SemaDecl.cpp revision 76eb8d61627d40936bcad1033eb64b689ea3d773
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
286                       Name, 0, true, TemplateResult,
287                       MemberOfUnknownSpecialization) == TNK_Type_template) {
288      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
289      Diag(IILoc, diag::err_template_missing_args) << TplName;
290      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
291        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
292          << TplDecl->getTemplateParameters()->getSourceRange();
293      }
294      return true;
295    }
296  }
297
298  // FIXME: Should we move the logic that tries to recover from a missing tag
299  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
300
301  if (!SS || (!SS->isSet() && !SS->isInvalid()))
302    Diag(IILoc, diag::err_unknown_typename) << &II;
303  else if (DeclContext *DC = computeDeclContext(*SS, false))
304    Diag(IILoc, diag::err_typename_nested_not_found)
305      << &II << DC << SS->getRange();
306  else if (isDependentScopeSpecifier(*SS)) {
307    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
308      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
309      << SourceRange(SS->getRange().getBegin(), IILoc)
310      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
311    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
312  } else {
313    assert(SS && SS->isInvalid() &&
314           "Invalid scope specifier has already been diagnosed");
315  }
316
317  return true;
318}
319
320// Determines the context to return to after temporarily entering a
321// context.  This depends in an unnecessarily complicated way on the
322// exact ordering of callbacks from the parser.
323DeclContext *Sema::getContainingDC(DeclContext *DC) {
324
325  // Functions defined inline within classes aren't parsed until we've
326  // finished parsing the top-level class, so the top-level class is
327  // the context we'll need to return to.
328  if (isa<FunctionDecl>(DC)) {
329    DC = DC->getLexicalParent();
330
331    // A function not defined within a class will always return to its
332    // lexical context.
333    if (!isa<CXXRecordDecl>(DC))
334      return DC;
335
336    // A C++ inline method/friend is parsed *after* the topmost class
337    // it was declared in is fully parsed ("complete");  the topmost
338    // class is the context we need to return to.
339    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
340      DC = RD;
341
342    // Return the declaration context of the topmost class the inline method is
343    // declared in.
344    return DC;
345  }
346
347  // ObjCMethodDecls are parsed (for some reason) outside the context
348  // of the class.
349  if (isa<ObjCMethodDecl>(DC))
350    return DC->getLexicalParent()->getLexicalParent();
351
352  return DC->getLexicalParent();
353}
354
355void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
356  assert(getContainingDC(DC) == CurContext &&
357      "The next DeclContext should be lexically contained in the current one.");
358  CurContext = DC;
359  S->setEntity(DC);
360}
361
362void Sema::PopDeclContext() {
363  assert(CurContext && "DeclContext imbalance!");
364
365  CurContext = getContainingDC(CurContext);
366  assert(CurContext && "Popped translation unit!");
367}
368
369/// EnterDeclaratorContext - Used when we must lookup names in the context
370/// of a declarator's nested name specifier.
371///
372void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
373  // C++0x [basic.lookup.unqual]p13:
374  //   A name used in the definition of a static data member of class
375  //   X (after the qualified-id of the static member) is looked up as
376  //   if the name was used in a member function of X.
377  // C++0x [basic.lookup.unqual]p14:
378  //   If a variable member of a namespace is defined outside of the
379  //   scope of its namespace then any name used in the definition of
380  //   the variable member (after the declarator-id) is looked up as
381  //   if the definition of the variable member occurred in its
382  //   namespace.
383  // Both of these imply that we should push a scope whose context
384  // is the semantic context of the declaration.  We can't use
385  // PushDeclContext here because that context is not necessarily
386  // lexically contained in the current context.  Fortunately,
387  // the containing scope should have the appropriate information.
388
389  assert(!S->getEntity() && "scope already has entity");
390
391#ifndef NDEBUG
392  Scope *Ancestor = S->getParent();
393  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
394  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
395#endif
396
397  CurContext = DC;
398  S->setEntity(DC);
399}
400
401void Sema::ExitDeclaratorContext(Scope *S) {
402  assert(S->getEntity() == CurContext && "Context imbalance!");
403
404  // Switch back to the lexical context.  The safety of this is
405  // enforced by an assert in EnterDeclaratorContext.
406  Scope *Ancestor = S->getParent();
407  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
408  CurContext = (DeclContext*) Ancestor->getEntity();
409
410  // We don't need to do anything with the scope, which is going to
411  // disappear.
412}
413
414/// \brief Determine whether we allow overloading of the function
415/// PrevDecl with another declaration.
416///
417/// This routine determines whether overloading is possible, not
418/// whether some new function is actually an overload. It will return
419/// true in C++ (where we can always provide overloads) or, as an
420/// extension, in C when the previous function is already an
421/// overloaded function declaration or has the "overloadable"
422/// attribute.
423static bool AllowOverloadingOfFunction(LookupResult &Previous,
424                                       ASTContext &Context) {
425  if (Context.getLangOptions().CPlusPlus)
426    return true;
427
428  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
429    return true;
430
431  return (Previous.getResultKind() == LookupResult::Found
432          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
433}
434
435/// Add this decl to the scope shadowed decl chains.
436void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
437  // Move up the scope chain until we find the nearest enclosing
438  // non-transparent context. The declaration will be introduced into this
439  // scope.
440  while (S->getEntity() &&
441         ((DeclContext *)S->getEntity())->isTransparentContext())
442    S = S->getParent();
443
444  // Add scoped declarations into their context, so that they can be
445  // found later. Declarations without a context won't be inserted
446  // into any context.
447  if (AddToContext)
448    CurContext->addDecl(D);
449
450  // Out-of-line definitions shouldn't be pushed into scope in C++.
451  // Out-of-line variable and function definitions shouldn't even in C.
452  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
453      D->isOutOfLine())
454    return;
455
456  // Template instantiations should also not be pushed into scope.
457  if (isa<FunctionDecl>(D) &&
458      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
459    return;
460
461  // If this replaces anything in the current scope,
462  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
463                               IEnd = IdResolver.end();
464  for (; I != IEnd; ++I) {
465    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
466      S->RemoveDecl(DeclPtrTy::make(*I));
467      IdResolver.RemoveDecl(*I);
468
469      // Should only need to replace one decl.
470      break;
471    }
472  }
473
474  S->AddDecl(DeclPtrTy::make(D));
475  IdResolver.AddDecl(D);
476}
477
478bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
479  return IdResolver.isDeclInScope(D, Ctx, Context, S);
480}
481
482static bool isOutOfScopePreviousDeclaration(NamedDecl *,
483                                            DeclContext*,
484                                            ASTContext&);
485
486/// Filters out lookup results that don't fall within the given scope
487/// as determined by isDeclInScope.
