SemaDecl.cpp revision 767a1a2391e60e358ed7d793e091cc1731a5e186
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/CommentDiagnostic.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::kw_decltype:
113    return getLangOpts().CPlusPlus;
114
115  default:
116    break;
117  }
118
119  return false;
120}
121
122/// \brief If the identifier refers to a type name within this scope,
123/// return the declaration of that type.
124///
125/// This routine performs ordinary name lookup of the identifier II
126/// within the given scope, with optional C++ scope specifier SS, to
127/// determine whether the name refers to a type. If so, returns an
128/// opaque pointer (actually a QualType) corresponding to that
129/// type. Otherwise, returns NULL.
130///
131/// If name lookup results in an ambiguity, this routine will complain
132/// and then return NULL.
133ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
134                             Scope *S, CXXScopeSpec *SS,
135                             bool isClassName, bool HasTrailingDot,
136                             ParsedType ObjectTypePtr,
137                             bool IsCtorOrDtorName,
138                             bool WantNontrivialTypeSourceInfo,
139                             IdentifierInfo **CorrectedII) {
140  // Determine where we will perform name lookup.
141  DeclContext *LookupCtx = 0;
142  if (ObjectTypePtr) {
143    QualType ObjectType = ObjectTypePtr.get();
144    if (ObjectType->isRecordType())
145      LookupCtx = computeDeclContext(ObjectType);
146  } else if (SS && SS->isNotEmpty()) {
147    LookupCtx = computeDeclContext(*SS, false);
148
149    if (!LookupCtx) {
150      if (isDependentScopeSpecifier(*SS)) {
151        // C++ [temp.res]p3:
152        //   A qualified-id that refers to a type and in which the
153        //   nested-name-specifier depends on a template-parameter (14.6.2)
154        //   shall be prefixed by the keyword typename to indicate that the
155        //   qualified-id denotes a type, forming an
156        //   elaborated-type-specifier (7.1.5.3).
157        //
158        // We therefore do not perform any name lookup if the result would
159        // refer to a member of an unknown specialization.
160        if (!isClassName && !IsCtorOrDtorName)
161          return ParsedType();
162
163        // We know from the grammar that this name refers to a type,
164        // so build a dependent node to describe the type.
165        if (WantNontrivialTypeSourceInfo)
166          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
167
168        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
169        QualType T =
170          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
171                            II, NameLoc);
172
173          return ParsedType::make(T);
174      }
175
176      return ParsedType();
177    }
178
179    if (!LookupCtx->isDependentContext() &&
180        RequireCompleteDeclContext(*SS, LookupCtx))
181      return ParsedType();
182  }
183
184  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
185  // lookup for class-names.
186  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
187                                      LookupOrdinaryName;
188  LookupResult Result(*this, &II, NameLoc, Kind);
189  if (LookupCtx) {
190    // Perform "qualified" name lookup into the declaration context we
191    // computed, which is either the type of the base of a member access
192    // expression or the declaration context associated with a prior
193    // nested-name-specifier.
194    LookupQualifiedName(Result, LookupCtx);
195
196    if (ObjectTypePtr && Result.empty()) {
197      // C++ [basic.lookup.classref]p3:
198      //   If the unqualified-id is ~type-name, the type-name is looked up
199      //   in the context of the entire postfix-expression. If the type T of
200      //   the object expression is of a class type C, the type-name is also
201      //   looked up in the scope of class C. At least one of the lookups shall
202      //   find a name that refers to (possibly cv-qualified) T.
203      LookupName(Result, S);
204    }
205  } else {
206    // Perform unqualified name lookup.
207    LookupName(Result, S);
208  }
209
210  NamedDecl *IIDecl = 0;
211  switch (Result.getResultKind()) {
212  case LookupResult::NotFound:
213  case LookupResult::NotFoundInCurrentInstantiation:
214    if (CorrectedII) {
215      TypeNameValidatorCCC Validator(true, isClassName);
216      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
217                                              Kind, S, SS, Validator);
218      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
219      TemplateTy Template;
220      bool MemberOfUnknownSpecialization;
221      UnqualifiedId TemplateName;
222      TemplateName.setIdentifier(NewII, NameLoc);
223      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
224      CXXScopeSpec NewSS, *NewSSPtr = SS;
225      if (SS && NNS) {
226        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
227        NewSSPtr = &NewSS;
228      }
229      if (Correction && (NNS || NewII != &II) &&
230          // Ignore a correction to a template type as the to-be-corrected
231          // identifier is not a template (typo correction for template names
232          // is handled elsewhere).
233          !(getLangOpts().CPlusPlus && NewSSPtr &&
234            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
235                           false, Template, MemberOfUnknownSpecialization))) {
236        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
237                                    isClassName, HasTrailingDot, ObjectTypePtr,
238                                    IsCtorOrDtorName,
239                                    WantNontrivialTypeSourceInfo);
240        if (Ty) {
241          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
242          std::string CorrectedQuotedStr(
243              Correction.getQuoted(getLangOpts()));
244          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
245              << Result.getLookupName() << CorrectedQuotedStr << isClassName
246              << FixItHint::CreateReplacement(SourceRange(NameLoc),
247                                              CorrectedStr);
248          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
249            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
250              << CorrectedQuotedStr;
251
252          if (SS && NNS)
253            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
254          *CorrectedII = NewII;
255          return Ty;
256        }
257      }
258    }
259    // If typo correction failed or was not performed, fall through
260  case LookupResult::FoundOverloaded:
261  case LookupResult::FoundUnresolvedValue:
262    Result.suppressDiagnostics();
263    return ParsedType();
264
265  case LookupResult::Ambiguous:
266    // Recover from type-hiding ambiguities by hiding the type.  We'll
267    // do the lookup again when looking for an object, and we can
268    // diagnose the error then.  If we don't do this, then the error
269    // about hiding the type will be immediately followed by an error
270    // that only makes sense if the identifier was treated like a type.
271    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
272      Result.suppressDiagnostics();
273      return ParsedType();
274    }
275
276    // Look to see if we have a type anywhere in the list of results.
277    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
278         Res != ResEnd; ++Res) {
279      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
280        if (!IIDecl ||
281            (*Res)->getLocation().getRawEncoding() <
282              IIDecl->getLocation().getRawEncoding())
283          IIDecl = *Res;
284      }
285    }
286
287    if (!IIDecl) {
288      // None of the entities we found is a type, so there is no way
289      // to even assume that the result is a type. In this case, don't
290      // complain about the ambiguity. The parser will either try to
291      // perform this lookup again (e.g., as an object name), which
292      // will produce the ambiguity, or will complain that it expected
293      // a type name.
294      Result.suppressDiagnostics();
295      return ParsedType();
296    }
297
298    // We found a type within the ambiguous lookup; diagnose the
299    // ambiguity and then return that type. This might be the right
300    // answer, or it might not be, but it suppresses any attempt to
301    // perform the name lookup again.
302    break;
303
304  case LookupResult::Found:
305    IIDecl = Result.getFoundDecl();
306    break;
307  }
308
309  assert(IIDecl && "Didn't find decl");
310
311  QualType T;
312  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
313    DiagnoseUseOfDecl(IIDecl, NameLoc);
314
315    if (T.isNull())
316      T = Context.getTypeDeclType(TD);
317
318    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
319    // constructor or destructor name (in such a case, the scope specifier
320    // will be attached to the enclosing Expr or Decl node).
321    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
322      if (WantNontrivialTypeSourceInfo) {
323        // Construct a type with type-source information.
324        TypeLocBuilder Builder;
325        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
326
327        T = getElaboratedType(ETK_None, *SS, T);
328        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
329        ElabTL.setElaboratedKeywordLoc(SourceLocation());
330        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
331        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
332      } else {
333        T = getElaboratedType(ETK_None, *SS, T);
334      }
335    }
336  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
337    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
338    if (!HasTrailingDot)
339      T = Context.getObjCInterfaceType(IDecl);
340  }
341
342  if (T.isNull()) {
343    // If it's not plausibly a type, suppress diagnostics.
344    Result.suppressDiagnostics();
345    return ParsedType();
346  }
347  return ParsedType::make(T);
348}
349
350/// isTagName() - This method is called *for error recovery purposes only*
351/// to determine if the specified name is a valid tag name ("struct foo").  If
352/// so, this returns the TST for the tag corresponding to it (TST_enum,
353/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
354/// where the user forgot to specify the tag.
355DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
356  // Do a tag name lookup in this scope.
357  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
358  LookupName(R, S, false);
359  R.suppressDiagnostics();
360  if (R.getResultKind() == LookupResult::Found)
361    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
362      switch (TD->getTagKind()) {
363      case TTK_Struct: return DeclSpec::TST_struct;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
438      else
439        llvm_unreachable("could not have corrected a typo here");
440
441      Diag(Result->getLocation(), diag::note_previous_decl)
442        << CorrectedQuotedStr;
443
444      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
445                                  false, false, ParsedType(),
446                                  /*IsCtorOrDtorName=*/false,
447                                  /*NonTrivialTypeSourceInfo=*/true);
448    }
449    return true;
450  }
451
452  if (getLangOpts().CPlusPlus) {
453    // See if II is a class template that the user forgot to pass arguments to.
454    UnqualifiedId Name;
455    Name.setIdentifier(II, IILoc);
456    CXXScopeSpec EmptySS;
457    TemplateTy TemplateResult;
458    bool MemberOfUnknownSpecialization;
459    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
460                       Name, ParsedType(), true, TemplateResult,
461                       MemberOfUnknownSpecialization) == TNK_Type_template) {
462      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
463      Diag(IILoc, diag::err_template_missing_args) << TplName;
464      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
465        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
466          << TplDecl->getTemplateParameters()->getSourceRange();
467      }
468      return true;
469    }
470  }
471
472  // FIXME: Should we move the logic that tries to recover from a missing tag
473  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
474
475  if (!SS || (!SS->isSet() && !SS->isInvalid()))
476    Diag(IILoc, diag::err_unknown_typename) << II;
477  else if (DeclContext *DC = computeDeclContext(*SS, false))
478    Diag(IILoc, diag::err_typename_nested_not_found)
479      << II << DC << SS->getRange();
480  else if (isDependentScopeSpecifier(*SS)) {
481    unsigned DiagID = diag::err_typename_missing;
482    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
483      DiagID = diag::warn_typename_missing;
484
485    Diag(SS->getRange().getBegin(), DiagID)
486      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
487      << SourceRange(SS->getRange().getBegin(), IILoc)
488      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
489    SuggestedType = ActOnTypenameType(S, SourceLocation(),
490                                      *SS, *II, IILoc).get();
491  } else {
492    assert(SS && SS->isInvalid() &&
493           "Invalid scope specifier has already been diagnosed");
494  }
495
496  return true;
497}
498
499/// \brief Determine whether the given result set contains either a type name
500/// or
501static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
502  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
503                       NextToken.is(tok::less);
504
505  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
506    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
507      return true;
508
509    if (CheckTemplate && isa<TemplateDecl>(*I))
510      return true;
511  }
512
513  return false;
514}
515
516static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
517                                    Scope *S, CXXScopeSpec &SS,
518                                    IdentifierInfo *&Name,
519                                    SourceLocation NameLoc) {
520  Result.clear(Sema::LookupTagName);
521  SemaRef.LookupParsedName(Result, S, &SS);
522  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
523    const char *TagName = 0;
524    const char *FixItTagName = 0;
525    switch (Tag->getTagKind()) {
526      case TTK_Class:
527        TagName = "class";
528        FixItTagName = "class ";
529        break;
530
531      case TTK_Enum:
532        TagName = "enum";
533        FixItTagName = "enum ";
534        break;
535
536      case TTK_Struct:
537        TagName = "struct";
538        FixItTagName = "struct ";
539        break;
540
541      case TTK_Union:
542        TagName = "union";
543        FixItTagName = "union ";
544        break;
545    }
546
547    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
548      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
549      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
550
551    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
552    if (SemaRef.LookupParsedName(R, S, &SS)) {
553      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
554           I != IEnd; ++I)
555        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
556          << Name << TagName;
557    }
558    return true;
559  }
560
561  Result.clear(Sema::LookupOrdinaryName);
562  return false;
563}
564
565Sema::NameClassification Sema::ClassifyName(Scope *S,
566                                            CXXScopeSpec &SS,
567                                            IdentifierInfo *&Name,
568                                            SourceLocation NameLoc,
569                                            const Token &NextToken) {
570  DeclarationNameInfo NameInfo(Name, NameLoc);
571  ObjCMethodDecl *CurMethod = getCurMethodDecl();
572
573  if (NextToken.is(tok::coloncolon)) {
574    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
575                                QualType(), false, SS, 0, false);
576
577  }
578
579  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
580  LookupParsedName(Result, S, &SS, !CurMethod);
581
582  // Perform lookup for Objective-C instance variables (including automatically
583  // synthesized instance variables), if we're in an Objective-C method.
584  // FIXME: This lookup really, really needs to be folded in to the normal
585  // unqualified lookup mechanism.
586  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
587    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
588    if (E.get() || E.isInvalid())
589      return E;
590  }
591
592  bool SecondTry = false;
593  bool IsFilteredTemplateName = false;
594
595Corrected:
596  switch (Result.getResultKind()) {
597  case LookupResult::NotFound:
598    // If an unqualified-id is followed by a '(', then we have a function
599    // call.
600    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
601      // In C++, this is an ADL-only call.
602      // FIXME: Reference?
603      if (getLangOpts().CPlusPlus)
604        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
605
606      // C90 6.3.2.2:
607      //   If the expression that precedes the parenthesized argument list in a
608      //   function call consists solely of an identifier, and if no
609      //   declaration is visible for this identifier, the identifier is
610      //   implicitly declared exactly as if, in the innermost block containing
611      //   the function call, the declaration
612      //
613      //     extern int identifier ();
614      //
615      //   appeared.
616      //
617      // We also allow this in C99 as an extension.
618      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
619        Result.addDecl(D);
620        Result.resolveKind();
621        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
622      }
623    }
624
625    // In C, we first see whether there is a tag type by the same name, in
626    // which case it's likely that the user just forget to write "enum",
627    // "struct", or "union".
628    if (!getLangOpts().CPlusPlus && !SecondTry &&
629        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
630      break;
631    }
632
633    // Perform typo correction to determine if there is another name that is
634    // close to this name.
635    if (!SecondTry) {
636      SecondTry = true;
637      CorrectionCandidateCallback DefaultValidator;
638      // Try to limit which sets of keywords should be included in typo
639      // correction based on what the next token is.
640      DefaultValidator.WantTypeSpecifiers =
641          NextToken.is(tok::l_paren) || NextToken.is(tok::less) ||
642          NextToken.is(tok::identifier) || NextToken.is(tok::star) ||
643          NextToken.is(tok::amp) || NextToken.is(tok::l_square);
644      DefaultValidator.WantExpressionKeywords =
645          NextToken.is(tok::l_paren) || NextToken.is(tok::identifier) ||
646          NextToken.is(tok::arrow) || NextToken.is(tok::period);
647      DefaultValidator.WantRemainingKeywords =
648          NextToken.is(tok::l_paren) || NextToken.is(tok::semi) ||
649          NextToken.is(tok::identifier) || NextToken.is(tok::l_brace);
650      DefaultValidator.WantCXXNamedCasts = false;
651      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
652                                                 Result.getLookupKind(), S,
653                                                 &SS, DefaultValidator)) {
654        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
655        unsigned QualifiedDiag = diag::err_no_member_suggest;
656        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
657        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
658
659        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
660        NamedDecl *UnderlyingFirstDecl
661          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
662        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
663            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
664          UnqualifiedDiag = diag::err_no_template_suggest;
665          QualifiedDiag = diag::err_no_member_template_suggest;
666        } else if (UnderlyingFirstDecl &&
667                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
668                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
669                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
670           UnqualifiedDiag = diag::err_unknown_typename_suggest;
671           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
672         }
673
674        if (SS.isEmpty())
675          Diag(NameLoc, UnqualifiedDiag)
676            << Name << CorrectedQuotedStr
677            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
678        else
679          Diag(NameLoc, QualifiedDiag)
680            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
681            << SS.getRange()
682            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
683
684        // Update the name, so that the caller has the new name.
685        Name = Corrected.getCorrectionAsIdentifierInfo();
686
687        // Typo correction corrected to a keyword.
688        if (Corrected.isKeyword())
689          return Corrected.getCorrectionAsIdentifierInfo();
690
691        // Also update the LookupResult...
692        // FIXME: This should probably go away at some point
693        Result.clear();
694        Result.setLookupName(Corrected.getCorrection());
695        if (FirstDecl) {
696          Result.addDecl(FirstDecl);
697          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
698            << CorrectedQuotedStr;
699        }
700
701        // If we found an Objective-C instance variable, let
702        // LookupInObjCMethod build the appropriate expression to
703        // reference the ivar.
704        // FIXME: This is a gross hack.
705        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
706          Result.clear();
707          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
708          return move(E);
709        }
710
711        goto Corrected;
712      }
713    }
714
715    // We failed to correct; just fall through and let the parser deal with it.
716    Result.suppressDiagnostics();
717    return NameClassification::Unknown();
718
719  case LookupResult::NotFoundInCurrentInstantiation: {
720    // We performed name lookup into the current instantiation, and there were
721    // dependent bases, so we treat this result the same way as any other
722    // dependent nested-name-specifier.
723
724    // C++ [temp.res]p2:
725    //   A name used in a template declaration or definition and that is
726    //   dependent on a template-parameter is assumed not to name a type
727    //   unless the applicable name lookup finds a type name or the name is
728    //   qualified by the keyword typename.
729    //
730    // FIXME: If the next token is '<', we might want to ask the parser to
731    // perform some heroics to see if we actually have a
732    // template-argument-list, which would indicate a missing 'template'
733    // keyword here.
734    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
735                                     NameInfo, /*TemplateArgs=*/0);
736  }
737
738  case LookupResult::Found:
739  case LookupResult::FoundOverloaded:
740  case LookupResult::FoundUnresolvedValue:
741    break;
742
743  case LookupResult::Ambiguous:
744    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
745        hasAnyAcceptableTemplateNames(Result)) {
746      // C++ [temp.local]p3:
747      //   A lookup that finds an injected-class-name (10.2) can result in an
748      //   ambiguity in certain cases (for example, if it is found in more than
749      //   one base class). If all of the injected-class-names that are found
750      //   refer to specializations of the same class template, and if the name
751      //   is followed by a template-argument-list, the reference refers to the
752      //   class template itself and not a specialization thereof, and is not
753      //   ambiguous.
754      //
755      // This filtering can make an ambiguous result into an unambiguous one,
756      // so try again after filtering out template names.
757      FilterAcceptableTemplateNames(Result);
758      if (!Result.isAmbiguous()) {
759        IsFilteredTemplateName = true;
760        break;
761      }
762    }
763
764    // Diagnose the ambiguity and return an error.
765    return NameClassification::Error();
766  }
767
768  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
769      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
770    // C++ [temp.names]p3:
771    //   After name lookup (3.4) finds that a name is a template-name or that
772    //   an operator-function-id or a literal- operator-id refers to a set of
773    //   overloaded functions any member of which is a function template if
774    //   this is followed by a <, the < is always taken as the delimiter of a
775    //   template-argument-list and never as the less-than operator.
776    if (!IsFilteredTemplateName)
777      FilterAcceptableTemplateNames(Result);
778
779    if (!Result.empty()) {
780      bool IsFunctionTemplate;
781      TemplateName Template;
782      if (Result.end() - Result.begin() > 1) {
783        IsFunctionTemplate = true;
784        Template = Context.getOverloadedTemplateName(Result.begin(),
785                                                     Result.end());
786      } else {
787        TemplateDecl *TD
788          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
789        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
790
791        if (SS.isSet() && !SS.isInvalid())
792          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
793                                                    /*TemplateKeyword=*/false,
794                                                      TD);
795        else
796          Template = TemplateName(TD);
797      }
798
799      if (IsFunctionTemplate) {
800        // Function templates always go through overload resolution, at which
801        // point we'll perform the various checks (e.g., accessibility) we need
802        // to based on which function we selected.
803        Result.suppressDiagnostics();
804
805        return NameClassification::FunctionTemplate(Template);
806      }
807
808      return NameClassification::TypeTemplate(Template);
809    }
810  }
811
812  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
813  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
814    DiagnoseUseOfDecl(Type, NameLoc);
815    QualType T = Context.getTypeDeclType(Type);
816    return ParsedType::make(T);
817  }
818
819  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
820  if (!Class) {
821    // FIXME: It's unfortunate that we don't have a Type node for handling this.
822    if (ObjCCompatibleAliasDecl *Alias
823                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
824      Class = Alias->getClassInterface();
825  }
826
827  if (Class) {
828    DiagnoseUseOfDecl(Class, NameLoc);
829
830    if (NextToken.is(tok::period)) {
831      // Interface. <something> is parsed as a property reference expression.
832      // Just return "unknown" as a fall-through for now.
833      Result.suppressDiagnostics();
834      return NameClassification::Unknown();
835    }
836
837    QualType T = Context.getObjCInterfaceType(Class);
838    return ParsedType::make(T);
839  }
840
841  // Check for a tag type hidden by a non-type decl in a few cases where it
842  // seems likely a type is wanted instead of the non-type that was found.
843  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
844      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
845    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
846    if ((NextToken.is(tok::identifier) ||
847         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
848        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
849      FirstDecl = (*Result.begin())->getUnderlyingDecl();
850      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
851        DiagnoseUseOfDecl(Type, NameLoc);
852        QualType T = Context.getTypeDeclType(Type);
853        return ParsedType::make(T);
854      }
855    }
856  }
857
858  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
859    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
860
861  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
862  return BuildDeclarationNameExpr(SS, Result, ADL);
863}
864
865// Determines the context to return to after temporarily entering a
866// context.  This depends in an unnecessarily complicated way on the
867// exact ordering of callbacks from the parser.
868DeclContext *Sema::getContainingDC(DeclContext *DC) {
869
870  // Functions defined inline within classes aren't parsed until we've
871  // finished parsing the top-level class, so the top-level class is
872  // the context we'll need to return to.
873  if (isa<FunctionDecl>(DC)) {
874    DC = DC->getLexicalParent();
875
876    // A function not defined within a class will always return to its
877    // lexical context.
878    if (!isa<CXXRecordDecl>(DC))
879      return DC;
880
881    // A C++ inline method/friend is parsed *after* the topmost class
882    // it was declared in is fully parsed ("complete");  the topmost
883    // class is the context we need to return to.
884    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
885      DC = RD;
886
887    // Return the declaration context of the topmost class the inline method is
888    // declared in.
889    return DC;
890  }
891
892  return DC->getLexicalParent();
893}
894
895void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
896  assert(getContainingDC(DC) == CurContext &&
897      "The next DeclContext should be lexically contained in the current one.");
898  CurContext = DC;
899  S->setEntity(DC);
900}
901
902void Sema::PopDeclContext() {
903  assert(CurContext && "DeclContext imbalance!");
904
905  CurContext = getContainingDC(CurContext);
906  assert(CurContext && "Popped translation unit!");
907}
908
909/// EnterDeclaratorContext - Used when we must lookup names in the context
910/// of a declarator's nested name specifier.
911///
912void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
913  // C++0x [basic.lookup.unqual]p13:
914  //   A name used in the definition of a static data member of class
915  //   X (after the qualified-id of the static member) is looked up as
916  //   if the name was used in a member function of X.
917  // C++0x [basic.lookup.unqual]p14:
918  //   If a variable member of a namespace is defined outside of the
919  //   scope of its namespace then any name used in the definition of
920  //   the variable member (after the declarator-id) is looked up as
921  //   if the definition of the variable member occurred in its
922  //   namespace.
923  // Both of these imply that we should push a scope whose context
924  // is the semantic context of the declaration.  We can't use
925  // PushDeclContext here because that context is not necessarily
926  // lexically contained in the current context.  Fortunately,
927  // the containing scope should have the appropriate information.
928
929  assert(!S->getEntity() && "scope already has entity");
930
931#ifndef NDEBUG
932  Scope *Ancestor = S->getParent();
933  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
934  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
935#endif
936
937  CurContext = DC;
938  S->setEntity(DC);
939}
940
941void Sema::ExitDeclaratorContext(Scope *S) {
942  assert(S->getEntity() == CurContext && "Context imbalance!");
943
944  // Switch back to the lexical context.  The safety of this is
945  // enforced by an assert in EnterDeclaratorContext.
946  Scope *Ancestor = S->getParent();
947  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
948  CurContext = (DeclContext*) Ancestor->getEntity();
949
950  // We don't need to do anything with the scope, which is going to
951  // disappear.
952}
953
954
955void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
956  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
957  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
958    // We assume that the caller has already called
959    // ActOnReenterTemplateScope
960    FD = TFD->getTemplatedDecl();
961  }
962  if (!FD)
963    return;
964
965  // Same implementation as PushDeclContext, but enters the context
966  // from the lexical parent, rather than the top-level class.
967  assert(CurContext == FD->getLexicalParent() &&
968    "The next DeclContext should be lexically contained in the current one.");
969  CurContext = FD;
970  S->setEntity(CurContext);
971
972  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
973    ParmVarDecl *Param = FD->getParamDecl(P);
974    // If the parameter has an identifier, then add it to the scope
975    if (Param->getIdentifier()) {
976      S->AddDecl(Param);
977      IdResolver.AddDecl(Param);
978    }
979  }
980}
981
982
983void Sema::ActOnExitFunctionContext() {
984  // Same implementation as PopDeclContext, but returns to the lexical parent,
985  // rather than the top-level class.
986  assert(CurContext && "DeclContext imbalance!");
987  CurContext = CurContext->getLexicalParent();
988  assert(CurContext && "Popped translation unit!");
989}
990
991
992/// \brief Determine whether we allow overloading of the function
993/// PrevDecl with another declaration.
994///
995/// This routine determines whether overloading is possible, not
996/// whether some new function is actually an overload. It will return
997/// true in C++ (where we can always provide overloads) or, as an
998/// extension, in C when the previous function is already an
999/// overloaded function declaration or has the "overloadable"
1000/// attribute.
1001static bool AllowOverloadingOfFunction(LookupResult &Previous,
1002                                       ASTContext &Context) {
1003  if (Context.getLangOpts().CPlusPlus)
1004    return true;
1005
1006  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1007    return true;
1008
1009  return (Previous.getResultKind() == LookupResult::Found
1010          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1011}
1012
1013/// Add this decl to the scope shadowed decl chains.
1014void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1015  // Move up the scope chain until we find the nearest enclosing
1016  // non-transparent context. The declaration will be introduced into this
1017  // scope.
1018  while (S->getEntity() &&
1019         ((DeclContext *)S->getEntity())->isTransparentContext())
1020    S = S->getParent();
1021
1022  // Add scoped declarations into their context, so that they can be
1023  // found later. Declarations without a context won't be inserted
1024  // into any context.
1025  if (AddToContext)
1026    CurContext->addDecl(D);
1027
1028  // Out-of-line definitions shouldn't be pushed into scope in C++.
1029  // Out-of-line variable and function definitions shouldn't even in C.
1030  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1031      D->isOutOfLine() &&
1032      !D->getDeclContext()->getRedeclContext()->Equals(
1033        D->getLexicalDeclContext()->getRedeclContext()))
1034    return;
1035
1036  // Template instantiations should also not be pushed into scope.
1037  if (isa<FunctionDecl>(D) &&
1038      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1039    return;
1040
1041  // If this replaces anything in the current scope,
1042  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1043                               IEnd = IdResolver.end();
1044  for (; I != IEnd; ++I) {
1045    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1046      S->RemoveDecl(*I);
1047      IdResolver.RemoveDecl(*I);
1048
1049      // Should only need to replace one decl.
1050      break;
1051    }
1052  }
1053
1054  S->AddDecl(D);
1055
1056  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1057    // Implicitly-generated labels may end up getting generated in an order that
1058    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1059    // the label at the appropriate place in the identifier chain.
1060    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1061      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1062      if (IDC == CurContext) {
1063        if (!S->isDeclScope(*I))
1064          continue;
1065      } else if (IDC->Encloses(CurContext))
1066        break;
1067    }
1068
1069    IdResolver.InsertDeclAfter(I, D);
1070  } else {
1071    IdResolver.AddDecl(D);
1072  }
1073}
1074
1075void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1076  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1077    TUScope->AddDecl(D);
1078}
1079
1080bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1081                         bool ExplicitInstantiationOrSpecialization) {
1082  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1083                                  ExplicitInstantiationOrSpecialization);
1084}
1085
1086Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1087  DeclContext *TargetDC = DC->getPrimaryContext();
1088  do {
1089    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1090      if (ScopeDC->getPrimaryContext() == TargetDC)
1091        return S;
1092  } while ((S = S->getParent()));
1093
1094  return 0;
1095}
1096
1097static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1098                                            DeclContext*,
1099                                            ASTContext&);
1100
1101/// Filters out lookup results that don't fall within the given scope
1102/// as determined by isDeclInScope.
1103void Sema::FilterLookupForScope(LookupResult &R,
1104                                DeclContext *Ctx, Scope *S,
1105                                bool ConsiderLinkage,
1106                                bool ExplicitInstantiationOrSpecialization) {
1107  LookupResult::Filter F = R.makeFilter();
1108  while (F.hasNext()) {
1109    NamedDecl *D = F.next();
1110
1111    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1112      continue;
1113
1114    if (ConsiderLinkage &&
1115        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1116      continue;
1117
1118    F.erase();
1119  }
1120
1121  F.done();
1122}
1123
1124static bool isUsingDecl(NamedDecl *D) {
1125  return isa<UsingShadowDecl>(D) ||
1126         isa<UnresolvedUsingTypenameDecl>(D) ||
1127         isa<UnresolvedUsingValueDecl>(D);
1128}
1129
1130/// Removes using shadow declarations from the lookup results.
1131static void RemoveUsingDecls(LookupResult &R) {
1132  LookupResult::Filter F = R.makeFilter();
1133  while (F.hasNext())
1134    if (isUsingDecl(F.next()))
1135      F.erase();
1136
1137  F.done();
1138}
1139
1140/// \brief Check for this common pattern:
1141/// @code
1142/// class S {
1143///   S(const S&); // DO NOT IMPLEMENT
1144///   void operator=(const S&); // DO NOT IMPLEMENT
1145/// };
1146/// @endcode
1147static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1148  // FIXME: Should check for private access too but access is set after we get
1149  // the decl here.
1150  if (D->doesThisDeclarationHaveABody())
1151    return false;
1152
1153  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1154    return CD->isCopyConstructor();
1155  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1156    return Method->isCopyAssignmentOperator();
1157  return false;
1158}
1159
1160bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1161  assert(D);
1162
1163  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1164    return false;
1165
1166  // Ignore class templates.
1167  if (D->getDeclContext()->isDependentContext() ||
1168      D->getLexicalDeclContext()->isDependentContext())
1169    return false;
1170
1171  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1172    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1173      return false;
1174
1175    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1176      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1177        return false;
1178    } else {
1179      // 'static inline' functions are used in headers; don't warn.
1180      if (FD->getStorageClass() == SC_Static &&
1181          FD->isInlineSpecified())
1182        return false;
1183    }
1184
1185    if (FD->doesThisDeclarationHaveABody() &&
1186        Context.DeclMustBeEmitted(FD))
1187      return false;
1188  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1189    if (!VD->isFileVarDecl() ||
1190        VD->getType().isConstant(Context) ||
1191        Context.DeclMustBeEmitted(VD))
1192      return false;
1193
1194    if (VD->isStaticDataMember() &&
1195        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1196      return false;
1197
1198  } else {
1199    return false;
1200  }
1201
1202  // Only warn for unused decls internal to the translation unit.
1203  if (D->getLinkage() == ExternalLinkage)
1204    return false;
1205
1206  return true;
1207}
1208
1209void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1210  if (!D)
1211    return;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    const FunctionDecl *First = FD->getFirstDeclaration();
1215    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1216      return; // First should already be in the vector.
1217  }
1218
1219  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1220    const VarDecl *First = VD->getFirstDeclaration();
1221    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1222      return; // First should already be in the vector.
1223  }
1224
1225  if (ShouldWarnIfUnusedFileScopedDecl(D))
1226    UnusedFileScopedDecls.push_back(D);
1227}
1228
1229static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1230  if (D->isInvalidDecl())
1231    return false;
1232
1233  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1234    return false;
1235
1236  if (isa<LabelDecl>(D))
1237    return true;
1238
1239  // White-list anything that isn't a local variable.
1240  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1241      !D->getDeclContext()->isFunctionOrMethod())
1242    return false;
1243
1244  // Types of valid local variables should be complete, so this should succeed.
1245  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1246
1247    // White-list anything with an __attribute__((unused)) type.
1248    QualType Ty = VD->getType();
1249
1250    // Only look at the outermost level of typedef.
1251    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1252      if (TT->getDecl()->hasAttr<UnusedAttr>())
1253        return false;
1254    }
1255
1256    // If we failed to complete the type for some reason, or if the type is
1257    // dependent, don't diagnose the variable.
1258    if (Ty->isIncompleteType() || Ty->isDependentType())
1259      return false;
1260
1261    if (const TagType *TT = Ty->getAs<TagType>()) {
1262      const TagDecl *Tag = TT->getDecl();
1263      if (Tag->hasAttr<UnusedAttr>())
1264        return false;
1265
1266      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1267        if (!RD->hasTrivialDestructor())
1268          return false;
1269
1270        if (const Expr *Init = VD->getInit()) {
1271          const CXXConstructExpr *Construct =
1272            dyn_cast<CXXConstructExpr>(Init);
1273          if (Construct && !Construct->isElidable()) {
1274            CXXConstructorDecl *CD = Construct->getConstructor();
1275            if (!CD->isTrivial())
1276              return false;
1277          }
1278        }
1279      }
1280    }
1281
1282    // TODO: __attribute__((unused)) templates?
1283  }
1284
1285  return true;
1286}
1287
1288static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1289                                     FixItHint &Hint) {
1290  if (isa<LabelDecl>(D)) {
1291    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1292                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1293    if (AfterColon.isInvalid())
1294      return;
1295    Hint = FixItHint::CreateRemoval(CharSourceRange::
1296                                    getCharRange(D->getLocStart(), AfterColon));
1297  }
1298  return;
1299}
1300
1301/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1302/// unless they are marked attr(unused).
1303void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1304  FixItHint Hint;
1305  if (!ShouldDiagnoseUnusedDecl(D))
1306    return;
1307
1308  GenerateFixForUnusedDecl(D, Context, Hint);
1309
1310  unsigned DiagID;
1311  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1312    DiagID = diag::warn_unused_exception_param;
1313  else if (isa<LabelDecl>(D))
1314    DiagID = diag::warn_unused_label;
1315  else
1316    DiagID = diag::warn_unused_variable;
1317
1318  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1319}
1320
1321static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1322  // Verify that we have no forward references left.  If so, there was a goto
1323  // or address of a label taken, but no definition of it.  Label fwd
1324  // definitions are indicated with a null substmt.
1325  if (L->getStmt() == 0)
1326    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1327}
1328
1329void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1330  if (S->decl_empty()) return;
1331  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1332         "Scope shouldn't contain decls!");
1333
1334  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1335       I != E; ++I) {
1336    Decl *TmpD = (*I);
1337    assert(TmpD && "This decl didn't get pushed??");
1338
1339    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1340    NamedDecl *D = cast<NamedDecl>(TmpD);
1341
1342    if (!D->getDeclName()) continue;
1343
1344    // Diagnose unused variables in this scope.
1345    if (!S->hasErrorOccurred())
1346      DiagnoseUnusedDecl(D);
1347
1348    // If this was a forward reference to a label, verify it was defined.
1349    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1350      CheckPoppedLabel(LD, *this);
1351
1352    // Remove this name from our lexical scope.
1353    IdResolver.RemoveDecl(D);
1354  }
1355}
1356
1357void Sema::ActOnStartFunctionDeclarator() {
1358  ++InFunctionDeclarator;
1359}
1360
1361void Sema::ActOnEndFunctionDeclarator() {
1362  assert(InFunctionDeclarator);
1363  --InFunctionDeclarator;
1364}
1365
1366/// \brief Look for an Objective-C class in the translation unit.
1367///
1368/// \param Id The name of the Objective-C class we're looking for. If
1369/// typo-correction fixes this name, the Id will be updated
1370/// to the fixed name.
1371///
1372/// \param IdLoc The location of the name in the translation unit.
1373///
1374/// \param DoTypoCorrection If true, this routine will attempt typo correction
1375/// if there is no class with the given name.
1376///
1377/// \returns The declaration of the named Objective-C class, or NULL if the
1378/// class could not be found.
1379ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1380                                              SourceLocation IdLoc,
1381                                              bool DoTypoCorrection) {
1382  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1383  // creation from this context.
1384  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1385
1386  if (!IDecl && DoTypoCorrection) {
1387    // Perform typo correction at the given location, but only if we
1388    // find an Objective-C class name.
1389    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1390    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1391                                       LookupOrdinaryName, TUScope, NULL,
1392                                       Validator)) {
1393      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1394      Diag(IdLoc, diag::err_undef_interface_suggest)
1395        << Id << IDecl->getDeclName()
1396        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1397      Diag(IDecl->getLocation(), diag::note_previous_decl)
1398        << IDecl->getDeclName();
1399
1400      Id = IDecl->getIdentifier();
1401    }
1402  }
1403  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1404  // This routine must always return a class definition, if any.
1405  if (Def && Def->getDefinition())
1406      Def = Def->getDefinition();
1407  return Def;
1408}
1409
1410/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1411/// from S, where a non-field would be declared. This routine copes
1412/// with the difference between C and C++ scoping rules in structs and
1413/// unions. For example, the following code is well-formed in C but
1414/// ill-formed in C++:
1415/// @code
1416/// struct S6 {
1417///   enum { BAR } e;
1418/// };
1419///
1420/// void test_S6() {
1421///   struct S6 a;
1422///   a.e = BAR;
1423/// }
1424/// @endcode
1425/// For the declaration of BAR, this routine will return a different
1426/// scope. The scope S will be the scope of the unnamed enumeration
1427/// within S6. In C++, this routine will return the scope associated
1428/// with S6, because the enumeration's scope is a transparent
1429/// context but structures can contain non-field names. In C, this
1430/// routine will return the translation unit scope, since the
1431/// enumeration's scope is a transparent context and structures cannot
1432/// contain non-field names.
1433Scope *Sema::getNonFieldDeclScope(Scope *S) {
1434  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1435         (S->getEntity() &&
1436          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1437         (S->isClassScope() && !getLangOpts().CPlusPlus))
1438    S = S->getParent();
1439  return S;
1440}
1441
1442/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1443/// file scope.  lazily create a decl for it. ForRedeclaration is true
1444/// if we're creating this built-in in anticipation of redeclaring the
1445/// built-in.
1446NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1447                                     Scope *S, bool ForRedeclaration,
1448                                     SourceLocation Loc) {
1449  Builtin::ID BID = (Builtin::ID)bid;
1450
1451  ASTContext::GetBuiltinTypeError Error;
1452  QualType R = Context.GetBuiltinType(BID, Error);
1453  switch (Error) {
1454  case ASTContext::GE_None:
1455    // Okay
1456    break;
1457
1458  case ASTContext::GE_Missing_stdio:
1459    if (ForRedeclaration)
1460      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1461        << Context.BuiltinInfo.GetName(BID);
1462    return 0;
1463
1464  case ASTContext::GE_Missing_setjmp:
1465    if (ForRedeclaration)
1466      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1467        << Context.BuiltinInfo.GetName(BID);
1468    return 0;
1469
1470  case ASTContext::GE_Missing_ucontext:
1471    if (ForRedeclaration)
1472      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1473        << Context.BuiltinInfo.GetName(BID);
1474    return 0;
1475  }
1476
1477  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1478    Diag(Loc, diag::ext_implicit_lib_function_decl)
1479      << Context.BuiltinInfo.GetName(BID)
1480      << R;
1481    if (Context.BuiltinInfo.getHeaderName(BID) &&
1482        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1483          != DiagnosticsEngine::Ignored)
1484      Diag(Loc, diag::note_please_include_header)
1485        << Context.BuiltinInfo.getHeaderName(BID)
1486        << Context.BuiltinInfo.GetName(BID);
1487  }
1488
1489  FunctionDecl *New = FunctionDecl::Create(Context,
1490                                           Context.getTranslationUnitDecl(),
1491                                           Loc, Loc, II, R, /*TInfo=*/0,
1492                                           SC_Extern,
1493                                           SC_None, false,
1494                                           /*hasPrototype=*/true);
1495  New->setImplicit();
1496
1497  // Create Decl objects for each parameter, adding them to the
1498  // FunctionDecl.
1499  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1500    SmallVector<ParmVarDecl*, 16> Params;
1501    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1502      ParmVarDecl *parm =
1503        ParmVarDecl::Create(Context, New, SourceLocation(),
1504                            SourceLocation(), 0,
1505                            FT->getArgType(i), /*TInfo=*/0,
1506                            SC_None, SC_None, 0);
1507      parm->setScopeInfo(0, i);
1508      Params.push_back(parm);
1509    }
1510    New->setParams(Params);
1511  }
1512
1513  AddKnownFunctionAttributes(New);
1514
1515  // TUScope is the translation-unit scope to insert this function into.
1516  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1517  // relate Scopes to DeclContexts, and probably eliminate CurContext
1518  // entirely, but we're not there yet.
1519  DeclContext *SavedContext = CurContext;
1520  CurContext = Context.getTranslationUnitDecl();
1521  PushOnScopeChains(New, TUScope);
1522  CurContext = SavedContext;
1523  return New;
1524}
1525
1526bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1527  QualType OldType;
1528  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1529    OldType = OldTypedef->getUnderlyingType();
1530  else
1531    OldType = Context.getTypeDeclType(Old);
1532  QualType NewType = New->getUnderlyingType();
1533
1534  if (NewType->isVariablyModifiedType()) {
1535    // Must not redefine a typedef with a variably-modified type.
1536    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1537    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1538      << Kind << NewType;
1539    if (Old->getLocation().isValid())
1540      Diag(Old->getLocation(), diag::note_previous_definition);
1541    New->setInvalidDecl();
1542    return true;
1543  }
1544
1545  if (OldType != NewType &&
1546      !OldType->isDependentType() &&
1547      !NewType->isDependentType() &&
1548      !Context.hasSameType(OldType, NewType)) {
1549    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1550    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1551      << Kind << NewType << OldType;
1552    if (Old->getLocation().isValid())
1553      Diag(Old->getLocation(), diag::note_previous_definition);
1554    New->setInvalidDecl();
1555    return true;
1556  }
1557  return false;
1558}
1559
1560/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1561/// same name and scope as a previous declaration 'Old'.  Figure out
1562/// how to resolve this situation, merging decls or emitting
1563/// diagnostics as appropriate. If there was an error, set New to be invalid.
1564///
1565void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1566  // If the new decl is known invalid already, don't bother doing any
1567  // merging checks.
1568  if (New->isInvalidDecl()) return;
1569
1570  // Allow multiple definitions for ObjC built-in typedefs.
1571  // FIXME: Verify the underlying types are equivalent!
1572  if (getLangOpts().ObjC1) {
1573    const IdentifierInfo *TypeID = New->getIdentifier();
1574    switch (TypeID->getLength()) {
1575    default: break;
1576    case 2:
1577      {
1578        if (!TypeID->isStr("id"))
1579          break;
1580        QualType T = New->getUnderlyingType();
1581        if (!T->isPointerType())
1582          break;
1583        if (!T->isVoidPointerType()) {
1584          QualType PT = T->getAs<PointerType>()->getPointeeType();
1585          if (!PT->isStructureType())
1586            break;
1587        }
1588        Context.setObjCIdRedefinitionType(T);
1589        // Install the built-in type for 'id', ignoring the current definition.
