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3002/// anonymous struct or union AnonRecord into the owning context Owner
3003/// and scope S. This routine will be invoked just after we realize
3004/// that an unnamed union or struct is actually an anonymous union or
3005/// struct, e.g.,
3006///
3007/// @code
3008/// union {
3009///   int i;
3010///   float f;
3011/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3012///    // f into the surrounding scope.x
3013/// @endcode
3014///
3015/// This routine is recursive, injecting the names of nested anonymous
3016/// structs/unions into the owning context and scope as well.
3017static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3018                                                DeclContext *Owner,
3019                                                RecordDecl *AnonRecord,
3020                                                AccessSpecifier AS,
3021                              SmallVector<NamedDecl*, 2> &Chaining,
3022                                                      bool MSAnonStruct) {
3023  unsigned diagKind
3024    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3025                            : diag::err_anonymous_struct_member_redecl;
3026
3027  bool Invalid = false;
3028
3029  // Look every FieldDecl and IndirectFieldDecl with a name.
3030  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3031                               DEnd = AnonRecord->decls_end();
3032       D != DEnd; ++D) {
3033    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3034        cast<NamedDecl>(*D)->getDeclName()) {
3035      ValueDecl *VD = cast<ValueDecl>(*D);
3036      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3037                                       VD->getLocation(), diagKind)) {
3038        // C++ [class.union]p2:
3039        //   The names of the members of an anonymous union shall be
3040        //   distinct from the names of any other entity in the
3041        //   scope in which the anonymous union is declared.
3042        Invalid = true;
3043      } else {
3044        // C++ [class.union]p2:
3045        //   For the purpose of name lookup, after the anonymous union
3046        //   definition, the members of the anonymous union are
3047        //   considered to have been defined in the scope in which the
3048        //   anonymous union is declared.
3049        unsigned OldChainingSize = Chaining.size();
3050        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3051          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3052               PE = IF->chain_end(); PI != PE; ++PI)
3053            Chaining.push_back(*PI);
3054        else
3055          Chaining.push_back(VD);
3056
3057        assert(Chaining.size() >= 2);
3058        NamedDecl **NamedChain =
3059          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3060        for (unsigned i = 0; i < Chaining.size(); i++)
3061          NamedChain[i] = Chaining[i];
3062
3063        IndirectFieldDecl* IndirectField =
3064          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3065                                    VD->getIdentifier(), VD->getType(),
3066                                    NamedChain, Chaining.size());
3067
3068        IndirectField->setAccess(AS);
3069        IndirectField->setImplicit();
3070        SemaRef.PushOnScopeChains(IndirectField, S);
3071
3072        // That includes picking up the appropriate access specifier.
3073        if (AS != AS_none) IndirectField->setAccess(AS);
3074
3075        Chaining.resize(OldChainingSize);
3076      }
3077    }
3078  }
3079
3080  return Invalid;
3081}
3082
3083/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3084/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3085/// illegal input values are mapped to SC_None.
3086static StorageClass
3087StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3088  switch (StorageClassSpec) {
3089  case DeclSpec::SCS_unspecified:    return SC_None;
3090  case DeclSpec::SCS_extern:         return SC_Extern;
3091  case DeclSpec::SCS_static:         return SC_Static;
3092  case DeclSpec::SCS_auto:           return SC_Auto;
3093  case DeclSpec::SCS_register:       return SC_Register;
3094  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3095    // Illegal SCSs map to None: error reporting is up to the caller.
3096  case DeclSpec::SCS_mutable:        // Fall through.
3097  case DeclSpec::SCS_typedef:        return SC_None;
3098  }
3099  llvm_unreachable("unknown storage class specifier");
3100}
3101
3102/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3103/// a StorageClass. Any error reporting is up to the caller:
3104/// illegal input values are mapped to SC_None.
3105static StorageClass
3106StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3107  switch (StorageClassSpec) {
3108  case DeclSpec::SCS_unspecified:    return SC_None;
3109  case DeclSpec::SCS_extern:         return SC_Extern;
3110  case DeclSpec::SCS_static:         return SC_Static;
3111  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3112    // Illegal SCSs map to None: error reporting is up to the caller.
3113  case DeclSpec::SCS_auto:           // Fall through.
3114  case DeclSpec::SCS_mutable:        // Fall through.
3115  case DeclSpec::SCS_register:       // Fall through.
3116  case DeclSpec::SCS_typedef:        return SC_None;
3117  }
3118  llvm_unreachable("unknown storage class specifier");
3119}
3120
3121/// BuildAnonymousStructOrUnion - Handle the declaration of an
3122/// anonymous structure or union. Anonymous unions are a C++ feature
3123/// (C++ [class.union]) and a C11 feature; anonymous structures
3124/// are a C11 feature and GNU C++ extension.
3125Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3126                                             AccessSpecifier AS,
3127                                             RecordDecl *Record) {
3128  DeclContext *Owner = Record->getDeclContext();
3129
3130  // Diagnose whether this anonymous struct/union is an extension.
3131  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3132    Diag(Record->getLocation(), diag::ext_anonymous_union);
3133  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3134    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3135  else if (!Record->isUnion() && !getLangOpts().C11)
3136    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3137
3138  // C and C++ require different kinds of checks for anonymous
3139  // structs/unions.
3140  bool Invalid = false;
3141  if (getLangOpts().CPlusPlus) {
3142    const char* PrevSpec = 0;
3143    unsigned DiagID;
3144    if (Record->isUnion()) {
3145      // C++ [class.union]p6:
3146      //   Anonymous unions declared in a named namespace or in the
3147      //   global namespace shall be declared static.
3148      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3149          (isa<TranslationUnitDecl>(Owner) ||
3150           (isa<NamespaceDecl>(Owner) &&
3151            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3152        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3153          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3154
3155        // Recover by adding 'static'.
3156        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3157                               PrevSpec, DiagID);
3158      }
3159      // C++ [class.union]p6:
3160      //   A storage class is not allowed in a declaration of an
3161      //   anonymous union in a class scope.
3162      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3163               isa<RecordDecl>(Owner)) {
3164        Diag(DS.getStorageClassSpecLoc(),
3165             diag::err_anonymous_union_with_storage_spec)
3166          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3167
3168        // Recover by removing the storage specifier.
3169        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3170                               SourceLocation(),
3171                               PrevSpec, DiagID);
3172      }
3173    }
3174
3175    // Ignore const/volatile/restrict qualifiers.
3176    if (DS.getTypeQualifiers()) {
3177      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3178        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3179          << Record->isUnion() << 0
3180          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3181      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3182        Diag(DS.getVolatileSpecLoc(),
3183             diag::ext_anonymous_struct_union_qualified)
3184          << Record->isUnion() << 1
3185          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3186      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3187        Diag(DS.getRestrictSpecLoc(),
3188             diag::ext_anonymous_struct_union_qualified)
3189          << Record->isUnion() << 2
3190          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3191
3192      DS.ClearTypeQualifiers();
3193    }
3194
3195    // C++ [class.union]p2:
3196    //   The member-specification of an anonymous union shall only
3197    //   define non-static data members. [Note: nested types and
3198    //   functions cannot be declared within an anonymous union. ]
3199    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3200                                 MemEnd = Record->decls_end();
3201         Mem != MemEnd; ++Mem) {
3202      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3203        // C++ [class.union]p3:
3204        //   An anonymous union shall not have private or protected
3205        //   members (clause 11).
3206        assert(FD->getAccess() != AS_none);
3207        if (FD->getAccess() != AS_public) {
3208          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3209            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3210          Invalid = true;
3211        }
3212
3213        // C++ [class.union]p1
3214        //   An object of a class with a non-trivial constructor, a non-trivial
3215        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3216        //   assignment operator cannot be a member of a union, nor can an
3217        //   array of such objects.
3218        if (CheckNontrivialField(FD))
3219          Invalid = true;
3220      } else if ((*Mem)->isImplicit()) {
3221        // Any implicit members are fine.
3222      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3223        // This is a type that showed up in an
3224        // elaborated-type-specifier inside the anonymous struct or
3225        // union, but which actually declares a type outside of the
3226        // anonymous struct or union. It's okay.
3227      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3228        if (!MemRecord->isAnonymousStructOrUnion() &&
3229            MemRecord->getDeclName()) {
3230          // Visual C++ allows type definition in anonymous struct or union.
3231          if (getLangOpts().MicrosoftExt)
3232            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3233              << (int)Record->isUnion();
3234          else {
3235            // This is a nested type declaration.
3236            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3237              << (int)Record->isUnion();
3238            Invalid = true;
3239          }
3240        } else {
3241          // This is an anonymous type definition within another anonymous type.
3242          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3243          // not part of standard C++.
3244          Diag(MemRecord->getLocation(),
3245               diag::ext_anonymous_record_with_anonymous_type);
3246        }
3247      } else if (isa<AccessSpecDecl>(*Mem)) {
3248        // Any access specifier is fine.
3249      } else {
3250        // We have something that isn't a non-static data
3251        // member. Complain about it.
3252        unsigned DK = diag::err_anonymous_record_bad_member;
3253        if (isa<TypeDecl>(*Mem))
3254          DK = diag::err_anonymous_record_with_type;
3255        else if (isa<FunctionDecl>(*Mem))
3256          DK = diag::err_anonymous_record_with_function;
3257        else if (isa<VarDecl>(*Mem))
3258          DK = diag::err_anonymous_record_with_static;
3259
3260        // Visual C++ allows type definition in anonymous struct or union.
3261        if (getLangOpts().MicrosoftExt &&
3262            DK == diag::err_anonymous_record_with_type)
3263          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3264            << (int)Record->isUnion();
3265        else {
3266          Diag((*Mem)->getLocation(), DK)
3267              << (int)Record->isUnion();
3268          Invalid = true;
3269        }
3270      }
3271    }
3272  }
3273
3274  if (!Record->isUnion() && !Owner->isRecord()) {
3275    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3276      << (int)getLangOpts().CPlusPlus;
3277    Invalid = true;
3278  }
3279
3280  // Mock up a declarator.
3281  Declarator Dc(DS, Declarator::MemberContext);
3282  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3283  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3284
3285  // Create a declaration for this anonymous struct/union.
3286  NamedDecl *Anon = 0;
3287  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3288    Anon = FieldDecl::Create(Context, OwningClass,
3289                             DS.getLocStart(),
3290                             Record->getLocation(),
3291                             /*IdentifierInfo=*/0,
3292                             Context.getTypeDeclType(Record),
3293                             TInfo,
3294                             /*BitWidth=*/0, /*Mutable=*/false,
3295                             /*InitStyle=*/ICIS_NoInit);
3296    Anon->setAccess(AS);
3297    if (getLangOpts().CPlusPlus)
3298      FieldCollector->Add(cast<FieldDecl>(Anon));
3299  } else {
3300    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3301    assert(SCSpec != DeclSpec::SCS_typedef &&
3302           "Parser allowed 'typedef' as storage class VarDecl.");
3303    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3304    if (SCSpec == DeclSpec::SCS_mutable) {
3305      // mutable can only appear on non-static class members, so it's always
3306      // an error here
3307      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3308      Invalid = true;
3309      SC = SC_None;
3310    }
3311    SCSpec = DS.getStorageClassSpecAsWritten();
3312    VarDecl::StorageClass SCAsWritten
3313      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3314
3315    Anon = VarDecl::Create(Context, Owner,
3316                           DS.getLocStart(),
3317                           Record->getLocation(), /*IdentifierInfo=*/0,
3318                           Context.getTypeDeclType(Record),
3319                           TInfo, SC, SCAsWritten);
3320
3321    // Default-initialize the implicit variable. This initialization will be
3322    // trivial in almost all cases, except if a union member has an in-class
3323    // initializer:
3324    //   union { int n = 0; };
3325    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3326  }
3327  Anon->setImplicit();
3328
3329  // Add the anonymous struct/union object to the current
3330  // context. We'll be referencing this object when we refer to one of
3331  // its members.
3332  Owner->addDecl(Anon);
3333
3334  // Inject the members of the anonymous struct/union into the owning
3335  // context and into the identifier resolver chain for name lookup
3336  // purposes.
3337  SmallVector<NamedDecl*, 2> Chain;
3338  Chain.push_back(Anon);
3339
3340  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3341                                          Chain, false))
3342    Invalid = true;
3343
3344  // Mark this as an anonymous struct/union type. Note that we do not
3345  // do this until after we have already checked and injected the
3346  // members of this anonymous struct/union type, because otherwise
3347  // the members could be injected twice: once by DeclContext when it
3348  // builds its lookup table, and once by
3349  // InjectAnonymousStructOrUnionMembers.
3350  Record->setAnonymousStructOrUnion(true);
3351
3352  if (Invalid)
3353    Anon->setInvalidDecl();
3354
3355  return Anon;
3356}
3357
3358/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3359/// Microsoft C anonymous structure.
3360/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3361/// Example:
3362///
3363/// struct A { int a; };
3364/// struct B { struct A; int b; };
3365///
3366/// void foo() {
3367///   B var;
3368///   var.a = 3;
3369/// }
3370///
3371Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3372                                           RecordDecl *Record) {
3373
3374  // If there is no Record, get the record via the typedef.
3375  if (!Record)
3376    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3377
3378  // Mock up a declarator.
3379  Declarator Dc(DS, Declarator::TypeNameContext);
3380  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3381  assert(TInfo && "couldn't build declarator info for anonymous struct");
3382
3383  // Create a declaration for this anonymous struct.
3384  NamedDecl* Anon = FieldDecl::Create(Context,
3385                             cast<RecordDecl>(CurContext),
3386                             DS.getLocStart(),
3387                             DS.getLocStart(),
3388                             /*IdentifierInfo=*/0,
3389                             Context.getTypeDeclType(Record),
3390                             TInfo,
3391                             /*BitWidth=*/0, /*Mutable=*/false,
3392                             /*InitStyle=*/ICIS_NoInit);
3393  Anon->setImplicit();
3394
3395  // Add the anonymous struct object to the current context.
3396  CurContext->addDecl(Anon);
3397
3398  // Inject the members of the anonymous struct into the current
3399  // context and into the identifier resolver chain for name lookup
3400  // purposes.
3401  SmallVector<NamedDecl*, 2> Chain;
3402  Chain.push_back(Anon);
3403
3404  RecordDecl *RecordDef = Record->getDefinition();
3405  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3406                                                        RecordDef, AS_none,
3407                                                        Chain, true))
3408    Anon->setInvalidDecl();
3409
3410  return Anon;
3411}
3412
3413/// GetNameForDeclarator - Determine the full declaration name for the
3414/// given Declarator.
3415DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3416  return GetNameFromUnqualifiedId(D.getName());
3417}
3418
3419/// \brief Retrieves the declaration name from a parsed unqualified-id.
3420DeclarationNameInfo
3421Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3422  DeclarationNameInfo NameInfo;
3423  NameInfo.setLoc(Name.StartLocation);
3424
3425  switch (Name.getKind()) {
3426
3427  case UnqualifiedId::IK_ImplicitSelfParam:
3428  case UnqualifiedId::IK_Identifier:
3429    NameInfo.setName(Name.Identifier);
3430    NameInfo.setLoc(Name.StartLocation);
3431    return NameInfo;
3432
3433  case UnqualifiedId::IK_OperatorFunctionId:
3434    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3435                                           Name.OperatorFunctionId.Operator));
3436    NameInfo.setLoc(Name.StartLocation);
3437    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3438      = Name.OperatorFunctionId.SymbolLocations[0];
3439    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3440      = Name.EndLocation.getRawEncoding();
3441    return NameInfo;
3442
3443  case UnqualifiedId::IK_LiteralOperatorId:
3444    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3445                                                           Name.Identifier));
3446    NameInfo.setLoc(Name.StartLocation);
3447    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3448    return NameInfo;
3449
3450  case UnqualifiedId::IK_ConversionFunctionId: {
3451    TypeSourceInfo *TInfo;
3452    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3453    if (Ty.isNull())
3454      return DeclarationNameInfo();
3455    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3456                                               Context.getCanonicalType(Ty)));
3457    NameInfo.setLoc(Name.StartLocation);
3458    NameInfo.setNamedTypeInfo(TInfo);
3459    return NameInfo;
3460  }
3461
3462  case UnqualifiedId::IK_ConstructorName: {
3463    TypeSourceInfo *TInfo;
3464    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3465    if (Ty.isNull())
3466      return DeclarationNameInfo();
3467    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3468                                              Context.getCanonicalType(Ty)));
3469    NameInfo.setLoc(Name.StartLocation);
3470    NameInfo.setNamedTypeInfo(TInfo);
3471    return NameInfo;
3472  }
3473
3474  case UnqualifiedId::IK_ConstructorTemplateId: {
3475    // In well-formed code, we can only have a constructor
3476    // template-id that refers to the current context, so go there
3477    // to find the actual type being constructed.
3478    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3479    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3480      return DeclarationNameInfo();
3481
3482    // Determine the type of the class being constructed.
3483    QualType CurClassType = Context.getTypeDeclType(CurClass);
3484
3485    // FIXME: Check two things: that the template-id names the same type as
3486    // CurClassType, and that the template-id does not occur when the name
3487    // was qualified.
3488
3489    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3490                                    Context.getCanonicalType(CurClassType)));
3491    NameInfo.setLoc(Name.StartLocation);
3492    // FIXME: should we retrieve TypeSourceInfo?
3493    NameInfo.setNamedTypeInfo(0);
3494    return NameInfo;
3495  }
3496
3497  case UnqualifiedId::IK_DestructorName: {
3498    TypeSourceInfo *TInfo;
3499    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3500    if (Ty.isNull())
3501      return DeclarationNameInfo();
3502    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3503                                              Context.getCanonicalType(Ty)));
3504    NameInfo.setLoc(Name.StartLocation);
3505    NameInfo.setNamedTypeInfo(TInfo);
3506    return NameInfo;
3507  }
3508
3509  case UnqualifiedId::IK_TemplateId: {
3510    TemplateName TName = Name.TemplateId->Template.get();
3511    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3512    return Context.getNameForTemplate(TName, TNameLoc);
3513  }
3514
3515  } // switch (Name.getKind())
3516
3517  llvm_unreachable("Unknown name kind");
3518}
3519
3520static QualType getCoreType(QualType Ty) {
3521  do {
3522    if (Ty->isPointerType() || Ty->isReferenceType())
3523      Ty = Ty->getPointeeType();
3524    else if (Ty->isArrayType())
3525      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3526    else
3527      return Ty.withoutLocalFastQualifiers();
3528  } while (true);
3529}
3530
3531/// hasSimilarParameters - Determine whether the C++ functions Declaration
3532/// and Definition have "nearly" matching parameters. This heuristic is
3533/// used to improve diagnostics in the case where an out-of-line function
3534/// definition doesn't match any declaration within the class or namespace.
3535/// Also sets Params to the list of indices to the parameters that differ
3536/// between the declaration and the definition. If hasSimilarParameters
3537/// returns true and Params is empty, then all of the parameters match.
3538static bool hasSimilarParameters(ASTContext &Context,
3539                                     FunctionDecl *Declaration,
3540                                     FunctionDecl *Definition,
3541                                     SmallVectorImpl<unsigned> &Params) {
3542  Params.clear();
3543  if (Declaration->param_size() != Definition->param_size())
3544    return false;
3545  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3546    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3547    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3548
3549    // The parameter types are identical
3550    if (Context.hasSameType(DefParamTy, DeclParamTy))
3551      continue;
3552
3553    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3554    QualType DefParamBaseTy = getCoreType(DefParamTy);
3555    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3556    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3557
3558    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3559        (DeclTyName && DeclTyName == DefTyName))
3560      Params.push_back(Idx);
3561    else  // The two parameters aren't even close
3562      return false;
3563  }
3564
3565  return true;
3566}
3567
3568/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3569/// declarator needs to be rebuilt in the current instantiation.
3570/// Any bits of declarator which appear before the name are valid for
3571/// consideration here.  That's specifically the type in the decl spec
3572/// and the base type in any member-pointer chunks.
3573static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3574                                                    DeclarationName Name) {
3575  // The types we specifically need to rebuild are:
3576  //   - typenames, typeofs, and decltypes
3577  //   - types which will become injected class names
3578  // Of course, we also need to rebuild any type referencing such a
3579  // type.  It's safest to just say "dependent", but we call out a
3580  // few cases here.
3581
3582  DeclSpec &DS = D.getMutableDeclSpec();
3583  switch (DS.getTypeSpecType()) {
3584  case DeclSpec::TST_typename:
3585  case DeclSpec::TST_typeofType:
3586  case DeclSpec::TST_underlyingType:
3587  case DeclSpec::TST_atomic: {
3588    // Grab the type from the parser.
3589    TypeSourceInfo *TSI = 0;
3590    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3591    if (T.isNull() || !T->isDependentType()) break;
3592
3593    // Make sure there's a type source info.  This isn't really much
3594    // of a waste; most dependent types should have type source info
3595    // attached already.
3596    if (!TSI)
3597      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3598
3599    // Rebuild the type in the current instantiation.
3600    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3601    if (!TSI) return true;
3602
3603    // Store the new type back in the decl spec.
3604    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3605    DS.UpdateTypeRep(LocType);
3606    break;
3607  }
3608
3609  case DeclSpec::TST_decltype:
3610  case DeclSpec::TST_typeofExpr: {
3611    Expr *E = DS.getRepAsExpr();
3612    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3613    if (Result.isInvalid()) return true;
3614    DS.UpdateExprRep(Result.get());
3615    break;
3616  }
3617
3618  default:
3619    // Nothing to do for these decl specs.
3620    break;
3621  }
3622
3623  // It doesn't matter what order we do this in.
3624  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3625    DeclaratorChunk &Chunk = D.getTypeObject(I);
3626
3627    // The only type information in the declarator which can come
3628    // before the declaration name is the base type of a member
3629    // pointer.
3630    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3631      continue;
3632
3633    // Rebuild the scope specifier in-place.
3634    CXXScopeSpec &SS = Chunk.Mem.Scope();
3635    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3636      return true;
3637  }
3638
3639  return false;
3640}
3641
3642Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3643  D.setFunctionDefinitionKind(FDK_Declaration);
3644  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3645
3646  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3647      Dcl && Dcl->getDeclContext()->isFileContext())
3648    Dcl->setTopLevelDeclInObjCContainer();
3649
3650  return Dcl;
3651}
3652
3653/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3654///   If T is the name of a class, then each of the following shall have a
3655///   name different from T:
3656///     - every static data member of class T;
3657///     - every member function of class T
3658///     - every member of class T that is itself a type;
3659/// \returns true if the declaration name violates these rules.
3660bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3661                                   DeclarationNameInfo NameInfo) {
3662  DeclarationName Name = NameInfo.getName();
3663
3664  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3665    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3666      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3667      return true;
3668    }
3669
3670  return false;
3671}
3672
3673/// \brief Diagnose a declaration whose declarator-id has the given
3674/// nested-name-specifier.
3675///
3676/// \param SS The nested-name-specifier of the declarator-id.
3677///
3678/// \param DC The declaration context to which the nested-name-specifier
3679/// resolves.
3680///
3681/// \param Name The name of the entity being declared.
3682///
3683/// \param Loc The location of the name of the entity being declared.
3684///
3685/// \returns true if we cannot safely recover from this error, false otherwise.
3686bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3687                                        DeclarationName Name,
3688                                      SourceLocation Loc) {
3689  DeclContext *Cur = CurContext;
3690  while (isa<LinkageSpecDecl>(Cur))
3691    Cur = Cur->getParent();
3692
3693  // C++ [dcl.meaning]p1:
3694  //   A declarator-id shall not be qualified except for the definition
3695  //   of a member function (9.3) or static data member (9.4) outside of
3696  //   its class, the definition or explicit instantiation of a function
3697  //   or variable member of a namespace outside of its namespace, or the
3698  //   definition of an explicit specialization outside of its namespace,
3699  //   or the declaration of a friend function that is a member of
3700  //   another class or namespace (11.3). [...]
3701
3702  // The user provided a superfluous scope specifier that refers back to the
3703  // class or namespaces in which the entity is already declared.
3704  //
3705  // class X {
3706  //   void X::f();
3707  // };
3708  if (Cur->Equals(DC)) {
3709    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3710                                   : diag::err_member_extra_qualification)
3711      << Name << FixItHint::CreateRemoval(SS.getRange());
3712    SS.clear();
3713    return false;
3714  }
3715
3716  // Check whether the qualifying scope encloses the scope of the original
3717  // declaration.
3718  if (!Cur->Encloses(DC)) {
3719    if (Cur->isRecord())
3720      Diag(Loc, diag::err_member_qualification)
3721        << Name << SS.getRange();
3722    else if (isa<TranslationUnitDecl>(DC))
3723      Diag(Loc, diag::err_invalid_declarator_global_scope)
3724        << Name << SS.getRange();
3725    else if (isa<FunctionDecl>(Cur))
3726      Diag(Loc, diag::err_invalid_declarator_in_function)
3727        << Name << SS.getRange();
3728    else
3729      Diag(Loc, diag::err_invalid_declarator_scope)
3730      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3731
3732    return true;
3733  }
3734
3735  if (Cur->isRecord()) {
3736    // Cannot qualify members within a class.
3737    Diag(Loc, diag::err_member_qualification)
3738      << Name << SS.getRange();
3739    SS.clear();
3740
3741    // C++ constructors and destructors with incorrect scopes can break
3742    // our AST invariants by having the wrong underlying types. If
3743    // that's the case, then drop this declaration entirely.
3744    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3745         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3746        !Context.hasSameType(Name.getCXXNameType(),
3747                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3748      return true;
3749
3750    return false;
3751  }
3752
3753  // C++11 [dcl.meaning]p1:
3754  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3755  //   not begin with a decltype-specifer"
3756  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3757  while (SpecLoc.getPrefix())
3758    SpecLoc = SpecLoc.getPrefix();
3759  if (dyn_cast_or_null<DecltypeType>(
3760        SpecLoc.getNestedNameSpecifier()->getAsType()))
3761    Diag(Loc, diag::err_decltype_in_declarator)
3762      << SpecLoc.getTypeLoc().getSourceRange();
3763
3764  return false;
3765}
3766
3767NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3768                                  MultiTemplateParamsArg TemplateParamLists) {
3769  // TODO: consider using NameInfo for diagnostic.
3770  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3771  DeclarationName Name = NameInfo.getName();
3772
3773  // All of these full declarators require an identifier.  If it doesn't have
3774  // one, the ParsedFreeStandingDeclSpec action should be used.
3775  if (!Name) {
3776    if (!D.isInvalidType())  // Reject this if we think it is valid.
3777      Diag(D.getDeclSpec().getLocStart(),
3778           diag::err_declarator_need_ident)
3779        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3780    return 0;
3781  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3782    return 0;
3783
3784  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3785  // we find one that is.
3786  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3787         (S->getFlags() & Scope::TemplateParamScope) != 0)
3788    S = S->getParent();
3789
3790  DeclContext *DC = CurContext;
3791  if (D.getCXXScopeSpec().isInvalid())
3792    D.setInvalidType();
3793  else if (D.getCXXScopeSpec().isSet()) {
3794    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3795                                        UPPC_DeclarationQualifier))
3796      return 0;
3797
3798    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3799    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3800    if (!DC) {
3801      // If we could not compute the declaration context, it's because the
3802      // declaration context is dependent but does not refer to a class,
3803      // class template, or class template partial specialization. Complain
3804      // and return early, to avoid the coming semantic disaster.
3805      Diag(D.getIdentifierLoc(),
3806           diag::err_template_qualified_declarator_no_match)
3807        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3808        << D.getCXXScopeSpec().getRange();
3809      return 0;
3810    }
3811    bool IsDependentContext = DC->isDependentContext();
3812
3813    if (!IsDependentContext &&
3814        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3815      return 0;
3816
3817    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3818      Diag(D.getIdentifierLoc(),
3819           diag::err_member_def_undefined_record)
3820        << Name << DC << D.getCXXScopeSpec().getRange();
3821      D.setInvalidType();
3822    } else if (!D.getDeclSpec().isFriendSpecified()) {
3823      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3824                                      Name, D.getIdentifierLoc())) {
3825        if (DC->isRecord())
3826          return 0;
3827
3828        D.setInvalidType();
3829      }
3830    }
3831
3832    // Check whether we need to rebuild the type of the given
3833    // declaration in the current instantiation.
3834    if (EnteringContext && IsDependentContext &&
3835        TemplateParamLists.size() != 0) {
3836      ContextRAII SavedContext(*this, DC);
3837      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3838        D.setInvalidType();
3839    }
3840  }
3841
3842  if (DiagnoseClassNameShadow(DC, NameInfo))
3843    // If this is a typedef, we'll end up spewing multiple diagnostics.
3844    // Just return early; it's safer.
3845    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3846      return 0;
3847
3848  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3849  QualType R = TInfo->getType();
3850
3851  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3852                                      UPPC_DeclarationType))
3853    D.setInvalidType();
3854
3855  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3856                        ForRedeclaration);
3857
3858  // See if this is a redefinition of a variable in the same scope.
3859  if (!D.getCXXScopeSpec().isSet()) {
3860    bool IsLinkageLookup = false;
3861
3862    // If the declaration we're planning to build will be a function
3863    // or object with linkage, then look for another declaration with
3864    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3865    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3866      /* Do nothing*/;
3867    else if (R->isFunctionType()) {
3868      if (CurContext->isFunctionOrMethod() ||
3869          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3870        IsLinkageLookup = true;
3871    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3872      IsLinkageLookup = true;
3873    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3874             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3875      IsLinkageLookup = true;
3876
3877    if (IsLinkageLookup)
3878      Previous.clear(LookupRedeclarationWithLinkage);
3879
3880    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3881  } else { // Something like "int foo::x;"
3882    LookupQualifiedName(Previous, DC);
3883
3884    // C++ [dcl.meaning]p1:
3885    //   When the declarator-id is qualified, the declaration shall refer to a
3886    //  previously declared member of the class or namespace to which the
3887    //  qualifier refers (or, in the case of a namespace, of an element of the
3888    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3889    //  thereof; [...]
3890    //
3891    // Note that we already checked the context above, and that we do not have
3892    // enough information to make sure that Previous contains the declaration
3893    // we want to match. For example, given:
3894    //
3895    //   class X {
3896    //     void f();
3897    //     void f(float);
3898    //   };
3899    //
3900    //   void X::f(int) { } // ill-formed
3901    //
3902    // In this case, Previous will point to the overload set
3903    // containing the two f's declared in X, but neither of them
3904    // matches.
3905
3906    // C++ [dcl.meaning]p1:
3907    //   [...] the member shall not merely have been introduced by a
3908    //   using-declaration in the scope of the class or namespace nominated by
3909    //   the nested-name-specifier of the declarator-id.
3910    RemoveUsingDecls(Previous);
3911  }
3912
3913  if (Previous.isSingleResult() &&
3914      Previous.getFoundDecl()->isTemplateParameter()) {
3915    // Maybe we will complain about the shadowed template parameter.
3916    if (!D.isInvalidType())
3917      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3918                                      Previous.getFoundDecl());
3919
3920    // Just pretend that we didn't see the previous declaration.
3921    Previous.clear();
3922  }
3923
3924  // In C++, the previous declaration we find might be a tag type
3925  // (class or enum). In this case, the new declaration will hide the
3926  // tag type. Note that this does does not apply if we're declaring a
3927  // typedef (C++ [dcl.typedef]p4).
3928  if (Previous.isSingleTagDecl() &&
3929      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3930    Previous.clear();
3931
3932  NamedDecl *New;
3933
3934  bool AddToScope = true;
3935  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3936    if (TemplateParamLists.size()) {
3937      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3938      return 0;
3939    }
3940
3941    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3942  } else if (R->isFunctionType()) {
3943    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3944                                  TemplateParamLists,
3945                                  AddToScope);
3946  } else {
3947    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3948                                  TemplateParamLists);
3949  }
3950
3951  if (New == 0)
3952    return 0;
3953
3954  // If this has an identifier and is not an invalid redeclaration or
3955  // function template specialization, add it to the scope stack.
3956  if (New->getDeclName() && AddToScope &&
3957       !(D.isRedeclaration() && New->isInvalidDecl()))
3958    PushOnScopeChains(New, S);
3959
3960  return New;
3961}
3962
3963/// Helper method to turn variable array types into constant array
3964/// types in certain situations which would otherwise be errors (for
3965/// GCC compatibility).
3966static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3967                                                    ASTContext &Context,
3968                                                    bool &SizeIsNegative,
3969                                                    llvm::APSInt &Oversized) {
3970  // This method tries to turn a variable array into a constant
3971  // array even when the size isn't an ICE.  This is necessary
3972  // for compatibility with code that depends on gcc's buggy
3973  // constant expression folding, like struct {char x[(int)(char*)2];}
3974  SizeIsNegative = false;
3975  Oversized = 0;
3976
3977  if (T->isDependentType())
3978    return QualType();
3979
3980  QualifierCollector Qs;
3981  const Type *Ty = Qs.strip(T);
3982
3983  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3984    QualType Pointee = PTy->getPointeeType();
3985    QualType FixedType =
3986        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3987                                            Oversized);
3988    if (FixedType.isNull()) return FixedType;
3989    FixedType = Context.getPointerType(FixedType);
3990    return Qs.apply(Context, FixedType);
3991  }
3992  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3993    QualType Inner = PTy->getInnerType();
3994    QualType FixedType =
3995        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3996                                            Oversized);
3997    if (FixedType.isNull()) return FixedType;
3998    FixedType = Context.getParenType(FixedType);
3999    return Qs.apply(Context, FixedType);
4000  }
4001
4002  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4003  if (!VLATy)
4004    return QualType();
4005  // FIXME: We should probably handle this case
4006  if (VLATy->getElementType()->isVariablyModifiedType())
4007    return QualType();
4008
4009  llvm::APSInt Res;
4010  if (!VLATy->getSizeExpr() ||
4011      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4012    return QualType();
4013
4014  // Check whether the array size is negative.
4015  if (Res.isSigned() && Res.isNegative()) {
4016    SizeIsNegative = true;
4017    return QualType();
4018  }
4019
4020  // Check whether the array is too large to be addressed.