488static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
489                                 DeclContext *Ctx, Scope *S,
490                                 bool ConsiderLinkage) {
491  LookupResult::Filter F = R.makeFilter();
492  while (F.hasNext()) {
493    NamedDecl *D = F.next();
494
495    if (SemaRef.isDeclInScope(D, Ctx, S))
496      continue;
497
498    if (ConsiderLinkage &&
499        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
500      continue;
501
502    F.erase();
503  }
504
505  F.done();
506}
507
508static bool isUsingDecl(NamedDecl *D) {
509  return isa<UsingShadowDecl>(D) ||
510         isa<UnresolvedUsingTypenameDecl>(D) ||
511         isa<UnresolvedUsingValueDecl>(D);
512}
513
514/// Removes using shadow declarations from the lookup results.
515static void RemoveUsingDecls(LookupResult &R) {
516  LookupResult::Filter F = R.makeFilter();
517  while (F.hasNext())
518    if (isUsingDecl(F.next()))
519      F.erase();
520
521  F.done();
522}
523
524static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
525  if (D->isInvalidDecl())
526    return false;
527
528  if (D->isUsed() || D->hasAttr<UnusedAttr>())
529    return false;
530
531  // White-list anything that isn't a local variable.
532  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
533      !D->getDeclContext()->isFunctionOrMethod())
534    return false;
535
536  // Types of valid local variables should be complete, so this should succeed.
537  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
538
539    // White-list anything with an __attribute__((unused)) type.
540    QualType Ty = VD->getType();
541
542    // Only look at the outermost level of typedef.
543    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
544      if (TT->getDecl()->hasAttr<UnusedAttr>())
545        return false;
546    }
547
548    // If we failed to complete the type for some reason, or if the type is
549    // dependent, don't diagnose the variable.
550    if (Ty->isIncompleteType() || Ty->isDependentType())
551      return false;
552
553    if (const TagType *TT = Ty->getAs<TagType>()) {
554      const TagDecl *Tag = TT->getDecl();
555      if (Tag->hasAttr<UnusedAttr>())
556        return false;
557
558      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
559        // FIXME: Checking for the presence of a user-declared constructor
560        // isn't completely accurate; we'd prefer to check that the initializer
561        // has no side effects.
562        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
563          return false;
564      }
565    }
566
567    // TODO: __attribute__((unused)) templates?
568  }
569
570  return true;
571}
572
573void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
574  if (!ShouldDiagnoseUnusedDecl(D))
575    return;
576
577  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
578    Diag(D->getLocation(), diag::warn_unused_exception_param)
579    << D->getDeclName();
580  else
581    Diag(D->getLocation(), diag::warn_unused_variable)
582    << D->getDeclName();
583}
584
585void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
586  if (S->decl_empty()) return;
587  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
588         "Scope shouldn't contain decls!");
589
590  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
591       I != E; ++I) {
592    Decl *TmpD = (*I).getAs<Decl>();
593    assert(TmpD && "This decl didn't get pushed??");
594
595    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
596    NamedDecl *D = cast<NamedDecl>(TmpD);
597
598    if (!D->getDeclName()) continue;
599
600    // Diagnose unused variables in this scope.
601    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
602      DiagnoseUnusedDecl(D);
603
604    // Remove this name from our lexical scope.
605    IdResolver.RemoveDecl(D);
606  }
607}
608
609/// \brief Look for an Objective-C class in the translation unit.
610///
611/// \param Id The name of the Objective-C class we're looking for. If
612/// typo-correction fixes this name, the Id will be updated
613/// to the fixed name.
614///
615/// \param IdLoc The location of the name in the translation unit.
616///
617/// \param TypoCorrection If true, this routine will attempt typo correction
618/// if there is no class with the given name.
619///
620/// \returns The declaration of the named Objective-C class, or NULL if the
621/// class could not be found.
622ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
623                                              SourceLocation IdLoc,
624                                              bool TypoCorrection) {
625  // The third "scope" argument is 0 since we aren't enabling lazy built-in
626  // creation from this context.
627  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
628
629  if (!IDecl && TypoCorrection) {
630    // Perform typo correction at the given location, but only if we
631    // find an Objective-C class name.
632    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
633    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
634        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
635      Diag(IdLoc, diag::err_undef_interface_suggest)
636        << Id << IDecl->getDeclName()
637        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
638      Diag(IDecl->getLocation(), diag::note_previous_decl)
639        << IDecl->getDeclName();
640
641      Id = IDecl->getIdentifier();
642    }
643  }
644
645  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
646}
647
648/// getNonFieldDeclScope - Retrieves the innermost scope, starting
649/// from S, where a non-field would be declared. This routine copes
650/// with the difference between C and C++ scoping rules in structs and
651/// unions. For example, the following code is well-formed in C but
652/// ill-formed in C++:
653/// @code
654/// struct S6 {
655///   enum { BAR } e;
656/// };
657///
658/// void test_S6() {
659///   struct S6 a;
660///   a.e = BAR;
661/// }
662/// @endcode
663/// For the declaration of BAR, this routine will return a different
664/// scope. The scope S will be the scope of the unnamed enumeration
665/// within S6. In C++, this routine will return the scope associated
666/// with S6, because the enumeration's scope is a transparent
667/// context but structures can contain non-field names. In C, this
668/// routine will return the translation unit scope, since the
669/// enumeration's scope is a transparent context and structures cannot
670/// contain non-field names.
671Scope *Sema::getNonFieldDeclScope(Scope *S) {
672  while (((S->getFlags() & Scope::DeclScope) == 0) ||
673         (S->getEntity() &&
674          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
675         (S->isClassScope() && !getLangOptions().CPlusPlus))
676    S = S->getParent();
677  return S;
678}
679
680void Sema::InitBuiltinVaListType() {
681  if (!Context.getBuiltinVaListType().isNull())
682    return;
683
684  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
685  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
686                                       LookupOrdinaryName, ForRedeclaration);
687  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
688  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
689}
690
691/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
692/// file scope.  lazily create a decl for it. ForRedeclaration is true
693/// if we're creating this built-in in anticipation of redeclaring the
694/// built-in.
695NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
696                                     Scope *S, bool ForRedeclaration,
697                                     SourceLocation Loc) {
698  Builtin::ID BID = (Builtin::ID)bid;
699
700  if (Context.BuiltinInfo.hasVAListUse(BID))
701    InitBuiltinVaListType();
702
703  ASTContext::GetBuiltinTypeError Error;
704  QualType R = Context.GetBuiltinType(BID, Error);
705  switch (Error) {
706  case ASTContext::GE_None:
707    // Okay
708    break;
709
710  case ASTContext::GE_Missing_stdio:
711    if (ForRedeclaration)
712      Diag(Loc, diag::err_implicit_decl_requires_stdio)
713        << Context.BuiltinInfo.GetName(BID);
714    return 0;
715
716  case ASTContext::GE_Missing_setjmp:
717    if (ForRedeclaration)
718      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
719        << Context.BuiltinInfo.GetName(BID);
720    return 0;
721  }
722
723  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
724    Diag(Loc, diag::ext_implicit_lib_function_decl)
725      << Context.BuiltinInfo.GetName(BID)
726      << R;
727    if (Context.BuiltinInfo.getHeaderName(BID) &&
728        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
729          != Diagnostic::Ignored)
730      Diag(Loc, diag::note_please_include_header)
731        << Context.BuiltinInfo.getHeaderName(BID)
732        << Context.BuiltinInfo.GetName(BID);
733  }
734
735  FunctionDecl *New = FunctionDecl::Create(Context,
736                                           Context.getTranslationUnitDecl(),
737                                           Loc, II, R, /*TInfo=*/0,
738                                           FunctionDecl::Extern,
739                                           FunctionDecl::None, false,
740                                           /*hasPrototype=*/true);
741  New->setImplicit();
742
743  // Create Decl objects for each parameter, adding them to the
744  // FunctionDecl.