1590        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1591        return;
1592      }
1593    case 5:
1594      if (!TypeID->isStr("Class"))
1595        break;
1596      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1597      // Install the built-in type for 'Class', ignoring the current definition.
1598      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1599      return;
1600    case 3:
1601      if (!TypeID->isStr("SEL"))
1602        break;
1603      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1604      // Install the built-in type for 'SEL', ignoring the current definition.
1605      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1606      return;
1607    }
1608    // Fall through - the typedef name was not a builtin type.
1609  }
1610
1611  // Verify the old decl was also a type.
1612  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1613  if (!Old) {
1614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1615      << New->getDeclName();
1616
1617    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1618    if (OldD->getLocation().isValid())
1619      Diag(OldD->getLocation(), diag::note_previous_definition);
1620
1621    return New->setInvalidDecl();
1622  }
1623
1624  // If the old declaration is invalid, just give up here.
1625  if (Old->isInvalidDecl())
1626    return New->setInvalidDecl();
1627
1628  // If the typedef types are not identical, reject them in all languages and
1629  // with any extensions enabled.
1630  if (isIncompatibleTypedef(Old, New))
1631    return;
1632
1633  // The types match.  Link up the redeclaration chain if the old
1634  // declaration was a typedef.
1635  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1636    New->setPreviousDeclaration(Typedef);
1637
1638  if (getLangOpts().MicrosoftExt)
1639    return;
1640
1641  if (getLangOpts().CPlusPlus) {
1642    // C++ [dcl.typedef]p2:
1643    //   In a given non-class scope, a typedef specifier can be used to
1644    //   redefine the name of any type declared in that scope to refer
1645    //   to the type to which it already refers.
1646    if (!isa<CXXRecordDecl>(CurContext))
1647      return;
1648
1649    // C++0x [dcl.typedef]p4:
1650    //   In a given class scope, a typedef specifier can be used to redefine
1651    //   any class-name declared in that scope that is not also a typedef-name
1652    //   to refer to the type to which it already refers.
1653    //
1654    // This wording came in via DR424, which was a correction to the
1655    // wording in DR56, which accidentally banned code like:
1656    //
1657    //   struct S {
1658    //     typedef struct A { } A;
1659    //   };
1660    //
1661    // in the C++03 standard. We implement the C++0x semantics, which
1662    // allow the above but disallow
1663    //
1664    //   struct S {
1665    //     typedef int I;
1666    //     typedef int I;
1667    //   };
1668    //
1669    // since that was the intent of DR56.
1670    if (!isa<TypedefNameDecl>(Old))
1671      return;
1672
1673    Diag(New->getLocation(), diag::err_redefinition)
1674      << New->getDeclName();
1675    Diag(Old->getLocation(), diag::note_previous_definition);
1676    return New->setInvalidDecl();
1677  }
1678
1679  // Modules always permit redefinition of typedefs, as does C11.
1680  if (getLangOpts().Modules || getLangOpts().C11)
1681    return;
1682
1683  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1684  // is normally mapped to an error, but can be controlled with
1685  // -Wtypedef-redefinition.  If either the original or the redefinition is
1686  // in a system header, don't emit this for compatibility with GCC.
1687  if (getDiagnostics().getSuppressSystemWarnings() &&
1688      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1689       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1690    return;
1691
1692  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1693    << New->getDeclName();
1694  Diag(Old->getLocation(), diag::note_previous_definition);
1695  return;
1696}
1697
1698/// DeclhasAttr - returns true if decl Declaration already has the target
1699/// attribute.
1700static bool
1701DeclHasAttr(const Decl *D, const Attr *A) {
1702  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1703  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1704  // responsible for making sure they are consistent.
1705  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1706  if (AA)
1707    return false;
1708
1709  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1710  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1711  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1712    if ((*i)->getKind() == A->getKind()) {
1713      if (Ann) {
1714        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1715          return true;
1716        continue;
1717      }
1718      // FIXME: Don't hardcode this check
1719      if (OA && isa<OwnershipAttr>(*i))
1720        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1721      return true;
1722    }
1723
1724  return false;
1725}
1726
1727bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1728  InheritableAttr *NewAttr = NULL;
1729  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1730    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1731                                    AA->getIntroduced(), AA->getDeprecated(),
1732                                    AA->getObsoleted(), AA->getUnavailable(),
1733                                    AA->getMessage());
1734  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1735    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1736  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1737    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1738  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1739    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1740  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1741    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1742                              FA->getFormatIdx(), FA->getFirstArg());
1743  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1744    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1745  else if (!DeclHasAttr(D, Attr))
1746    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1747
1748  if (NewAttr) {
1749    NewAttr->setInherited(true);
1750    D->addAttr(NewAttr);
1751    return true;
1752  }
1753
1754  return false;
1755}
1756
1757static const Decl *getDefinition(const Decl *D) {
1758  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1759    return TD->getDefinition();
1760  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
1761    return VD->getDefinition();
1762  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1763    const FunctionDecl* Def;
1764    if (FD->hasBody(Def))
1765      return Def;
1766  }
1767  return NULL;
1768}
1769
1770static bool hasAttribute(const Decl *D, attr::Kind Kind) {
1771  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
1772       I != E; ++I) {
1773    Attr *Attribute = *I;
1774    if (Attribute->getKind() == Kind)
1775      return true;
1776  }
1777  return false;
1778}
1779
1780/// checkNewAttributesAfterDef - If we already have a definition, check that
1781/// there are no new attributes in this declaration.
1782static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
1783  if (!New->hasAttrs())
1784    return;
1785
1786  const Decl *Def = getDefinition(Old);
1787  if (!Def || Def == New)
1788    return;
1789
1790  AttrVec &NewAttributes = New->getAttrs();
1791  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
1792    const Attr *NewAttribute = NewAttributes[I];
1793    if (hasAttribute(Def, NewAttribute->getKind())) {
1794      ++I;
1795      continue; // regular attr merging will take care of validating this.
1796    }
1797    S.Diag(NewAttribute->getLocation(),
1798           diag::warn_attribute_precede_definition);
1799    S.Diag(Def->getLocation(), diag::note_previous_definition);
1800    NewAttributes.erase(NewAttributes.begin() + I);
1801    --E;
1802  }
1803}
1804
1805/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1806void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1807                               bool MergeDeprecation) {
1808  // attributes declared post-definition are currently ignored
1809  checkNewAttributesAfterDef(*this, New, Old);
1810
1811  if (!Old->hasAttrs())
1812    return;
1813
1814  bool foundAny = New->hasAttrs();
1815
1816  // Ensure that any moving of objects within the allocated map is done before
1817  // we process them.
1818  if (!foundAny) New->setAttrs(AttrVec());
1819
1820  for (specific_attr_iterator<InheritableAttr>
1821         i = Old->specific_attr_begin<InheritableAttr>(),
1822         e = Old->specific_attr_end<InheritableAttr>();
1823       i != e; ++i) {
1824    // Ignore deprecated/unavailable/availability attributes if requested.
1825    if (!MergeDeprecation &&
1826        (isa<DeprecatedAttr>(*i) ||
1827         isa<UnavailableAttr>(*i) ||
1828         isa<AvailabilityAttr>(*i)))
1829      continue;
1830
1831    if (mergeDeclAttribute(New, *i))
1832      foundAny = true;
1833  }
1834
1835  if (!foundAny) New->dropAttrs();
1836}
1837
1838/// mergeParamDeclAttributes - Copy attributes from the old parameter
1839/// to the new one.
1840static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1841                                     const ParmVarDecl *oldDecl,
1842                                     ASTContext &C) {
1843  if (!oldDecl->hasAttrs())
1844    return;
1845
1846  bool foundAny = newDecl->hasAttrs();
1847
1848  // Ensure that any moving of objects within the allocated map is
1849  // done before we process them.
1850  if (!foundAny) newDecl->setAttrs(AttrVec());
1851
1852  for (specific_attr_iterator<InheritableParamAttr>
1853       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1854       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1855    if (!DeclHasAttr(newDecl, *i)) {
1856      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1857      newAttr->setInherited(true);
1858      newDecl->addAttr(newAttr);
1859      foundAny = true;
1860    }
1861  }
1862
1863  if (!foundAny) newDecl->dropAttrs();
1864}
1865
1866namespace {
1867
1868/// Used in MergeFunctionDecl to keep track of function parameters in
1869/// C.
1870struct GNUCompatibleParamWarning {
1871  ParmVarDecl *OldParm;
1872  ParmVarDecl *NewParm;
1873  QualType PromotedType;
1874};
1875
1876}
1877
1878/// getSpecialMember - get the special member enum for a method.
1879Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1880  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1881    if (Ctor->isDefaultConstructor())
1882      return Sema::CXXDefaultConstructor;
1883
1884    if (Ctor->isCopyConstructor())
1885      return Sema::CXXCopyConstructor;
1886
1887    if (Ctor->isMoveConstructor())
1888      return Sema::CXXMoveConstructor;
1889  } else if (isa<CXXDestructorDecl>(MD)) {
1890    return Sema::CXXDestructor;
1891  } else if (MD->isCopyAssignmentOperator()) {
1892    return Sema::CXXCopyAssignment;
1893  } else if (MD->isMoveAssignmentOperator()) {
1894    return Sema::CXXMoveAssignment;
1895  }
1896
1897  return Sema::CXXInvalid;
1898}
1899
1900/// canRedefineFunction - checks if a function can be redefined. Currently,
1901/// only extern inline functions can be redefined, and even then only in
1902/// GNU89 mode.
1903static bool canRedefineFunction(const FunctionDecl *FD,
1904                                const LangOptions& LangOpts) {
1905  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1906          !LangOpts.CPlusPlus &&
1907          FD->isInlineSpecified() &&
1908          FD->getStorageClass() == SC_Extern);
1909}
1910
1911/// MergeFunctionDecl - We just parsed a function 'New' from
1912/// declarator D which has the same name and scope as a previous
1913/// declaration 'Old'.  Figure out how to resolve this situation,
1914/// merging decls or emitting diagnostics as appropriate.
1915///
1916/// In C++, New and Old must be declarations that are not
1917/// overloaded. Use IsOverload to determine whether New and Old are
1918/// overloaded, and to select the Old declaration that New should be
1919/// merged with.
1920///
1921/// Returns true if there was an error, false otherwise.
1922bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1923  // Verify the old decl was also a function.
1924  FunctionDecl *Old = 0;
1925  if (FunctionTemplateDecl *OldFunctionTemplate
1926        = dyn_cast<FunctionTemplateDecl>(OldD))
1927    Old = OldFunctionTemplate->getTemplatedDecl();
1928  else
1929    Old = dyn_cast<FunctionDecl>(OldD);
1930  if (!Old) {
1931    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1932      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1933      Diag(Shadow->getTargetDecl()->getLocation(),
1934           diag::note_using_decl_target);
1935      Diag(Shadow->getUsingDecl()->getLocation(),
1936           diag::note_using_decl) << 0;
1937      return true;
1938    }
1939
1940    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1941      << New->getDeclName();
1942    Diag(OldD->getLocation(), diag::note_previous_definition);
1943    return true;
1944  }
1945
1946  // Determine whether the previous declaration was a definition,
1947  // implicit declaration, or a declaration.
1948  diag::kind PrevDiag;
1949  if (Old->isThisDeclarationADefinition())
1950    PrevDiag = diag::note_previous_definition;
1951  else if (Old->isImplicit())
1952    PrevDiag = diag::note_previous_implicit_declaration;
1953  else
1954    PrevDiag = diag::note_previous_declaration;
1955
1956  QualType OldQType = Context.getCanonicalType(Old->getType());
1957  QualType NewQType = Context.getCanonicalType(New->getType());
1958
1959  // Don't complain about this if we're in GNU89 mode and the old function
1960  // is an extern inline function.
1961  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1962      New->getStorageClass() == SC_Static &&
1963      Old->getStorageClass() != SC_Static &&
1964      !canRedefineFunction(Old, getLangOpts())) {
1965    if (getLangOpts().MicrosoftExt) {
1966      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1967      Diag(Old->getLocation(), PrevDiag);
1968    } else {
1969      Diag(New->getLocation(), diag::err_static_non_static) << New;
1970      Diag(Old->getLocation(), PrevDiag);
1971      return true;
1972    }
1973  }
1974
1975  // If a function is first declared with a calling convention, but is
1976  // later declared or defined without one, the second decl assumes the
1977  // calling convention of the first.
1978  //
1979  // For the new decl, we have to look at the NON-canonical type to tell the
1980  // difference between a function that really doesn't have a calling
1981  // convention and one that is declared cdecl. That's because in
1982  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1983  // because it is the default calling convention.
1984  //
1985  // Note also that we DO NOT return at this point, because we still have
1986  // other tests to run.
1987  const FunctionType *OldType = cast<FunctionType>(OldQType);
1988  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1989  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1990  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1991  bool RequiresAdjustment = false;
1992  if (OldTypeInfo.getCC() != CC_Default &&
1993      NewTypeInfo.getCC() == CC_Default) {
1994    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1995    RequiresAdjustment = true;
1996  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1997                                     NewTypeInfo.getCC())) {
1998    // Calling conventions really aren't compatible, so complain.
1999    Diag(New->getLocation(), diag::err_cconv_change)
2000      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2001      << (OldTypeInfo.getCC() == CC_Default)
2002      << (OldTypeInfo.getCC() == CC_Default ? "" :
2003          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2004    Diag(Old->getLocation(), diag::note_previous_declaration);
2005    return true;
2006  }
2007
2008  // FIXME: diagnose the other way around?
2009  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2010    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2011    RequiresAdjustment = true;
2012  }
2013
2014  // Merge regparm attribute.
2015  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2016      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2017    if (NewTypeInfo.getHasRegParm()) {
2018      Diag(New->getLocation(), diag::err_regparm_mismatch)
2019        << NewType->getRegParmType()
2020        << OldType->getRegParmType();
2021      Diag(Old->getLocation(), diag::note_previous_declaration);
2022      return true;
2023    }
2024
2025    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2026    RequiresAdjustment = true;
2027  }
2028
2029  // Merge ns_returns_retained attribute.
2030  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2031    if (NewTypeInfo.getProducesResult()) {
2032      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2033      Diag(Old->getLocation(), diag::note_previous_declaration);
2034      return true;
2035    }
2036
2037    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2038    RequiresAdjustment = true;
2039  }
2040
2041  if (RequiresAdjustment) {
2042    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2043    New->setType(QualType(NewType, 0));
2044    NewQType = Context.getCanonicalType(New->getType());
2045  }
2046
2047  if (getLangOpts().CPlusPlus) {
2048    // (C++98 13.1p2):
2049    //   Certain function declarations cannot be overloaded:
2050    //     -- Function declarations that differ only in the return type
2051    //        cannot be overloaded.
2052    QualType OldReturnType = OldType->getResultType();
2053    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2054    QualType ResQT;
2055    if (OldReturnType != NewReturnType) {
2056      if (NewReturnType->isObjCObjectPointerType()
2057          && OldReturnType->isObjCObjectPointerType())
2058        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2059      if (ResQT.isNull()) {
2060        if (New->isCXXClassMember() && New->isOutOfLine())
2061          Diag(New->getLocation(),
2062               diag::err_member_def_does_not_match_ret_type) << New;
2063        else
2064          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2065        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2066        return true;
2067      }
2068      else
2069        NewQType = ResQT;
2070    }
2071
2072    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2073    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2074    if (OldMethod && NewMethod) {
2075      // Preserve triviality.
2076      NewMethod->setTrivial(OldMethod->isTrivial());
2077
2078      // MSVC allows explicit template specialization at class scope:
2079      // 2 CXMethodDecls referring to the same function will be injected.
2080      // We don't want a redeclartion error.
2081      bool IsClassScopeExplicitSpecialization =
2082                              OldMethod->isFunctionTemplateSpecialization() &&
2083                              NewMethod->isFunctionTemplateSpecialization();
2084      bool isFriend = NewMethod->getFriendObjectKind();
2085
2086      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2087          !IsClassScopeExplicitSpecialization) {
2088        //    -- Member function declarations with the same name and the
2089        //       same parameter types cannot be overloaded if any of them
2090        //       is a static member function declaration.
2091        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2092          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2093          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2094          return true;
2095        }
2096
2097        // C++ [class.mem]p1:
2098        //   [...] A member shall not be declared twice in the
2099        //   member-specification, except that a nested class or member
2100        //   class template can be declared and then later defined.
2101        if (ActiveTemplateInstantiations.empty()) {
2102          unsigned NewDiag;
2103          if (isa<CXXConstructorDecl>(OldMethod))
2104            NewDiag = diag::err_constructor_redeclared;
2105          else if (isa<CXXDestructorDecl>(NewMethod))
2106            NewDiag = diag::err_destructor_redeclared;
2107          else if (isa<CXXConversionDecl>(NewMethod))
2108            NewDiag = diag::err_conv_function_redeclared;
2109          else
2110            NewDiag = diag::err_member_redeclared;
2111
2112          Diag(New->getLocation(), NewDiag);
2113        } else {
2114          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2115            << New << New->getType();
2116        }
2117        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2118
2119      // Complain if this is an explicit declaration of a special
2120      // member that was initially declared implicitly.
2121      //
2122      // As an exception, it's okay to befriend such methods in order
2123      // to permit the implicit constructor/destructor/operator calls.
2124      } else if (OldMethod->isImplicit()) {
2125        if (isFriend) {
2126          NewMethod->setImplicit();
2127        } else {
2128          Diag(NewMethod->getLocation(),
2129               diag::err_definition_of_implicitly_declared_member)
2130            << New << getSpecialMember(OldMethod);
2131          return true;
2132        }
2133      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2134        Diag(NewMethod->getLocation(),
2135             diag::err_definition_of_explicitly_defaulted_member)
2136          << getSpecialMember(OldMethod);
2137        return true;
2138      }
2139    }
2140
2141    // (C++98 8.3.5p3):
2142    //   All declarations for a function shall agree exactly in both the
2143    //   return type and the parameter-type-list.
2144    // We also want to respect all the extended bits except noreturn.
2145
2146    // noreturn should now match unless the old type info didn't have it.
2147    QualType OldQTypeForComparison = OldQType;
2148    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2149      assert(OldQType == QualType(OldType, 0));
2150      const FunctionType *OldTypeForComparison
2151        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2152      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2153      assert(OldQTypeForComparison.isCanonical());
2154    }
2155
2156    if (OldQTypeForComparison == NewQType)
2157      return MergeCompatibleFunctionDecls(New, Old, S);
2158
2159    // Fall through for conflicting redeclarations and redefinitions.
2160  }
2161
2162  // C: Function types need to be compatible, not identical. This handles
2163  // duplicate function decls like "void f(int); void f(enum X);" properly.
2164  if (!getLangOpts().CPlusPlus &&
2165      Context.typesAreCompatible(OldQType, NewQType)) {
2166    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2167    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2168    const FunctionProtoType *OldProto = 0;
2169    if (isa<FunctionNoProtoType>(NewFuncType) &&
2170        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2171      // The old declaration provided a function prototype, but the
2172      // new declaration does not. Merge in the prototype.
2173      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2174      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2175                                                 OldProto->arg_type_end());
2176      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2177                                         ParamTypes.data(), ParamTypes.size(),
2178                                         OldProto->getExtProtoInfo());
2179      New->setType(NewQType);
2180      New->setHasInheritedPrototype();
2181
2182      // Synthesize a parameter for each argument type.
2183      SmallVector<ParmVarDecl*, 16> Params;
2184      for (FunctionProtoType::arg_type_iterator
2185             ParamType = OldProto->arg_type_begin(),
2186             ParamEnd = OldProto->arg_type_end();
2187           ParamType != ParamEnd; ++ParamType) {
2188        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2189                                                 SourceLocation(),
2190                                                 SourceLocation(), 0,
2191                                                 *ParamType, /*TInfo=*/0,
2192                                                 SC_None, SC_None,
2193                                                 0);
2194        Param->setScopeInfo(0, Params.size());
2195        Param->setImplicit();
2196        Params.push_back(Param);
2197      }
2198
2199      New->setParams(Params);
2200    }
2201
2202    return MergeCompatibleFunctionDecls(New, Old, S);
2203  }
2204
2205  // GNU C permits a K&R definition to follow a prototype declaration
2206  // if the declared types of the parameters in the K&R definition
2207  // match the types in the prototype declaration, even when the
2208  // promoted types of the parameters from the K&R definition differ
2209  // from the types in the prototype. GCC then keeps the types from
2210  // the prototype.
2211  //
2212  // If a variadic prototype is followed by a non-variadic K&R definition,
2213  // the K&R definition becomes variadic.  This is sort of an edge case, but
2214  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2215  // C99 6.9.1p8.
2216  if (!getLangOpts().CPlusPlus &&
2217      Old->hasPrototype() && !New->hasPrototype() &&
2218      New->getType()->getAs<FunctionProtoType>() &&
2219      Old->getNumParams() == New->getNumParams()) {
2220    SmallVector<QualType, 16> ArgTypes;
2221    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2222    const FunctionProtoType *OldProto
2223      = Old->getType()->getAs<FunctionProtoType>();
2224    const FunctionProtoType *NewProto
2225      = New->getType()->getAs<FunctionProtoType>();
2226
2227    // Determine whether this is the GNU C extension.
2228    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2229                                               NewProto->getResultType());
2230    bool LooseCompatible = !MergedReturn.isNull();
2231    for (unsigned Idx = 0, End = Old->getNumParams();
2232         LooseCompatible && Idx != End; ++Idx) {
2233      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2234      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2235      if (Context.typesAreCompatible(OldParm->getType(),
2236                                     NewProto->getArgType(Idx))) {
2237        ArgTypes.push_back(NewParm->getType());
2238      } else if (Context.typesAreCompatible(OldParm->getType(),
2239                                            NewParm->getType(),
2240                                            /*CompareUnqualified=*/true)) {
2241        GNUCompatibleParamWarning Warn
2242          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2243        Warnings.push_back(Warn);
2244        ArgTypes.push_back(NewParm->getType());
2245      } else
2246        LooseCompatible = false;
2247    }
2248
2249    if (LooseCompatible) {
2250      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2251        Diag(Warnings[Warn].NewParm->getLocation(),
2252             diag::ext_param_promoted_not_compatible_with_prototype)
2253          << Warnings[Warn].PromotedType
2254          << Warnings[Warn].OldParm->getType();
2255        if (Warnings[Warn].OldParm->getLocation().isValid())
2256          Diag(Warnings[Warn].OldParm->getLocation(),
2257               diag::note_previous_declaration);
2258      }
2259
2260      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2261                                           ArgTypes.size(),
2262                                           OldProto->getExtProtoInfo()));
2263      return MergeCompatibleFunctionDecls(New, Old, S);
2264    }
2265
2266    // Fall through to diagnose conflicting types.
2267  }
2268
2269  // A function that has already been declared has been redeclared or defined
2270  // with a different type- show appropriate diagnostic
2271  if (unsigned BuiltinID = Old->getBuiltinID()) {
2272    // The user has declared a builtin function with an incompatible
2273    // signature.
2274    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2275      // The function the user is redeclaring is a library-defined
2276      // function like 'malloc' or 'printf'. Warn about the
2277      // redeclaration, then pretend that we don't know about this
2278      // library built-in.
2279      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2280      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2281        << Old << Old->getType();
2282      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2283      Old->setInvalidDecl();
2284      return false;
2285    }
2286
2287    PrevDiag = diag::note_previous_builtin_declaration;
2288  }
2289
2290  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2291  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2292  return true;
2293}
2294
2295/// \brief Completes the merge of two function declarations that are
2296/// known to be compatible.
2297///
2298/// This routine handles the merging of attributes and other
2299/// properties of function declarations form the old declaration to
2300/// the new declaration, once we know that New is in fact a
2301/// redeclaration of Old.
2302///
2303/// \returns false
2304bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2305                                        Scope *S) {
2306  // Merge the attributes
2307  mergeDeclAttributes(New, Old);
2308
2309  // Merge the storage class.
2310  if (Old->getStorageClass() != SC_Extern &&
2311      Old->getStorageClass() != SC_None)
2312    New->setStorageClass(Old->getStorageClass());
2313
2314  // Merge "pure" flag.
2315  if (Old->isPure())
2316    New->setPure();
2317
2318  // Merge attributes from the parameters.  These can mismatch with K&R
2319  // declarations.
2320  if (New->getNumParams() == Old->getNumParams())
2321    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2322      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2323                               Context);
2324
2325  if (getLangOpts().CPlusPlus)
2326    return MergeCXXFunctionDecl(New, Old, S);
2327
2328  return false;
2329}
2330
2331
2332void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2333                                ObjCMethodDecl *oldMethod) {
2334
2335  // Merge the attributes, including deprecated/unavailable
2336  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2337
2338  // Merge attributes from the parameters.
2339  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2340                                       oe = oldMethod->param_end();
2341  for (ObjCMethodDecl::param_iterator
2342         ni = newMethod->param_begin(), ne = newMethod->param_end();
2343       ni != ne && oi != oe; ++ni, ++oi)
2344    mergeParamDeclAttributes(*ni, *oi, Context);
2345
2346  CheckObjCMethodOverride(newMethod, oldMethod, true);
2347}
2348
2349/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2350/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2351/// emitting diagnostics as appropriate.
2352///
2353/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2354/// to here in AddInitializerToDecl. We can't check them before the initializer
2355/// is attached.
2356void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2357  if (New->isInvalidDecl() || Old->isInvalidDecl())
2358    return;
2359
2360  QualType MergedT;
2361  if (getLangOpts().CPlusPlus) {
2362    AutoType *AT = New->getType()->getContainedAutoType();
2363    if (AT && !AT->isDeduced()) {
2364      // We don't know what the new type is until the initializer is attached.
2365      return;
2366    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2367      // These could still be something that needs exception specs checked.
2368      return MergeVarDeclExceptionSpecs(New, Old);
2369    }
2370    // C++ [basic.link]p10:
2371    //   [...] the types specified by all declarations referring to a given
2372    //   object or function shall be identical, except that declarations for an
2373    //   array object can specify array types that differ by the presence or
2374    //   absence of a major array bound (8.3.4).
2375    else if (Old->getType()->isIncompleteArrayType() &&
2376             New->getType()->isArrayType()) {
2377      CanQual<ArrayType> OldArray
2378        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2379      CanQual<ArrayType> NewArray
2380        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2381      if (OldArray->getElementType() == NewArray->getElementType())
2382        MergedT = New->getType();
2383    } else if (Old->getType()->isArrayType() &&
2384             New->getType()->isIncompleteArrayType()) {
2385      CanQual<ArrayType> OldArray
2386        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2387      CanQual<ArrayType> NewArray
2388        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2389      if (OldArray->getElementType() == NewArray->getElementType())
2390        MergedT = Old->getType();
2391    } else if (New->getType()->isObjCObjectPointerType()
2392               && Old->getType()->isObjCObjectPointerType()) {
2393        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2394                                                        Old->getType());
2395    }
2396  } else {
2397    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2398  }
2399  if (MergedT.isNull()) {
2400    Diag(New->getLocation(), diag::err_redefinition_different_type)
2401      << New->getDeclName();
2402    Diag(Old->getLocation(), diag::note_previous_definition);
2403    return New->setInvalidDecl();
2404  }
2405  New->setType(MergedT);
2406}
2407
2408/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2409/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2410/// situation, merging decls or emitting diagnostics as appropriate.
2411///
2412/// Tentative definition rules (C99 6.9.2p2) are checked by
2413/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2414/// definitions here, since the initializer hasn't been attached.
2415///
2416void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2417  // If the new decl is already invalid, don't do any other checking.
2418  if (New->isInvalidDecl())
2419    return;
2420
2421  // Verify the old decl was also a variable.
2422  VarDecl *Old = 0;
2423  if (!Previous.isSingleResult() ||
2424      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2425    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2426      << New->getDeclName();
2427    Diag(Previous.getRepresentativeDecl()->getLocation(),
2428         diag::note_previous_definition);
2429    return New->setInvalidDecl();
2430  }
2431
2432  // C++ [class.mem]p1:
2433  //   A member shall not be declared twice in the member-specification [...]
2434  //
2435  // Here, we need only consider static data members.
2436  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2437    Diag(New->getLocation(), diag::err_duplicate_member)
2438      << New->getIdentifier();
2439    Diag(Old->getLocation(), diag::note_previous_declaration);
2440    New->setInvalidDecl();
2441  }
2442
2443  mergeDeclAttributes(New, Old);
2444  // Warn if an already-declared variable is made a weak_import in a subsequent
2445  // declaration
2446  if (New->getAttr<WeakImportAttr>() &&
2447      Old->getStorageClass() == SC_None &&
2448      !Old->getAttr<WeakImportAttr>()) {
2449    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2450    Diag(Old->getLocation(), diag::note_previous_definition);
2451    // Remove weak_import attribute on new declaration.
2452    New->dropAttr<WeakImportAttr>();
2453  }
2454
2455  // Merge the types.
2456  MergeVarDeclTypes(New, Old);
2457  if (New->isInvalidDecl())
2458    return;
2459
2460  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2461  if (New->getStorageClass() == SC_Static &&
2462      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2463    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2464    Diag(Old->getLocation(), diag::note_previous_definition);
2465    return New->setInvalidDecl();
2466  }
2467  // C99 6.2.2p4:
2468  //   For an identifier declared with the storage-class specifier
2469  //   extern in a scope in which a prior declaration of that
2470  //   identifier is visible,23) if the prior declaration specifies
2471  //   internal or external linkage, the linkage of the identifier at
2472  //   the later declaration is the same as the linkage specified at
2473  //   the prior declaration. If no prior declaration is visible, or
2474  //   if the prior declaration specifies no linkage, then the
2475  //   identifier has external linkage.
2476  if (New->hasExternalStorage() && Old->hasLinkage())
2477    /* Okay */;
2478  else if (New->getStorageClass() != SC_Static &&
2479           Old->getStorageClass() == SC_Static) {
2480    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2481    Diag(Old->getLocation(), diag::note_previous_definition);
2482    return New->setInvalidDecl();
2483  }
2484
2485  // Check if extern is followed by non-extern and vice-versa.
2486  if (New->hasExternalStorage() &&
2487      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2488    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2489    Diag(Old->getLocation(), diag::note_previous_definition);
2490    return New->setInvalidDecl();
2491  }
2492  if (Old->hasExternalStorage() &&
2493      !New->hasLinkage() && New->isLocalVarDecl()) {
2494    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2495    Diag(Old->getLocation(), diag::note_previous_definition);
2496    return New->setInvalidDecl();
2497  }
2498
2499  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2500
2501  // FIXME: The test for external storage here seems wrong? We still
2502  // need to check for mismatches.
2503  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2504      // Don't complain about out-of-line definitions of static members.
2505      !(Old->getLexicalDeclContext()->isRecord() &&
2506        !New->getLexicalDeclContext()->isRecord())) {
2507    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2508    Diag(Old->getLocation(), diag::note_previous_definition);
2509    return New->setInvalidDecl();
2510  }
2511
2512  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2513    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2514    Diag(Old->getLocation(), diag::note_previous_definition);
2515  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2516    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2517    Diag(Old->getLocation(), diag::note_previous_definition);
2518  }
2519
2520  // C++ doesn't have tentative definitions, so go right ahead and check here.
2521  const VarDecl *Def;
2522  if (getLangOpts().CPlusPlus &&
2523      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2524      (Def = Old->getDefinition())) {
2525    Diag(New->getLocation(), diag::err_redefinition)
2526      << New->getDeclName();
2527    Diag(Def->getLocation(), diag::note_previous_definition);
2528    New->setInvalidDecl();
2529    return;
2530  }
2531  // c99 6.2.2 P4.
2532  // For an identifier declared with the storage-class specifier extern in a
2533  // scope in which a prior declaration of that identifier is visible, if
2534  // the prior declaration specifies internal or external linkage, the linkage
2535  // of the identifier at the later declaration is the same as the linkage
2536  // specified at the prior declaration.
2537  // FIXME. revisit this code.
2538  if (New->hasExternalStorage() &&
2539      Old->getLinkage() == InternalLinkage &&
2540      New->getDeclContext() == Old->getDeclContext())
2541    New->setStorageClass(Old->getStorageClass());
2542
2543  // Keep a chain of previous declarations.
2544  New->setPreviousDeclaration(Old);
2545
2546  // Inherit access appropriately.
2547  New->setAccess(Old->getAccess());
2548}
2549
2550/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2551/// no declarator (e.g. "struct foo;") is parsed.
2552Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2553                                       DeclSpec &DS) {
2554  return ParsedFreeStandingDeclSpec(S, AS, DS,
2555                                    MultiTemplateParamsArg(*this, 0, 0));
2556}
2557
2558/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2559/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2560/// parameters to cope with template friend declarations.
2561Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2562                                       DeclSpec &DS,
2563                                       MultiTemplateParamsArg TemplateParams) {
2564  Decl *TagD = 0;
2565  TagDecl *Tag = 0;
2566  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2567      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2568      DS.getTypeSpecType() == DeclSpec::TST_union ||
2569      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2570    TagD = DS.getRepAsDecl();
2571
2572    if (!TagD) // We probably had an error
2573      return 0;
2574
2575    // Note that the above type specs guarantee that the
2576    // type rep is a Decl, whereas in many of the others
2577    // it's a Type.
2578    if (isa<TagDecl>(TagD))
2579      Tag = cast<TagDecl>(TagD);
2580    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2581      Tag = CTD->getTemplatedDecl();
2582  }
2583
2584  if (Tag) {
2585    Tag->setFreeStanding();
2586    if (Tag->isInvalidDecl())
2587      return Tag;
2588  }
2589
2590  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2591    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2592    // or incomplete types shall not be restrict-qualified."
2593    if (TypeQuals & DeclSpec::TQ_restrict)
2594      Diag(DS.getRestrictSpecLoc(),
2595           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2596           << DS.getSourceRange();
2597  }
2598
2599  if (DS.isConstexprSpecified()) {
2600    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2601    // and definitions of functions and variables.
2602    if (Tag)
2603      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2604        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2605            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2606            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2607    else
2608      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2609    // Don't emit warnings after this error.
2610    return TagD;
2611  }
2612
2613  if (DS.isFriendSpecified()) {
2614    // If we're dealing with a decl but not a TagDecl, assume that
2615    // whatever routines created it handled the friendship aspect.
2616    if (TagD && !Tag)
2617      return 0;
2618    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2619  }
2620
2621  // Track whether we warned about the fact that there aren't any
2622  // declarators.
2623  bool emittedWarning = false;
2624
2625  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2626    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2627        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2628      if (getLangOpts().CPlusPlus ||
2629          Record->getDeclContext()->isRecord())
2630        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2631
2632      Diag(DS.getLocStart(), diag::ext_no_declarators)
2633        << DS.getSourceRange();
2634      emittedWarning = true;
2635    }
2636  }
2637
2638  // Check for Microsoft C extension: anonymous struct.
2639  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2640      CurContext->isRecord() &&
2641      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2642    // Handle 2 kinds of anonymous struct:
2643    //   struct STRUCT;
2644    // and
2645    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2646    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2647    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2648        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2649         DS.getRepAsType().get()->isStructureType())) {
2650      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2651        << DS.getSourceRange();
2652      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2653    }
2654  }
2655
2656  if (getLangOpts().CPlusPlus &&
2657      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2658    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2659      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2660          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2661        Diag(Enum->getLocation(), diag::ext_no_declarators)
2662          << DS.getSourceRange();
2663        emittedWarning = true;
2664      }
2665
2666  // Skip all the checks below if we have a type error.
2667  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2668
2669  if (!DS.isMissingDeclaratorOk()) {
2670    // Warn about typedefs of enums without names, since this is an
2671    // extension in both Microsoft and GNU.
2672    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2673        Tag && isa<EnumDecl>(Tag)) {
2674      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2675        << DS.getSourceRange();
2676      return Tag;
2677    }
2678
2679    Diag(DS.getLocStart(), diag::ext_no_declarators)
2680      << DS.getSourceRange();
2681    emittedWarning = true;
2682  }
2683
2684  // We're going to complain about a bunch of spurious specifiers;
2685  // only do this if we're declaring a tag, because otherwise we
2686  // should be getting diag::ext_no_declarators.
2687  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2688    return TagD;
2689
2690  // Note that a linkage-specification sets a storage class, but
2691  // 'extern "C" struct foo;' is actually valid and not theoretically
2692  // useless.
2693  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2694    if (!DS.isExternInLinkageSpec())
2695      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2696        << DeclSpec::getSpecifierName(scs);
2697
2698  if (DS.isThreadSpecified())
2699    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2700  if (DS.getTypeQualifiers()) {
2701    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2702      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2703    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2704      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2705    // Restrict is covered above.
2706  }
2707  if (DS.isInlineSpecified())
2708    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2709  if (DS.isVirtualSpecified())
2710    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2711  if (DS.isExplicitSpecified())
2712    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2713
2714  if (DS.isModulePrivateSpecified() &&
2715      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2716    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2717      << Tag->getTagKind()
2718      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2719
2720  // Warn about ignored type attributes, for example:
2721  // __attribute__((aligned)) struct A;
2722  // Attributes should be placed after tag to apply to type declaration.
2723  if (!DS.getAttributes().empty()) {
2724    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2725    if (TypeSpecType == DeclSpec::TST_class ||
2726        TypeSpecType == DeclSpec::TST_struct ||
2727        TypeSpecType == DeclSpec::TST_union ||
2728        TypeSpecType == DeclSpec::TST_enum) {
2729      AttributeList* attrs = DS.getAttributes().getList();
2730      while (attrs) {
2731        Diag(attrs->getScopeLoc(),
2732             diag::warn_declspec_attribute_ignored)
2733        << attrs->getName()
2734        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2735            TypeSpecType == DeclSpec::TST_struct ? 1 :
2736            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2737        attrs = attrs->getNext();
2738      }
2739    }
2740  }
2741
2742  ActOnDocumentableDecl(TagD);
2743
2744  return TagD;
2745}
2746
2747/// We are trying to inject an anonymous member into the given scope;
2748/// check if there's an existing declaration that can't be overloaded.
2749///
2750/// \return true if this is a forbidden redeclaration
2751static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2752                                         Scope *S,
2753                                         DeclContext *Owner,
2754                                         DeclarationName Name,
2755                                         SourceLocation NameLoc,
2756                                         unsigned diagnostic) {
2757  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2758                 Sema::ForRedeclaration);
2759  if (!SemaRef.LookupName(R, S)) return false;
2760
2761  if (R.getAsSingle<TagDecl>())
2762    return false;
2763
2764  // Pick a representative declaration.
2765  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2766  assert(PrevDecl && "Expected a non-null Decl");
2767
2768  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2769    return false;
2770
2771  SemaRef.Diag(NameLoc, diagnostic) << Name;
2772  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2773
2774  return true;
2775}
2776
2777/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2778/// anonymous struct or union AnonRecord into the owning context Owner
2779/// and scope S. This routine will be invoked just after we realize
2780/// that an unnamed union or struct is actually an anonymous union or
2781/// struct, e.g.,
2782///
2783/// @code
2784/// union {
2785///   int i;
2786///   float f;
2787/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2788///    // f into the surrounding scope.x
2789/// @endcode
2790///
2791/// This routine is recursive, injecting the names of nested anonymous
2792/// structs/unions into the owning context and scope as well.
2793static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2794                                                DeclContext *Owner,
2795                                                RecordDecl *AnonRecord,
2796                                                AccessSpecifier AS,
2797                              SmallVector<NamedDecl*, 2> &Chaining,
2798                                                      bool MSAnonStruct) {
2799  unsigned diagKind
2800    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2801                            : diag::err_anonymous_struct_member_redecl;
2802
2803  bool Invalid = false;
2804
2805  // Look every FieldDecl and IndirectFieldDecl with a name.
2806  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2807                               DEnd = AnonRecord->decls_end();
2808       D != DEnd; ++D) {
2809    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2810        cast<NamedDecl>(*D)->getDeclName()) {
2811      ValueDecl *VD = cast<ValueDecl>(*D);
2812      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2813                                       VD->getLocation(), diagKind)) {
2814        // C++ [class.union]p2:
2815        //   The names of the members of an anonymous union shall be
2816        //   distinct from the names of any other entity in the
2817        //   scope in which the anonymous union is declared.
2818        Invalid = true;
2819      } else {
2820        // C++ [class.union]p2:
2821        //   For the purpose of name lookup, after the anonymous union
2822        //   definition, the members of the anonymous union are
2823        //   considered to have been defined in the scope in which the
2824        //   anonymous union is declared.
2825        unsigned OldChainingSize = Chaining.size();
2826        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2827          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2828               PE = IF->chain_end(); PI != PE; ++PI)
2829            Chaining.push_back(*PI);
2830        else
2831          Chaining.push_back(VD);
2832
2833        assert(Chaining.size() >= 2);
2834        NamedDecl **NamedChain =
2835          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2836        for (unsigned i = 0; i < Chaining.size(); i++)
2837          NamedChain[i] = Chaining[i];
2838
2839        IndirectFieldDecl* IndirectField =
2840          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2841                                    VD->getIdentifier(), VD->getType(),
2842                                    NamedChain, Chaining.size());
2843
2844        IndirectField->setAccess(AS);
2845        IndirectField->setImplicit();
2846        SemaRef.PushOnScopeChains(IndirectField, S);
2847
2848        // That includes picking up the appropriate access specifier.
2849        if (AS != AS_none) IndirectField->setAccess(AS);
2850
2851        Chaining.resize(OldChainingSize);
2852      }
2853    }
2854  }
2855
2856  return Invalid;
2857}
2858
2859/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2860/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2861/// illegal input values are mapped to SC_None.
2862static StorageClass
2863StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2864  switch (StorageClassSpec) {
2865  case DeclSpec::SCS_unspecified:    return SC_None;
2866  case DeclSpec::SCS_extern:         return SC_Extern;
2867  case DeclSpec::SCS_static:         return SC_Static;
2868  case DeclSpec::SCS_auto:           return SC_Auto;
2869  case DeclSpec::SCS_register:       return SC_Register;
2870  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2871    // Illegal SCSs map to None: error reporting is up to the caller.
2872  case DeclSpec::SCS_mutable:        // Fall through.
2873  case DeclSpec::SCS_typedef:        return SC_None;
2874  }
2875  llvm_unreachable("unknown storage class specifier");
2876}
2877
2878/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2879/// a StorageClass. Any error reporting is up to the caller:
2880/// illegal input values are mapped to SC_None.
2881static StorageClass
2882StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2883  switch (StorageClassSpec) {
2884  case DeclSpec::SCS_unspecified:    return SC_None;
2885  case DeclSpec::SCS_extern:         return SC_Extern;
2886  case DeclSpec::SCS_static:         return SC_Static;
2887  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2888    // Illegal SCSs map to None: error reporting is up to the caller.
2889  case DeclSpec::SCS_auto:           // Fall through.
2890  case DeclSpec::SCS_mutable:        // Fall through.
2891  case DeclSpec::SCS_register:       // Fall through.
2892  case DeclSpec::SCS_typedef:        return SC_None;
2893  }
2894  llvm_unreachable("unknown storage class specifier");
2895}
2896
2897/// BuildAnonymousStructOrUnion - Handle the declaration of an
2898/// anonymous structure or union. Anonymous unions are a C++ feature
2899/// (C++ [class.union]) and a C11 feature; anonymous structures
2900/// are a C11 feature and GNU C++ extension.