4021  unsigned ActiveSizeBits
4022    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4023                                              Res);
4024  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4025    Oversized = Res;
4026    return QualType();
4027  }
4028
4029  return Context.getConstantArrayType(VLATy->getElementType(),
4030                                      Res, ArrayType::Normal, 0);
4031}
4032
4033static void
4034FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4035  if (PointerTypeLoc* SrcPTL = dyn_cast<PointerTypeLoc>(&SrcTL)) {
4036    PointerTypeLoc* DstPTL = cast<PointerTypeLoc>(&DstTL);
4037    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getPointeeLoc(),
4038                                      DstPTL->getPointeeLoc());
4039    DstPTL->setStarLoc(SrcPTL->getStarLoc());
4040    return;
4041  }
4042  if (ParenTypeLoc* SrcPTL = dyn_cast<ParenTypeLoc>(&SrcTL)) {
4043    ParenTypeLoc* DstPTL = cast<ParenTypeLoc>(&DstTL);
4044    FixInvalidVariablyModifiedTypeLoc(SrcPTL->getInnerLoc(),
4045                                      DstPTL->getInnerLoc());
4046    DstPTL->setLParenLoc(SrcPTL->getLParenLoc());
4047    DstPTL->setRParenLoc(SrcPTL->getRParenLoc());
4048    return;
4049  }
4050  ArrayTypeLoc* SrcATL = cast<ArrayTypeLoc>(&SrcTL);
4051  ArrayTypeLoc* DstATL = cast<ArrayTypeLoc>(&DstTL);
4052  TypeLoc SrcElemTL = SrcATL->getElementLoc();
4053  TypeLoc DstElemTL = DstATL->getElementLoc();
4054  DstElemTL.initializeFullCopy(SrcElemTL);
4055  DstATL->setLBracketLoc(SrcATL->getLBracketLoc());
4056  DstATL->setSizeExpr(SrcATL->getSizeExpr());
4057  DstATL->setRBracketLoc(SrcATL->getRBracketLoc());
4058}
4059
4060/// Helper method to turn variable array types into constant array
4061/// types in certain situations which would otherwise be errors (for
4062/// GCC compatibility).
4063static TypeSourceInfo*
4064TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4065                                              ASTContext &Context,
4066                                              bool &SizeIsNegative,
4067                                              llvm::APSInt &Oversized) {
4068  QualType FixedTy
4069    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4070                                          SizeIsNegative, Oversized);
4071  if (FixedTy.isNull())
4072    return 0;
4073  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4074  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4075                                    FixedTInfo->getTypeLoc());
4076  return FixedTInfo;
4077}
4078
4079/// \brief Register the given locally-scoped extern "C" declaration so
4080/// that it can be found later for redeclarations
4081void
4082Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4083                                       const LookupResult &Previous,
4084                                       Scope *S) {
4085  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4086         "Decl is not a locally-scoped decl!");
4087  // Note that we have a locally-scoped external with this name.
4088  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4089
4090  if (!Previous.isSingleResult())
4091    return;
4092
4093  NamedDecl *PrevDecl = Previous.getFoundDecl();
4094
4095  // If there was a previous declaration of this entity, it may be in
4096  // our identifier chain. Update the identifier chain with the new
4097  // declaration.
4098  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4099    // The previous declaration was found on the identifer resolver
4100    // chain, so remove it from its scope.
4101
4102    if (S->isDeclScope(PrevDecl)) {
4103      // Special case for redeclarations in the SAME scope.
4104      // Because this declaration is going to be added to the identifier chain
4105      // later, we should temporarily take it OFF the chain.
4106      IdResolver.RemoveDecl(ND);
4107
4108    } else {
4109      // Find the scope for the original declaration.
4110      while (S && !S->isDeclScope(PrevDecl))
4111        S = S->getParent();
4112    }
4113
4114    if (S)
4115      S->RemoveDecl(PrevDecl);
4116  }
4117}
4118
4119llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4120Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4121  if (ExternalSource) {
4122    // Load locally-scoped external decls from the external source.
4123    SmallVector<NamedDecl *, 4> Decls;
4124    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4125    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4126      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4127        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4128      if (Pos == LocallyScopedExternCDecls.end())
4129        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4130    }
4131  }
4132
4133  return LocallyScopedExternCDecls.find(Name);
4134}
4135
4136/// \brief Diagnose function specifiers on a declaration of an identifier that
4137/// does not identify a function.
4138void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4139  // FIXME: We should probably indicate the identifier in question to avoid
4140  // confusion for constructs like "inline int a(), b;"
4141  if (D.getDeclSpec().isInlineSpecified())
4142    Diag(D.getDeclSpec().getInlineSpecLoc(),
4143         diag::err_inline_non_function);
4144
4145  if (D.getDeclSpec().isVirtualSpecified())
4146    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4147         diag::err_virtual_non_function);
4148
4149  if (D.getDeclSpec().isExplicitSpecified())
4150    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4151         diag::err_explicit_non_function);
4152
4153  if (D.getDeclSpec().isNoreturnSpecified())
4154    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4155         diag::err_noreturn_non_function);
4156}
4157
4158NamedDecl*
4159Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4160                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4161  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4162  if (D.getCXXScopeSpec().isSet()) {
4163    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4164      << D.getCXXScopeSpec().getRange();
4165    D.setInvalidType();
4166    // Pretend we didn't see the scope specifier.
4167    DC = CurContext;
4168    Previous.clear();
4169  }
4170
4171  if (getLangOpts().CPlusPlus) {
4172    // Check that there are no default arguments (C++ only).
4173    CheckExtraCXXDefaultArguments(D);
4174  }
4175
4176  DiagnoseFunctionSpecifiers(D);
4177
4178  if (D.getDeclSpec().isThreadSpecified())
4179    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4180  if (D.getDeclSpec().isConstexprSpecified())
4181    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4182      << 1;
4183
4184  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4185    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4186      << D.getName().getSourceRange();
4187    return 0;
4188  }
4189
4190  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4191  if (!NewTD) return 0;
4192
4193  // Handle attributes prior to checking for duplicates in MergeVarDecl
4194  ProcessDeclAttributes(S, NewTD, D);
4195
4196  CheckTypedefForVariablyModifiedType(S, NewTD);
4197
4198  bool Redeclaration = D.isRedeclaration();
4199  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4200  D.setRedeclaration(Redeclaration);
4201  return ND;
4202}
4203
4204void
4205Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4206  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4207  // then it shall have block scope.
4208  // Note that variably modified types must be fixed before merging the decl so
4209  // that redeclarations will match.
4210  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4211  QualType T = TInfo->getType();
4212  if (T->isVariablyModifiedType()) {
4213    getCurFunction()->setHasBranchProtectedScope();
4214
4215    if (S->getFnParent() == 0) {
4216      bool SizeIsNegative;
4217      llvm::APSInt Oversized;
4218      TypeSourceInfo *FixedTInfo =
4219        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4220                                                      SizeIsNegative,
4221                                                      Oversized);
4222      if (FixedTInfo) {
4223        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4224        NewTD->setTypeSourceInfo(FixedTInfo);
4225      } else {
4226        if (SizeIsNegative)
4227          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4228        else if (T->isVariableArrayType())
4229          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4230        else if (Oversized.getBoolValue())
4231          Diag(NewTD->getLocation(), diag::err_array_too_large)
4232            << Oversized.toString(10);
4233        else
4234          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4235        NewTD->setInvalidDecl();
4236      }
4237    }
4238  }
4239}
4240
4241
4242/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4243/// declares a typedef-name, either using the 'typedef' type specifier or via
4244/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4245NamedDecl*
4246Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4247                           LookupResult &Previous, bool &Redeclaration) {
4248  // Merge the decl with the existing one if appropriate. If the decl is
4249  // in an outer scope, it isn't the same thing.
4250  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4251                       /*ExplicitInstantiationOrSpecialization=*/false);
4252  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4253  if (!Previous.empty()) {
4254    Redeclaration = true;
4255    MergeTypedefNameDecl(NewTD, Previous);
4256  }
4257
4258  // If this is the C FILE type, notify the AST context.
4259  if (IdentifierInfo *II = NewTD->getIdentifier())
4260    if (!NewTD->isInvalidDecl() &&
4261        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4262      if (II->isStr("FILE"))
4263        Context.setFILEDecl(NewTD);
4264      else if (II->isStr("jmp_buf"))
4265        Context.setjmp_bufDecl(NewTD);
4266      else if (II->isStr("sigjmp_buf"))
4267        Context.setsigjmp_bufDecl(NewTD);
4268      else if (II->isStr("ucontext_t"))
4269        Context.setucontext_tDecl(NewTD);
4270    }
4271
4272  return NewTD;
4273}
4274
4275/// \brief Determines whether the given declaration is an out-of-scope
4276/// previous declaration.
4277///
4278/// This routine should be invoked when name lookup has found a
4279/// previous declaration (PrevDecl) that is not in the scope where a
4280/// new declaration by the same name is being introduced. If the new
4281/// declaration occurs in a local scope, previous declarations with
4282/// linkage may still be considered previous declarations (C99
4283/// 6.2.2p4-5, C++ [basic.link]p6).
4284///
4285/// \param PrevDecl the previous declaration found by name
4286/// lookup
4287///
4288/// \param DC the context in which the new declaration is being
4289/// declared.
4290///
4291/// \returns true if PrevDecl is an out-of-scope previous declaration
4292/// for a new delcaration with the same name.
4293static bool
4294isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4295                                ASTContext &Context) {
4296  if (!PrevDecl)
4297    return false;
4298
4299  if (!PrevDecl->hasLinkage())
4300    return false;
4301
4302  if (Context.getLangOpts().CPlusPlus) {
4303    // C++ [basic.link]p6:
4304    //   If there is a visible declaration of an entity with linkage
4305    //   having the same name and type, ignoring entities declared
4306    //   outside the innermost enclosing namespace scope, the block
4307    //   scope declaration declares that same entity and receives the
4308    //   linkage of the previous declaration.
4309    DeclContext *OuterContext = DC->getRedeclContext();
4310    if (!OuterContext->isFunctionOrMethod())
4311      // This rule only applies to block-scope declarations.
4312      return false;
4313
4314    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4315    if (PrevOuterContext->isRecord())
4316      // We found a member function: ignore it.
4317      return false;
4318
4319    // Find the innermost enclosing namespace for the new and
4320    // previous declarations.
4321    OuterContext = OuterContext->getEnclosingNamespaceContext();
4322    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4323
4324    // The previous declaration is in a different namespace, so it
4325    // isn't the same function.
4326    if (!OuterContext->Equals(PrevOuterContext))
4327      return false;
4328  }
4329
4330  return true;
4331}
4332
4333static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4334  CXXScopeSpec &SS = D.getCXXScopeSpec();
4335  if (!SS.isSet()) return;
4336  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4337}
4338
4339bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4340  QualType type = decl->getType();
4341  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4342  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4343    // Various kinds of declaration aren't allowed to be __autoreleasing.
4344    unsigned kind = -1U;
4345    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4346      if (var->hasAttr<BlocksAttr>())
4347        kind = 0; // __block
4348      else if (!var->hasLocalStorage())
4349        kind = 1; // global
4350    } else if (isa<ObjCIvarDecl>(decl)) {
4351      kind = 3; // ivar
4352    } else if (isa<FieldDecl>(decl)) {
4353      kind = 2; // field
4354    }
4355
4356    if (kind != -1U) {
4357      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4358        << kind;
4359    }
4360  } else if (lifetime == Qualifiers::OCL_None) {
4361    // Try to infer lifetime.
4362    if (!type->isObjCLifetimeType())
4363      return false;
4364
4365    lifetime = type->getObjCARCImplicitLifetime();
4366    type = Context.getLifetimeQualifiedType(type, lifetime);
4367    decl->setType(type);
4368  }
4369
4370  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4371    // Thread-local variables cannot have lifetime.
4372    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4373        var->isThreadSpecified()) {
4374      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4375        << var->getType();
4376      return true;
4377    }
4378  }
4379
4380  return false;
4381}
4382
4383static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4384  // 'weak' only applies to declarations with external linkage.
4385  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4386    if (ND.getLinkage() != ExternalLinkage) {
4387      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4388      ND.dropAttr<WeakAttr>();
4389    }
4390  }
4391  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4392    if (ND.getLinkage() == ExternalLinkage) {
4393      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4394      ND.dropAttr<WeakRefAttr>();
4395    }
4396  }
4397}
4398
4399NamedDecl*
4400Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4401                              TypeSourceInfo *TInfo, LookupResult &Previous,
4402                              MultiTemplateParamsArg TemplateParamLists) {
4403  QualType R = TInfo->getType();
4404  DeclarationName Name = GetNameForDeclarator(D).getName();
4405
4406  // Check that there are no default arguments (C++ only).
4407  if (getLangOpts().CPlusPlus)
4408    CheckExtraCXXDefaultArguments(D);
4409
4410  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4411  assert(SCSpec != DeclSpec::SCS_typedef &&
4412         "Parser allowed 'typedef' as storage class VarDecl.");
4413  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4414
4415  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4416  {
4417    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4418    // half array type (unless the cl_khr_fp16 extension is enabled).
4419    if (Context.getBaseElementType(R)->isHalfType()) {
4420      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4421      D.setInvalidType();
4422    }
4423  }
4424
4425  if (SCSpec == DeclSpec::SCS_mutable) {
4426    // mutable can only appear on non-static class members, so it's always
4427    // an error here
4428    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4429    D.setInvalidType();
4430    SC = SC_None;
4431  }
4432  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4433  VarDecl::StorageClass SCAsWritten
4434    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4435
4436  IdentifierInfo *II = Name.getAsIdentifierInfo();
4437  if (!II) {
4438    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4439      << Name;
4440    return 0;
4441  }
4442
4443  DiagnoseFunctionSpecifiers(D);
4444
4445  if (!DC->isRecord() && S->getFnParent() == 0) {
4446    // C99 6.9p2: The storage-class specifiers auto and register shall not
4447    // appear in the declaration specifiers in an external declaration.
4448    if (SC == SC_Auto || SC == SC_Register) {
4449
4450      // If this is a register variable with an asm label specified, then this
4451      // is a GNU extension.
4452      if (SC == SC_Register && D.getAsmLabel())
4453        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4454      else
4455        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4456      D.setInvalidType();
4457    }
4458  }
4459
4460  if (getLangOpts().OpenCL) {
4461    // Set up the special work-group-local storage class for variables in the
4462    // OpenCL __local address space.
4463    if (R.getAddressSpace() == LangAS::opencl_local) {
4464      SC = SC_OpenCLWorkGroupLocal;
4465      SCAsWritten = SC_OpenCLWorkGroupLocal;
4466    }
4467
4468    // OpenCL 1.2 spec, p6.9 r:
4469    // The event type cannot be used to declare a program scope variable.
4470    // The event type cannot be used with the __local, __constant and __global
4471    // address space qualifiers.
4472    if (R->isEventT()) {
4473      if (S->getParent() == 0) {
4474        Diag(D.getLocStart(), diag::err_event_t_global_var);
4475        D.setInvalidType();
4476      }
4477
4478      if (R.getAddressSpace()) {
4479        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4480        D.setInvalidType();
4481      }
4482    }
4483  }
4484
4485  bool isExplicitSpecialization = false;
4486  VarDecl *NewVD;
4487  if (!getLangOpts().CPlusPlus) {
4488    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4489                            D.getIdentifierLoc(), II,
4490                            R, TInfo, SC, SCAsWritten);
4491
4492    if (D.isInvalidType())
4493      NewVD->setInvalidDecl();
4494  } else {
4495    if (DC->isRecord() && !CurContext->isRecord()) {
4496      // This is an out-of-line definition of a static data member.
4497      if (SC == SC_Static) {
4498        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4499             diag::err_static_out_of_line)
4500          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4501      } else if (SC == SC_None)
4502        SC = SC_Static;
4503    }
4504    if (SC == SC_Static && CurContext->isRecord()) {
4505      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4506        if (RD->isLocalClass())
4507          Diag(D.getIdentifierLoc(),
4508               diag::err_static_data_member_not_allowed_in_local_class)
4509            << Name << RD->getDeclName();
4510
4511        // C++98 [class.union]p1: If a union contains a static data member,
4512        // the program is ill-formed. C++11 drops this restriction.
4513        if (RD->isUnion())
4514          Diag(D.getIdentifierLoc(),
4515               getLangOpts().CPlusPlus11
4516                 ? diag::warn_cxx98_compat_static_data_member_in_union
4517                 : diag::ext_static_data_member_in_union) << Name;
4518        // We conservatively disallow static data members in anonymous structs.
4519        else if (!RD->getDeclName())
4520          Diag(D.getIdentifierLoc(),
4521               diag::err_static_data_member_not_allowed_in_anon_struct)
4522            << Name << RD->isUnion();
4523      }
4524    }
4525
4526    // Match up the template parameter lists with the scope specifier, then
4527    // determine whether we have a template or a template specialization.
4528    isExplicitSpecialization = false;
4529    bool Invalid = false;
4530    if (TemplateParameterList *TemplateParams
4531        = MatchTemplateParametersToScopeSpecifier(
4532                                  D.getDeclSpec().getLocStart(),
4533                                                  D.getIdentifierLoc(),
4534                                                  D.getCXXScopeSpec(),
4535                                                  TemplateParamLists.data(),
4536                                                  TemplateParamLists.size(),
4537                                                  /*never a friend*/ false,
4538                                                  isExplicitSpecialization,
4539                                                  Invalid)) {
4540      if (TemplateParams->size() > 0) {
4541        // There is no such thing as a variable template.
4542        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4543          << II
4544          << SourceRange(TemplateParams->getTemplateLoc(),
4545                         TemplateParams->getRAngleLoc());
4546        return 0;
4547      } else {
4548        // There is an extraneous 'template<>' for this variable. Complain
4549        // about it, but allow the declaration of the variable.
4550        Diag(TemplateParams->getTemplateLoc(),
4551             diag::err_template_variable_noparams)
4552          << II
4553          << SourceRange(TemplateParams->getTemplateLoc(),
4554                         TemplateParams->getRAngleLoc());
4555      }
4556    }
4557
4558    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4559                            D.getIdentifierLoc(), II,
4560                            R, TInfo, SC, SCAsWritten);
4561
4562    // If this decl has an auto type in need of deduction, make a note of the
4563    // Decl so we can diagnose uses of it in its own initializer.
4564    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4565        R->getContainedAutoType())
4566      ParsingInitForAutoVars.insert(NewVD);
4567
4568    if (D.isInvalidType() || Invalid)
4569      NewVD->setInvalidDecl();
4570
4571    SetNestedNameSpecifier(NewVD, D);
4572
4573    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4574      NewVD->setTemplateParameterListsInfo(Context,
4575                                           TemplateParamLists.size(),
4576                                           TemplateParamLists.data());
4577    }
4578
4579    if (D.getDeclSpec().isConstexprSpecified())
4580      NewVD->setConstexpr(true);
4581  }
4582
4583  // Set the lexical context. If the declarator has a C++ scope specifier, the
4584  // lexical context will be different from the semantic context.
4585  NewVD->setLexicalDeclContext(CurContext);
4586
4587  if (D.getDeclSpec().isThreadSpecified()) {
4588    if (NewVD->hasLocalStorage())
4589      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4590    else if (!Context.getTargetInfo().isTLSSupported())
4591      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4592    else
4593      NewVD->setThreadSpecified(true);
4594  }
4595
4596  if (D.getDeclSpec().isModulePrivateSpecified()) {
4597    if (isExplicitSpecialization)
4598      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4599        << 2
4600        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4601    else if (NewVD->hasLocalStorage())
4602      Diag(NewVD->getLocation(), diag::err_module_private_local)
4603        << 0 << NewVD->getDeclName()
4604        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4605        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4606    else
4607      NewVD->setModulePrivate();
4608  }
4609
4610  // Handle attributes prior to checking for duplicates in MergeVarDecl
4611  ProcessDeclAttributes(S, NewVD, D);
4612
4613  if (getLangOpts().CUDA) {
4614    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4615    // storage [duration]."
4616    if (SC == SC_None && S->getFnParent() != 0 &&
4617        (NewVD->hasAttr<CUDASharedAttr>() ||
4618         NewVD->hasAttr<CUDAConstantAttr>())) {
4619      NewVD->setStorageClass(SC_Static);
4620      NewVD->setStorageClassAsWritten(SC_Static);
4621    }
4622  }
4623
4624  // In auto-retain/release, infer strong retension for variables of
4625  // retainable type.
4626  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4627    NewVD->setInvalidDecl();
4628
4629  // Handle GNU asm-label extension (encoded as an attribute).
4630  if (Expr *E = (Expr*)D.getAsmLabel()) {
4631    // The parser guarantees this is a string.
4632    StringLiteral *SE = cast<StringLiteral>(E);
4633    StringRef Label = SE->getString();
4634    if (S->getFnParent() != 0) {
4635      switch (SC) {
4636      case SC_None:
4637      case SC_Auto:
4638        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4639        break;
4640      case SC_Register:
4641        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4642          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4643        break;
4644      case SC_Static:
4645      case SC_Extern:
4646      case SC_PrivateExtern:
4647      case SC_OpenCLWorkGroupLocal:
4648        break;
4649      }
4650    }
4651
4652    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4653                                                Context, Label));
4654  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4655    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4656      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4657    if (I != ExtnameUndeclaredIdentifiers.end()) {
4658      NewVD->addAttr(I->second);
4659      ExtnameUndeclaredIdentifiers.erase(I);
4660    }
4661  }
4662
4663  // Diagnose shadowed variables before filtering for scope.
4664  if (!D.getCXXScopeSpec().isSet())
4665    CheckShadow(S, NewVD, Previous);
4666
4667  // Don't consider existing declarations that are in a different
4668  // scope and are out-of-semantic-context declarations (if the new
4669  // declaration has linkage).
4670  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4671                       isExplicitSpecialization);
4672
4673  if (!getLangOpts().CPlusPlus) {
4674    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4675  } else {
4676    // Merge the decl with the existing one if appropriate.
4677    if (!Previous.empty()) {
4678      if (Previous.isSingleResult() &&
4679          isa<FieldDecl>(Previous.getFoundDecl()) &&
4680          D.getCXXScopeSpec().isSet()) {
4681        // The user tried to define a non-static data member
4682        // out-of-line (C++ [dcl.meaning]p1).
4683        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4684          << D.getCXXScopeSpec().getRange();
4685        Previous.clear();
4686        NewVD->setInvalidDecl();
4687      }
4688    } else if (D.getCXXScopeSpec().isSet()) {
4689      // No previous declaration in the qualifying scope.
4690      Diag(D.getIdentifierLoc(), diag::err_no_member)
4691        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4692        << D.getCXXScopeSpec().getRange();
4693      NewVD->setInvalidDecl();
4694    }
4695
4696    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4697
4698    // This is an explicit specialization of a static data member. Check it.
4699    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4700        CheckMemberSpecialization(NewVD, Previous))
4701      NewVD->setInvalidDecl();
4702  }
4703
4704  checkAttributesAfterMerging(*this, *NewVD);
4705
4706  // If this is a locally-scoped extern C variable, update the map of
4707  // such variables.
4708  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4709      !NewVD->isInvalidDecl())
4710    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4711
4712  // If there's a #pragma GCC visibility in scope, and this isn't a class
4713  // member, set the visibility of this variable.
4714  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4715    AddPushedVisibilityAttribute(NewVD);
4716
4717  return NewVD;
4718}
4719
4720/// \brief Diagnose variable or built-in function shadowing.  Implements
4721/// -Wshadow.
4722///
4723/// This method is called whenever a VarDecl is added to a "useful"
4724/// scope.
4725///
4726/// \param S the scope in which the shadowing name is being declared
4727/// \param R the lookup of the name
4728///
4729void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4730  // Return if warning is ignored.
4731  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4732        DiagnosticsEngine::Ignored)
4733    return;
4734
4735  // Don't diagnose declarations at file scope.
4736  if (D->hasGlobalStorage())
4737    return;
4738
4739  DeclContext *NewDC = D->getDeclContext();
4740
4741  // Only diagnose if we're shadowing an unambiguous field or variable.
4742  if (R.getResultKind() != LookupResult::Found)
4743    return;
4744
4745  NamedDecl* ShadowedDecl = R.getFoundDecl();
4746  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4747    return;
4748
4749  // Fields are not shadowed by variables in C++ static methods.
4750  if (isa<FieldDecl>(ShadowedDecl))
4751    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4752      if (MD->isStatic())
4753        return;
4754
4755  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4756    if (shadowedVar->isExternC()) {
4757      // For shadowing external vars, make sure that we point to the global
4758      // declaration, not a locally scoped extern declaration.
4759      for (VarDecl::redecl_iterator
4760             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4761           I != E; ++I)
4762        if (I->isFileVarDecl()) {
4763          ShadowedDecl = *I;
4764          break;
4765        }
4766    }
4767
4768  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4769
4770  // Only warn about certain kinds of shadowing for class members.
4771  if (NewDC && NewDC->isRecord()) {
4772    // In particular, don't warn about shadowing non-class members.
4773    if (!OldDC->isRecord())
4774      return;
4775
4776    // TODO: should we warn about static data members shadowing
4777    // static data members from base classes?
4778
4779    // TODO: don't diagnose for inaccessible shadowed members.
4780    // This is hard to do perfectly because we might friend the
4781    // shadowing context, but that's just a false negative.
4782  }
4783
4784  // Determine what kind of declaration we're shadowing.
4785  unsigned Kind;
4786  if (isa<RecordDecl>(OldDC)) {
4787    if (isa<FieldDecl>(ShadowedDecl))
4788      Kind = 3; // field
4789    else
4790      Kind = 2; // static data member
4791  } else if (OldDC->isFileContext())
4792    Kind = 1; // global
4793  else
4794    Kind = 0; // local
4795
4796  DeclarationName Name = R.getLookupName();
4797
4798  // Emit warning and note.
4799  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4800  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4801}
4802
4803/// \brief Check -Wshadow without the advantage of a previous lookup.
4804void Sema::CheckShadow(Scope *S, VarDecl *D) {
4805  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4806        DiagnosticsEngine::Ignored)
4807    return;
4808
4809  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4810                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4811  LookupName(R, S);
4812  CheckShadow(S, D, R);
4813}
4814
4815template<typename T>
4816static bool mayConflictWithNonVisibleExternC(const T *ND) {
4817  VarDecl::StorageClass SC = ND->getStorageClass();
4818  if (ND->hasCLanguageLinkage() && (SC == SC_Extern || SC == SC_PrivateExtern))
4819    return true;
4820  return ND->getDeclContext()->isTranslationUnit();
4821}
4822
4823/// \brief Perform semantic checking on a newly-created variable
4824/// declaration.
4825///
4826/// This routine performs all of the type-checking required for a
4827/// variable declaration once it has been built. It is used both to
4828/// check variables after they have been parsed and their declarators
4829/// have been translated into a declaration, and to check variables
4830/// that have been instantiated from a template.
4831///
4832/// Sets NewVD->isInvalidDecl() if an error was encountered.
4833///
4834/// Returns true if the variable declaration is a redeclaration.
4835bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4836                                    LookupResult &Previous) {
4837  // If the decl is already known invalid, don't check it.
4838  if (NewVD->isInvalidDecl())
4839    return false;
4840
4841  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
4842  QualType T = TInfo->getType();
4843
4844  if (T->isObjCObjectType()) {
4845    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4846      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4847    T = Context.getObjCObjectPointerType(T);
4848    NewVD->setType(T);
4849  }
4850
4851  // Emit an error if an address space was applied to decl with local storage.
4852  // This includes arrays of objects with address space qualifiers, but not
4853  // automatic variables that point to other address spaces.
4854  // ISO/IEC TR 18037 S5.1.2
4855  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4856    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4857    NewVD->setInvalidDecl();
4858    return false;
4859  }
4860
4861  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4862  // scope.
4863  if ((getLangOpts().OpenCLVersion >= 120)
4864      && NewVD->isStaticLocal()) {
4865    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4866    NewVD->setInvalidDecl();
4867    return false;
4868  }
4869
4870  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4871      && !NewVD->hasAttr<BlocksAttr>()) {
4872    if (getLangOpts().getGC() != LangOptions::NonGC)
4873      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4874    else {
4875      assert(!getLangOpts().ObjCAutoRefCount);
4876      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4877    }
4878  }
4879
4880  bool isVM = T->isVariablyModifiedType();
4881  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4882      NewVD->hasAttr<BlocksAttr>())
4883    getCurFunction()->setHasBranchProtectedScope();
4884
4885  if ((isVM && NewVD->hasLinkage()) ||
4886      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4887    bool SizeIsNegative;
4888    llvm::APSInt Oversized;
4889    TypeSourceInfo *FixedTInfo =
4890      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4891                                                    SizeIsNegative, Oversized);
4892    if (FixedTInfo == 0 && T->isVariableArrayType()) {
4893      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4894      // FIXME: This won't give the correct result for
4895      // int a[10][n];
4896      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4897
4898      if (NewVD->isFileVarDecl())
4899        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4900        << SizeRange;
4901      else if (NewVD->getStorageClass() == SC_Static)
4902        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4903        << SizeRange;
4904      else
4905        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4906        << SizeRange;
4907      NewVD->setInvalidDecl();
4908      return false;
4909    }
4910
4911    if (FixedTInfo == 0) {
4912      if (NewVD->isFileVarDecl())
4913        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4914      else
4915        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4916      NewVD->setInvalidDecl();
4917      return false;
4918    }
4919
4920    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4921    NewVD->setType(FixedTInfo->getType());
4922    NewVD->setTypeSourceInfo(FixedTInfo);
4923  }
4924
4925  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
4926    // Since we did not find anything by this name, look for a non-visible
4927    // extern "C" declaration with the same name.
4928    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4929      = findLocallyScopedExternCDecl(NewVD->getDeclName());
4930    if (Pos != LocallyScopedExternCDecls.end())
4931      Previous.addDecl(Pos->second);
4932  }
4933
4934  // Filter out any non-conflicting previous declarations.
4935  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
4936
4937  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4938    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4939      << T;
4940    NewVD->setInvalidDecl();
4941    return false;
4942  }
4943
4944  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4945    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4946    NewVD->setInvalidDecl();
4947    return false;
4948  }
4949
4950  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4951    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4952    NewVD->setInvalidDecl();
4953    return false;
4954  }
4955
4956  if (NewVD->isConstexpr() && !T->isDependentType() &&
4957      RequireLiteralType(NewVD->getLocation(), T,
4958                         diag::err_constexpr_var_non_literal)) {
4959    NewVD->setInvalidDecl();
4960    return false;
4961  }
4962
4963  if (!Previous.empty()) {
4964    MergeVarDecl(NewVD, Previous);
4965    return true;
4966  }
4967  return false;
4968}
4969
4970/// \brief Data used with FindOverriddenMethod
4971struct FindOverriddenMethodData {
4972  Sema *S;
4973  CXXMethodDecl *Method;
4974};
4975
4976/// \brief Member lookup function that determines whether a given C++
4977/// method overrides a method in a base class, to be used with
4978/// CXXRecordDecl::lookupInBases().
4979static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4980                                 CXXBasePath &Path,
4981                                 void *UserData) {
4982  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4983
4984  FindOverriddenMethodData *Data
4985    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4986
4987  DeclarationName Name = Data->Method->getDeclName();
4988
4989  // FIXME: Do we care about other names here too?
4990  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4991    // We really want to find the base class destructor here.
4992    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4993    CanQualType CT = Data->S->Context.getCanonicalType(T);
4994
4995    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4996  }
4997
4998  for (Path.Decls = BaseRecord->lookup(Name);
4999       !Path.Decls.empty();
5000       Path.Decls = Path.Decls.slice(1)) {
5001    NamedDecl *D = Path.Decls.front();
5002    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5003      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5004        return true;
5005    }
5006  }
5007
5008  return false;
5009}
5010
5011namespace {
5012  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5013}
5014/// \brief Report an error regarding overriding, along with any relevant
5015/// overriden methods.
5016///
5017/// \param DiagID the primary error to report.
5018/// \param MD the overriding method.
5019/// \param OEK which overrides to include as notes.
5020static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5021                            OverrideErrorKind OEK = OEK_All) {
5022  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5023  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5024                                      E = MD->end_overridden_methods();
5025       I != E; ++I) {
5026    // This check (& the OEK parameter) could be replaced by a predicate, but
5027    // without lambdas that would be overkill. This is still nicer than writing
5028    // out the diag loop 3 times.
5029    if ((OEK == OEK_All) ||
5030        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5031        (OEK == OEK_Deleted && (*I)->isDeleted()))
5032      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5033  }
5034}
5035
5036/// AddOverriddenMethods - See if a method overrides any in the base classes,
5037/// and if so, check that it's a valid override and remember it.
5038bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5039  // Look for virtual methods in base classes that this method might override.
5040  CXXBasePaths Paths;
5041  FindOverriddenMethodData Data;
5042  Data.Method = MD;
5043  Data.S = this;
5044  bool hasDeletedOverridenMethods = false;
5045  bool hasNonDeletedOverridenMethods = false;
5046  bool AddedAny = false;
5047  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5048    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5049         E = Paths.found_decls_end(); I != E; ++I) {
5050      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5051        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5052        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5053            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5054            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5055            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5056          hasDeletedOverridenMethods |= OldMD->isDeleted();
5057          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5058          AddedAny = true;
5059        }
5060      }
5061    }
5062  }
5063
5064  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5065    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5066  }
5067  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5068    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5069  }
5070
5071  return AddedAny;
5072}
5073
5074namespace {
5075  // Struct for holding all of the extra arguments needed by
5076  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5077  struct ActOnFDArgs {
5078    Scope *S;
5079    Declarator &D;
5080    MultiTemplateParamsArg TemplateParamLists;
5081    bool AddToScope;
5082  };
5083}
5084
5085namespace {
5086
5087// Callback to only accept typo corrections that have a non-zero edit distance.
5088// Also only accept corrections that have the same parent decl.
5089class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5090 public:
5091  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5092                            CXXRecordDecl *Parent)
5093      : Context(Context), OriginalFD(TypoFD),
5094        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5095
5096  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5097    if (candidate.getEditDistance() == 0)
5098      return false;
5099
5100    SmallVector<unsigned, 1> MismatchedParams;
5101    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5102                                          CDeclEnd = candidate.end();
5103         CDecl != CDeclEnd; ++CDecl) {
5104      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5105
5106      if (FD && !FD->hasBody() &&
5107          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5108        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5109          CXXRecordDecl *Parent = MD->getParent();
5110          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5111            return true;
5112        } else if (!ExpectedParent) {
5113          return true;
5114        }
5115      }
5116    }
5117
5118    return false;
5119  }
5120
5121 private:
5122  ASTContext &Context;
5123  FunctionDecl *OriginalFD;
5124  CXXRecordDecl *ExpectedParent;
5125};
5126
5127}
5128
5129/// \brief Generate diagnostics for an invalid function redeclaration.
5130///
5131/// This routine handles generating the diagnostic messages for an invalid
5132/// function redeclaration, including finding possible similar declarations
5133/// or performing typo correction if there are no previous declarations with
5134/// the same name.
5135///
5136/// Returns a NamedDecl iff typo correction was performed and substituting in
5137/// the new declaration name does not cause new errors.
5138static NamedDecl* DiagnoseInvalidRedeclaration(
5139    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5140    ActOnFDArgs &ExtraArgs) {
5141  NamedDecl *Result = NULL;
5142  DeclarationName Name = NewFD->getDeclName();
5143  DeclContext *NewDC = NewFD->getDeclContext();
5144  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5145                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5146  SmallVector<unsigned, 1> MismatchedParams;
5147  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5148  TypoCorrection Correction;
5149  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5150                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5151  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5152                                  : diag::err_member_def_does_not_match;
5153
5154  NewFD->setInvalidDecl();
5155  SemaRef.LookupQualifiedName(Prev, NewDC);
5156  assert(!Prev.isAmbiguous() &&
5157         "Cannot have an ambiguity in previous-declaration lookup");
5158  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5159  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5160                                      MD ? MD->getParent() : 0);
5161  if (!Prev.empty()) {
5162    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5163         Func != FuncEnd; ++Func) {
5164      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5165      if (FD &&
5166          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5167        // Add 1 to the index so that 0 can mean the mismatch didn't
5168        // involve a parameter
5169        unsigned ParamNum =
5170            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5171        NearMatches.push_back(std::make_pair(FD, ParamNum));
5172      }
5173    }
5174  // If the qualified name lookup yielded nothing, try typo correction
5175  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5176                                         Prev.getLookupKind(), 0, 0,
5177                                         Validator, NewDC))) {
5178    // Trap errors.