745  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
746    llvm::SmallVector<ParmVarDecl*, 16> Params;
747    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
748      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
749                                           FT->getArgType(i), /*TInfo=*/0,
750                                           VarDecl::None, VarDecl::None, 0));
751    New->setParams(Params.data(), Params.size());
752  }
753
754  AddKnownFunctionAttributes(New);
755
756  // TUScope is the translation-unit scope to insert this function into.
757  // FIXME: This is hideous. We need to teach PushOnScopeChains to
758  // relate Scopes to DeclContexts, and probably eliminate CurContext
759  // entirely, but we're not there yet.
760  DeclContext *SavedContext = CurContext;
761  CurContext = Context.getTranslationUnitDecl();
762  PushOnScopeChains(New, TUScope);
763  CurContext = SavedContext;
764  return New;
765}
766
767/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
768/// same name and scope as a previous declaration 'Old'.  Figure out
769/// how to resolve this situation, merging decls or emitting
770/// diagnostics as appropriate. If there was an error, set New to be invalid.
771///
772void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
773  // If the new decl is known invalid already, don't bother doing any
774  // merging checks.
775  if (New->isInvalidDecl()) return;
776
777  // Allow multiple definitions for ObjC built-in typedefs.
778  // FIXME: Verify the underlying types are equivalent!
779  if (getLangOptions().ObjC1) {
780    const IdentifierInfo *TypeID = New->getIdentifier();
781    switch (TypeID->getLength()) {
782    default: break;
783    case 2:
784      if (!TypeID->isStr("id"))
785        break;
786      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
787      // Install the built-in type for 'id', ignoring the current definition.
788      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
789      return;
790    case 5:
791      if (!TypeID->isStr("Class"))
792        break;
793      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
794      // Install the built-in type for 'Class', ignoring the current definition.
795      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
796      return;
797    case 3:
798      if (!TypeID->isStr("SEL"))
799        break;
800      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
801      // Install the built-in type for 'SEL', ignoring the current definition.
802      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
803      return;
804    case 8:
805      if (!TypeID->isStr("Protocol"))
806        break;
807      Context.setObjCProtoType(New->getUnderlyingType());
808      return;
809    }
810    // Fall through - the typedef name was not a builtin type.
811  }
812
813  // Verify the old decl was also a type.
814  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
815  if (!Old) {
816    Diag(New->getLocation(), diag::err_redefinition_different_kind)
817      << New->getDeclName();
818
819    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
820    if (OldD->getLocation().isValid())
821      Diag(OldD->getLocation(), diag::note_previous_definition);
822
823    return New->setInvalidDecl();
824  }
825
826  // If the old declaration is invalid, just give up here.
827  if (Old->isInvalidDecl())
828    return New->setInvalidDecl();
829
830  // Determine the "old" type we'll use for checking and diagnostics.
831  QualType OldType;
832  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
833    OldType = OldTypedef->getUnderlyingType();
834  else
835    OldType = Context.getTypeDeclType(Old);
836
837  // If the typedef types are not identical, reject them in all languages and
838  // with any extensions enabled.
839
840  if (OldType != New->getUnderlyingType() &&
841      Context.getCanonicalType(OldType) !=
842      Context.getCanonicalType(New->getUnderlyingType())) {
843    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
844      << New->getUnderlyingType() << OldType;
845    if (Old->getLocation().isValid())
846      Diag(Old->getLocation(), diag::note_previous_definition);
847    return New->setInvalidDecl();
848  }
849
850  // The types match.  Link up the redeclaration chain if the old
851  // declaration was a typedef.
852  // FIXME: this is a potential source of wierdness if the type
853  // spellings don't match exactly.
854  if (isa<TypedefDecl>(Old))
855    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
856
857  if (getLangOptions().Microsoft)
858    return;
859
860  if (getLangOptions().CPlusPlus) {
861    // C++ [dcl.typedef]p2:
862    //   In a given non-class scope, a typedef specifier can be used to
863    //   redefine the name of any type declared in that scope to refer
864    //   to the type to which it already refers.
865    if (!isa<CXXRecordDecl>(CurContext))
866      return;
867
868    // C++0x [dcl.typedef]p4:
869    //   In a given class scope, a typedef specifier can be used to redefine
870    //   any class-name declared in that scope that is not also a typedef-name
871    //   to refer to the type to which it already refers.
872    //
873    // This wording came in via DR424, which was a correction to the
874    // wording in DR56, which accidentally banned code like:
875    //
876    //   struct S {
877    //     typedef struct A { } A;
878    //   };
879    //
880    // in the C++03 standard. We implement the C++0x semantics, which
881    // allow the above but disallow
882    //
883    //   struct S {
884    //     typedef int I;
885    //     typedef int I;
886    //   };
887    //
888    // since that was the intent of DR56.
889    if (!isa<TypedefDecl >(Old))
890      return;
891
892    Diag(New->getLocation(), diag::err_redefinition)
893      << New->getDeclName();
894    Diag(Old->getLocation(), diag::note_previous_definition);
895    return New->setInvalidDecl();
896  }
897
898  // If we have a redefinition of a typedef in C, emit a warning.  This warning
899  // is normally mapped to an error, but can be controlled with
900  // -Wtypedef-redefinition.  If either the original or the redefinition is
901  // in a system header, don't emit this for compatibility with GCC.
902  if (getDiagnostics().getSuppressSystemWarnings() &&
903      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
904       Context.getSourceManager().isInSystemHeader(New->getLocation())))
905    return;
906
907  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
908    << New->getDeclName();
909  Diag(Old->getLocation(), diag::note_previous_definition);
910  return;
911}
912
913/// DeclhasAttr - returns true if decl Declaration already has the target
914/// attribute.
915static bool
916DeclHasAttr(const Decl *decl, const Attr *target) {
917  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
918    if (attr->getKind() == target->getKind())
919      return true;
920
921  return false;
922}
923
924/// MergeAttributes - append attributes from the Old decl to the New one.
925static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
926  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
927    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
928      Attr *NewAttr = attr->clone(C);
929      NewAttr->setInherited(true);
930      New->addAttr(NewAttr);
931    }
932  }
933}
934
935namespace {
936
937/// Used in MergeFunctionDecl to keep track of function parameters in
938/// C.