2901Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2902                                             AccessSpecifier AS,
2903                                             RecordDecl *Record) {
2904  DeclContext *Owner = Record->getDeclContext();
2905
2906  // Diagnose whether this anonymous struct/union is an extension.
2907  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2908    Diag(Record->getLocation(), diag::ext_anonymous_union);
2909  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2910    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2911  else if (!Record->isUnion() && !getLangOpts().C11)
2912    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2913
2914  // C and C++ require different kinds of checks for anonymous
2915  // structs/unions.
2916  bool Invalid = false;
2917  if (getLangOpts().CPlusPlus) {
2918    const char* PrevSpec = 0;
2919    unsigned DiagID;
2920    if (Record->isUnion()) {
2921      // C++ [class.union]p6:
2922      //   Anonymous unions declared in a named namespace or in the
2923      //   global namespace shall be declared static.
2924      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2925          (isa<TranslationUnitDecl>(Owner) ||
2926           (isa<NamespaceDecl>(Owner) &&
2927            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2928        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2929          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2930
2931        // Recover by adding 'static'.
2932        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2933                               PrevSpec, DiagID);
2934      }
2935      // C++ [class.union]p6:
2936      //   A storage class is not allowed in a declaration of an
2937      //   anonymous union in a class scope.
2938      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2939               isa<RecordDecl>(Owner)) {
2940        Diag(DS.getStorageClassSpecLoc(),
2941             diag::err_anonymous_union_with_storage_spec)
2942          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2943
2944        // Recover by removing the storage specifier.
2945        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2946                               SourceLocation(),
2947                               PrevSpec, DiagID);
2948      }
2949    }
2950
2951    // Ignore const/volatile/restrict qualifiers.
2952    if (DS.getTypeQualifiers()) {
2953      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2954        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2955          << Record->isUnion() << 0
2956          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2957      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2958        Diag(DS.getVolatileSpecLoc(),
2959             diag::ext_anonymous_struct_union_qualified)
2960          << Record->isUnion() << 1
2961          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2962      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2963        Diag(DS.getRestrictSpecLoc(),
2964             diag::ext_anonymous_struct_union_qualified)
2965          << Record->isUnion() << 2
2966          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2967
2968      DS.ClearTypeQualifiers();
2969    }
2970
2971    // C++ [class.union]p2:
2972    //   The member-specification of an anonymous union shall only
2973    //   define non-static data members. [Note: nested types and
2974    //   functions cannot be declared within an anonymous union. ]
2975    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2976                                 MemEnd = Record->decls_end();
2977         Mem != MemEnd; ++Mem) {
2978      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2979        // C++ [class.union]p3:
2980        //   An anonymous union shall not have private or protected
2981        //   members (clause 11).
2982        assert(FD->getAccess() != AS_none);
2983        if (FD->getAccess() != AS_public) {
2984          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2985            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2986          Invalid = true;
2987        }
2988
2989        // C++ [class.union]p1
2990        //   An object of a class with a non-trivial constructor, a non-trivial
2991        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2992        //   assignment operator cannot be a member of a union, nor can an
2993        //   array of such objects.
2994        if (CheckNontrivialField(FD))
2995          Invalid = true;
2996      } else if ((*Mem)->isImplicit()) {
2997        // Any implicit members are fine.
2998      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2999        // This is a type that showed up in an
3000        // elaborated-type-specifier inside the anonymous struct or
3001        // union, but which actually declares a type outside of the
3002        // anonymous struct or union. It's okay.
3003      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3004        if (!MemRecord->isAnonymousStructOrUnion() &&
3005            MemRecord->getDeclName()) {
3006          // Visual C++ allows type definition in anonymous struct or union.
3007          if (getLangOpts().MicrosoftExt)
3008            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3009              << (int)Record->isUnion();
3010          else {
3011            // This is a nested type declaration.
3012            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3013              << (int)Record->isUnion();
3014            Invalid = true;
3015          }
3016        }
3017      } else if (isa<AccessSpecDecl>(*Mem)) {
3018        // Any access specifier is fine.
3019      } else {
3020        // We have something that isn't a non-static data
3021        // member. Complain about it.
3022        unsigned DK = diag::err_anonymous_record_bad_member;
3023        if (isa<TypeDecl>(*Mem))
3024          DK = diag::err_anonymous_record_with_type;
3025        else if (isa<FunctionDecl>(*Mem))
3026          DK = diag::err_anonymous_record_with_function;
3027        else if (isa<VarDecl>(*Mem))
3028          DK = diag::err_anonymous_record_with_static;
3029
3030        // Visual C++ allows type definition in anonymous struct or union.
3031        if (getLangOpts().MicrosoftExt &&
3032            DK == diag::err_anonymous_record_with_type)
3033          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3034            << (int)Record->isUnion();
3035        else {
3036          Diag((*Mem)->getLocation(), DK)
3037              << (int)Record->isUnion();
3038          Invalid = true;
3039        }
3040      }
3041    }
3042  }
3043
3044  if (!Record->isUnion() && !Owner->isRecord()) {
3045    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3046      << (int)getLangOpts().CPlusPlus;
3047    Invalid = true;
3048  }
3049
3050  // Mock up a declarator.
3051  Declarator Dc(DS, Declarator::MemberContext);
3052  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3053  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3054
3055  // Create a declaration for this anonymous struct/union.
3056  NamedDecl *Anon = 0;
3057  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3058    Anon = FieldDecl::Create(Context, OwningClass,
3059                             DS.getLocStart(),
3060                             Record->getLocation(),
3061                             /*IdentifierInfo=*/0,
3062                             Context.getTypeDeclType(Record),
3063                             TInfo,
3064                             /*BitWidth=*/0, /*Mutable=*/false,
3065                             /*InitStyle=*/ICIS_NoInit);
3066    Anon->setAccess(AS);
3067    if (getLangOpts().CPlusPlus)
3068      FieldCollector->Add(cast<FieldDecl>(Anon));
3069  } else {
3070    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3071    assert(SCSpec != DeclSpec::SCS_typedef &&
3072           "Parser allowed 'typedef' as storage class VarDecl.");
3073    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3074    if (SCSpec == DeclSpec::SCS_mutable) {
3075      // mutable can only appear on non-static class members, so it's always
3076      // an error here
3077      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3078      Invalid = true;
3079      SC = SC_None;
3080    }
3081    SCSpec = DS.getStorageClassSpecAsWritten();
3082    VarDecl::StorageClass SCAsWritten
3083      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3084
3085    Anon = VarDecl::Create(Context, Owner,
3086                           DS.getLocStart(),
3087                           Record->getLocation(), /*IdentifierInfo=*/0,
3088                           Context.getTypeDeclType(Record),
3089                           TInfo, SC, SCAsWritten);
3090
3091    // Default-initialize the implicit variable. This initialization will be
3092    // trivial in almost all cases, except if a union member has an in-class
3093    // initializer:
3094    //   union { int n = 0; };
3095    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3096  }
3097  Anon->setImplicit();
3098
3099  // Add the anonymous struct/union object to the current
3100  // context. We'll be referencing this object when we refer to one of
3101  // its members.
3102  Owner->addDecl(Anon);
3103
3104  // Inject the members of the anonymous struct/union into the owning
3105  // context and into the identifier resolver chain for name lookup
3106  // purposes.
3107  SmallVector<NamedDecl*, 2> Chain;
3108  Chain.push_back(Anon);
3109
3110  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3111                                          Chain, false))
3112    Invalid = true;
3113
3114  // Mark this as an anonymous struct/union type. Note that we do not
3115  // do this until after we have already checked and injected the
3116  // members of this anonymous struct/union type, because otherwise
3117  // the members could be injected twice: once by DeclContext when it
3118  // builds its lookup table, and once by
3119  // InjectAnonymousStructOrUnionMembers.
3120  Record->setAnonymousStructOrUnion(true);
3121
3122  if (Invalid)
3123    Anon->setInvalidDecl();
3124
3125  return Anon;
3126}
3127
3128/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3129/// Microsoft C anonymous structure.
3130/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3131/// Example:
3132///
3133/// struct A { int a; };
3134/// struct B { struct A; int b; };
3135///
3136/// void foo() {
3137///   B var;
3138///   var.a = 3;
3139/// }
3140///
3141Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3142                                           RecordDecl *Record) {
3143
3144  // If there is no Record, get the record via the typedef.
3145  if (!Record)
3146    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3147
3148  // Mock up a declarator.
3149  Declarator Dc(DS, Declarator::TypeNameContext);
3150  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3151  assert(TInfo && "couldn't build declarator info for anonymous struct");
3152
3153  // Create a declaration for this anonymous struct.
3154  NamedDecl* Anon = FieldDecl::Create(Context,
3155                             cast<RecordDecl>(CurContext),
3156                             DS.getLocStart(),
3157                             DS.getLocStart(),
3158                             /*IdentifierInfo=*/0,
3159                             Context.getTypeDeclType(Record),
3160                             TInfo,
3161                             /*BitWidth=*/0, /*Mutable=*/false,
3162                             /*InitStyle=*/ICIS_NoInit);
3163  Anon->setImplicit();
3164
3165  // Add the anonymous struct object to the current context.
3166  CurContext->addDecl(Anon);
3167
3168  // Inject the members of the anonymous struct into the current
3169  // context and into the identifier resolver chain for name lookup
3170  // purposes.
3171  SmallVector<NamedDecl*, 2> Chain;
3172  Chain.push_back(Anon);
3173
3174  RecordDecl *RecordDef = Record->getDefinition();
3175  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3176                                                        RecordDef, AS_none,
3177                                                        Chain, true))
3178    Anon->setInvalidDecl();
3179
3180  return Anon;
3181}
3182
3183/// GetNameForDeclarator - Determine the full declaration name for the
3184/// given Declarator.
3185DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3186  return GetNameFromUnqualifiedId(D.getName());
3187}
3188
3189/// \brief Retrieves the declaration name from a parsed unqualified-id.
3190DeclarationNameInfo
3191Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3192  DeclarationNameInfo NameInfo;
3193  NameInfo.setLoc(Name.StartLocation);
3194
3195  switch (Name.getKind()) {
3196
3197  case UnqualifiedId::IK_ImplicitSelfParam:
3198  case UnqualifiedId::IK_Identifier:
3199    NameInfo.setName(Name.Identifier);
3200    NameInfo.setLoc(Name.StartLocation);
3201    return NameInfo;
3202
3203  case UnqualifiedId::IK_OperatorFunctionId:
3204    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3205                                           Name.OperatorFunctionId.Operator));
3206    NameInfo.setLoc(Name.StartLocation);
3207    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3208      = Name.OperatorFunctionId.SymbolLocations[0];
3209    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3210      = Name.EndLocation.getRawEncoding();
3211    return NameInfo;
3212
3213  case UnqualifiedId::IK_LiteralOperatorId:
3214    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3215                                                           Name.Identifier));
3216    NameInfo.setLoc(Name.StartLocation);
3217    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3218    return NameInfo;
3219
3220  case UnqualifiedId::IK_ConversionFunctionId: {
3221    TypeSourceInfo *TInfo;
3222    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3223    if (Ty.isNull())
3224      return DeclarationNameInfo();
3225    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3226                                               Context.getCanonicalType(Ty)));
3227    NameInfo.setLoc(Name.StartLocation);
3228    NameInfo.setNamedTypeInfo(TInfo);
3229    return NameInfo;
3230  }
3231
3232  case UnqualifiedId::IK_ConstructorName: {
3233    TypeSourceInfo *TInfo;
3234    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3235    if (Ty.isNull())
3236      return DeclarationNameInfo();
3237    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3238                                              Context.getCanonicalType(Ty)));
3239    NameInfo.setLoc(Name.StartLocation);
3240    NameInfo.setNamedTypeInfo(TInfo);
3241    return NameInfo;
3242  }
3243
3244  case UnqualifiedId::IK_ConstructorTemplateId: {
3245    // In well-formed code, we can only have a constructor
3246    // template-id that refers to the current context, so go there
3247    // to find the actual type being constructed.
3248    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3249    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3250      return DeclarationNameInfo();
3251
3252    // Determine the type of the class being constructed.
3253    QualType CurClassType = Context.getTypeDeclType(CurClass);
3254
3255    // FIXME: Check two things: that the template-id names the same type as
3256    // CurClassType, and that the template-id does not occur when the name
3257    // was qualified.
3258
3259    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3260                                    Context.getCanonicalType(CurClassType)));
3261    NameInfo.setLoc(Name.StartLocation);
3262    // FIXME: should we retrieve TypeSourceInfo?
3263    NameInfo.setNamedTypeInfo(0);
3264    return NameInfo;
3265  }
3266
3267  case UnqualifiedId::IK_DestructorName: {
3268    TypeSourceInfo *TInfo;
3269    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3270    if (Ty.isNull())
3271      return DeclarationNameInfo();
3272    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3273                                              Context.getCanonicalType(Ty)));
3274    NameInfo.setLoc(Name.StartLocation);
3275    NameInfo.setNamedTypeInfo(TInfo);
3276    return NameInfo;
3277  }
3278
3279  case UnqualifiedId::IK_TemplateId: {
3280    TemplateName TName = Name.TemplateId->Template.get();
3281    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3282    return Context.getNameForTemplate(TName, TNameLoc);
3283  }
3284
3285  } // switch (Name.getKind())
3286
3287  llvm_unreachable("Unknown name kind");
3288}
3289
3290static QualType getCoreType(QualType Ty) {
3291  do {
3292    if (Ty->isPointerType() || Ty->isReferenceType())
3293      Ty = Ty->getPointeeType();
3294    else if (Ty->isArrayType())
3295      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3296    else
3297      return Ty.withoutLocalFastQualifiers();
3298  } while (true);
3299}
3300
3301/// hasSimilarParameters - Determine whether the C++ functions Declaration
3302/// and Definition have "nearly" matching parameters. This heuristic is
3303/// used to improve diagnostics in the case where an out-of-line function
3304/// definition doesn't match any declaration within the class or namespace.
3305/// Also sets Params to the list of indices to the parameters that differ
3306/// between the declaration and the definition. If hasSimilarParameters
3307/// returns true and Params is empty, then all of the parameters match.
3308static bool hasSimilarParameters(ASTContext &Context,
3309                                     FunctionDecl *Declaration,
3310                                     FunctionDecl *Definition,
3311                                     llvm::SmallVectorImpl<unsigned> &Params) {
3312  Params.clear();
3313  if (Declaration->param_size() != Definition->param_size())
3314    return false;
3315  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3316    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3317    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3318
3319    // The parameter types are identical
3320    if (Context.hasSameType(DefParamTy, DeclParamTy))
3321      continue;
3322
3323    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3324    QualType DefParamBaseTy = getCoreType(DefParamTy);
3325    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3326    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3327
3328    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3329        (DeclTyName && DeclTyName == DefTyName))
3330      Params.push_back(Idx);
3331    else  // The two parameters aren't even close
3332      return false;
3333  }
3334
3335  return true;
3336}
3337
3338/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3339/// declarator needs to be rebuilt in the current instantiation.
3340/// Any bits of declarator which appear before the name are valid for
3341/// consideration here.  That's specifically the type in the decl spec
3342/// and the base type in any member-pointer chunks.
3343static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3344                                                    DeclarationName Name) {
3345  // The types we specifically need to rebuild are:
3346  //   - typenames, typeofs, and decltypes
3347  //   - types which will become injected class names
3348  // Of course, we also need to rebuild any type referencing such a
3349  // type.  It's safest to just say "dependent", but we call out a
3350  // few cases here.
3351
3352  DeclSpec &DS = D.getMutableDeclSpec();
3353  switch (DS.getTypeSpecType()) {
3354  case DeclSpec::TST_typename:
3355  case DeclSpec::TST_typeofType:
3356  case DeclSpec::TST_decltype:
3357  case DeclSpec::TST_underlyingType:
3358  case DeclSpec::TST_atomic: {
3359    // Grab the type from the parser.
3360    TypeSourceInfo *TSI = 0;
3361    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3362    if (T.isNull() || !T->isDependentType()) break;
3363
3364    // Make sure there's a type source info.  This isn't really much
3365    // of a waste; most dependent types should have type source info
3366    // attached already.
3367    if (!TSI)
3368      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3369
3370    // Rebuild the type in the current instantiation.
3371    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3372    if (!TSI) return true;
3373
3374    // Store the new type back in the decl spec.
3375    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3376    DS.UpdateTypeRep(LocType);
3377    break;
3378  }
3379
3380  case DeclSpec::TST_typeofExpr: {
3381    Expr *E = DS.getRepAsExpr();
3382    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3383    if (Result.isInvalid()) return true;
3384    DS.UpdateExprRep(Result.get());
3385    break;
3386  }
3387
3388  default:
3389    // Nothing to do for these decl specs.
3390    break;
3391  }
3392
3393  // It doesn't matter what order we do this in.
3394  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3395    DeclaratorChunk &Chunk = D.getTypeObject(I);
3396
3397    // The only type information in the declarator which can come
3398    // before the declaration name is the base type of a member
3399    // pointer.
3400    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3401      continue;
3402
3403    // Rebuild the scope specifier in-place.
3404    CXXScopeSpec &SS = Chunk.Mem.Scope();
3405    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3406      return true;
3407  }
3408
3409  return false;
3410}
3411
3412Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3413  D.setFunctionDefinitionKind(FDK_Declaration);
3414  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3415
3416  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3417      Dcl && Dcl->getDeclContext()->isFileContext())
3418    Dcl->setTopLevelDeclInObjCContainer();
3419
3420  return Dcl;
3421}
3422
3423/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3424///   If T is the name of a class, then each of the following shall have a
3425///   name different from T:
3426///     - every static data member of class T;
3427///     - every member function of class T
3428///     - every member of class T that is itself a type;
3429/// \returns true if the declaration name violates these rules.
3430bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3431                                   DeclarationNameInfo NameInfo) {
3432  DeclarationName Name = NameInfo.getName();
3433
3434  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3435    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3436      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3437      return true;
3438    }
3439
3440  return false;
3441}
3442
3443/// \brief Diagnose a declaration whose declarator-id has the given
3444/// nested-name-specifier.
3445///
3446/// \param SS The nested-name-specifier of the declarator-id.
3447///
3448/// \param DC The declaration context to which the nested-name-specifier
3449/// resolves.
3450///
3451/// \param Name The name of the entity being declared.
3452///
3453/// \param Loc The location of the name of the entity being declared.
3454///
3455/// \returns true if we cannot safely recover from this error, false otherwise.
3456bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3457                                        DeclarationName Name,
3458                                      SourceLocation Loc) {
3459  DeclContext *Cur = CurContext;
3460  while (isa<LinkageSpecDecl>(Cur))
3461    Cur = Cur->getParent();
3462
3463  // C++ [dcl.meaning]p1:
3464  //   A declarator-id shall not be qualified except for the definition
3465  //   of a member function (9.3) or static data member (9.4) outside of
3466  //   its class, the definition or explicit instantiation of a function
3467  //   or variable member of a namespace outside of its namespace, or the
3468  //   definition of an explicit specialization outside of its namespace,
3469  //   or the declaration of a friend function that is a member of
3470  //   another class or namespace (11.3). [...]
3471
3472  // The user provided a superfluous scope specifier that refers back to the
3473  // class or namespaces in which the entity is already declared.
3474  //
3475  // class X {
3476  //   void X::f();
3477  // };
3478  if (Cur->Equals(DC)) {
3479    Diag(Loc, diag::warn_member_extra_qualification)
3480      << Name << FixItHint::CreateRemoval(SS.getRange());
3481    SS.clear();
3482    return false;
3483  }
3484
3485  // Check whether the qualifying scope encloses the scope of the original
3486  // declaration.
3487  if (!Cur->Encloses(DC)) {
3488    if (Cur->isRecord())
3489      Diag(Loc, diag::err_member_qualification)
3490        << Name << SS.getRange();
3491    else if (isa<TranslationUnitDecl>(DC))
3492      Diag(Loc, diag::err_invalid_declarator_global_scope)
3493        << Name << SS.getRange();
3494    else if (isa<FunctionDecl>(Cur))
3495      Diag(Loc, diag::err_invalid_declarator_in_function)
3496        << Name << SS.getRange();
3497    else
3498      Diag(Loc, diag::err_invalid_declarator_scope)
3499      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3500
3501    return true;
3502  }
3503
3504  if (Cur->isRecord()) {
3505    // Cannot qualify members within a class.
3506    Diag(Loc, diag::err_member_qualification)
3507      << Name << SS.getRange();
3508    SS.clear();
3509
3510    // C++ constructors and destructors with incorrect scopes can break
3511    // our AST invariants by having the wrong underlying types. If
3512    // that's the case, then drop this declaration entirely.
3513    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3514         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3515        !Context.hasSameType(Name.getCXXNameType(),
3516                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3517      return true;
3518
3519    return false;
3520  }
3521
3522  // C++11 [dcl.meaning]p1:
3523  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3524  //   not begin with a decltype-specifer"
3525  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3526  while (SpecLoc.getPrefix())
3527    SpecLoc = SpecLoc.getPrefix();
3528  if (dyn_cast_or_null<DecltypeType>(
3529        SpecLoc.getNestedNameSpecifier()->getAsType()))
3530    Diag(Loc, diag::err_decltype_in_declarator)
3531      << SpecLoc.getTypeLoc().getSourceRange();
3532
3533  return false;
3534}
3535
3536Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3537                             MultiTemplateParamsArg TemplateParamLists) {
3538  // TODO: consider using NameInfo for diagnostic.
3539  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3540  DeclarationName Name = NameInfo.getName();
3541
3542  // All of these full declarators require an identifier.  If it doesn't have
3543  // one, the ParsedFreeStandingDeclSpec action should be used.
3544  if (!Name) {
3545    if (!D.isInvalidType())  // Reject this if we think it is valid.
3546      Diag(D.getDeclSpec().getLocStart(),
3547           diag::err_declarator_need_ident)
3548        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3549    return 0;
3550  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3551    return 0;
3552
3553  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3554  // we find one that is.
3555  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3556         (S->getFlags() & Scope::TemplateParamScope) != 0)
3557    S = S->getParent();
3558
3559  DeclContext *DC = CurContext;
3560  if (D.getCXXScopeSpec().isInvalid())
3561    D.setInvalidType();
3562  else if (D.getCXXScopeSpec().isSet()) {
3563    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3564                                        UPPC_DeclarationQualifier))
3565      return 0;
3566
3567    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3568    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3569    if (!DC) {
3570      // If we could not compute the declaration context, it's because the
3571      // declaration context is dependent but does not refer to a class,
3572      // class template, or class template partial specialization. Complain
3573      // and return early, to avoid the coming semantic disaster.
3574      Diag(D.getIdentifierLoc(),
3575           diag::err_template_qualified_declarator_no_match)
3576        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3577        << D.getCXXScopeSpec().getRange();
3578      return 0;
3579    }
3580    bool IsDependentContext = DC->isDependentContext();
3581
3582    if (!IsDependentContext &&
3583        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3584      return 0;
3585
3586    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3587      Diag(D.getIdentifierLoc(),
3588           diag::err_member_def_undefined_record)
3589        << Name << DC << D.getCXXScopeSpec().getRange();
3590      D.setInvalidType();
3591    } else if (!D.getDeclSpec().isFriendSpecified()) {
3592      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3593                                      Name, D.getIdentifierLoc())) {
3594        if (DC->isRecord())
3595          return 0;
3596
3597        D.setInvalidType();
3598      }
3599    }
3600
3601    // Check whether we need to rebuild the type of the given
3602    // declaration in the current instantiation.
3603    if (EnteringContext && IsDependentContext &&
3604        TemplateParamLists.size() != 0) {
3605      ContextRAII SavedContext(*this, DC);
3606      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3607        D.setInvalidType();
3608    }
3609  }
3610
3611  if (DiagnoseClassNameShadow(DC, NameInfo))
3612    // If this is a typedef, we'll end up spewing multiple diagnostics.
3613    // Just return early; it's safer.
3614    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3615      return 0;
3616
3617  NamedDecl *New;
3618
3619  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3620  QualType R = TInfo->getType();
3621
3622  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3623                                      UPPC_DeclarationType))
3624    D.setInvalidType();
3625
3626  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3627                        ForRedeclaration);
3628
3629  // See if this is a redefinition of a variable in the same scope.
3630  if (!D.getCXXScopeSpec().isSet()) {
3631    bool IsLinkageLookup = false;
3632
3633    // If the declaration we're planning to build will be a function
3634    // or object with linkage, then look for another declaration with
3635    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3636    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3637      /* Do nothing*/;
3638    else if (R->isFunctionType()) {
3639      if (CurContext->isFunctionOrMethod() ||
3640          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3641        IsLinkageLookup = true;
3642    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3643      IsLinkageLookup = true;
3644    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3645             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3646      IsLinkageLookup = true;
3647
3648    if (IsLinkageLookup)
3649      Previous.clear(LookupRedeclarationWithLinkage);
3650
3651    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3652  } else { // Something like "int foo::x;"
3653    LookupQualifiedName(Previous, DC);
3654
3655    // C++ [dcl.meaning]p1:
3656    //   When the declarator-id is qualified, the declaration shall refer to a
3657    //  previously declared member of the class or namespace to which the
3658    //  qualifier refers (or, in the case of a namespace, of an element of the
3659    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3660    //  thereof; [...]
3661    //
3662    // Note that we already checked the context above, and that we do not have
3663    // enough information to make sure that Previous contains the declaration
3664    // we want to match. For example, given:
3665    //
3666    //   class X {
3667    //     void f();
3668    //     void f(float);
3669    //   };
3670    //
3671    //   void X::f(int) { } // ill-formed
3672    //
3673    // In this case, Previous will point to the overload set
3674    // containing the two f's declared in X, but neither of them
3675    // matches.
3676
3677    // C++ [dcl.meaning]p1:
3678    //   [...] the member shall not merely have been introduced by a
3679    //   using-declaration in the scope of the class or namespace nominated by
3680    //   the nested-name-specifier of the declarator-id.
3681    RemoveUsingDecls(Previous);
3682  }
3683
3684  if (Previous.isSingleResult() &&
3685      Previous.getFoundDecl()->isTemplateParameter()) {
3686    // Maybe we will complain about the shadowed template parameter.
3687    if (!D.isInvalidType())
3688      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3689                                      Previous.getFoundDecl());
3690
3691    // Just pretend that we didn't see the previous declaration.
3692    Previous.clear();
3693  }
3694
3695  // In C++, the previous declaration we find might be a tag type
3696  // (class or enum). In this case, the new declaration will hide the
3697  // tag type. Note that this does does not apply if we're declaring a
3698  // typedef (C++ [dcl.typedef]p4).
3699  if (Previous.isSingleTagDecl() &&
3700      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3701    Previous.clear();
3702
3703  bool AddToScope = true;
3704  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3705    if (TemplateParamLists.size()) {
3706      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3707      return 0;
3708    }
3709
3710    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3711  } else if (R->isFunctionType()) {
3712    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3713                                  move(TemplateParamLists),
3714                                  AddToScope);
3715  } else {
3716    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3717                                  move(TemplateParamLists));
3718  }
3719
3720  if (New == 0)
3721    return 0;
3722
3723  // If this has an identifier and is not an invalid redeclaration or
3724  // function template specialization, add it to the scope stack.
3725  if (New->getDeclName() && AddToScope &&
3726       !(D.isRedeclaration() && New->isInvalidDecl()))
3727    PushOnScopeChains(New, S);
3728
3729  return New;
3730}
3731
3732/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3733/// types into constant array types in certain situations which would otherwise
3734/// be errors (for GCC compatibility).
3735static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3736                                                    ASTContext &Context,
3737                                                    bool &SizeIsNegative,
3738                                                    llvm::APSInt &Oversized) {
3739  // This method tries to turn a variable array into a constant
3740  // array even when the size isn't an ICE.  This is necessary
3741  // for compatibility with code that depends on gcc's buggy
3742  // constant expression folding, like struct {char x[(int)(char*)2];}
3743  SizeIsNegative = false;
3744  Oversized = 0;
3745
3746  if (T->isDependentType())
3747    return QualType();
3748
3749  QualifierCollector Qs;
3750  const Type *Ty = Qs.strip(T);
3751
3752  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3753    QualType Pointee = PTy->getPointeeType();
3754    QualType FixedType =
3755        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3756                                            Oversized);
3757    if (FixedType.isNull()) return FixedType;
3758    FixedType = Context.getPointerType(FixedType);
3759    return Qs.apply(Context, FixedType);
3760  }
3761  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3762    QualType Inner = PTy->getInnerType();
3763    QualType FixedType =
3764        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3765                                            Oversized);
3766    if (FixedType.isNull()) return FixedType;
3767    FixedType = Context.getParenType(FixedType);
3768    return Qs.apply(Context, FixedType);
3769  }
3770
3771  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3772  if (!VLATy)
3773    return QualType();
3774  // FIXME: We should probably handle this case
3775  if (VLATy->getElementType()->isVariablyModifiedType())
3776    return QualType();
3777
3778  llvm::APSInt Res;
3779  if (!VLATy->getSizeExpr() ||
3780      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3781    return QualType();
3782
3783  // Check whether the array size is negative.
3784  if (Res.isSigned() && Res.isNegative()) {
3785    SizeIsNegative = true;
3786    return QualType();
3787  }
3788
3789  // Check whether the array is too large to be addressed.
3790  unsigned ActiveSizeBits
3791    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3792                                              Res);
3793  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3794    Oversized = Res;
3795    return QualType();
3796  }
3797
3798  return Context.getConstantArrayType(VLATy->getElementType(),
3799                                      Res, ArrayType::Normal, 0);
3800}
3801
3802/// \brief Register the given locally-scoped external C declaration so
3803/// that it can be found later for redeclarations
3804void
3805Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3806                                       const LookupResult &Previous,
3807                                       Scope *S) {
3808  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3809         "Decl is not a locally-scoped decl!");
3810  // Note that we have a locally-scoped external with this name.
3811  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3812
3813  if (!Previous.isSingleResult())
3814    return;
3815
3816  NamedDecl *PrevDecl = Previous.getFoundDecl();
3817
3818  // If there was a previous declaration of this variable, it may be
3819  // in our identifier chain. Update the identifier chain with the new
3820  // declaration.
3821  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3822    // The previous declaration was found on the identifer resolver
3823    // chain, so remove it from its scope.
3824
3825    if (S->isDeclScope(PrevDecl)) {
3826      // Special case for redeclarations in the SAME scope.
3827      // Because this declaration is going to be added to the identifier chain
3828      // later, we should temporarily take it OFF the chain.
3829      IdResolver.RemoveDecl(ND);
3830
3831    } else {
3832      // Find the scope for the original declaration.
3833      while (S && !S->isDeclScope(PrevDecl))
3834        S = S->getParent();
3835    }
3836
3837    if (S)
3838      S->RemoveDecl(PrevDecl);
3839  }
3840}
3841
3842llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3843Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3844  if (ExternalSource) {
3845    // Load locally-scoped external decls from the external source.
3846    SmallVector<NamedDecl *, 4> Decls;
3847    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3848    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3849      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3850        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3851      if (Pos == LocallyScopedExternalDecls.end())
3852        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3853    }
3854  }
3855
3856  return LocallyScopedExternalDecls.find(Name);
3857}
3858
3859/// \brief Diagnose function specifiers on a declaration of an identifier that
3860/// does not identify a function.
3861void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3862  // FIXME: We should probably indicate the identifier in question to avoid
3863  // confusion for constructs like "inline int a(), b;"
3864  if (D.getDeclSpec().isInlineSpecified())
3865    Diag(D.getDeclSpec().getInlineSpecLoc(),
3866         diag::err_inline_non_function);
3867
3868  if (D.getDeclSpec().isVirtualSpecified())
3869    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3870         diag::err_virtual_non_function);
3871
3872  if (D.getDeclSpec().isExplicitSpecified())
3873    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3874         diag::err_explicit_non_function);
3875}
3876
3877NamedDecl*
3878Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3879                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3880  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3881  if (D.getCXXScopeSpec().isSet()) {
3882    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3883      << D.getCXXScopeSpec().getRange();
3884    D.setInvalidType();
3885    // Pretend we didn't see the scope specifier.
3886    DC = CurContext;
3887    Previous.clear();
3888  }
3889
3890  if (getLangOpts().CPlusPlus) {
3891    // Check that there are no default arguments (C++ only).
3892    CheckExtraCXXDefaultArguments(D);
3893  }
3894
3895  DiagnoseFunctionSpecifiers(D);
3896
3897  if (D.getDeclSpec().isThreadSpecified())
3898    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3899  if (D.getDeclSpec().isConstexprSpecified())
3900    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3901      << 1;
3902
3903  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3904    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3905      << D.getName().getSourceRange();
3906    return 0;
3907  }
3908
3909  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3910  if (!NewTD) return 0;
3911
3912  // Handle attributes prior to checking for duplicates in MergeVarDecl
3913  ProcessDeclAttributes(S, NewTD, D);
3914
3915  CheckTypedefForVariablyModifiedType(S, NewTD);
3916
3917  bool Redeclaration = D.isRedeclaration();
3918  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3919  D.setRedeclaration(Redeclaration);
3920  return ND;
3921}
3922
3923void
3924Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3925  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3926  // then it shall have block scope.
3927  // Note that variably modified types must be fixed before merging the decl so
3928  // that redeclarations will match.
3929  QualType T = NewTD->getUnderlyingType();
3930  if (T->isVariablyModifiedType()) {
3931    getCurFunction()->setHasBranchProtectedScope();
3932
3933    if (S->getFnParent() == 0) {
3934      bool SizeIsNegative;
3935      llvm::APSInt Oversized;
3936      QualType FixedTy =
3937          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3938                                              Oversized);
3939      if (!FixedTy.isNull()) {
3940        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3941        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3942      } else {
3943        if (SizeIsNegative)
3944          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3945        else if (T->isVariableArrayType())
3946          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3947        else if (Oversized.getBoolValue())
3948          Diag(NewTD->getLocation(), diag::err_array_too_large)
3949            << Oversized.toString(10);
3950        else
3951          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3952        NewTD->setInvalidDecl();
3953      }
3954    }
3955  }
3956}
3957
3958
3959/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3960/// declares a typedef-name, either using the 'typedef' type specifier or via
3961/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3962NamedDecl*
3963Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3964                           LookupResult &Previous, bool &Redeclaration) {
3965  // Merge the decl with the existing one if appropriate. If the decl is
3966  // in an outer scope, it isn't the same thing.
3967  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3968                       /*ExplicitInstantiationOrSpecialization=*/false);
3969  if (!Previous.empty()) {
3970    Redeclaration = true;
3971    MergeTypedefNameDecl(NewTD, Previous);
3972  }
3973
3974  // If this is the C FILE type, notify the AST context.
3975  if (IdentifierInfo *II = NewTD->getIdentifier())
3976    if (!NewTD->isInvalidDecl() &&
3977        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3978      if (II->isStr("FILE"))
3979        Context.setFILEDecl(NewTD);
3980      else if (II->isStr("jmp_buf"))
3981        Context.setjmp_bufDecl(NewTD);
3982      else if (II->isStr("sigjmp_buf"))
3983        Context.setsigjmp_bufDecl(NewTD);
3984      else if (II->isStr("ucontext_t"))
3985        Context.setucontext_tDecl(NewTD);
3986    }
3987
3988  return NewTD;
3989}
3990
3991/// \brief Determines whether the given declaration is an out-of-scope
3992/// previous declaration.
3993///
3994/// This routine should be invoked when name lookup has found a
3995/// previous declaration (PrevDecl) that is not in the scope where a
3996/// new declaration by the same name is being introduced. If the new
3997/// declaration occurs in a local scope, previous declarations with
3998/// linkage may still be considered previous declarations (C99
3999/// 6.2.2p4-5, C++ [basic.link]p6).
4000///
4001/// \param PrevDecl the previous declaration found by name
4002/// lookup
4003///
4004/// \param DC the context in which the new declaration is being
4005/// declared.
4006///
4007/// \returns true if PrevDecl is an out-of-scope previous declaration
4008/// for a new delcaration with the same name.
4009static bool
4010isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4011                                ASTContext &Context) {
4012  if (!PrevDecl)
4013    return false;
4014
4015  if (!PrevDecl->hasLinkage())
4016    return false;
4017
4018  if (Context.getLangOpts().CPlusPlus) {
4019    // C++ [basic.link]p6:
4020    //   If there is a visible declaration of an entity with linkage
4021    //   having the same name and type, ignoring entities declared
4022    //   outside the innermost enclosing namespace scope, the block
4023    //   scope declaration declares that same entity and receives the
4024    //   linkage of the previous declaration.
4025    DeclContext *OuterContext = DC->getRedeclContext();
4026    if (!OuterContext->isFunctionOrMethod())
4027      // This rule only applies to block-scope declarations.
4028      return false;
4029
4030    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4031    if (PrevOuterContext->isRecord())
4032      // We found a member function: ignore it.
4033      return false;
4034
4035    // Find the innermost enclosing namespace for the new and
4036    // previous declarations.
4037    OuterContext = OuterContext->getEnclosingNamespaceContext();
4038    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4039
4040    // The previous declaration is in a different namespace, so it
4041    // isn't the same function.
4042    if (!OuterContext->Equals(PrevOuterContext))
4043      return false;
4044  }
4045
4046  return true;
4047}
4048
4049static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4050  CXXScopeSpec &SS = D.getCXXScopeSpec();
4051  if (!SS.isSet()) return;
4052  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4053}
4054
4055bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4056  QualType type = decl->getType();
4057  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4058  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4059    // Various kinds of declaration aren't allowed to be __autoreleasing.
4060    unsigned kind = -1U;
4061    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4062      if (var->hasAttr<BlocksAttr>())
4063        kind = 0; // __block
4064      else if (!var->hasLocalStorage())
4065        kind = 1; // global
4066    } else if (isa<ObjCIvarDecl>(decl)) {
4067      kind = 3; // ivar
4068    } else if (isa<FieldDecl>(decl)) {
4069      kind = 2; // field
4070    }
4071
4072    if (kind != -1U) {
4073      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4074        << kind;
4075    }
4076  } else if (lifetime == Qualifiers::OCL_None) {
4077    // Try to infer lifetime.
4078    if (!type->isObjCLifetimeType())
4079      return false;
4080
4081    lifetime = type->getObjCARCImplicitLifetime();
4082    type = Context.getLifetimeQualifiedType(type, lifetime);
4083    decl->setType(type);
4084  }
4085
4086  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4087    // Thread-local variables cannot have lifetime.
4088    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4089        var->isThreadSpecified()) {
4090      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4091        << var->getType();
4092      return true;
4093    }
4094  }
4095
4096  return false;
4097}
4098
4099NamedDecl*
4100Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4101                              TypeSourceInfo *TInfo, LookupResult &Previous,
4102                              MultiTemplateParamsArg TemplateParamLists) {
4103  QualType R = TInfo->getType();
4104  DeclarationName Name = GetNameForDeclarator(D).getName();
4105
4106  // Check that there are no default arguments (C++ only).
4107  if (getLangOpts().CPlusPlus)
4108    CheckExtraCXXDefaultArguments(D);
4109
4110  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4111  assert(SCSpec != DeclSpec::SCS_typedef &&
4112         "Parser allowed 'typedef' as storage class VarDecl.");
4113  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4114  if (SCSpec == DeclSpec::SCS_mutable) {
4115    // mutable can only appear on non-static class members, so it's always
4116    // an error here
4117    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4118    D.setInvalidType();
4119    SC = SC_None;
4120  }
4121  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4122  VarDecl::StorageClass SCAsWritten
4123    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4124
4125  IdentifierInfo *II = Name.getAsIdentifierInfo();
4126  if (!II) {
4127    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4128      << Name;
4129    return 0;
4130  }
4131
4132  DiagnoseFunctionSpecifiers(D);
4133
4134  if (!DC->isRecord() && S->getFnParent() == 0) {
4135    // C99 6.9p2: The storage-class specifiers auto and register shall not
4136    // appear in the declaration specifiers in an external declaration.
4137    if (SC == SC_Auto || SC == SC_Register) {
4138
4139      // If this is a register variable with an asm label specified, then this
4140      // is a GNU extension.
4141      if (SC == SC_Register && D.getAsmLabel())
4142        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4143      else
4144        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4145      D.setInvalidType();
4146    }
4147  }
4148
4149  if (getLangOpts().OpenCL) {
4150    // Set up the special work-group-local storage class for variables in the
4151    // OpenCL __local address space.
4152    if (R.getAddressSpace() == LangAS::opencl_local)
4153      SC = SC_OpenCLWorkGroupLocal;
4154  }
4155
4156  bool isExplicitSpecialization = false;
4157  VarDecl *NewVD;
4158  if (!getLangOpts().CPlusPlus) {
4159    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4160                            D.getIdentifierLoc(), II,
4161                            R, TInfo, SC, SCAsWritten);
4162
4163    if (D.isInvalidType())
4164      NewVD->setInvalidDecl();
4165  } else {
4166    if (DC->isRecord() && !CurContext->isRecord()) {
4167      // This is an out-of-line definition of a static data member.
4168      if (SC == SC_Static) {
4169        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4170             diag::err_static_out_of_line)
4171          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4172      } else if (SC == SC_None)
4173        SC = SC_Static;
4174    }
4175    if (SC == SC_Static && CurContext->isRecord()) {
4176      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4177        if (RD->isLocalClass())
4178          Diag(D.getIdentifierLoc(),
4179               diag::err_static_data_member_not_allowed_in_local_class)
4180            << Name << RD->getDeclName();
4181
4182        // C++98 [class.union]p1: If a union contains a static data member,
4183        // the program is ill-formed. C++11 drops this restriction.
4184        if (RD->isUnion())
4185          Diag(D.getIdentifierLoc(),
4186               getLangOpts().CPlusPlus0x
4187                 ? diag::warn_cxx98_compat_static_data_member_in_union
4188                 : diag::ext_static_data_member_in_union) << Name;
4189        // We conservatively disallow static data members in anonymous structs.
4190        else if (!RD->getDeclName())
4191          Diag(D.getIdentifierLoc(),
4192               diag::err_static_data_member_not_allowed_in_anon_struct)
4193            << Name << RD->isUnion();
4194      }
4195    }
4196
4197    // Match up the template parameter lists with the scope specifier, then
4198    // determine whether we have a template or a template specialization.
4199    isExplicitSpecialization = false;
4200    bool Invalid = false;
4201    if (TemplateParameterList *TemplateParams
4202        = MatchTemplateParametersToScopeSpecifier(
4203                                  D.getDeclSpec().getLocStart(),
4204                                                  D.getIdentifierLoc(),
4205                                                  D.getCXXScopeSpec(),
4206                                                  TemplateParamLists.get(),
4207                                                  TemplateParamLists.size(),
4208                                                  /*never a friend*/ false,
4209                                                  isExplicitSpecialization,
4210                                                  Invalid)) {
4211      if (TemplateParams->size() > 0) {
4212        // There is no such thing as a variable template.
4213        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4214          << II
4215          << SourceRange(TemplateParams->getTemplateLoc(),
4216                         TemplateParams->getRAngleLoc());
4217        return 0;
4218      } else {
4219        // There is an extraneous 'template<>' for this variable. Complain
4220        // about it, but allow the declaration of the variable.
4221        Diag(TemplateParams->getTemplateLoc(),
4222             diag::err_template_variable_noparams)
4223          << II
4224          << SourceRange(TemplateParams->getTemplateLoc(),
4225                         TemplateParams->getRAngleLoc());
4226      }
4227    }
4228
4229    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4230                            D.getIdentifierLoc(), II,
4231                            R, TInfo, SC, SCAsWritten);
4232
4233    // If this decl has an auto type in need of deduction, make a note of the
4234    // Decl so we can diagnose uses of it in its own initializer.