5179    Sema::SFINAETrap Trap(SemaRef);
5180
5181    // Set up everything for the call to ActOnFunctionDeclarator
5182    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5183                              ExtraArgs.D.getIdentifierLoc());
5184    Previous.clear();
5185    Previous.setLookupName(Correction.getCorrection());
5186    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5187                                    CDeclEnd = Correction.end();
5188         CDecl != CDeclEnd; ++CDecl) {
5189      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5190      if (FD && !FD->hasBody() &&
5191          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5192        Previous.addDecl(FD);
5193      }
5194    }
5195    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5196    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5197    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5198    // eliminate the need for the parameter pack ExtraArgs.
5199    Result = SemaRef.ActOnFunctionDeclarator(
5200        ExtraArgs.S, ExtraArgs.D,
5201        Correction.getCorrectionDecl()->getDeclContext(),
5202        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5203        ExtraArgs.AddToScope);
5204    if (Trap.hasErrorOccurred()) {
5205      // Pretend the typo correction never occurred
5206      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5207                                ExtraArgs.D.getIdentifierLoc());
5208      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5209      Previous.clear();
5210      Previous.setLookupName(Name);
5211      Result = NULL;
5212    } else {
5213      for (LookupResult::iterator Func = Previous.begin(),
5214                               FuncEnd = Previous.end();
5215           Func != FuncEnd; ++Func) {
5216        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5217          NearMatches.push_back(std::make_pair(FD, 0));
5218      }
5219    }
5220    if (NearMatches.empty()) {
5221      // Ignore the correction if it didn't yield any close FunctionDecl matches
5222      Correction = TypoCorrection();
5223    } else {
5224      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5225                             : diag::err_member_def_does_not_match_suggest;
5226    }
5227  }
5228
5229  if (Correction) {
5230    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5231    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5232    // turn causes the correction to fully qualify the name. If we fix
5233    // CorrectTypo to minimally qualify then this change should be good.
5234    SourceRange FixItLoc(NewFD->getLocation());
5235    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5236    if (Correction.getCorrectionSpecifier() && SS.isValid())
5237      FixItLoc.setBegin(SS.getBeginLoc());
5238    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5239        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5240        << FixItHint::CreateReplacement(
5241            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5242  } else {
5243    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5244        << Name << NewDC << NewFD->getLocation();
5245  }
5246
5247  bool NewFDisConst = false;
5248  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5249    NewFDisConst = NewMD->isConst();
5250
5251  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5252       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5253       NearMatch != NearMatchEnd; ++NearMatch) {
5254    FunctionDecl *FD = NearMatch->first;
5255    bool FDisConst = false;
5256    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5257      FDisConst = MD->isConst();
5258
5259    if (unsigned Idx = NearMatch->second) {
5260      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5261      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5262      if (Loc.isInvalid()) Loc = FD->getLocation();
5263      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5264          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5265    } else if (Correction) {
5266      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5267          << Correction.getQuoted(SemaRef.getLangOpts());
5268    } else if (FDisConst != NewFDisConst) {
5269      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5270          << NewFDisConst << FD->getSourceRange().getEnd();
5271    } else
5272      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5273  }
5274  return Result;
5275}
5276
5277static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5278                                                          Declarator &D) {
5279  switch (D.getDeclSpec().getStorageClassSpec()) {
5280  default: llvm_unreachable("Unknown storage class!");
5281  case DeclSpec::SCS_auto:
5282  case DeclSpec::SCS_register:
5283  case DeclSpec::SCS_mutable:
5284    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5285                 diag::err_typecheck_sclass_func);
5286    D.setInvalidType();
5287    break;
5288  case DeclSpec::SCS_unspecified: break;
5289  case DeclSpec::SCS_extern: return SC_Extern;
5290  case DeclSpec::SCS_static: {
5291    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5292      // C99 6.7.1p5:
5293      //   The declaration of an identifier for a function that has
5294      //   block scope shall have no explicit storage-class specifier
5295      //   other than extern
5296      // See also (C++ [dcl.stc]p4).
5297      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5298                   diag::err_static_block_func);
5299      break;
5300    } else
5301      return SC_Static;
5302  }
5303  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5304  }
5305
5306  // No explicit storage class has already been returned
5307  return SC_None;
5308}
5309
5310static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5311                                           DeclContext *DC, QualType &R,
5312                                           TypeSourceInfo *TInfo,
5313                                           FunctionDecl::StorageClass SC,
5314                                           bool &IsVirtualOkay) {
5315  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5316  DeclarationName Name = NameInfo.getName();
5317
5318  FunctionDecl *NewFD = 0;
5319  bool isInline = D.getDeclSpec().isInlineSpecified();
5320  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5321  FunctionDecl::StorageClass SCAsWritten
5322    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5323
5324  if (!SemaRef.getLangOpts().CPlusPlus) {
5325    // Determine whether the function was written with a
5326    // prototype. This true when:
5327    //   - there is a prototype in the declarator, or
5328    //   - the type R of the function is some kind of typedef or other reference
5329    //     to a type name (which eventually refers to a function type).
5330    bool HasPrototype =
5331      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5332      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5333
5334    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5335                                 D.getLocStart(), NameInfo, R,
5336                                 TInfo, SC, SCAsWritten, isInline,
5337                                 HasPrototype);
5338    if (D.isInvalidType())
5339      NewFD->setInvalidDecl();
5340
5341    // Set the lexical context.
5342    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5343
5344    return NewFD;
5345  }
5346
5347  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5348  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5349
5350  // Check that the return type is not an abstract class type.
5351  // For record types, this is done by the AbstractClassUsageDiagnoser once
5352  // the class has been completely parsed.
5353  if (!DC->isRecord() &&
5354      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5355                                     R->getAs<FunctionType>()->getResultType(),
5356                                     diag::err_abstract_type_in_decl,
5357                                     SemaRef.AbstractReturnType))
5358    D.setInvalidType();
5359
5360  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5361    // This is a C++ constructor declaration.
5362    assert(DC->isRecord() &&
5363           "Constructors can only be declared in a member context");
5364
5365    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5366    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5367                                      D.getLocStart(), NameInfo,
5368                                      R, TInfo, isExplicit, isInline,
5369                                      /*isImplicitlyDeclared=*/false,
5370                                      isConstexpr);
5371
5372  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5373    // This is a C++ destructor declaration.
5374    if (DC->isRecord()) {
5375      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5376      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5377      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5378                                        SemaRef.Context, Record,
5379                                        D.getLocStart(),
5380                                        NameInfo, R, TInfo, isInline,
5381                                        /*isImplicitlyDeclared=*/false);
5382
5383      // If the class is complete, then we now create the implicit exception
5384      // specification. If the class is incomplete or dependent, we can't do
5385      // it yet.
5386      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5387          Record->getDefinition() && !Record->isBeingDefined() &&
5388          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5389        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5390      }
5391
5392      IsVirtualOkay = true;
5393      return NewDD;
5394
5395    } else {
5396      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5397      D.setInvalidType();
5398
5399      // Create a FunctionDecl to satisfy the function definition parsing
5400      // code path.
5401      return FunctionDecl::Create(SemaRef.Context, DC,
5402                                  D.getLocStart(),
5403                                  D.getIdentifierLoc(), Name, R, TInfo,
5404                                  SC, SCAsWritten, isInline,
5405                                  /*hasPrototype=*/true, isConstexpr);
5406    }
5407
5408  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5409    if (!DC->isRecord()) {
5410      SemaRef.Diag(D.getIdentifierLoc(),
5411           diag::err_conv_function_not_member);
5412      return 0;
5413    }
5414
5415    SemaRef.CheckConversionDeclarator(D, R, SC);
5416    IsVirtualOkay = true;
5417    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5418                                     D.getLocStart(), NameInfo,
5419                                     R, TInfo, isInline, isExplicit,
5420                                     isConstexpr, SourceLocation());
5421
5422  } else if (DC->isRecord()) {
5423    // If the name of the function is the same as the name of the record,
5424    // then this must be an invalid constructor that has a return type.
5425    // (The parser checks for a return type and makes the declarator a
5426    // constructor if it has no return type).
5427    if (Name.getAsIdentifierInfo() &&
5428        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5429      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5430        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5431        << SourceRange(D.getIdentifierLoc());
5432      return 0;
5433    }
5434
5435    bool isStatic = SC == SC_Static;
5436
5437    // [class.free]p1:
5438    // Any allocation function for a class T is a static member
5439    // (even if not explicitly declared static).
5440    if (Name.getCXXOverloadedOperator() == OO_New ||
5441        Name.getCXXOverloadedOperator() == OO_Array_New)
5442      isStatic = true;
5443
5444    // [class.free]p6 Any deallocation function for a class X is a static member
5445    // (even if not explicitly declared static).
5446    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5447        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5448      isStatic = true;
5449
5450    IsVirtualOkay = !isStatic;
5451
5452    // This is a C++ method declaration.
5453    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5454                                 D.getLocStart(), NameInfo, R,
5455                                 TInfo, isStatic, SCAsWritten, isInline,
5456                                 isConstexpr, SourceLocation());
5457
5458  } else {
5459    // Determine whether the function was written with a
5460    // prototype. This true when:
5461    //   - we're in C++ (where every function has a prototype),
5462    return FunctionDecl::Create(SemaRef.Context, DC,
5463                                D.getLocStart(),
5464                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5465                                true/*HasPrototype*/, isConstexpr);
5466  }
5467}
5468
5469void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5470  // In C++, the empty parameter-type-list must be spelled "void"; a
5471  // typedef of void is not permitted.
5472  if (getLangOpts().CPlusPlus &&
5473      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5474    bool IsTypeAlias = false;
5475    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5476      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5477    else if (const TemplateSpecializationType *TST =
5478               Param->getType()->getAs<TemplateSpecializationType>())
5479      IsTypeAlias = TST->isTypeAlias();
5480    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5481      << IsTypeAlias;
5482  }
5483}
5484
5485NamedDecl*
5486Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5487                              TypeSourceInfo *TInfo, LookupResult &Previous,
5488                              MultiTemplateParamsArg TemplateParamLists,
5489                              bool &AddToScope) {
5490  QualType R = TInfo->getType();
5491
5492  assert(R.getTypePtr()->isFunctionType());
5493
5494  // TODO: consider using NameInfo for diagnostic.
5495  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5496  DeclarationName Name = NameInfo.getName();
5497  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5498
5499  if (D.getDeclSpec().isThreadSpecified())
5500    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5501
5502  // Do not allow returning a objc interface by-value.
5503  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5504    Diag(D.getIdentifierLoc(),
5505         diag::err_object_cannot_be_passed_returned_by_value) << 0
5506    << R->getAs<FunctionType>()->getResultType()
5507    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5508
5509    QualType T = R->getAs<FunctionType>()->getResultType();
5510    T = Context.getObjCObjectPointerType(T);
5511    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5512      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5513      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5514                                  FPT->getNumArgs(), EPI);
5515    }
5516    else if (isa<FunctionNoProtoType>(R))
5517      R = Context.getFunctionNoProtoType(T);
5518  }
5519
5520  bool isFriend = false;
5521  FunctionTemplateDecl *FunctionTemplate = 0;
5522  bool isExplicitSpecialization = false;
5523  bool isFunctionTemplateSpecialization = false;
5524
5525  bool isDependentClassScopeExplicitSpecialization = false;
5526  bool HasExplicitTemplateArgs = false;
5527  TemplateArgumentListInfo TemplateArgs;
5528
5529  bool isVirtualOkay = false;
5530
5531  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5532                                              isVirtualOkay);
5533  if (!NewFD) return 0;
5534
5535  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5536    NewFD->setTopLevelDeclInObjCContainer();
5537
5538  if (getLangOpts().CPlusPlus) {
5539    bool isInline = D.getDeclSpec().isInlineSpecified();
5540    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5541    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5542    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5543    isFriend = D.getDeclSpec().isFriendSpecified();
5544    if (isFriend && !isInline && D.isFunctionDefinition()) {
5545      // C++ [class.friend]p5
5546      //   A function can be defined in a friend declaration of a
5547      //   class . . . . Such a function is implicitly inline.
5548      NewFD->setImplicitlyInline();
5549    }
5550
5551    // If this is a method defined in an __interface, and is not a constructor
5552    // or an overloaded operator, then set the pure flag (isVirtual will already
5553    // return true).
5554    if (const CXXRecordDecl *Parent =
5555          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5556      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5557        NewFD->setPure(true);
5558    }
5559
5560    SetNestedNameSpecifier(NewFD, D);
5561    isExplicitSpecialization = false;
5562    isFunctionTemplateSpecialization = false;
5563    if (D.isInvalidType())
5564      NewFD->setInvalidDecl();
5565
5566    // Set the lexical context. If the declarator has a C++
5567    // scope specifier, or is the object of a friend declaration, the
5568    // lexical context will be different from the semantic context.
5569    NewFD->setLexicalDeclContext(CurContext);
5570
5571    // Match up the template parameter lists with the scope specifier, then
5572    // determine whether we have a template or a template specialization.
5573    bool Invalid = false;
5574    if (TemplateParameterList *TemplateParams
5575          = MatchTemplateParametersToScopeSpecifier(
5576                                  D.getDeclSpec().getLocStart(),
5577                                  D.getIdentifierLoc(),
5578                                  D.getCXXScopeSpec(),
5579                                  TemplateParamLists.data(),
5580                                  TemplateParamLists.size(),
5581                                  isFriend,
5582                                  isExplicitSpecialization,
5583                                  Invalid)) {
5584      if (TemplateParams->size() > 0) {
5585        // This is a function template
5586
5587        // Check that we can declare a template here.
5588        if (CheckTemplateDeclScope(S, TemplateParams))
5589          return 0;
5590
5591        // A destructor cannot be a template.
5592        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5593          Diag(NewFD->getLocation(), diag::err_destructor_template);
5594          return 0;
5595        }
5596
5597        // If we're adding a template to a dependent context, we may need to
5598        // rebuilding some of the types used within the template parameter list,
5599        // now that we know what the current instantiation is.
5600        if (DC->isDependentContext()) {
5601          ContextRAII SavedContext(*this, DC);
5602          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5603            Invalid = true;
5604        }
5605
5606
5607        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5608                                                        NewFD->getLocation(),
5609                                                        Name, TemplateParams,
5610                                                        NewFD);
5611        FunctionTemplate->setLexicalDeclContext(CurContext);
5612        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5613
5614        // For source fidelity, store the other template param lists.
5615        if (TemplateParamLists.size() > 1) {
5616          NewFD->setTemplateParameterListsInfo(Context,
5617                                               TemplateParamLists.size() - 1,
5618                                               TemplateParamLists.data());
5619        }
5620      } else {
5621        // This is a function template specialization.
5622        isFunctionTemplateSpecialization = true;
5623        // For source fidelity, store all the template param lists.
5624        NewFD->setTemplateParameterListsInfo(Context,
5625                                             TemplateParamLists.size(),
5626                                             TemplateParamLists.data());
5627
5628        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5629        if (isFriend) {
5630          // We want to remove the "template<>", found here.
5631          SourceRange RemoveRange = TemplateParams->getSourceRange();
5632
5633          // If we remove the template<> and the name is not a
5634          // template-id, we're actually silently creating a problem:
5635          // the friend declaration will refer to an untemplated decl,
5636          // and clearly the user wants a template specialization.  So
5637          // we need to insert '<>' after the name.
5638          SourceLocation InsertLoc;
5639          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5640            InsertLoc = D.getName().getSourceRange().getEnd();
5641            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5642          }
5643
5644          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5645            << Name << RemoveRange
5646            << FixItHint::CreateRemoval(RemoveRange)
5647            << FixItHint::CreateInsertion(InsertLoc, "<>");
5648        }
5649      }
5650    }
5651    else {
5652      // All template param lists were matched against the scope specifier:
5653      // this is NOT (an explicit specialization of) a template.
5654      if (TemplateParamLists.size() > 0)
5655        // For source fidelity, store all the template param lists.
5656        NewFD->setTemplateParameterListsInfo(Context,
5657                                             TemplateParamLists.size(),
5658                                             TemplateParamLists.data());
5659    }
5660
5661    if (Invalid) {
5662      NewFD->setInvalidDecl();
5663      if (FunctionTemplate)
5664        FunctionTemplate->setInvalidDecl();
5665    }
5666
5667    // C++ [dcl.fct.spec]p5:
5668    //   The virtual specifier shall only be used in declarations of
5669    //   nonstatic class member functions that appear within a
5670    //   member-specification of a class declaration; see 10.3.
5671    //
5672    if (isVirtual && !NewFD->isInvalidDecl()) {
5673      if (!isVirtualOkay) {
5674        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5675             diag::err_virtual_non_function);
5676      } else if (!CurContext->isRecord()) {
5677        // 'virtual' was specified outside of the class.
5678        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5679             diag::err_virtual_out_of_class)
5680          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5681      } else if (NewFD->getDescribedFunctionTemplate()) {
5682        // C++ [temp.mem]p3:
5683        //  A member function template shall not be virtual.
5684        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5685             diag::err_virtual_member_function_template)
5686          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5687      } else {
5688        // Okay: Add virtual to the method.
5689        NewFD->setVirtualAsWritten(true);
5690      }
5691    }
5692
5693    // C++ [dcl.fct.spec]p3:
5694    //  The inline specifier shall not appear on a block scope function
5695    //  declaration.
5696    if (isInline && !NewFD->isInvalidDecl()) {
5697      if (CurContext->isFunctionOrMethod()) {
5698        // 'inline' is not allowed on block scope function declaration.
5699        Diag(D.getDeclSpec().getInlineSpecLoc(),
5700             diag::err_inline_declaration_block_scope) << Name
5701          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5702      }
5703    }
5704
5705    // C++ [dcl.fct.spec]p6:
5706    //  The explicit specifier shall be used only in the declaration of a
5707    //  constructor or conversion function within its class definition;
5708    //  see 12.3.1 and 12.3.2.
5709    if (isExplicit && !NewFD->isInvalidDecl()) {
5710      if (!CurContext->isRecord()) {
5711        // 'explicit' was specified outside of the class.
5712        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5713             diag::err_explicit_out_of_class)
5714          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5715      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5716                 !isa<CXXConversionDecl>(NewFD)) {
5717        // 'explicit' was specified on a function that wasn't a constructor
5718        // or conversion function.
5719        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5720             diag::err_explicit_non_ctor_or_conv_function)
5721          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5722      }
5723    }
5724
5725    if (isConstexpr) {
5726      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5727      // are implicitly inline.
5728      NewFD->setImplicitlyInline();
5729
5730      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5731      // be either constructors or to return a literal type. Therefore,
5732      // destructors cannot be declared constexpr.
5733      if (isa<CXXDestructorDecl>(NewFD))
5734        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5735    }
5736
5737    // If __module_private__ was specified, mark the function accordingly.
5738    if (D.getDeclSpec().isModulePrivateSpecified()) {
5739      if (isFunctionTemplateSpecialization) {
5740        SourceLocation ModulePrivateLoc
5741          = D.getDeclSpec().getModulePrivateSpecLoc();
5742        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5743          << 0
5744          << FixItHint::CreateRemoval(ModulePrivateLoc);
5745      } else {
5746        NewFD->setModulePrivate();
5747        if (FunctionTemplate)
5748          FunctionTemplate->setModulePrivate();
5749      }
5750    }
5751
5752    if (isFriend) {
5753      // For now, claim that the objects have no previous declaration.
5754      if (FunctionTemplate) {
5755        FunctionTemplate->setObjectOfFriendDecl(false);
5756        FunctionTemplate->setAccess(AS_public);
5757      }
5758      NewFD->setObjectOfFriendDecl(false);
5759      NewFD->setAccess(AS_public);
5760    }
5761
5762    // If a function is defined as defaulted or deleted, mark it as such now.
5763    switch (D.getFunctionDefinitionKind()) {
5764      case FDK_Declaration:
5765      case FDK_Definition:
5766        break;
5767
5768      case FDK_Defaulted:
5769        NewFD->setDefaulted();
5770        break;
5771
5772      case FDK_Deleted:
5773        NewFD->setDeletedAsWritten();
5774        break;
5775    }
5776
5777    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5778        D.isFunctionDefinition()) {
5779      // C++ [class.mfct]p2:
5780      //   A member function may be defined (8.4) in its class definition, in
5781      //   which case it is an inline member function (7.1.2)
5782      NewFD->setImplicitlyInline();
5783    }
5784
5785    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5786        !CurContext->isRecord()) {
5787      // C++ [class.static]p1:
5788      //   A data or function member of a class may be declared static
5789      //   in a class definition, in which case it is a static member of
5790      //   the class.
5791
5792      // Complain about the 'static' specifier if it's on an out-of-line
5793      // member function definition.
5794      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5795           diag::err_static_out_of_line)
5796        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5797    }
5798
5799    // C++11 [except.spec]p15:
5800    //   A deallocation function with no exception-specification is treated
5801    //   as if it were specified with noexcept(true).
5802    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
5803    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
5804         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
5805        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
5806      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5807      EPI.ExceptionSpecType = EST_BasicNoexcept;
5808      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
5809                                             FPT->arg_type_begin(),
5810                                             FPT->getNumArgs(), EPI));
5811    }
5812  }
5813
5814  // Filter out previous declarations that don't match the scope.
5815  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5816                       isExplicitSpecialization ||
5817                       isFunctionTemplateSpecialization);
5818
5819  // Handle GNU asm-label extension (encoded as an attribute).
5820  if (Expr *E = (Expr*) D.getAsmLabel()) {
5821    // The parser guarantees this is a string.
5822    StringLiteral *SE = cast<StringLiteral>(E);
5823    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5824                                                SE->getString()));
5825  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5826    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5827      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5828    if (I != ExtnameUndeclaredIdentifiers.end()) {
5829      NewFD->addAttr(I->second);
5830      ExtnameUndeclaredIdentifiers.erase(I);
5831    }
5832  }
5833
5834  // Copy the parameter declarations from the declarator D to the function
5835  // declaration NewFD, if they are available.  First scavenge them into Params.
5836  SmallVector<ParmVarDecl*, 16> Params;
5837  if (D.isFunctionDeclarator()) {
5838    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5839
5840    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5841    // function that takes no arguments, not a function that takes a
5842    // single void argument.
5843    // We let through "const void" here because Sema::GetTypeForDeclarator
5844    // already checks for that case.
5845    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5846        FTI.ArgInfo[0].Param &&
5847        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5848      // Empty arg list, don't push any params.
5849      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
5850    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5851      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5852        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5853        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5854        Param->setDeclContext(NewFD);
5855        Params.push_back(Param);
5856
5857        if (Param->isInvalidDecl())
5858          NewFD->setInvalidDecl();
5859      }
5860    }
5861
5862  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5863    // When we're declaring a function with a typedef, typeof, etc as in the
5864    // following example, we'll need to synthesize (unnamed)
5865    // parameters for use in the declaration.
5866    //
5867    // @code
5868    // typedef void fn(int);
5869    // fn f;
5870    // @endcode
5871
5872    // Synthesize a parameter for each argument type.
5873    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5874         AE = FT->arg_type_end(); AI != AE; ++AI) {
5875      ParmVarDecl *Param =
5876        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5877      Param->setScopeInfo(0, Params.size());
5878      Params.push_back(Param);
5879    }
5880  } else {
5881    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5882           "Should not need args for typedef of non-prototype fn");
5883  }
5884
5885  // Finally, we know we have the right number of parameters, install them.
5886  NewFD->setParams(Params);
5887
5888  // Find all anonymous symbols defined during the declaration of this function
5889  // and add to NewFD. This lets us track decls such 'enum Y' in:
5890  //
5891  //   void f(enum Y {AA} x) {}
5892  //
5893  // which would otherwise incorrectly end up in the translation unit scope.
5894  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5895  DeclsInPrototypeScope.clear();
5896
5897  if (D.getDeclSpec().isNoreturnSpecified())
5898    NewFD->addAttr(
5899        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
5900                                       Context));
5901
5902  // Process the non-inheritable attributes on this declaration.
5903  ProcessDeclAttributes(S, NewFD, D,
5904                        /*NonInheritable=*/true, /*Inheritable=*/false);
5905
5906  // Functions returning a variably modified type violate C99 6.7.5.2p2
5907  // because all functions have linkage.
5908  if (!NewFD->isInvalidDecl() &&
5909      NewFD->getResultType()->isVariablyModifiedType()) {
5910    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5911    NewFD->setInvalidDecl();
5912  }
5913
5914  // Handle attributes.
5915  ProcessDeclAttributes(S, NewFD, D,
5916                        /*NonInheritable=*/false, /*Inheritable=*/true);
5917
5918  QualType RetType = NewFD->getResultType();
5919  const CXXRecordDecl *Ret = RetType->isRecordType() ?
5920      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
5921  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
5922      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
5923    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5924    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
5925      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
5926                                                        Context));
5927    }
5928  }
5929
5930  if (!getLangOpts().CPlusPlus) {
5931    // Perform semantic checking on the function declaration.
5932    bool isExplicitSpecialization=false;
5933    if (!NewFD->isInvalidDecl()) {
5934      if (NewFD->isMain())
5935        CheckMain(NewFD, D.getDeclSpec());
5936      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5937                                                  isExplicitSpecialization));
5938    }
5939    // Make graceful recovery from an invalid redeclaration.
5940    else if (!Previous.empty())
5941           D.setRedeclaration(true);
5942    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5943            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5944           "previous declaration set still overloaded");
5945  } else {
5946    // If the declarator is a template-id, translate the parser's template
5947    // argument list into our AST format.
5948    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5949      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5950      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5951      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5952      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
5953                                         TemplateId->NumArgs);
5954      translateTemplateArguments(TemplateArgsPtr,
5955                                 TemplateArgs);
5956
5957      HasExplicitTemplateArgs = true;
5958
5959      if (NewFD->isInvalidDecl()) {
5960        HasExplicitTemplateArgs = false;
5961      } else if (FunctionTemplate) {
5962        // Function template with explicit template arguments.
5963        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5964          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5965
5966        HasExplicitTemplateArgs = false;
5967      } else if (!isFunctionTemplateSpecialization &&
5968                 !D.getDeclSpec().isFriendSpecified()) {
5969        // We have encountered something that the user meant to be a
5970        // specialization (because it has explicitly-specified template
5971        // arguments) but that was not introduced with a "template<>" (or had
5972        // too few of them).
5973        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5974          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5975          << FixItHint::CreateInsertion(
5976                                    D.getDeclSpec().getLocStart(),
5977                                        "template<> ");
5978        isFunctionTemplateSpecialization = true;
5979      } else {
5980        // "friend void foo<>(int);" is an implicit specialization decl.
5981        isFunctionTemplateSpecialization = true;
5982      }
5983    } else if (isFriend && isFunctionTemplateSpecialization) {
5984      // This combination is only possible in a recovery case;  the user
5985      // wrote something like:
5986      //   template <> friend void foo(int);
5987      // which we're recovering from as if the user had written:
5988      //   friend void foo<>(int);
5989      // Go ahead and fake up a template id.
5990      HasExplicitTemplateArgs = true;
5991        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5992      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5993    }
5994
5995    // If it's a friend (and only if it's a friend), it's possible
5996    // that either the specialized function type or the specialized
5997    // template is dependent, and therefore matching will fail.  In
5998    // this case, don't check the specialization yet.
5999    bool InstantiationDependent = false;
6000    if (isFunctionTemplateSpecialization && isFriend &&
6001        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6002         TemplateSpecializationType::anyDependentTemplateArguments(
6003            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6004            InstantiationDependent))) {
6005      assert(HasExplicitTemplateArgs &&
6006             "friend function specialization without template args");
6007      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6008                                                       Previous))
6009        NewFD->setInvalidDecl();
6010    } else if (isFunctionTemplateSpecialization) {
6011      if (CurContext->isDependentContext() && CurContext->isRecord()
6012          && !isFriend) {
6013        isDependentClassScopeExplicitSpecialization = true;
6014        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6015          diag::ext_function_specialization_in_class :
6016          diag::err_function_specialization_in_class)
6017          << NewFD->getDeclName();
6018      } else if (CheckFunctionTemplateSpecialization(NewFD,
6019                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6020                                                     Previous))
6021        NewFD->setInvalidDecl();
6022
6023      // C++ [dcl.stc]p1:
6024      //   A storage-class-specifier shall not be specified in an explicit
6025      //   specialization (14.7.3)
6026      if (SC != SC_None) {
6027        if (SC != NewFD->getStorageClass())
6028          Diag(NewFD->getLocation(),
6029               diag::err_explicit_specialization_inconsistent_storage_class)
6030            << SC
6031            << FixItHint::CreateRemoval(
6032                                      D.getDeclSpec().getStorageClassSpecLoc());
6033
6034        else
6035          Diag(NewFD->getLocation(),
6036               diag::ext_explicit_specialization_storage_class)
6037            << FixItHint::CreateRemoval(
6038                                      D.getDeclSpec().getStorageClassSpecLoc());
6039      }
6040
6041    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6042      if (CheckMemberSpecialization(NewFD, Previous))
6043          NewFD->setInvalidDecl();
6044    }
6045
6046    // Perform semantic checking on the function declaration.
6047    if (!isDependentClassScopeExplicitSpecialization) {
6048      if (NewFD->isInvalidDecl()) {
6049        // If this is a class member, mark the class invalid immediately.
6050        // This avoids some consistency errors later.
6051        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6052          methodDecl->getParent()->setInvalidDecl();
6053      } else {
6054        if (NewFD->isMain())
6055          CheckMain(NewFD, D.getDeclSpec());
6056        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6057                                                    isExplicitSpecialization));
6058      }
6059    }
6060
6061    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6062            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6063           "previous declaration set still overloaded");
6064
6065    NamedDecl *PrincipalDecl = (FunctionTemplate
6066                                ? cast<NamedDecl>(FunctionTemplate)
6067                                : NewFD);
6068
6069    if (isFriend && D.isRedeclaration()) {
6070      AccessSpecifier Access = AS_public;
6071      if (!NewFD->isInvalidDecl())
6072        Access = NewFD->getPreviousDecl()->getAccess();
6073
6074      NewFD->setAccess(Access);
6075      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6076
6077      PrincipalDecl->setObjectOfFriendDecl(true);
6078    }
6079
6080    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6081        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6082      PrincipalDecl->setNonMemberOperator();
6083
6084    // If we have a function template, check the template parameter
6085    // list. This will check and merge default template arguments.
6086    if (FunctionTemplate) {
6087      FunctionTemplateDecl *PrevTemplate =
6088                                     FunctionTemplate->getPreviousDecl();
6089      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6090                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6091                            D.getDeclSpec().isFriendSpecified()
6092                              ? (D.isFunctionDefinition()
6093                                   ? TPC_FriendFunctionTemplateDefinition
6094                                   : TPC_FriendFunctionTemplate)
6095                              : (D.getCXXScopeSpec().isSet() &&
6096                                 DC && DC->isRecord() &&
6097                                 DC->isDependentContext())
6098                                  ? TPC_ClassTemplateMember
6099                                  : TPC_FunctionTemplate);
6100    }
6101
6102    if (NewFD->isInvalidDecl()) {
6103      // Ignore all the rest of this.
6104    } else if (!D.isRedeclaration()) {
6105      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6106                                       AddToScope };
6107      // Fake up an access specifier if it's supposed to be a class member.
6108      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6109        NewFD->setAccess(AS_public);
6110
6111      // Qualified decls generally require a previous declaration.
6112      if (D.getCXXScopeSpec().isSet()) {
6113        // ...with the major exception of templated-scope or
6114        // dependent-scope friend declarations.
6115
6116        // TODO: we currently also suppress this check in dependent
6117        // contexts because (1) the parameter depth will be off when
6118        // matching friend templates and (2) we might actually be
6119        // selecting a friend based on a dependent factor.  But there
6120        // are situations where these conditions don't apply and we
6121        // can actually do this check immediately.
6122        if (isFriend &&
6123            (TemplateParamLists.size() ||
6124             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6125             CurContext->isDependentContext())) {
6126          // ignore these
6127        } else {
6128          // The user tried to provide an out-of-line definition for a
6129          // function that is a member of a class or namespace, but there
6130          // was no such member function declared (C++ [class.mfct]p2,
6131          // C++ [namespace.memdef]p2). For example:
6132          //
6133          // class X {
6134          //   void f() const;
6135          // };
6136          //
6137          // void X::f() { } // ill-formed
6138          //
6139          // Complain about this problem, and attempt to suggest close
6140          // matches (e.g., those that differ only in cv-qualifiers and
6141          // whether the parameter types are references).
6142
6143          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6144                                                               NewFD,
6145                                                               ExtraArgs)) {
6146            AddToScope = ExtraArgs.AddToScope;
6147            return Result;
6148          }
6149        }
6150
6151        // Unqualified local friend declarations are required to resolve
6152        // to something.
6153      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6154        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6155                                                             NewFD,
6156                                                             ExtraArgs)) {
6157          AddToScope = ExtraArgs.AddToScope;
6158          return Result;
6159        }
6160      }
6161
6162    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6163               !isFriend && !isFunctionTemplateSpecialization &&
6164               !isExplicitSpecialization) {
6165      // An out-of-line member function declaration must also be a
6166      // definition (C++ [dcl.meaning]p1).
6167      // Note that this is not the case for explicit specializations of
6168      // function templates or member functions of class templates, per
6169      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6170      // extension for compatibility with old SWIG code which likes to
6171      // generate them.
6172      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6173        << D.getCXXScopeSpec().getRange();
6174    }
6175  }
6176
6177  checkAttributesAfterMerging(*this, *NewFD);
6178
6179  AddKnownFunctionAttributes(NewFD);
6180
6181  if (NewFD->hasAttr<OverloadableAttr>() &&
6182      !NewFD->getType()->getAs<FunctionProtoType>()) {
6183    Diag(NewFD->getLocation(),
6184         diag::err_attribute_overloadable_no_prototype)
6185      << NewFD;
6186
6187    // Turn this into a variadic function with no parameters.
6188    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6189    FunctionProtoType::ExtProtoInfo EPI;
6190    EPI.Variadic = true;
6191    EPI.ExtInfo = FT->getExtInfo();
6192
6193    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
6194    NewFD->setType(R);
6195  }
6196
6197  // If there's a #pragma GCC visibility in scope, and this isn't a class
6198  // member, set the visibility of this function.
6199  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
6200    AddPushedVisibilityAttribute(NewFD);
6201
6202  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6203  // marking the function.
6204  AddCFAuditedAttribute(NewFD);
6205
6206  // If this is a locally-scoped extern C function, update the
6207  // map of such names.