939struct GNUCompatibleParamWarning {
940  ParmVarDecl *OldParm;
941  ParmVarDecl *NewParm;
942  QualType PromotedType;
943};
944
945}
946
947/// getSpecialMember - get the special member enum for a method.
948Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
949  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
950    if (Ctor->isCopyConstructor())
951      return Sema::CXXCopyConstructor;
952
953    return Sema::CXXConstructor;
954  }
955
956  if (isa<CXXDestructorDecl>(MD))
957    return Sema::CXXDestructor;
958
959  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
960  return Sema::CXXCopyAssignment;
961}
962
963/// canRedefineFunction - checks if a function can be redefined. Currently,
964/// only extern inline functions can be redefined, and even then only in
965/// GNU89 mode.
966static bool canRedefineFunction(const FunctionDecl *FD,
967                                const LangOptions& LangOpts) {
968  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
969          FD->isInlineSpecified() &&
970          FD->getStorageClass() == FunctionDecl::Extern);
971}
972
973/// MergeFunctionDecl - We just parsed a function 'New' from
974/// declarator D which has the same name and scope as a previous
975/// declaration 'Old'.  Figure out how to resolve this situation,
976/// merging decls or emitting diagnostics as appropriate.
977///
978/// In C++, New and Old must be declarations that are not
979/// overloaded. Use IsOverload to determine whether New and Old are
980/// overloaded, and to select the Old declaration that New should be
981/// merged with.
982///
983/// Returns true if there was an error, false otherwise.
984bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
985  // Verify the old decl was also a function.
986  FunctionDecl *Old = 0;
987  if (FunctionTemplateDecl *OldFunctionTemplate
988        = dyn_cast<FunctionTemplateDecl>(OldD))
989    Old = OldFunctionTemplate->getTemplatedDecl();
990  else
991    Old = dyn_cast<FunctionDecl>(OldD);
992  if (!Old) {
993    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
994      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
995      Diag(Shadow->getTargetDecl()->getLocation(),
996           diag::note_using_decl_target);
997      Diag(Shadow->getUsingDecl()->getLocation(),
998           diag::note_using_decl) << 0;
999      return true;
1000    }
1001
1002    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1003      << New->getDeclName();
1004    Diag(OldD->getLocation(), diag::note_previous_definition);
1005    return true;
1006  }
1007
1008  // Determine whether the previous declaration was a definition,
1009  // implicit declaration, or a declaration.
1010  diag::kind PrevDiag;
1011  if (Old->isThisDeclarationADefinition())
1012    PrevDiag = diag::note_previous_definition;
1013  else if (Old->isImplicit())
1014    PrevDiag = diag::note_previous_implicit_declaration;
1015  else
1016    PrevDiag = diag::note_previous_declaration;
1017
1018  QualType OldQType = Context.getCanonicalType(Old->getType());
1019  QualType NewQType = Context.getCanonicalType(New->getType());
1020
1021  // Don't complain about this if we're in GNU89 mode and the old function
1022  // is an extern inline function.
1023  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1024      New->getStorageClass() == FunctionDecl::Static &&
1025      Old->getStorageClass() != FunctionDecl::Static &&
1026      !canRedefineFunction(Old, getLangOptions())) {
1027    Diag(New->getLocation(), diag::err_static_non_static)
1028      << New;
1029    Diag(Old->getLocation(), PrevDiag);
1030    return true;
1031  }
1032
1033  // If a function is first declared with a calling convention, but is
1034  // later declared or defined without one, the second decl assumes the
1035  // calling convention of the first.
1036  //
1037  // For the new decl, we have to look at the NON-canonical type to tell the
1038  // difference between a function that really doesn't have a calling
1039  // convention and one that is declared cdecl. That's because in
1040  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1041  // because it is the default calling convention.
1042  //
1043  // Note also that we DO NOT return at this point, because we still have
1044  // other tests to run.
1045  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1046  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1047  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1048  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1049  if (OldTypeInfo.getCC() != CC_Default &&
1050      NewTypeInfo.getCC() == CC_Default) {
1051    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1052    New->setType(NewQType);
1053    NewQType = Context.getCanonicalType(NewQType);
1054  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1055                                     NewTypeInfo.getCC())) {
1056    // Calling conventions really aren't compatible, so complain.
1057    Diag(New->getLocation(), diag::err_cconv_change)
1058      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1059      << (OldTypeInfo.getCC() == CC_Default)
1060      << (OldTypeInfo.getCC() == CC_Default ? "" :
1061          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1062    Diag(Old->getLocation(), diag::note_previous_declaration);
1063    return true;
1064  }
1065
1066  // FIXME: diagnose the other way around?
1067  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1068    NewQType = Context.getNoReturnType(NewQType);
1069    New->setType(NewQType);
1070    assert(NewQType.isCanonical());
1071  }
1072
1073  // Merge regparm attribute.
1074  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1075    if (NewType->getRegParmType()) {
1076      Diag(New->getLocation(), diag::err_regparm_mismatch)
1077        << NewType->getRegParmType()
1078        << OldType->getRegParmType();
1079      Diag(Old->getLocation(), diag::note_previous_declaration);
1080      return true;
1081    }
1082
1083    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1084    New->setType(NewQType);
1085    assert(NewQType.isCanonical());
1086  }
1087
1088  if (getLangOptions().CPlusPlus) {
1089    // (C++98 13.1p2):
1090    //   Certain function declarations cannot be overloaded:
1091    //     -- Function declarations that differ only in the return type
1092    //        cannot be overloaded.
1093    QualType OldReturnType
1094      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1095    QualType NewReturnType
1096      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1097    QualType ResQT;
1098    if (OldReturnType != NewReturnType) {
1099      if (NewReturnType->isObjCObjectPointerType()
1100          && OldReturnType->isObjCObjectPointerType())
1101        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1102      if (ResQT.isNull()) {
1103        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1104        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1105        return true;
1106      }
1107      else
1108        NewQType = ResQT;
1109    }
1110
1111    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1112    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1113    if (OldMethod && NewMethod) {
1114      // Preserve triviality.
1115      NewMethod->setTrivial(OldMethod->isTrivial());
1116
1117      bool isFriend = NewMethod->getFriendObjectKind();
1118
1119      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1120        //    -- Member function declarations with the same name and the
1121        //       same parameter types cannot be overloaded if any of them
1122        //       is a static member function declaration.
1123        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1124          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1125          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1126          return true;
1127        }
1128
1129        // C++ [class.mem]p1:
1130        //   [...] A member shall not be declared twice in the
1131        //   member-specification, except that a nested class or member
1132        //   class template can be declared and then later defined.