4235    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4236        R->getContainedAutoType())
4237      ParsingInitForAutoVars.insert(NewVD);
4238
4239    if (D.isInvalidType() || Invalid)
4240      NewVD->setInvalidDecl();
4241
4242    SetNestedNameSpecifier(NewVD, D);
4243
4244    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4245      NewVD->setTemplateParameterListsInfo(Context,
4246                                           TemplateParamLists.size(),
4247                                           TemplateParamLists.release());
4248    }
4249
4250    if (D.getDeclSpec().isConstexprSpecified())
4251      NewVD->setConstexpr(true);
4252  }
4253
4254  // Set the lexical context. If the declarator has a C++ scope specifier, the
4255  // lexical context will be different from the semantic context.
4256  NewVD->setLexicalDeclContext(CurContext);
4257
4258  if (D.getDeclSpec().isThreadSpecified()) {
4259    if (NewVD->hasLocalStorage())
4260      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4261    else if (!Context.getTargetInfo().isTLSSupported())
4262      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4263    else
4264      NewVD->setThreadSpecified(true);
4265  }
4266
4267  if (D.getDeclSpec().isModulePrivateSpecified()) {
4268    if (isExplicitSpecialization)
4269      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4270        << 2
4271        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4272    else if (NewVD->hasLocalStorage())
4273      Diag(NewVD->getLocation(), diag::err_module_private_local)
4274        << 0 << NewVD->getDeclName()
4275        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4276        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4277    else
4278      NewVD->setModulePrivate();
4279  }
4280
4281  // Handle attributes prior to checking for duplicates in MergeVarDecl
4282  ProcessDeclAttributes(S, NewVD, D);
4283
4284  // In auto-retain/release, infer strong retension for variables of
4285  // retainable type.
4286  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4287    NewVD->setInvalidDecl();
4288
4289  // Handle GNU asm-label extension (encoded as an attribute).
4290  if (Expr *E = (Expr*)D.getAsmLabel()) {
4291    // The parser guarantees this is a string.
4292    StringLiteral *SE = cast<StringLiteral>(E);
4293    StringRef Label = SE->getString();
4294    if (S->getFnParent() != 0) {
4295      switch (SC) {
4296      case SC_None:
4297      case SC_Auto:
4298        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4299        break;
4300      case SC_Register:
4301        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4302          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4303        break;
4304      case SC_Static:
4305      case SC_Extern:
4306      case SC_PrivateExtern:
4307      case SC_OpenCLWorkGroupLocal:
4308        break;
4309      }
4310    }
4311
4312    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4313                                                Context, Label));
4314  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4315    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4316      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4317    if (I != ExtnameUndeclaredIdentifiers.end()) {
4318      NewVD->addAttr(I->second);
4319      ExtnameUndeclaredIdentifiers.erase(I);
4320    }
4321  }
4322
4323  // Diagnose shadowed variables before filtering for scope.
4324  if (!D.getCXXScopeSpec().isSet())
4325    CheckShadow(S, NewVD, Previous);
4326
4327  // Don't consider existing declarations that are in a different
4328  // scope and are out-of-semantic-context declarations (if the new
4329  // declaration has linkage).
4330  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4331                       isExplicitSpecialization);
4332
4333  if (!getLangOpts().CPlusPlus) {
4334    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4335  } else {
4336    // Merge the decl with the existing one if appropriate.
4337    if (!Previous.empty()) {
4338      if (Previous.isSingleResult() &&
4339          isa<FieldDecl>(Previous.getFoundDecl()) &&
4340          D.getCXXScopeSpec().isSet()) {
4341        // The user tried to define a non-static data member
4342        // out-of-line (C++ [dcl.meaning]p1).
4343        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4344          << D.getCXXScopeSpec().getRange();
4345        Previous.clear();
4346        NewVD->setInvalidDecl();
4347      }
4348    } else if (D.getCXXScopeSpec().isSet()) {
4349      // No previous declaration in the qualifying scope.
4350      Diag(D.getIdentifierLoc(), diag::err_no_member)
4351        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4352        << D.getCXXScopeSpec().getRange();
4353      NewVD->setInvalidDecl();
4354    }
4355
4356    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4357
4358    // This is an explicit specialization of a static data member. Check it.
4359    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4360        CheckMemberSpecialization(NewVD, Previous))
4361      NewVD->setInvalidDecl();
4362  }
4363
4364  // If this is a locally-scoped extern C variable, update the map of
4365  // such variables.
4366  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4367      !NewVD->isInvalidDecl())
4368    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4369
4370  // If there's a #pragma GCC visibility in scope, and this isn't a class
4371  // member, set the visibility of this variable.
4372  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4373    AddPushedVisibilityAttribute(NewVD);
4374
4375  MarkUnusedFileScopedDecl(NewVD);
4376
4377  return NewVD;
4378}
4379
4380/// \brief Diagnose variable or built-in function shadowing.  Implements
4381/// -Wshadow.
4382///
4383/// This method is called whenever a VarDecl is added to a "useful"
4384/// scope.
4385///
4386/// \param S the scope in which the shadowing name is being declared
4387/// \param R the lookup of the name
4388///
4389void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4390  // Return if warning is ignored.
4391  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4392        DiagnosticsEngine::Ignored)
4393    return;
4394
4395  // Don't diagnose declarations at file scope.
4396  if (D->hasGlobalStorage())
4397    return;
4398
4399  DeclContext *NewDC = D->getDeclContext();
4400
4401  // Only diagnose if we're shadowing an unambiguous field or variable.
4402  if (R.getResultKind() != LookupResult::Found)
4403    return;
4404
4405  NamedDecl* ShadowedDecl = R.getFoundDecl();
4406  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4407    return;
4408
4409  // Fields are not shadowed by variables in C++ static methods.
4410  if (isa<FieldDecl>(ShadowedDecl))
4411    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4412      if (MD->isStatic())
4413        return;
4414
4415  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4416    if (shadowedVar->isExternC()) {
4417      // For shadowing external vars, make sure that we point to the global
4418      // declaration, not a locally scoped extern declaration.
4419      for (VarDecl::redecl_iterator
4420             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4421           I != E; ++I)
4422        if (I->isFileVarDecl()) {
4423          ShadowedDecl = *I;
4424          break;
4425        }
4426    }
4427
4428  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4429
4430  // Only warn about certain kinds of shadowing for class members.
4431  if (NewDC && NewDC->isRecord()) {
4432    // In particular, don't warn about shadowing non-class members.
4433    if (!OldDC->isRecord())
4434      return;
4435
4436    // TODO: should we warn about static data members shadowing
4437    // static data members from base classes?
4438
4439    // TODO: don't diagnose for inaccessible shadowed members.
4440    // This is hard to do perfectly because we might friend the
4441    // shadowing context, but that's just a false negative.
4442  }
4443
4444  // Determine what kind of declaration we're shadowing.
4445  unsigned Kind;
4446  if (isa<RecordDecl>(OldDC)) {
4447    if (isa<FieldDecl>(ShadowedDecl))
4448      Kind = 3; // field
4449    else
4450      Kind = 2; // static data member
4451  } else if (OldDC->isFileContext())
4452    Kind = 1; // global
4453  else
4454    Kind = 0; // local
4455
4456  DeclarationName Name = R.getLookupName();
4457
4458  // Emit warning and note.
4459  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4460  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4461}
4462
4463/// \brief Check -Wshadow without the advantage of a previous lookup.
4464void Sema::CheckShadow(Scope *S, VarDecl *D) {
4465  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4466        DiagnosticsEngine::Ignored)
4467    return;
4468
4469  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4470                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4471  LookupName(R, S);
4472  CheckShadow(S, D, R);
4473}
4474
4475/// \brief Perform semantic checking on a newly-created variable
4476/// declaration.
4477///
4478/// This routine performs all of the type-checking required for a
4479/// variable declaration once it has been built. It is used both to
4480/// check variables after they have been parsed and their declarators
4481/// have been translated into a declaration, and to check variables
4482/// that have been instantiated from a template.
4483///
4484/// Sets NewVD->isInvalidDecl() if an error was encountered.
4485///
4486/// Returns true if the variable declaration is a redeclaration.
4487bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4488                                    LookupResult &Previous) {
4489  // If the decl is already known invalid, don't check it.
4490  if (NewVD->isInvalidDecl())
4491    return false;
4492
4493  QualType T = NewVD->getType();
4494
4495  if (T->isObjCObjectType()) {
4496    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4497      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4498    T = Context.getObjCObjectPointerType(T);
4499    NewVD->setType(T);
4500  }
4501
4502  // Emit an error if an address space was applied to decl with local storage.
4503  // This includes arrays of objects with address space qualifiers, but not
4504  // automatic variables that point to other address spaces.
4505  // ISO/IEC TR 18037 S5.1.2
4506  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4507    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4508    NewVD->setInvalidDecl();
4509    return false;
4510  }
4511
4512  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
4513  // scope.
4514  if ((getLangOpts().OpenCLVersion >= 120)
4515      && NewVD->isStaticLocal()) {
4516    Diag(NewVD->getLocation(), diag::err_static_function_scope);
4517    NewVD->setInvalidDecl();
4518    return false;
4519  }
4520
4521  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4522      && !NewVD->hasAttr<BlocksAttr>()) {
4523    if (getLangOpts().getGC() != LangOptions::NonGC)
4524      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4525    else
4526      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4527  }
4528
4529  bool isVM = T->isVariablyModifiedType();
4530  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4531      NewVD->hasAttr<BlocksAttr>())
4532    getCurFunction()->setHasBranchProtectedScope();
4533
4534  if ((isVM && NewVD->hasLinkage()) ||
4535      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4536    bool SizeIsNegative;
4537    llvm::APSInt Oversized;
4538    QualType FixedTy =
4539        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4540                                            Oversized);
4541
4542    if (FixedTy.isNull() && T->isVariableArrayType()) {
4543      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4544      // FIXME: This won't give the correct result for
4545      // int a[10][n];
4546      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4547
4548      if (NewVD->isFileVarDecl())
4549        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4550        << SizeRange;
4551      else if (NewVD->getStorageClass() == SC_Static)
4552        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4553        << SizeRange;
4554      else
4555        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4556        << SizeRange;
4557      NewVD->setInvalidDecl();
4558      return false;
4559    }
4560
4561    if (FixedTy.isNull()) {
4562      if (NewVD->isFileVarDecl())
4563        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4564      else
4565        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4566      NewVD->setInvalidDecl();
4567      return false;
4568    }
4569
4570    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4571    NewVD->setType(FixedTy);
4572  }
4573
4574  if (Previous.empty() && NewVD->isExternC()) {
4575    // Since we did not find anything by this name and we're declaring
4576    // an extern "C" variable, look for a non-visible extern "C"
4577    // declaration with the same name.
4578    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4579      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4580    if (Pos != LocallyScopedExternalDecls.end())
4581      Previous.addDecl(Pos->second);
4582  }
4583
4584  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4585    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4586      << T;
4587    NewVD->setInvalidDecl();
4588    return false;
4589  }
4590
4591  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4592    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4593    NewVD->setInvalidDecl();
4594    return false;
4595  }
4596
4597  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4598    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4599    NewVD->setInvalidDecl();
4600    return false;
4601  }
4602
4603  if (NewVD->isConstexpr() && !T->isDependentType() &&
4604      RequireLiteralType(NewVD->getLocation(), T,
4605                         diag::err_constexpr_var_non_literal)) {
4606    NewVD->setInvalidDecl();
4607    return false;
4608  }
4609
4610  if (!Previous.empty()) {
4611    MergeVarDecl(NewVD, Previous);
4612    return true;
4613  }
4614  return false;
4615}
4616
4617/// \brief Data used with FindOverriddenMethod
4618struct FindOverriddenMethodData {
4619  Sema *S;
4620  CXXMethodDecl *Method;
4621};
4622
4623/// \brief Member lookup function that determines whether a given C++
4624/// method overrides a method in a base class, to be used with
4625/// CXXRecordDecl::lookupInBases().
4626static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4627                                 CXXBasePath &Path,
4628                                 void *UserData) {
4629  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4630
4631  FindOverriddenMethodData *Data
4632    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4633
4634  DeclarationName Name = Data->Method->getDeclName();
4635
4636  // FIXME: Do we care about other names here too?
4637  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4638    // We really want to find the base class destructor here.
4639    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4640    CanQualType CT = Data->S->Context.getCanonicalType(T);
4641
4642    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4643  }
4644
4645  for (Path.Decls = BaseRecord->lookup(Name);
4646       Path.Decls.first != Path.Decls.second;
4647       ++Path.Decls.first) {
4648    NamedDecl *D = *Path.Decls.first;
4649    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4650      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4651        return true;
4652    }
4653  }
4654
4655  return false;
4656}
4657
4658/// AddOverriddenMethods - See if a method overrides any in the base classes,
4659/// and if so, check that it's a valid override and remember it.
4660bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4661  // Look for virtual methods in base classes that this method might override.
4662  CXXBasePaths Paths;
4663  FindOverriddenMethodData Data;
4664  Data.Method = MD;
4665  Data.S = this;
4666  bool AddedAny = false;
4667  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4668    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4669         E = Paths.found_decls_end(); I != E; ++I) {
4670      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4671        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4672        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4673            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4674            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4675          AddedAny = true;
4676        }
4677      }
4678    }
4679  }
4680
4681  return AddedAny;
4682}
4683
4684namespace {
4685  // Struct for holding all of the extra arguments needed by
4686  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4687  struct ActOnFDArgs {
4688    Scope *S;
4689    Declarator &D;
4690    MultiTemplateParamsArg TemplateParamLists;
4691    bool AddToScope;
4692  };
4693}
4694
4695namespace {
4696
4697// Callback to only accept typo corrections that have a non-zero edit distance.
4698// Also only accept corrections that have the same parent decl.
4699class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4700 public:
4701  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4702                            CXXRecordDecl *Parent)
4703      : Context(Context), OriginalFD(TypoFD),
4704        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4705
4706  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4707    if (candidate.getEditDistance() == 0)
4708      return false;
4709
4710    llvm::SmallVector<unsigned, 1> MismatchedParams;
4711    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4712                                          CDeclEnd = candidate.end();
4713         CDecl != CDeclEnd; ++CDecl) {
4714      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4715
4716      if (FD && !FD->hasBody() &&
4717          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4718        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4719          CXXRecordDecl *Parent = MD->getParent();
4720          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4721            return true;
4722        } else if (!ExpectedParent) {
4723          return true;
4724        }
4725      }
4726    }
4727
4728    return false;
4729  }
4730
4731 private:
4732  ASTContext &Context;
4733  FunctionDecl *OriginalFD;
4734  CXXRecordDecl *ExpectedParent;
4735};
4736
4737}
4738
4739/// \brief Generate diagnostics for an invalid function redeclaration.
4740///
4741/// This routine handles generating the diagnostic messages for an invalid
4742/// function redeclaration, including finding possible similar declarations
4743/// or performing typo correction if there are no previous declarations with
4744/// the same name.
4745///
4746/// Returns a NamedDecl iff typo correction was performed and substituting in
4747/// the new declaration name does not cause new errors.
4748static NamedDecl* DiagnoseInvalidRedeclaration(
4749    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4750    ActOnFDArgs &ExtraArgs) {
4751  NamedDecl *Result = NULL;
4752  DeclarationName Name = NewFD->getDeclName();
4753  DeclContext *NewDC = NewFD->getDeclContext();
4754  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4755                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4756  llvm::SmallVector<unsigned, 1> MismatchedParams;
4757  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4758  TypoCorrection Correction;
4759  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4760                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4761  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4762                                  : diag::err_member_def_does_not_match;
4763
4764  NewFD->setInvalidDecl();
4765  SemaRef.LookupQualifiedName(Prev, NewDC);
4766  assert(!Prev.isAmbiguous() &&
4767         "Cannot have an ambiguity in previous-declaration lookup");
4768  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4769  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4770                                      MD ? MD->getParent() : 0);
4771  if (!Prev.empty()) {
4772    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4773         Func != FuncEnd; ++Func) {
4774      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4775      if (FD &&
4776          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4777        // Add 1 to the index so that 0 can mean the mismatch didn't
4778        // involve a parameter
4779        unsigned ParamNum =
4780            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4781        NearMatches.push_back(std::make_pair(FD, ParamNum));
4782      }
4783    }
4784  // If the qualified name lookup yielded nothing, try typo correction
4785  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4786                                         Prev.getLookupKind(), 0, 0,
4787                                         Validator, NewDC))) {
4788    // Trap errors.
4789    Sema::SFINAETrap Trap(SemaRef);
4790
4791    // Set up everything for the call to ActOnFunctionDeclarator
4792    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4793                              ExtraArgs.D.getIdentifierLoc());
4794    Previous.clear();
4795    Previous.setLookupName(Correction.getCorrection());
4796    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4797                                    CDeclEnd = Correction.end();
4798         CDecl != CDeclEnd; ++CDecl) {
4799      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4800      if (FD && !FD->hasBody() &&
4801          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4802        Previous.addDecl(FD);
4803      }
4804    }
4805    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4806    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4807    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4808    // eliminate the need for the parameter pack ExtraArgs.
4809    Result = SemaRef.ActOnFunctionDeclarator(
4810        ExtraArgs.S, ExtraArgs.D,
4811        Correction.getCorrectionDecl()->getDeclContext(),
4812        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4813        ExtraArgs.AddToScope);
4814    if (Trap.hasErrorOccurred()) {
4815      // Pretend the typo correction never occurred
4816      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4817                                ExtraArgs.D.getIdentifierLoc());
4818      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4819      Previous.clear();
4820      Previous.setLookupName(Name);
4821      Result = NULL;
4822    } else {
4823      for (LookupResult::iterator Func = Previous.begin(),
4824                               FuncEnd = Previous.end();
4825           Func != FuncEnd; ++Func) {
4826        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4827          NearMatches.push_back(std::make_pair(FD, 0));
4828      }
4829    }
4830    if (NearMatches.empty()) {
4831      // Ignore the correction if it didn't yield any close FunctionDecl matches
4832      Correction = TypoCorrection();
4833    } else {
4834      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4835                             : diag::err_member_def_does_not_match_suggest;
4836    }
4837  }
4838
4839  if (Correction) {
4840    SourceRange FixItLoc(NewFD->getLocation());
4841    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4842    if (Correction.getCorrectionSpecifier() && SS.isValid())
4843      FixItLoc.setBegin(SS.getBeginLoc());
4844    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4845        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4846        << FixItHint::CreateReplacement(
4847            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4848  } else {
4849    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4850        << Name << NewDC << NewFD->getLocation();
4851  }
4852
4853  bool NewFDisConst = false;
4854  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4855    NewFDisConst = NewMD->isConst();
4856
4857  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4858       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4859       NearMatch != NearMatchEnd; ++NearMatch) {
4860    FunctionDecl *FD = NearMatch->first;
4861    bool FDisConst = false;
4862    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4863      FDisConst = MD->isConst();
4864
4865    if (unsigned Idx = NearMatch->second) {
4866      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4867      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4868      if (Loc.isInvalid()) Loc = FD->getLocation();
4869      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4870          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4871    } else if (Correction) {
4872      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4873          << Correction.getQuoted(SemaRef.getLangOpts());
4874    } else if (FDisConst != NewFDisConst) {
4875      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4876          << NewFDisConst << FD->getSourceRange().getEnd();
4877    } else
4878      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4879  }
4880  return Result;
4881}
4882
4883static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4884                                                          Declarator &D) {
4885  switch (D.getDeclSpec().getStorageClassSpec()) {
4886  default: llvm_unreachable("Unknown storage class!");
4887  case DeclSpec::SCS_auto:
4888  case DeclSpec::SCS_register:
4889  case DeclSpec::SCS_mutable:
4890    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4891                 diag::err_typecheck_sclass_func);
4892    D.setInvalidType();
4893    break;
4894  case DeclSpec::SCS_unspecified: break;
4895  case DeclSpec::SCS_extern: return SC_Extern;
4896  case DeclSpec::SCS_static: {
4897    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4898      // C99 6.7.1p5:
4899      //   The declaration of an identifier for a function that has
4900      //   block scope shall have no explicit storage-class specifier
4901      //   other than extern
4902      // See also (C++ [dcl.stc]p4).
4903      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4904                   diag::err_static_block_func);
4905      break;
4906    } else
4907      return SC_Static;
4908  }
4909  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4910  }
4911
4912  // No explicit storage class has already been returned
4913  return SC_None;
4914}
4915
4916static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4917                                           DeclContext *DC, QualType &R,
4918                                           TypeSourceInfo *TInfo,
4919                                           FunctionDecl::StorageClass SC,
4920                                           bool &IsVirtualOkay) {
4921  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4922  DeclarationName Name = NameInfo.getName();
4923
4924  FunctionDecl *NewFD = 0;
4925  bool isInline = D.getDeclSpec().isInlineSpecified();
4926  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4927  FunctionDecl::StorageClass SCAsWritten
4928    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4929
4930  if (!SemaRef.getLangOpts().CPlusPlus) {
4931    // Determine whether the function was written with a
4932    // prototype. This true when:
4933    //   - there is a prototype in the declarator, or
4934    //   - the type R of the function is some kind of typedef or other reference
4935    //     to a type name (which eventually refers to a function type).
4936    bool HasPrototype =
4937      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4938      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4939
4940    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4941                                 D.getLocStart(), NameInfo, R,
4942                                 TInfo, SC, SCAsWritten, isInline,
4943                                 HasPrototype);
4944    if (D.isInvalidType())
4945      NewFD->setInvalidDecl();
4946
4947    // Set the lexical context.
4948    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4949
4950    return NewFD;
4951  }
4952
4953  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4954  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4955
4956  // Check that the return type is not an abstract class type.
4957  // For record types, this is done by the AbstractClassUsageDiagnoser once
4958  // the class has been completely parsed.
4959  if (!DC->isRecord() &&
4960      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4961                                     R->getAs<FunctionType>()->getResultType(),
4962                                     diag::err_abstract_type_in_decl,
4963                                     SemaRef.AbstractReturnType))
4964    D.setInvalidType();
4965
4966  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4967    // This is a C++ constructor declaration.
4968    assert(DC->isRecord() &&
4969           "Constructors can only be declared in a member context");
4970
4971    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4972    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4973                                      D.getLocStart(), NameInfo,
4974                                      R, TInfo, isExplicit, isInline,
4975                                      /*isImplicitlyDeclared=*/false,
4976                                      isConstexpr);
4977
4978  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4979    // This is a C++ destructor declaration.
4980    if (DC->isRecord()) {
4981      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4982      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4983      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4984                                        SemaRef.Context, Record,
4985                                        D.getLocStart(),
4986                                        NameInfo, R, TInfo, isInline,
4987                                        /*isImplicitlyDeclared=*/false);
4988
4989      // If the class is complete, then we now create the implicit exception
4990      // specification. If the class is incomplete or dependent, we can't do
4991      // it yet.
4992      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4993          Record->getDefinition() && !Record->isBeingDefined() &&
4994          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4995        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4996      }
4997
4998      IsVirtualOkay = true;
4999      return NewDD;
5000
5001    } else {
5002      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5003      D.setInvalidType();
5004
5005      // Create a FunctionDecl to satisfy the function definition parsing
5006      // code path.
5007      return FunctionDecl::Create(SemaRef.Context, DC,
5008                                  D.getLocStart(),
5009                                  D.getIdentifierLoc(), Name, R, TInfo,
5010                                  SC, SCAsWritten, isInline,
5011                                  /*hasPrototype=*/true, isConstexpr);
5012    }
5013
5014  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5015    if (!DC->isRecord()) {
5016      SemaRef.Diag(D.getIdentifierLoc(),
5017           diag::err_conv_function_not_member);
5018      return 0;
5019    }
5020
5021    SemaRef.CheckConversionDeclarator(D, R, SC);
5022    IsVirtualOkay = true;
5023    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5024                                     D.getLocStart(), NameInfo,
5025                                     R, TInfo, isInline, isExplicit,
5026                                     isConstexpr, SourceLocation());
5027
5028  } else if (DC->isRecord()) {
5029    // If the name of the function is the same as the name of the record,
5030    // then this must be an invalid constructor that has a return type.
5031    // (The parser checks for a return type and makes the declarator a
5032    // constructor if it has no return type).
5033    if (Name.getAsIdentifierInfo() &&
5034        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5035      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5036        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5037        << SourceRange(D.getIdentifierLoc());
5038      return 0;
5039    }
5040
5041    bool isStatic = SC == SC_Static;
5042
5043    // [class.free]p1:
5044    // Any allocation function for a class T is a static member
5045    // (even if not explicitly declared static).
5046    if (Name.getCXXOverloadedOperator() == OO_New ||
5047        Name.getCXXOverloadedOperator() == OO_Array_New)
5048      isStatic = true;
5049
5050    // [class.free]p6 Any deallocation function for a class X is a static member
5051    // (even if not explicitly declared static).
5052    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5053        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5054      isStatic = true;
5055
5056    IsVirtualOkay = !isStatic;
5057
5058    // This is a C++ method declaration.
5059    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5060                                 D.getLocStart(), NameInfo, R,
5061                                 TInfo, isStatic, SCAsWritten, isInline,
5062                                 isConstexpr, SourceLocation());
5063
5064  } else {
5065    // Determine whether the function was written with a
5066    // prototype. This true when:
5067    //   - we're in C++ (where every function has a prototype),
5068    return FunctionDecl::Create(SemaRef.Context, DC,
5069                                D.getLocStart(),
5070                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5071                                true/*HasPrototype*/, isConstexpr);
5072  }
5073}
5074
5075NamedDecl*
5076Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5077                              TypeSourceInfo *TInfo, LookupResult &Previous,
5078                              MultiTemplateParamsArg TemplateParamLists,
5079                              bool &AddToScope) {
5080  QualType R = TInfo->getType();
5081
5082  assert(R.getTypePtr()->isFunctionType());
5083
5084  // TODO: consider using NameInfo for diagnostic.
5085  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5086  DeclarationName Name = NameInfo.getName();
5087  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5088
5089  if (D.getDeclSpec().isThreadSpecified())
5090    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5091
5092  // Do not allow returning a objc interface by-value.
5093  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5094    Diag(D.getIdentifierLoc(),
5095         diag::err_object_cannot_be_passed_returned_by_value) << 0
5096    << R->getAs<FunctionType>()->getResultType()
5097    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5098
5099    QualType T = R->getAs<FunctionType>()->getResultType();
5100    T = Context.getObjCObjectPointerType(T);
5101    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5102      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5103      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5104                                  FPT->getNumArgs(), EPI);
5105    }
5106    else if (isa<FunctionNoProtoType>(R))
5107      R = Context.getFunctionNoProtoType(T);
5108  }
5109
5110  bool isFriend = false;
5111  FunctionTemplateDecl *FunctionTemplate = 0;
5112  bool isExplicitSpecialization = false;
5113  bool isFunctionTemplateSpecialization = false;
5114
5115  bool isDependentClassScopeExplicitSpecialization = false;
5116  bool HasExplicitTemplateArgs = false;
5117  TemplateArgumentListInfo TemplateArgs;
5118
5119  bool isVirtualOkay = false;
5120
5121  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5122                                              isVirtualOkay);
5123  if (!NewFD) return 0;
5124
5125  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5126    NewFD->setTopLevelDeclInObjCContainer();
5127
5128  if (getLangOpts().CPlusPlus) {
5129    bool isInline = D.getDeclSpec().isInlineSpecified();
5130    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5131    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5132    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5133    isFriend = D.getDeclSpec().isFriendSpecified();
5134    if (isFriend && !isInline && D.isFunctionDefinition()) {
5135      // C++ [class.friend]p5
5136      //   A function can be defined in a friend declaration of a
5137      //   class . . . . Such a function is implicitly inline.
5138      NewFD->setImplicitlyInline();
5139    }
5140
5141    SetNestedNameSpecifier(NewFD, D);
5142    isExplicitSpecialization = false;
5143    isFunctionTemplateSpecialization = false;
5144    if (D.isInvalidType())
5145      NewFD->setInvalidDecl();
5146
5147    // Set the lexical context. If the declarator has a C++
5148    // scope specifier, or is the object of a friend declaration, the
5149    // lexical context will be different from the semantic context.
5150    NewFD->setLexicalDeclContext(CurContext);
5151
5152    // Match up the template parameter lists with the scope specifier, then
5153    // determine whether we have a template or a template specialization.
5154    bool Invalid = false;
5155    if (TemplateParameterList *TemplateParams
5156          = MatchTemplateParametersToScopeSpecifier(
5157                                  D.getDeclSpec().getLocStart(),
5158                                  D.getIdentifierLoc(),
5159                                  D.getCXXScopeSpec(),
5160                                  TemplateParamLists.get(),
5161                                  TemplateParamLists.size(),
5162                                  isFriend,
5163                                  isExplicitSpecialization,
5164                                  Invalid)) {
5165      if (TemplateParams->size() > 0) {
5166        // This is a function template
5167
5168        // Check that we can declare a template here.
5169        if (CheckTemplateDeclScope(S, TemplateParams))
5170          return 0;
5171
5172        // A destructor cannot be a template.
5173        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5174          Diag(NewFD->getLocation(), diag::err_destructor_template);
5175          return 0;
5176        }
5177
5178        // If we're adding a template to a dependent context, we may need to
5179        // rebuilding some of the types used within the template parameter list,
5180        // now that we know what the current instantiation is.
5181        if (DC->isDependentContext()) {
5182          ContextRAII SavedContext(*this, DC);
5183          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5184            Invalid = true;
5185        }
5186
5187
5188        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5189                                                        NewFD->getLocation(),
5190                                                        Name, TemplateParams,
5191                                                        NewFD);
5192        FunctionTemplate->setLexicalDeclContext(CurContext);
5193        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5194
5195        // For source fidelity, store the other template param lists.
5196        if (TemplateParamLists.size() > 1) {
5197          NewFD->setTemplateParameterListsInfo(Context,
5198                                               TemplateParamLists.size() - 1,
5199                                               TemplateParamLists.release());
5200        }
5201      } else {
5202        // This is a function template specialization.
5203        isFunctionTemplateSpecialization = true;
5204        // For source fidelity, store all the template param lists.
5205        NewFD->setTemplateParameterListsInfo(Context,
5206                                             TemplateParamLists.size(),
5207                                             TemplateParamLists.release());
5208
5209        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5210        if (isFriend) {
5211          // We want to remove the "template<>", found here.
5212          SourceRange RemoveRange = TemplateParams->getSourceRange();
5213
5214          // If we remove the template<> and the name is not a
5215          // template-id, we're actually silently creating a problem:
5216          // the friend declaration will refer to an untemplated decl,
5217          // and clearly the user wants a template specialization.  So
5218          // we need to insert '<>' after the name.
5219          SourceLocation InsertLoc;
5220          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5221            InsertLoc = D.getName().getSourceRange().getEnd();
5222            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5223          }
5224
5225          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5226            << Name << RemoveRange
5227            << FixItHint::CreateRemoval(RemoveRange)
5228            << FixItHint::CreateInsertion(InsertLoc, "<>");
5229        }
5230      }
5231    }
5232    else {
5233      // All template param lists were matched against the scope specifier:
5234      // this is NOT (an explicit specialization of) a template.
5235      if (TemplateParamLists.size() > 0)
5236        // For source fidelity, store all the template param lists.
5237        NewFD->setTemplateParameterListsInfo(Context,
5238                                             TemplateParamLists.size(),
5239                                             TemplateParamLists.release());
5240    }
5241
5242    if (Invalid) {
5243      NewFD->setInvalidDecl();
5244      if (FunctionTemplate)
5245        FunctionTemplate->setInvalidDecl();
5246    }
5247
5248    // C++ [dcl.fct.spec]p5:
5249    //   The virtual specifier shall only be used in declarations of
5250    //   nonstatic class member functions that appear within a
5251    //   member-specification of a class declaration; see 10.3.
5252    //
5253    if (isVirtual && !NewFD->isInvalidDecl()) {
5254      if (!isVirtualOkay) {
5255        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5256             diag::err_virtual_non_function);
5257      } else if (!CurContext->isRecord()) {
5258        // 'virtual' was specified outside of the class.
5259        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5260             diag::err_virtual_out_of_class)
5261          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5262      } else if (NewFD->getDescribedFunctionTemplate()) {
5263        // C++ [temp.mem]p3:
5264        //  A member function template shall not be virtual.
5265        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5266             diag::err_virtual_member_function_template)
5267          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5268      } else {
5269        // Okay: Add virtual to the method.
5270        NewFD->setVirtualAsWritten(true);
5271      }
5272    }
5273
5274    // C++ [dcl.fct.spec]p3:
5275    //  The inline specifier shall not appear on a block scope function
5276    //  declaration.
5277    if (isInline && !NewFD->isInvalidDecl()) {
5278      if (CurContext->isFunctionOrMethod()) {
5279        // 'inline' is not allowed on block scope function declaration.
5280        Diag(D.getDeclSpec().getInlineSpecLoc(),
5281             diag::err_inline_declaration_block_scope) << Name
5282          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5283      }
5284    }
5285
5286    // C++ [dcl.fct.spec]p6:
5287    //  The explicit specifier shall be used only in the declaration of a
5288    //  constructor or conversion function within its class definition;
5289    //  see 12.3.1 and 12.3.2.
5290    if (isExplicit && !NewFD->isInvalidDecl()) {
5291      if (!CurContext->isRecord()) {
5292        // 'explicit' was specified outside of the class.
5293        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5294             diag::err_explicit_out_of_class)
5295          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5296      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5297                 !isa<CXXConversionDecl>(NewFD)) {
5298        // 'explicit' was specified on a function that wasn't a constructor
5299        // or conversion function.
5300        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5301             diag::err_explicit_non_ctor_or_conv_function)
5302          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5303      }
5304    }
5305
5306    if (isConstexpr) {
5307      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5308      // are implicitly inline.
5309      NewFD->setImplicitlyInline();
5310
5311      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5312      // be either constructors or to return a literal type. Therefore,
5313      // destructors cannot be declared constexpr.
5314      if (isa<CXXDestructorDecl>(NewFD))
5315        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5316    }
5317
5318    // If __module_private__ was specified, mark the function accordingly.
5319    if (D.getDeclSpec().isModulePrivateSpecified()) {
5320      if (isFunctionTemplateSpecialization) {
5321        SourceLocation ModulePrivateLoc
5322          = D.getDeclSpec().getModulePrivateSpecLoc();
5323        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5324          << 0
5325          << FixItHint::CreateRemoval(ModulePrivateLoc);
5326      } else {
5327        NewFD->setModulePrivate();
5328        if (FunctionTemplate)
5329          FunctionTemplate->setModulePrivate();
5330      }
5331    }
5332
5333    if (isFriend) {
5334      // For now, claim that the objects have no previous declaration.
5335      if (FunctionTemplate) {
5336        FunctionTemplate->setObjectOfFriendDecl(false);
5337        FunctionTemplate->setAccess(AS_public);
5338      }
5339      NewFD->setObjectOfFriendDecl(false);
5340      NewFD->setAccess(AS_public);
5341    }
5342
5343    // If a function is defined as defaulted or deleted, mark it as such now.
5344    switch (D.getFunctionDefinitionKind()) {
5345      case FDK_Declaration:
5346      case FDK_Definition:
5347        break;
5348
5349      case FDK_Defaulted:
5350        NewFD->setDefaulted();
5351        break;
5352
5353      case FDK_Deleted:
5354        NewFD->setDeletedAsWritten();
5355        break;
5356    }
5357
5358    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5359        D.isFunctionDefinition()) {
5360      // C++ [class.mfct]p2:
5361      //   A member function may be defined (8.4) in its class definition, in
5362      //   which case it is an inline member function (7.1.2)
5363      NewFD->setImplicitlyInline();
5364    }
5365
5366    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5367        !CurContext->isRecord()) {
5368      // C++ [class.static]p1:
5369      //   A data or function member of a class may be declared static
5370      //   in a class definition, in which case it is a static member of
5371      //   the class.
5372
5373      // Complain about the 'static' specifier if it's on an out-of-line
5374      // member function definition.
5375      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5376           diag::err_static_out_of_line)
5377        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5378    }
5379  }
5380
5381  // Filter out previous declarations that don't match the scope.
5382  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5383                       isExplicitSpecialization ||
5384                       isFunctionTemplateSpecialization);
5385
5386  // Handle GNU asm-label extension (encoded as an attribute).
5387  if (Expr *E = (Expr*) D.getAsmLabel()) {
5388    // The parser guarantees this is a string.
5389    StringLiteral *SE = cast<StringLiteral>(E);
5390    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5391                                                SE->getString()));
5392  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5393    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5394      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5395    if (I != ExtnameUndeclaredIdentifiers.end()) {
5396      NewFD->addAttr(I->second);
5397      ExtnameUndeclaredIdentifiers.erase(I);
5398    }
5399  }
5400
5401  // Copy the parameter declarations from the declarator D to the function
5402  // declaration NewFD, if they are available.  First scavenge them into Params.
5403  SmallVector<ParmVarDecl*, 16> Params;
5404  if (D.isFunctionDeclarator()) {
5405    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5406
5407    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5408    // function that takes no arguments, not a function that takes a
5409    // single void argument.
5410    // We let through "const void" here because Sema::GetTypeForDeclarator
5411    // already checks for that case.
5412    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5413        FTI.ArgInfo[0].Param &&
5414        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5415      // Empty arg list, don't push any params.
5416      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5417
5418      // In C++, the empty parameter-type-list must be spelled "void"; a
5419      // typedef of void is not permitted.
5420      if (getLangOpts().CPlusPlus &&
5421          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5422        bool IsTypeAlias = false;
5423        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5424          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5425        else if (const TemplateSpecializationType *TST =
5426                   Param->getType()->getAs<TemplateSpecializationType>())
5427          IsTypeAlias = TST->isTypeAlias();
5428        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5429          << IsTypeAlias;
5430      }
5431    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5432      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5433        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5434        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5435        Param->setDeclContext(NewFD);
5436        Params.push_back(Param);
5437
5438        if (Param->isInvalidDecl())
5439          NewFD->setInvalidDecl();
5440      }
5441    }
5442
5443  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5444    // When we're declaring a function with a typedef, typeof, etc as in the
5445    // following example, we'll need to synthesize (unnamed)
5446    // parameters for use in the declaration.
5447    //
5448    // @code
5449    // typedef void fn(int);
5450    // fn f;
5451    // @endcode
5452
5453    // Synthesize a parameter for each argument type.
5454    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5455         AE = FT->arg_type_end(); AI != AE; ++AI) {
5456      ParmVarDecl *Param =
5457        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5458      Param->setScopeInfo(0, Params.size());
5459      Params.push_back(Param);
5460    }
5461  } else {
5462    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5463           "Should not need args for typedef of non-prototype fn");
5464  }
5465
5466  // Finally, we know we have the right number of parameters, install them.
5467  NewFD->setParams(Params);
5468
5469  // Find all anonymous symbols defined during the declaration of this function
5470  // and add to NewFD. This lets us track decls such 'enum Y' in:
5471  //
5472  //   void f(enum Y {AA} x) {}
5473  //
5474  // which would otherwise incorrectly end up in the translation unit scope.
5475  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5476  DeclsInPrototypeScope.clear();
5477
5478  // Process the non-inheritable attributes on this declaration.
5479  ProcessDeclAttributes(S, NewFD, D,
5480                        /*NonInheritable=*/true, /*Inheritable=*/false);
5481
5482  // Functions returning a variably modified type violate C99 6.7.5.2p2
5483  // because all functions have linkage.
5484  if (!NewFD->isInvalidDecl() &&
5485      NewFD->getResultType()->isVariablyModifiedType()) {
5486    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5487    NewFD->setInvalidDecl();
5488  }
5489
5490  // Handle attributes.
5491  ProcessDeclAttributes(S, NewFD, D,
5492                        /*NonInheritable=*/false, /*Inheritable=*/true);
5493
5494  if (!getLangOpts().CPlusPlus) {
5495    // Perform semantic checking on the function declaration.
5496    bool isExplicitSpecialization=false;
5497    if (!NewFD->isInvalidDecl()) {
5498      if (NewFD->isMain())
5499        CheckMain(NewFD, D.getDeclSpec());
5500      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5501                                                  isExplicitSpecialization));
5502    }
5503    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5504            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5505           "previous declaration set still overloaded");
5506  } else {
5507    // If the declarator is a template-id, translate the parser's template
5508    // argument list into our AST format.
5509    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5510      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5511      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5512      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5513      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5514                                         TemplateId->getTemplateArgs(),
5515                                         TemplateId->NumArgs);
5516      translateTemplateArguments(TemplateArgsPtr,
5517                                 TemplateArgs);
5518      TemplateArgsPtr.release();
5519
5520      HasExplicitTemplateArgs = true;
5521
5522      if (NewFD->isInvalidDecl()) {
5523        HasExplicitTemplateArgs = false;
5524      } else if (FunctionTemplate) {
5525        // Function template with explicit template arguments.
5526        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5527          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5528
5529        HasExplicitTemplateArgs = false;
5530      } else if (!isFunctionTemplateSpecialization &&
5531                 !D.getDeclSpec().isFriendSpecified()) {
5532        // We have encountered something that the user meant to be a
5533        // specialization (because it has explicitly-specified template
5534        // arguments) but that was not introduced with a "template<>" (or had
5535        // too few of them).
5536        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5537          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5538          << FixItHint::CreateInsertion(
5539                                    D.getDeclSpec().getLocStart(),
5540                                        "template<> ");
5541        isFunctionTemplateSpecialization = true;
5542      } else {
5543        // "friend void foo<>(int);" is an implicit specialization decl.
5544        isFunctionTemplateSpecialization = true;
5545      }
5546    } else if (isFriend && isFunctionTemplateSpecialization) {
5547      // This combination is only possible in a recovery case;  the user
5548      // wrote something like:
5549      //   template <> friend void foo(int);
5550      // which we're recovering from as if the user had written:
5551      //   friend void foo<>(int);
5552      // Go ahead and fake up a template id.
5553      HasExplicitTemplateArgs = true;
5554        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5555      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5556    }
5557
5558    // If it's a friend (and only if it's a friend), it's possible
5559    // that either the specialized function type or the specialized
5560    // template is dependent, and therefore matching will fail.  In
5561    // this case, don't check the specialization yet.
5562    bool InstantiationDependent = false;
5563    if (isFunctionTemplateSpecialization && isFriend &&
5564        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5565         TemplateSpecializationType::anyDependentTemplateArguments(
5566            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5567            InstantiationDependent))) {
5568      assert(HasExplicitTemplateArgs &&
5569             "friend function specialization without template args");
5570      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5571                                                       Previous))
5572        NewFD->setInvalidDecl();
5573    } else if (isFunctionTemplateSpecialization) {
5574      if (CurContext->isDependentContext() && CurContext->isRecord()
5575          && !isFriend) {
5576        isDependentClassScopeExplicitSpecialization = true;
5577        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5578          diag::ext_function_specialization_in_class :
5579          diag::err_function_specialization_in_class)
5580          << NewFD->getDeclName();
5581      } else if (CheckFunctionTemplateSpecialization(NewFD,
5582                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5583                                                     Previous))
5584        NewFD->setInvalidDecl();
5585
5586      // C++ [dcl.stc]p1:
5587      //   A storage-class-specifier shall not be specified in an explicit
5588      //   specialization (14.7.3)
5589      if (SC != SC_None) {
5590        if (SC != NewFD->getStorageClass())
5591          Diag(NewFD->getLocation(),
5592               diag::err_explicit_specialization_inconsistent_storage_class)
5593            << SC
5594            << FixItHint::CreateRemoval(
5595                                      D.getDeclSpec().getStorageClassSpecLoc());
5596
5597        else
5598          Diag(NewFD->getLocation(),
5599               diag::ext_explicit_specialization_storage_class)
5600            << FixItHint::CreateRemoval(
5601                                      D.getDeclSpec().getStorageClassSpecLoc());
5602      }
5603
5604    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5605      if (CheckMemberSpecialization(NewFD, Previous))
5606          NewFD->setInvalidDecl();
5607    }
5608
5609    // Perform semantic checking on the function declaration.