6208  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6209      && !NewFD->isInvalidDecl())
6210    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6211
6212  // Set this FunctionDecl's range up to the right paren.
6213  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6214
6215  if (getLangOpts().CPlusPlus) {
6216    if (FunctionTemplate) {
6217      if (NewFD->isInvalidDecl())
6218        FunctionTemplate->setInvalidDecl();
6219      return FunctionTemplate;
6220    }
6221  }
6222
6223  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6224    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6225    if ((getLangOpts().OpenCLVersion >= 120)
6226        && (SC == SC_Static)) {
6227      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6228      D.setInvalidType();
6229    }
6230
6231    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6232         PE = NewFD->param_end(); PI != PE; ++PI) {
6233      ParmVarDecl *Param = *PI;
6234      QualType PT = Param->getType();
6235
6236      // OpenCL v1.2 s6.9.a:
6237      // A kernel function argument cannot be declared as a
6238      // pointer to a pointer type.
6239      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6240        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6241        D.setInvalidType();
6242      }
6243
6244      // OpenCL v1.2 s6.8 n:
6245      // A kernel function argument cannot be declared
6246      // of event_t type.
6247      if (PT->isEventT()) {
6248        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6249        D.setInvalidType();
6250      }
6251    }
6252  }
6253
6254  MarkUnusedFileScopedDecl(NewFD);
6255
6256  if (getLangOpts().CUDA)
6257    if (IdentifierInfo *II = NewFD->getIdentifier())
6258      if (!NewFD->isInvalidDecl() &&
6259          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6260        if (II->isStr("cudaConfigureCall")) {
6261          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6262            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6263
6264          Context.setcudaConfigureCallDecl(NewFD);
6265        }
6266      }
6267
6268  // Here we have an function template explicit specialization at class scope.
6269  // The actually specialization will be postponed to template instatiation
6270  // time via the ClassScopeFunctionSpecializationDecl node.
6271  if (isDependentClassScopeExplicitSpecialization) {
6272    ClassScopeFunctionSpecializationDecl *NewSpec =
6273                         ClassScopeFunctionSpecializationDecl::Create(
6274                                Context, CurContext, SourceLocation(),
6275                                cast<CXXMethodDecl>(NewFD),
6276                                HasExplicitTemplateArgs, TemplateArgs);
6277    CurContext->addDecl(NewSpec);
6278    AddToScope = false;
6279  }
6280
6281  return NewFD;
6282}
6283
6284/// \brief Perform semantic checking of a new function declaration.
6285///
6286/// Performs semantic analysis of the new function declaration
6287/// NewFD. This routine performs all semantic checking that does not
6288/// require the actual declarator involved in the declaration, and is
6289/// used both for the declaration of functions as they are parsed
6290/// (called via ActOnDeclarator) and for the declaration of functions
6291/// that have been instantiated via C++ template instantiation (called
6292/// via InstantiateDecl).
6293///
6294/// \param IsExplicitSpecialization whether this new function declaration is
6295/// an explicit specialization of the previous declaration.
6296///
6297/// This sets NewFD->isInvalidDecl() to true if there was an error.
6298///
6299/// \returns true if the function declaration is a redeclaration.
6300bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6301                                    LookupResult &Previous,
6302                                    bool IsExplicitSpecialization) {
6303  assert(!NewFD->getResultType()->isVariablyModifiedType()
6304         && "Variably modified return types are not handled here");
6305
6306  // Check for a previous declaration of this name.
6307  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6308    // Since we did not find anything by this name, look for a non-visible
6309    // extern "C" declaration with the same name.
6310    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6311      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6312    if (Pos != LocallyScopedExternCDecls.end())
6313      Previous.addDecl(Pos->second);
6314  }
6315
6316  // Filter out any non-conflicting previous declarations.
6317  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6318
6319  bool Redeclaration = false;
6320  NamedDecl *OldDecl = 0;
6321
6322  // Merge or overload the declaration with an existing declaration of
6323  // the same name, if appropriate.
6324  if (!Previous.empty()) {
6325    // Determine whether NewFD is an overload of PrevDecl or
6326    // a declaration that requires merging. If it's an overload,
6327    // there's no more work to do here; we'll just add the new
6328    // function to the scope.
6329    if (!AllowOverloadingOfFunction(Previous, Context)) {
6330      Redeclaration = true;
6331      OldDecl = Previous.getFoundDecl();
6332    } else {
6333      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6334                            /*NewIsUsingDecl*/ false)) {
6335      case Ovl_Match:
6336        Redeclaration = true;
6337        break;
6338
6339      case Ovl_NonFunction:
6340        Redeclaration = true;
6341        break;
6342
6343      case Ovl_Overload:
6344        Redeclaration = false;
6345        break;
6346      }
6347
6348      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6349        // If a function name is overloadable in C, then every function
6350        // with that name must be marked "overloadable".
6351        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6352          << Redeclaration << NewFD;
6353        NamedDecl *OverloadedDecl = 0;
6354        if (Redeclaration)
6355          OverloadedDecl = OldDecl;
6356        else if (!Previous.empty())
6357          OverloadedDecl = Previous.getRepresentativeDecl();
6358        if (OverloadedDecl)
6359          Diag(OverloadedDecl->getLocation(),
6360               diag::note_attribute_overloadable_prev_overload);
6361        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6362                                                        Context));
6363      }
6364    }
6365  }
6366
6367  // C++11 [dcl.constexpr]p8:
6368  //   A constexpr specifier for a non-static member function that is not
6369  //   a constructor declares that member function to be const.
6370  //
6371  // This needs to be delayed until we know whether this is an out-of-line
6372  // definition of a static member function.
6373  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6374  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6375      !isa<CXXConstructorDecl>(MD) &&
6376      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6377    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6378    if (FunctionTemplateDecl *OldTD =
6379          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6380      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6381    if (!OldMD || !OldMD->isStatic()) {
6382      const FunctionProtoType *FPT =
6383        MD->getType()->castAs<FunctionProtoType>();
6384      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6385      EPI.TypeQuals |= Qualifiers::Const;
6386      MD->setType(Context.getFunctionType(FPT->getResultType(),
6387                                          FPT->arg_type_begin(),
6388                                          FPT->getNumArgs(), EPI));
6389    }
6390  }
6391
6392  if (Redeclaration) {
6393    // NewFD and OldDecl represent declarations that need to be
6394    // merged.
6395    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6396      NewFD->setInvalidDecl();
6397      return Redeclaration;
6398    }
6399
6400    Previous.clear();
6401    Previous.addDecl(OldDecl);
6402
6403    if (FunctionTemplateDecl *OldTemplateDecl
6404                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6405      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6406      FunctionTemplateDecl *NewTemplateDecl
6407        = NewFD->getDescribedFunctionTemplate();
6408      assert(NewTemplateDecl && "Template/non-template mismatch");
6409      if (CXXMethodDecl *Method
6410            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6411        Method->setAccess(OldTemplateDecl->getAccess());
6412        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6413      }
6414
6415      // If this is an explicit specialization of a member that is a function
6416      // template, mark it as a member specialization.
6417      if (IsExplicitSpecialization &&
6418          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6419        NewTemplateDecl->setMemberSpecialization();
6420        assert(OldTemplateDecl->isMemberSpecialization());
6421      }
6422
6423    } else {
6424      // This needs to happen first so that 'inline' propagates.
6425      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6426
6427      if (isa<CXXMethodDecl>(NewFD)) {
6428        // A valid redeclaration of a C++ method must be out-of-line,
6429        // but (unfortunately) it's not necessarily a definition
6430        // because of templates, which means that the previous
6431        // declaration is not necessarily from the class definition.
6432
6433        // For just setting the access, that doesn't matter.
6434        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6435        NewFD->setAccess(oldMethod->getAccess());
6436
6437        // Update the key-function state if necessary for this ABI.
6438        if (NewFD->isInlined() &&
6439            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6440          // setNonKeyFunction needs to work with the original
6441          // declaration from the class definition, and isVirtual() is
6442          // just faster in that case, so map back to that now.
6443          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6444          if (oldMethod->isVirtual()) {
6445            Context.setNonKeyFunction(oldMethod);
6446          }
6447        }
6448      }
6449    }
6450  }
6451
6452  // Semantic checking for this function declaration (in isolation).
6453  if (getLangOpts().CPlusPlus) {
6454    // C++-specific checks.
6455    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6456      CheckConstructor(Constructor);
6457    } else if (CXXDestructorDecl *Destructor =
6458                dyn_cast<CXXDestructorDecl>(NewFD)) {
6459      CXXRecordDecl *Record = Destructor->getParent();
6460      QualType ClassType = Context.getTypeDeclType(Record);
6461
6462      // FIXME: Shouldn't we be able to perform this check even when the class
6463      // type is dependent? Both gcc and edg can handle that.
6464      if (!ClassType->isDependentType()) {
6465        DeclarationName Name
6466          = Context.DeclarationNames.getCXXDestructorName(
6467                                        Context.getCanonicalType(ClassType));
6468        if (NewFD->getDeclName() != Name) {
6469          Diag(NewFD->getLocation(), diag::err_destructor_name);
6470          NewFD->setInvalidDecl();
6471          return Redeclaration;
6472        }
6473      }
6474    } else if (CXXConversionDecl *Conversion
6475               = dyn_cast<CXXConversionDecl>(NewFD)) {
6476      ActOnConversionDeclarator(Conversion);
6477    }
6478
6479    // Find any virtual functions that this function overrides.
6480    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6481      if (!Method->isFunctionTemplateSpecialization() &&
6482          !Method->getDescribedFunctionTemplate() &&
6483          Method->isCanonicalDecl()) {
6484        if (AddOverriddenMethods(Method->getParent(), Method)) {
6485          // If the function was marked as "static", we have a problem.
6486          if (NewFD->getStorageClass() == SC_Static) {
6487            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6488          }
6489        }
6490      }
6491
6492      if (Method->isStatic())
6493        checkThisInStaticMemberFunctionType(Method);
6494    }
6495
6496    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6497    if (NewFD->isOverloadedOperator() &&
6498        CheckOverloadedOperatorDeclaration(NewFD)) {
6499      NewFD->setInvalidDecl();
6500      return Redeclaration;
6501    }
6502
6503    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6504    if (NewFD->getLiteralIdentifier() &&
6505        CheckLiteralOperatorDeclaration(NewFD)) {
6506      NewFD->setInvalidDecl();
6507      return Redeclaration;
6508    }
6509
6510    // In C++, check default arguments now that we have merged decls. Unless
6511    // the lexical context is the class, because in this case this is done
6512    // during delayed parsing anyway.
6513    if (!CurContext->isRecord())
6514      CheckCXXDefaultArguments(NewFD);
6515
6516    // If this function declares a builtin function, check the type of this
6517    // declaration against the expected type for the builtin.
6518    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6519      ASTContext::GetBuiltinTypeError Error;
6520      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6521      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6522      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6523        // The type of this function differs from the type of the builtin,
6524        // so forget about the builtin entirely.
6525        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6526      }
6527    }
6528
6529    // If this function is declared as being extern "C", then check to see if
6530    // the function returns a UDT (class, struct, or union type) that is not C
6531    // compatible, and if it does, warn the user.
6532    if (NewFD->hasCLanguageLinkage()) {
6533      QualType R = NewFD->getResultType();
6534      if (R->isIncompleteType() && !R->isVoidType())
6535        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6536            << NewFD << R;
6537      else if (!R.isPODType(Context) && !R->isVoidType() &&
6538               !R->isObjCObjectPointerType())
6539        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6540    }
6541  }
6542  return Redeclaration;
6543}
6544
6545static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6546  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6547  if (!TSI)
6548    return SourceRange();
6549
6550  TypeLoc TL = TSI->getTypeLoc();
6551  FunctionTypeLoc *FunctionTL = dyn_cast<FunctionTypeLoc>(&TL);
6552  if (!FunctionTL)
6553    return SourceRange();
6554
6555  TypeLoc ResultTL = FunctionTL->getResultLoc();
6556  if (isa<BuiltinTypeLoc>(ResultTL.getUnqualifiedLoc()))
6557    return ResultTL.getSourceRange();
6558
6559  return SourceRange();
6560}
6561
6562void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6563  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6564  //   static or constexpr is ill-formed.
6565  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6566  //   appear in a declaration of main.
6567  // static main is not an error under C99, but we should warn about it.
6568  // We accept _Noreturn main as an extension.
6569  if (FD->getStorageClass() == SC_Static)
6570    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6571         ? diag::err_static_main : diag::warn_static_main)
6572      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6573  if (FD->isInlineSpecified())
6574    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6575      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6576  if (DS.isNoreturnSpecified()) {
6577    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6578    SourceRange NoreturnRange(NoreturnLoc,
6579                              PP.getLocForEndOfToken(NoreturnLoc));
6580    Diag(NoreturnLoc, diag::ext_noreturn_main);
6581    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6582      << FixItHint::CreateRemoval(NoreturnRange);
6583  }
6584  if (FD->isConstexpr()) {
6585    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6586      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6587    FD->setConstexpr(false);
6588  }
6589
6590  QualType T = FD->getType();
6591  assert(T->isFunctionType() && "function decl is not of function type");
6592  const FunctionType* FT = T->castAs<FunctionType>();
6593
6594  // All the standards say that main() should should return 'int'.
6595  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6596    // In C and C++, main magically returns 0 if you fall off the end;
6597    // set the flag which tells us that.
6598    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6599    FD->setHasImplicitReturnZero(true);
6600
6601  // In C with GNU extensions we allow main() to have non-integer return
6602  // type, but we should warn about the extension, and we disable the
6603  // implicit-return-zero rule.
6604  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6605    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6606
6607    SourceRange ResultRange = getResultSourceRange(FD);
6608    if (ResultRange.isValid())
6609      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6610          << FixItHint::CreateReplacement(ResultRange, "int");
6611
6612  // Otherwise, this is just a flat-out error.
6613  } else {
6614    SourceRange ResultRange = getResultSourceRange(FD);
6615    if (ResultRange.isValid())
6616      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6617          << FixItHint::CreateReplacement(ResultRange, "int");
6618    else
6619      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6620
6621    FD->setInvalidDecl(true);
6622  }
6623
6624  // Treat protoless main() as nullary.
6625  if (isa<FunctionNoProtoType>(FT)) return;
6626
6627  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6628  unsigned nparams = FTP->getNumArgs();
6629  assert(FD->getNumParams() == nparams);
6630
6631  bool HasExtraParameters = (nparams > 3);
6632
6633  // Darwin passes an undocumented fourth argument of type char**.  If
6634  // other platforms start sprouting these, the logic below will start
6635  // getting shifty.
6636  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6637    HasExtraParameters = false;
6638
6639  if (HasExtraParameters) {
6640    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6641    FD->setInvalidDecl(true);
6642    nparams = 3;
6643  }
6644
6645  // FIXME: a lot of the following diagnostics would be improved
6646  // if we had some location information about types.
6647
6648  QualType CharPP =
6649    Context.getPointerType(Context.getPointerType(Context.CharTy));
6650  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6651
6652  for (unsigned i = 0; i < nparams; ++i) {
6653    QualType AT = FTP->getArgType(i);
6654
6655    bool mismatch = true;
6656
6657    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6658      mismatch = false;
6659    else if (Expected[i] == CharPP) {
6660      // As an extension, the following forms are okay:
6661      //   char const **
6662      //   char const * const *
6663      //   char * const *
6664
6665      QualifierCollector qs;
6666      const PointerType* PT;
6667      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6668          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6669          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6670                              Context.CharTy)) {
6671        qs.removeConst();
6672        mismatch = !qs.empty();
6673      }
6674    }
6675
6676    if (mismatch) {
6677      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6678      // TODO: suggest replacing given type with expected type
6679      FD->setInvalidDecl(true);
6680    }
6681  }
6682
6683  if (nparams == 1 && !FD->isInvalidDecl()) {
6684    Diag(FD->getLocation(), diag::warn_main_one_arg);
6685  }
6686
6687  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6688    Diag(FD->getLocation(), diag::err_main_template_decl);
6689    FD->setInvalidDecl();
6690  }
6691}
6692
6693bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6694  // FIXME: Need strict checking.  In C89, we need to check for
6695  // any assignment, increment, decrement, function-calls, or
6696  // commas outside of a sizeof.  In C99, it's the same list,
6697  // except that the aforementioned are allowed in unevaluated
6698  // expressions.  Everything else falls under the
6699  // "may accept other forms of constant expressions" exception.
6700  // (We never end up here for C++, so the constant expression
6701  // rules there don't matter.)
6702  if (Init->isConstantInitializer(Context, false))
6703    return false;
6704  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6705    << Init->getSourceRange();
6706  return true;
6707}
6708
6709namespace {
6710  // Visits an initialization expression to see if OrigDecl is evaluated in
6711  // its own initialization and throws a warning if it does.
6712  class SelfReferenceChecker
6713      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6714    Sema &S;
6715    Decl *OrigDecl;
6716    bool isRecordType;
6717    bool isPODType;
6718    bool isReferenceType;
6719
6720  public:
6721    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6722
6723    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6724                                                    S(S), OrigDecl(OrigDecl) {
6725      isPODType = false;
6726      isRecordType = false;
6727      isReferenceType = false;
6728      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6729        isPODType = VD->getType().isPODType(S.Context);
6730        isRecordType = VD->getType()->isRecordType();
6731        isReferenceType = VD->getType()->isReferenceType();
6732      }
6733    }
6734
6735    // For most expressions, the cast is directly above the DeclRefExpr.
6736    // For conditional operators, the cast can be outside the conditional
6737    // operator if both expressions are DeclRefExpr's.
6738    void HandleValue(Expr *E) {
6739      if (isReferenceType)
6740        return;
6741      E = E->IgnoreParenImpCasts();
6742      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6743        HandleDeclRefExpr(DRE);
6744        return;
6745      }
6746
6747      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6748        HandleValue(CO->getTrueExpr());
6749        HandleValue(CO->getFalseExpr());
6750        return;
6751      }
6752
6753      if (isa<MemberExpr>(E)) {
6754        Expr *Base = E->IgnoreParenImpCasts();
6755        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6756          // Check for static member variables and don't warn on them.
6757          if (!isa<FieldDecl>(ME->getMemberDecl()))
6758            return;
6759          Base = ME->getBase()->IgnoreParenImpCasts();
6760        }
6761        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
6762          HandleDeclRefExpr(DRE);
6763        return;
6764      }
6765    }
6766
6767    // Reference types are handled here since all uses of references are
6768    // bad, not just r-value uses.
6769    void VisitDeclRefExpr(DeclRefExpr *E) {
6770      if (isReferenceType)
6771        HandleDeclRefExpr(E);
6772    }
6773
6774    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6775      if (E->getCastKind() == CK_LValueToRValue ||
6776          (isRecordType && E->getCastKind() == CK_NoOp))
6777        HandleValue(E->getSubExpr());
6778
6779      Inherited::VisitImplicitCastExpr(E);
6780    }
6781
6782    void VisitMemberExpr(MemberExpr *E) {
6783      // Don't warn on arrays since they can be treated as pointers.
6784      if (E->getType()->canDecayToPointerType()) return;
6785
6786      // Warn when a non-static method call is followed by non-static member
6787      // field accesses, which is followed by a DeclRefExpr.
6788      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
6789      bool Warn = (MD && !MD->isStatic());
6790      Expr *Base = E->getBase()->IgnoreParenImpCasts();
6791      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
6792        if (!isa<FieldDecl>(ME->getMemberDecl()))
6793          Warn = false;
6794        Base = ME->getBase()->IgnoreParenImpCasts();
6795      }
6796
6797      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
6798        if (Warn)
6799          HandleDeclRefExpr(DRE);
6800        return;
6801      }
6802
6803      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
6804      // Visit that expression.
6805      Visit(Base);
6806    }
6807
6808    void VisitUnaryOperator(UnaryOperator *E) {
6809      // For POD record types, addresses of its own members are well-defined.
6810      if (E->getOpcode() == UO_AddrOf && isRecordType &&
6811          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
6812        if (!isPODType)
6813          HandleValue(E->getSubExpr());
6814        return;
6815      }
6816      Inherited::VisitUnaryOperator(E);
6817    }
6818
6819    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6820
6821    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6822      Decl* ReferenceDecl = DRE->getDecl();
6823      if (OrigDecl != ReferenceDecl) return;
6824      unsigned diag;
6825      if (isReferenceType) {
6826        diag = diag::warn_uninit_self_reference_in_reference_init;
6827      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
6828        diag = diag::warn_static_self_reference_in_init;
6829      } else {
6830        diag = diag::warn_uninit_self_reference_in_init;
6831      }
6832
6833      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6834                            S.PDiag(diag)
6835                              << DRE->getNameInfo().getName()
6836                              << OrigDecl->getLocation()
6837                              << DRE->getSourceRange());
6838    }
6839  };
6840
6841  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
6842  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
6843                                 bool DirectInit) {
6844    // Parameters arguments are occassionially constructed with itself,
6845    // for instance, in recursive functions.  Skip them.
6846    if (isa<ParmVarDecl>(OrigDecl))
6847      return;
6848
6849    E = E->IgnoreParens();
6850
6851    // Skip checking T a = a where T is not a record or reference type.
6852    // Doing so is a way to silence uninitialized warnings.
6853    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
6854      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
6855        if (ICE->getCastKind() == CK_LValueToRValue)
6856          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
6857            if (DRE->getDecl() == OrigDecl)
6858              return;
6859
6860    SelfReferenceChecker(S, OrigDecl).Visit(E);
6861  }
6862}
6863
6864/// AddInitializerToDecl - Adds the initializer Init to the
6865/// declaration dcl. If DirectInit is true, this is C++ direct
6866/// initialization rather than copy initialization.
6867void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6868                                bool DirectInit, bool TypeMayContainAuto) {
6869  // If there is no declaration, there was an error parsing it.  Just ignore
6870  // the initializer.
6871  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6872    return;
6873
6874  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6875    // With declarators parsed the way they are, the parser cannot
6876    // distinguish between a normal initializer and a pure-specifier.
6877    // Thus this grotesque test.
6878    IntegerLiteral *IL;
6879    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6880        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6881      CheckPureMethod(Method, Init->getSourceRange());
6882    else {
6883      Diag(Method->getLocation(), diag::err_member_function_initialization)
6884        << Method->getDeclName() << Init->getSourceRange();
6885      Method->setInvalidDecl();
6886    }
6887    return;
6888  }
6889
6890  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6891  if (!VDecl) {
6892    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6893    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6894    RealDecl->setInvalidDecl();
6895    return;
6896  }
6897
6898  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6899
6900  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6901  AutoType *Auto = 0;
6902  if (TypeMayContainAuto &&
6903      (Auto = VDecl->getType()->getContainedAutoType()) &&
6904      !Auto->isDeduced()) {
6905    Expr *DeduceInit = Init;
6906    // Initializer could be a C++ direct-initializer. Deduction only works if it
6907    // contains exactly one expression.
6908    if (CXXDirectInit) {
6909      if (CXXDirectInit->getNumExprs() == 0) {
6910        // It isn't possible to write this directly, but it is possible to
6911        // end up in this situation with "auto x(some_pack...);"
6912        Diag(CXXDirectInit->getLocStart(),
6913             diag::err_auto_var_init_no_expression)
6914          << VDecl->getDeclName() << VDecl->getType()
6915          << VDecl->getSourceRange();
6916        RealDecl->setInvalidDecl();
6917        return;
6918      } else if (CXXDirectInit->getNumExprs() > 1) {
6919        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6920             diag::err_auto_var_init_multiple_expressions)
6921          << VDecl->getDeclName() << VDecl->getType()
6922          << VDecl->getSourceRange();
6923        RealDecl->setInvalidDecl();
6924        return;
6925      } else {
6926        DeduceInit = CXXDirectInit->getExpr(0);
6927      }
6928    }
6929    TypeSourceInfo *DeducedType = 0;
6930    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6931            DAR_Failed)
6932      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6933    if (!DeducedType) {
6934      RealDecl->setInvalidDecl();
6935      return;
6936    }
6937    VDecl->setTypeSourceInfo(DeducedType);
6938    VDecl->setType(DeducedType->getType());
6939    VDecl->ClearLinkageCache();
6940
6941    // In ARC, infer lifetime.
6942    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6943      VDecl->setInvalidDecl();
6944
6945    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6946    // 'id' instead of a specific object type prevents most of our usual checks.
6947    // We only want to warn outside of template instantiations, though:
6948    // inside a template, the 'id' could have come from a parameter.
6949    if (ActiveTemplateInstantiations.empty() &&
6950        DeducedType->getType()->isObjCIdType()) {
6951      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6952      Diag(Loc, diag::warn_auto_var_is_id)
6953        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6954    }
6955
6956    // If this is a redeclaration, check that the type we just deduced matches
6957    // the previously declared type.
6958    if (VarDecl *Old = VDecl->getPreviousDecl())
6959      MergeVarDeclTypes(VDecl, Old);
6960  }
6961
6962  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6963    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6964    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6965    VDecl->setInvalidDecl();
6966    return;
6967  }
6968
6969  if (!VDecl->getType()->isDependentType()) {
6970    // A definition must end up with a complete type, which means it must be
6971    // complete with the restriction that an array type might be completed by
6972    // the initializer; note that later code assumes this restriction.
6973    QualType BaseDeclType = VDecl->getType();
6974    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6975      BaseDeclType = Array->getElementType();
6976    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6977                            diag::err_typecheck_decl_incomplete_type)) {
6978      RealDecl->setInvalidDecl();
6979      return;
6980    }
6981
6982    // The variable can not have an abstract class type.
6983    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6984                               diag::err_abstract_type_in_decl,
6985                               AbstractVariableType))
6986      VDecl->setInvalidDecl();
6987  }
6988
6989  const VarDecl *Def;
6990  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6991    Diag(VDecl->getLocation(), diag::err_redefinition)
6992      << VDecl->getDeclName();
6993    Diag(Def->getLocation(), diag::note_previous_definition);
6994    VDecl->setInvalidDecl();
6995    return;
6996  }
6997
6998  const VarDecl* PrevInit = 0;
6999  if (getLangOpts().CPlusPlus) {
7000    // C++ [class.static.data]p4
7001    //   If a static data member is of const integral or const
7002    //   enumeration type, its declaration in the class definition can
7003    //   specify a constant-initializer which shall be an integral
7004    //   constant expression (5.19). In that case, the member can appear
7005    //   in integral constant expressions. The member shall still be
7006    //   defined in a namespace scope if it is used in the program and the
7007    //   namespace scope definition shall not contain an initializer.
7008    //
7009    // We already performed a redefinition check above, but for static
7010    // data members we also need to check whether there was an in-class
7011    // declaration with an initializer.
7012    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7013      Diag(VDecl->getLocation(), diag::err_redefinition)
7014        << VDecl->getDeclName();
7015      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7016      return;
7017    }
7018
7019    if (VDecl->hasLocalStorage())
7020      getCurFunction()->setHasBranchProtectedScope();
7021
7022    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7023      VDecl->setInvalidDecl();
7024      return;
7025    }
7026  }
7027
7028  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7029  // a kernel function cannot be initialized."
7030  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7031    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7032    VDecl->setInvalidDecl();
7033    return;
7034  }
7035
7036  // Get the decls type and save a reference for later, since
7037  // CheckInitializerTypes may change it.
7038  QualType DclT = VDecl->getType(), SavT = DclT;
7039
7040  // Top-level message sends default to 'id' when we're in a debugger
7041  // and we are assigning it to a variable of 'id' type.
7042  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
7043    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
7044      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7045      if (Result.isInvalid()) {
7046        VDecl->setInvalidDecl();
7047        return;
7048      }
7049      Init = Result.take();
7050    }
7051
7052  // Perform the initialization.
7053  if (!VDecl->isInvalidDecl()) {
7054    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7055    InitializationKind Kind
7056      = DirectInit ?
7057          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7058                                                           Init->getLocStart(),
7059                                                           Init->getLocEnd())
7060                        : InitializationKind::CreateDirectList(
7061                                                          VDecl->getLocation())
7062                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7063                                                    Init->getLocStart());
7064
7065    Expr **Args = &Init;
7066    unsigned NumArgs = 1;
7067    if (CXXDirectInit) {
7068      Args = CXXDirectInit->getExprs();
7069      NumArgs = CXXDirectInit->getNumExprs();
7070    }
7071    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7072    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7073                                        MultiExprArg(Args, NumArgs), &DclT);
7074    if (Result.isInvalid()) {
7075      VDecl->setInvalidDecl();
7076      return;
7077    }
7078
7079    Init = Result.takeAs<Expr>();
7080  }
7081
7082  // Check for self-references within variable initializers.
7083  // Variables declared within a function/method body (except for references)
7084  // are handled by a dataflow analysis.
7085  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7086      VDecl->getType()->isReferenceType()) {
7087    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7088  }
7089
7090  // If the type changed, it means we had an incomplete type that was
7091  // completed by the initializer. For example:
7092  //   int ary[] = { 1, 3, 5 };
7093  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7094  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7095    VDecl->setType(DclT);
7096
7097  if (!VDecl->isInvalidDecl()) {
7098    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7099
7100    if (VDecl->hasAttr<BlocksAttr>())
7101      checkRetainCycles(VDecl, Init);
7102
7103    // It is safe to assign a weak reference into a strong variable.
7104    // Although this code can still have problems:
7105    //   id x = self.weakProp;
7106    //   id y = self.weakProp;
7107    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7108    // paths through the function. This should be revisited if
7109    // -Wrepeated-use-of-weak is made flow-sensitive.
7110    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7111      DiagnosticsEngine::Level Level =
7112        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7113                                 Init->getLocStart());
7114      if (Level != DiagnosticsEngine::Ignored)
7115        getCurFunction()->markSafeWeakUse(Init);
7116    }
7117  }
7118
7119  // The initialization is usually a full-expression.
7120  //
7121  // FIXME: If this is a braced initialization of an aggregate, it is not
7122  // an expression, and each individual field initializer is a separate
7123  // full-expression. For instance, in:
7124  //
7125  //   struct Temp { ~Temp(); };
7126  //   struct S { S(Temp); };
7127  //   struct T { S a, b; } t = { Temp(), Temp() }
7128  //
7129  // we should destroy the first Temp before constructing the second.
7130  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7131                                          false,
7132                                          VDecl->isConstexpr());
7133  if (Result.isInvalid()) {
7134    VDecl->setInvalidDecl();
7135    return;
7136  }
7137  Init = Result.take();
7138
7139  // Attach the initializer to the decl.
7140  VDecl->setInit(Init);
7141
7142  if (VDecl->isLocalVarDecl()) {
7143    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7144    // static storage duration shall be constant expressions or string literals.
7145    // C++ does not have this restriction.
7146    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7147        VDecl->getStorageClass() == SC_Static)
7148      CheckForConstantInitializer(Init, DclT);
7149  } else if (VDecl->isStaticDataMember() &&
7150             VDecl->getLexicalDeclContext()->isRecord()) {
7151    // This is an in-class initialization for a static data member, e.g.,
7152    //
7153    // struct S {
7154    //   static const int value = 17;
7155    // };
7156
7157    // C++ [class.mem]p4:
7158    //   A member-declarator can contain a constant-initializer only
7159    //   if it declares a static member (9.4) of const integral or
7160    //   const enumeration type, see 9.4.2.
7161    //
7162    // C++11 [class.static.data]p3:
7163    //   If a non-volatile const static data member is of integral or
7164    //   enumeration type, its declaration in the class definition can
7165    //   specify a brace-or-equal-initializer in which every initalizer-clause
7166    //   that is an assignment-expression is a constant expression. A static
7167    //   data member of literal type can be declared in the class definition
7168    //   with the constexpr specifier; if so, its declaration shall specify a
7169    //   brace-or-equal-initializer in which every initializer-clause that is
7170    //   an assignment-expression is a constant expression.
7171
7172    // Do nothing on dependent types.
7173    if (DclT->isDependentType()) {
7174
7175    // Allow any 'static constexpr' members, whether or not they are of literal
7176    // type. We separately check that every constexpr variable is of literal
7177    // type.
7178    } else if (VDecl->isConstexpr()) {
7179
7180    // Require constness.
7181    } else if (!DclT.isConstQualified()) {
7182      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7183        << Init->getSourceRange();
7184      VDecl->setInvalidDecl();
7185
7186    // We allow integer constant expressions in all cases.
7187    } else if (DclT->isIntegralOrEnumerationType()) {
7188      // Check whether the expression is a constant expression.
7189      SourceLocation Loc;
7190      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7191        // In C++11, a non-constexpr const static data member with an
7192        // in-class initializer cannot be volatile.
7193        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7194      else if (Init->isValueDependent())
7195        ; // Nothing to check.
7196      else if (Init->isIntegerConstantExpr(Context, &Loc))
7197        ; // Ok, it's an ICE!
7198      else if (Init->isEvaluatable(Context)) {
7199        // If we can constant fold the initializer through heroics, accept it,
7200        // but report this as a use of an extension for -pedantic.
7201        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7202          << Init->getSourceRange();
7203      } else {
7204        // Otherwise, this is some crazy unknown case.  Report the issue at the
7205        // location provided by the isIntegerConstantExpr failed check.
7206        Diag(Loc, diag::err_in_class_initializer_non_constant)
7207          << Init->getSourceRange();
7208        VDecl->setInvalidDecl();
7209      }
7210
7211    // We allow foldable floating-point constants as an extension.
7212    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7213      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7214      // it anyway and provide a fixit to add the 'constexpr'.
7215      if (getLangOpts().CPlusPlus11) {
7216        Diag(VDecl->getLocation(),
7217             diag::ext_in_class_initializer_float_type_cxx11)
7218            << DclT << Init->getSourceRange();
7219        Diag(VDecl->getLocStart(),
7220             diag::note_in_class_initializer_float_type_cxx11)
7221            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7222      } else {
7223        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7224          << DclT << Init->getSourceRange();
7225
7226        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7227          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7228            << Init->getSourceRange();
7229          VDecl->setInvalidDecl();
7230        }
7231      }
7232
7233    // Suggest adding 'constexpr' in C++11 for literal types.
7234    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7235      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7236        << DclT << Init->getSourceRange()
7237        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7238      VDecl->setConstexpr(true);
7239
7240    } else {
7241      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7242        << DclT << Init->getSourceRange();
7243      VDecl->setInvalidDecl();
7244    }
7245  } else if (VDecl->isFileVarDecl()) {
7246    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7247        (!getLangOpts().CPlusPlus ||
7248         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7249      Diag(VDecl->getLocation(), diag::warn_extern_init);
7250
7251    // C99 6.7.8p4. All file scoped initializers need to be constant.
7252    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7253      CheckForConstantInitializer(Init, DclT);
7254  }
7255
7256  // We will represent direct-initialization similarly to copy-initialization:
7257  //    int x(1);  -as-> int x = 1;
7258  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7259  //
7260  // Clients that want to distinguish between the two forms, can check for
7261  // direct initializer using VarDecl::getInitStyle().
7262  // A major benefit is that clients that don't particularly care about which
7263  // exactly form was it (like the CodeGen) can handle both cases without
7264  // special case code.
7265
7266  // C++ 8.5p11:
7267  // The form of initialization (using parentheses or '=') is generally
7268  // insignificant, but does matter when the entity being initialized has a
7269  // class type.