1133        unsigned NewDiag;
1134        if (isa<CXXConstructorDecl>(OldMethod))
1135          NewDiag = diag::err_constructor_redeclared;
1136        else if (isa<CXXDestructorDecl>(NewMethod))
1137          NewDiag = diag::err_destructor_redeclared;
1138        else if (isa<CXXConversionDecl>(NewMethod))
1139          NewDiag = diag::err_conv_function_redeclared;
1140        else
1141          NewDiag = diag::err_member_redeclared;
1142
1143        Diag(New->getLocation(), NewDiag);
1144        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1145
1146      // Complain if this is an explicit declaration of a special
1147      // member that was initially declared implicitly.
1148      //
1149      // As an exception, it's okay to befriend such methods in order
1150      // to permit the implicit constructor/destructor/operator calls.
1151      } else if (OldMethod->isImplicit()) {
1152        if (isFriend) {
1153          NewMethod->setImplicit();
1154        } else {
1155          Diag(NewMethod->getLocation(),
1156               diag::err_definition_of_implicitly_declared_member)
1157            << New << getSpecialMember(OldMethod);
1158          return true;
1159        }
1160      }
1161    }
1162
1163    // (C++98 8.3.5p3):
1164    //   All declarations for a function shall agree exactly in both the
1165    //   return type and the parameter-type-list.
1166    // attributes should be ignored when comparing.
1167    if (Context.getNoReturnType(OldQType, false) ==
1168        Context.getNoReturnType(NewQType, false))
1169      return MergeCompatibleFunctionDecls(New, Old);
1170
1171    // Fall through for conflicting redeclarations and redefinitions.
1172  }
1173
1174  // C: Function types need to be compatible, not identical. This handles
1175  // duplicate function decls like "void f(int); void f(enum X);" properly.
1176  if (!getLangOptions().CPlusPlus &&
1177      Context.typesAreCompatible(OldQType, NewQType)) {
1178    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1179    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1180    const FunctionProtoType *OldProto = 0;
1181    if (isa<FunctionNoProtoType>(NewFuncType) &&
1182        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1183      // The old declaration provided a function prototype, but the
1184      // new declaration does not. Merge in the prototype.
1185      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1186      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1187                                                 OldProto->arg_type_end());
1188      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1189                                         ParamTypes.data(), ParamTypes.size(),
1190                                         OldProto->isVariadic(),
1191                                         OldProto->getTypeQuals(),
1192                                         false, false, 0, 0,
1193                                         OldProto->getExtInfo());
1194      New->setType(NewQType);
1195      New->setHasInheritedPrototype();
1196
1197      // Synthesize a parameter for each argument type.
1198      llvm::SmallVector<ParmVarDecl*, 16> Params;
1199      for (FunctionProtoType::arg_type_iterator
1200             ParamType = OldProto->arg_type_begin(),
1201             ParamEnd = OldProto->arg_type_end();
1202           ParamType != ParamEnd; ++ParamType) {
1203        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1204                                                 SourceLocation(), 0,
1205                                                 *ParamType, /*TInfo=*/0,
1206                                                 VarDecl::None, VarDecl::None,
1207                                                 0);
1208        Param->setImplicit();
1209        Params.push_back(Param);
1210      }
1211
1212      New->setParams(Params.data(), Params.size());
1213    }
1214
1215    return MergeCompatibleFunctionDecls(New, Old);
1216  }
1217
1218  // GNU C permits a K&R definition to follow a prototype declaration
1219  // if the declared types of the parameters in the K&R definition
1220  // match the types in the prototype declaration, even when the
1221  // promoted types of the parameters from the K&R definition differ
1222  // from the types in the prototype. GCC then keeps the types from
1223  // the prototype.
1224  //
1225  // If a variadic prototype is followed by a non-variadic K&R definition,
1226  // the K&R definition becomes variadic.  This is sort of an edge case, but
1227  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1228  // C99 6.9.1p8.
1229  if (!getLangOptions().CPlusPlus &&
1230      Old->hasPrototype() && !New->hasPrototype() &&
1231      New->getType()->getAs<FunctionProtoType>() &&
1232      Old->getNumParams() == New->getNumParams()) {
1233    llvm::SmallVector<QualType, 16> ArgTypes;
1234    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1235    const FunctionProtoType *OldProto
1236      = Old->getType()->getAs<FunctionProtoType>();
1237    const FunctionProtoType *NewProto
1238      = New->getType()->getAs<FunctionProtoType>();
1239
1240    // Determine whether this is the GNU C extension.
1241    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1242                                               NewProto->getResultType());
1243    bool LooseCompatible = !MergedReturn.isNull();
1244    for (unsigned Idx = 0, End = Old->getNumParams();
1245         LooseCompatible && Idx != End; ++Idx) {
1246      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1247      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1248      if (Context.typesAreCompatible(OldParm->getType(),
1249                                     NewProto->getArgType(Idx))) {
1250        ArgTypes.push_back(NewParm->getType());
1251      } else if (Context.typesAreCompatible(OldParm->getType(),
1252                                            NewParm->getType(),
1253                                            /*CompareUnqualified=*/true)) {
1254        GNUCompatibleParamWarning Warn
1255          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1256        Warnings.push_back(Warn);
1257        ArgTypes.push_back(NewParm->getType());
1258      } else
1259        LooseCompatible = false;
1260    }
1261
1262    if (LooseCompatible) {
1263      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1264        Diag(Warnings[Warn].NewParm->getLocation(),
1265             diag::ext_param_promoted_not_compatible_with_prototype)
1266          << Warnings[Warn].PromotedType
1267          << Warnings[Warn].OldParm->getType();
1268        if (Warnings[Warn].OldParm->getLocation().isValid())
1269          Diag(Warnings[Warn].OldParm->getLocation(),
1270               diag::note_previous_declaration);
1271      }
1272
1273      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1274                                           ArgTypes.size(),
1275                                           OldProto->isVariadic(), 0,
1276                                           false, false, 0, 0,
1277                                           OldProto->getExtInfo()));
1278      return MergeCompatibleFunctionDecls(New, Old);
1279    }
1280
1281    // Fall through to diagnose conflicting types.
1282  }
1283
1284  // A function that has already been declared has been redeclared or defined
1285  // with a different type- show appropriate diagnostic
1286  if (unsigned BuiltinID = Old->getBuiltinID()) {
1287    // The user has declared a builtin function with an incompatible
1288    // signature.
1289    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1290      // The function the user is redeclaring is a library-defined
1291      // function like 'malloc' or 'printf'. Warn about the
1292      // redeclaration, then pretend that we don't know about this
1293      // library built-in.
1294      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1295      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1296        << Old << Old->getType();
1297      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1298      Old->setInvalidDecl();
1299      return false;
1300    }
1301
1302    PrevDiag = diag::note_previous_builtin_declaration;
1303  }
1304
1305  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1306  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1307  return true;
1308}
1309
1310/// \brief Completes the merge of two function declarations that are
1311/// known to be compatible.
1312///
1313/// This routine handles the merging of attributes and other
1314/// properties of function declarations form the old declaration to
1315/// the new declaration, once we know that New is in fact a
1316/// redeclaration of Old.