5610    if (!isDependentClassScopeExplicitSpecialization) {
5611      if (NewFD->isInvalidDecl()) {
5612        // If this is a class member, mark the class invalid immediately.
5613        // This avoids some consistency errors later.
5614        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5615          methodDecl->getParent()->setInvalidDecl();
5616      } else {
5617        if (NewFD->isMain())
5618          CheckMain(NewFD, D.getDeclSpec());
5619        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5620                                                    isExplicitSpecialization));
5621      }
5622    }
5623
5624    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5625            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5626           "previous declaration set still overloaded");
5627
5628    NamedDecl *PrincipalDecl = (FunctionTemplate
5629                                ? cast<NamedDecl>(FunctionTemplate)
5630                                : NewFD);
5631
5632    if (isFriend && D.isRedeclaration()) {
5633      AccessSpecifier Access = AS_public;
5634      if (!NewFD->isInvalidDecl())
5635        Access = NewFD->getPreviousDecl()->getAccess();
5636
5637      NewFD->setAccess(Access);
5638      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5639
5640      PrincipalDecl->setObjectOfFriendDecl(true);
5641    }
5642
5643    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5644        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5645      PrincipalDecl->setNonMemberOperator();
5646
5647    // If we have a function template, check the template parameter
5648    // list. This will check and merge default template arguments.
5649    if (FunctionTemplate) {
5650      FunctionTemplateDecl *PrevTemplate =
5651                                     FunctionTemplate->getPreviousDecl();
5652      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5653                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5654                            D.getDeclSpec().isFriendSpecified()
5655                              ? (D.isFunctionDefinition()
5656                                   ? TPC_FriendFunctionTemplateDefinition
5657                                   : TPC_FriendFunctionTemplate)
5658                              : (D.getCXXScopeSpec().isSet() &&
5659                                 DC && DC->isRecord() &&
5660                                 DC->isDependentContext())
5661                                  ? TPC_ClassTemplateMember
5662                                  : TPC_FunctionTemplate);
5663    }
5664
5665    if (NewFD->isInvalidDecl()) {
5666      // Ignore all the rest of this.
5667    } else if (!D.isRedeclaration()) {
5668      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5669                                       AddToScope };
5670      // Fake up an access specifier if it's supposed to be a class member.
5671      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5672        NewFD->setAccess(AS_public);
5673
5674      // Qualified decls generally require a previous declaration.
5675      if (D.getCXXScopeSpec().isSet()) {
5676        // ...with the major exception of templated-scope or
5677        // dependent-scope friend declarations.
5678
5679        // TODO: we currently also suppress this check in dependent
5680        // contexts because (1) the parameter depth will be off when
5681        // matching friend templates and (2) we might actually be
5682        // selecting a friend based on a dependent factor.  But there
5683        // are situations where these conditions don't apply and we
5684        // can actually do this check immediately.
5685        if (isFriend &&
5686            (TemplateParamLists.size() ||
5687             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5688             CurContext->isDependentContext())) {
5689          // ignore these
5690        } else {
5691          // The user tried to provide an out-of-line definition for a
5692          // function that is a member of a class or namespace, but there
5693          // was no such member function declared (C++ [class.mfct]p2,
5694          // C++ [namespace.memdef]p2). For example:
5695          //
5696          // class X {
5697          //   void f() const;
5698          // };
5699          //
5700          // void X::f() { } // ill-formed
5701          //
5702          // Complain about this problem, and attempt to suggest close
5703          // matches (e.g., those that differ only in cv-qualifiers and
5704          // whether the parameter types are references).
5705
5706          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5707                                                               NewFD,
5708                                                               ExtraArgs)) {
5709            AddToScope = ExtraArgs.AddToScope;
5710            return Result;
5711          }
5712        }
5713
5714        // Unqualified local friend declarations are required to resolve
5715        // to something.
5716      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5717        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5718                                                             NewFD,
5719                                                             ExtraArgs)) {
5720          AddToScope = ExtraArgs.AddToScope;
5721          return Result;
5722        }
5723      }
5724
5725    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5726               !isFriend && !isFunctionTemplateSpecialization &&
5727               !isExplicitSpecialization) {
5728      // An out-of-line member function declaration must also be a
5729      // definition (C++ [dcl.meaning]p1).
5730      // Note that this is not the case for explicit specializations of
5731      // function templates or member functions of class templates, per
5732      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5733      // extension for compatibility with old SWIG code which likes to
5734      // generate them.
5735      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5736        << D.getCXXScopeSpec().getRange();
5737    }
5738  }
5739
5740  AddKnownFunctionAttributes(NewFD);
5741
5742  if (NewFD->hasAttr<OverloadableAttr>() &&
5743      !NewFD->getType()->getAs<FunctionProtoType>()) {
5744    Diag(NewFD->getLocation(),
5745         diag::err_attribute_overloadable_no_prototype)
5746      << NewFD;
5747
5748    // Turn this into a variadic function with no parameters.
5749    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5750    FunctionProtoType::ExtProtoInfo EPI;
5751    EPI.Variadic = true;
5752    EPI.ExtInfo = FT->getExtInfo();
5753
5754    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5755    NewFD->setType(R);
5756  }
5757
5758  // If there's a #pragma GCC visibility in scope, and this isn't a class
5759  // member, set the visibility of this function.
5760  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5761    AddPushedVisibilityAttribute(NewFD);
5762
5763  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5764  // marking the function.
5765  AddCFAuditedAttribute(NewFD);
5766
5767  // If this is a locally-scoped extern C function, update the
5768  // map of such names.
5769  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5770      && !NewFD->isInvalidDecl())
5771    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5772
5773  // Set this FunctionDecl's range up to the right paren.
5774  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5775
5776  if (getLangOpts().CPlusPlus) {
5777    if (FunctionTemplate) {
5778      if (NewFD->isInvalidDecl())
5779        FunctionTemplate->setInvalidDecl();
5780      return FunctionTemplate;
5781    }
5782  }
5783
5784  // OpenCL v1.2 s6.8 static is invalid for kernel functions.
5785  if ((getLangOpts().OpenCLVersion >= 120)
5786      && NewFD->hasAttr<OpenCLKernelAttr>()
5787      && (SC == SC_Static)) {
5788    Diag(D.getIdentifierLoc(), diag::err_static_kernel);
5789    D.setInvalidType();
5790  }
5791
5792  MarkUnusedFileScopedDecl(NewFD);
5793
5794  if (getLangOpts().CUDA)
5795    if (IdentifierInfo *II = NewFD->getIdentifier())
5796      if (!NewFD->isInvalidDecl() &&
5797          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5798        if (II->isStr("cudaConfigureCall")) {
5799          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5800            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5801
5802          Context.setcudaConfigureCallDecl(NewFD);
5803        }
5804      }
5805
5806  // Here we have an function template explicit specialization at class scope.
5807  // The actually specialization will be postponed to template instatiation
5808  // time via the ClassScopeFunctionSpecializationDecl node.
5809  if (isDependentClassScopeExplicitSpecialization) {
5810    ClassScopeFunctionSpecializationDecl *NewSpec =
5811                         ClassScopeFunctionSpecializationDecl::Create(
5812                                Context, CurContext, SourceLocation(),
5813                                cast<CXXMethodDecl>(NewFD),
5814                                HasExplicitTemplateArgs, TemplateArgs);
5815    CurContext->addDecl(NewSpec);
5816    AddToScope = false;
5817  }
5818
5819  return NewFD;
5820}
5821
5822/// \brief Perform semantic checking of a new function declaration.
5823///
5824/// Performs semantic analysis of the new function declaration
5825/// NewFD. This routine performs all semantic checking that does not
5826/// require the actual declarator involved in the declaration, and is
5827/// used both for the declaration of functions as they are parsed
5828/// (called via ActOnDeclarator) and for the declaration of functions
5829/// that have been instantiated via C++ template instantiation (called
5830/// via InstantiateDecl).
5831///
5832/// \param IsExplicitSpecialization whether this new function declaration is
5833/// an explicit specialization of the previous declaration.
5834///
5835/// This sets NewFD->isInvalidDecl() to true if there was an error.
5836///
5837/// \returns true if the function declaration is a redeclaration.
5838bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5839                                    LookupResult &Previous,
5840                                    bool IsExplicitSpecialization) {
5841  assert(!NewFD->getResultType()->isVariablyModifiedType()
5842         && "Variably modified return types are not handled here");
5843
5844  // Check for a previous declaration of this name.
5845  if (Previous.empty() && NewFD->isExternC()) {
5846    // Since we did not find anything by this name and we're declaring
5847    // an extern "C" function, look for a non-visible extern "C"
5848    // declaration with the same name.
5849    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5850      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5851    if (Pos != LocallyScopedExternalDecls.end())
5852      Previous.addDecl(Pos->second);
5853  }
5854
5855  bool Redeclaration = false;
5856
5857  // Merge or overload the declaration with an existing declaration of
5858  // the same name, if appropriate.
5859  if (!Previous.empty()) {
5860    // Determine whether NewFD is an overload of PrevDecl or
5861    // a declaration that requires merging. If it's an overload,
5862    // there's no more work to do here; we'll just add the new
5863    // function to the scope.
5864
5865    NamedDecl *OldDecl = 0;
5866    if (!AllowOverloadingOfFunction(Previous, Context)) {
5867      Redeclaration = true;
5868      OldDecl = Previous.getFoundDecl();
5869    } else {
5870      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5871                            /*NewIsUsingDecl*/ false)) {
5872      case Ovl_Match:
5873        Redeclaration = true;
5874        break;
5875
5876      case Ovl_NonFunction:
5877        Redeclaration = true;
5878        break;
5879
5880      case Ovl_Overload:
5881        Redeclaration = false;
5882        break;
5883      }
5884
5885      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5886        // If a function name is overloadable in C, then every function
5887        // with that name must be marked "overloadable".
5888        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5889          << Redeclaration << NewFD;
5890        NamedDecl *OverloadedDecl = 0;
5891        if (Redeclaration)
5892          OverloadedDecl = OldDecl;
5893        else if (!Previous.empty())
5894          OverloadedDecl = Previous.getRepresentativeDecl();
5895        if (OverloadedDecl)
5896          Diag(OverloadedDecl->getLocation(),
5897               diag::note_attribute_overloadable_prev_overload);
5898        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5899                                                        Context));
5900      }
5901    }
5902
5903    if (Redeclaration) {
5904      // NewFD and OldDecl represent declarations that need to be
5905      // merged.
5906      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5907        NewFD->setInvalidDecl();
5908        return Redeclaration;
5909      }
5910
5911      Previous.clear();
5912      Previous.addDecl(OldDecl);
5913
5914      if (FunctionTemplateDecl *OldTemplateDecl
5915                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5916        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5917        FunctionTemplateDecl *NewTemplateDecl
5918          = NewFD->getDescribedFunctionTemplate();
5919        assert(NewTemplateDecl && "Template/non-template mismatch");
5920        if (CXXMethodDecl *Method
5921              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5922          Method->setAccess(OldTemplateDecl->getAccess());
5923          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5924        }
5925
5926        // If this is an explicit specialization of a member that is a function
5927        // template, mark it as a member specialization.
5928        if (IsExplicitSpecialization &&
5929            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5930          NewTemplateDecl->setMemberSpecialization();
5931          assert(OldTemplateDecl->isMemberSpecialization());
5932        }
5933
5934      } else {
5935        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5936          NewFD->setAccess(OldDecl->getAccess());
5937        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5938      }
5939    }
5940  }
5941
5942  // Semantic checking for this function declaration (in isolation).
5943  if (getLangOpts().CPlusPlus) {
5944    // C++-specific checks.
5945    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5946      CheckConstructor(Constructor);
5947    } else if (CXXDestructorDecl *Destructor =
5948                dyn_cast<CXXDestructorDecl>(NewFD)) {
5949      CXXRecordDecl *Record = Destructor->getParent();
5950      QualType ClassType = Context.getTypeDeclType(Record);
5951
5952      // FIXME: Shouldn't we be able to perform this check even when the class
5953      // type is dependent? Both gcc and edg can handle that.
5954      if (!ClassType->isDependentType()) {
5955        DeclarationName Name
5956          = Context.DeclarationNames.getCXXDestructorName(
5957                                        Context.getCanonicalType(ClassType));
5958        if (NewFD->getDeclName() != Name) {
5959          Diag(NewFD->getLocation(), diag::err_destructor_name);
5960          NewFD->setInvalidDecl();
5961          return Redeclaration;
5962        }
5963      }
5964    } else if (CXXConversionDecl *Conversion
5965               = dyn_cast<CXXConversionDecl>(NewFD)) {
5966      ActOnConversionDeclarator(Conversion);
5967    }
5968
5969    // Find any virtual functions that this function overrides.
5970    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5971      if (!Method->isFunctionTemplateSpecialization() &&
5972          !Method->getDescribedFunctionTemplate()) {
5973        if (AddOverriddenMethods(Method->getParent(), Method)) {
5974          // If the function was marked as "static", we have a problem.
5975          if (NewFD->getStorageClass() == SC_Static) {
5976            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5977              << NewFD->getDeclName();
5978            for (CXXMethodDecl::method_iterator
5979                      Overridden = Method->begin_overridden_methods(),
5980                   OverriddenEnd = Method->end_overridden_methods();
5981                 Overridden != OverriddenEnd;
5982                 ++Overridden) {
5983              Diag((*Overridden)->getLocation(),
5984                   diag::note_overridden_virtual_function);
5985            }
5986          }
5987        }
5988      }
5989
5990      if (Method->isStatic())
5991        checkThisInStaticMemberFunctionType(Method);
5992    }
5993
5994    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5995    if (NewFD->isOverloadedOperator() &&
5996        CheckOverloadedOperatorDeclaration(NewFD)) {
5997      NewFD->setInvalidDecl();
5998      return Redeclaration;
5999    }
6000
6001    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6002    if (NewFD->getLiteralIdentifier() &&
6003        CheckLiteralOperatorDeclaration(NewFD)) {
6004      NewFD->setInvalidDecl();
6005      return Redeclaration;
6006    }
6007
6008    // In C++, check default arguments now that we have merged decls. Unless
6009    // the lexical context is the class, because in this case this is done
6010    // during delayed parsing anyway.
6011    if (!CurContext->isRecord())
6012      CheckCXXDefaultArguments(NewFD);
6013
6014    // If this function declares a builtin function, check the type of this
6015    // declaration against the expected type for the builtin.
6016    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6017      ASTContext::GetBuiltinTypeError Error;
6018      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6019      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6020        // The type of this function differs from the type of the builtin,
6021        // so forget about the builtin entirely.
6022        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6023      }
6024    }
6025
6026    // If this function is declared as being extern "C", then check to see if
6027    // the function returns a UDT (class, struct, or union type) that is not C
6028    // compatible, and if it does, warn the user.
6029    if (NewFD->isExternC()) {
6030      QualType R = NewFD->getResultType();
6031      if (R->isIncompleteType() && !R->isVoidType())
6032        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6033            << NewFD << R;
6034      else if (!R.isPODType(Context) && !R->isVoidType() &&
6035               !R->isObjCObjectPointerType())
6036        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6037    }
6038  }
6039  return Redeclaration;
6040}
6041
6042void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6043  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6044  //   static or constexpr is ill-formed.
6045  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
6046  //   shall not appear in a declaration of main.
6047  // static main is not an error under C99, but we should warn about it.
6048  if (FD->getStorageClass() == SC_Static)
6049    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6050         ? diag::err_static_main : diag::warn_static_main)
6051      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6052  if (FD->isInlineSpecified())
6053    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6054      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6055  if (FD->isConstexpr()) {
6056    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6057      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6058    FD->setConstexpr(false);
6059  }
6060
6061  QualType T = FD->getType();
6062  assert(T->isFunctionType() && "function decl is not of function type");
6063  const FunctionType* FT = T->castAs<FunctionType>();
6064
6065  // All the standards say that main() should should return 'int'.
6066  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6067    // In C and C++, main magically returns 0 if you fall off the end;
6068    // set the flag which tells us that.
6069    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6070    FD->setHasImplicitReturnZero(true);
6071
6072  // In C with GNU extensions we allow main() to have non-integer return
6073  // type, but we should warn about the extension, and we disable the
6074  // implicit-return-zero rule.
6075  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6076    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6077
6078  // Otherwise, this is just a flat-out error.
6079  } else {
6080    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6081    FD->setInvalidDecl(true);
6082  }
6083
6084  // Treat protoless main() as nullary.
6085  if (isa<FunctionNoProtoType>(FT)) return;
6086
6087  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6088  unsigned nparams = FTP->getNumArgs();
6089  assert(FD->getNumParams() == nparams);
6090
6091  bool HasExtraParameters = (nparams > 3);
6092
6093  // Darwin passes an undocumented fourth argument of type char**.  If
6094  // other platforms start sprouting these, the logic below will start
6095  // getting shifty.
6096  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6097    HasExtraParameters = false;
6098
6099  if (HasExtraParameters) {
6100    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6101    FD->setInvalidDecl(true);
6102    nparams = 3;
6103  }
6104
6105  // FIXME: a lot of the following diagnostics would be improved
6106  // if we had some location information about types.
6107
6108  QualType CharPP =
6109    Context.getPointerType(Context.getPointerType(Context.CharTy));
6110  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6111
6112  for (unsigned i = 0; i < nparams; ++i) {
6113    QualType AT = FTP->getArgType(i);
6114
6115    bool mismatch = true;
6116
6117    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6118      mismatch = false;
6119    else if (Expected[i] == CharPP) {
6120      // As an extension, the following forms are okay:
6121      //   char const **
6122      //   char const * const *
6123      //   char * const *
6124
6125      QualifierCollector qs;
6126      const PointerType* PT;
6127      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6128          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6129          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6130        qs.removeConst();
6131        mismatch = !qs.empty();
6132      }
6133    }
6134
6135    if (mismatch) {
6136      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6137      // TODO: suggest replacing given type with expected type
6138      FD->setInvalidDecl(true);
6139    }
6140  }
6141
6142  if (nparams == 1 && !FD->isInvalidDecl()) {
6143    Diag(FD->getLocation(), diag::warn_main_one_arg);
6144  }
6145
6146  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6147    Diag(FD->getLocation(), diag::err_main_template_decl);
6148    FD->setInvalidDecl();
6149  }
6150}
6151
6152bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6153  // FIXME: Need strict checking.  In C89, we need to check for
6154  // any assignment, increment, decrement, function-calls, or
6155  // commas outside of a sizeof.  In C99, it's the same list,
6156  // except that the aforementioned are allowed in unevaluated
6157  // expressions.  Everything else falls under the
6158  // "may accept other forms of constant expressions" exception.
6159  // (We never end up here for C++, so the constant expression
6160  // rules there don't matter.)
6161  if (Init->isConstantInitializer(Context, false))
6162    return false;
6163  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6164    << Init->getSourceRange();
6165  return true;
6166}
6167
6168namespace {
6169  // Visits an initialization expression to see if OrigDecl is evaluated in
6170  // its own initialization and throws a warning if it does.
6171  class SelfReferenceChecker
6172      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6173    Sema &S;
6174    Decl *OrigDecl;
6175    bool isRecordType;
6176    bool isPODType;
6177    bool isReferenceType;
6178
6179  public:
6180    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6181
6182    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6183                                                    S(S), OrigDecl(OrigDecl) {
6184      isPODType = false;
6185      isRecordType = false;
6186      isReferenceType = false;
6187      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6188        isPODType = VD->getType().isPODType(S.Context);
6189        isRecordType = VD->getType()->isRecordType();
6190        isReferenceType = VD->getType()->isReferenceType();
6191      }
6192    }
6193
6194    // Sometimes, the expression passed in lacks the casts that are used
6195    // to determine which DeclRefExpr's to check.  Assume that the casts
6196    // are present and continue visiting the expression.
6197    void HandleExpr(Expr *E) {
6198      // Skip checking T a = a where T is not a record or reference type.
6199      // Doing so is a way to silence uninitialized warnings.
6200      if (isRecordType || isReferenceType)
6201        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6202          HandleDeclRefExpr(DRE);
6203
6204      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6205        HandleValue(CO->getTrueExpr());
6206        HandleValue(CO->getFalseExpr());
6207      }
6208
6209      Visit(E);
6210    }
6211
6212    // For most expressions, the cast is directly above the DeclRefExpr.
6213    // For conditional operators, the cast can be outside the conditional
6214    // operator if both expressions are DeclRefExpr's.
6215    void HandleValue(Expr *E) {
6216      E = E->IgnoreParenImpCasts();
6217      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6218        HandleDeclRefExpr(DRE);
6219        return;
6220      }
6221
6222      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6223        HandleValue(CO->getTrueExpr());
6224        HandleValue(CO->getFalseExpr());
6225      }
6226    }
6227
6228    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6229      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6230          (isRecordType && E->getCastKind() == CK_NoOp))
6231        HandleValue(E->getSubExpr());
6232
6233      Inherited::VisitImplicitCastExpr(E);
6234    }
6235
6236    void VisitMemberExpr(MemberExpr *E) {
6237      // Don't warn on arrays since they can be treated as pointers.
6238      if (E->getType()->canDecayToPointerType()) return;
6239
6240      ValueDecl *VD = E->getMemberDecl();
6241      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6242      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6243        if (DeclRefExpr *DRE
6244              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6245          HandleDeclRefExpr(DRE);
6246          return;
6247        }
6248
6249      Inherited::VisitMemberExpr(E);
6250    }
6251
6252    void VisitUnaryOperator(UnaryOperator *E) {
6253      // For POD record types, addresses of its own members are well-defined.
6254      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6255          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) return;
6256      Inherited::VisitUnaryOperator(E);
6257    }
6258
6259    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6260
6261    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6262      Decl* ReferenceDecl = DRE->getDecl();
6263      if (OrigDecl != ReferenceDecl) return;
6264      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6265                          Sema::NotForRedeclaration);
6266      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6267                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6268                              << Result.getLookupName()
6269                              << OrigDecl->getLocation()
6270                              << DRE->getSourceRange());
6271    }
6272  };
6273}
6274
6275/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6276void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6277  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6278}
6279
6280/// AddInitializerToDecl - Adds the initializer Init to the
6281/// declaration dcl. If DirectInit is true, this is C++ direct
6282/// initialization rather than copy initialization.
6283void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6284                                bool DirectInit, bool TypeMayContainAuto) {
6285  // If there is no declaration, there was an error parsing it.  Just ignore
6286  // the initializer.
6287  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6288    return;
6289
6290  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6291    // With declarators parsed the way they are, the parser cannot
6292    // distinguish between a normal initializer and a pure-specifier.
6293    // Thus this grotesque test.
6294    IntegerLiteral *IL;
6295    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6296        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6297      CheckPureMethod(Method, Init->getSourceRange());
6298    else {
6299      Diag(Method->getLocation(), diag::err_member_function_initialization)
6300        << Method->getDeclName() << Init->getSourceRange();
6301      Method->setInvalidDecl();
6302    }
6303    return;
6304  }
6305
6306  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6307  if (!VDecl) {
6308    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6309    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6310    RealDecl->setInvalidDecl();
6311    return;
6312  }
6313
6314  // Check for self-references within variable initializers.
6315  // Variables declared within a function/method body (except for references)
6316  // are handled by a dataflow analysis.
6317  // Record types initialized by initializer list are handled here.
6318  // Initialization by constructors are handled in TryConstructorInitialization.
6319  if ((!VDecl->hasLocalStorage() || VDecl->getType()->isReferenceType()) &&
6320      (isa<InitListExpr>(Init) || !VDecl->getType()->isRecordType()))
6321    CheckSelfReference(RealDecl, Init);
6322
6323  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6324
6325  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6326  AutoType *Auto = 0;
6327  if (TypeMayContainAuto &&
6328      (Auto = VDecl->getType()->getContainedAutoType()) &&
6329      !Auto->isDeduced()) {
6330    Expr *DeduceInit = Init;
6331    // Initializer could be a C++ direct-initializer. Deduction only works if it
6332    // contains exactly one expression.
6333    if (CXXDirectInit) {
6334      if (CXXDirectInit->getNumExprs() == 0) {
6335        // It isn't possible to write this directly, but it is possible to
6336        // end up in this situation with "auto x(some_pack...);"
6337        Diag(CXXDirectInit->getLocStart(),
6338             diag::err_auto_var_init_no_expression)
6339          << VDecl->getDeclName() << VDecl->getType()
6340          << VDecl->getSourceRange();
6341        RealDecl->setInvalidDecl();
6342        return;
6343      } else if (CXXDirectInit->getNumExprs() > 1) {
6344        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6345             diag::err_auto_var_init_multiple_expressions)
6346          << VDecl->getDeclName() << VDecl->getType()
6347          << VDecl->getSourceRange();
6348        RealDecl->setInvalidDecl();
6349        return;
6350      } else {
6351        DeduceInit = CXXDirectInit->getExpr(0);
6352      }
6353    }
6354    TypeSourceInfo *DeducedType = 0;
6355    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6356            DAR_Failed)
6357      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6358    if (!DeducedType) {
6359      RealDecl->setInvalidDecl();
6360      return;
6361    }
6362    VDecl->setTypeSourceInfo(DeducedType);
6363    VDecl->setType(DeducedType->getType());
6364    VDecl->ClearLinkageCache();
6365
6366    // In ARC, infer lifetime.
6367    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6368      VDecl->setInvalidDecl();
6369
6370    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6371    // 'id' instead of a specific object type prevents most of our usual checks.
6372    // We only want to warn outside of template instantiations, though:
6373    // inside a template, the 'id' could have come from a parameter.
6374    if (ActiveTemplateInstantiations.empty() &&
6375        DeducedType->getType()->isObjCIdType()) {
6376      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6377      Diag(Loc, diag::warn_auto_var_is_id)
6378        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6379    }
6380
6381    // If this is a redeclaration, check that the type we just deduced matches
6382    // the previously declared type.
6383    if (VarDecl *Old = VDecl->getPreviousDecl())
6384      MergeVarDeclTypes(VDecl, Old);
6385  }
6386
6387  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6388    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6389    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6390    VDecl->setInvalidDecl();
6391    return;
6392  }
6393
6394  if (!VDecl->getType()->isDependentType()) {
6395    // A definition must end up with a complete type, which means it must be
6396    // complete with the restriction that an array type might be completed by
6397    // the initializer; note that later code assumes this restriction.
6398    QualType BaseDeclType = VDecl->getType();
6399    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6400      BaseDeclType = Array->getElementType();
6401    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6402                            diag::err_typecheck_decl_incomplete_type)) {
6403      RealDecl->setInvalidDecl();
6404      return;
6405    }
6406
6407    // The variable can not have an abstract class type.
6408    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6409                               diag::err_abstract_type_in_decl,
6410                               AbstractVariableType))
6411      VDecl->setInvalidDecl();
6412  }
6413
6414  const VarDecl *Def;
6415  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6416    Diag(VDecl->getLocation(), diag::err_redefinition)
6417      << VDecl->getDeclName();
6418    Diag(Def->getLocation(), diag::note_previous_definition);
6419    VDecl->setInvalidDecl();
6420    return;
6421  }
6422
6423  const VarDecl* PrevInit = 0;
6424  if (getLangOpts().CPlusPlus) {
6425    // C++ [class.static.data]p4
6426    //   If a static data member is of const integral or const
6427    //   enumeration type, its declaration in the class definition can
6428    //   specify a constant-initializer which shall be an integral
6429    //   constant expression (5.19). In that case, the member can appear
6430    //   in integral constant expressions. The member shall still be
6431    //   defined in a namespace scope if it is used in the program and the
6432    //   namespace scope definition shall not contain an initializer.
6433    //
6434    // We already performed a redefinition check above, but for static
6435    // data members we also need to check whether there was an in-class
6436    // declaration with an initializer.
6437    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6438      Diag(VDecl->getLocation(), diag::err_redefinition)
6439        << VDecl->getDeclName();
6440      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6441      return;
6442    }
6443
6444    if (VDecl->hasLocalStorage())
6445      getCurFunction()->setHasBranchProtectedScope();
6446
6447    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6448      VDecl->setInvalidDecl();
6449      return;
6450    }
6451  }
6452
6453  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6454  // a kernel function cannot be initialized."
6455  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6456    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6457    VDecl->setInvalidDecl();
6458    return;
6459  }
6460
6461  // Get the decls type and save a reference for later, since
6462  // CheckInitializerTypes may change it.
6463  QualType DclT = VDecl->getType(), SavT = DclT;
6464
6465  // Top-level message sends default to 'id' when we're in a debugger
6466  // and we are assigning it to a variable of 'id' type.
6467  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6468    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6469      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6470      if (Result.isInvalid()) {
6471        VDecl->setInvalidDecl();
6472        return;
6473      }
6474      Init = Result.take();
6475    }
6476
6477  // Perform the initialization.
6478  if (!VDecl->isInvalidDecl()) {
6479    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6480    InitializationKind Kind
6481      = DirectInit ?
6482          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6483                                                           Init->getLocStart(),
6484                                                           Init->getLocEnd())
6485                        : InitializationKind::CreateDirectList(
6486                                                          VDecl->getLocation())
6487                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6488                                                    Init->getLocStart());
6489
6490    Expr **Args = &Init;
6491    unsigned NumArgs = 1;
6492    if (CXXDirectInit) {
6493      Args = CXXDirectInit->getExprs();
6494      NumArgs = CXXDirectInit->getNumExprs();
6495    }
6496    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6497    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6498                                              MultiExprArg(*this, Args,NumArgs),
6499                                              &DclT);
6500    if (Result.isInvalid()) {
6501      VDecl->setInvalidDecl();
6502      return;
6503    }
6504
6505    Init = Result.takeAs<Expr>();
6506  }
6507
6508  // If the type changed, it means we had an incomplete type that was
6509  // completed by the initializer. For example:
6510  //   int ary[] = { 1, 3, 5 };
6511  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6512  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6513    VDecl->setType(DclT);
6514
6515  // Check any implicit conversions within the expression.
6516  CheckImplicitConversions(Init, VDecl->getLocation());
6517
6518  if (!VDecl->isInvalidDecl())
6519    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6520
6521  Init = MaybeCreateExprWithCleanups(Init);
6522  // Attach the initializer to the decl.
6523  VDecl->setInit(Init);
6524
6525  if (VDecl->isLocalVarDecl()) {
6526    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6527    // static storage duration shall be constant expressions or string literals.
6528    // C++ does not have this restriction.
6529    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6530        VDecl->getStorageClass() == SC_Static)
6531      CheckForConstantInitializer(Init, DclT);
6532  } else if (VDecl->isStaticDataMember() &&
6533             VDecl->getLexicalDeclContext()->isRecord()) {
6534    // This is an in-class initialization for a static data member, e.g.,
6535    //
6536    // struct S {
6537    //   static const int value = 17;
6538    // };
6539
6540    // C++ [class.mem]p4:
6541    //   A member-declarator can contain a constant-initializer only
6542    //   if it declares a static member (9.4) of const integral or
6543    //   const enumeration type, see 9.4.2.
6544    //
6545    // C++11 [class.static.data]p3:
6546    //   If a non-volatile const static data member is of integral or
6547    //   enumeration type, its declaration in the class definition can
6548    //   specify a brace-or-equal-initializer in which every initalizer-clause
6549    //   that is an assignment-expression is a constant expression. A static
6550    //   data member of literal type can be declared in the class definition
6551    //   with the constexpr specifier; if so, its declaration shall specify a
6552    //   brace-or-equal-initializer in which every initializer-clause that is
6553    //   an assignment-expression is a constant expression.
6554
6555    // Do nothing on dependent types.
6556    if (DclT->isDependentType()) {
6557
6558    // Allow any 'static constexpr' members, whether or not they are of literal
6559    // type. We separately check that every constexpr variable is of literal
6560    // type.
6561    } else if (VDecl->isConstexpr()) {
6562
6563    // Require constness.
6564    } else if (!DclT.isConstQualified()) {
6565      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6566        << Init->getSourceRange();
6567      VDecl->setInvalidDecl();
6568
6569    // We allow integer constant expressions in all cases.
6570    } else if (DclT->isIntegralOrEnumerationType()) {
6571      // Check whether the expression is a constant expression.
6572      SourceLocation Loc;
6573      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6574        // In C++11, a non-constexpr const static data member with an
6575        // in-class initializer cannot be volatile.
6576        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6577      else if (Init->isValueDependent())
6578        ; // Nothing to check.
6579      else if (Init->isIntegerConstantExpr(Context, &Loc))
6580        ; // Ok, it's an ICE!
6581      else if (Init->isEvaluatable(Context)) {
6582        // If we can constant fold the initializer through heroics, accept it,
6583        // but report this as a use of an extension for -pedantic.
6584        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6585          << Init->getSourceRange();
6586      } else {
6587        // Otherwise, this is some crazy unknown case.  Report the issue at the
6588        // location provided by the isIntegerConstantExpr failed check.
6589        Diag(Loc, diag::err_in_class_initializer_non_constant)
6590          << Init->getSourceRange();
6591        VDecl->setInvalidDecl();
6592      }
6593
6594    // We allow foldable floating-point constants as an extension.
6595    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6596      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6597        << DclT << Init->getSourceRange();
6598      if (getLangOpts().CPlusPlus0x)
6599        Diag(VDecl->getLocation(),
6600             diag::note_in_class_initializer_float_type_constexpr)
6601          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6602
6603      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6604        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6605          << Init->getSourceRange();
6606        VDecl->setInvalidDecl();
6607      }
6608
6609    // Suggest adding 'constexpr' in C++11 for literal types.
6610    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6611      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6612        << DclT << Init->getSourceRange()
6613        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6614      VDecl->setConstexpr(true);
6615
6616    } else {
6617      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6618        << DclT << Init->getSourceRange();
6619      VDecl->setInvalidDecl();
6620    }
6621  } else if (VDecl->isFileVarDecl()) {
6622    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6623        (!getLangOpts().CPlusPlus ||
6624         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6625      Diag(VDecl->getLocation(), diag::warn_extern_init);
6626
6627    // C99 6.7.8p4. All file scoped initializers need to be constant.
6628    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6629      CheckForConstantInitializer(Init, DclT);
6630  }
6631
6632  // We will represent direct-initialization similarly to copy-initialization:
6633  //    int x(1);  -as-> int x = 1;
6634  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6635  //
6636  // Clients that want to distinguish between the two forms, can check for
6637  // direct initializer using VarDecl::getInitStyle().
6638  // A major benefit is that clients that don't particularly care about which
6639  // exactly form was it (like the CodeGen) can handle both cases without
6640  // special case code.
6641
6642  // C++ 8.5p11:
6643  // The form of initialization (using parentheses or '=') is generally
6644  // insignificant, but does matter when the entity being initialized has a
6645  // class type.
6646  if (CXXDirectInit) {
6647    assert(DirectInit && "Call-style initializer must be direct init.");
6648    VDecl->setInitStyle(VarDecl::CallInit);
6649  } else if (DirectInit) {
6650    // This must be list-initialization. No other way is direct-initialization.
6651    VDecl->setInitStyle(VarDecl::ListInit);
6652  }
6653
6654  CheckCompleteVariableDeclaration(VDecl);
6655}
6656
6657/// ActOnInitializerError - Given that there was an error parsing an
6658/// initializer for the given declaration, try to return to some form
6659/// of sanity.
6660void Sema::ActOnInitializerError(Decl *D) {
6661  // Our main concern here is re-establishing invariants like "a
6662  // variable's type is either dependent or complete".
6663  if (!D || D->isInvalidDecl()) return;
6664
6665  VarDecl *VD = dyn_cast<VarDecl>(D);
6666  if (!VD) return;
6667
6668  // Auto types are meaningless if we can't make sense of the initializer.
6669  if (ParsingInitForAutoVars.count(D)) {
6670    D->setInvalidDecl();
6671    return;
6672  }
6673
6674  QualType Ty = VD->getType();
6675  if (Ty->isDependentType()) return;
6676
6677  // Require a complete type.
6678  if (RequireCompleteType(VD->getLocation(),
6679                          Context.getBaseElementType(Ty),
6680                          diag::err_typecheck_decl_incomplete_type)) {
6681    VD->setInvalidDecl();
6682    return;
6683  }
6684
6685  // Require an abstract type.
6686  if (RequireNonAbstractType(VD->getLocation(), Ty,
6687                             diag::err_abstract_type_in_decl,
6688                             AbstractVariableType)) {
6689    VD->setInvalidDecl();
6690    return;
6691  }
6692
6693  // Don't bother complaining about constructors or destructors,
6694  // though.
6695}
6696
6697void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6698                                  bool TypeMayContainAuto) {
6699  // If there is no declaration, there was an error parsing it. Just ignore it.
6700  if (RealDecl == 0)
6701    return;
6702
6703  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6704    QualType Type = Var->getType();
6705
6706    // C++11 [dcl.spec.auto]p3
6707    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6708      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6709        << Var->getDeclName() << Type;
6710      Var->setInvalidDecl();
6711      return;
6712    }
6713
6714    // C++11 [class.static.data]p3: A static data member can be declared with
6715    // the constexpr specifier; if so, its declaration shall specify
6716    // a brace-or-equal-initializer.
6717    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6718    // the definition of a variable [...] or the declaration of a static data
6719    // member.
6720    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6721      if (Var->isStaticDataMember())
6722        Diag(Var->getLocation(),
6723             diag::err_constexpr_static_mem_var_requires_init)
6724          << Var->getDeclName();
6725      else
6726        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6727      Var->setInvalidDecl();
6728      return;
6729    }
6730
6731    switch (Var->isThisDeclarationADefinition()) {
6732    case VarDecl::Definition:
6733      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6734        break;
6735
6736      // We have an out-of-line definition of a static data member
6737      // that has an in-class initializer, so we type-check this like
6738      // a declaration.
6739      //
6740      // Fall through
6741
6742    case VarDecl::DeclarationOnly:
6743      // It's only a declaration.
6744
6745      // Block scope. C99 6.7p7: If an identifier for an object is
6746      // declared with no linkage (C99 6.2.2p6), the type for the
6747      // object shall be complete.
6748      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6749          !Var->getLinkage() && !Var->isInvalidDecl() &&
6750          RequireCompleteType(Var->getLocation(), Type,
6751                              diag::err_typecheck_decl_incomplete_type))
6752        Var->setInvalidDecl();
6753
6754      // Make sure that the type is not abstract.
6755      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6756          RequireNonAbstractType(Var->getLocation(), Type,
6757                                 diag::err_abstract_type_in_decl,
6758                                 AbstractVariableType))
6759        Var->setInvalidDecl();
6760      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6761          Var->getStorageClass() == SC_PrivateExtern) {
6762        Diag(Var->getLocation(), diag::warn_private_extern);
6763        Diag(Var->getLocation(), diag::note_private_extern);
6764      }
6765
6766      return;
6767
6768    case VarDecl::TentativeDefinition:
6769      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6770      // object that has file scope without an initializer, and without a
6771      // storage-class specifier or with the storage-class specifier "static",
6772      // constitutes a tentative definition. Note: A tentative definition with
6773      // external linkage is valid (C99 6.2.2p5).
6774      if (!Var->isInvalidDecl()) {
6775        if (const IncompleteArrayType *ArrayT
6776                                    = Context.getAsIncompleteArrayType(Type)) {
6777          if (RequireCompleteType(Var->getLocation(),
6778                                  ArrayT->getElementType(),
6779                                  diag::err_illegal_decl_array_incomplete_type))
6780            Var->setInvalidDecl();
6781        } else if (Var->getStorageClass() == SC_Static) {
6782          // C99 6.9.2p3: If the declaration of an identifier for an object is
6783          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6784          // declared type shall not be an incomplete type.
6785          // NOTE: code such as the following
6786          //     static struct s;
6787          //     struct s { int a; };
6788          // is accepted by gcc. Hence here we issue a warning instead of
6789          // an error and we do not invalidate the static declaration.
6790          // NOTE: to avoid multiple warnings, only check the first declaration.
6791          if (Var->getPreviousDecl() == 0)
6792            RequireCompleteType(Var->getLocation(), Type,
6793                                diag::ext_typecheck_decl_incomplete_type);
6794        }
6795      }
6796
6797      // Record the tentative definition; we're done.
6798      if (!Var->isInvalidDecl())
6799        TentativeDefinitions.push_back(Var);
6800      return;
6801    }
6802
6803    // Provide a specific diagnostic for uninitialized variable
6804    // definitions with incomplete array type.
6805    if (Type->isIncompleteArrayType()) {
6806      Diag(Var->getLocation(),
6807           diag::err_typecheck_incomplete_array_needs_initializer);
6808      Var->setInvalidDecl();
6809      return;
6810    }
6811
6812    // Provide a specific diagnostic for uninitialized variable
6813    // definitions with reference type.
6814    if (Type->isReferenceType()) {
6815      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6816        << Var->getDeclName()
6817        << SourceRange(Var->getLocation(), Var->getLocation());
6818      Var->setInvalidDecl();
6819      return;
6820    }
6821
6822    // Do not attempt to type-check the default initializer for a
6823    // variable with dependent type.
6824    if (Type->isDependentType())
6825      return;
6826
6827    if (Var->isInvalidDecl())
6828      return;
6829
6830    if (RequireCompleteType(Var->getLocation(),
6831                            Context.getBaseElementType(Type),
6832                            diag::err_typecheck_decl_incomplete_type)) {
6833      Var->setInvalidDecl();
6834      return;
6835    }
6836
6837    // The variable can not have an abstract class type.
6838    if (RequireNonAbstractType(Var->getLocation(), Type,
6839                               diag::err_abstract_type_in_decl,
6840                               AbstractVariableType)) {
6841      Var->setInvalidDecl();
6842      return;
6843    }
6844
6845    // Check for jumps past the implicit initializer.  C++0x
6846    // clarifies that this applies to a "variable with automatic
6847    // storage duration", not a "local variable".
6848    // C++11 [stmt.dcl]p3
6849    //   A program that jumps from a point where a variable with automatic
6850    //   storage duration is not in scope to a point where it is in scope is
6851    //   ill-formed unless the variable has scalar type, class type with a
6852    //   trivial default constructor and a trivial destructor, a cv-qualified
6853    //   version of one of these types, or an array of one of the preceding
6854    //   types and is declared without an initializer.
6855    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6856      if (const RecordType *Record
6857            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6858        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6859        // Mark the function for further checking even if the looser rules of
6860        // C++11 do not require such checks, so that we can diagnose
6861        // incompatibilities with C++98.
6862        if (!CXXRecord->isPOD())
6863          getCurFunction()->setHasBranchProtectedScope();
6864      }
6865    }
6866
6867    // C++03 [dcl.init]p9:
6868    //   If no initializer is specified for an object, and the
6869    //   object is of (possibly cv-qualified) non-POD class type (or
6870    //   array thereof), the object shall be default-initialized; if
6871    //   the object is of const-qualified type, the underlying class
6872    //   type shall have a user-declared default
6873    //   constructor. Otherwise, if no initializer is specified for
6874    //   a non- static object, the object and its subobjects, if
6875    //   any, have an indeterminate initial value); if the object
6876    //   or any of its subobjects are of const-qualified type, the
6877    //   program is ill-formed.