7270  if (CXXDirectInit) {
7271    assert(DirectInit && "Call-style initializer must be direct init.");
7272    VDecl->setInitStyle(VarDecl::CallInit);
7273  } else if (DirectInit) {
7274    // This must be list-initialization. No other way is direct-initialization.
7275    VDecl->setInitStyle(VarDecl::ListInit);
7276  }
7277
7278  CheckCompleteVariableDeclaration(VDecl);
7279}
7280
7281/// ActOnInitializerError - Given that there was an error parsing an
7282/// initializer for the given declaration, try to return to some form
7283/// of sanity.
7284void Sema::ActOnInitializerError(Decl *D) {
7285  // Our main concern here is re-establishing invariants like "a
7286  // variable's type is either dependent or complete".
7287  if (!D || D->isInvalidDecl()) return;
7288
7289  VarDecl *VD = dyn_cast<VarDecl>(D);
7290  if (!VD) return;
7291
7292  // Auto types are meaningless if we can't make sense of the initializer.
7293  if (ParsingInitForAutoVars.count(D)) {
7294    D->setInvalidDecl();
7295    return;
7296  }
7297
7298  QualType Ty = VD->getType();
7299  if (Ty->isDependentType()) return;
7300
7301  // Require a complete type.
7302  if (RequireCompleteType(VD->getLocation(),
7303                          Context.getBaseElementType(Ty),
7304                          diag::err_typecheck_decl_incomplete_type)) {
7305    VD->setInvalidDecl();
7306    return;
7307  }
7308
7309  // Require an abstract type.
7310  if (RequireNonAbstractType(VD->getLocation(), Ty,
7311                             diag::err_abstract_type_in_decl,
7312                             AbstractVariableType)) {
7313    VD->setInvalidDecl();
7314    return;
7315  }
7316
7317  // Don't bother complaining about constructors or destructors,
7318  // though.
7319}
7320
7321void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7322                                  bool TypeMayContainAuto) {
7323  // If there is no declaration, there was an error parsing it. Just ignore it.
7324  if (RealDecl == 0)
7325    return;
7326
7327  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7328    QualType Type = Var->getType();
7329
7330    // C++11 [dcl.spec.auto]p3
7331    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7332      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7333        << Var->getDeclName() << Type;
7334      Var->setInvalidDecl();
7335      return;
7336    }
7337
7338    // C++11 [class.static.data]p3: A static data member can be declared with
7339    // the constexpr specifier; if so, its declaration shall specify
7340    // a brace-or-equal-initializer.
7341    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7342    // the definition of a variable [...] or the declaration of a static data
7343    // member.
7344    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7345      if (Var->isStaticDataMember())
7346        Diag(Var->getLocation(),
7347             diag::err_constexpr_static_mem_var_requires_init)
7348          << Var->getDeclName();
7349      else
7350        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7351      Var->setInvalidDecl();
7352      return;
7353    }
7354
7355    switch (Var->isThisDeclarationADefinition()) {
7356    case VarDecl::Definition:
7357      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7358        break;
7359
7360      // We have an out-of-line definition of a static data member
7361      // that has an in-class initializer, so we type-check this like
7362      // a declaration.
7363      //
7364      // Fall through
7365
7366    case VarDecl::DeclarationOnly:
7367      // It's only a declaration.
7368
7369      // Block scope. C99 6.7p7: If an identifier for an object is
7370      // declared with no linkage (C99 6.2.2p6), the type for the
7371      // object shall be complete.
7372      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7373          !Var->getLinkage() && !Var->isInvalidDecl() &&
7374          RequireCompleteType(Var->getLocation(), Type,
7375                              diag::err_typecheck_decl_incomplete_type))
7376        Var->setInvalidDecl();
7377
7378      // Make sure that the type is not abstract.
7379      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7380          RequireNonAbstractType(Var->getLocation(), Type,
7381                                 diag::err_abstract_type_in_decl,
7382                                 AbstractVariableType))
7383        Var->setInvalidDecl();
7384      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7385          Var->getStorageClass() == SC_PrivateExtern) {
7386        Diag(Var->getLocation(), diag::warn_private_extern);
7387        Diag(Var->getLocation(), diag::note_private_extern);
7388      }
7389
7390      return;
7391
7392    case VarDecl::TentativeDefinition:
7393      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7394      // object that has file scope without an initializer, and without a
7395      // storage-class specifier or with the storage-class specifier "static",
7396      // constitutes a tentative definition. Note: A tentative definition with
7397      // external linkage is valid (C99 6.2.2p5).
7398      if (!Var->isInvalidDecl()) {
7399        if (const IncompleteArrayType *ArrayT
7400                                    = Context.getAsIncompleteArrayType(Type)) {
7401          if (RequireCompleteType(Var->getLocation(),
7402                                  ArrayT->getElementType(),
7403                                  diag::err_illegal_decl_array_incomplete_type))
7404            Var->setInvalidDecl();
7405        } else if (Var->getStorageClass() == SC_Static) {
7406          // C99 6.9.2p3: If the declaration of an identifier for an object is
7407          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7408          // declared type shall not be an incomplete type.
7409          // NOTE: code such as the following
7410          //     static struct s;
7411          //     struct s { int a; };
7412          // is accepted by gcc. Hence here we issue a warning instead of
7413          // an error and we do not invalidate the static declaration.
7414          // NOTE: to avoid multiple warnings, only check the first declaration.
7415          if (Var->getPreviousDecl() == 0)
7416            RequireCompleteType(Var->getLocation(), Type,
7417                                diag::ext_typecheck_decl_incomplete_type);
7418        }
7419      }
7420
7421      // Record the tentative definition; we're done.
7422      if (!Var->isInvalidDecl())
7423        TentativeDefinitions.push_back(Var);
7424      return;
7425    }
7426
7427    // Provide a specific diagnostic for uninitialized variable
7428    // definitions with incomplete array type.
7429    if (Type->isIncompleteArrayType()) {
7430      Diag(Var->getLocation(),
7431           diag::err_typecheck_incomplete_array_needs_initializer);
7432      Var->setInvalidDecl();
7433      return;
7434    }
7435
7436    // Provide a specific diagnostic for uninitialized variable
7437    // definitions with reference type.
7438    if (Type->isReferenceType()) {
7439      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7440        << Var->getDeclName()
7441        << SourceRange(Var->getLocation(), Var->getLocation());
7442      Var->setInvalidDecl();
7443      return;
7444    }
7445
7446    // Do not attempt to type-check the default initializer for a
7447    // variable with dependent type.
7448    if (Type->isDependentType())
7449      return;
7450
7451    if (Var->isInvalidDecl())
7452      return;
7453
7454    if (RequireCompleteType(Var->getLocation(),
7455                            Context.getBaseElementType(Type),
7456                            diag::err_typecheck_decl_incomplete_type)) {
7457      Var->setInvalidDecl();
7458      return;
7459    }
7460
7461    // The variable can not have an abstract class type.
7462    if (RequireNonAbstractType(Var->getLocation(), Type,
7463                               diag::err_abstract_type_in_decl,
7464                               AbstractVariableType)) {
7465      Var->setInvalidDecl();
7466      return;
7467    }
7468
7469    // Check for jumps past the implicit initializer.  C++0x
7470    // clarifies that this applies to a "variable with automatic
7471    // storage duration", not a "local variable".
7472    // C++11 [stmt.dcl]p3
7473    //   A program that jumps from a point where a variable with automatic
7474    //   storage duration is not in scope to a point where it is in scope is
7475    //   ill-formed unless the variable has scalar type, class type with a
7476    //   trivial default constructor and a trivial destructor, a cv-qualified
7477    //   version of one of these types, or an array of one of the preceding
7478    //   types and is declared without an initializer.
7479    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7480      if (const RecordType *Record
7481            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7482        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7483        // Mark the function for further checking even if the looser rules of
7484        // C++11 do not require such checks, so that we can diagnose
7485        // incompatibilities with C++98.
7486        if (!CXXRecord->isPOD())
7487          getCurFunction()->setHasBranchProtectedScope();
7488      }
7489    }
7490
7491    // C++03 [dcl.init]p9:
7492    //   If no initializer is specified for an object, and the
7493    //   object is of (possibly cv-qualified) non-POD class type (or
7494    //   array thereof), the object shall be default-initialized; if
7495    //   the object is of const-qualified type, the underlying class
7496    //   type shall have a user-declared default
7497    //   constructor. Otherwise, if no initializer is specified for
7498    //   a non- static object, the object and its subobjects, if
7499    //   any, have an indeterminate initial value); if the object
7500    //   or any of its subobjects are of const-qualified type, the
7501    //   program is ill-formed.
7502    // C++0x [dcl.init]p11:
7503    //   If no initializer is specified for an object, the object is
7504    //   default-initialized; [...].
7505    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7506    InitializationKind Kind
7507      = InitializationKind::CreateDefault(Var->getLocation());
7508
7509    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7510    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7511    if (Init.isInvalid())
7512      Var->setInvalidDecl();
7513    else if (Init.get()) {
7514      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7515      // This is important for template substitution.
7516      Var->setInitStyle(VarDecl::CallInit);
7517    }
7518
7519    CheckCompleteVariableDeclaration(Var);
7520  }
7521}
7522
7523void Sema::ActOnCXXForRangeDecl(Decl *D) {
7524  VarDecl *VD = dyn_cast<VarDecl>(D);
7525  if (!VD) {
7526    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7527    D->setInvalidDecl();
7528    return;
7529  }
7530
7531  VD->setCXXForRangeDecl(true);
7532
7533  // for-range-declaration cannot be given a storage class specifier.
7534  int Error = -1;
7535  switch (VD->getStorageClassAsWritten()) {
7536  case SC_None:
7537    break;
7538  case SC_Extern:
7539    Error = 0;
7540    break;
7541  case SC_Static:
7542    Error = 1;
7543    break;
7544  case SC_PrivateExtern:
7545    Error = 2;
7546    break;
7547  case SC_Auto:
7548    Error = 3;
7549    break;
7550  case SC_Register:
7551    Error = 4;
7552    break;
7553  case SC_OpenCLWorkGroupLocal:
7554    llvm_unreachable("Unexpected storage class");
7555  }
7556  if (VD->isConstexpr())
7557    Error = 5;
7558  if (Error != -1) {
7559    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7560      << VD->getDeclName() << Error;
7561    D->setInvalidDecl();
7562  }
7563}
7564
7565void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7566  if (var->isInvalidDecl()) return;
7567
7568  // In ARC, don't allow jumps past the implicit initialization of a
7569  // local retaining variable.
7570  if (getLangOpts().ObjCAutoRefCount &&
7571      var->hasLocalStorage()) {
7572    switch (var->getType().getObjCLifetime()) {
7573    case Qualifiers::OCL_None:
7574    case Qualifiers::OCL_ExplicitNone:
7575    case Qualifiers::OCL_Autoreleasing:
7576      break;
7577
7578    case Qualifiers::OCL_Weak:
7579    case Qualifiers::OCL_Strong:
7580      getCurFunction()->setHasBranchProtectedScope();
7581      break;
7582    }
7583  }
7584
7585  if (var->isThisDeclarationADefinition() &&
7586      var->getLinkage() == ExternalLinkage &&
7587      getDiagnostics().getDiagnosticLevel(
7588                       diag::warn_missing_variable_declarations,
7589                       var->getLocation())) {
7590    // Find a previous declaration that's not a definition.
7591    VarDecl *prev = var->getPreviousDecl();
7592    while (prev && prev->isThisDeclarationADefinition())
7593      prev = prev->getPreviousDecl();
7594
7595    if (!prev)
7596      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7597  }
7598
7599  // All the following checks are C++ only.
7600  if (!getLangOpts().CPlusPlus) return;
7601
7602  QualType type = var->getType();
7603  if (type->isDependentType()) return;
7604
7605  // __block variables might require us to capture a copy-initializer.
7606  if (var->hasAttr<BlocksAttr>()) {
7607    // It's currently invalid to ever have a __block variable with an
7608    // array type; should we diagnose that here?
7609
7610    // Regardless, we don't want to ignore array nesting when
7611    // constructing this copy.
7612    if (type->isStructureOrClassType()) {
7613      SourceLocation poi = var->getLocation();
7614      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7615      ExprResult result =
7616        PerformCopyInitialization(
7617                        InitializedEntity::InitializeBlock(poi, type, false),
7618                                  poi, Owned(varRef));
7619      if (!result.isInvalid()) {
7620        result = MaybeCreateExprWithCleanups(result);
7621        Expr *init = result.takeAs<Expr>();
7622        Context.setBlockVarCopyInits(var, init);
7623      }
7624    }
7625  }
7626
7627  Expr *Init = var->getInit();
7628  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7629  QualType baseType = Context.getBaseElementType(type);
7630
7631  if (!var->getDeclContext()->isDependentContext() &&
7632      Init && !Init->isValueDependent()) {
7633    if (IsGlobal && !var->isConstexpr() &&
7634        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7635                                            var->getLocation())
7636          != DiagnosticsEngine::Ignored &&
7637        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7638      Diag(var->getLocation(), diag::warn_global_constructor)
7639        << Init->getSourceRange();
7640
7641    if (var->isConstexpr()) {
7642      SmallVector<PartialDiagnosticAt, 8> Notes;
7643      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7644        SourceLocation DiagLoc = var->getLocation();
7645        // If the note doesn't add any useful information other than a source
7646        // location, fold it into the primary diagnostic.
7647        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7648              diag::note_invalid_subexpr_in_const_expr) {
7649          DiagLoc = Notes[0].first;
7650          Notes.clear();
7651        }
7652        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7653          << var << Init->getSourceRange();
7654        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7655          Diag(Notes[I].first, Notes[I].second);
7656      }
7657    } else if (var->isUsableInConstantExpressions(Context)) {
7658      // Check whether the initializer of a const variable of integral or
7659      // enumeration type is an ICE now, since we can't tell whether it was
7660      // initialized by a constant expression if we check later.
7661      var->checkInitIsICE();
7662    }
7663  }
7664
7665  // Require the destructor.
7666  if (const RecordType *recordType = baseType->getAs<RecordType>())
7667    FinalizeVarWithDestructor(var, recordType);
7668}
7669
7670/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7671/// any semantic actions necessary after any initializer has been attached.
7672void
7673Sema::FinalizeDeclaration(Decl *ThisDecl) {
7674  // Note that we are no longer parsing the initializer for this declaration.
7675  ParsingInitForAutoVars.erase(ThisDecl);
7676
7677  const VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7678  if (!VD)
7679    return;
7680
7681  if (VD->isFileVarDecl())
7682    MarkUnusedFileScopedDecl(VD);
7683
7684  // Now we have parsed the initializer and can update the table of magic
7685  // tag values.
7686  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7687      !VD->getType()->isIntegralOrEnumerationType())
7688    return;
7689
7690  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7691         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7692         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7693       I != E; ++I) {
7694    const Expr *MagicValueExpr = VD->getInit();
7695    if (!MagicValueExpr) {
7696      continue;
7697    }
7698    llvm::APSInt MagicValueInt;
7699    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7700      Diag(I->getRange().getBegin(),
7701           diag::err_type_tag_for_datatype_not_ice)
7702        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7703      continue;
7704    }
7705    if (MagicValueInt.getActiveBits() > 64) {
7706      Diag(I->getRange().getBegin(),
7707           diag::err_type_tag_for_datatype_too_large)
7708        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7709      continue;
7710    }
7711    uint64_t MagicValue = MagicValueInt.getZExtValue();
7712    RegisterTypeTagForDatatype(I->getArgumentKind(),
7713                               MagicValue,
7714                               I->getMatchingCType(),
7715                               I->getLayoutCompatible(),
7716                               I->getMustBeNull());
7717  }
7718}
7719
7720Sema::DeclGroupPtrTy
7721Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7722                              Decl **Group, unsigned NumDecls) {
7723  SmallVector<Decl*, 8> Decls;
7724
7725  if (DS.isTypeSpecOwned())
7726    Decls.push_back(DS.getRepAsDecl());
7727
7728  for (unsigned i = 0; i != NumDecls; ++i)
7729    if (Decl *D = Group[i])
7730      Decls.push_back(D);
7731
7732  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
7733    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
7734      getASTContext().addUnnamedTag(Tag);
7735
7736  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7737                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7738}
7739
7740/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7741/// group, performing any necessary semantic checking.
7742Sema::DeclGroupPtrTy
7743Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7744                           bool TypeMayContainAuto) {
7745  // C++0x [dcl.spec.auto]p7:
7746  //   If the type deduced for the template parameter U is not the same in each
7747  //   deduction, the program is ill-formed.
7748  // FIXME: When initializer-list support is added, a distinction is needed
7749  // between the deduced type U and the deduced type which 'auto' stands for.
7750  //   auto a = 0, b = { 1, 2, 3 };
7751  // is legal because the deduced type U is 'int' in both cases.
7752  if (TypeMayContainAuto && NumDecls > 1) {
7753    QualType Deduced;
7754    CanQualType DeducedCanon;
7755    VarDecl *DeducedDecl = 0;
7756    for (unsigned i = 0; i != NumDecls; ++i) {
7757      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7758        AutoType *AT = D->getType()->getContainedAutoType();
7759        // Don't reissue diagnostics when instantiating a template.
7760        if (AT && D->isInvalidDecl())
7761          break;
7762        if (AT && AT->isDeduced()) {
7763          QualType U = AT->getDeducedType();
7764          CanQualType UCanon = Context.getCanonicalType(U);
7765          if (Deduced.isNull()) {
7766            Deduced = U;
7767            DeducedCanon = UCanon;
7768            DeducedDecl = D;
7769          } else if (DeducedCanon != UCanon) {
7770            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7771                 diag::err_auto_different_deductions)
7772              << Deduced << DeducedDecl->getDeclName()
7773              << U << D->getDeclName()
7774              << DeducedDecl->getInit()->getSourceRange()
7775              << D->getInit()->getSourceRange();
7776            D->setInvalidDecl();
7777            break;
7778          }
7779        }
7780      }
7781    }
7782  }
7783
7784  ActOnDocumentableDecls(Group, NumDecls);
7785
7786  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7787}
7788
7789void Sema::ActOnDocumentableDecl(Decl *D) {
7790  ActOnDocumentableDecls(&D, 1);
7791}
7792
7793void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7794  // Don't parse the comment if Doxygen diagnostics are ignored.
7795  if (NumDecls == 0 || !Group[0])
7796   return;
7797
7798  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7799                               Group[0]->getLocation())
7800        == DiagnosticsEngine::Ignored)
7801    return;
7802
7803  if (NumDecls >= 2) {
7804    // This is a decl group.  Normally it will contain only declarations
7805    // procuded from declarator list.  But in case we have any definitions or
7806    // additional declaration references:
7807    //   'typedef struct S {} S;'
7808    //   'typedef struct S *S;'
7809    //   'struct S *pS;'
7810    // FinalizeDeclaratorGroup adds these as separate declarations.
7811    Decl *MaybeTagDecl = Group[0];
7812    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7813      Group++;
7814      NumDecls--;
7815    }
7816  }
7817
7818  // See if there are any new comments that are not attached to a decl.
7819  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7820  if (!Comments.empty() &&
7821      !Comments.back()->isAttached()) {
7822    // There is at least one comment that not attached to a decl.
7823    // Maybe it should be attached to one of these decls?
7824    //
7825    // Note that this way we pick up not only comments that precede the
7826    // declaration, but also comments that *follow* the declaration -- thanks to
7827    // the lookahead in the lexer: we've consumed the semicolon and looked
7828    // ahead through comments.
7829    for (unsigned i = 0; i != NumDecls; ++i)
7830      Context.getCommentForDecl(Group[i], &PP);
7831  }
7832}
7833
7834/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7835/// to introduce parameters into function prototype scope.
7836Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7837  const DeclSpec &DS = D.getDeclSpec();
7838
7839  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7840  // C++03 [dcl.stc]p2 also permits 'auto'.
7841  VarDecl::StorageClass StorageClass = SC_None;
7842  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7843  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7844    StorageClass = SC_Register;
7845    StorageClassAsWritten = SC_Register;
7846  } else if (getLangOpts().CPlusPlus &&
7847             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7848    StorageClass = SC_Auto;
7849    StorageClassAsWritten = SC_Auto;
7850  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7851    Diag(DS.getStorageClassSpecLoc(),
7852         diag::err_invalid_storage_class_in_func_decl);
7853    D.getMutableDeclSpec().ClearStorageClassSpecs();
7854  }
7855
7856  if (D.getDeclSpec().isThreadSpecified())
7857    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7858  if (D.getDeclSpec().isConstexprSpecified())
7859    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7860      << 0;
7861
7862  DiagnoseFunctionSpecifiers(D);
7863
7864  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7865  QualType parmDeclType = TInfo->getType();
7866
7867  if (getLangOpts().CPlusPlus) {
7868    // Check that there are no default arguments inside the type of this
7869    // parameter.
7870    CheckExtraCXXDefaultArguments(D);
7871
7872    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7873    if (D.getCXXScopeSpec().isSet()) {
7874      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7875        << D.getCXXScopeSpec().getRange();
7876      D.getCXXScopeSpec().clear();
7877    }
7878  }
7879
7880  // Ensure we have a valid name
7881  IdentifierInfo *II = 0;
7882  if (D.hasName()) {
7883    II = D.getIdentifier();
7884    if (!II) {
7885      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7886        << GetNameForDeclarator(D).getName().getAsString();
7887      D.setInvalidType(true);
7888    }
7889  }
7890
7891  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7892  if (II) {
7893    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7894                   ForRedeclaration);
7895    LookupName(R, S);
7896    if (R.isSingleResult()) {
7897      NamedDecl *PrevDecl = R.getFoundDecl();
7898      if (PrevDecl->isTemplateParameter()) {
7899        // Maybe we will complain about the shadowed template parameter.
7900        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7901        // Just pretend that we didn't see the previous declaration.
7902        PrevDecl = 0;
7903      } else if (S->isDeclScope(PrevDecl)) {
7904        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7905        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7906
7907        // Recover by removing the name
7908        II = 0;
7909        D.SetIdentifier(0, D.getIdentifierLoc());
7910        D.setInvalidType(true);
7911      }
7912    }
7913  }
7914
7915  // Temporarily put parameter variables in the translation unit, not
7916  // the enclosing context.  This prevents them from accidentally
7917  // looking like class members in C++.
7918  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7919                                    D.getLocStart(),
7920                                    D.getIdentifierLoc(), II,
7921                                    parmDeclType, TInfo,
7922                                    StorageClass, StorageClassAsWritten);
7923
7924  if (D.isInvalidType())
7925    New->setInvalidDecl();
7926
7927  assert(S->isFunctionPrototypeScope());
7928  assert(S->getFunctionPrototypeDepth() >= 1);
7929  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7930                    S->getNextFunctionPrototypeIndex());
7931
7932  // Add the parameter declaration into this scope.
7933  S->AddDecl(New);
7934  if (II)
7935    IdResolver.AddDecl(New);
7936
7937  ProcessDeclAttributes(S, New, D);
7938
7939  if (D.getDeclSpec().isModulePrivateSpecified())
7940    Diag(New->getLocation(), diag::err_module_private_local)
7941      << 1 << New->getDeclName()
7942      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7943      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7944
7945  if (New->hasAttr<BlocksAttr>()) {
7946    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7947  }
7948  return New;
7949}
7950
7951/// \brief Synthesizes a variable for a parameter arising from a
7952/// typedef.
7953ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7954                                              SourceLocation Loc,
7955                                              QualType T) {
7956  /* FIXME: setting StartLoc == Loc.
7957     Would it be worth to modify callers so as to provide proper source
7958     location for the unnamed parameters, embedding the parameter's type? */
7959  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7960                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7961                                           SC_None, SC_None, 0);
7962  Param->setImplicit();
7963  return Param;
7964}
7965
7966void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7967                                    ParmVarDecl * const *ParamEnd) {
7968  // Don't diagnose unused-parameter errors in template instantiations; we
7969  // will already have done so in the template itself.
7970  if (!ActiveTemplateInstantiations.empty())
7971    return;
7972
7973  for (; Param != ParamEnd; ++Param) {
7974    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7975        !(*Param)->hasAttr<UnusedAttr>()) {
7976      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7977        << (*Param)->getDeclName();
7978    }
7979  }
7980}
7981
7982void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7983                                                  ParmVarDecl * const *ParamEnd,
7984                                                  QualType ReturnTy,
7985                                                  NamedDecl *D) {
7986  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7987    return;
7988
7989  // Warn if the return value is pass-by-value and larger than the specified
7990  // threshold.
7991  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7992    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7993    if (Size > LangOpts.NumLargeByValueCopy)
7994      Diag(D->getLocation(), diag::warn_return_value_size)
7995          << D->getDeclName() << Size;
7996  }
7997
7998  // Warn if any parameter is pass-by-value and larger than the specified
7999  // threshold.
8000  for (; Param != ParamEnd; ++Param) {
8001    QualType T = (*Param)->getType();
8002    if (T->isDependentType() || !T.isPODType(Context))
8003      continue;
8004    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8005    if (Size > LangOpts.NumLargeByValueCopy)
8006      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8007          << (*Param)->getDeclName() << Size;
8008  }
8009}
8010
8011ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8012                                  SourceLocation NameLoc, IdentifierInfo *Name,
8013                                  QualType T, TypeSourceInfo *TSInfo,
8014                                  VarDecl::StorageClass StorageClass,
8015                                  VarDecl::StorageClass StorageClassAsWritten) {
8016  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8017  if (getLangOpts().ObjCAutoRefCount &&
8018      T.getObjCLifetime() == Qualifiers::OCL_None &&
8019      T->isObjCLifetimeType()) {
8020
8021    Qualifiers::ObjCLifetime lifetime;
8022
8023    // Special cases for arrays:
8024    //   - if it's const, use __unsafe_unretained
8025    //   - otherwise, it's an error
8026    if (T->isArrayType()) {
8027      if (!T.isConstQualified()) {
8028        DelayedDiagnostics.add(
8029            sema::DelayedDiagnostic::makeForbiddenType(
8030            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8031      }
8032      lifetime = Qualifiers::OCL_ExplicitNone;
8033    } else {
8034      lifetime = T->getObjCARCImplicitLifetime();
8035    }
8036    T = Context.getLifetimeQualifiedType(T, lifetime);
8037  }
8038
8039  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8040                                         Context.getAdjustedParameterType(T),
8041                                         TSInfo,
8042                                         StorageClass, StorageClassAsWritten,
8043                                         0);
8044
8045  // Parameters can not be abstract class types.
8046  // For record types, this is done by the AbstractClassUsageDiagnoser once
8047  // the class has been completely parsed.
8048  if (!CurContext->isRecord() &&
8049      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8050                             AbstractParamType))
8051    New->setInvalidDecl();
8052
8053  // Parameter declarators cannot be interface types. All ObjC objects are
8054  // passed by reference.
8055  if (T->isObjCObjectType()) {
8056    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8057    Diag(NameLoc,
8058         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8059      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8060    T = Context.getObjCObjectPointerType(T);
8061    New->setType(T);
8062  }
8063
8064  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8065  // duration shall not be qualified by an address-space qualifier."
8066  // Since all parameters have automatic store duration, they can not have
8067  // an address space.
8068  if (T.getAddressSpace() != 0) {
8069    Diag(NameLoc, diag::err_arg_with_address_space);
8070    New->setInvalidDecl();
8071  }
8072
8073  return New;
8074}
8075
8076void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8077                                           SourceLocation LocAfterDecls) {
8078  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8079
8080  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8081  // for a K&R function.
8082  if (!FTI.hasPrototype) {
8083    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8084      --i;
8085      if (FTI.ArgInfo[i].Param == 0) {
8086        SmallString<256> Code;
8087        llvm::raw_svector_ostream(Code) << "  int "
8088                                        << FTI.ArgInfo[i].Ident->getName()
8089                                        << ";\n";
8090        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8091          << FTI.ArgInfo[i].Ident
8092          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8093
8094        // Implicitly declare the argument as type 'int' for lack of a better
8095        // type.
8096        AttributeFactory attrs;
8097        DeclSpec DS(attrs);
8098        const char* PrevSpec; // unused
8099        unsigned DiagID; // unused
8100        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8101                           PrevSpec, DiagID);
8102        // Use the identifier location for the type source range.
8103        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8104        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8105        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8106        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8107        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8108      }
8109    }
8110  }
8111}
8112
8113Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8114  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8115  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8116  Scope *ParentScope = FnBodyScope->getParent();
8117
8118  D.setFunctionDefinitionKind(FDK_Definition);
8119  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8120  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8121}
8122
8123static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8124                             const FunctionDecl*& PossibleZeroParamPrototype) {
8125  // Don't warn about invalid declarations.
8126  if (FD->isInvalidDecl())
8127    return false;
8128
8129  // Or declarations that aren't global.
8130  if (!FD->isGlobal())
8131    return false;
8132
8133  // Don't warn about C++ member functions.
8134  if (isa<CXXMethodDecl>(FD))
8135    return false;
8136
8137  // Don't warn about 'main'.
8138  if (FD->isMain())
8139    return false;
8140
8141  // Don't warn about inline functions.
8142  if (FD->isInlined())
8143    return false;
8144
8145  // Don't warn about function templates.
8146  if (FD->getDescribedFunctionTemplate())
8147    return false;
8148
8149  // Don't warn about function template specializations.
8150  if (FD->isFunctionTemplateSpecialization())
8151    return false;
8152
8153  // Don't warn for OpenCL kernels.
8154  if (FD->hasAttr<OpenCLKernelAttr>())
8155    return false;
8156
8157  bool MissingPrototype = true;
8158  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8159       Prev; Prev = Prev->getPreviousDecl()) {
8160    // Ignore any declarations that occur in function or method
8161    // scope, because they aren't visible from the header.
8162    if (Prev->getDeclContext()->isFunctionOrMethod())
8163      continue;
8164
8165    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8166    if (FD->getNumParams() == 0)
8167      PossibleZeroParamPrototype = Prev;
8168    break;
8169  }
8170
8171  return MissingPrototype;
8172}
8173
8174void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8175  // Don't complain if we're in GNU89 mode and the previous definition
8176  // was an extern inline function.
8177  const FunctionDecl *Definition;
8178  if (FD->isDefined(Definition) &&
8179      !canRedefineFunction(Definition, getLangOpts())) {
8180    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8181        Definition->getStorageClass() == SC_Extern)
8182      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8183        << FD->getDeclName() << getLangOpts().CPlusPlus;
8184    else
8185      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8186    Diag(Definition->getLocation(), diag::note_previous_definition);
8187    FD->setInvalidDecl();
8188  }
8189}
8190
8191Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8192  // Clear the last template instantiation error context.
8193  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8194
8195  if (!D)
8196    return D;
8197  FunctionDecl *FD = 0;
8198
8199  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8200    FD = FunTmpl->getTemplatedDecl();
8201  else
8202    FD = cast<FunctionDecl>(D);
8203
8204  // Enter a new function scope
8205  PushFunctionScope();
8206
8207  // See if this is a redefinition.
8208  if (!FD->isLateTemplateParsed())
8209    CheckForFunctionRedefinition(FD);
8210
8211  // Builtin functions cannot be defined.
8212  if (unsigned BuiltinID = FD->getBuiltinID()) {
8213    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8214      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8215      FD->setInvalidDecl();
8216    }
8217  }
8218
8219  // The return type of a function definition must be complete
8220  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8221  QualType ResultType = FD->getResultType();
8222  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8223      !FD->isInvalidDecl() &&
8224      RequireCompleteType(FD->getLocation(), ResultType,
8225                          diag::err_func_def_incomplete_result))
8226    FD->setInvalidDecl();
8227
8228  // GNU warning -Wmissing-prototypes:
8229  //   Warn if a global function is defined without a previous
8230  //   prototype declaration. This warning is issued even if the
8231  //   definition itself provides a prototype. The aim is to detect
8232  //   global functions that fail to be declared in header files.
8233  const FunctionDecl *PossibleZeroParamPrototype = 0;
8234  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8235    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8236
8237    if (PossibleZeroParamPrototype) {
8238      // We found a declaration that is not a prototype,
8239      // but that could be a zero-parameter prototype
8240      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8241      TypeLoc TL = TI->getTypeLoc();
8242      if (FunctionNoProtoTypeLoc* FTL = dyn_cast<FunctionNoProtoTypeLoc>(&TL))
8243        Diag(PossibleZeroParamPrototype->getLocation(),
8244             diag::note_declaration_not_a_prototype)
8245          << PossibleZeroParamPrototype
8246          << FixItHint::CreateInsertion(FTL->getRParenLoc(), "void");
8247    }
8248  }
8249
8250  if (FnBodyScope)
8251    PushDeclContext(FnBodyScope, FD);
8252
8253  // Check the validity of our function parameters
8254  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8255                           /*CheckParameterNames=*/true);
8256
8257  // Introduce our parameters into the function scope
8258  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8259    ParmVarDecl *Param = FD->getParamDecl(p);
8260    Param->setOwningFunction(FD);
8261
8262    // If this has an identifier, add it to the scope stack.
8263    if (Param->getIdentifier() && FnBodyScope) {
8264      CheckShadow(FnBodyScope, Param);
8265
8266      PushOnScopeChains(Param, FnBodyScope);
8267    }
8268  }
8269
8270  // If we had any tags defined in the function prototype,
8271  // introduce them into the function scope.
8272  if (FnBodyScope) {
8273    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8274           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8275      NamedDecl *D = *I;
8276
8277      // Some of these decls (like enums) may have been pinned to the translation unit
8278      // for lack of a real context earlier. If so, remove from the translation unit
8279      // and reattach to the current context.
8280      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8281        // Is the decl actually in the context?
8282        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8283               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8284          if (*DI == D) {
8285            Context.getTranslationUnitDecl()->removeDecl(D);
8286            break;
8287          }
8288        }
8289        // Either way, reassign the lexical decl context to our FunctionDecl.
8290        D->setLexicalDeclContext(CurContext);
8291      }
8292
8293      // If the decl has a non-null name, make accessible in the current scope.
8294      if (!D->getName().empty())
8295        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8296
8297      // Similarly, dive into enums and fish their constants out, making them
8298      // accessible in this scope.
8299      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8300        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8301               EE = ED->enumerator_end(); EI != EE; ++EI)
8302          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8303      }
8304    }
8305  }
8306
8307  // Ensure that the function's exception specification is instantiated.
8308  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8309    ResolveExceptionSpec(D->getLocation(), FPT);
8310
8311  // Checking attributes of current function definition
8312  // dllimport attribute.
8313  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8314  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8315    // dllimport attribute cannot be directly applied to definition.
8316    // Microsoft accepts dllimport for functions defined within class scope.
8317    if (!DA->isInherited() &&
8318        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8319      Diag(FD->getLocation(),
8320           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8321        << "dllimport";
8322      FD->setInvalidDecl();
8323      return D;
8324    }
8325
8326    // Visual C++ appears to not think this is an issue, so only issue
8327    // a warning when Microsoft extensions are disabled.