1317///
1318/// \returns false
1319bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1320  // Merge the attributes
1321  MergeAttributes(New, Old, Context);
1322
1323  // Merge the storage class.
1324  if (Old->getStorageClass() != FunctionDecl::Extern &&
1325      Old->getStorageClass() != FunctionDecl::None)
1326    New->setStorageClass(Old->getStorageClass());
1327
1328  // Merge "pure" flag.
1329  if (Old->isPure())
1330    New->setPure();
1331
1332  // Merge the "deleted" flag.
1333  if (Old->isDeleted())
1334    New->setDeleted();
1335
1336  if (getLangOptions().CPlusPlus)
1337    return MergeCXXFunctionDecl(New, Old);
1338
1339  return false;
1340}
1341
1342/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1343/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1344/// situation, merging decls or emitting diagnostics as appropriate.
1345///
1346/// Tentative definition rules (C99 6.9.2p2) are checked by
1347/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1348/// definitions here, since the initializer hasn't been attached.
1349///
1350void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1351  // If the new decl is already invalid, don't do any other checking.
1352  if (New->isInvalidDecl())
1353    return;
1354
1355  // Verify the old decl was also a variable.
1356  VarDecl *Old = 0;
1357  if (!Previous.isSingleResult() ||
1358      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1359    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1360      << New->getDeclName();
1361    Diag(Previous.getRepresentativeDecl()->getLocation(),
1362         diag::note_previous_definition);
1363    return New->setInvalidDecl();
1364  }
1365
1366  MergeAttributes(New, Old, Context);
1367
1368  // Merge the types
1369  QualType MergedT;
1370  if (getLangOptions().CPlusPlus) {
1371    if (Context.hasSameType(New->getType(), Old->getType()))
1372      MergedT = New->getType();
1373    // C++ [basic.link]p10:
1374    //   [...] the types specified by all declarations referring to a given
1375    //   object or function shall be identical, except that declarations for an
1376    //   array object can specify array types that differ by the presence or
1377    //   absence of a major array bound (8.3.4).
1378    else if (Old->getType()->isIncompleteArrayType() &&
1379             New->getType()->isArrayType()) {
1380      CanQual<ArrayType> OldArray
1381        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1382      CanQual<ArrayType> NewArray
1383        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1384      if (OldArray->getElementType() == NewArray->getElementType())
1385        MergedT = New->getType();
1386    } else if (Old->getType()->isArrayType() &&
1387             New->getType()->isIncompleteArrayType()) {
1388      CanQual<ArrayType> OldArray
1389        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1390      CanQual<ArrayType> NewArray
1391        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1392      if (OldArray->getElementType() == NewArray->getElementType())
1393        MergedT = Old->getType();
1394    } else if (New->getType()->isObjCObjectPointerType()
1395               && Old->getType()->isObjCObjectPointerType()) {
1396        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1397    }
1398  } else {
1399    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1400  }
1401  if (MergedT.isNull()) {
1402    Diag(New->getLocation(), diag::err_redefinition_different_type)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407  New->setType(MergedT);
1408
1409  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1410  if (New->getStorageClass() == VarDecl::Static &&
1411      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1412    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1413    Diag(Old->getLocation(), diag::note_previous_definition);
1414    return New->setInvalidDecl();
1415  }
1416  // C99 6.2.2p4:
1417  //   For an identifier declared with the storage-class specifier
1418  //   extern in a scope in which a prior declaration of that
1419  //   identifier is visible,23) if the prior declaration specifies
1420  //   internal or external linkage, the linkage of the identifier at
1421  //   the later declaration is the same as the linkage specified at
1422  //   the prior declaration. If no prior declaration is visible, or
1423  //   if the prior declaration specifies no linkage, then the
1424  //   identifier has external linkage.
1425  if (New->hasExternalStorage() && Old->hasLinkage())
1426    /* Okay */;
1427  else if (New->getStorageClass() != VarDecl::Static &&
1428           Old->getStorageClass() == VarDecl::Static) {
1429    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1430    Diag(Old->getLocation(), diag::note_previous_definition);
1431    return New->setInvalidDecl();
1432  }
1433
1434  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1435
1436  // FIXME: The test for external storage here seems wrong? We still
1437  // need to check for mismatches.
1438  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1439      // Don't complain about out-of-line definitions of static members.
1440      !(Old->getLexicalDeclContext()->isRecord() &&
1441        !New->getLexicalDeclContext()->isRecord())) {
1442    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444    return New->setInvalidDecl();
1445  }
1446
1447  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1448    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1449    Diag(Old->getLocation(), diag::note_previous_definition);
1450  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1451    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1452    Diag(Old->getLocation(), diag::note_previous_definition);
1453  }
1454
1455  // C++ doesn't have tentative definitions, so go right ahead and check here.
1456  const VarDecl *Def;
1457  if (getLangOptions().CPlusPlus &&
1458      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1459      (Def = Old->getDefinition())) {
1460    Diag(New->getLocation(), diag::err_redefinition)
1461      << New->getDeclName();
1462    Diag(Def->getLocation(), diag::note_previous_definition);
1463    New->setInvalidDecl();
1464    return;
1465  }
1466  // c99 6.2.2 P4.
1467  // For an identifier declared with the storage-class specifier extern in a
1468  // scope in which a prior declaration of that identifier is visible, if
1469  // the prior declaration specifies internal or external linkage, the linkage
1470  // of the identifier at the later declaration is the same as the linkage
1471  // specified at the prior declaration.
1472  // FIXME. revisit this code.
1473  if (New->hasExternalStorage() &&
1474      Old->getLinkage() == InternalLinkage &&
1475      New->getDeclContext() == Old->getDeclContext())
1476    New->setStorageClass(Old->getStorageClass());
1477
1478  // Keep a chain of previous declarations.
1479  New->setPreviousDeclaration(Old);
1480
1481  // Inherit access appropriately.
1482  New->setAccess(Old->getAccess());
1483}
1484
1485/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1486/// no declarator (e.g. "struct foo;") is parsed.
1487Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1488                                                 DeclSpec &DS) {
1489  // FIXME: Error on auto/register at file scope
1490  // FIXME: Error on inline/virtual/explicit
1491  // FIXME: Warn on useless __thread
1492  // FIXME: Warn on useless const/volatile
1493  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1494  // FIXME: Warn on useless attributes
1495  Decl *TagD = 0;
1496  TagDecl *Tag = 0;
1497  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1498      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1499      DS.getTypeSpecType() == DeclSpec::TST_union ||
1500      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1501    TagD = static_cast<Decl *>(DS.getTypeRep());
1502
1503    if (!TagD) // We probably had an error
1504      return DeclPtrTy();
1505
1506    // Note that the above type specs guarantee that the
1507    // type rep is a Decl, whereas in many of the others
1508    // it's a Type.
1509    Tag = dyn_cast<TagDecl>(TagD);
1510  }
1511
1512  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1513    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1514    // or incomplete types shall not be restrict-qualified."