6878    // C++0x [dcl.init]p11:
6879    //   If no initializer is specified for an object, the object is
6880    //   default-initialized; [...].
6881    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6882    InitializationKind Kind
6883      = InitializationKind::CreateDefault(Var->getLocation());
6884
6885    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6886    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6887                                      MultiExprArg(*this, 0, 0));
6888    if (Init.isInvalid())
6889      Var->setInvalidDecl();
6890    else if (Init.get()) {
6891      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6892      // This is important for template substitution.
6893      Var->setInitStyle(VarDecl::CallInit);
6894    }
6895
6896    CheckCompleteVariableDeclaration(Var);
6897  }
6898}
6899
6900void Sema::ActOnCXXForRangeDecl(Decl *D) {
6901  VarDecl *VD = dyn_cast<VarDecl>(D);
6902  if (!VD) {
6903    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6904    D->setInvalidDecl();
6905    return;
6906  }
6907
6908  VD->setCXXForRangeDecl(true);
6909
6910  // for-range-declaration cannot be given a storage class specifier.
6911  int Error = -1;
6912  switch (VD->getStorageClassAsWritten()) {
6913  case SC_None:
6914    break;
6915  case SC_Extern:
6916    Error = 0;
6917    break;
6918  case SC_Static:
6919    Error = 1;
6920    break;
6921  case SC_PrivateExtern:
6922    Error = 2;
6923    break;
6924  case SC_Auto:
6925    Error = 3;
6926    break;
6927  case SC_Register:
6928    Error = 4;
6929    break;
6930  case SC_OpenCLWorkGroupLocal:
6931    llvm_unreachable("Unexpected storage class");
6932  }
6933  if (VD->isConstexpr())
6934    Error = 5;
6935  if (Error != -1) {
6936    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6937      << VD->getDeclName() << Error;
6938    D->setInvalidDecl();
6939  }
6940}
6941
6942void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6943  if (var->isInvalidDecl()) return;
6944
6945  // In ARC, don't allow jumps past the implicit initialization of a
6946  // local retaining variable.
6947  if (getLangOpts().ObjCAutoRefCount &&
6948      var->hasLocalStorage()) {
6949    switch (var->getType().getObjCLifetime()) {
6950    case Qualifiers::OCL_None:
6951    case Qualifiers::OCL_ExplicitNone:
6952    case Qualifiers::OCL_Autoreleasing:
6953      break;
6954
6955    case Qualifiers::OCL_Weak:
6956    case Qualifiers::OCL_Strong:
6957      getCurFunction()->setHasBranchProtectedScope();
6958      break;
6959    }
6960  }
6961
6962  // All the following checks are C++ only.
6963  if (!getLangOpts().CPlusPlus) return;
6964
6965  QualType baseType = Context.getBaseElementType(var->getType());
6966  if (baseType->isDependentType()) return;
6967
6968  // __block variables might require us to capture a copy-initializer.
6969  if (var->hasAttr<BlocksAttr>()) {
6970    // It's currently invalid to ever have a __block variable with an
6971    // array type; should we diagnose that here?
6972
6973    // Regardless, we don't want to ignore array nesting when
6974    // constructing this copy.
6975    QualType type = var->getType();
6976
6977    if (type->isStructureOrClassType()) {
6978      SourceLocation poi = var->getLocation();
6979      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6980      ExprResult result =
6981        PerformCopyInitialization(
6982                        InitializedEntity::InitializeBlock(poi, type, false),
6983                                  poi, Owned(varRef));
6984      if (!result.isInvalid()) {
6985        result = MaybeCreateExprWithCleanups(result);
6986        Expr *init = result.takeAs<Expr>();
6987        Context.setBlockVarCopyInits(var, init);
6988      }
6989    }
6990  }
6991
6992  Expr *Init = var->getInit();
6993  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6994
6995  if (!var->getDeclContext()->isDependentContext() && Init) {
6996    if (IsGlobal && !var->isConstexpr() &&
6997        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6998                                            var->getLocation())
6999          != DiagnosticsEngine::Ignored &&
7000        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7001      Diag(var->getLocation(), diag::warn_global_constructor)
7002        << Init->getSourceRange();
7003
7004    if (var->isConstexpr()) {
7005      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
7006      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7007        SourceLocation DiagLoc = var->getLocation();
7008        // If the note doesn't add any useful information other than a source
7009        // location, fold it into the primary diagnostic.
7010        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7011              diag::note_invalid_subexpr_in_const_expr) {
7012          DiagLoc = Notes[0].first;
7013          Notes.clear();
7014        }
7015        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7016          << var << Init->getSourceRange();
7017        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7018          Diag(Notes[I].first, Notes[I].second);
7019      }
7020    } else if (var->isUsableInConstantExpressions(Context)) {
7021      // Check whether the initializer of a const variable of integral or
7022      // enumeration type is an ICE now, since we can't tell whether it was
7023      // initialized by a constant expression if we check later.
7024      var->checkInitIsICE();
7025    }
7026  }
7027
7028  // Require the destructor.
7029  if (const RecordType *recordType = baseType->getAs<RecordType>())
7030    FinalizeVarWithDestructor(var, recordType);
7031}
7032
7033/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7034/// any semantic actions necessary after any initializer has been attached.
7035void
7036Sema::FinalizeDeclaration(Decl *ThisDecl) {
7037  // Note that we are no longer parsing the initializer for this declaration.
7038  ParsingInitForAutoVars.erase(ThisDecl);
7039
7040  // Now we have parsed the initializer and can update the table of magic
7041  // tag values.
7042  if (ThisDecl && ThisDecl->hasAttr<TypeTagForDatatypeAttr>()) {
7043    const VarDecl *VD = dyn_cast<VarDecl>(ThisDecl);
7044    if (VD && VD->getType()->isIntegralOrEnumerationType()) {
7045      for (specific_attr_iterator<TypeTagForDatatypeAttr>
7046               I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7047               E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7048           I != E; ++I) {
7049        const Expr *MagicValueExpr = VD->getInit();
7050        if (!MagicValueExpr) {
7051          continue;
7052        }
7053        llvm::APSInt MagicValueInt;
7054        if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7055          Diag(I->getRange().getBegin(),
7056               diag::err_type_tag_for_datatype_not_ice)
7057            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7058          continue;
7059        }
7060        if (MagicValueInt.getActiveBits() > 64) {
7061          Diag(I->getRange().getBegin(),
7062               diag::err_type_tag_for_datatype_too_large)
7063            << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7064          continue;
7065        }
7066        uint64_t MagicValue = MagicValueInt.getZExtValue();
7067        RegisterTypeTagForDatatype(I->getArgumentKind(),
7068                                   MagicValue,
7069                                   I->getMatchingCType(),
7070                                   I->getLayoutCompatible(),
7071                                   I->getMustBeNull());
7072      }
7073    }
7074  }
7075}
7076
7077Sema::DeclGroupPtrTy
7078Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
7079                              Decl **Group, unsigned NumDecls) {
7080  SmallVector<Decl*, 8> Decls;
7081
7082  if (DS.isTypeSpecOwned())
7083    Decls.push_back(DS.getRepAsDecl());
7084
7085  for (unsigned i = 0; i != NumDecls; ++i)
7086    if (Decl *D = Group[i])
7087      Decls.push_back(D);
7088
7089  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
7090                              DS.getTypeSpecType() == DeclSpec::TST_auto);
7091}
7092
7093/// BuildDeclaratorGroup - convert a list of declarations into a declaration
7094/// group, performing any necessary semantic checking.
7095Sema::DeclGroupPtrTy
7096Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
7097                           bool TypeMayContainAuto) {
7098  // C++0x [dcl.spec.auto]p7:
7099  //   If the type deduced for the template parameter U is not the same in each
7100  //   deduction, the program is ill-formed.
7101  // FIXME: When initializer-list support is added, a distinction is needed
7102  // between the deduced type U and the deduced type which 'auto' stands for.
7103  //   auto a = 0, b = { 1, 2, 3 };
7104  // is legal because the deduced type U is 'int' in both cases.
7105  if (TypeMayContainAuto && NumDecls > 1) {
7106    QualType Deduced;
7107    CanQualType DeducedCanon;
7108    VarDecl *DeducedDecl = 0;
7109    for (unsigned i = 0; i != NumDecls; ++i) {
7110      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7111        AutoType *AT = D->getType()->getContainedAutoType();
7112        // Don't reissue diagnostics when instantiating a template.
7113        if (AT && D->isInvalidDecl())
7114          break;
7115        if (AT && AT->isDeduced()) {
7116          QualType U = AT->getDeducedType();
7117          CanQualType UCanon = Context.getCanonicalType(U);
7118          if (Deduced.isNull()) {
7119            Deduced = U;
7120            DeducedCanon = UCanon;
7121            DeducedDecl = D;
7122          } else if (DeducedCanon != UCanon) {
7123            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7124                 diag::err_auto_different_deductions)
7125              << Deduced << DeducedDecl->getDeclName()
7126              << U << D->getDeclName()
7127              << DeducedDecl->getInit()->getSourceRange()
7128              << D->getInit()->getSourceRange();
7129            D->setInvalidDecl();
7130            break;
7131          }
7132        }
7133      }
7134    }
7135  }
7136
7137  ActOnDocumentableDecls(Group, NumDecls);
7138
7139  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7140}
7141
7142void Sema::ActOnDocumentableDecl(Decl *D) {
7143  ActOnDocumentableDecls(&D, 1);
7144}
7145
7146void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
7147  // Don't parse the comment if Doxygen diagnostics are ignored.
7148  if (NumDecls == 0 || !Group[0])
7149   return;
7150
7151  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
7152                               Group[0]->getLocation())
7153        == DiagnosticsEngine::Ignored)
7154    return;
7155
7156  if (NumDecls >= 2) {
7157    // This is a decl group.  Normally it will contain only declarations
7158    // procuded from declarator list.  But in case we have any definitions or
7159    // additional declaration references:
7160    //   'typedef struct S {} S;'
7161    //   'typedef struct S *S;'
7162    //   'struct S *pS;'
7163    // FinalizeDeclaratorGroup adds these as separate declarations.
7164    Decl *MaybeTagDecl = Group[0];
7165    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
7166      Group++;
7167      NumDecls--;
7168    }
7169  }
7170
7171  // See if there are any new comments that are not attached to a decl.
7172  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
7173  if (!Comments.empty() &&
7174      !Comments.back()->isAttached()) {
7175    // There is at least one comment that not attached to a decl.
7176    // Maybe it should be attached to one of these decls?
7177    //
7178    // Note that this way we pick up not only comments that precede the
7179    // declaration, but also comments that *follow* the declaration -- thanks to
7180    // the lookahead in the lexer: we've consumed the semicolon and looked
7181    // ahead through comments.
7182    for (unsigned i = 0; i != NumDecls; ++i)
7183      Context.getCommentForDecl(Group[i]);
7184  }
7185}
7186
7187/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7188/// to introduce parameters into function prototype scope.
7189Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7190  const DeclSpec &DS = D.getDeclSpec();
7191
7192  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7193  // C++03 [dcl.stc]p2 also permits 'auto'.
7194  VarDecl::StorageClass StorageClass = SC_None;
7195  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7196  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7197    StorageClass = SC_Register;
7198    StorageClassAsWritten = SC_Register;
7199  } else if (getLangOpts().CPlusPlus &&
7200             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7201    StorageClass = SC_Auto;
7202    StorageClassAsWritten = SC_Auto;
7203  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7204    Diag(DS.getStorageClassSpecLoc(),
7205         diag::err_invalid_storage_class_in_func_decl);
7206    D.getMutableDeclSpec().ClearStorageClassSpecs();
7207  }
7208
7209  if (D.getDeclSpec().isThreadSpecified())
7210    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7211  if (D.getDeclSpec().isConstexprSpecified())
7212    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7213      << 0;
7214
7215  DiagnoseFunctionSpecifiers(D);
7216
7217  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7218  QualType parmDeclType = TInfo->getType();
7219
7220  if (getLangOpts().CPlusPlus) {
7221    // Check that there are no default arguments inside the type of this
7222    // parameter.
7223    CheckExtraCXXDefaultArguments(D);
7224
7225    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7226    if (D.getCXXScopeSpec().isSet()) {
7227      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7228        << D.getCXXScopeSpec().getRange();
7229      D.getCXXScopeSpec().clear();
7230    }
7231  }
7232
7233  // Ensure we have a valid name
7234  IdentifierInfo *II = 0;
7235  if (D.hasName()) {
7236    II = D.getIdentifier();
7237    if (!II) {
7238      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7239        << GetNameForDeclarator(D).getName().getAsString();
7240      D.setInvalidType(true);
7241    }
7242  }
7243
7244  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7245  if (II) {
7246    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7247                   ForRedeclaration);
7248    LookupName(R, S);
7249    if (R.isSingleResult()) {
7250      NamedDecl *PrevDecl = R.getFoundDecl();
7251      if (PrevDecl->isTemplateParameter()) {
7252        // Maybe we will complain about the shadowed template parameter.
7253        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7254        // Just pretend that we didn't see the previous declaration.
7255        PrevDecl = 0;
7256      } else if (S->isDeclScope(PrevDecl)) {
7257        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7258        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7259
7260        // Recover by removing the name
7261        II = 0;
7262        D.SetIdentifier(0, D.getIdentifierLoc());
7263        D.setInvalidType(true);
7264      }
7265    }
7266  }
7267
7268  // Temporarily put parameter variables in the translation unit, not
7269  // the enclosing context.  This prevents them from accidentally
7270  // looking like class members in C++.
7271  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7272                                    D.getLocStart(),
7273                                    D.getIdentifierLoc(), II,
7274                                    parmDeclType, TInfo,
7275                                    StorageClass, StorageClassAsWritten);
7276
7277  if (D.isInvalidType())
7278    New->setInvalidDecl();
7279
7280  assert(S->isFunctionPrototypeScope());
7281  assert(S->getFunctionPrototypeDepth() >= 1);
7282  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7283                    S->getNextFunctionPrototypeIndex());
7284
7285  // Add the parameter declaration into this scope.
7286  S->AddDecl(New);
7287  if (II)
7288    IdResolver.AddDecl(New);
7289
7290  ProcessDeclAttributes(S, New, D);
7291
7292  if (D.getDeclSpec().isModulePrivateSpecified())
7293    Diag(New->getLocation(), diag::err_module_private_local)
7294      << 1 << New->getDeclName()
7295      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7296      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7297
7298  if (New->hasAttr<BlocksAttr>()) {
7299    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7300  }
7301  return New;
7302}
7303
7304/// \brief Synthesizes a variable for a parameter arising from a
7305/// typedef.
7306ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7307                                              SourceLocation Loc,
7308                                              QualType T) {
7309  /* FIXME: setting StartLoc == Loc.
7310     Would it be worth to modify callers so as to provide proper source
7311     location for the unnamed parameters, embedding the parameter's type? */
7312  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7313                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7314                                           SC_None, SC_None, 0);
7315  Param->setImplicit();
7316  return Param;
7317}
7318
7319void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7320                                    ParmVarDecl * const *ParamEnd) {
7321  // Don't diagnose unused-parameter errors in template instantiations; we
7322  // will already have done so in the template itself.
7323  if (!ActiveTemplateInstantiations.empty())
7324    return;
7325
7326  for (; Param != ParamEnd; ++Param) {
7327    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7328        !(*Param)->hasAttr<UnusedAttr>()) {
7329      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7330        << (*Param)->getDeclName();
7331    }
7332  }
7333}
7334
7335void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7336                                                  ParmVarDecl * const *ParamEnd,
7337                                                  QualType ReturnTy,
7338                                                  NamedDecl *D) {
7339  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7340    return;
7341
7342  // Warn if the return value is pass-by-value and larger than the specified
7343  // threshold.
7344  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7345    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7346    if (Size > LangOpts.NumLargeByValueCopy)
7347      Diag(D->getLocation(), diag::warn_return_value_size)
7348          << D->getDeclName() << Size;
7349  }
7350
7351  // Warn if any parameter is pass-by-value and larger than the specified
7352  // threshold.
7353  for (; Param != ParamEnd; ++Param) {
7354    QualType T = (*Param)->getType();
7355    if (T->isDependentType() || !T.isPODType(Context))
7356      continue;
7357    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7358    if (Size > LangOpts.NumLargeByValueCopy)
7359      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7360          << (*Param)->getDeclName() << Size;
7361  }
7362}
7363
7364ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7365                                  SourceLocation NameLoc, IdentifierInfo *Name,
7366                                  QualType T, TypeSourceInfo *TSInfo,
7367                                  VarDecl::StorageClass StorageClass,
7368                                  VarDecl::StorageClass StorageClassAsWritten) {
7369  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7370  if (getLangOpts().ObjCAutoRefCount &&
7371      T.getObjCLifetime() == Qualifiers::OCL_None &&
7372      T->isObjCLifetimeType()) {
7373
7374    Qualifiers::ObjCLifetime lifetime;
7375
7376    // Special cases for arrays:
7377    //   - if it's const, use __unsafe_unretained
7378    //   - otherwise, it's an error
7379    if (T->isArrayType()) {
7380      if (!T.isConstQualified()) {
7381        DelayedDiagnostics.add(
7382            sema::DelayedDiagnostic::makeForbiddenType(
7383            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7384      }
7385      lifetime = Qualifiers::OCL_ExplicitNone;
7386    } else {
7387      lifetime = T->getObjCARCImplicitLifetime();
7388    }
7389    T = Context.getLifetimeQualifiedType(T, lifetime);
7390  }
7391
7392  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7393                                         Context.getAdjustedParameterType(T),
7394                                         TSInfo,
7395                                         StorageClass, StorageClassAsWritten,
7396                                         0);
7397
7398  // Parameters can not be abstract class types.
7399  // For record types, this is done by the AbstractClassUsageDiagnoser once
7400  // the class has been completely parsed.
7401  if (!CurContext->isRecord() &&
7402      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7403                             AbstractParamType))
7404    New->setInvalidDecl();
7405
7406  // Parameter declarators cannot be interface types. All ObjC objects are
7407  // passed by reference.
7408  if (T->isObjCObjectType()) {
7409    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7410    Diag(NameLoc,
7411         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7412      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7413    T = Context.getObjCObjectPointerType(T);
7414    New->setType(T);
7415  }
7416
7417  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7418  // duration shall not be qualified by an address-space qualifier."
7419  // Since all parameters have automatic store duration, they can not have
7420  // an address space.
7421  if (T.getAddressSpace() != 0) {
7422    Diag(NameLoc, diag::err_arg_with_address_space);
7423    New->setInvalidDecl();
7424  }
7425
7426  return New;
7427}
7428
7429void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7430                                           SourceLocation LocAfterDecls) {
7431  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7432
7433  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7434  // for a K&R function.
7435  if (!FTI.hasPrototype) {
7436    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7437      --i;
7438      if (FTI.ArgInfo[i].Param == 0) {
7439        SmallString<256> Code;
7440        llvm::raw_svector_ostream(Code) << "  int "
7441                                        << FTI.ArgInfo[i].Ident->getName()
7442                                        << ";\n";
7443        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7444          << FTI.ArgInfo[i].Ident
7445          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7446
7447        // Implicitly declare the argument as type 'int' for lack of a better
7448        // type.
7449        AttributeFactory attrs;
7450        DeclSpec DS(attrs);
7451        const char* PrevSpec; // unused
7452        unsigned DiagID; // unused
7453        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7454                           PrevSpec, DiagID);
7455        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7456        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7457        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7458      }
7459    }
7460  }
7461}
7462
7463Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7464  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7465  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7466  Scope *ParentScope = FnBodyScope->getParent();
7467
7468  D.setFunctionDefinitionKind(FDK_Definition);
7469  Decl *DP = HandleDeclarator(ParentScope, D,
7470                              MultiTemplateParamsArg(*this));
7471  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7472}
7473
7474static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7475  // Don't warn about invalid declarations.
7476  if (FD->isInvalidDecl())
7477    return false;
7478
7479  // Or declarations that aren't global.
7480  if (!FD->isGlobal())
7481    return false;
7482
7483  // Don't warn about C++ member functions.
7484  if (isa<CXXMethodDecl>(FD))
7485    return false;
7486
7487  // Don't warn about 'main'.
7488  if (FD->isMain())
7489    return false;
7490
7491  // Don't warn about inline functions.
7492  if (FD->isInlined())
7493    return false;
7494
7495  // Don't warn about function templates.
7496  if (FD->getDescribedFunctionTemplate())
7497    return false;
7498
7499  // Don't warn about function template specializations.
7500  if (FD->isFunctionTemplateSpecialization())
7501    return false;
7502
7503  // Don't warn for OpenCL kernels.
7504  if (FD->hasAttr<OpenCLKernelAttr>())
7505    return false;
7506
7507  bool MissingPrototype = true;
7508  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7509       Prev; Prev = Prev->getPreviousDecl()) {
7510    // Ignore any declarations that occur in function or method
7511    // scope, because they aren't visible from the header.
7512    if (Prev->getDeclContext()->isFunctionOrMethod())
7513      continue;
7514
7515    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7516    break;
7517  }
7518
7519  return MissingPrototype;
7520}
7521
7522void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7523  // Don't complain if we're in GNU89 mode and the previous definition
7524  // was an extern inline function.
7525  const FunctionDecl *Definition;
7526  if (FD->isDefined(Definition) &&
7527      !canRedefineFunction(Definition, getLangOpts())) {
7528    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7529        Definition->getStorageClass() == SC_Extern)
7530      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7531        << FD->getDeclName() << getLangOpts().CPlusPlus;
7532    else
7533      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7534    Diag(Definition->getLocation(), diag::note_previous_definition);
7535    FD->setInvalidDecl();
7536  }
7537}
7538
7539Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7540  // Clear the last template instantiation error context.
7541  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7542
7543  if (!D)
7544    return D;
7545  FunctionDecl *FD = 0;
7546
7547  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7548    FD = FunTmpl->getTemplatedDecl();
7549  else
7550    FD = cast<FunctionDecl>(D);
7551
7552  // Enter a new function scope
7553  PushFunctionScope();
7554
7555  // See if this is a redefinition.
7556  if (!FD->isLateTemplateParsed())
7557    CheckForFunctionRedefinition(FD);
7558
7559  // Builtin functions cannot be defined.
7560  if (unsigned BuiltinID = FD->getBuiltinID()) {
7561    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7562      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7563      FD->setInvalidDecl();
7564    }
7565  }
7566
7567  // The return type of a function definition must be complete
7568  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7569  QualType ResultType = FD->getResultType();
7570  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7571      !FD->isInvalidDecl() &&
7572      RequireCompleteType(FD->getLocation(), ResultType,
7573                          diag::err_func_def_incomplete_result))
7574    FD->setInvalidDecl();
7575
7576  // GNU warning -Wmissing-prototypes:
7577  //   Warn if a global function is defined without a previous
7578  //   prototype declaration. This warning is issued even if the
7579  //   definition itself provides a prototype. The aim is to detect
7580  //   global functions that fail to be declared in header files.
7581  if (ShouldWarnAboutMissingPrototype(FD))
7582    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7583
7584  if (FnBodyScope)
7585    PushDeclContext(FnBodyScope, FD);
7586
7587  // Check the validity of our function parameters
7588  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7589                           /*CheckParameterNames=*/true);
7590
7591  // Introduce our parameters into the function scope
7592  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7593    ParmVarDecl *Param = FD->getParamDecl(p);
7594    Param->setOwningFunction(FD);
7595
7596    // If this has an identifier, add it to the scope stack.
7597    if (Param->getIdentifier() && FnBodyScope) {
7598      CheckShadow(FnBodyScope, Param);
7599
7600      PushOnScopeChains(Param, FnBodyScope);
7601    }
7602  }
7603
7604  // If we had any tags defined in the function prototype,
7605  // introduce them into the function scope.
7606  if (FnBodyScope) {
7607    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7608           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7609      NamedDecl *D = *I;
7610
7611      // Some of these decls (like enums) may have been pinned to the translation unit
7612      // for lack of a real context earlier. If so, remove from the translation unit
7613      // and reattach to the current context.
7614      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7615        // Is the decl actually in the context?
7616        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7617               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7618          if (*DI == D) {
7619            Context.getTranslationUnitDecl()->removeDecl(D);
7620            break;
7621          }
7622        }
7623        // Either way, reassign the lexical decl context to our FunctionDecl.
7624        D->setLexicalDeclContext(CurContext);
7625      }
7626
7627      // If the decl has a non-null name, make accessible in the current scope.
7628      if (!D->getName().empty())
7629        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7630
7631      // Similarly, dive into enums and fish their constants out, making them
7632      // accessible in this scope.
7633      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7634        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7635               EE = ED->enumerator_end(); EI != EE; ++EI)
7636          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7637      }
7638    }
7639  }
7640
7641  // Ensure that the function's exception specification is instantiated.
7642  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7643    ResolveExceptionSpec(D->getLocation(), FPT);
7644
7645  // Checking attributes of current function definition
7646  // dllimport attribute.
7647  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7648  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7649    // dllimport attribute cannot be directly applied to definition.
7650    // Microsoft accepts dllimport for functions defined within class scope.
7651    if (!DA->isInherited() &&
7652        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7653      Diag(FD->getLocation(),
7654           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7655        << "dllimport";
7656      FD->setInvalidDecl();
7657      return FD;
7658    }
7659
7660    // Visual C++ appears to not think this is an issue, so only issue
7661    // a warning when Microsoft extensions are disabled.
7662    if (!LangOpts.MicrosoftExt) {
7663      // If a symbol previously declared dllimport is later defined, the
7664      // attribute is ignored in subsequent references, and a warning is
7665      // emitted.
7666      Diag(FD->getLocation(),
7667           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7668        << FD->getName() << "dllimport";
7669    }
7670  }
7671  // We want to attach documentation to original Decl (which might be
7672  // a function template).
7673  ActOnDocumentableDecl(D);
7674  return FD;
7675}
7676
7677/// \brief Given the set of return statements within a function body,
7678/// compute the variables that are subject to the named return value
7679/// optimization.
7680///
7681/// Each of the variables that is subject to the named return value
7682/// optimization will be marked as NRVO variables in the AST, and any
7683/// return statement that has a marked NRVO variable as its NRVO candidate can
7684/// use the named return value optimization.
7685///
7686/// This function applies a very simplistic algorithm for NRVO: if every return
7687/// statement in the function has the same NRVO candidate, that candidate is
7688/// the NRVO variable.
7689///
7690/// FIXME: Employ a smarter algorithm that accounts for multiple return
7691/// statements and the lifetimes of the NRVO candidates. We should be able to
7692/// find a maximal set of NRVO variables.
7693void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7694  ReturnStmt **Returns = Scope->Returns.data();
7695
7696  const VarDecl *NRVOCandidate = 0;
7697  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7698    if (!Returns[I]->getNRVOCandidate())
7699      return;
7700
7701    if (!NRVOCandidate)
7702      NRVOCandidate = Returns[I]->getNRVOCandidate();
7703    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7704      return;
7705  }
7706
7707  if (NRVOCandidate)
7708    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7709}
7710
7711Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7712  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7713}
7714
7715Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7716                                    bool IsInstantiation) {
7717  FunctionDecl *FD = 0;
7718  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7719  if (FunTmpl)
7720    FD = FunTmpl->getTemplatedDecl();
7721  else
7722    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7723
7724  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7725  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7726
7727  if (FD) {
7728    FD->setBody(Body);
7729
7730    // If the function implicitly returns zero (like 'main') or is naked,
7731    // don't complain about missing return statements.
7732    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7733      WP.disableCheckFallThrough();
7734
7735    // MSVC permits the use of pure specifier (=0) on function definition,
7736    // defined at class scope, warn about this non standard construct.
7737    if (getLangOpts().MicrosoftExt && FD->isPure())
7738      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7739
7740    if (!FD->isInvalidDecl()) {
7741      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7742      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7743                                             FD->getResultType(), FD);
7744
7745      // If this is a constructor, we need a vtable.
7746      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7747        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7748
7749      // Try to apply the named return value optimization. We have to check
7750      // if we can do this here because lambdas keep return statements around
7751      // to deduce an implicit return type.
7752      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
7753          !FD->isDependentContext())
7754        computeNRVO(Body, getCurFunction());
7755    }
7756
7757    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7758           "Function parsing confused");
7759  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7760    assert(MD == getCurMethodDecl() && "Method parsing confused");
7761    MD->setBody(Body);
7762    if (!MD->isInvalidDecl()) {
7763      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7764      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7765                                             MD->getResultType(), MD);
7766
7767      if (Body)
7768        computeNRVO(Body, getCurFunction());
7769    }
7770    if (getCurFunction()->ObjCShouldCallSuperDealloc) {
7771      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7772      getCurFunction()->ObjCShouldCallSuperDealloc = false;
7773    }
7774    if (getCurFunction()->ObjCShouldCallSuperFinalize) {
7775      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7776      getCurFunction()->ObjCShouldCallSuperFinalize = false;
7777    }
7778  } else {
7779    return 0;
7780  }
7781
7782  assert(!getCurFunction()->ObjCShouldCallSuperDealloc &&
7783         "This should only be set for ObjC methods, which should have been "
7784         "handled in the block above.");
7785  assert(!getCurFunction()->ObjCShouldCallSuperFinalize &&
7786         "This should only be set for ObjC methods, which should have been "
7787         "handled in the block above.");
7788
7789  // Verify and clean out per-function state.
7790  if (Body) {
7791    // C++ constructors that have function-try-blocks can't have return
7792    // statements in the handlers of that block. (C++ [except.handle]p14)
7793    // Verify this.
7794    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7795      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7796
7797    // Verify that gotos and switch cases don't jump into scopes illegally.
7798    if (getCurFunction()->NeedsScopeChecking() &&
7799        !dcl->isInvalidDecl() &&
7800        !hasAnyUnrecoverableErrorsInThisFunction() &&
7801        !PP.isCodeCompletionEnabled())
7802      DiagnoseInvalidJumps(Body);
7803
7804    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7805      if (!Destructor->getParent()->isDependentType())
7806        CheckDestructor(Destructor);
7807
7808      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7809                                             Destructor->getParent());
7810    }
7811
7812    // If any errors have occurred, clear out any temporaries that may have
7813    // been leftover. This ensures that these temporaries won't be picked up for
7814    // deletion in some later function.
7815    if (PP.getDiagnostics().hasErrorOccurred() ||
7816        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7817      DiscardCleanupsInEvaluationContext();
7818    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7819      // Since the body is valid, issue any analysis-based warnings that are
7820      // enabled.
7821      ActivePolicy = &WP;
7822    }
7823
7824    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7825        (!CheckConstexprFunctionDecl(FD) ||
7826         !CheckConstexprFunctionBody(FD, Body)))
7827      FD->setInvalidDecl();
7828
7829    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7830    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7831    assert(MaybeODRUseExprs.empty() &&
7832           "Leftover expressions for odr-use checking");
7833  }
7834
7835  if (!IsInstantiation)
7836    PopDeclContext();
7837
7838  PopFunctionScopeInfo(ActivePolicy, dcl);
7839
7840  // If any errors have occurred, clear out any temporaries that may have
7841  // been leftover. This ensures that these temporaries won't be picked up for
7842  // deletion in some later function.
7843  if (getDiagnostics().hasErrorOccurred()) {
7844    DiscardCleanupsInEvaluationContext();
7845  }
7846
7847  return dcl;
7848}
7849
7850
7851/// When we finish delayed parsing of an attribute, we must attach it to the
7852/// relevant Decl.
7853void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7854                                       ParsedAttributes &Attrs) {
7855  // Always attach attributes to the underlying decl.
7856  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7857    D = TD->getTemplatedDecl();
7858  ProcessDeclAttributeList(S, D, Attrs.getList());
7859
7860  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7861    if (Method->isStatic())
7862      checkThisInStaticMemberFunctionAttributes(Method);
7863}
7864
7865
7866/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7867/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7868NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7869                                          IdentifierInfo &II, Scope *S) {
7870  // Before we produce a declaration for an implicitly defined
7871  // function, see whether there was a locally-scoped declaration of
7872  // this name as a function or variable. If so, use that
7873  // (non-visible) declaration, and complain about it.
7874  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7875    = findLocallyScopedExternalDecl(&II);
7876  if (Pos != LocallyScopedExternalDecls.end()) {
7877    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7878    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7879    return Pos->second;
7880  }
7881
7882  // Extension in C99.  Legal in C90, but warn about it.
7883  unsigned diag_id;
7884  if (II.getName().startswith("__builtin_"))
7885    diag_id = diag::warn_builtin_unknown;
7886  else if (getLangOpts().C99)
7887    diag_id = diag::ext_implicit_function_decl;
7888  else
7889    diag_id = diag::warn_implicit_function_decl;
7890  Diag(Loc, diag_id) << &II;
7891
7892  // Because typo correction is expensive, only do it if the implicit
7893  // function declaration is going to be treated as an error.
7894  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7895    TypoCorrection Corrected;
7896    DeclFilterCCC<FunctionDecl> Validator;
7897    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7898                                      LookupOrdinaryName, S, 0, Validator))) {
7899      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7900      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7901      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7902
7903      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7904          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7905
7906      if (Func->getLocation().isValid()
7907          && !II.getName().startswith("__builtin_"))
7908        Diag(Func->getLocation(), diag::note_previous_decl)
7909            << CorrectedQuotedStr;
7910    }
7911  }
7912
7913  // Set a Declarator for the implicit definition: int foo();
7914  const char *Dummy;
7915  AttributeFactory attrFactory;
7916  DeclSpec DS(attrFactory);
7917  unsigned DiagID;
7918  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7919  (void)Error; // Silence warning.
7920  assert(!Error && "Error setting up implicit decl!");
7921  Declarator D(DS, Declarator::BlockContext);
7922  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, false,
7923                                             SourceLocation(), 0, 0, 0, true,
7924                                             SourceLocation(), SourceLocation(),
7925                                             SourceLocation(), SourceLocation(),
7926                                             EST_None, SourceLocation(),
7927                                             0, 0, 0, 0, Loc, Loc, D),
7928                DS.getAttributes(),
7929                SourceLocation());
7930  D.SetIdentifier(&II, Loc);
7931
7932  // Insert this function into translation-unit scope.
7933
7934  DeclContext *PrevDC = CurContext;
7935  CurContext = Context.getTranslationUnitDecl();
7936
7937  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7938  FD->setImplicit();
7939
7940  CurContext = PrevDC;
7941
7942  AddKnownFunctionAttributes(FD);
7943
7944  return FD;
7945}
7946
7947/// \brief Adds any function attributes that we know a priori based on
7948/// the declaration of this function.
7949///
7950/// These attributes can apply both to implicitly-declared builtins
7951/// (like __builtin___printf_chk) or to library-declared functions
7952/// like NSLog or printf.
7953///
7954/// We need to check for duplicate attributes both here and where user-written
7955/// attributes are applied to declarations.
7956void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7957  if (FD->isInvalidDecl())
7958    return;
7959
7960  // If this is a built-in function, map its builtin attributes to
7961  // actual attributes.
7962  if (unsigned BuiltinID = FD->getBuiltinID()) {
7963    // Handle printf-formatting attributes.
7964    unsigned FormatIdx;
7965    bool HasVAListArg;
7966    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7967      if (!FD->getAttr<FormatAttr>()) {
7968        const char *fmt = "printf";
7969        unsigned int NumParams = FD->getNumParams();
7970        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7971            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7972          fmt = "NSString";
7973        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7974                                               fmt, FormatIdx+1,
7975                                               HasVAListArg ? 0 : FormatIdx+2));
7976      }
7977    }
7978    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7979                                             HasVAListArg)) {
7980     if (!FD->getAttr<FormatAttr>())
7981       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7982                                              "scanf", FormatIdx+1,
7983                                              HasVAListArg ? 0 : FormatIdx+2));
7984    }
7985
7986    // Mark const if we don't care about errno and that is the only
7987    // thing preventing the function from being const. This allows
7988    // IRgen to use LLVM intrinsics for such functions.
7989    if (!getLangOpts().MathErrno &&
7990        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7991      if (!FD->getAttr<ConstAttr>())
7992        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7993    }
7994
7995    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7996        !FD->getAttr<ReturnsTwiceAttr>())
7997      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7998    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7999      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
8000    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
8001      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8002  }
8003
8004  IdentifierInfo *Name = FD->getIdentifier();
8005  if (!Name)
8006    return;
8007  if ((!getLangOpts().CPlusPlus &&
8008       FD->getDeclContext()->isTranslationUnit()) ||
8009      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
8010       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
8011       LinkageSpecDecl::lang_c)) {
8012    // Okay: this could be a libc/libm/Objective-C function we know
8013    // about.
8014  } else
8015    return;
8016
8017  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
8018    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
8019    // target-specific builtins, perhaps?
8020    if (!FD->getAttr<FormatAttr>())
8021      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8022                                             "printf", 2,
8023                                             Name->isStr("vasprintf") ? 0 : 3));
8024  }
8025
8026  if (Name->isStr("__CFStringMakeConstantString")) {
8027    // We already have a __builtin___CFStringMakeConstantString,
8028    // but builds that use -fno-constant-cfstrings don't go through that.
8029    if (!FD->getAttr<FormatArgAttr>())
8030      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
8031  }
8032}
8033
8034TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
8035                                    TypeSourceInfo *TInfo) {
8036  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
8037  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
8038
8039  if (!TInfo) {
8040    assert(D.isInvalidType() && "no declarator info for valid type");
8041    TInfo = Context.getTrivialTypeSourceInfo(T);
8042  }
8043
8044  // Scope manipulation handled by caller.
8045  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
8046                                           D.getLocStart(),
8047                                           D.getIdentifierLoc(),
8048                                           D.getIdentifier(),
8049                                           TInfo);
8050
8051  // Bail out immediately if we have an invalid declaration.
8052  if (D.isInvalidType()) {
8053    NewTD->setInvalidDecl();
8054    return NewTD;
8055  }
8056
8057  if (D.getDeclSpec().isModulePrivateSpecified()) {
8058    if (CurContext->isFunctionOrMethod())
8059      Diag(NewTD->getLocation(), diag::err_module_private_local)
8060        << 2 << NewTD->getDeclName()
8061        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8062        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8063    else
8064      NewTD->setModulePrivate();
8065  }
8066
8067  // C++ [dcl.typedef]p8:
8068  //   If the typedef declaration defines an unnamed class (or
8069  //   enum), the first typedef-name declared by the declaration
8070  //   to be that class type (or enum type) is used to denote the
8071  //   class type (or enum type) for linkage purposes only.
8072  // We need to check whether the type was declared in the declaration.
8073  switch (D.getDeclSpec().getTypeSpecType()) {
8074  case TST_enum:
8075  case TST_struct:
8076  case TST_union:
8077  case TST_class: {
8078    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
8079
8080    // Do nothing if the tag is not anonymous or already has an
8081    // associated typedef (from an earlier typedef in this decl group).
8082    if (tagFromDeclSpec->getIdentifier()) break;
8083    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
8084
8085    // A well-formed anonymous tag must always be a TUK_Definition.
8086    assert(tagFromDeclSpec->isThisDeclarationADefinition());
8087
8088    // The type must match the tag exactly;  no qualifiers allowed.
8089    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
8090      break;
8091
8092    // Otherwise, set this is the anon-decl typedef for the tag.
8093    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
8094    break;
8095  }
8096
8097  default:
8098    break;
8099  }
8100
8101  return NewTD;
8102}
8103
8104
8105/// \brief Check that this is a valid underlying type for an enum declaration.
8106bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
8107  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
8108  QualType T = TI->getType();
8109
8110  if (T->isDependentType() || T->isIntegralType(Context))
8111    return false;
8112
8113  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
8114  return true;
8115}
8116
8117/// Check whether this is a valid redeclaration of a previous enumeration.
8118/// \return true if the redeclaration was invalid.
8119bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
8120                                  QualType EnumUnderlyingTy,
8121                                  const EnumDecl *Prev) {
8122  bool IsFixed = !EnumUnderlyingTy.isNull();
8123
8124  if (IsScoped != Prev->isScoped()) {
8125    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
8126      << Prev->isScoped();
8127    Diag(Prev->getLocation(), diag::note_previous_use);
8128    return true;
8129  }
8130
8131  if (IsFixed && Prev->isFixed()) {
8132    if (!EnumUnderlyingTy->isDependentType() &&
8133        !Prev->getIntegerType()->isDependentType() &&
8134        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
8135                                        Prev->getIntegerType())) {
8136      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
8137        << EnumUnderlyingTy << Prev->getIntegerType();
8138      Diag(Prev->getLocation(), diag::note_previous_use);
8139      return true;
8140    }
8141  } else if (IsFixed != Prev->isFixed()) {
8142    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
8143      << Prev->isFixed();
8144    Diag(Prev->getLocation(), diag::note_previous_use);
8145    return true;
8146  }
8147
8148  return false;
8149}
8150
8151/// \brief Determine whether a tag with a given kind is acceptable
8152/// as a redeclaration of the given tag declaration.
8153///
8154/// \returns true if the new tag kind is acceptable, false otherwise.
8155bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
8156                                        TagTypeKind NewTag, bool isDefinition,
8157                                        SourceLocation NewTagLoc,
8158                                        const IdentifierInfo &Name) {
8159  // C++ [dcl.type.elab]p3:
8160  //   The class-key or enum keyword present in the
8161  //   elaborated-type-specifier shall agree in kind with the
8162  //   declaration to which the name in the elaborated-type-specifier
8163  //   refers. This rule also applies to the form of
8164  //   elaborated-type-specifier that declares a class-name or
8165  //   friend class since it can be construed as referring to the
8166  //   definition of the class. Thus, in any
8167  //   elaborated-type-specifier, the enum keyword shall be used to
8168  //   refer to an enumeration (7.2), the union class-key shall be
8169  //   used to refer to a union (clause 9), and either the class or
8170  //   struct class-key shall be used to refer to a class (clause 9)
8171  //   declared using the class or struct class-key.
8172  TagTypeKind OldTag = Previous->getTagKind();
8173  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8174    if (OldTag == NewTag)
8175      return true;
8176
8177  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8178      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8179    // Warn about the struct/class tag mismatch.
8180    bool isTemplate = false;
8181    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8182      isTemplate = Record->getDescribedClassTemplate();
8183
8184    if (!ActiveTemplateInstantiations.empty()) {
8185      // In a template instantiation, do not offer fix-its for tag mismatches
8186      // since they usually mess up the template instead of fixing the problem.
8187      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8188        << (NewTag == TTK_Class) << isTemplate << &Name;
8189      return true;
8190    }
8191
8192    if (isDefinition) {
8193      // On definitions, check previous tags and issue a fix-it for each
8194      // one that doesn't match the current tag.
8195      if (Previous->getDefinition()) {
8196        // Don't suggest fix-its for redefinitions.
8197        return true;
8198      }
8199
8200      bool previousMismatch = false;
8201      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8202           E(Previous->redecls_end()); I != E; ++I) {
8203        if (I->getTagKind() != NewTag) {
8204          if (!previousMismatch) {
8205            previousMismatch = true;
8206            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8207              << (NewTag == TTK_Class) << isTemplate << &Name;
8208          }
8209          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8210            << (NewTag == TTK_Class)
8211            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8212                                            NewTag == TTK_Class?