8328    if (!LangOpts.MicrosoftExt) {
8329      // If a symbol previously declared dllimport is later defined, the
8330      // attribute is ignored in subsequent references, and a warning is
8331      // emitted.
8332      Diag(FD->getLocation(),
8333           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8334        << FD->getName() << "dllimport";
8335    }
8336  }
8337  // We want to attach documentation to original Decl (which might be
8338  // a function template).
8339  ActOnDocumentableDecl(D);
8340  return D;
8341}
8342
8343/// \brief Given the set of return statements within a function body,
8344/// compute the variables that are subject to the named return value
8345/// optimization.
8346///
8347/// Each of the variables that is subject to the named return value
8348/// optimization will be marked as NRVO variables in the AST, and any
8349/// return statement that has a marked NRVO variable as its NRVO candidate can
8350/// use the named return value optimization.
8351///
8352/// This function applies a very simplistic algorithm for NRVO: if every return
8353/// statement in the function has the same NRVO candidate, that candidate is
8354/// the NRVO variable.
8355///
8356/// FIXME: Employ a smarter algorithm that accounts for multiple return
8357/// statements and the lifetimes of the NRVO candidates. We should be able to
8358/// find a maximal set of NRVO variables.
8359void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8360  ReturnStmt **Returns = Scope->Returns.data();
8361
8362  const VarDecl *NRVOCandidate = 0;
8363  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8364    if (!Returns[I]->getNRVOCandidate())
8365      return;
8366
8367    if (!NRVOCandidate)
8368      NRVOCandidate = Returns[I]->getNRVOCandidate();
8369    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8370      return;
8371  }
8372
8373  if (NRVOCandidate)
8374    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8375}
8376
8377bool Sema::canSkipFunctionBody(Decl *D) {
8378  if (!Consumer.shouldSkipFunctionBody(D))
8379    return false;
8380
8381  if (isa<ObjCMethodDecl>(D))
8382    return true;
8383
8384  FunctionDecl *FD = 0;
8385  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8386    FD = FTD->getTemplatedDecl();
8387  else
8388    FD = cast<FunctionDecl>(D);
8389
8390  // We cannot skip the body of a function (or function template) which is
8391  // constexpr, since we may need to evaluate its body in order to parse the
8392  // rest of the file.
8393  return !FD->isConstexpr();
8394}
8395
8396Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8397  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl))
8398    FD->setHasSkippedBody();
8399  else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(Decl))
8400    MD->setHasSkippedBody();
8401  return ActOnFinishFunctionBody(Decl, 0);
8402}
8403
8404Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8405  return ActOnFinishFunctionBody(D, BodyArg, false);
8406}
8407
8408Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8409                                    bool IsInstantiation) {
8410  FunctionDecl *FD = 0;
8411  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8412  if (FunTmpl)
8413    FD = FunTmpl->getTemplatedDecl();
8414  else
8415    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8416
8417  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8418  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8419
8420  if (FD) {
8421    FD->setBody(Body);
8422
8423    // If the function implicitly returns zero (like 'main') or is naked,
8424    // don't complain about missing return statements.
8425    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8426      WP.disableCheckFallThrough();
8427
8428    // MSVC permits the use of pure specifier (=0) on function definition,
8429    // defined at class scope, warn about this non standard construct.
8430    if (getLangOpts().MicrosoftExt && FD->isPure())
8431      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8432
8433    if (!FD->isInvalidDecl()) {
8434      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8435      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8436                                             FD->getResultType(), FD);
8437
8438      // If this is a constructor, we need a vtable.
8439      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8440        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8441
8442      // Try to apply the named return value optimization. We have to check
8443      // if we can do this here because lambdas keep return statements around
8444      // to deduce an implicit return type.
8445      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8446          !FD->isDependentContext())
8447        computeNRVO(Body, getCurFunction());
8448    }
8449
8450    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8451           "Function parsing confused");
8452  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8453    assert(MD == getCurMethodDecl() && "Method parsing confused");
8454    MD->setBody(Body);
8455    if (!MD->isInvalidDecl()) {
8456      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8457      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8458                                             MD->getResultType(), MD);
8459
8460      if (Body)
8461        computeNRVO(Body, getCurFunction());
8462    }
8463    if (getCurFunction()->ObjCShouldCallSuper) {
8464      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8465        << MD->getSelector().getAsString();
8466      getCurFunction()->ObjCShouldCallSuper = false;
8467    }
8468  } else {
8469    return 0;
8470  }
8471
8472  assert(!getCurFunction()->ObjCShouldCallSuper &&
8473         "This should only be set for ObjC methods, which should have been "
8474         "handled in the block above.");
8475
8476  // Verify and clean out per-function state.
8477  if (Body) {
8478    // C++ constructors that have function-try-blocks can't have return
8479    // statements in the handlers of that block. (C++ [except.handle]p14)
8480    // Verify this.
8481    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8482      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8483
8484    // Verify that gotos and switch cases don't jump into scopes illegally.
8485    if (getCurFunction()->NeedsScopeChecking() &&
8486        !dcl->isInvalidDecl() &&
8487        !hasAnyUnrecoverableErrorsInThisFunction() &&
8488        !PP.isCodeCompletionEnabled())
8489      DiagnoseInvalidJumps(Body);
8490
8491    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8492      if (!Destructor->getParent()->isDependentType())
8493        CheckDestructor(Destructor);
8494
8495      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8496                                             Destructor->getParent());
8497    }
8498
8499    // If any errors have occurred, clear out any temporaries that may have
8500    // been leftover. This ensures that these temporaries won't be picked up for
8501    // deletion in some later function.
8502    if (PP.getDiagnostics().hasErrorOccurred() ||
8503        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8504      DiscardCleanupsInEvaluationContext();
8505    }
8506    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8507        !isa<FunctionTemplateDecl>(dcl)) {
8508      // Since the body is valid, issue any analysis-based warnings that are
8509      // enabled.
8510      ActivePolicy = &WP;
8511    }
8512
8513    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8514        (!CheckConstexprFunctionDecl(FD) ||
8515         !CheckConstexprFunctionBody(FD, Body)))
8516      FD->setInvalidDecl();
8517
8518    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8519    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8520    assert(MaybeODRUseExprs.empty() &&
8521           "Leftover expressions for odr-use checking");
8522  }
8523
8524  if (!IsInstantiation)
8525    PopDeclContext();
8526
8527  PopFunctionScopeInfo(ActivePolicy, dcl);
8528
8529  // If any errors have occurred, clear out any temporaries that may have
8530  // been leftover. This ensures that these temporaries won't be picked up for
8531  // deletion in some later function.
8532  if (getDiagnostics().hasErrorOccurred()) {
8533    DiscardCleanupsInEvaluationContext();
8534  }
8535
8536  return dcl;
8537}
8538
8539
8540/// When we finish delayed parsing of an attribute, we must attach it to the
8541/// relevant Decl.
8542void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8543                                       ParsedAttributes &Attrs) {
8544  // Always attach attributes to the underlying decl.
8545  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8546    D = TD->getTemplatedDecl();
8547  ProcessDeclAttributeList(S, D, Attrs.getList());
8548
8549  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8550    if (Method->isStatic())
8551      checkThisInStaticMemberFunctionAttributes(Method);
8552}
8553
8554
8555/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8556/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8557NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8558                                          IdentifierInfo &II, Scope *S) {
8559  // Before we produce a declaration for an implicitly defined
8560  // function, see whether there was a locally-scoped declaration of
8561  // this name as a function or variable. If so, use that
8562  // (non-visible) declaration, and complain about it.
8563  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8564    = findLocallyScopedExternCDecl(&II);
8565  if (Pos != LocallyScopedExternCDecls.end()) {
8566    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8567    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8568    return Pos->second;
8569  }
8570
8571  // Extension in C99.  Legal in C90, but warn about it.
8572  unsigned diag_id;
8573  if (II.getName().startswith("__builtin_"))
8574    diag_id = diag::warn_builtin_unknown;
8575  else if (getLangOpts().C99)
8576    diag_id = diag::ext_implicit_function_decl;
8577  else
8578    diag_id = diag::warn_implicit_function_decl;
8579  Diag(Loc, diag_id) << &II;
8580
8581  // Because typo correction is expensive, only do it if the implicit
8582  // function declaration is going to be treated as an error.
8583  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8584    TypoCorrection Corrected;
8585    DeclFilterCCC<FunctionDecl> Validator;
8586    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8587                                      LookupOrdinaryName, S, 0, Validator))) {
8588      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8589      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8590      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8591
8592      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8593          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8594
8595      if (Func->getLocation().isValid()
8596          && !II.getName().startswith("__builtin_"))
8597        Diag(Func->getLocation(), diag::note_previous_decl)
8598            << CorrectedQuotedStr;
8599    }
8600  }
8601
8602  // Set a Declarator for the implicit definition: int foo();
8603  const char *Dummy;
8604  AttributeFactory attrFactory;
8605  DeclSpec DS(attrFactory);
8606  unsigned DiagID;
8607  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8608  (void)Error; // Silence warning.
8609  assert(!Error && "Error setting up implicit decl!");
8610  SourceLocation NoLoc;
8611  Declarator D(DS, Declarator::BlockContext);
8612  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8613                                             /*IsAmbiguous=*/false,
8614                                             /*RParenLoc=*/NoLoc,
8615                                             /*ArgInfo=*/0,
8616                                             /*NumArgs=*/0,
8617                                             /*EllipsisLoc=*/NoLoc,
8618                                             /*RParenLoc=*/NoLoc,
8619                                             /*TypeQuals=*/0,
8620                                             /*RefQualifierIsLvalueRef=*/true,
8621                                             /*RefQualifierLoc=*/NoLoc,
8622                                             /*ConstQualifierLoc=*/NoLoc,
8623                                             /*VolatileQualifierLoc=*/NoLoc,
8624                                             /*MutableLoc=*/NoLoc,
8625                                             EST_None,
8626                                             /*ESpecLoc=*/NoLoc,
8627                                             /*Exceptions=*/0,
8628                                             /*ExceptionRanges=*/0,
8629                                             /*NumExceptions=*/0,
8630                                             /*NoexceptExpr=*/0,
8631                                             Loc, Loc, D),
8632                DS.getAttributes(),
8633                SourceLocation());
8634  D.SetIdentifier(&II, Loc);
8635
8636  // Insert this function into translation-unit scope.
8637
8638  DeclContext *PrevDC = CurContext;
8639  CurContext = Context.getTranslationUnitDecl();
8640
8641  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8642  FD->setImplicit();
8643
8644  CurContext = PrevDC;
8645
8646  AddKnownFunctionAttributes(FD);
8647
8648  return FD;
8649}
8650
8651/// \brief Adds any function attributes that we know a priori based on
8652/// the declaration of this function.
8653///
8654/// These attributes can apply both to implicitly-declared builtins
8655/// (like __builtin___printf_chk) or to library-declared functions
8656/// like NSLog or printf.
8657///
8658/// We need to check for duplicate attributes both here and where user-written
8659/// attributes are applied to declarations.
8660void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8661  if (FD->isInvalidDecl())
8662    return;
8663
8664  // If this is a built-in function, map its builtin attributes to
8665  // actual attributes.
8666  if (unsigned BuiltinID = FD->getBuiltinID()) {
8667    // Handle printf-formatting attributes.
8668    unsigned FormatIdx;
8669    bool HasVAListArg;
8670    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8671      if (!FD->getAttr<FormatAttr>()) {
8672        const char *fmt = "printf";
8673        unsigned int NumParams = FD->getNumParams();
8674        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8675            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8676          fmt = "NSString";
8677        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8678                                               fmt, FormatIdx+1,
8679                                               HasVAListArg ? 0 : FormatIdx+2));
8680      }
8681    }
8682    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8683                                             HasVAListArg)) {
8684     if (!FD->getAttr<FormatAttr>())
8685       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8686                                              "scanf", FormatIdx+1,
8687                                              HasVAListArg ? 0 : FormatIdx+2));
8688    }
8689
8690    // Mark const if we don't care about errno and that is the only
8691    // thing preventing the function from being const. This allows
8692    // IRgen to use LLVM intrinsics for such functions.
8693    if (!getLangOpts().MathErrno &&
8694        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8695      if (!FD->getAttr<ConstAttr>())
8696        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8697    }
8698
8699    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8700        !FD->getAttr<ReturnsTwiceAttr>())
8701      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8702    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
8703      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8704    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8705      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8706  }
8707
8708  IdentifierInfo *Name = FD->getIdentifier();
8709  if (!Name)
8710    return;
8711  if ((!getLangOpts().CPlusPlus &&
8712       FD->getDeclContext()->isTranslationUnit()) ||
8713      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8714       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8715       LinkageSpecDecl::lang_c)) {
8716    // Okay: this could be a libc/libm/Objective-C function we know
8717    // about.
8718  } else
8719    return;
8720
8721  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8722    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8723    // target-specific builtins, perhaps?
8724    if (!FD->getAttr<FormatAttr>())
8725      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8726                                             "printf", 2,
8727                                             Name->isStr("vasprintf") ? 0 : 3));
8728  }
8729
8730  if (Name->isStr("__CFStringMakeConstantString")) {
8731    // We already have a __builtin___CFStringMakeConstantString,
8732    // but builds that use -fno-constant-cfstrings don't go through that.
8733    if (!FD->getAttr<FormatArgAttr>())
8734      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8735  }
8736}
8737
8738TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8739                                    TypeSourceInfo *TInfo) {
8740  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8741  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8742
8743  if (!TInfo) {
8744    assert(D.isInvalidType() && "no declarator info for valid type");
8745    TInfo = Context.getTrivialTypeSourceInfo(T);
8746  }
8747
8748  // Scope manipulation handled by caller.
8749  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8750                                           D.getLocStart(),
8751                                           D.getIdentifierLoc(),
8752                                           D.getIdentifier(),
8753                                           TInfo);
8754
8755  // Bail out immediately if we have an invalid declaration.
8756  if (D.isInvalidType()) {
8757    NewTD->setInvalidDecl();
8758    return NewTD;
8759  }
8760
8761  if (D.getDeclSpec().isModulePrivateSpecified()) {
8762    if (CurContext->isFunctionOrMethod())
8763      Diag(NewTD->getLocation(), diag::err_module_private_local)
8764        << 2 << NewTD->getDeclName()
8765        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8766        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8767    else
8768      NewTD->setModulePrivate();
8769  }
8770
8771  // C++ [dcl.typedef]p8:
8772  //   If the typedef declaration defines an unnamed class (or
8773  //   enum), the first typedef-name declared by the declaration
8774  //   to be that class type (or enum type) is used to denote the
8775  //   class type (or enum type) for linkage purposes only.
8776  // We need to check whether the type was declared in the declaration.
8777  switch (D.getDeclSpec().getTypeSpecType()) {
8778  case TST_enum:
8779  case TST_struct:
8780  case TST_interface:
8781  case TST_union:
8782  case TST_class: {
8783    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8784
8785    // Do nothing if the tag is not anonymous or already has an
8786    // associated typedef (from an earlier typedef in this decl group).
8787    if (tagFromDeclSpec->getIdentifier()) break;
8788    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8789
8790    // A well-formed anonymous tag must always be a TUK_Definition.
8791    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8792
8793    // The type must match the tag exactly;  no qualifiers allowed.
8794    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8795      break;
8796
8797    // Otherwise, set this is the anon-decl typedef for the tag.
8798    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8799    break;
8800  }
8801
8802  default:
8803    break;
8804  }
8805
8806  return NewTD;
8807}
8808
8809
8810/// \brief Check that this is a valid underlying type for an enum declaration.
8811bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8812  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8813  QualType T = TI->getType();
8814
8815  if (T->isDependentType())
8816    return false;
8817
8818  if (const BuiltinType *BT = T->getAs<BuiltinType>())
8819    if (BT->isInteger())
8820      return false;
8821
8822  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8823  return true;
8824}
8825
8826/// Check whether this is a valid redeclaration of a previous enumeration.
8827/// \return true if the redeclaration was invalid.
8828bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8829                                  QualType EnumUnderlyingTy,
8830                                  const EnumDecl *Prev) {
8831  bool IsFixed = !EnumUnderlyingTy.isNull();
8832
8833  if (IsScoped != Prev->isScoped()) {
8834    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8835      << Prev->isScoped();
8836    Diag(Prev->getLocation(), diag::note_previous_use);
8837    return true;
8838  }
8839
8840  if (IsFixed && Prev->isFixed()) {
8841    if (!EnumUnderlyingTy->isDependentType() &&
8842        !Prev->getIntegerType()->isDependentType() &&
8843        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8844                                        Prev->getIntegerType())) {
8845      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8846        << EnumUnderlyingTy << Prev->getIntegerType();
8847      Diag(Prev->getLocation(), diag::note_previous_use);
8848      return true;
8849    }
8850  } else if (IsFixed != Prev->isFixed()) {
8851    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8852      << Prev->isFixed();
8853    Diag(Prev->getLocation(), diag::note_previous_use);
8854    return true;
8855  }
8856
8857  return false;
8858}
8859
8860/// \brief Get diagnostic %select index for tag kind for
8861/// redeclaration diagnostic message.
8862/// WARNING: Indexes apply to particular diagnostics only!
8863///
8864/// \returns diagnostic %select index.
8865static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
8866  switch (Tag) {
8867  case TTK_Struct: return 0;
8868  case TTK_Interface: return 1;
8869  case TTK_Class:  return 2;
8870  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
8871  }
8872}
8873
8874/// \brief Determine if tag kind is a class-key compatible with
8875/// class for redeclaration (class, struct, or __interface).
8876///
8877/// \returns true iff the tag kind is compatible.
8878static bool isClassCompatTagKind(TagTypeKind Tag)
8879{
8880  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
8881}
8882
8883/// \brief Determine whether a tag with a given kind is acceptable
8884/// as a redeclaration of the given tag declaration.
8885///
8886/// \returns true if the new tag kind is acceptable, false otherwise.
8887bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8888                                        TagTypeKind NewTag, bool isDefinition,
8889                                        SourceLocation NewTagLoc,
8890                                        const IdentifierInfo &Name) {
8891  // C++ [dcl.type.elab]p3:
8892  //   The class-key or enum keyword present in the
8893  //   elaborated-type-specifier shall agree in kind with the
8894  //   declaration to which the name in the elaborated-type-specifier
8895  //   refers. This rule also applies to the form of
8896  //   elaborated-type-specifier that declares a class-name or
8897  //   friend class since it can be construed as referring to the
8898  //   definition of the class. Thus, in any
8899  //   elaborated-type-specifier, the enum keyword shall be used to
8900  //   refer to an enumeration (7.2), the union class-key shall be
8901  //   used to refer to a union (clause 9), and either the class or
8902  //   struct class-key shall be used to refer to a class (clause 9)
8903  //   declared using the class or struct class-key.
8904  TagTypeKind OldTag = Previous->getTagKind();
8905  if (!isDefinition || !isClassCompatTagKind(NewTag))
8906    if (OldTag == NewTag)
8907      return true;
8908
8909  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
8910    // Warn about the struct/class tag mismatch.
8911    bool isTemplate = false;
8912    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8913      isTemplate = Record->getDescribedClassTemplate();
8914
8915    if (!ActiveTemplateInstantiations.empty()) {
8916      // In a template instantiation, do not offer fix-its for tag mismatches
8917      // since they usually mess up the template instead of fixing the problem.
8918      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8919        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8920        << getRedeclDiagFromTagKind(OldTag);
8921      return true;
8922    }
8923
8924    if (isDefinition) {
8925      // On definitions, check previous tags and issue a fix-it for each
8926      // one that doesn't match the current tag.
8927      if (Previous->getDefinition()) {
8928        // Don't suggest fix-its for redefinitions.
8929        return true;
8930      }
8931
8932      bool previousMismatch = false;
8933      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8934           E(Previous->redecls_end()); I != E; ++I) {
8935        if (I->getTagKind() != NewTag) {
8936          if (!previousMismatch) {
8937            previousMismatch = true;
8938            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8939              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8940              << getRedeclDiagFromTagKind(I->getTagKind());
8941          }
8942          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8943            << getRedeclDiagFromTagKind(NewTag)
8944            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8945                 TypeWithKeyword::getTagTypeKindName(NewTag));
8946        }
8947      }
8948      return true;
8949    }
8950
8951    // Check for a previous definition.  If current tag and definition
8952    // are same type, do nothing.  If no definition, but disagree with
8953    // with previous tag type, give a warning, but no fix-it.
8954    const TagDecl *Redecl = Previous->getDefinition() ?
8955                            Previous->getDefinition() : Previous;
8956    if (Redecl->getTagKind() == NewTag) {
8957      return true;
8958    }
8959
8960    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8961      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
8962      << getRedeclDiagFromTagKind(OldTag);
8963    Diag(Redecl->getLocation(), diag::note_previous_use);
8964
8965    // If there is a previous defintion, suggest a fix-it.
8966    if (Previous->getDefinition()) {
8967        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8968          << getRedeclDiagFromTagKind(Redecl->getTagKind())
8969          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8970               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
8971    }
8972
8973    return true;
8974  }
8975  return false;
8976}
8977
8978/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8979/// former case, Name will be non-null.  In the later case, Name will be null.
8980/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8981/// reference/declaration/definition of a tag.
8982Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8983                     SourceLocation KWLoc, CXXScopeSpec &SS,
8984                     IdentifierInfo *Name, SourceLocation NameLoc,
8985                     AttributeList *Attr, AccessSpecifier AS,
8986                     SourceLocation ModulePrivateLoc,
8987                     MultiTemplateParamsArg TemplateParameterLists,
8988                     bool &OwnedDecl, bool &IsDependent,
8989                     SourceLocation ScopedEnumKWLoc,
8990                     bool ScopedEnumUsesClassTag,
8991                     TypeResult UnderlyingType) {
8992  // If this is not a definition, it must have a name.
8993  IdentifierInfo *OrigName = Name;
8994  assert((Name != 0 || TUK == TUK_Definition) &&
8995         "Nameless record must be a definition!");
8996  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8997
8998  OwnedDecl = false;
8999  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9000  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9001
9002  // FIXME: Check explicit specializations more carefully.
9003  bool isExplicitSpecialization = false;
9004  bool Invalid = false;
9005
9006  // We only need to do this matching if we have template parameters
9007  // or a scope specifier, which also conveniently avoids this work
9008  // for non-C++ cases.
9009  if (TemplateParameterLists.size() > 0 ||
9010      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9011    if (TemplateParameterList *TemplateParams
9012          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9013                                                TemplateParameterLists.data(),
9014                                                TemplateParameterLists.size(),
9015                                                    TUK == TUK_Friend,
9016                                                    isExplicitSpecialization,
9017                                                    Invalid)) {
9018      if (TemplateParams->size() > 0) {
9019        // This is a declaration or definition of a class template (which may
9020        // be a member of another template).
9021
9022        if (Invalid)
9023          return 0;
9024
9025        OwnedDecl = false;
9026        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9027                                               SS, Name, NameLoc, Attr,
9028                                               TemplateParams, AS,
9029                                               ModulePrivateLoc,
9030                                               TemplateParameterLists.size()-1,
9031                                               TemplateParameterLists.data());
9032        return Result.get();
9033      } else {
9034        // The "template<>" header is extraneous.
9035        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9036          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9037        isExplicitSpecialization = true;
9038      }
9039    }
9040  }
9041
9042  // Figure out the underlying type if this a enum declaration. We need to do
9043  // this early, because it's needed to detect if this is an incompatible
9044  // redeclaration.
9045  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9046
9047  if (Kind == TTK_Enum) {
9048    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9049      // No underlying type explicitly specified, or we failed to parse the
9050      // type, default to int.
9051      EnumUnderlying = Context.IntTy.getTypePtr();
9052    else if (UnderlyingType.get()) {
9053      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9054      // integral type; any cv-qualification is ignored.
9055      TypeSourceInfo *TI = 0;
9056      GetTypeFromParser(UnderlyingType.get(), &TI);
9057      EnumUnderlying = TI;
9058
9059      if (CheckEnumUnderlyingType(TI))
9060        // Recover by falling back to int.
9061        EnumUnderlying = Context.IntTy.getTypePtr();
9062
9063      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9064                                          UPPC_FixedUnderlyingType))
9065        EnumUnderlying = Context.IntTy.getTypePtr();
9066
9067    } else if (getLangOpts().MicrosoftMode)
9068      // Microsoft enums are always of int type.
9069      EnumUnderlying = Context.IntTy.getTypePtr();
9070  }
9071
9072  DeclContext *SearchDC = CurContext;
9073  DeclContext *DC = CurContext;
9074  bool isStdBadAlloc = false;
9075
9076  RedeclarationKind Redecl = ForRedeclaration;
9077  if (TUK == TUK_Friend || TUK == TUK_Reference)
9078    Redecl = NotForRedeclaration;
9079
9080  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9081
9082  if (Name && SS.isNotEmpty()) {
9083    // We have a nested-name tag ('struct foo::bar').
9084
9085    // Check for invalid 'foo::'.
9086    if (SS.isInvalid()) {
9087      Name = 0;
9088      goto CreateNewDecl;
9089    }
9090
9091    // If this is a friend or a reference to a class in a dependent
9092    // context, don't try to make a decl for it.
9093    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9094      DC = computeDeclContext(SS, false);
9095      if (!DC) {
9096        IsDependent = true;
9097        return 0;
9098      }
9099    } else {
9100      DC = computeDeclContext(SS, true);
9101      if (!DC) {
9102        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9103          << SS.getRange();
9104        return 0;
9105      }
9106    }
9107
9108    if (RequireCompleteDeclContext(SS, DC))
9109      return 0;
9110
9111    SearchDC = DC;
9112    // Look-up name inside 'foo::'.
9113    LookupQualifiedName(Previous, DC);
9114
9115    if (Previous.isAmbiguous())
9116      return 0;
9117
9118    if (Previous.empty()) {
9119      // Name lookup did not find anything. However, if the
9120      // nested-name-specifier refers to the current instantiation,
9121      // and that current instantiation has any dependent base
9122      // classes, we might find something at instantiation time: treat
9123      // this as a dependent elaborated-type-specifier.
9124      // But this only makes any sense for reference-like lookups.
9125      if (Previous.wasNotFoundInCurrentInstantiation() &&
9126          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9127        IsDependent = true;
9128        return 0;
9129      }
9130
9131      // A tag 'foo::bar' must already exist.
9132      Diag(NameLoc, diag::err_not_tag_in_scope)
9133        << Kind << Name << DC << SS.getRange();
9134      Name = 0;
9135      Invalid = true;
9136      goto CreateNewDecl;
9137    }
9138  } else if (Name) {
9139    // If this is a named struct, check to see if there was a previous forward
9140    // declaration or definition.
9141    // FIXME: We're looking into outer scopes here, even when we
9142    // shouldn't be. Doing so can result in ambiguities that we
9143    // shouldn't be diagnosing.
9144    LookupName(Previous, S);
9145
9146    if (Previous.isAmbiguous() &&
9147        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9148      LookupResult::Filter F = Previous.makeFilter();
9149      while (F.hasNext()) {
9150        NamedDecl *ND = F.next();
9151        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9152          F.erase();
9153      }
9154      F.done();
9155    }
9156
9157    // Note:  there used to be some attempt at recovery here.
9158    if (Previous.isAmbiguous())
9159      return 0;
9160
9161    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9162      // FIXME: This makes sure that we ignore the contexts associated
9163      // with C structs, unions, and enums when looking for a matching
9164      // tag declaration or definition. See the similar lookup tweak
9165      // in Sema::LookupName; is there a better way to deal with this?
9166      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9167        SearchDC = SearchDC->getParent();
9168    }
9169  } else if (S->isFunctionPrototypeScope()) {
9170    // If this is an enum declaration in function prototype scope, set its
9171    // initial context to the translation unit.
9172    // FIXME: [citation needed]
9173    SearchDC = Context.getTranslationUnitDecl();
9174  }
9175
9176  if (Previous.isSingleResult() &&
9177      Previous.getFoundDecl()->isTemplateParameter()) {
9178    // Maybe we will complain about the shadowed template parameter.
9179    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9180    // Just pretend that we didn't see the previous declaration.
9181    Previous.clear();
9182  }
9183
9184  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9185      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9186    // This is a declaration of or a reference to "std::bad_alloc".
9187    isStdBadAlloc = true;
9188
9189    if (Previous.empty() && StdBadAlloc) {
9190      // std::bad_alloc has been implicitly declared (but made invisible to
9191      // name lookup). Fill in this implicit declaration as the previous
9192      // declaration, so that the declarations get chained appropriately.
9193      Previous.addDecl(getStdBadAlloc());
9194    }
9195  }
9196
9197  // If we didn't find a previous declaration, and this is a reference
9198  // (or friend reference), move to the correct scope.  In C++, we
9199  // also need to do a redeclaration lookup there, just in case
9200  // there's a shadow friend decl.
9201  if (Name && Previous.empty() &&
9202      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9203    if (Invalid) goto CreateNewDecl;
9204    assert(SS.isEmpty());
9205
9206    if (TUK == TUK_Reference) {
9207      // C++ [basic.scope.pdecl]p5:
9208      //   -- for an elaborated-type-specifier of the form
9209      //
9210      //          class-key identifier
9211      //
9212      //      if the elaborated-type-specifier is used in the
9213      //      decl-specifier-seq or parameter-declaration-clause of a
9214      //      function defined in namespace scope, the identifier is
9215      //      declared as a class-name in the namespace that contains
9216      //      the declaration; otherwise, except as a friend
9217      //      declaration, the identifier is declared in the smallest
9218      //      non-class, non-function-prototype scope that contains the
9219      //      declaration.
9220      //
9221      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9222      // C structs and unions.
9223      //
9224      // It is an error in C++ to declare (rather than define) an enum
9225      // type, including via an elaborated type specifier.  We'll
9226      // diagnose that later; for now, declare the enum in the same
9227      // scope as we would have picked for any other tag type.
9228      //
9229      // GNU C also supports this behavior as part of its incomplete
9230      // enum types extension, while GNU C++ does not.
9231      //
9232      // Find the context where we'll be declaring the tag.
9233      // FIXME: We would like to maintain the current DeclContext as the
9234      // lexical context,
9235      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9236        SearchDC = SearchDC->getParent();
9237
9238      // Find the scope where we'll be declaring the tag.
9239      while (S->isClassScope() ||
9240             (getLangOpts().CPlusPlus &&
9241              S->isFunctionPrototypeScope()) ||
9242             ((S->getFlags() & Scope::DeclScope) == 0) ||
9243             (S->getEntity() &&
9244              ((DeclContext *)S->getEntity())->isTransparentContext()))
9245        S = S->getParent();
9246    } else {
9247      assert(TUK == TUK_Friend);
9248      // C++ [namespace.memdef]p3:
9249      //   If a friend declaration in a non-local class first declares a
9250      //   class or function, the friend class or function is a member of
9251      //   the innermost enclosing namespace.
9252      SearchDC = SearchDC->getEnclosingNamespaceContext();
9253    }
9254
9255    // In C++, we need to do a redeclaration lookup to properly
9256    // diagnose some problems.
9257    if (getLangOpts().CPlusPlus) {
9258      Previous.setRedeclarationKind(ForRedeclaration);
9259      LookupQualifiedName(Previous, SearchDC);
9260    }
9261  }
9262
9263  if (!Previous.empty()) {
9264    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9265
9266    // It's okay to have a tag decl in the same scope as a typedef
9267    // which hides a tag decl in the same scope.  Finding this
9268    // insanity with a redeclaration lookup can only actually happen
9269    // in C++.
9270    //
9271    // This is also okay for elaborated-type-specifiers, which is
9272    // technically forbidden by the current standard but which is
9273    // okay according to the likely resolution of an open issue;
9274    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9275    if (getLangOpts().CPlusPlus) {
9276      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9277        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9278          TagDecl *Tag = TT->getDecl();
9279          if (Tag->getDeclName() == Name &&
9280              Tag->getDeclContext()->getRedeclContext()
9281                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9282            PrevDecl = Tag;
9283            Previous.clear();
9284            Previous.addDecl(Tag);
9285            Previous.resolveKind();
9286          }
9287        }
9288      }
9289    }
9290
9291    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9292      // If this is a use of a previous tag, or if the tag is already declared
9293      // in the same scope (so that the definition/declaration completes or
9294      // rementions the tag), reuse the decl.
9295      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9296          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9297        // Make sure that this wasn't declared as an enum and now used as a
9298        // struct or something similar.
9299        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9300                                          TUK == TUK_Definition, KWLoc,
9301                                          *Name)) {
9302          bool SafeToContinue
9303            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9304               Kind != TTK_Enum);
9305          if (SafeToContinue)
9306            Diag(KWLoc, diag::err_use_with_wrong_tag)
9307              << Name
9308              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9309                                              PrevTagDecl->getKindName());
9310          else
9311            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9312          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9313
9314          if (SafeToContinue)
9315            Kind = PrevTagDecl->getTagKind();
9316          else {
9317            // Recover by making this an anonymous redefinition.
9318            Name = 0;
9319            Previous.clear();
9320            Invalid = true;
9321          }
9322        }
9323
9324        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9325          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9326
9327          // If this is an elaborated-type-specifier for a scoped enumeration,
9328          // the 'class' keyword is not necessary and not permitted.
9329          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9330            if (ScopedEnum)
9331              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9332                << PrevEnum->isScoped()
9333                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9334            return PrevTagDecl;
9335          }
9336
9337          QualType EnumUnderlyingTy;
9338          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9339            EnumUnderlyingTy = TI->getType();
9340          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9341            EnumUnderlyingTy = QualType(T, 0);
9342
9343          // All conflicts with previous declarations are recovered by
9344          // returning the previous declaration, unless this is a definition,
9345          // in which case we want the caller to bail out.
9346          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9347                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9348            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9349        }
9350
9351        if (!Invalid) {
9352          // If this is a use, just return the declaration we found.
9353
9354          // FIXME: In the future, return a variant or some other clue
9355          // for the consumer of this Decl to know it doesn't own it.
9356          // For our current ASTs this shouldn't be a problem, but will
9357          // need to be changed with DeclGroups.
9358          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9359               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9360            return PrevTagDecl;
9361
9362          // Diagnose attempts to redefine a tag.
9363          if (TUK == TUK_Definition) {
9364            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9365              // If we're defining a specialization and the previous definition
9366              // is from an implicit instantiation, don't emit an error
9367              // here; we'll catch this in the general case below.
9368              bool IsExplicitSpecializationAfterInstantiation = false;
9369              if (isExplicitSpecialization) {
9370                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9371                  IsExplicitSpecializationAfterInstantiation =
9372                    RD->getTemplateSpecializationKind() !=
9373                    TSK_ExplicitSpecialization;
9374                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9375                  IsExplicitSpecializationAfterInstantiation =
9376                    ED->getTemplateSpecializationKind() !=
9377                    TSK_ExplicitSpecialization;
9378              }
9379
9380              if (!IsExplicitSpecializationAfterInstantiation) {
9381                // A redeclaration in function prototype scope in C isn't
9382                // visible elsewhere, so merely issue a warning.
9383                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9384                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9385                else
9386                  Diag(NameLoc, diag::err_redefinition) << Name;
9387                Diag(Def->getLocation(), diag::note_previous_definition);
9388                // If this is a redefinition, recover by making this
9389                // struct be anonymous, which will make any later
9390                // references get the previous definition.