1515    if (TypeQuals & DeclSpec::TQ_restrict)
1516      Diag(DS.getRestrictSpecLoc(),
1517           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1518           << DS.getSourceRange();
1519  }
1520
1521  if (DS.isFriendSpecified()) {
1522    // If we're dealing with a class template decl, assume that the
1523    // template routines are handling it.
1524    if (TagD && isa<ClassTemplateDecl>(TagD))
1525      return DeclPtrTy();
1526    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1527  }
1528
1529  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1530    // If there are attributes in the DeclSpec, apply them to the record.
1531    if (const AttributeList *AL = DS.getAttributes())
1532      ProcessDeclAttributeList(S, Record, AL);
1533
1534    if (!Record->getDeclName() && Record->isDefinition() &&
1535        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1536      if (getLangOptions().CPlusPlus ||
1537          Record->getDeclContext()->isRecord())
1538        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1539
1540      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1541        << DS.getSourceRange();
1542    }
1543
1544    // Microsoft allows unnamed struct/union fields. Don't complain
1545    // about them.
1546    // FIXME: Should we support Microsoft's extensions in this area?
1547    if (Record->getDeclName() && getLangOptions().Microsoft)
1548      return DeclPtrTy::make(Tag);
1549  }
1550
1551  if (getLangOptions().CPlusPlus &&
1552      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1553    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1554      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1555          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1556        Diag(Enum->getLocation(), diag::ext_no_declarators)
1557          << DS.getSourceRange();
1558
1559  if (!DS.isMissingDeclaratorOk() &&
1560      DS.getTypeSpecType() != DeclSpec::TST_error) {
1561    // Warn about typedefs of enums without names, since this is an
1562    // extension in both Microsoft and GNU.
1563    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1564        Tag && isa<EnumDecl>(Tag)) {
1565      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1566        << DS.getSourceRange();
1567      return DeclPtrTy::make(Tag);
1568    }
1569
1570    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1571      << DS.getSourceRange();
1572  }
1573
1574  return DeclPtrTy::make(TagD);
1575}
1576
1577/// We are trying to inject an anonymous member into the given scope;
1578/// check if there's an existing declaration that can't be overloaded.
1579///
1580/// \return true if this is a forbidden redeclaration
1581static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1582                                         Scope *S,
1583                                         DeclContext *Owner,
1584                                         DeclarationName Name,
1585                                         SourceLocation NameLoc,
1586                                         unsigned diagnostic) {
1587  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1588                 Sema::ForRedeclaration);
1589  if (!SemaRef.LookupName(R, S)) return false;
1590
1591  if (R.getAsSingle<TagDecl>())
1592    return false;
1593
1594  // Pick a representative declaration.
1595  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1596  if (PrevDecl && Owner->isRecord()) {
1597    RecordDecl *Record = cast<RecordDecl>(Owner);
1598    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1599      return false;
1600  }
1601
1602  SemaRef.Diag(NameLoc, diagnostic) << Name;
1603  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1604
1605  return true;
1606}
1607
1608/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1609/// anonymous struct or union AnonRecord into the owning context Owner
1610/// and scope S. This routine will be invoked just after we realize
1611/// that an unnamed union or struct is actually an anonymous union or
1612/// struct, e.g.,
1613///
1614/// @code
1615/// union {
1616///   int i;
1617///   float f;
1618/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1619///    // f into the surrounding scope.x
1620/// @endcode
1621///
1622/// This routine is recursive, injecting the names of nested anonymous
1623/// structs/unions into the owning context and scope as well.
1624static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1625                                                DeclContext *Owner,
1626                                                RecordDecl *AnonRecord,
1627                                                AccessSpecifier AS) {
1628  unsigned diagKind
1629    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1630                            : diag::err_anonymous_struct_member_redecl;
1631
1632  bool Invalid = false;
1633  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1634                               FEnd = AnonRecord->field_end();
1635       F != FEnd; ++F) {
1636    if ((*F)->getDeclName()) {
1637      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1638                                       (*F)->getLocation(), diagKind)) {
1639        // C++ [class.union]p2:
1640        //   The names of the members of an anonymous union shall be
1641        //   distinct from the names of any other entity in the
1642        //   scope in which the anonymous union is declared.
1643        Invalid = true;
1644      } else {
1645        // C++ [class.union]p2:
1646        //   For the purpose of name lookup, after the anonymous union
1647        //   definition, the members of the anonymous union are
1648        //   considered to have been defined in the scope in which the
1649        //   anonymous union is declared.
1650        Owner->makeDeclVisibleInContext(*F);
1651        S->AddDecl(Sema::DeclPtrTy::make(*F));
1652        SemaRef.IdResolver.AddDecl(*F);
1653
1654        // That includes picking up the appropriate access specifier.
1655        if (AS != AS_none) (*F)->setAccess(AS);
1656      }
1657    } else if (const RecordType *InnerRecordType
1658                 = (*F)->getType()->getAs<RecordType>()) {
1659      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1660      if (InnerRecord->isAnonymousStructOrUnion())
1661        Invalid = Invalid ||
1662          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1663                                              InnerRecord, AS);
1664    }
1665  }
1666
1667  return Invalid;
1668}
1669
1670/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1671/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1672/// illegal input values are mapped to VarDecl::None.
1673static VarDecl::StorageClass
1674StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1675  switch (StorageClassSpec) {
1676  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1677  case DeclSpec::SCS_extern:         return VarDecl::Extern;
1678  case DeclSpec::SCS_static:         return VarDecl::Static;
1679  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1680  case DeclSpec::SCS_register:       return VarDecl::Register;
1681  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1682    // Illegal SCSs map to None: error reporting is up to the caller.
1683  case DeclSpec::SCS_mutable:        // Fall through.
1684  case DeclSpec::SCS_typedef:        return VarDecl::None;
1685  }
1686  llvm_unreachable("unknown storage class specifier");
1687}
1688
1689/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1690/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1691/// illegal input values are mapped to FunctionDecl::None.
1692static FunctionDecl::StorageClass
1693StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1694  switch (StorageClassSpec) {
1695  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1696  case DeclSpec::SCS_extern:         return FunctionDecl::Extern;
1697  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1698  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1699    // Illegal SCSs map to None: error reporting is up to the caller.
1700  case DeclSpec::SCS_auto:           // Fall through.
1701  case DeclSpec::SCS_mutable:        // Fall through.
1702  case DeclSpec::SCS_register:       // Fall through.
1703  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1704  }
1705  llvm_unreachable("unknown storage class specifier");
1706}
1707
1708/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1709/// anonymous structure or union. Anonymous unions are a C++ feature
1710/// (C++ [class.union]) and a GNU C extension; anonymous structures
1711/// are a GNU C and GNU C++ extension.
1712Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1713                                                  AccessSpecifier AS,
1714                                                  RecordDecl *Record) {
1715  DeclContext *Owner = Record->getDeclContext();
1716
1717  // Diagnose whether this anonymous struct/union is an extension.