8213                                            "class" : "struct");
8214        }
8215      }
8216      return true;
8217    }
8218
8219    // Check for a previous definition.  If current tag and definition
8220    // are same type, do nothing.  If no definition, but disagree with
8221    // with previous tag type, give a warning, but no fix-it.
8222    const TagDecl *Redecl = Previous->getDefinition() ?
8223                            Previous->getDefinition() : Previous;
8224    if (Redecl->getTagKind() == NewTag) {
8225      return true;
8226    }
8227
8228    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8229      << (NewTag == TTK_Class)
8230      << isTemplate << &Name;
8231    Diag(Redecl->getLocation(), diag::note_previous_use);
8232
8233    // If there is a previous defintion, suggest a fix-it.
8234    if (Previous->getDefinition()) {
8235        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8236          << (Redecl->getTagKind() == TTK_Class)
8237          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8238                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8239    }
8240
8241    return true;
8242  }
8243  return false;
8244}
8245
8246/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8247/// former case, Name will be non-null.  In the later case, Name will be null.
8248/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8249/// reference/declaration/definition of a tag.
8250Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8251                     SourceLocation KWLoc, CXXScopeSpec &SS,
8252                     IdentifierInfo *Name, SourceLocation NameLoc,
8253                     AttributeList *Attr, AccessSpecifier AS,
8254                     SourceLocation ModulePrivateLoc,
8255                     MultiTemplateParamsArg TemplateParameterLists,
8256                     bool &OwnedDecl, bool &IsDependent,
8257                     SourceLocation ScopedEnumKWLoc,
8258                     bool ScopedEnumUsesClassTag,
8259                     TypeResult UnderlyingType) {
8260  // If this is not a definition, it must have a name.
8261  IdentifierInfo *OrigName = Name;
8262  assert((Name != 0 || TUK == TUK_Definition) &&
8263         "Nameless record must be a definition!");
8264  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8265
8266  OwnedDecl = false;
8267  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8268  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8269
8270  // FIXME: Check explicit specializations more carefully.
8271  bool isExplicitSpecialization = false;
8272  bool Invalid = false;
8273
8274  // We only need to do this matching if we have template parameters
8275  // or a scope specifier, which also conveniently avoids this work
8276  // for non-C++ cases.
8277  if (TemplateParameterLists.size() > 0 ||
8278      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8279    if (TemplateParameterList *TemplateParams
8280          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8281                                                TemplateParameterLists.get(),
8282                                                TemplateParameterLists.size(),
8283                                                    TUK == TUK_Friend,
8284                                                    isExplicitSpecialization,
8285                                                    Invalid)) {
8286      if (TemplateParams->size() > 0) {
8287        // This is a declaration or definition of a class template (which may
8288        // be a member of another template).
8289
8290        if (Invalid)
8291          return 0;
8292
8293        OwnedDecl = false;
8294        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8295                                               SS, Name, NameLoc, Attr,
8296                                               TemplateParams, AS,
8297                                               ModulePrivateLoc,
8298                                           TemplateParameterLists.size() - 1,
8299                 (TemplateParameterList**) TemplateParameterLists.release());
8300        return Result.get();
8301      } else {
8302        // The "template<>" header is extraneous.
8303        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8304          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8305        isExplicitSpecialization = true;
8306      }
8307    }
8308  }
8309
8310  // Figure out the underlying type if this a enum declaration. We need to do
8311  // this early, because it's needed to detect if this is an incompatible
8312  // redeclaration.
8313  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8314
8315  if (Kind == TTK_Enum) {
8316    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8317      // No underlying type explicitly specified, or we failed to parse the
8318      // type, default to int.
8319      EnumUnderlying = Context.IntTy.getTypePtr();
8320    else if (UnderlyingType.get()) {
8321      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8322      // integral type; any cv-qualification is ignored.
8323      TypeSourceInfo *TI = 0;
8324      GetTypeFromParser(UnderlyingType.get(), &TI);
8325      EnumUnderlying = TI;
8326
8327      if (CheckEnumUnderlyingType(TI))
8328        // Recover by falling back to int.
8329        EnumUnderlying = Context.IntTy.getTypePtr();
8330
8331      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8332                                          UPPC_FixedUnderlyingType))
8333        EnumUnderlying = Context.IntTy.getTypePtr();
8334
8335    } else if (getLangOpts().MicrosoftMode)
8336      // Microsoft enums are always of int type.
8337      EnumUnderlying = Context.IntTy.getTypePtr();
8338  }
8339
8340  DeclContext *SearchDC = CurContext;
8341  DeclContext *DC = CurContext;
8342  bool isStdBadAlloc = false;
8343
8344  RedeclarationKind Redecl = ForRedeclaration;
8345  if (TUK == TUK_Friend || TUK == TUK_Reference)
8346    Redecl = NotForRedeclaration;
8347
8348  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8349
8350  if (Name && SS.isNotEmpty()) {
8351    // We have a nested-name tag ('struct foo::bar').
8352
8353    // Check for invalid 'foo::'.
8354    if (SS.isInvalid()) {
8355      Name = 0;
8356      goto CreateNewDecl;
8357    }
8358
8359    // If this is a friend or a reference to a class in a dependent
8360    // context, don't try to make a decl for it.
8361    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8362      DC = computeDeclContext(SS, false);
8363      if (!DC) {
8364        IsDependent = true;
8365        return 0;
8366      }
8367    } else {
8368      DC = computeDeclContext(SS, true);
8369      if (!DC) {
8370        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8371          << SS.getRange();
8372        return 0;
8373      }
8374    }
8375
8376    if (RequireCompleteDeclContext(SS, DC))
8377      return 0;
8378
8379    SearchDC = DC;
8380    // Look-up name inside 'foo::'.
8381    LookupQualifiedName(Previous, DC);
8382
8383    if (Previous.isAmbiguous())
8384      return 0;
8385
8386    if (Previous.empty()) {
8387      // Name lookup did not find anything. However, if the
8388      // nested-name-specifier refers to the current instantiation,
8389      // and that current instantiation has any dependent base
8390      // classes, we might find something at instantiation time: treat
8391      // this as a dependent elaborated-type-specifier.
8392      // But this only makes any sense for reference-like lookups.
8393      if (Previous.wasNotFoundInCurrentInstantiation() &&
8394          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8395        IsDependent = true;
8396        return 0;
8397      }
8398
8399      // A tag 'foo::bar' must already exist.
8400      Diag(NameLoc, diag::err_not_tag_in_scope)
8401        << Kind << Name << DC << SS.getRange();
8402      Name = 0;
8403      Invalid = true;
8404      goto CreateNewDecl;
8405    }
8406  } else if (Name) {
8407    // If this is a named struct, check to see if there was a previous forward
8408    // declaration or definition.
8409    // FIXME: We're looking into outer scopes here, even when we
8410    // shouldn't be. Doing so can result in ambiguities that we
8411    // shouldn't be diagnosing.
8412    LookupName(Previous, S);
8413
8414    if (Previous.isAmbiguous() &&
8415        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8416      LookupResult::Filter F = Previous.makeFilter();
8417      while (F.hasNext()) {
8418        NamedDecl *ND = F.next();
8419        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8420          F.erase();
8421      }
8422      F.done();
8423    }
8424
8425    // Note:  there used to be some attempt at recovery here.
8426    if (Previous.isAmbiguous())
8427      return 0;
8428
8429    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8430      // FIXME: This makes sure that we ignore the contexts associated
8431      // with C structs, unions, and enums when looking for a matching
8432      // tag declaration or definition. See the similar lookup tweak
8433      // in Sema::LookupName; is there a better way to deal with this?
8434      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8435        SearchDC = SearchDC->getParent();
8436    }
8437  } else if (S->isFunctionPrototypeScope()) {
8438    // If this is an enum declaration in function prototype scope, set its
8439    // initial context to the translation unit.
8440    // FIXME: [citation needed]
8441    SearchDC = Context.getTranslationUnitDecl();
8442  }
8443
8444  if (Previous.isSingleResult() &&
8445      Previous.getFoundDecl()->isTemplateParameter()) {
8446    // Maybe we will complain about the shadowed template parameter.
8447    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8448    // Just pretend that we didn't see the previous declaration.
8449    Previous.clear();
8450  }
8451
8452  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8453      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8454    // This is a declaration of or a reference to "std::bad_alloc".
8455    isStdBadAlloc = true;
8456
8457    if (Previous.empty() && StdBadAlloc) {
8458      // std::bad_alloc has been implicitly declared (but made invisible to
8459      // name lookup). Fill in this implicit declaration as the previous
8460      // declaration, so that the declarations get chained appropriately.
8461      Previous.addDecl(getStdBadAlloc());
8462    }
8463  }
8464
8465  // If we didn't find a previous declaration, and this is a reference
8466  // (or friend reference), move to the correct scope.  In C++, we
8467  // also need to do a redeclaration lookup there, just in case
8468  // there's a shadow friend decl.
8469  if (Name && Previous.empty() &&
8470      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8471    if (Invalid) goto CreateNewDecl;
8472    assert(SS.isEmpty());
8473
8474    if (TUK == TUK_Reference) {
8475      // C++ [basic.scope.pdecl]p5:
8476      //   -- for an elaborated-type-specifier of the form
8477      //
8478      //          class-key identifier
8479      //
8480      //      if the elaborated-type-specifier is used in the
8481      //      decl-specifier-seq or parameter-declaration-clause of a
8482      //      function defined in namespace scope, the identifier is
8483      //      declared as a class-name in the namespace that contains
8484      //      the declaration; otherwise, except as a friend
8485      //      declaration, the identifier is declared in the smallest
8486      //      non-class, non-function-prototype scope that contains the
8487      //      declaration.
8488      //
8489      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8490      // C structs and unions.
8491      //
8492      // It is an error in C++ to declare (rather than define) an enum
8493      // type, including via an elaborated type specifier.  We'll
8494      // diagnose that later; for now, declare the enum in the same
8495      // scope as we would have picked for any other tag type.
8496      //
8497      // GNU C also supports this behavior as part of its incomplete
8498      // enum types extension, while GNU C++ does not.
8499      //
8500      // Find the context where we'll be declaring the tag.
8501      // FIXME: We would like to maintain the current DeclContext as the
8502      // lexical context,
8503      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8504        SearchDC = SearchDC->getParent();
8505
8506      // Find the scope where we'll be declaring the tag.
8507      while (S->isClassScope() ||
8508             (getLangOpts().CPlusPlus &&
8509              S->isFunctionPrototypeScope()) ||
8510             ((S->getFlags() & Scope::DeclScope) == 0) ||
8511             (S->getEntity() &&
8512              ((DeclContext *)S->getEntity())->isTransparentContext()))
8513        S = S->getParent();
8514    } else {
8515      assert(TUK == TUK_Friend);
8516      // C++ [namespace.memdef]p3:
8517      //   If a friend declaration in a non-local class first declares a
8518      //   class or function, the friend class or function is a member of
8519      //   the innermost enclosing namespace.
8520      SearchDC = SearchDC->getEnclosingNamespaceContext();
8521    }
8522
8523    // In C++, we need to do a redeclaration lookup to properly
8524    // diagnose some problems.
8525    if (getLangOpts().CPlusPlus) {
8526      Previous.setRedeclarationKind(ForRedeclaration);
8527      LookupQualifiedName(Previous, SearchDC);
8528    }
8529  }
8530
8531  if (!Previous.empty()) {
8532    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8533
8534    // It's okay to have a tag decl in the same scope as a typedef
8535    // which hides a tag decl in the same scope.  Finding this
8536    // insanity with a redeclaration lookup can only actually happen
8537    // in C++.
8538    //
8539    // This is also okay for elaborated-type-specifiers, which is
8540    // technically forbidden by the current standard but which is
8541    // okay according to the likely resolution of an open issue;
8542    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8543    if (getLangOpts().CPlusPlus) {
8544      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8545        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8546          TagDecl *Tag = TT->getDecl();
8547          if (Tag->getDeclName() == Name &&
8548              Tag->getDeclContext()->getRedeclContext()
8549                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8550            PrevDecl = Tag;
8551            Previous.clear();
8552            Previous.addDecl(Tag);
8553            Previous.resolveKind();
8554          }
8555        }
8556      }
8557    }
8558
8559    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8560      // If this is a use of a previous tag, or if the tag is already declared
8561      // in the same scope (so that the definition/declaration completes or
8562      // rementions the tag), reuse the decl.
8563      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8564          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8565        // Make sure that this wasn't declared as an enum and now used as a
8566        // struct or something similar.
8567        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8568                                          TUK == TUK_Definition, KWLoc,
8569                                          *Name)) {
8570          bool SafeToContinue
8571            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8572               Kind != TTK_Enum);
8573          if (SafeToContinue)
8574            Diag(KWLoc, diag::err_use_with_wrong_tag)
8575              << Name
8576              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8577                                              PrevTagDecl->getKindName());
8578          else
8579            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8580          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8581
8582          if (SafeToContinue)
8583            Kind = PrevTagDecl->getTagKind();
8584          else {
8585            // Recover by making this an anonymous redefinition.
8586            Name = 0;
8587            Previous.clear();
8588            Invalid = true;
8589          }
8590        }
8591
8592        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8593          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8594
8595          // If this is an elaborated-type-specifier for a scoped enumeration,
8596          // the 'class' keyword is not necessary and not permitted.
8597          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8598            if (ScopedEnum)
8599              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8600                << PrevEnum->isScoped()
8601                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8602            return PrevTagDecl;
8603          }
8604
8605          QualType EnumUnderlyingTy;
8606          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8607            EnumUnderlyingTy = TI->getType();
8608          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8609            EnumUnderlyingTy = QualType(T, 0);
8610
8611          // All conflicts with previous declarations are recovered by
8612          // returning the previous declaration, unless this is a definition,
8613          // in which case we want the caller to bail out.
8614          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8615                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8616            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8617        }
8618
8619        if (!Invalid) {
8620          // If this is a use, just return the declaration we found.
8621
8622          // FIXME: In the future, return a variant or some other clue
8623          // for the consumer of this Decl to know it doesn't own it.
8624          // For our current ASTs this shouldn't be a problem, but will
8625          // need to be changed with DeclGroups.
8626          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8627               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8628            return PrevTagDecl;
8629
8630          // Diagnose attempts to redefine a tag.
8631          if (TUK == TUK_Definition) {
8632            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8633              // If we're defining a specialization and the previous definition
8634              // is from an implicit instantiation, don't emit an error
8635              // here; we'll catch this in the general case below.
8636              bool IsExplicitSpecializationAfterInstantiation = false;
8637              if (isExplicitSpecialization) {
8638                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8639                  IsExplicitSpecializationAfterInstantiation =
8640                    RD->getTemplateSpecializationKind() !=
8641                    TSK_ExplicitSpecialization;
8642                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8643                  IsExplicitSpecializationAfterInstantiation =
8644                    ED->getTemplateSpecializationKind() !=
8645                    TSK_ExplicitSpecialization;
8646              }
8647
8648              if (!IsExplicitSpecializationAfterInstantiation) {
8649                // A redeclaration in function prototype scope in C isn't
8650                // visible elsewhere, so merely issue a warning.
8651                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8652                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8653                else
8654                  Diag(NameLoc, diag::err_redefinition) << Name;
8655                Diag(Def->getLocation(), diag::note_previous_definition);
8656                // If this is a redefinition, recover by making this
8657                // struct be anonymous, which will make any later
8658                // references get the previous definition.
8659                Name = 0;
8660                Previous.clear();
8661                Invalid = true;
8662              }
8663            } else {
8664              // If the type is currently being defined, complain
8665              // about a nested redefinition.
8666              const TagType *Tag
8667                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8668              if (Tag->isBeingDefined()) {
8669                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8670                Diag(PrevTagDecl->getLocation(),
8671                     diag::note_previous_definition);
8672                Name = 0;
8673                Previous.clear();
8674                Invalid = true;
8675              }
8676            }
8677
8678            // Okay, this is definition of a previously declared or referenced
8679            // tag PrevDecl. We're going to create a new Decl for it.
8680          }
8681        }
8682        // If we get here we have (another) forward declaration or we
8683        // have a definition.  Just create a new decl.
8684
8685      } else {
8686        // If we get here, this is a definition of a new tag type in a nested
8687        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8688        // new decl/type.  We set PrevDecl to NULL so that the entities
8689        // have distinct types.
8690        Previous.clear();
8691      }
8692      // If we get here, we're going to create a new Decl. If PrevDecl
8693      // is non-NULL, it's a definition of the tag declared by
8694      // PrevDecl. If it's NULL, we have a new definition.
8695
8696
8697    // Otherwise, PrevDecl is not a tag, but was found with tag
8698    // lookup.  This is only actually possible in C++, where a few
8699    // things like templates still live in the tag namespace.
8700    } else {
8701      // Use a better diagnostic if an elaborated-type-specifier
8702      // found the wrong kind of type on the first
8703      // (non-redeclaration) lookup.
8704      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8705          !Previous.isForRedeclaration()) {
8706        unsigned Kind = 0;
8707        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8708        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8709        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8710        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8711        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8712        Invalid = true;
8713
8714      // Otherwise, only diagnose if the declaration is in scope.
8715      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8716                                isExplicitSpecialization)) {
8717        // do nothing
8718
8719      // Diagnose implicit declarations introduced by elaborated types.
8720      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8721        unsigned Kind = 0;
8722        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8723        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8724        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8725        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8726        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8727        Invalid = true;
8728
8729      // Otherwise it's a declaration.  Call out a particularly common
8730      // case here.
8731      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8732        unsigned Kind = 0;
8733        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8734        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8735          << Name << Kind << TND->getUnderlyingType();
8736        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8737        Invalid = true;
8738
8739      // Otherwise, diagnose.
8740      } else {
8741        // The tag name clashes with something else in the target scope,
8742        // issue an error and recover by making this tag be anonymous.
8743        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8744        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8745        Name = 0;
8746        Invalid = true;
8747      }
8748
8749      // The existing declaration isn't relevant to us; we're in a
8750      // new scope, so clear out the previous declaration.
8751      Previous.clear();
8752    }
8753  }
8754
8755CreateNewDecl:
8756
8757  TagDecl *PrevDecl = 0;
8758  if (Previous.isSingleResult())
8759    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8760
8761  // If there is an identifier, use the location of the identifier as the
8762  // location of the decl, otherwise use the location of the struct/union
8763  // keyword.
8764  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8765
8766  // Otherwise, create a new declaration. If there is a previous
8767  // declaration of the same entity, the two will be linked via
8768  // PrevDecl.
8769  TagDecl *New;
8770
8771  bool IsForwardReference = false;
8772  if (Kind == TTK_Enum) {
8773    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8774    // enum X { A, B, C } D;    D should chain to X.
8775    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8776                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8777                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8778    // If this is an undefined enum, warn.
8779    if (TUK != TUK_Definition && !Invalid) {
8780      TagDecl *Def;
8781      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8782        // C++0x: 7.2p2: opaque-enum-declaration.
8783        // Conflicts are diagnosed above. Do nothing.
8784      }
8785      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8786        Diag(Loc, diag::ext_forward_ref_enum_def)
8787          << New;
8788        Diag(Def->getLocation(), diag::note_previous_definition);
8789      } else {
8790        unsigned DiagID = diag::ext_forward_ref_enum;
8791        if (getLangOpts().MicrosoftMode)
8792          DiagID = diag::ext_ms_forward_ref_enum;
8793        else if (getLangOpts().CPlusPlus)
8794          DiagID = diag::err_forward_ref_enum;
8795        Diag(Loc, DiagID);
8796
8797        // If this is a forward-declared reference to an enumeration, make a
8798        // note of it; we won't actually be introducing the declaration into
8799        // the declaration context.
8800        if (TUK == TUK_Reference)
8801          IsForwardReference = true;
8802      }
8803    }
8804
8805    if (EnumUnderlying) {
8806      EnumDecl *ED = cast<EnumDecl>(New);
8807      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8808        ED->setIntegerTypeSourceInfo(TI);
8809      else
8810        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8811      ED->setPromotionType(ED->getIntegerType());
8812    }
8813
8814  } else {
8815    // struct/union/class
8816
8817    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8818    // struct X { int A; } D;    D should chain to X.
8819    if (getLangOpts().CPlusPlus) {
8820      // FIXME: Look for a way to use RecordDecl for simple structs.
8821      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8822                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8823
8824      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8825        StdBadAlloc = cast<CXXRecordDecl>(New);
8826    } else
8827      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8828                               cast_or_null<RecordDecl>(PrevDecl));
8829  }
8830
8831  // Maybe add qualifier info.
8832  if (SS.isNotEmpty()) {
8833    if (SS.isSet()) {
8834      // If this is either a declaration or a definition, check the
8835      // nested-name-specifier against the current context. We don't do this
8836      // for explicit specializations, because they have similar checking
8837      // (with more specific diagnostics) in the call to
8838      // CheckMemberSpecialization, below.
8839      if (!isExplicitSpecialization &&
8840          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8841          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8842        Invalid = true;
8843
8844      New->setQualifierInfo(SS.getWithLocInContext(Context));
8845      if (TemplateParameterLists.size() > 0) {
8846        New->setTemplateParameterListsInfo(Context,
8847                                           TemplateParameterLists.size(),
8848                    (TemplateParameterList**) TemplateParameterLists.release());
8849      }
8850    }
8851    else
8852      Invalid = true;
8853  }
8854
8855  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8856    // Add alignment attributes if necessary; these attributes are checked when
8857    // the ASTContext lays out the structure.
8858    //
8859    // It is important for implementing the correct semantics that this
8860    // happen here (in act on tag decl). The #pragma pack stack is
8861    // maintained as a result of parser callbacks which can occur at
8862    // many points during the parsing of a struct declaration (because
8863    // the #pragma tokens are effectively skipped over during the
8864    // parsing of the struct).
8865    if (TUK == TUK_Definition) {
8866      AddAlignmentAttributesForRecord(RD);
8867      AddMsStructLayoutForRecord(RD);
8868    }
8869  }
8870
8871  if (ModulePrivateLoc.isValid()) {
8872    if (isExplicitSpecialization)
8873      Diag(New->getLocation(), diag::err_module_private_specialization)
8874        << 2
8875        << FixItHint::CreateRemoval(ModulePrivateLoc);
8876    // __module_private__ does not apply to local classes. However, we only
8877    // diagnose this as an error when the declaration specifiers are
8878    // freestanding. Here, we just ignore the __module_private__.
8879    else if (!SearchDC->isFunctionOrMethod())
8880      New->setModulePrivate();
8881  }
8882
8883  // If this is a specialization of a member class (of a class template),
8884  // check the specialization.
8885  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8886    Invalid = true;
8887
8888  if (Invalid)
8889    New->setInvalidDecl();
8890
8891  if (Attr)
8892    ProcessDeclAttributeList(S, New, Attr);
8893
8894  // If we're declaring or defining a tag in function prototype scope
8895  // in C, note that this type can only be used within the function.
8896  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8897    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8898
8899  // Set the lexical context. If the tag has a C++ scope specifier, the
8900  // lexical context will be different from the semantic context.
8901  New->setLexicalDeclContext(CurContext);
8902
8903  // Mark this as a friend decl if applicable.
8904  // In Microsoft mode, a friend declaration also acts as a forward
8905  // declaration so we always pass true to setObjectOfFriendDecl to make
8906  // the tag name visible.
8907  if (TUK == TUK_Friend)
8908    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8909                               getLangOpts().MicrosoftExt);
8910
8911  // Set the access specifier.
8912  if (!Invalid && SearchDC->isRecord())
8913    SetMemberAccessSpecifier(New, PrevDecl, AS);
8914
8915  if (TUK == TUK_Definition)
8916    New->startDefinition();
8917
8918  // If this has an identifier, add it to the scope stack.
8919  if (TUK == TUK_Friend) {
8920    // We might be replacing an existing declaration in the lookup tables;
8921    // if so, borrow its access specifier.
8922    if (PrevDecl)
8923      New->setAccess(PrevDecl->getAccess());
8924
8925    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8926    DC->makeDeclVisibleInContext(New);
8927    if (Name) // can be null along some error paths
8928      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8929        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8930  } else if (Name) {
8931    S = getNonFieldDeclScope(S);
8932    PushOnScopeChains(New, S, !IsForwardReference);
8933    if (IsForwardReference)
8934      SearchDC->makeDeclVisibleInContext(New);
8935
8936  } else {
8937    CurContext->addDecl(New);
8938  }
8939
8940  // If this is the C FILE type, notify the AST context.
8941  if (IdentifierInfo *II = New->getIdentifier())
8942    if (!New->isInvalidDecl() &&
8943        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8944        II->isStr("FILE"))
8945      Context.setFILEDecl(New);
8946
8947  // If we were in function prototype scope (and not in C++ mode), add this
8948  // tag to the list of decls to inject into the function definition scope.
8949  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8950      InFunctionDeclarator && Name)
8951    DeclsInPrototypeScope.push_back(New);
8952
8953  if (PrevDecl)
8954    mergeDeclAttributes(New, PrevDecl);
8955
8956  // If there's a #pragma GCC visibility in scope, set the visibility of this
8957  // record.
8958  AddPushedVisibilityAttribute(New);
8959
8960  OwnedDecl = true;
8961  return New;
8962}
8963
8964void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8965  AdjustDeclIfTemplate(TagD);
8966  TagDecl *Tag = cast<TagDecl>(TagD);
8967
8968  // Enter the tag context.
8969  PushDeclContext(S, Tag);
8970
8971  ActOnDocumentableDecl(TagD);
8972
8973  // If there's a #pragma GCC visibility in scope, set the visibility of this
8974  // record.
8975  AddPushedVisibilityAttribute(Tag);
8976}
8977
8978Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8979  assert(isa<ObjCContainerDecl>(IDecl) &&
8980         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8981  DeclContext *OCD = cast<DeclContext>(IDecl);
8982  assert(getContainingDC(OCD) == CurContext &&
8983      "The next DeclContext should be lexically contained in the current one.");
8984  CurContext = OCD;
8985  return IDecl;
8986}
8987
8988void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8989                                           SourceLocation FinalLoc,
8990                                           SourceLocation LBraceLoc) {
8991  AdjustDeclIfTemplate(TagD);
8992  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8993
8994  FieldCollector->StartClass();
8995
8996  if (!Record->getIdentifier())
8997    return;
8998
8999  if (FinalLoc.isValid())
9000    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
9001
9002  // C++ [class]p2:
9003  //   [...] The class-name is also inserted into the scope of the
9004  //   class itself; this is known as the injected-class-name. For
9005  //   purposes of access checking, the injected-class-name is treated
9006  //   as if it were a public member name.
9007  CXXRecordDecl *InjectedClassName
9008    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
9009                            Record->getLocStart(), Record->getLocation(),
9010                            Record->getIdentifier(),
9011                            /*PrevDecl=*/0,
9012                            /*DelayTypeCreation=*/true);
9013  Context.getTypeDeclType(InjectedClassName, Record);
9014  InjectedClassName->setImplicit();
9015  InjectedClassName->setAccess(AS_public);
9016  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
9017      InjectedClassName->setDescribedClassTemplate(Template);
9018  PushOnScopeChains(InjectedClassName, S);
9019  assert(InjectedClassName->isInjectedClassName() &&
9020         "Broken injected-class-name");
9021}
9022
9023void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
9024                                    SourceLocation RBraceLoc) {
9025  AdjustDeclIfTemplate(TagD);
9026  TagDecl *Tag = cast<TagDecl>(TagD);
9027  Tag->setRBraceLoc(RBraceLoc);
9028
9029  // Make sure we "complete" the definition even it is invalid.
9030  if (Tag->isBeingDefined()) {
9031    assert(Tag->isInvalidDecl() && "We should already have completed it");
9032    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9033      RD->completeDefinition();
9034  }
9035
9036  if (isa<CXXRecordDecl>(Tag))
9037    FieldCollector->FinishClass();
9038
9039  // Exit this scope of this tag's definition.
9040  PopDeclContext();
9041
9042  // Notify the consumer that we've defined a tag.
9043  Consumer.HandleTagDeclDefinition(Tag);
9044}
9045
9046void Sema::ActOnObjCContainerFinishDefinition() {
9047  // Exit this scope of this interface definition.
9048  PopDeclContext();
9049}
9050
9051void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
9052  assert(DC == CurContext && "Mismatch of container contexts");
9053  OriginalLexicalContext = DC;
9054  ActOnObjCContainerFinishDefinition();
9055}
9056
9057void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
9058  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
9059  OriginalLexicalContext = 0;
9060}
9061
9062void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
9063  AdjustDeclIfTemplate(TagD);
9064  TagDecl *Tag = cast<TagDecl>(TagD);
9065  Tag->setInvalidDecl();
9066
9067  // Make sure we "complete" the definition even it is invalid.
9068  if (Tag->isBeingDefined()) {
9069    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
9070      RD->completeDefinition();
9071  }
9072
9073  // We're undoing ActOnTagStartDefinition here, not
9074  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
9075  // the FieldCollector.
9076
9077  PopDeclContext();
9078}
9079
9080// Note that FieldName may be null for anonymous bitfields.
9081ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
9082                                IdentifierInfo *FieldName,
9083                                QualType FieldTy, Expr *BitWidth,
9084                                bool *ZeroWidth) {
9085  // Default to true; that shouldn't confuse checks for emptiness
9086  if (ZeroWidth)
9087    *ZeroWidth = true;
9088
9089  // C99 6.7.2.1p4 - verify the field type.
9090  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
9091  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
9092    // Handle incomplete types with specific error.
9093    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
9094      return ExprError();
9095    if (FieldName)
9096      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
9097        << FieldName << FieldTy << BitWidth->getSourceRange();
9098    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
9099      << FieldTy << BitWidth->getSourceRange();
9100  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
9101                                             UPPC_BitFieldWidth))
9102    return ExprError();
9103
9104  // If the bit-width is type- or value-dependent, don't try to check
9105  // it now.
9106  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
9107    return Owned(BitWidth);
9108
9109  llvm::APSInt Value;
9110  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
9111  if (ICE.isInvalid())
9112    return ICE;
9113  BitWidth = ICE.take();
9114
9115  if (Value != 0 && ZeroWidth)
9116    *ZeroWidth = false;
9117
9118  // Zero-width bitfield is ok for anonymous field.
9119  if (Value == 0 && FieldName)
9120    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
9121
9122  if (Value.isSigned() && Value.isNegative()) {
9123    if (FieldName)
9124      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
9125               << FieldName << Value.toString(10);
9126    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
9127      << Value.toString(10);
9128  }
9129
9130  if (!FieldTy->isDependentType()) {
9131    uint64_t TypeSize = Context.getTypeSize(FieldTy);
9132    if (Value.getZExtValue() > TypeSize) {
9133      if (!getLangOpts().CPlusPlus) {
9134        if (FieldName)
9135          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
9136            << FieldName << (unsigned)Value.getZExtValue()
9137            << (unsigned)TypeSize;
9138
9139        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
9140          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9141      }
9142
9143      if (FieldName)
9144        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
9145          << FieldName << (unsigned)Value.getZExtValue()
9146          << (unsigned)TypeSize;
9147      else
9148        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
9149          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
9150    }
9151  }
9152
9153  return Owned(BitWidth);
9154}
9155
9156/// ActOnField - Each field of a C struct/union is passed into this in order
9157/// to create a FieldDecl object for it.
9158Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
9159                       Declarator &D, Expr *BitfieldWidth) {
9160  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
9161                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
9162                               /*InitStyle=*/ICIS_NoInit, AS_public);
9163  return Res;
9164}
9165
9166/// HandleField - Analyze a field of a C struct or a C++ data member.
9167///
9168FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
9169                             SourceLocation DeclStart,
9170                             Declarator &D, Expr *BitWidth,
9171                             InClassInitStyle InitStyle,
9172                             AccessSpecifier AS) {
9173  IdentifierInfo *II = D.getIdentifier();
9174  SourceLocation Loc = DeclStart;
9175  if (II) Loc = D.getIdentifierLoc();
9176
9177  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9178  QualType T = TInfo->getType();
9179  if (getLangOpts().CPlusPlus) {
9180    CheckExtraCXXDefaultArguments(D);
9181
9182    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
9183                                        UPPC_DataMemberType)) {
9184      D.setInvalidType();
9185      T = Context.IntTy;
9186      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9187    }
9188  }
9189
9190  DiagnoseFunctionSpecifiers(D);
9191
9192  if (D.getDeclSpec().isThreadSpecified())
9193    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9194  if (D.getDeclSpec().isConstexprSpecified())
9195    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9196      << 2;
9197
9198  // Check to see if this name was declared as a member previously
9199  NamedDecl *PrevDecl = 0;
9200  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9201  LookupName(Previous, S);
9202  switch (Previous.getResultKind()) {
9203    case LookupResult::Found:
9204    case LookupResult::FoundUnresolvedValue:
9205      PrevDecl = Previous.getAsSingle<NamedDecl>();
9206      break;
9207
9208    case LookupResult::FoundOverloaded:
9209      PrevDecl = Previous.getRepresentativeDecl();
9210      break;
9211
9212    case LookupResult::NotFound:
9213    case LookupResult::NotFoundInCurrentInstantiation:
9214    case LookupResult::Ambiguous:
9215      break;
9216  }
9217  Previous.suppressDiagnostics();
9218
9219  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9220    // Maybe we will complain about the shadowed template parameter.
9221    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9222    // Just pretend that we didn't see the previous declaration.
9223    PrevDecl = 0;
9224  }
9225
9226  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9227    PrevDecl = 0;
9228
9229  bool Mutable
9230    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9231  SourceLocation TSSL = D.getLocStart();
9232  FieldDecl *NewFD
9233    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
9234                     TSSL, AS, PrevDecl, &D);
9235
9236  if (NewFD->isInvalidDecl())
9237    Record->setInvalidDecl();
9238
9239  if (D.getDeclSpec().isModulePrivateSpecified())
9240    NewFD->setModulePrivate();
9241
9242  if (NewFD->isInvalidDecl() && PrevDecl) {
9243    // Don't introduce NewFD into scope; there's already something
9244    // with the same name in the same scope.
9245  } else if (II) {
9246    PushOnScopeChains(NewFD, S);
9247  } else
9248    Record->addDecl(NewFD);
9249
9250  return NewFD;
9251}
9252
9253/// \brief Build a new FieldDecl and check its well-formedness.
9254///
9255/// This routine builds a new FieldDecl given the fields name, type,
9256/// record, etc. \p PrevDecl should refer to any previous declaration
9257/// with the same name and in the same scope as the field to be
9258/// created.
9259///
9260/// \returns a new FieldDecl.
9261///
9262/// \todo The Declarator argument is a hack. It will be removed once
9263FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9264                                TypeSourceInfo *TInfo,
9265                                RecordDecl *Record, SourceLocation Loc,
9266                                bool Mutable, Expr *BitWidth,
9267                                InClassInitStyle InitStyle,
9268                                SourceLocation TSSL,
9269                                AccessSpecifier AS, NamedDecl *PrevDecl,
9270                                Declarator *D) {
9271  IdentifierInfo *II = Name.getAsIdentifierInfo();
9272  bool InvalidDecl = false;
9273  if (D) InvalidDecl = D->isInvalidType();
9274
9275  // If we receive a broken type, recover by assuming 'int' and
9276  // marking this declaration as invalid.
9277  if (T.isNull()) {
9278    InvalidDecl = true;
9279    T = Context.IntTy;
9280  }
9281
9282  QualType EltTy = Context.getBaseElementType(T);
9283  if (!EltTy->isDependentType()) {
9284    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9285      // Fields of incomplete type force their record to be invalid.
9286      Record->setInvalidDecl();
9287      InvalidDecl = true;
9288    } else {
9289      NamedDecl *Def;
9290      EltTy->isIncompleteType(&Def);
9291      if (Def && Def->isInvalidDecl()) {
9292        Record->setInvalidDecl();
9293        InvalidDecl = true;
9294      }
9295    }
9296  }
9297
9298  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9299  // than a variably modified type.
9300  if (!InvalidDecl && T->isVariablyModifiedType()) {
9301    bool SizeIsNegative;
9302    llvm::APSInt Oversized;
9303    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9304                                                           SizeIsNegative,
9305                                                           Oversized);
9306    if (!FixedTy.isNull()) {
9307      Diag(Loc, diag::warn_illegal_constant_array_size);
9308      T = FixedTy;
9309    } else {
9310      if (SizeIsNegative)
9311        Diag(Loc, diag::err_typecheck_negative_array_size);
9312      else if (Oversized.getBoolValue())
9313        Diag(Loc, diag::err_array_too_large)
9314          << Oversized.toString(10);
9315      else
9316        Diag(Loc, diag::err_typecheck_field_variable_size);
9317      InvalidDecl = true;
9318    }
9319  }
9320
9321  // Fields can not have abstract class types
9322  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9323                                             diag::err_abstract_type_in_decl,
9324                                             AbstractFieldType))
9325    InvalidDecl = true;
9326
9327  bool ZeroWidth = false;
9328  // If this is declared as a bit-field, check the bit-field.
9329  if (!InvalidDecl && BitWidth) {
9330    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9331    if (!BitWidth) {
9332      InvalidDecl = true;
9333      BitWidth = 0;
9334      ZeroWidth = false;
9335    }
9336  }
9337
9338  // Check that 'mutable' is consistent with the type of the declaration.
9339  if (!InvalidDecl && Mutable) {
9340    unsigned DiagID = 0;
9341    if (T->isReferenceType())
9342      DiagID = diag::err_mutable_reference;
9343    else if (T.isConstQualified())
9344      DiagID = diag::err_mutable_const;
9345
9346    if (DiagID) {
9347      SourceLocation ErrLoc = Loc;
9348      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9349        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9350      Diag(ErrLoc, DiagID);
9351      Mutable = false;
9352      InvalidDecl = true;
9353    }
9354  }
9355
9356  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9357                                       BitWidth, Mutable, InitStyle);
9358  if (InvalidDecl)
9359    NewFD->setInvalidDecl();
9360
9361  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9362    Diag(Loc, diag::err_duplicate_member) << II;
9363    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9364    NewFD->setInvalidDecl();
9365  }
9366
9367  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9368    if (Record->isUnion()) {
9369      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9370        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9371        if (RDecl->getDefinition()) {
9372          // C++ [class.union]p1: An object of a class with a non-trivial
9373          // constructor, a non-trivial copy constructor, a non-trivial
9374          // destructor, or a non-trivial copy assignment operator
9375          // cannot be a member of a union, nor can an array of such
9376          // objects.
9377          if (CheckNontrivialField(NewFD))
9378            NewFD->setInvalidDecl();
9379        }
9380      }
9381
9382      // C++ [class.union]p1: If a union contains a member of reference type,
9383      // the program is ill-formed.
9384      if (EltTy->isReferenceType()) {
9385        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9386          << NewFD->getDeclName() << EltTy;
9387        NewFD->setInvalidDecl();
9388      }
9389    }
9390  }
9391
9392  // FIXME: We need to pass in the attributes given an AST
9393  // representation, not a parser representation.
9394  if (D)
9395    // FIXME: What to pass instead of TUScope?
9396    ProcessDeclAttributes(TUScope, NewFD, *D);
9397
9398  // In auto-retain/release, infer strong retension for fields of
9399  // retainable type.
9400  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9401    NewFD->setInvalidDecl();
9402
9403  if (T.isObjCGCWeak())
9404    Diag(Loc, diag::warn_attribute_weak_on_field);
9405
9406  NewFD->setAccess(AS);
9407  return NewFD;
9408}
9409
9410bool Sema::CheckNontrivialField(FieldDecl *FD) {
9411  assert(FD);
9412  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9413
9414  if (FD->isInvalidDecl())
9415    return true;
9416
9417  QualType EltTy = Context.getBaseElementType(FD->getType());
9418  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9419    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9420    if (RDecl->getDefinition()) {
9421      // We check for copy constructors before constructors
9422      // because otherwise we'll never get complaints about
9423      // copy constructors.
9424
9425      CXXSpecialMember member = CXXInvalid;
9426      if (!RDecl->hasTrivialCopyConstructor())
9427        member = CXXCopyConstructor;
9428      else if (!RDecl->hasTrivialDefaultConstructor())
9429        member = CXXDefaultConstructor;
9430      else if (!RDecl->hasTrivialCopyAssignment())
9431        member = CXXCopyAssignment;
9432      else if (!RDecl->hasTrivialDestructor())
9433        member = CXXDestructor;
9434
9435      if (member != CXXInvalid) {
9436        if (!getLangOpts().CPlusPlus0x &&
9437            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9438          // Objective-C++ ARC: it is an error to have a non-trivial field of
9439          // a union. However, system headers in Objective-C programs
9440          // occasionally have Objective-C lifetime objects within unions,
9441          // and rather than cause the program to fail, we make those
9442          // members unavailable.
9443          SourceLocation Loc = FD->getLocation();
9444          if (getSourceManager().isInSystemHeader(Loc)) {
9445            if (!FD->hasAttr<UnavailableAttr>())
9446              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9447                                  "this system field has retaining ownership"));
9448            return false;
9449          }
9450        }
9451
9452        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9453               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9454               diag::err_illegal_union_or_anon_struct_member)
9455          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9456        DiagnoseNontrivial(RT, member);
9457        return !getLangOpts().CPlusPlus0x;
9458      }
9459    }
9460  }
9461
9462  return false;
9463}
9464
9465/// If the given constructor is user-provided, produce a diagnostic explaining
9466/// that it makes the class non-trivial.
9467static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9468                                               CXXConstructorDecl *CD,
9469                                               Sema::CXXSpecialMember CSM) {
9470  if (!CD->isUserProvided())
9471    return false;
9472
9473  SourceLocation CtorLoc = CD->getLocation();
9474  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9475  return true;
9476}
9477
9478/// DiagnoseNontrivial - Given that a class has a non-trivial
9479/// special member, figure out why.
9480void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9481  QualType QT(T, 0U);
9482  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9483
9484  // Check whether the member was user-declared.
9485  switch (member) {
9486  case CXXInvalid:
9487    break;
9488
9489  case CXXDefaultConstructor:
9490    if (RD->hasUserDeclaredConstructor()) {
9491      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9492      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9493        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9494          return;
9495
9496      // No user-provided constructors; look for constructor templates.
9497      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9498          tmpl_iter;
9499      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9500           TI != TE; ++TI) {
9501        CXXConstructorDecl *CD =
9502            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9503        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9504          return;
9505      }
9506    }
9507    break;
9508
9509  case CXXCopyConstructor:
9510    if (RD->hasUserDeclaredCopyConstructor()) {
9511      SourceLocation CtorLoc =
9512        RD->getCopyConstructor(0)->getLocation();
9513      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9514      return;
9515    }
9516    break;
9517
9518  case CXXMoveConstructor:
9519    if (RD->hasUserDeclaredMoveConstructor()) {
9520      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9521      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9522      return;
9523    }
9524    break;
9525
9526  case CXXCopyAssignment:
9527    if (RD->hasUserDeclaredCopyAssignment()) {
9528      SourceLocation AssignLoc =
9529        RD->getCopyAssignmentOperator(0)->getLocation();
9530      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9531      return;
9532    }
9533    break;
9534
9535  case CXXMoveAssignment:
9536    if (RD->hasUserDeclaredMoveAssignment()) {
9537      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9538      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9539      return;
9540    }
9541    break;
9542
9543  case CXXDestructor:
9544    if (RD->hasUserDeclaredDestructor()) {
9545      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9546      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9547      return;
9548    }
9549    break;
9550  }
9551
9552  typedef CXXRecordDecl::base_class_iterator base_iter;
9553
9554  // Virtual bases and members inhibit trivial copying/construction,
9555  // but not trivial destruction.