9391                Name = 0;
9392                Previous.clear();
9393                Invalid = true;
9394              }
9395            } else {
9396              // If the type is currently being defined, complain
9397              // about a nested redefinition.
9398              const TagType *Tag
9399                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9400              if (Tag->isBeingDefined()) {
9401                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9402                Diag(PrevTagDecl->getLocation(),
9403                     diag::note_previous_definition);
9404                Name = 0;
9405                Previous.clear();
9406                Invalid = true;
9407              }
9408            }
9409
9410            // Okay, this is definition of a previously declared or referenced
9411            // tag PrevDecl. We're going to create a new Decl for it.
9412          }
9413        }
9414        // If we get here we have (another) forward declaration or we
9415        // have a definition.  Just create a new decl.
9416
9417      } else {
9418        // If we get here, this is a definition of a new tag type in a nested
9419        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9420        // new decl/type.  We set PrevDecl to NULL so that the entities
9421        // have distinct types.
9422        Previous.clear();
9423      }
9424      // If we get here, we're going to create a new Decl. If PrevDecl
9425      // is non-NULL, it's a definition of the tag declared by
9426      // PrevDecl. If it's NULL, we have a new definition.
9427
9428
9429    // Otherwise, PrevDecl is not a tag, but was found with tag
9430    // lookup.  This is only actually possible in C++, where a few
9431    // things like templates still live in the tag namespace.
9432    } else {
9433      // Use a better diagnostic if an elaborated-type-specifier
9434      // found the wrong kind of type on the first
9435      // (non-redeclaration) lookup.
9436      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9437          !Previous.isForRedeclaration()) {
9438        unsigned Kind = 0;
9439        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9440        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9441        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9442        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9443        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9444        Invalid = true;
9445
9446      // Otherwise, only diagnose if the declaration is in scope.
9447      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9448                                isExplicitSpecialization)) {
9449        // do nothing
9450
9451      // Diagnose implicit declarations introduced by elaborated types.
9452      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9453        unsigned Kind = 0;
9454        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9455        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9456        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9457        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9458        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9459        Invalid = true;
9460
9461      // Otherwise it's a declaration.  Call out a particularly common
9462      // case here.
9463      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9464        unsigned Kind = 0;
9465        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9466        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9467          << Name << Kind << TND->getUnderlyingType();
9468        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9469        Invalid = true;
9470
9471      // Otherwise, diagnose.
9472      } else {
9473        // The tag name clashes with something else in the target scope,
9474        // issue an error and recover by making this tag be anonymous.
9475        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9476        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9477        Name = 0;
9478        Invalid = true;
9479      }
9480
9481      // The existing declaration isn't relevant to us; we're in a
9482      // new scope, so clear out the previous declaration.
9483      Previous.clear();
9484    }
9485  }
9486
9487CreateNewDecl:
9488
9489  TagDecl *PrevDecl = 0;
9490  if (Previous.isSingleResult())
9491    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9492
9493  // If there is an identifier, use the location of the identifier as the
9494  // location of the decl, otherwise use the location of the struct/union
9495  // keyword.
9496  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9497
9498  // Otherwise, create a new declaration. If there is a previous
9499  // declaration of the same entity, the two will be linked via
9500  // PrevDecl.
9501  TagDecl *New;
9502
9503  bool IsForwardReference = false;
9504  if (Kind == TTK_Enum) {
9505    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9506    // enum X { A, B, C } D;    D should chain to X.
9507    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9508                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9509                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9510    // If this is an undefined enum, warn.
9511    if (TUK != TUK_Definition && !Invalid) {
9512      TagDecl *Def;
9513      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9514        // C++0x: 7.2p2: opaque-enum-declaration.
9515        // Conflicts are diagnosed above. Do nothing.
9516      }
9517      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9518        Diag(Loc, diag::ext_forward_ref_enum_def)
9519          << New;
9520        Diag(Def->getLocation(), diag::note_previous_definition);
9521      } else {
9522        unsigned DiagID = diag::ext_forward_ref_enum;
9523        if (getLangOpts().MicrosoftMode)
9524          DiagID = diag::ext_ms_forward_ref_enum;
9525        else if (getLangOpts().CPlusPlus)
9526          DiagID = diag::err_forward_ref_enum;
9527        Diag(Loc, DiagID);
9528
9529        // If this is a forward-declared reference to an enumeration, make a
9530        // note of it; we won't actually be introducing the declaration into
9531        // the declaration context.
9532        if (TUK == TUK_Reference)
9533          IsForwardReference = true;
9534      }
9535    }
9536
9537    if (EnumUnderlying) {
9538      EnumDecl *ED = cast<EnumDecl>(New);
9539      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9540        ED->setIntegerTypeSourceInfo(TI);
9541      else
9542        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9543      ED->setPromotionType(ED->getIntegerType());
9544    }
9545
9546  } else {
9547    // struct/union/class
9548
9549    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9550    // struct X { int A; } D;    D should chain to X.
9551    if (getLangOpts().CPlusPlus) {
9552      // FIXME: Look for a way to use RecordDecl for simple structs.
9553      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9554                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9555
9556      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9557        StdBadAlloc = cast<CXXRecordDecl>(New);
9558    } else
9559      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9560                               cast_or_null<RecordDecl>(PrevDecl));
9561  }
9562
9563  // Maybe add qualifier info.
9564  if (SS.isNotEmpty()) {
9565    if (SS.isSet()) {
9566      // If this is either a declaration or a definition, check the
9567      // nested-name-specifier against the current context. We don't do this
9568      // for explicit specializations, because they have similar checking
9569      // (with more specific diagnostics) in the call to
9570      // CheckMemberSpecialization, below.
9571      if (!isExplicitSpecialization &&
9572          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9573          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9574        Invalid = true;
9575
9576      New->setQualifierInfo(SS.getWithLocInContext(Context));
9577      if (TemplateParameterLists.size() > 0) {
9578        New->setTemplateParameterListsInfo(Context,
9579                                           TemplateParameterLists.size(),
9580                                           TemplateParameterLists.data());
9581      }
9582    }
9583    else
9584      Invalid = true;
9585  }
9586
9587  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9588    // Add alignment attributes if necessary; these attributes are checked when
9589    // the ASTContext lays out the structure.
9590    //
9591    // It is important for implementing the correct semantics that this
9592    // happen here (in act on tag decl). The #pragma pack stack is
9593    // maintained as a result of parser callbacks which can occur at
9594    // many points during the parsing of a struct declaration (because
9595    // the #pragma tokens are effectively skipped over during the
9596    // parsing of the struct).
9597    if (TUK == TUK_Definition) {
9598      AddAlignmentAttributesForRecord(RD);
9599      AddMsStructLayoutForRecord(RD);
9600    }
9601  }
9602
9603  if (ModulePrivateLoc.isValid()) {
9604    if (isExplicitSpecialization)
9605      Diag(New->getLocation(), diag::err_module_private_specialization)
9606        << 2
9607        << FixItHint::CreateRemoval(ModulePrivateLoc);
9608    // __module_private__ does not apply to local classes. However, we only
9609    // diagnose this as an error when the declaration specifiers are
9610    // freestanding. Here, we just ignore the __module_private__.
9611    else if (!SearchDC->isFunctionOrMethod())
9612      New->setModulePrivate();
9613  }
9614
9615  // If this is a specialization of a member class (of a class template),
9616  // check the specialization.
9617  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9618    Invalid = true;
9619
9620  if (Invalid)
9621    New->setInvalidDecl();
9622
9623  if (Attr)
9624    ProcessDeclAttributeList(S, New, Attr);
9625
9626  // If we're declaring or defining a tag in function prototype scope
9627  // in C, note that this type can only be used within the function.
9628  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9629    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9630
9631  // Set the lexical context. If the tag has a C++ scope specifier, the
9632  // lexical context will be different from the semantic context.
9633  New->setLexicalDeclContext(CurContext);
9634
9635  // Mark this as a friend decl if applicable.
9636  // In Microsoft mode, a friend declaration also acts as a forward
9637  // declaration so we always pass true to setObjectOfFriendDecl to make
9638  // the tag name visible.
9639  if (TUK == TUK_Friend)
9640    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9641                               getLangOpts().MicrosoftExt);
9642
9643  // Set the access specifier.
9644  if (!Invalid && SearchDC->isRecord())
9645    SetMemberAccessSpecifier(New, PrevDecl, AS);
9646
9647  if (TUK == TUK_Definition)
9648    New->startDefinition();
9649
9650  // If this has an identifier, add it to the scope stack.
9651  if (TUK == TUK_Friend) {
9652    // We might be replacing an existing declaration in the lookup tables;
9653    // if so, borrow its access specifier.
9654    if (PrevDecl)
9655      New->setAccess(PrevDecl->getAccess());
9656
9657    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9658    DC->makeDeclVisibleInContext(New);
9659    if (Name) // can be null along some error paths
9660      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9661        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9662  } else if (Name) {
9663    S = getNonFieldDeclScope(S);
9664    PushOnScopeChains(New, S, !IsForwardReference);
9665    if (IsForwardReference)
9666      SearchDC->makeDeclVisibleInContext(New);
9667
9668  } else {
9669    CurContext->addDecl(New);
9670  }
9671
9672  // If this is the C FILE type, notify the AST context.
9673  if (IdentifierInfo *II = New->getIdentifier())
9674    if (!New->isInvalidDecl() &&
9675        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9676        II->isStr("FILE"))
9677      Context.setFILEDecl(New);
9678
9679  // If we were in function prototype scope (and not in C++ mode), add this
9680  // tag to the list of decls to inject into the function definition scope.
9681  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9682      InFunctionDeclarator && Name)
9683    DeclsInPrototypeScope.push_back(New);
9684
9685  if (PrevDecl)
9686    mergeDeclAttributes(New, PrevDecl);
9687
9688  // If there's a #pragma GCC visibility in scope, set the visibility of this
9689  // record.
9690  AddPushedVisibilityAttribute(New);
9691
9692  OwnedDecl = true;
9693  // In C++, don't return an invalid declaration. We can't recover well from
9694  // the cases where we make the type anonymous.
9695  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9696}
9697
9698void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9699  AdjustDeclIfTemplate(TagD);
9700  TagDecl *Tag = cast<TagDecl>(TagD);
9701
9702  // Enter the tag context.
9703  PushDeclContext(S, Tag);
9704
9705  ActOnDocumentableDecl(TagD);
9706
9707  // If there's a #pragma GCC visibility in scope, set the visibility of this
9708  // record.
9709  AddPushedVisibilityAttribute(Tag);
9710}
9711
9712Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
9713  assert(isa<ObjCContainerDecl>(IDecl) &&
9714         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
9715  DeclContext *OCD = cast<DeclContext>(IDecl);
9716  assert(getContainingDC(OCD) == CurContext &&
9717      "The next DeclContext should be lexically contained in the current one.");
9718  CurContext = OCD;
9719  return IDecl;
9720}
9721
9722void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
9723                                           SourceLocation FinalLoc,
9724                                           SourceLocation LBraceLoc) {
9725  AdjustDeclIfTemplate(TagD);
9726  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
9727
9728  FieldCollector->StartClass();
9729
9730  if (!Record->getIdentifier())
9731    return;
9732
9733  if (FinalLoc.isValid())
9734    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9735
9736  // C++ [class]p2:
9737  //   [...] The class-name is also inserted into the scope of the
9738  //   class itself; this is known as the injected-class-name. For
9739  //   purposes of access checking, the injected-class-name is treated
9740  //   as if it were a public member name.
9741  CXXRecordDecl *InjectedClassName
9742    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9743                            Record->getLocStart(), Record->getLocation(),
9744                            Record->getIdentifier(),
9745                            /*PrevDecl=*/0,
9746                            /*DelayTypeCreation=*/true);
9747  Context.getTypeDeclType(InjectedClassName, Record);
9748  InjectedClassName->setImplicit();
9749  InjectedClassName->setAccess(AS_public);
9750  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9751      InjectedClassName->setDescribedClassTemplate(Template);
9752  PushOnScopeChains(InjectedClassName, S);
9753  assert(InjectedClassName->isInjectedClassName() &&
9754         "Broken injected-class-name");
9755}
9756
9757void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9758                                    SourceLocation RBraceLoc) {
9759  AdjustDeclIfTemplate(TagD);
9760  TagDecl *Tag = cast<TagDecl>(TagD);
9761  Tag->setRBraceLoc(RBraceLoc);
9762
9763  // Make sure we "complete" the definition even it is invalid.
9764  if (Tag->isBeingDefined()) {
9765    assert(Tag->isInvalidDecl() && "We should already have completed it");
9766    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9767      RD->completeDefinition();
9768  }
9769
9770  if (isa<CXXRecordDecl>(Tag))
9771    FieldCollector->FinishClass();
9772
9773  // Exit this scope of this tag's definition.
9774  PopDeclContext();
9775
9776  if (getCurLexicalContext()->isObjCContainer() &&
9777      Tag->getDeclContext()->isFileContext())
9778    Tag->setTopLevelDeclInObjCContainer();
9779
9780  // Notify the consumer that we've defined a tag.
9781  Consumer.HandleTagDeclDefinition(Tag);
9782}
9783
9784void Sema::ActOnObjCContainerFinishDefinition() {
9785  // Exit this scope of this interface definition.
9786  PopDeclContext();
9787}
9788
9789void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9790  assert(DC == CurContext && "Mismatch of container contexts");
9791  OriginalLexicalContext = DC;
9792  ActOnObjCContainerFinishDefinition();
9793}
9794
9795void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9796  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9797  OriginalLexicalContext = 0;
9798}
9799
9800void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9801  AdjustDeclIfTemplate(TagD);
9802  TagDecl *Tag = cast<TagDecl>(TagD);
9803  Tag->setInvalidDecl();
9804
9805  // Make sure we "complete" the definition even it is invalid.
9806  if (Tag->isBeingDefined()) {
9807    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9808      RD->completeDefinition();
9809  }
9810
9811  // We're undoing ActOnTagStartDefinition here, not
9812  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9813  // the FieldCollector.
9814
9815  PopDeclContext();
9816}
9817
9818// Note that FieldName may be null for anonymous bitfields.
9819ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9820                                IdentifierInfo *FieldName,
9821                                QualType FieldTy, Expr *BitWidth,
9822                                bool *ZeroWidth) {
9823  // Default to true; that shouldn't confuse checks for emptiness
9824  if (ZeroWidth)
9825    *ZeroWidth = true;
9826
9827  // C99 6.7.2.1p4 - verify the field type.
9828  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9829  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9830    // Handle incomplete types with specific error.
9831    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9832      return ExprError();
9833    if (FieldName)
9834      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9835        << FieldName << FieldTy << BitWidth->getSourceRange();
9836    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9837      << FieldTy << BitWidth->getSourceRange();
9838  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9839                                             UPPC_BitFieldWidth))
9840    return ExprError();
9841
9842  // If the bit-width is type- or value-dependent, don't try to check
9843  // it now.
9844  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9845    return Owned(BitWidth);
9846
9847  llvm::APSInt Value;
9848  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9849  if (ICE.isInvalid())
9850    return ICE;
9851  BitWidth = ICE.take();
9852
9853  if (Value != 0 && ZeroWidth)
9854    *ZeroWidth = false;
9855
9856  // Zero-width bitfield is ok for anonymous field.
9857  if (Value == 0 && FieldName)
9858    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9859
9860  if (Value.isSigned() && Value.isNegative()) {
9861    if (FieldName)
9862      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9863               << FieldName << Value.toString(10);
9864    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9865      << Value.toString(10);
9866  }
9867
9868  if (!FieldTy->isDependentType()) {
9869    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9870    if (Value.getZExtValue() > TypeSize) {
9871      if (!getLangOpts().CPlusPlus) {
9872        if (FieldName)
9873          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9874            << FieldName << (unsigned)Value.getZExtValue()
9875            << (unsigned)TypeSize;
9876
9877        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9878          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9879      }
9880
9881      if (FieldName)
9882        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9883          << FieldName << (unsigned)Value.getZExtValue()
9884          << (unsigned)TypeSize;
9885      else
9886        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9887          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9888    }
9889  }
9890
9891  return Owned(BitWidth);
9892}
9893
9894/// ActOnField - Each field of a C struct/union is passed into this in order
9895/// to create a FieldDecl object for it.
9896Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9897                       Declarator &D, Expr *BitfieldWidth) {
9898  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9899                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9900                               /*InitStyle=*/ICIS_NoInit, AS_public);
9901  return Res;
9902}
9903
9904/// HandleField - Analyze a field of a C struct or a C++ data member.
9905///
9906FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9907                             SourceLocation DeclStart,
9908                             Declarator &D, Expr *BitWidth,
9909                             InClassInitStyle InitStyle,
9910                             AccessSpecifier AS) {
9911  IdentifierInfo *II = D.getIdentifier();
9912  SourceLocation Loc = DeclStart;
9913  if (II) Loc = D.getIdentifierLoc();
9914
9915  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9916  QualType T = TInfo->getType();
9917  if (getLangOpts().CPlusPlus) {
9918    CheckExtraCXXDefaultArguments(D);
9919
9920    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9921                                        UPPC_DataMemberType)) {
9922      D.setInvalidType();
9923      T = Context.IntTy;
9924      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9925    }
9926  }
9927
9928  // OpenCL 1.2 spec, s6.9 r:
9929  // The event type cannot be used to declare a structure or union field.
9930  if (LangOpts.OpenCL && T->isEventT()) {
9931    Diag(Loc, diag::err_event_t_struct_field);
9932    D.setInvalidType();
9933  }
9934
9935
9936  DiagnoseFunctionSpecifiers(D);
9937
9938  if (D.getDeclSpec().isThreadSpecified())
9939    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9940
9941  // Check to see if this name was declared as a member previously
9942  NamedDecl *PrevDecl = 0;
9943  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9944  LookupName(Previous, S);
9945  switch (Previous.getResultKind()) {
9946    case LookupResult::Found:
9947    case LookupResult::FoundUnresolvedValue:
9948      PrevDecl = Previous.getAsSingle<NamedDecl>();
9949      break;
9950
9951    case LookupResult::FoundOverloaded:
9952      PrevDecl = Previous.getRepresentativeDecl();
9953      break;
9954
9955    case LookupResult::NotFound:
9956    case LookupResult::NotFoundInCurrentInstantiation:
9957    case LookupResult::Ambiguous:
9958      break;
9959  }
9960  Previous.suppressDiagnostics();
9961
9962  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9963    // Maybe we will complain about the shadowed template parameter.
9964    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9965    // Just pretend that we didn't see the previous declaration.
9966    PrevDecl = 0;
9967  }
9968
9969  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9970    PrevDecl = 0;
9971
9972  bool Mutable
9973    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9974  SourceLocation TSSL = D.getLocStart();
9975  FieldDecl *NewFD
9976    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9977                     TSSL, AS, PrevDecl, &D);
9978
9979  if (NewFD->isInvalidDecl())
9980    Record->setInvalidDecl();
9981
9982  if (D.getDeclSpec().isModulePrivateSpecified())
9983    NewFD->setModulePrivate();
9984
9985  if (NewFD->isInvalidDecl() && PrevDecl) {
9986    // Don't introduce NewFD into scope; there's already something
9987    // with the same name in the same scope.
9988  } else if (II) {
9989    PushOnScopeChains(NewFD, S);
9990  } else
9991    Record->addDecl(NewFD);
9992
9993  return NewFD;
9994}
9995
9996/// \brief Build a new FieldDecl and check its well-formedness.
9997///
9998/// This routine builds a new FieldDecl given the fields name, type,
9999/// record, etc. \p PrevDecl should refer to any previous declaration
10000/// with the same name and in the same scope as the field to be
10001/// created.
10002///
10003/// \returns a new FieldDecl.
10004///
10005/// \todo The Declarator argument is a hack. It will be removed once
10006FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10007                                TypeSourceInfo *TInfo,
10008                                RecordDecl *Record, SourceLocation Loc,
10009                                bool Mutable, Expr *BitWidth,
10010                                InClassInitStyle InitStyle,
10011                                SourceLocation TSSL,
10012                                AccessSpecifier AS, NamedDecl *PrevDecl,
10013                                Declarator *D) {
10014  IdentifierInfo *II = Name.getAsIdentifierInfo();
10015  bool InvalidDecl = false;
10016  if (D) InvalidDecl = D->isInvalidType();
10017
10018  // If we receive a broken type, recover by assuming 'int' and
10019  // marking this declaration as invalid.
10020  if (T.isNull()) {
10021    InvalidDecl = true;
10022    T = Context.IntTy;
10023  }
10024
10025  QualType EltTy = Context.getBaseElementType(T);
10026  if (!EltTy->isDependentType()) {
10027    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10028      // Fields of incomplete type force their record to be invalid.
10029      Record->setInvalidDecl();
10030      InvalidDecl = true;
10031    } else {
10032      NamedDecl *Def;
10033      EltTy->isIncompleteType(&Def);
10034      if (Def && Def->isInvalidDecl()) {
10035        Record->setInvalidDecl();
10036        InvalidDecl = true;
10037      }
10038    }
10039  }
10040
10041  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10042  if (BitWidth && getLangOpts().OpenCL) {
10043    Diag(Loc, diag::err_opencl_bitfields);
10044    InvalidDecl = true;
10045  }
10046
10047  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10048  // than a variably modified type.
10049  if (!InvalidDecl && T->isVariablyModifiedType()) {
10050    bool SizeIsNegative;
10051    llvm::APSInt Oversized;
10052
10053    TypeSourceInfo *FixedTInfo =
10054      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10055                                                    SizeIsNegative,
10056                                                    Oversized);
10057    if (FixedTInfo) {
10058      Diag(Loc, diag::warn_illegal_constant_array_size);
10059      TInfo = FixedTInfo;
10060      T = FixedTInfo->getType();
10061    } else {
10062      if (SizeIsNegative)
10063        Diag(Loc, diag::err_typecheck_negative_array_size);
10064      else if (Oversized.getBoolValue())
10065        Diag(Loc, diag::err_array_too_large)
10066          << Oversized.toString(10);
10067      else
10068        Diag(Loc, diag::err_typecheck_field_variable_size);
10069      InvalidDecl = true;
10070    }
10071  }
10072
10073  // Fields can not have abstract class types
10074  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10075                                             diag::err_abstract_type_in_decl,
10076                                             AbstractFieldType))
10077    InvalidDecl = true;
10078
10079  bool ZeroWidth = false;
10080  // If this is declared as a bit-field, check the bit-field.
10081  if (!InvalidDecl && BitWidth) {
10082    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10083    if (!BitWidth) {
10084      InvalidDecl = true;
10085      BitWidth = 0;
10086      ZeroWidth = false;
10087    }
10088  }
10089
10090  // Check that 'mutable' is consistent with the type of the declaration.
10091  if (!InvalidDecl && Mutable) {
10092    unsigned DiagID = 0;
10093    if (T->isReferenceType())
10094      DiagID = diag::err_mutable_reference;
10095    else if (T.isConstQualified())
10096      DiagID = diag::err_mutable_const;
10097
10098    if (DiagID) {
10099      SourceLocation ErrLoc = Loc;
10100      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10101        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10102      Diag(ErrLoc, DiagID);
10103      Mutable = false;
10104      InvalidDecl = true;
10105    }
10106  }
10107
10108  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10109                                       BitWidth, Mutable, InitStyle);
10110  if (InvalidDecl)
10111    NewFD->setInvalidDecl();
10112
10113  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10114    Diag(Loc, diag::err_duplicate_member) << II;
10115    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10116    NewFD->setInvalidDecl();
10117  }
10118
10119  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10120    if (Record->isUnion()) {
10121      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10122        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10123        if (RDecl->getDefinition()) {
10124          // C++ [class.union]p1: An object of a class with a non-trivial
10125          // constructor, a non-trivial copy constructor, a non-trivial
10126          // destructor, or a non-trivial copy assignment operator
10127          // cannot be a member of a union, nor can an array of such
10128          // objects.
10129          if (CheckNontrivialField(NewFD))
10130            NewFD->setInvalidDecl();
10131        }
10132      }
10133
10134      // C++ [class.union]p1: If a union contains a member of reference type,
10135      // the program is ill-formed.
10136      if (EltTy->isReferenceType()) {
10137        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10138          << NewFD->getDeclName() << EltTy;
10139        NewFD->setInvalidDecl();
10140      }
10141    }
10142  }
10143
10144  // FIXME: We need to pass in the attributes given an AST
10145  // representation, not a parser representation.
10146  if (D)
10147    // FIXME: What to pass instead of TUScope?
10148    ProcessDeclAttributes(TUScope, NewFD, *D);
10149
10150  // In auto-retain/release, infer strong retension for fields of
10151  // retainable type.
10152  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10153    NewFD->setInvalidDecl();
10154
10155  if (T.isObjCGCWeak())
10156    Diag(Loc, diag::warn_attribute_weak_on_field);
10157
10158  NewFD->setAccess(AS);
10159  return NewFD;
10160}
10161
10162bool Sema::CheckNontrivialField(FieldDecl *FD) {
10163  assert(FD);
10164  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10165
10166  if (FD->isInvalidDecl())
10167    return true;
10168
10169  QualType EltTy = Context.getBaseElementType(FD->getType());
10170  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10171    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10172    if (RDecl->getDefinition()) {
10173      // We check for copy constructors before constructors
10174      // because otherwise we'll never get complaints about
10175      // copy constructors.
10176
10177      CXXSpecialMember member = CXXInvalid;
10178      // We're required to check for any non-trivial constructors. Since the
10179      // implicit default constructor is suppressed if there are any
10180      // user-declared constructors, we just need to check that there is a
10181      // trivial default constructor and a trivial copy constructor. (We don't
10182      // worry about move constructors here, since this is a C++98 check.)
10183      if (RDecl->hasNonTrivialCopyConstructor())
10184        member = CXXCopyConstructor;
10185      else if (!RDecl->hasTrivialDefaultConstructor())
10186        member = CXXDefaultConstructor;
10187      else if (RDecl->hasNonTrivialCopyAssignment())
10188        member = CXXCopyAssignment;
10189      else if (RDecl->hasNonTrivialDestructor())
10190        member = CXXDestructor;
10191
10192      if (member != CXXInvalid) {
10193        if (!getLangOpts().CPlusPlus11 &&
10194            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10195          // Objective-C++ ARC: it is an error to have a non-trivial field of
10196          // a union. However, system headers in Objective-C programs
10197          // occasionally have Objective-C lifetime objects within unions,
10198          // and rather than cause the program to fail, we make those
10199          // members unavailable.
10200          SourceLocation Loc = FD->getLocation();
10201          if (getSourceManager().isInSystemHeader(Loc)) {
10202            if (!FD->hasAttr<UnavailableAttr>())
10203              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10204                                  "this system field has retaining ownership"));
10205            return false;
10206          }
10207        }
10208
10209        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10210               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10211               diag::err_illegal_union_or_anon_struct_member)
10212          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10213        DiagnoseNontrivial(RDecl, member);
10214        return !getLangOpts().CPlusPlus11;
10215      }
10216    }
10217  }
10218
10219  return false;
10220}
10221
10222/// TranslateIvarVisibility - Translate visibility from a token ID to an
10223///  AST enum value.
10224static ObjCIvarDecl::AccessControl
10225TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10226  switch (ivarVisibility) {
10227  default: llvm_unreachable("Unknown visitibility kind");
10228  case tok::objc_private: return ObjCIvarDecl::Private;
10229  case tok::objc_public: return ObjCIvarDecl::Public;
10230  case tok::objc_protected: return ObjCIvarDecl::Protected;
10231  case tok::objc_package: return ObjCIvarDecl::Package;
10232  }
10233}
10234
10235/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10236/// in order to create an IvarDecl object for it.
10237Decl *Sema::ActOnIvar(Scope *S,
10238                                SourceLocation DeclStart,
10239                                Declarator &D, Expr *BitfieldWidth,
10240                                tok::ObjCKeywordKind Visibility) {
10241
10242  IdentifierInfo *II = D.getIdentifier();
10243  Expr *BitWidth = (Expr*)BitfieldWidth;
10244  SourceLocation Loc = DeclStart;
10245  if (II) Loc = D.getIdentifierLoc();
10246
10247  // FIXME: Unnamed fields can be handled in various different ways, for
10248  // example, unnamed unions inject all members into the struct namespace!
10249
10250  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10251  QualType T = TInfo->getType();
10252
10253  if (BitWidth) {
10254    // 6.7.2.1p3, 6.7.2.1p4
10255    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10256    if (!BitWidth)
10257      D.setInvalidType();
10258  } else {
10259    // Not a bitfield.
10260
10261    // validate II.
10262
10263  }
10264  if (T->isReferenceType()) {
10265    Diag(Loc, diag::err_ivar_reference_type);
10266    D.setInvalidType();
10267  }
10268  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10269  // than a variably modified type.
10270  else if (T->isVariablyModifiedType()) {
10271    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10272    D.setInvalidType();
10273  }
10274
10275  // Get the visibility (access control) for this ivar.
10276  ObjCIvarDecl::AccessControl ac =
10277    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10278                                        : ObjCIvarDecl::None;
10279  // Must set ivar's DeclContext to its enclosing interface.
10280  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10281  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10282    return 0;
10283  ObjCContainerDecl *EnclosingContext;
10284  if (ObjCImplementationDecl *IMPDecl =
10285      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10286    if (LangOpts.ObjCRuntime.isFragile()) {
10287    // Case of ivar declared in an implementation. Context is that of its class.
10288      EnclosingContext = IMPDecl->getClassInterface();
10289      assert(EnclosingContext && "Implementation has no class interface!");
10290    }
10291    else
10292      EnclosingContext = EnclosingDecl;
10293  } else {
10294    if (ObjCCategoryDecl *CDecl =
10295        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10296      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10297        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10298        return 0;
10299      }
10300    }
10301    EnclosingContext = EnclosingDecl;
10302  }
10303
10304  // Construct the decl.
10305  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10306                                             DeclStart, Loc, II, T,
10307                                             TInfo, ac, (Expr *)BitfieldWidth);
10308
10309  if (II) {
10310    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10311                                           ForRedeclaration);
10312    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10313        && !isa<TagDecl>(PrevDecl)) {
10314      Diag(Loc, diag::err_duplicate_member) << II;
10315      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10316      NewID->setInvalidDecl();
10317    }
10318  }
10319
10320  // Process attributes attached to the ivar.
10321  ProcessDeclAttributes(S, NewID, D);
10322
10323  if (D.isInvalidType())
10324    NewID->setInvalidDecl();
10325
10326  // In ARC, infer 'retaining' for ivars of retainable type.
10327  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10328    NewID->setInvalidDecl();
10329
10330  if (D.getDeclSpec().isModulePrivateSpecified())
10331    NewID->setModulePrivate();
10332
10333  if (II) {
10334    // FIXME: When interfaces are DeclContexts, we'll need to add
10335    // these to the interface.
10336    S->AddDecl(NewID);
10337    IdResolver.AddDecl(NewID);
10338  }
10339
10340  if (LangOpts.ObjCRuntime.isNonFragile() &&
10341      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10342    Diag(Loc, diag::warn_ivars_in_interface);
10343
10344  return NewID;
10345}
10346
10347/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10348/// class and class extensions. For every class @interface and class
10349/// extension @interface, if the last ivar is a bitfield of any type,
10350/// then add an implicit `char :0` ivar to the end of that interface.
10351void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10352                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10353  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10354    return;
10355
10356  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10357  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10358
10359  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10360    return;
10361  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10362  if (!ID) {
10363    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10364      if (!CD->IsClassExtension())
10365        return;
10366    }
10367    // No need to add this to end of @implementation.
10368    else
10369      return;
10370  }
10371  // All conditions are met. Add a new bitfield to the tail end of ivars.
10372  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10373  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10374
10375  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10376                              DeclLoc, DeclLoc, 0,
10377                              Context.CharTy,
10378                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10379                                                               DeclLoc),
10380                              ObjCIvarDecl::Private, BW,
10381                              true);
10382  AllIvarDecls.push_back(Ivar);
10383}
10384
10385void Sema::ActOnFields(Scope* S,
10386                       SourceLocation RecLoc, Decl *EnclosingDecl,
10387                       llvm::ArrayRef<Decl *> Fields,
10388                       SourceLocation LBrac, SourceLocation RBrac,
10389                       AttributeList *Attr) {
10390  assert(EnclosingDecl && "missing record or interface decl");
10391
10392  // If this is an Objective-C @implementation or category and we have
10393  // new fields here we should reset the layout of the interface since
10394  // it will now change.
10395  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10396    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10397    switch (DC->getKind()) {
10398    default: break;
10399    case Decl::ObjCCategory:
10400      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10401      break;
10402    case Decl::ObjCImplementation:
10403      Context.
10404        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10405      break;
10406    }
10407  }
10408
10409  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10410
10411  // Start counting up the number of named members; make sure to include
10412  // members of anonymous structs and unions in the total.
10413  unsigned NumNamedMembers = 0;
10414  if (Record) {
10415    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10416                                   e = Record->decls_end(); i != e; i++) {
10417      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10418        if (IFD->getDeclName())
10419          ++NumNamedMembers;
10420    }
10421  }
10422
10423  // Verify that all the fields are okay.
10424  SmallVector<FieldDecl*, 32> RecFields;
10425
10426  bool ARCErrReported = false;
10427  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10428       i != end; ++i) {
10429    FieldDecl *FD = cast<FieldDecl>(*i);
10430
10431    // Get the type for the field.
10432    const Type *FDTy = FD->getType().getTypePtr();
10433
10434    if (!FD->isAnonymousStructOrUnion()) {
10435      // Remember all fields written by the user.
10436      RecFields.push_back(FD);
10437    }
10438
10439    // If the field is already invalid for some reason, don't emit more
10440    // diagnostics about it.
10441    if (FD->isInvalidDecl()) {
10442      EnclosingDecl->setInvalidDecl();
10443      continue;
10444    }
10445
10446    // C99 6.7.2.1p2:
10447    //   A structure or union shall not contain a member with
10448    //   incomplete or function type (hence, a structure shall not
10449    //   contain an instance of itself, but may contain a pointer to
10450    //   an instance of itself), except that the last member of a
10451    //   structure with more than one named member may have incomplete
10452    //   array type; such a structure (and any union containing,
10453    //   possibly recursively, a member that is such a structure)
10454    //   shall not be a member of a structure or an element of an
10455    //   array.
10456    if (FDTy->isFunctionType()) {
10457      // Field declared as a function.
10458      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10459        << FD->getDeclName();
10460      FD->setInvalidDecl();
10461      EnclosingDecl->setInvalidDecl();
10462      continue;
10463    } else if (FDTy->isIncompleteArrayType() && Record &&
10464               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10465                ((getLangOpts().MicrosoftExt ||
10466                  getLangOpts().CPlusPlus) &&
10467                 (i + 1 == Fields.end() || Record->isUnion())))) {
10468      // Flexible array member.
10469      // Microsoft and g++ is more permissive regarding flexible array.
10470      // It will accept flexible array in union and also
10471      // as the sole element of a struct/class.