9556  if (member != CXXDestructor) {
9557    // Check for virtual bases.  vbases includes indirect virtual bases,
9558    // so we just iterate through the direct bases.
9559    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9560      if (bi->isVirtual()) {
9561        SourceLocation BaseLoc = bi->getLocStart();
9562        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9563        return;
9564      }
9565
9566    // Check for virtual methods.
9567    typedef CXXRecordDecl::method_iterator meth_iter;
9568    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9569         ++mi) {
9570      if (mi->isVirtual()) {
9571        SourceLocation MLoc = mi->getLocStart();
9572        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9573        return;
9574      }
9575    }
9576  }
9577
9578  bool (CXXRecordDecl::*hasTrivial)() const;
9579  switch (member) {
9580  case CXXDefaultConstructor:
9581    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9582  case CXXCopyConstructor:
9583    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9584  case CXXCopyAssignment:
9585    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9586  case CXXDestructor:
9587    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9588  default:
9589    llvm_unreachable("unexpected special member");
9590  }
9591
9592  // Check for nontrivial bases (and recurse).
9593  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9594    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9595    assert(BaseRT && "Don't know how to handle dependent bases");
9596    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9597    if (!(BaseRecTy->*hasTrivial)()) {
9598      SourceLocation BaseLoc = bi->getLocStart();
9599      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9600      DiagnoseNontrivial(BaseRT, member);
9601      return;
9602    }
9603  }
9604
9605  // Check for nontrivial members (and recurse).
9606  typedef RecordDecl::field_iterator field_iter;
9607  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9608       ++fi) {
9609    QualType EltTy = Context.getBaseElementType(fi->getType());
9610    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9611      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9612
9613      if (!(EltRD->*hasTrivial)()) {
9614        SourceLocation FLoc = fi->getLocation();
9615        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9616        DiagnoseNontrivial(EltRT, member);
9617        return;
9618      }
9619    }
9620
9621    if (EltTy->isObjCLifetimeType()) {
9622      switch (EltTy.getObjCLifetime()) {
9623      case Qualifiers::OCL_None:
9624      case Qualifiers::OCL_ExplicitNone:
9625        break;
9626
9627      case Qualifiers::OCL_Autoreleasing:
9628      case Qualifiers::OCL_Weak:
9629      case Qualifiers::OCL_Strong:
9630        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9631          << QT << EltTy.getObjCLifetime();
9632        return;
9633      }
9634    }
9635  }
9636
9637  llvm_unreachable("found no explanation for non-trivial member");
9638}
9639
9640/// TranslateIvarVisibility - Translate visibility from a token ID to an
9641///  AST enum value.
9642static ObjCIvarDecl::AccessControl
9643TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9644  switch (ivarVisibility) {
9645  default: llvm_unreachable("Unknown visitibility kind");
9646  case tok::objc_private: return ObjCIvarDecl::Private;
9647  case tok::objc_public: return ObjCIvarDecl::Public;
9648  case tok::objc_protected: return ObjCIvarDecl::Protected;
9649  case tok::objc_package: return ObjCIvarDecl::Package;
9650  }
9651}
9652
9653/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9654/// in order to create an IvarDecl object for it.
9655Decl *Sema::ActOnIvar(Scope *S,
9656                                SourceLocation DeclStart,
9657                                Declarator &D, Expr *BitfieldWidth,
9658                                tok::ObjCKeywordKind Visibility) {
9659
9660  IdentifierInfo *II = D.getIdentifier();
9661  Expr *BitWidth = (Expr*)BitfieldWidth;
9662  SourceLocation Loc = DeclStart;
9663  if (II) Loc = D.getIdentifierLoc();
9664
9665  // FIXME: Unnamed fields can be handled in various different ways, for
9666  // example, unnamed unions inject all members into the struct namespace!
9667
9668  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9669  QualType T = TInfo->getType();
9670
9671  if (BitWidth) {
9672    // 6.7.2.1p3, 6.7.2.1p4
9673    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9674    if (!BitWidth)
9675      D.setInvalidType();
9676  } else {
9677    // Not a bitfield.
9678
9679    // validate II.
9680
9681  }
9682  if (T->isReferenceType()) {
9683    Diag(Loc, diag::err_ivar_reference_type);
9684    D.setInvalidType();
9685  }
9686  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9687  // than a variably modified type.
9688  else if (T->isVariablyModifiedType()) {
9689    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9690    D.setInvalidType();
9691  }
9692
9693  // Get the visibility (access control) for this ivar.
9694  ObjCIvarDecl::AccessControl ac =
9695    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9696                                        : ObjCIvarDecl::None;
9697  // Must set ivar's DeclContext to its enclosing interface.
9698  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9699  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9700    return 0;
9701  ObjCContainerDecl *EnclosingContext;
9702  if (ObjCImplementationDecl *IMPDecl =
9703      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9704    if (LangOpts.ObjCRuntime.isFragile()) {
9705    // Case of ivar declared in an implementation. Context is that of its class.
9706      EnclosingContext = IMPDecl->getClassInterface();
9707      assert(EnclosingContext && "Implementation has no class interface!");
9708    }
9709    else
9710      EnclosingContext = EnclosingDecl;
9711  } else {
9712    if (ObjCCategoryDecl *CDecl =
9713        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9714      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
9715        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9716        return 0;
9717      }
9718    }
9719    EnclosingContext = EnclosingDecl;
9720  }
9721
9722  // Construct the decl.
9723  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9724                                             DeclStart, Loc, II, T,
9725                                             TInfo, ac, (Expr *)BitfieldWidth);
9726
9727  if (II) {
9728    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9729                                           ForRedeclaration);
9730    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9731        && !isa<TagDecl>(PrevDecl)) {
9732      Diag(Loc, diag::err_duplicate_member) << II;
9733      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9734      NewID->setInvalidDecl();
9735    }
9736  }
9737
9738  // Process attributes attached to the ivar.
9739  ProcessDeclAttributes(S, NewID, D);
9740
9741  if (D.isInvalidType())
9742    NewID->setInvalidDecl();
9743
9744  // In ARC, infer 'retaining' for ivars of retainable type.
9745  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9746    NewID->setInvalidDecl();
9747
9748  if (D.getDeclSpec().isModulePrivateSpecified())
9749    NewID->setModulePrivate();
9750
9751  if (II) {
9752    // FIXME: When interfaces are DeclContexts, we'll need to add
9753    // these to the interface.
9754    S->AddDecl(NewID);
9755    IdResolver.AddDecl(NewID);
9756  }
9757
9758  if (LangOpts.ObjCRuntime.isNonFragile() &&
9759      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9760    Diag(Loc, diag::warn_ivars_in_interface);
9761
9762  return NewID;
9763}
9764
9765/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9766/// class and class extensions. For every class @interface and class
9767/// extension @interface, if the last ivar is a bitfield of any type,
9768/// then add an implicit `char :0` ivar to the end of that interface.
9769void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9770                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9771  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
9772    return;
9773
9774  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9775  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9776
9777  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9778    return;
9779  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9780  if (!ID) {
9781    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9782      if (!CD->IsClassExtension())
9783        return;
9784    }
9785    // No need to add this to end of @implementation.
9786    else
9787      return;
9788  }
9789  // All conditions are met. Add a new bitfield to the tail end of ivars.
9790  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9791  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9792
9793  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9794                              DeclLoc, DeclLoc, 0,
9795                              Context.CharTy,
9796                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9797                                                               DeclLoc),
9798                              ObjCIvarDecl::Private, BW,
9799                              true);
9800  AllIvarDecls.push_back(Ivar);
9801}
9802
9803void Sema::ActOnFields(Scope* S,
9804                       SourceLocation RecLoc, Decl *EnclosingDecl,
9805                       llvm::ArrayRef<Decl *> Fields,
9806                       SourceLocation LBrac, SourceLocation RBrac,
9807                       AttributeList *Attr) {
9808  assert(EnclosingDecl && "missing record or interface decl");
9809
9810  // If this is an Objective-C @implementation or category and we have
9811  // new fields here we should reset the layout of the interface since
9812  // it will now change.
9813  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
9814    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
9815    switch (DC->getKind()) {
9816    default: break;
9817    case Decl::ObjCCategory:
9818      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
9819      break;
9820    case Decl::ObjCImplementation:
9821      Context.
9822        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
9823      break;
9824    }
9825  }
9826
9827  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9828
9829  // Start counting up the number of named members; make sure to include
9830  // members of anonymous structs and unions in the total.
9831  unsigned NumNamedMembers = 0;
9832  if (Record) {
9833    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9834                                   e = Record->decls_end(); i != e; i++) {
9835      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9836        if (IFD->getDeclName())
9837          ++NumNamedMembers;
9838    }
9839  }
9840
9841  // Verify that all the fields are okay.
9842  SmallVector<FieldDecl*, 32> RecFields;
9843
9844  bool ARCErrReported = false;
9845  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9846       i != end; ++i) {
9847    FieldDecl *FD = cast<FieldDecl>(*i);
9848
9849    // Get the type for the field.
9850    const Type *FDTy = FD->getType().getTypePtr();
9851
9852    if (!FD->isAnonymousStructOrUnion()) {
9853      // Remember all fields written by the user.
9854      RecFields.push_back(FD);
9855    }
9856
9857    // If the field is already invalid for some reason, don't emit more
9858    // diagnostics about it.
9859    if (FD->isInvalidDecl()) {
9860      EnclosingDecl->setInvalidDecl();
9861      continue;
9862    }
9863
9864    // C99 6.7.2.1p2:
9865    //   A structure or union shall not contain a member with
9866    //   incomplete or function type (hence, a structure shall not
9867    //   contain an instance of itself, but may contain a pointer to
9868    //   an instance of itself), except that the last member of a
9869    //   structure with more than one named member may have incomplete
9870    //   array type; such a structure (and any union containing,
9871    //   possibly recursively, a member that is such a structure)
9872    //   shall not be a member of a structure or an element of an
9873    //   array.
9874    if (FDTy->isFunctionType()) {
9875      // Field declared as a function.
9876      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9877        << FD->getDeclName();
9878      FD->setInvalidDecl();
9879      EnclosingDecl->setInvalidDecl();
9880      continue;
9881    } else if (FDTy->isIncompleteArrayType() && Record &&
9882               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9883                ((getLangOpts().MicrosoftExt ||
9884                  getLangOpts().CPlusPlus) &&
9885                 (i + 1 == Fields.end() || Record->isUnion())))) {
9886      // Flexible array member.
9887      // Microsoft and g++ is more permissive regarding flexible array.
9888      // It will accept flexible array in union and also
9889      // as the sole element of a struct/class.
9890      if (getLangOpts().MicrosoftExt) {
9891        if (Record->isUnion())
9892          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9893            << FD->getDeclName();
9894        else if (Fields.size() == 1)
9895          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9896            << FD->getDeclName() << Record->getTagKind();
9897      } else if (getLangOpts().CPlusPlus) {
9898        if (Record->isUnion())
9899          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9900            << FD->getDeclName();
9901        else if (Fields.size() == 1)
9902          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9903            << FD->getDeclName() << Record->getTagKind();
9904      } else if (!getLangOpts().C99) {
9905      if (Record->isUnion())
9906        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9907          << FD->getDeclName();
9908      else
9909        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9910          << FD->getDeclName() << Record->getTagKind();
9911      } else if (NumNamedMembers < 1) {
9912        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9913          << FD->getDeclName();
9914        FD->setInvalidDecl();
9915        EnclosingDecl->setInvalidDecl();
9916        continue;
9917      }
9918      if (!FD->getType()->isDependentType() &&
9919          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9920        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9921          << FD->getDeclName() << FD->getType();
9922        FD->setInvalidDecl();
9923        EnclosingDecl->setInvalidDecl();
9924        continue;
9925      }
9926      // Okay, we have a legal flexible array member at the end of the struct.
9927      if (Record)
9928        Record->setHasFlexibleArrayMember(true);
9929    } else if (!FDTy->isDependentType() &&
9930               RequireCompleteType(FD->getLocation(), FD->getType(),
9931                                   diag::err_field_incomplete)) {
9932      // Incomplete type
9933      FD->setInvalidDecl();
9934      EnclosingDecl->setInvalidDecl();
9935      continue;
9936    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9937      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9938        // If this is a member of a union, then entire union becomes "flexible".
9939        if (Record && Record->isUnion()) {
9940          Record->setHasFlexibleArrayMember(true);
9941        } else {
9942          // If this is a struct/class and this is not the last element, reject
9943          // it.  Note that GCC supports variable sized arrays in the middle of
9944          // structures.
9945          if (i + 1 != Fields.end())
9946            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9947              << FD->getDeclName() << FD->getType();
9948          else {
9949            // We support flexible arrays at the end of structs in
9950            // other structs as an extension.
9951            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9952              << FD->getDeclName();
9953            if (Record)
9954              Record->setHasFlexibleArrayMember(true);
9955          }
9956        }
9957      }
9958      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
9959          RequireNonAbstractType(FD->getLocation(), FD->getType(),
9960                                 diag::err_abstract_type_in_decl,
9961                                 AbstractIvarType)) {
9962        // Ivars can not have abstract class types
9963        FD->setInvalidDecl();
9964      }
9965      if (Record && FDTTy->getDecl()->hasObjectMember())
9966        Record->setHasObjectMember(true);
9967    } else if (FDTy->isObjCObjectType()) {
9968      /// A field cannot be an Objective-c object
9969      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9970        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9971      QualType T = Context.getObjCObjectPointerType(FD->getType());
9972      FD->setType(T);
9973    } else if (!getLangOpts().CPlusPlus) {
9974      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9975        // It's an error in ARC if a field has lifetime.
9976        // We don't want to report this in a system header, though,
9977        // so we just make the field unavailable.
9978        // FIXME: that's really not sufficient; we need to make the type
9979        // itself invalid to, say, initialize or copy.
9980        QualType T = FD->getType();
9981        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9982        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9983          SourceLocation loc = FD->getLocation();
9984          if (getSourceManager().isInSystemHeader(loc)) {
9985            if (!FD->hasAttr<UnavailableAttr>()) {
9986              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9987                                "this system field has retaining ownership"));
9988            }
9989          } else {
9990            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9991              << T->isBlockPointerType();
9992          }
9993          ARCErrReported = true;
9994        }
9995      }
9996      else if (getLangOpts().ObjC1 &&
9997               getLangOpts().getGC() != LangOptions::NonGC &&
9998               Record && !Record->hasObjectMember()) {
9999        if (FD->getType()->isObjCObjectPointerType() ||
10000            FD->getType().isObjCGCStrong())
10001          Record->setHasObjectMember(true);
10002        else if (Context.getAsArrayType(FD->getType())) {
10003          QualType BaseType = Context.getBaseElementType(FD->getType());
10004          if (BaseType->isRecordType() &&
10005              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10006            Record->setHasObjectMember(true);
10007          else if (BaseType->isObjCObjectPointerType() ||
10008                   BaseType.isObjCGCStrong())
10009                 Record->setHasObjectMember(true);
10010        }
10011      }
10012    }
10013    // Keep track of the number of named members.
10014    if (FD->getIdentifier())
10015      ++NumNamedMembers;
10016  }
10017
10018  // Okay, we successfully defined 'Record'.
10019  if (Record) {
10020    bool Completed = false;
10021    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10022      if (!CXXRecord->isInvalidDecl()) {
10023        // Set access bits correctly on the directly-declared conversions.
10024        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
10025        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
10026             I != E; ++I)
10027          Convs->setAccess(I, (*I)->getAccess());
10028
10029        if (!CXXRecord->isDependentType()) {
10030          // Objective-C Automatic Reference Counting:
10031          //   If a class has a non-static data member of Objective-C pointer
10032          //   type (or array thereof), it is a non-POD type and its
10033          //   default constructor (if any), copy constructor, copy assignment
10034          //   operator, and destructor are non-trivial.
10035          //
10036          // This rule is also handled by CXXRecordDecl::completeDefinition().
10037          // However, here we check whether this particular class is only
10038          // non-POD because of the presence of an Objective-C pointer member.
10039          // If so, objects of this type cannot be shared between code compiled
10040          // with ARC and code compiled with manual retain/release.
10041          if (getLangOpts().ObjCAutoRefCount &&
10042              CXXRecord->hasObjectMember() &&
10043              CXXRecord->getLinkage() == ExternalLinkage) {
10044            if (CXXRecord->isPOD()) {
10045              Diag(CXXRecord->getLocation(),
10046                   diag::warn_arc_non_pod_class_with_object_member)
10047               << CXXRecord;
10048            } else {
10049              // FIXME: Fix-Its would be nice here, but finding a good location
10050              // for them is going to be tricky.
10051              if (CXXRecord->hasTrivialCopyConstructor())
10052                Diag(CXXRecord->getLocation(),
10053                     diag::warn_arc_trivial_member_function_with_object_member)
10054                  << CXXRecord << 0;
10055              if (CXXRecord->hasTrivialCopyAssignment())
10056                Diag(CXXRecord->getLocation(),
10057                     diag::warn_arc_trivial_member_function_with_object_member)
10058                << CXXRecord << 1;
10059              if (CXXRecord->hasTrivialDestructor())
10060                Diag(CXXRecord->getLocation(),
10061                     diag::warn_arc_trivial_member_function_with_object_member)
10062                << CXXRecord << 2;
10063            }
10064          }
10065
10066          // Adjust user-defined destructor exception spec.
10067          if (getLangOpts().CPlusPlus0x &&
10068              CXXRecord->hasUserDeclaredDestructor())
10069            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10070
10071          // Add any implicitly-declared members to this class.
10072          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10073
10074          // If we have virtual base classes, we may end up finding multiple
10075          // final overriders for a given virtual function. Check for this
10076          // problem now.
10077          if (CXXRecord->getNumVBases()) {
10078            CXXFinalOverriderMap FinalOverriders;
10079            CXXRecord->getFinalOverriders(FinalOverriders);
10080
10081            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10082                                             MEnd = FinalOverriders.end();
10083                 M != MEnd; ++M) {
10084              for (OverridingMethods::iterator SO = M->second.begin(),
10085                                            SOEnd = M->second.end();
10086                   SO != SOEnd; ++SO) {
10087                assert(SO->second.size() > 0 &&
10088                       "Virtual function without overridding functions?");
10089                if (SO->second.size() == 1)
10090                  continue;
10091
10092                // C++ [class.virtual]p2:
10093                //   In a derived class, if a virtual member function of a base
10094                //   class subobject has more than one final overrider the
10095                //   program is ill-formed.
10096                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10097                  << (NamedDecl *)M->first << Record;
10098                Diag(M->first->getLocation(),
10099                     diag::note_overridden_virtual_function);
10100                for (OverridingMethods::overriding_iterator
10101                          OM = SO->second.begin(),
10102                       OMEnd = SO->second.end();
10103                     OM != OMEnd; ++OM)
10104                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10105                    << (NamedDecl *)M->first << OM->Method->getParent();
10106
10107                Record->setInvalidDecl();
10108              }
10109            }
10110            CXXRecord->completeDefinition(&FinalOverriders);
10111            Completed = true;
10112          }
10113        }
10114      }
10115    }
10116
10117    if (!Completed)
10118      Record->completeDefinition();
10119
10120  } else {
10121    ObjCIvarDecl **ClsFields =
10122      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10123    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10124      ID->setEndOfDefinitionLoc(RBrac);
10125      // Add ivar's to class's DeclContext.
10126      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10127        ClsFields[i]->setLexicalDeclContext(ID);
10128        ID->addDecl(ClsFields[i]);
10129      }
10130      // Must enforce the rule that ivars in the base classes may not be
10131      // duplicates.
10132      if (ID->getSuperClass())
10133        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10134    } else if (ObjCImplementationDecl *IMPDecl =
10135                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10136      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10137      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10138        // Ivar declared in @implementation never belongs to the implementation.
10139        // Only it is in implementation's lexical context.
10140        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10141      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10142      IMPDecl->setIvarLBraceLoc(LBrac);
10143      IMPDecl->setIvarRBraceLoc(RBrac);
10144    } else if (ObjCCategoryDecl *CDecl =
10145                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10146      // case of ivars in class extension; all other cases have been
10147      // reported as errors elsewhere.
10148      // FIXME. Class extension does not have a LocEnd field.
10149      // CDecl->setLocEnd(RBrac);
10150      // Add ivar's to class extension's DeclContext.
10151      // Diagnose redeclaration of private ivars.
10152      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
10153      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10154        if (IDecl) {
10155          if (const ObjCIvarDecl *ClsIvar =
10156              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10157            Diag(ClsFields[i]->getLocation(),
10158                 diag::err_duplicate_ivar_declaration);
10159            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
10160            continue;
10161          }
10162          for (const ObjCCategoryDecl *ClsExtDecl =
10163                IDecl->getFirstClassExtension();
10164               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
10165            if (const ObjCIvarDecl *ClsExtIvar =
10166                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
10167              Diag(ClsFields[i]->getLocation(),
10168                   diag::err_duplicate_ivar_declaration);
10169              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
10170              continue;
10171            }
10172          }
10173        }
10174        ClsFields[i]->setLexicalDeclContext(CDecl);
10175        CDecl->addDecl(ClsFields[i]);
10176      }
10177      CDecl->setIvarLBraceLoc(LBrac);
10178      CDecl->setIvarRBraceLoc(RBrac);
10179    }
10180  }
10181
10182  if (Attr)
10183    ProcessDeclAttributeList(S, Record, Attr);
10184}
10185
10186/// \brief Determine whether the given integral value is representable within
10187/// the given type T.
10188static bool isRepresentableIntegerValue(ASTContext &Context,
10189                                        llvm::APSInt &Value,
10190                                        QualType T) {
10191  assert(T->isIntegralType(Context) && "Integral type required!");
10192  unsigned BitWidth = Context.getIntWidth(T);
10193
10194  if (Value.isUnsigned() || Value.isNonNegative()) {
10195    if (T->isSignedIntegerOrEnumerationType())
10196      --BitWidth;
10197    return Value.getActiveBits() <= BitWidth;
10198  }
10199  return Value.getMinSignedBits() <= BitWidth;
10200}
10201
10202// \brief Given an integral type, return the next larger integral type
10203// (or a NULL type of no such type exists).
10204static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10205  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10206  // enum checking below.
10207  assert(T->isIntegralType(Context) && "Integral type required!");
10208  const unsigned NumTypes = 4;
10209  QualType SignedIntegralTypes[NumTypes] = {
10210    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10211  };
10212  QualType UnsignedIntegralTypes[NumTypes] = {
10213    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10214    Context.UnsignedLongLongTy
10215  };
10216
10217  unsigned BitWidth = Context.getTypeSize(T);
10218  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10219                                                        : UnsignedIntegralTypes;
10220  for (unsigned I = 0; I != NumTypes; ++I)
10221    if (Context.getTypeSize(Types[I]) > BitWidth)
10222      return Types[I];
10223
10224  return QualType();
10225}
10226
10227EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10228                                          EnumConstantDecl *LastEnumConst,
10229                                          SourceLocation IdLoc,
10230                                          IdentifierInfo *Id,
10231                                          Expr *Val) {
10232  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10233  llvm::APSInt EnumVal(IntWidth);
10234  QualType EltTy;
10235
10236  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10237    Val = 0;
10238
10239  if (Val)
10240    Val = DefaultLvalueConversion(Val).take();
10241
10242  if (Val) {
10243    if (Enum->isDependentType() || Val->isTypeDependent())
10244      EltTy = Context.DependentTy;
10245    else {
10246      SourceLocation ExpLoc;
10247      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10248          !getLangOpts().MicrosoftMode) {
10249        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10250        // constant-expression in the enumerator-definition shall be a converted
10251        // constant expression of the underlying type.
10252        EltTy = Enum->getIntegerType();
10253        ExprResult Converted =
10254          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10255                                           CCEK_Enumerator);
10256        if (Converted.isInvalid())
10257          Val = 0;
10258        else
10259          Val = Converted.take();
10260      } else if (!Val->isValueDependent() &&
10261                 !(Val = VerifyIntegerConstantExpression(Val,
10262                                                         &EnumVal).take())) {
10263        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10264      } else {
10265        if (Enum->isFixed()) {
10266          EltTy = Enum->getIntegerType();
10267
10268          // In Obj-C and Microsoft mode, require the enumeration value to be
10269          // representable in the underlying type of the enumeration. In C++11,
10270          // we perform a non-narrowing conversion as part of converted constant
10271          // expression checking.
10272          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10273            if (getLangOpts().MicrosoftMode) {
10274              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10275              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10276            } else
10277              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10278          } else
10279            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10280        } else if (getLangOpts().CPlusPlus) {
10281          // C++11 [dcl.enum]p5:
10282          //   If the underlying type is not fixed, the type of each enumerator
10283          //   is the type of its initializing value:
10284          //     - If an initializer is specified for an enumerator, the
10285          //       initializing value has the same type as the expression.
10286          EltTy = Val->getType();
10287        } else {
10288          // C99 6.7.2.2p2:
10289          //   The expression that defines the value of an enumeration constant
10290          //   shall be an integer constant expression that has a value
10291          //   representable as an int.
10292
10293          // Complain if the value is not representable in an int.
10294          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10295            Diag(IdLoc, diag::ext_enum_value_not_int)
10296              << EnumVal.toString(10) << Val->getSourceRange()
10297              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10298          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10299            // Force the type of the expression to 'int'.
10300            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10301          }
10302          EltTy = Val->getType();
10303        }
10304      }
10305    }
10306  }
10307
10308  if (!Val) {
10309    if (Enum->isDependentType())
10310      EltTy = Context.DependentTy;
10311    else if (!LastEnumConst) {
10312      // C++0x [dcl.enum]p5:
10313      //   If the underlying type is not fixed, the type of each enumerator
10314      //   is the type of its initializing value:
10315      //     - If no initializer is specified for the first enumerator, the
10316      //       initializing value has an unspecified integral type.
10317      //
10318      // GCC uses 'int' for its unspecified integral type, as does
10319      // C99 6.7.2.2p3.
10320      if (Enum->isFixed()) {
10321        EltTy = Enum->getIntegerType();
10322      }
10323      else {
10324        EltTy = Context.IntTy;
10325      }
10326    } else {
10327      // Assign the last value + 1.
10328      EnumVal = LastEnumConst->getInitVal();
10329      ++EnumVal;
10330      EltTy = LastEnumConst->getType();
10331
10332      // Check for overflow on increment.
10333      if (EnumVal < LastEnumConst->getInitVal()) {
10334        // C++0x [dcl.enum]p5:
10335        //   If the underlying type is not fixed, the type of each enumerator
10336        //   is the type of its initializing value:
10337        //
10338        //     - Otherwise the type of the initializing value is the same as
10339        //       the type of the initializing value of the preceding enumerator
10340        //       unless the incremented value is not representable in that type,
10341        //       in which case the type is an unspecified integral type
10342        //       sufficient to contain the incremented value. If no such type
10343        //       exists, the program is ill-formed.
10344        QualType T = getNextLargerIntegralType(Context, EltTy);
10345        if (T.isNull() || Enum->isFixed()) {
10346          // There is no integral type larger enough to represent this
10347          // value. Complain, then allow the value to wrap around.
10348          EnumVal = LastEnumConst->getInitVal();
10349          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10350          ++EnumVal;
10351          if (Enum->isFixed())
10352            // When the underlying type is fixed, this is ill-formed.
10353            Diag(IdLoc, diag::err_enumerator_wrapped)
10354              << EnumVal.toString(10)
10355              << EltTy;
10356          else
10357            Diag(IdLoc, diag::warn_enumerator_too_large)
10358              << EnumVal.toString(10);
10359        } else {
10360          EltTy = T;
10361        }
10362
10363        // Retrieve the last enumerator's value, extent that type to the
10364        // type that is supposed to be large enough to represent the incremented
10365        // value, then increment.
10366        EnumVal = LastEnumConst->getInitVal();
10367        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10368        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10369        ++EnumVal;
10370
10371        // If we're not in C++, diagnose the overflow of enumerator values,
10372        // which in C99 means that the enumerator value is not representable in
10373        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10374        // permits enumerator values that are representable in some larger
10375        // integral type.
10376        if (!getLangOpts().CPlusPlus && !T.isNull())
10377          Diag(IdLoc, diag::warn_enum_value_overflow);
10378      } else if (!getLangOpts().CPlusPlus &&
10379                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10380        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10381        Diag(IdLoc, diag::ext_enum_value_not_int)
10382          << EnumVal.toString(10) << 1;
10383      }
10384    }
10385  }
10386
10387  if (!EltTy->isDependentType()) {
10388    // Make the enumerator value match the signedness and size of the
10389    // enumerator's type.
10390    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10391    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10392  }
10393
10394  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10395                                  Val, EnumVal);
10396}
10397
10398
10399Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10400                              SourceLocation IdLoc, IdentifierInfo *Id,
10401                              AttributeList *Attr,
10402                              SourceLocation EqualLoc, Expr *Val) {
10403  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10404  EnumConstantDecl *LastEnumConst =
10405    cast_or_null<EnumConstantDecl>(lastEnumConst);
10406
10407  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10408  // we find one that is.
10409  S = getNonFieldDeclScope(S);
10410
10411  // Verify that there isn't already something declared with this name in this
10412  // scope.
10413  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10414                                         ForRedeclaration);
10415  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10416    // Maybe we will complain about the shadowed template parameter.
10417    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10418    // Just pretend that we didn't see the previous declaration.
10419    PrevDecl = 0;
10420  }
10421
10422  if (PrevDecl) {
10423    // When in C++, we may get a TagDecl with the same name; in this case the
10424    // enum constant will 'hide' the tag.
10425    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10426           "Received TagDecl when not in C++!");
10427    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10428      if (isa<EnumConstantDecl>(PrevDecl))
10429        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10430      else
10431        Diag(IdLoc, diag::err_redefinition) << Id;
10432      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10433      return 0;
10434    }
10435  }
10436
10437  // C++ [class.mem]p15:
10438  // If T is the name of a class, then each of the following shall have a name
10439  // different from T:
10440  // - every enumerator of every member of class T that is an unscoped
10441  // enumerated type
10442  if (CXXRecordDecl *Record
10443                      = dyn_cast<CXXRecordDecl>(
10444                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10445    if (!TheEnumDecl->isScoped() &&
10446        Record->getIdentifier() && Record->getIdentifier() == Id)
10447      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10448
10449  EnumConstantDecl *New =
10450    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10451
10452  if (New) {
10453    // Process attributes.
10454    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10455
10456    // Register this decl in the current scope stack.
10457    New->setAccess(TheEnumDecl->getAccess());
10458    PushOnScopeChains(New, S);
10459  }
10460
10461  ActOnDocumentableDecl(New);
10462
10463  return New;
10464}
10465
10466// Emits a warning if every element in the enum is the same value and if
10467// every element is initialized with a integer or boolean literal.
10468static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10469                                     unsigned NumElements, EnumDecl *Enum,
10470                                     QualType EnumType) {
10471  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10472                                 Enum->getLocation()) ==
10473      DiagnosticsEngine::Ignored)
10474    return;
10475
10476  if (NumElements < 2)
10477    return;
10478
10479  if (!Enum->getIdentifier())
10480    return;
10481
10482  llvm::APSInt FirstVal;
10483
10484  for (unsigned i = 0; i != NumElements; ++i) {
10485    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10486    if (!ECD)
10487      return;
10488
10489    Expr *InitExpr = ECD->getInitExpr();
10490    if (!InitExpr)
10491      return;
10492    InitExpr = InitExpr->IgnoreImpCasts();
10493    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10494      return;
10495
10496    if (i == 0) {
10497      FirstVal = ECD->getInitVal();
10498      continue;
10499    }
10500
10501    if (!llvm::APSInt::isSameValue(FirstVal, ECD->getInitVal()))
10502      return;
10503  }
10504
10505  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10506      << EnumType << FirstVal.toString(10)
10507      << Enum->getSourceRange();
10508
10509  EnumConstantDecl *Last = cast<EnumConstantDecl>(Elements[NumElements - 1]),
10510                   *Next = cast<EnumConstantDecl>(Elements[NumElements - 2]);
10511
10512  S.Diag(Last->getLocation(), diag::note_identical_enum_values)
10513    << FixItHint::CreateReplacement(Last->getInitExpr()->getSourceRange(),
10514                                    Next->getName());
10515}
10516
10517void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10518                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10519                         Decl **Elements, unsigned NumElements,
10520                         Scope *S, AttributeList *Attr) {
10521  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10522  QualType EnumType = Context.getTypeDeclType(Enum);
10523
10524  if (Attr)
10525    ProcessDeclAttributeList(S, Enum, Attr);
10526
10527  if (Enum->isDependentType()) {
10528    for (unsigned i = 0; i != NumElements; ++i) {
10529      EnumConstantDecl *ECD =
10530        cast_or_null<EnumConstantDecl>(Elements[i]);
10531      if (!ECD) continue;
10532
10533      ECD->setType(EnumType);
10534    }
10535
10536    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10537    return;
10538  }
10539
10540  // TODO: If the result value doesn't fit in an int, it must be a long or long
10541  // long value.  ISO C does not support this, but GCC does as an extension,
10542  // emit a warning.
10543  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10544  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10545  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10546
10547  // Verify that all the values are okay, compute the size of the values, and
10548  // reverse the list.
10549  unsigned NumNegativeBits = 0;
10550  unsigned NumPositiveBits = 0;
10551
10552  // Keep track of whether all elements have type int.
10553  bool AllElementsInt = true;
10554
10555  for (unsigned i = 0; i != NumElements; ++i) {
10556    EnumConstantDecl *ECD =
10557      cast_or_null<EnumConstantDecl>(Elements[i]);
10558    if (!ECD) continue;  // Already issued a diagnostic.
10559
10560    const llvm::APSInt &InitVal = ECD->getInitVal();
10561
10562    // Keep track of the size of positive and negative values.
10563    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10564      NumPositiveBits = std::max(NumPositiveBits,
10565                                 (unsigned)InitVal.getActiveBits());
10566    else
10567      NumNegativeBits = std::max(NumNegativeBits,
10568                                 (unsigned)InitVal.getMinSignedBits());
10569
10570    // Keep track of whether every enum element has type int (very commmon).
10571    if (AllElementsInt)
10572      AllElementsInt = ECD->getType() == Context.IntTy;
10573  }
10574
10575  // Figure out the type that should be used for this enum.
10576  QualType BestType;
10577  unsigned BestWidth;
10578
10579  // C++0x N3000 [conv.prom]p3:
10580  //   An rvalue of an unscoped enumeration type whose underlying
10581  //   type is not fixed can be converted to an rvalue of the first
10582  //   of the following types that can represent all the values of
10583  //   the enumeration: int, unsigned int, long int, unsigned long
10584  //   int, long long int, or unsigned long long int.
10585  // C99 6.4.4.3p2:
10586  //   An identifier declared as an enumeration constant has type int.
10587  // The C99 rule is modified by a gcc extension
10588  QualType BestPromotionType;
10589
10590  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10591  // -fshort-enums is the equivalent to specifying the packed attribute on all
10592  // enum definitions.
10593  if (LangOpts.ShortEnums)
10594    Packed = true;
10595
10596  if (Enum->isFixed()) {
10597    BestType = Enum->getIntegerType();
10598    if (BestType->isPromotableIntegerType())
10599      BestPromotionType = Context.getPromotedIntegerType(BestType);
10600    else
10601      BestPromotionType = BestType;
10602    // We don't need to set BestWidth, because BestType is going to be the type
10603    // of the enumerators, but we do anyway because otherwise some compilers
10604    // warn that it might be used uninitialized.
10605    BestWidth = CharWidth;
10606  }
10607  else if (NumNegativeBits) {
10608    // If there is a negative value, figure out the smallest integer type (of
10609    // int/long/longlong) that fits.
10610    // If it's packed, check also if it fits a char or a short.
10611    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10612      BestType = Context.SignedCharTy;
10613      BestWidth = CharWidth;
10614    } else if (Packed && NumNegativeBits <= ShortWidth &&
10615               NumPositiveBits < ShortWidth) {
10616      BestType = Context.ShortTy;
10617      BestWidth = ShortWidth;
10618    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10619      BestType = Context.IntTy;
10620      BestWidth = IntWidth;
10621    } else {
10622      BestWidth = Context.getTargetInfo().getLongWidth();
10623
10624      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10625        BestType = Context.LongTy;
10626      } else {
10627        BestWidth = Context.getTargetInfo().getLongLongWidth();
10628
10629        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10630          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10631        BestType = Context.LongLongTy;
10632      }
10633    }
10634    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10635  } else {
10636    // If there is no negative value, figure out the smallest type that fits
10637    // all of the enumerator values.
10638    // If it's packed, check also if it fits a char or a short.
10639    if (Packed && NumPositiveBits <= CharWidth) {
10640      BestType = Context.UnsignedCharTy;
10641      BestPromotionType = Context.IntTy;
10642      BestWidth = CharWidth;
10643    } else if (Packed && NumPositiveBits <= ShortWidth) {
10644      BestType = Context.UnsignedShortTy;
10645      BestPromotionType = Context.IntTy;
10646      BestWidth = ShortWidth;
10647    } else if (NumPositiveBits <= IntWidth) {
10648      BestType = Context.UnsignedIntTy;
10649      BestWidth = IntWidth;
10650      BestPromotionType
10651        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10652                           ? Context.UnsignedIntTy : Context.IntTy;
10653    } else if (NumPositiveBits <=
10654               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10655      BestType = Context.UnsignedLongTy;
10656      BestPromotionType
10657        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10658                           ? Context.UnsignedLongTy : Context.LongTy;
10659    } else {
10660      BestWidth = Context.getTargetInfo().getLongLongWidth();
10661      assert(NumPositiveBits <= BestWidth &&
10662             "How could an initializer get larger than ULL?");
10663      BestType = Context.UnsignedLongLongTy;
10664      BestPromotionType
10665        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10666                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10667    }
10668  }
10669
10670  // Loop over all of the enumerator constants, changing their types to match
10671  // the type of the enum if needed.
10672  for (unsigned i = 0; i != NumElements; ++i) {
10673    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10674    if (!ECD) continue;  // Already issued a diagnostic.
10675
10676    // Standard C says the enumerators have int type, but we allow, as an
10677    // extension, the enumerators to be larger than int size.  If each
10678    // enumerator value fits in an int, type it as an int, otherwise type it the
10679    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10680    // that X has type 'int', not 'unsigned'.
10681
10682    // Determine whether the value fits into an int.
10683    llvm::APSInt InitVal = ECD->getInitVal();
10684
10685    // If it fits into an integer type, force it.  Otherwise force it to match
10686    // the enum decl type.
10687    QualType NewTy;
10688    unsigned NewWidth;
10689    bool NewSign;
10690    if (!getLangOpts().CPlusPlus &&
10691        !Enum->isFixed() &&
10692        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10693      NewTy = Context.IntTy;
10694      NewWidth = IntWidth;
10695      NewSign = true;
10696    } else if (ECD->getType() == BestType) {
10697      // Already the right type!
10698      if (getLangOpts().CPlusPlus)
10699        // C++ [dcl.enum]p4: Following the closing brace of an
10700        // enum-specifier, each enumerator has the type of its
10701        // enumeration.
10702        ECD->setType(EnumType);
10703      continue;
10704    } else {
10705      NewTy = BestType;
10706      NewWidth = BestWidth;
10707      NewSign = BestType->isSignedIntegerOrEnumerationType();
10708    }
10709
10710    // Adjust the APSInt value.
10711    InitVal = InitVal.extOrTrunc(NewWidth);
10712    InitVal.setIsSigned(NewSign);
10713    ECD->setInitVal(InitVal);
10714
10715    // Adjust the Expr initializer and type.
10716    if (ECD->getInitExpr() &&
10717        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10718      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10719                                                CK_IntegralCast,
10720                                                ECD->getInitExpr(),
10721                                                /*base paths*/ 0,
10722                                                VK_RValue));
10723    if (getLangOpts().CPlusPlus)
10724      // C++ [dcl.enum]p4: Following the closing brace of an
10725      // enum-specifier, each enumerator has the type of its
10726      // enumeration.
10727      ECD->setType(EnumType);
10728    else
10729      ECD->setType(NewTy);
10730  }
10731
10732  Enum->completeDefinition(BestType, BestPromotionType,
10733                           NumPositiveBits, NumNegativeBits);
10734
10735  // If we're declaring a function, ensure this decl isn't forgotten about -
10736  // it needs to go into the function scope.
10737  if (InFunctionDeclarator)
10738    DeclsInPrototypeScope.push_back(Enum);
10739
10740  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10741}
10742
10743Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10744                                  SourceLocation StartLoc,
10745                                  SourceLocation EndLoc) {
10746  StringLiteral *AsmString = cast<StringLiteral>(expr);
10747
10748  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10749                                                   AsmString, StartLoc,
10750                                                   EndLoc);
10751  CurContext->addDecl(New);
10752  return New;
10753}
10754
10755DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10756                                   SourceLocation ImportLoc,
10757                                   ModuleIdPath Path) {
10758  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10759                                                Module::AllVisible,
10760                                                /*IsIncludeDirective=*/false);
10761  if (!Mod)
10762    return true;
10763
10764  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10765  Module *ModCheck = Mod;
10766  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10767    // If we've run out of module parents, just drop the remaining identifiers.
10768    // We need the length to be consistent.
10769    if (!ModCheck)
10770      break;
10771    ModCheck = ModCheck->Parent;
10772
10773    IdentifierLocs.push_back(Path[I].second);
10774  }
10775
10776  ImportDecl *Import = ImportDecl::Create(Context,
10777                                          Context.getTranslationUnitDecl(),
10778                                          AtLoc.isValid()? AtLoc : ImportLoc,
10779                                          Mod, IdentifierLocs);
10780  Context.getTranslationUnitDecl()->addDecl(Import);
10781  return Import;
10782}
10783
10784void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10785                                      IdentifierInfo* AliasName,
10786                                      SourceLocation PragmaLoc,
10787                                      SourceLocation NameLoc,
10788                                      SourceLocation AliasNameLoc) {
10789  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10790                                    LookupOrdinaryName);
10791  AsmLabelAttr *Attr =
10792     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10793
10794  if (PrevDecl)
10795    PrevDecl->addAttr(Attr);
10796  else
10797    (void)ExtnameUndeclaredIdentifiers.insert(
10798      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10799}
10800
10801void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10802                             SourceLocation PragmaLoc,
10803                             SourceLocation NameLoc) {
10804  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10805
10806  if (PrevDecl) {
10807    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10808  } else {
10809    (void)WeakUndeclaredIdentifiers.insert(
10810      std::pair<IdentifierInfo*,WeakInfo>
10811        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10812  }
10813}
10814
10815void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10816                                IdentifierInfo* AliasName,
10817                                SourceLocation PragmaLoc,
10818                                SourceLocation NameLoc,
10819                                SourceLocation AliasNameLoc) {
10820  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10821                                    LookupOrdinaryName);
10822  WeakInfo W = WeakInfo(Name, NameLoc);
10823
10824  if (PrevDecl) {
10825    if (!PrevDecl->hasAttr<AliasAttr>())
10826      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10827        DeclApplyPragmaWeak(TUScope, ND, W);
10828  } else {
10829    (void)WeakUndeclaredIdentifiers.insert(
10830      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10831  }
10832}
10833
10834Decl *Sema::getObjCDeclContext() const {
10835  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10836}
10837
10838AvailabilityResult Sema::getCurContextAvailability() const {
10839  const Decl *D = cast<Decl>(getCurLexicalContext());
10840  // A category implicitly has the availability of the interface.
10841  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10842    D = CatD->getClassInterface();
10843
10844  return D->getAvailability();
10845}
10846