10472      if (getLangOpts().MicrosoftExt) {
10473        if (Record->isUnion())
10474          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10475            << FD->getDeclName();
10476        else if (Fields.size() == 1)
10477          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10478            << FD->getDeclName() << Record->getTagKind();
10479      } else if (getLangOpts().CPlusPlus) {
10480        if (Record->isUnion())
10481          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10482            << FD->getDeclName();
10483        else if (Fields.size() == 1)
10484          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10485            << FD->getDeclName() << Record->getTagKind();
10486      } else if (!getLangOpts().C99) {
10487      if (Record->isUnion())
10488        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10489          << FD->getDeclName();
10490      else
10491        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10492          << FD->getDeclName() << Record->getTagKind();
10493      } else if (NumNamedMembers < 1) {
10494        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10495          << FD->getDeclName();
10496        FD->setInvalidDecl();
10497        EnclosingDecl->setInvalidDecl();
10498        continue;
10499      }
10500      if (!FD->getType()->isDependentType() &&
10501          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10502        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10503          << FD->getDeclName() << FD->getType();
10504        FD->setInvalidDecl();
10505        EnclosingDecl->setInvalidDecl();
10506        continue;
10507      }
10508      // Okay, we have a legal flexible array member at the end of the struct.
10509      if (Record)
10510        Record->setHasFlexibleArrayMember(true);
10511    } else if (!FDTy->isDependentType() &&
10512               RequireCompleteType(FD->getLocation(), FD->getType(),
10513                                   diag::err_field_incomplete)) {
10514      // Incomplete type
10515      FD->setInvalidDecl();
10516      EnclosingDecl->setInvalidDecl();
10517      continue;
10518    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10519      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10520        // If this is a member of a union, then entire union becomes "flexible".
10521        if (Record && Record->isUnion()) {
10522          Record->setHasFlexibleArrayMember(true);
10523        } else {
10524          // If this is a struct/class and this is not the last element, reject
10525          // it.  Note that GCC supports variable sized arrays in the middle of
10526          // structures.
10527          if (i + 1 != Fields.end())
10528            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10529              << FD->getDeclName() << FD->getType();
10530          else {
10531            // We support flexible arrays at the end of structs in
10532            // other structs as an extension.
10533            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10534              << FD->getDeclName();
10535            if (Record)
10536              Record->setHasFlexibleArrayMember(true);
10537          }
10538        }
10539      }
10540      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10541          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10542                                 diag::err_abstract_type_in_decl,
10543                                 AbstractIvarType)) {
10544        // Ivars can not have abstract class types
10545        FD->setInvalidDecl();
10546      }
10547      if (Record && FDTTy->getDecl()->hasObjectMember())
10548        Record->setHasObjectMember(true);
10549      if (Record && FDTTy->getDecl()->hasVolatileMember())
10550        Record->setHasVolatileMember(true);
10551    } else if (FDTy->isObjCObjectType()) {
10552      /// A field cannot be an Objective-c object
10553      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10554        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10555      QualType T = Context.getObjCObjectPointerType(FD->getType());
10556      FD->setType(T);
10557    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10558               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10559      // It's an error in ARC if a field has lifetime.
10560      // We don't want to report this in a system header, though,
10561      // so we just make the field unavailable.
10562      // FIXME: that's really not sufficient; we need to make the type
10563      // itself invalid to, say, initialize or copy.
10564      QualType T = FD->getType();
10565      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10566      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10567        SourceLocation loc = FD->getLocation();
10568        if (getSourceManager().isInSystemHeader(loc)) {
10569          if (!FD->hasAttr<UnavailableAttr>()) {
10570            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10571                              "this system field has retaining ownership"));
10572          }
10573        } else {
10574          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10575            << T->isBlockPointerType() << Record->getTagKind();
10576        }
10577        ARCErrReported = true;
10578      }
10579    } else if (getLangOpts().ObjC1 &&
10580               getLangOpts().getGC() != LangOptions::NonGC &&
10581               Record && !Record->hasObjectMember()) {
10582      if (FD->getType()->isObjCObjectPointerType() ||
10583          FD->getType().isObjCGCStrong())
10584        Record->setHasObjectMember(true);
10585      else if (Context.getAsArrayType(FD->getType())) {
10586        QualType BaseType = Context.getBaseElementType(FD->getType());
10587        if (BaseType->isRecordType() &&
10588            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10589          Record->setHasObjectMember(true);
10590        else if (BaseType->isObjCObjectPointerType() ||
10591                 BaseType.isObjCGCStrong())
10592               Record->setHasObjectMember(true);
10593      }
10594    }
10595    if (Record && FD->getType().isVolatileQualified())
10596      Record->setHasVolatileMember(true);
10597    // Keep track of the number of named members.
10598    if (FD->getIdentifier())
10599      ++NumNamedMembers;
10600  }
10601
10602  // Okay, we successfully defined 'Record'.
10603  if (Record) {
10604    bool Completed = false;
10605    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10606      if (!CXXRecord->isInvalidDecl()) {
10607        // Set access bits correctly on the directly-declared conversions.
10608        for (CXXRecordDecl::conversion_iterator
10609               I = CXXRecord->conversion_begin(),
10610               E = CXXRecord->conversion_end(); I != E; ++I)
10611          I.setAccess((*I)->getAccess());
10612
10613        if (!CXXRecord->isDependentType()) {
10614          // Adjust user-defined destructor exception spec.
10615          if (getLangOpts().CPlusPlus11 &&
10616              CXXRecord->hasUserDeclaredDestructor())
10617            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10618
10619          // Add any implicitly-declared members to this class.
10620          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10621
10622          // If we have virtual base classes, we may end up finding multiple
10623          // final overriders for a given virtual function. Check for this
10624          // problem now.
10625          if (CXXRecord->getNumVBases()) {
10626            CXXFinalOverriderMap FinalOverriders;
10627            CXXRecord->getFinalOverriders(FinalOverriders);
10628
10629            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10630                                             MEnd = FinalOverriders.end();
10631                 M != MEnd; ++M) {
10632              for (OverridingMethods::iterator SO = M->second.begin(),
10633                                            SOEnd = M->second.end();
10634                   SO != SOEnd; ++SO) {
10635                assert(SO->second.size() > 0 &&
10636                       "Virtual function without overridding functions?");
10637                if (SO->second.size() == 1)
10638                  continue;
10639
10640                // C++ [class.virtual]p2:
10641                //   In a derived class, if a virtual member function of a base
10642                //   class subobject has more than one final overrider the
10643                //   program is ill-formed.
10644                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10645                  << (const NamedDecl *)M->first << Record;
10646                Diag(M->first->getLocation(),
10647                     diag::note_overridden_virtual_function);
10648                for (OverridingMethods::overriding_iterator
10649                          OM = SO->second.begin(),
10650                       OMEnd = SO->second.end();
10651                     OM != OMEnd; ++OM)
10652                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10653                    << (const NamedDecl *)M->first << OM->Method->getParent();
10654
10655                Record->setInvalidDecl();
10656              }
10657            }
10658            CXXRecord->completeDefinition(&FinalOverriders);
10659            Completed = true;
10660          }
10661        }
10662      }
10663    }
10664
10665    if (!Completed)
10666      Record->completeDefinition();
10667
10668  } else {
10669    ObjCIvarDecl **ClsFields =
10670      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10671    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10672      ID->setEndOfDefinitionLoc(RBrac);
10673      // Add ivar's to class's DeclContext.
10674      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10675        ClsFields[i]->setLexicalDeclContext(ID);
10676        ID->addDecl(ClsFields[i]);
10677      }
10678      // Must enforce the rule that ivars in the base classes may not be
10679      // duplicates.
10680      if (ID->getSuperClass())
10681        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10682    } else if (ObjCImplementationDecl *IMPDecl =
10683                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10684      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10685      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10686        // Ivar declared in @implementation never belongs to the implementation.
10687        // Only it is in implementation's lexical context.
10688        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10689      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10690      IMPDecl->setIvarLBraceLoc(LBrac);
10691      IMPDecl->setIvarRBraceLoc(RBrac);
10692    } else if (ObjCCategoryDecl *CDecl =
10693                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10694      // case of ivars in class extension; all other cases have been
10695      // reported as errors elsewhere.
10696      // FIXME. Class extension does not have a LocEnd field.
10697      // CDecl->setLocEnd(RBrac);
10698      // Add ivar's to class extension's DeclContext.
10699      // Diagnose redeclaration of private ivars.
10700      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10701      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10702        if (IDecl) {
10703          if (const ObjCIvarDecl *ClsIvar =
10704              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10705            Diag(ClsFields[i]->getLocation(),
10706                 diag::err_duplicate_ivar_declaration);
10707            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10708            continue;
10709          }
10710          for (ObjCInterfaceDecl::known_extensions_iterator
10711                 Ext = IDecl->known_extensions_begin(),
10712                 ExtEnd = IDecl->known_extensions_end();
10713               Ext != ExtEnd; ++Ext) {
10714            if (const ObjCIvarDecl *ClsExtIvar
10715                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
10716              Diag(ClsFields[i]->getLocation(),
10717                   diag::err_duplicate_ivar_declaration);
10718              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10719              continue;
10720            }
10721          }
10722        }
10723        ClsFields[i]->setLexicalDeclContext(CDecl);
10724        CDecl->addDecl(ClsFields[i]);
10725      }
10726      CDecl->setIvarLBraceLoc(LBrac);
10727      CDecl->setIvarRBraceLoc(RBrac);
10728    }
10729  }
10730
10731  if (Attr)
10732    ProcessDeclAttributeList(S, Record, Attr);
10733}
10734
10735/// \brief Determine whether the given integral value is representable within
10736/// the given type T.
10737static bool isRepresentableIntegerValue(ASTContext &Context,
10738                                        llvm::APSInt &Value,
10739                                        QualType T) {
10740  assert(T->isIntegralType(Context) && "Integral type required!");
10741  unsigned BitWidth = Context.getIntWidth(T);
10742
10743  if (Value.isUnsigned() || Value.isNonNegative()) {
10744    if (T->isSignedIntegerOrEnumerationType())
10745      --BitWidth;
10746    return Value.getActiveBits() <= BitWidth;
10747  }
10748  return Value.getMinSignedBits() <= BitWidth;
10749}
10750
10751// \brief Given an integral type, return the next larger integral type
10752// (or a NULL type of no such type exists).
10753static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10754  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10755  // enum checking below.
10756  assert(T->isIntegralType(Context) && "Integral type required!");
10757  const unsigned NumTypes = 4;
10758  QualType SignedIntegralTypes[NumTypes] = {
10759    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10760  };
10761  QualType UnsignedIntegralTypes[NumTypes] = {
10762    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10763    Context.UnsignedLongLongTy
10764  };
10765
10766  unsigned BitWidth = Context.getTypeSize(T);
10767  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10768                                                        : UnsignedIntegralTypes;
10769  for (unsigned I = 0; I != NumTypes; ++I)
10770    if (Context.getTypeSize(Types[I]) > BitWidth)
10771      return Types[I];
10772
10773  return QualType();
10774}
10775
10776EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10777                                          EnumConstantDecl *LastEnumConst,
10778                                          SourceLocation IdLoc,
10779                                          IdentifierInfo *Id,
10780                                          Expr *Val) {
10781  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10782  llvm::APSInt EnumVal(IntWidth);
10783  QualType EltTy;
10784
10785  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10786    Val = 0;
10787
10788  if (Val)
10789    Val = DefaultLvalueConversion(Val).take();
10790
10791  if (Val) {
10792    if (Enum->isDependentType() || Val->isTypeDependent())
10793      EltTy = Context.DependentTy;
10794    else {
10795      SourceLocation ExpLoc;
10796      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
10797          !getLangOpts().MicrosoftMode) {
10798        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10799        // constant-expression in the enumerator-definition shall be a converted
10800        // constant expression of the underlying type.
10801        EltTy = Enum->getIntegerType();
10802        ExprResult Converted =
10803          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10804                                           CCEK_Enumerator);
10805        if (Converted.isInvalid())
10806          Val = 0;
10807        else
10808          Val = Converted.take();
10809      } else if (!Val->isValueDependent() &&
10810                 !(Val = VerifyIntegerConstantExpression(Val,
10811                                                         &EnumVal).take())) {
10812        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10813      } else {
10814        if (Enum->isFixed()) {
10815          EltTy = Enum->getIntegerType();
10816
10817          // In Obj-C and Microsoft mode, require the enumeration value to be
10818          // representable in the underlying type of the enumeration. In C++11,
10819          // we perform a non-narrowing conversion as part of converted constant
10820          // expression checking.
10821          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10822            if (getLangOpts().MicrosoftMode) {
10823              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10824              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10825            } else
10826              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10827          } else
10828            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10829        } else if (getLangOpts().CPlusPlus) {
10830          // C++11 [dcl.enum]p5:
10831          //   If the underlying type is not fixed, the type of each enumerator
10832          //   is the type of its initializing value:
10833          //     - If an initializer is specified for an enumerator, the
10834          //       initializing value has the same type as the expression.
10835          EltTy = Val->getType();
10836        } else {
10837          // C99 6.7.2.2p2:
10838          //   The expression that defines the value of an enumeration constant
10839          //   shall be an integer constant expression that has a value
10840          //   representable as an int.
10841
10842          // Complain if the value is not representable in an int.
10843          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10844            Diag(IdLoc, diag::ext_enum_value_not_int)
10845              << EnumVal.toString(10) << Val->getSourceRange()
10846              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10847          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10848            // Force the type of the expression to 'int'.
10849            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10850          }
10851          EltTy = Val->getType();
10852        }
10853      }
10854    }
10855  }
10856
10857  if (!Val) {
10858    if (Enum->isDependentType())
10859      EltTy = Context.DependentTy;
10860    else if (!LastEnumConst) {
10861      // C++0x [dcl.enum]p5:
10862      //   If the underlying type is not fixed, the type of each enumerator
10863      //   is the type of its initializing value:
10864      //     - If no initializer is specified for the first enumerator, the
10865      //       initializing value has an unspecified integral type.
10866      //
10867      // GCC uses 'int' for its unspecified integral type, as does
10868      // C99 6.7.2.2p3.
10869      if (Enum->isFixed()) {
10870        EltTy = Enum->getIntegerType();
10871      }
10872      else {
10873        EltTy = Context.IntTy;
10874      }
10875    } else {
10876      // Assign the last value + 1.
10877      EnumVal = LastEnumConst->getInitVal();
10878      ++EnumVal;
10879      EltTy = LastEnumConst->getType();
10880
10881      // Check for overflow on increment.
10882      if (EnumVal < LastEnumConst->getInitVal()) {
10883        // C++0x [dcl.enum]p5:
10884        //   If the underlying type is not fixed, the type of each enumerator
10885        //   is the type of its initializing value:
10886        //
10887        //     - Otherwise the type of the initializing value is the same as
10888        //       the type of the initializing value of the preceding enumerator
10889        //       unless the incremented value is not representable in that type,
10890        //       in which case the type is an unspecified integral type
10891        //       sufficient to contain the incremented value. If no such type
10892        //       exists, the program is ill-formed.
10893        QualType T = getNextLargerIntegralType(Context, EltTy);
10894        if (T.isNull() || Enum->isFixed()) {
10895          // There is no integral type larger enough to represent this
10896          // value. Complain, then allow the value to wrap around.
10897          EnumVal = LastEnumConst->getInitVal();
10898          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10899          ++EnumVal;
10900          if (Enum->isFixed())
10901            // When the underlying type is fixed, this is ill-formed.
10902            Diag(IdLoc, diag::err_enumerator_wrapped)
10903              << EnumVal.toString(10)
10904              << EltTy;
10905          else
10906            Diag(IdLoc, diag::warn_enumerator_too_large)
10907              << EnumVal.toString(10);
10908        } else {
10909          EltTy = T;
10910        }
10911
10912        // Retrieve the last enumerator's value, extent that type to the
10913        // type that is supposed to be large enough to represent the incremented
10914        // value, then increment.
10915        EnumVal = LastEnumConst->getInitVal();
10916        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10917        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10918        ++EnumVal;
10919
10920        // If we're not in C++, diagnose the overflow of enumerator values,
10921        // which in C99 means that the enumerator value is not representable in
10922        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10923        // permits enumerator values that are representable in some larger
10924        // integral type.
10925        if (!getLangOpts().CPlusPlus && !T.isNull())
10926          Diag(IdLoc, diag::warn_enum_value_overflow);
10927      } else if (!getLangOpts().CPlusPlus &&
10928                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10929        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10930        Diag(IdLoc, diag::ext_enum_value_not_int)
10931          << EnumVal.toString(10) << 1;
10932      }
10933    }
10934  }
10935
10936  if (!EltTy->isDependentType()) {
10937    // Make the enumerator value match the signedness and size of the
10938    // enumerator's type.
10939    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10940    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10941  }
10942
10943  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10944                                  Val, EnumVal);
10945}
10946
10947
10948Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10949                              SourceLocation IdLoc, IdentifierInfo *Id,
10950                              AttributeList *Attr,
10951                              SourceLocation EqualLoc, Expr *Val) {
10952  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10953  EnumConstantDecl *LastEnumConst =
10954    cast_or_null<EnumConstantDecl>(lastEnumConst);
10955
10956  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10957  // we find one that is.
10958  S = getNonFieldDeclScope(S);
10959
10960  // Verify that there isn't already something declared with this name in this
10961  // scope.
10962  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10963                                         ForRedeclaration);
10964  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10965    // Maybe we will complain about the shadowed template parameter.
10966    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10967    // Just pretend that we didn't see the previous declaration.
10968    PrevDecl = 0;
10969  }
10970
10971  if (PrevDecl) {
10972    // When in C++, we may get a TagDecl with the same name; in this case the
10973    // enum constant will 'hide' the tag.
10974    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10975           "Received TagDecl when not in C++!");
10976    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10977      if (isa<EnumConstantDecl>(PrevDecl))
10978        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10979      else
10980        Diag(IdLoc, diag::err_redefinition) << Id;
10981      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10982      return 0;
10983    }
10984  }
10985
10986  // C++ [class.mem]p15:
10987  // If T is the name of a class, then each of the following shall have a name
10988  // different from T:
10989  // - every enumerator of every member of class T that is an unscoped
10990  // enumerated type
10991  if (CXXRecordDecl *Record
10992                      = dyn_cast<CXXRecordDecl>(
10993                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10994    if (!TheEnumDecl->isScoped() &&
10995        Record->getIdentifier() && Record->getIdentifier() == Id)
10996      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10997
10998  EnumConstantDecl *New =
10999    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11000
11001  if (New) {
11002    // Process attributes.
11003    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11004
11005    // Register this decl in the current scope stack.
11006    New->setAccess(TheEnumDecl->getAccess());
11007    PushOnScopeChains(New, S);
11008  }
11009
11010  ActOnDocumentableDecl(New);
11011
11012  return New;
11013}
11014
11015// Returns true when the enum initial expression does not trigger the
11016// duplicate enum warning.  A few common cases are exempted as follows:
11017// Element2 = Element1
11018// Element2 = Element1 + 1
11019// Element2 = Element1 - 1
11020// Where Element2 and Element1 are from the same enum.
11021static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11022  Expr *InitExpr = ECD->getInitExpr();
11023  if (!InitExpr)
11024    return true;
11025  InitExpr = InitExpr->IgnoreImpCasts();
11026
11027  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11028    if (!BO->isAdditiveOp())
11029      return true;
11030    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11031    if (!IL)
11032      return true;
11033    if (IL->getValue() != 1)
11034      return true;
11035
11036    InitExpr = BO->getLHS();
11037  }
11038
11039  // This checks if the elements are from the same enum.
11040  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11041  if (!DRE)
11042    return true;
11043
11044  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11045  if (!EnumConstant)
11046    return true;
11047
11048  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11049      Enum)
11050    return true;
11051
11052  return false;
11053}
11054
11055struct DupKey {
11056  int64_t val;
11057  bool isTombstoneOrEmptyKey;
11058  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11059    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11060};
11061
11062static DupKey GetDupKey(const llvm::APSInt& Val) {
11063  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11064                false);
11065}
11066
11067struct DenseMapInfoDupKey {
11068  static DupKey getEmptyKey() { return DupKey(0, true); }
11069  static DupKey getTombstoneKey() { return DupKey(1, true); }
11070  static unsigned getHashValue(const DupKey Key) {
11071    return (unsigned)(Key.val * 37);
11072  }
11073  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11074    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11075           LHS.val == RHS.val;
11076  }
11077};
11078
11079// Emits a warning when an element is implicitly set a value that
11080// a previous element has already been set to.
11081static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11082                                        unsigned NumElements, EnumDecl *Enum,
11083                                        QualType EnumType) {
11084  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11085                                 Enum->getLocation()) ==
11086      DiagnosticsEngine::Ignored)
11087    return;
11088  // Avoid anonymous enums
11089  if (!Enum->getIdentifier())
11090    return;
11091
11092  // Only check for small enums.
11093  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11094    return;
11095
11096  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11097  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11098
11099  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11100  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11101          ValueToVectorMap;
11102
11103  DuplicatesVector DupVector;
11104  ValueToVectorMap EnumMap;
11105
11106  // Populate the EnumMap with all values represented by enum constants without
11107  // an initialier.
11108  for (unsigned i = 0; i < NumElements; ++i) {
11109    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11110
11111    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11112    // this constant.  Skip this enum since it may be ill-formed.
11113    if (!ECD) {
11114      return;
11115    }
11116
11117    if (ECD->getInitExpr())
11118      continue;
11119
11120    DupKey Key = GetDupKey(ECD->getInitVal());
11121    DeclOrVector &Entry = EnumMap[Key];
11122
11123    // First time encountering this value.
11124    if (Entry.isNull())
11125      Entry = ECD;
11126  }
11127
11128  // Create vectors for any values that has duplicates.
11129  for (unsigned i = 0; i < NumElements; ++i) {
11130    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11131    if (!ValidDuplicateEnum(ECD, Enum))
11132      continue;
11133
11134    DupKey Key = GetDupKey(ECD->getInitVal());
11135
11136    DeclOrVector& Entry = EnumMap[Key];
11137    if (Entry.isNull())
11138      continue;
11139
11140    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11141      // Ensure constants are different.
11142      if (D == ECD)
11143        continue;
11144
11145      // Create new vector and push values onto it.
11146      ECDVector *Vec = new ECDVector();
11147      Vec->push_back(D);
11148      Vec->push_back(ECD);
11149
11150      // Update entry to point to the duplicates vector.
11151      Entry = Vec;
11152
11153      // Store the vector somewhere we can consult later for quick emission of
11154      // diagnostics.
11155      DupVector.push_back(Vec);
11156      continue;
11157    }
11158
11159    ECDVector *Vec = Entry.get<ECDVector*>();
11160    // Make sure constants are not added more than once.
11161    if (*Vec->begin() == ECD)
11162      continue;
11163
11164    Vec->push_back(ECD);
11165  }
11166
11167  // Emit diagnostics.
11168  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11169                                  DupVectorEnd = DupVector.end();
11170       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11171    ECDVector *Vec = *DupVectorIter;
11172    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11173
11174    // Emit warning for one enum constant.
11175    ECDVector::iterator I = Vec->begin();
11176    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11177      << (*I)->getName() << (*I)->getInitVal().toString(10)
11178      << (*I)->getSourceRange();
11179    ++I;
11180
11181    // Emit one note for each of the remaining enum constants with
11182    // the same value.
11183    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11184      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11185        << (*I)->getName() << (*I)->getInitVal().toString(10)
11186        << (*I)->getSourceRange();
11187    delete Vec;
11188  }
11189}
11190
11191void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11192                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11193                         Decl **Elements, unsigned NumElements,
11194                         Scope *S, AttributeList *Attr) {
11195  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11196  QualType EnumType = Context.getTypeDeclType(Enum);
11197
11198  if (Attr)
11199    ProcessDeclAttributeList(S, Enum, Attr);
11200
11201  if (Enum->isDependentType()) {
11202    for (unsigned i = 0; i != NumElements; ++i) {
11203      EnumConstantDecl *ECD =
11204        cast_or_null<EnumConstantDecl>(Elements[i]);
11205      if (!ECD) continue;
11206
11207      ECD->setType(EnumType);
11208    }
11209
11210    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11211    return;
11212  }
11213
11214  // TODO: If the result value doesn't fit in an int, it must be a long or long
11215  // long value.  ISO C does not support this, but GCC does as an extension,
11216  // emit a warning.
11217  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11218  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11219  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11220
11221  // Verify that all the values are okay, compute the size of the values, and
11222  // reverse the list.
11223  unsigned NumNegativeBits = 0;
11224  unsigned NumPositiveBits = 0;
11225
11226  // Keep track of whether all elements have type int.
11227  bool AllElementsInt = true;
11228
11229  for (unsigned i = 0; i != NumElements; ++i) {
11230    EnumConstantDecl *ECD =
11231      cast_or_null<EnumConstantDecl>(Elements[i]);
11232    if (!ECD) continue;  // Already issued a diagnostic.
11233
11234    const llvm::APSInt &InitVal = ECD->getInitVal();
11235
11236    // Keep track of the size of positive and negative values.
11237    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11238      NumPositiveBits = std::max(NumPositiveBits,
11239                                 (unsigned)InitVal.getActiveBits());
11240    else
11241      NumNegativeBits = std::max(NumNegativeBits,
11242                                 (unsigned)InitVal.getMinSignedBits());
11243
11244    // Keep track of whether every enum element has type int (very commmon).
11245    if (AllElementsInt)
11246      AllElementsInt = ECD->getType() == Context.IntTy;
11247  }
11248
11249  // Figure out the type that should be used for this enum.
11250  QualType BestType;
11251  unsigned BestWidth;
11252
11253  // C++0x N3000 [conv.prom]p3:
11254  //   An rvalue of an unscoped enumeration type whose underlying
11255  //   type is not fixed can be converted to an rvalue of the first
11256  //   of the following types that can represent all the values of
11257  //   the enumeration: int, unsigned int, long int, unsigned long
11258  //   int, long long int, or unsigned long long int.
11259  // C99 6.4.4.3p2:
11260  //   An identifier declared as an enumeration constant has type int.
11261  // The C99 rule is modified by a gcc extension
11262  QualType BestPromotionType;
11263
11264  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11265  // -fshort-enums is the equivalent to specifying the packed attribute on all
11266  // enum definitions.
11267  if (LangOpts.ShortEnums)
11268    Packed = true;
11269
11270  if (Enum->isFixed()) {
11271    BestType = Enum->getIntegerType();
11272    if (BestType->isPromotableIntegerType())
11273      BestPromotionType = Context.getPromotedIntegerType(BestType);
11274    else
11275      BestPromotionType = BestType;
11276    // We don't need to set BestWidth, because BestType is going to be the type
11277    // of the enumerators, but we do anyway because otherwise some compilers
11278    // warn that it might be used uninitialized.
11279    BestWidth = CharWidth;
11280  }
11281  else if (NumNegativeBits) {
11282    // If there is a negative value, figure out the smallest integer type (of
11283    // int/long/longlong) that fits.
11284    // If it's packed, check also if it fits a char or a short.
11285    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11286      BestType = Context.SignedCharTy;
11287      BestWidth = CharWidth;
11288    } else if (Packed && NumNegativeBits <= ShortWidth &&
11289               NumPositiveBits < ShortWidth) {
11290      BestType = Context.ShortTy;
11291      BestWidth = ShortWidth;
11292    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11293      BestType = Context.IntTy;
11294      BestWidth = IntWidth;
11295    } else {
11296      BestWidth = Context.getTargetInfo().getLongWidth();
11297
11298      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11299        BestType = Context.LongTy;
11300      } else {
11301        BestWidth = Context.getTargetInfo().getLongLongWidth();
11302
11303        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11304          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11305        BestType = Context.LongLongTy;
11306      }
11307    }
11308    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11309  } else {
11310    // If there is no negative value, figure out the smallest type that fits
11311    // all of the enumerator values.
11312    // If it's packed, check also if it fits a char or a short.
11313    if (Packed && NumPositiveBits <= CharWidth) {
11314      BestType = Context.UnsignedCharTy;
11315      BestPromotionType = Context.IntTy;
11316      BestWidth = CharWidth;
11317    } else if (Packed && NumPositiveBits <= ShortWidth) {
11318      BestType = Context.UnsignedShortTy;
11319      BestPromotionType = Context.IntTy;
11320      BestWidth = ShortWidth;
11321    } else if (NumPositiveBits <= IntWidth) {
11322      BestType = Context.UnsignedIntTy;
11323      BestWidth = IntWidth;
11324      BestPromotionType
11325        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11326                           ? Context.UnsignedIntTy : Context.IntTy;
11327    } else if (NumPositiveBits <=
11328               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11329      BestType = Context.UnsignedLongTy;
11330      BestPromotionType
11331        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11332                           ? Context.UnsignedLongTy : Context.LongTy;
11333    } else {
11334      BestWidth = Context.getTargetInfo().getLongLongWidth();
11335      assert(NumPositiveBits <= BestWidth &&
11336             "How could an initializer get larger than ULL?");
11337      BestType = Context.UnsignedLongLongTy;
11338      BestPromotionType
11339        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11340                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11341    }
11342  }
11343
11344  // Loop over all of the enumerator constants, changing their types to match
11345  // the type of the enum if needed.
11346  for (unsigned i = 0; i != NumElements; ++i) {
11347    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11348    if (!ECD) continue;  // Already issued a diagnostic.
11349
11350    // Standard C says the enumerators have int type, but we allow, as an
11351    // extension, the enumerators to be larger than int size.  If each
11352    // enumerator value fits in an int, type it as an int, otherwise type it the
11353    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11354    // that X has type 'int', not 'unsigned'.
11355
11356    // Determine whether the value fits into an int.
11357    llvm::APSInt InitVal = ECD->getInitVal();
11358
11359    // If it fits into an integer type, force it.  Otherwise force it to match
11360    // the enum decl type.
11361    QualType NewTy;
11362    unsigned NewWidth;
11363    bool NewSign;
11364    if (!getLangOpts().CPlusPlus &&
11365        !Enum->isFixed() &&
11366        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11367      NewTy = Context.IntTy;
11368      NewWidth = IntWidth;
11369      NewSign = true;
11370    } else if (ECD->getType() == BestType) {
11371      // Already the right type!
11372      if (getLangOpts().CPlusPlus)
11373        // C++ [dcl.enum]p4: Following the closing brace of an
11374        // enum-specifier, each enumerator has the type of its
11375        // enumeration.
11376        ECD->setType(EnumType);
11377      continue;
11378    } else {
11379      NewTy = BestType;
11380      NewWidth = BestWidth;
11381      NewSign = BestType->isSignedIntegerOrEnumerationType();
11382    }
11383
11384    // Adjust the APSInt value.
11385    InitVal = InitVal.extOrTrunc(NewWidth);
11386    InitVal.setIsSigned(NewSign);
11387    ECD->setInitVal(InitVal);
11388
11389    // Adjust the Expr initializer and type.
11390    if (ECD->getInitExpr() &&
11391        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11392      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11393                                                CK_IntegralCast,
11394                                                ECD->getInitExpr(),
11395                                                /*base paths*/ 0,
11396                                                VK_RValue));
11397    if (getLangOpts().CPlusPlus)
11398      // C++ [dcl.enum]p4: Following the closing brace of an
11399      // enum-specifier, each enumerator has the type of its
11400      // enumeration.
11401      ECD->setType(EnumType);
11402    else
11403      ECD->setType(NewTy);
11404  }
11405
11406  Enum->completeDefinition(BestType, BestPromotionType,
11407                           NumPositiveBits, NumNegativeBits);
11408
11409  // If we're declaring a function, ensure this decl isn't forgotten about -
11410  // it needs to go into the function scope.
11411  if (InFunctionDeclarator)
11412    DeclsInPrototypeScope.push_back(Enum);
11413
11414  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11415}
11416
11417Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11418                                  SourceLocation StartLoc,
11419                                  SourceLocation EndLoc) {
11420  StringLiteral *AsmString = cast<StringLiteral>(expr);
11421
11422  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11423                                                   AsmString, StartLoc,
11424                                                   EndLoc);
11425  CurContext->addDecl(New);
11426  return New;
11427}
11428
11429DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11430                                   SourceLocation ImportLoc,
11431                                   ModuleIdPath Path) {
11432  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11433                                                Module::AllVisible,
11434                                                /*IsIncludeDirective=*/false);
11435  if (!Mod)
11436    return true;
11437
11438  SmallVector<SourceLocation, 2> IdentifierLocs;
11439  Module *ModCheck = Mod;
11440  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11441    // If we've run out of module parents, just drop the remaining identifiers.
11442    // We need the length to be consistent.
11443    if (!ModCheck)
11444      break;
11445    ModCheck = ModCheck->Parent;
11446
11447    IdentifierLocs.push_back(Path[I].second);
11448  }
11449
11450  ImportDecl *Import = ImportDecl::Create(Context,
11451                                          Context.getTranslationUnitDecl(),
11452                                          AtLoc.isValid()? AtLoc : ImportLoc,
11453                                          Mod, IdentifierLocs);
11454  Context.getTranslationUnitDecl()->addDecl(Import);
11455  return Import;
11456}
11457
11458void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11459  // Create the implicit import declaration.
11460  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11461  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11462                                                   Loc, Mod, Loc);
11463  TU->addDecl(ImportD);
11464  Consumer.HandleImplicitImportDecl(ImportD);
11465
11466  // Make the module visible.
11467  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible);
11468}
11469
11470void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11471                                      IdentifierInfo* AliasName,
11472                                      SourceLocation PragmaLoc,
11473                                      SourceLocation NameLoc,
11474                                      SourceLocation AliasNameLoc) {
11475  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11476                                    LookupOrdinaryName);
11477  AsmLabelAttr *Attr =
11478     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11479
11480  if (PrevDecl)
11481    PrevDecl->addAttr(Attr);
11482  else
11483    (void)ExtnameUndeclaredIdentifiers.insert(
11484      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11485}
11486
11487void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11488                             SourceLocation PragmaLoc,
11489                             SourceLocation NameLoc) {
11490  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11491
11492  if (PrevDecl) {
11493    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11494  } else {
11495    (void)WeakUndeclaredIdentifiers.insert(
11496      std::pair<IdentifierInfo*,WeakInfo>
11497        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11498  }
11499}
11500
11501void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11502                                IdentifierInfo* AliasName,
11503                                SourceLocation PragmaLoc,
11504                                SourceLocation NameLoc,
11505                                SourceLocation AliasNameLoc) {
11506  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11507                                    LookupOrdinaryName);
11508  WeakInfo W = WeakInfo(Name, NameLoc);
11509
11510  if (PrevDecl) {
11511    if (!PrevDecl->hasAttr<AliasAttr>())
11512      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11513        DeclApplyPragmaWeak(TUScope, ND, W);
11514  } else {
11515    (void)WeakUndeclaredIdentifiers.insert(
11516      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11517  }
11518}
11519
11520Decl *Sema::getObjCDeclContext() const {
11521  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11522}
11523
11524AvailabilityResult Sema::getCurContextAvailability() const {
11525  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11526  return D->getAvailability();
11527}
11528