1718  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1719    Diag(Record->getLocation(), diag::ext_anonymous_union);
1720  else if (!Record->isUnion())
1721    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1722
1723  // C and C++ require different kinds of checks for anonymous
1724  // structs/unions.
1725  bool Invalid = false;
1726  if (getLangOptions().CPlusPlus) {
1727    const char* PrevSpec = 0;
1728    unsigned DiagID;
1729    // C++ [class.union]p3:
1730    //   Anonymous unions declared in a named namespace or in the
1731    //   global namespace shall be declared static.
1732    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1733        (isa<TranslationUnitDecl>(Owner) ||
1734         (isa<NamespaceDecl>(Owner) &&
1735          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1736      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1737      Invalid = true;
1738
1739      // Recover by adding 'static'.
1740      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1741                             PrevSpec, DiagID);
1742    }
1743    // C++ [class.union]p3:
1744    //   A storage class is not allowed in a declaration of an
1745    //   anonymous union in a class scope.
1746    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1747             isa<RecordDecl>(Owner)) {
1748      Diag(DS.getStorageClassSpecLoc(),
1749           diag::err_anonymous_union_with_storage_spec);
1750      Invalid = true;
1751
1752      // Recover by removing the storage specifier.
1753      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1754                             PrevSpec, DiagID);
1755    }
1756
1757    // C++ [class.union]p2:
1758    //   The member-specification of an anonymous union shall only
1759    //   define non-static data members. [Note: nested types and
1760    //   functions cannot be declared within an anonymous union. ]
1761    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1762                                 MemEnd = Record->decls_end();
1763         Mem != MemEnd; ++Mem) {
1764      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1765        // C++ [class.union]p3:
1766        //   An anonymous union shall not have private or protected
1767        //   members (clause 11).
1768        assert(FD->getAccess() != AS_none);
1769        if (FD->getAccess() != AS_public) {
1770          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1771            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1772          Invalid = true;
1773        }
1774      } else if ((*Mem)->isImplicit()) {
1775        // Any implicit members are fine.
1776      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1777        // This is a type that showed up in an
1778        // elaborated-type-specifier inside the anonymous struct or
1779        // union, but which actually declares a type outside of the
1780        // anonymous struct or union. It's okay.
1781      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1782        if (!MemRecord->isAnonymousStructOrUnion() &&
1783            MemRecord->getDeclName()) {
1784          // This is a nested type declaration.
1785          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1786            << (int)Record->isUnion();
1787          Invalid = true;
1788        }
1789      } else if (isa<AccessSpecDecl>(*Mem)) {
1790        // Any access specifier is fine.
1791      } else {
1792        // We have something that isn't a non-static data
1793        // member. Complain about it.
1794        unsigned DK = diag::err_anonymous_record_bad_member;
1795        if (isa<TypeDecl>(*Mem))
1796          DK = diag::err_anonymous_record_with_type;
1797        else if (isa<FunctionDecl>(*Mem))
1798          DK = diag::err_anonymous_record_with_function;
1799        else if (isa<VarDecl>(*Mem))
1800          DK = diag::err_anonymous_record_with_static;
1801        Diag((*Mem)->getLocation(), DK)
1802            << (int)Record->isUnion();
1803          Invalid = true;
1804      }
1805    }
1806  }
1807
1808  if (!Record->isUnion() && !Owner->isRecord()) {
1809    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1810      << (int)getLangOptions().CPlusPlus;
1811    Invalid = true;
1812  }
1813
1814  // Mock up a declarator.
1815  Declarator Dc(DS, Declarator::TypeNameContext);
1816  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1817  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1818
1819  // Create a declaration for this anonymous struct/union.
1820  NamedDecl *Anon = 0;
1821  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1822    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1823                             /*IdentifierInfo=*/0,
1824                             Context.getTypeDeclType(Record),
1825                             TInfo,
1826                             /*BitWidth=*/0, /*Mutable=*/false);
1827    Anon->setAccess(AS);
1828    if (getLangOptions().CPlusPlus) {
1829      FieldCollector->Add(cast<FieldDecl>(Anon));
1830      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1831        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1832    }
1833  } else {
1834    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1835    assert(SCSpec != DeclSpec::SCS_typedef &&
1836           "Parser allowed 'typedef' as storage class VarDecl.");
1837    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1838    if (SCSpec == DeclSpec::SCS_mutable) {
1839      // mutable can only appear on non-static class members, so it's always
1840      // an error here
1841      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1842      Invalid = true;
1843      SC = VarDecl::None;
1844    }
1845    SCSpec = DS.getStorageClassSpecAsWritten();
1846    VarDecl::StorageClass SCAsWritten
1847      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1848
1849    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1850                           /*IdentifierInfo=*/0,
1851                           Context.getTypeDeclType(Record),
1852                           TInfo, SC, SCAsWritten);
1853  }
1854  Anon->setImplicit();
1855
1856  // Add the anonymous struct/union object to the current
1857  // context. We'll be referencing this object when we refer to one of
1858  // its members.
1859  Owner->addDecl(Anon);
1860
1861  // Inject the members of the anonymous struct/union into the owning
1862  // context and into the identifier resolver chain for name lookup
1863  // purposes.
1864  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1865    Invalid = true;
1866
1867  // Mark this as an anonymous struct/union type. Note that we do not
1868  // do this until after we have already checked and injected the
1869  // members of this anonymous struct/union type, because otherwise
1870  // the members could be injected twice: once by DeclContext when it
1871  // builds its lookup table, and once by
1872  // InjectAnonymousStructOrUnionMembers.
1873  Record->setAnonymousStructOrUnion(true);
1874
1875  if (Invalid)
1876    Anon->setInvalidDecl();
1877
1878  return DeclPtrTy::make(Anon);
1879}
1880
1881
1882/// GetNameForDeclarator - Determine the full declaration name for the
1883/// given Declarator.
1884DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
1885  return GetNameFromUnqualifiedId(D.getName());
1886}
1887
1888/// \brief Retrieves the declaration name from a parsed unqualified-id.
1889DeclarationNameInfo
1890Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1891  DeclarationNameInfo NameInfo;
1892  NameInfo.setLoc(Name.StartLocation);
1893
1894  switch (Name.getKind()) {
1895
1896  case UnqualifiedId::IK_Identifier:
1897    NameInfo.setName(Name.Identifier);
1898    NameInfo.setLoc(Name.StartLocation);
1899    return NameInfo;
1900
1901  case UnqualifiedId::IK_OperatorFunctionId:
1902    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
1903                                           Name.OperatorFunctionId.Operator));
1904    NameInfo.setLoc(Name.StartLocation);
1905    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
1906      = Name.OperatorFunctionId.SymbolLocations[0];
1907    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
1908      = Name.EndLocation.getRawEncoding();
1909    return NameInfo;
1910
1911  case UnqualifiedId::IK_LiteralOperatorId:
1912    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
1913                                                           Name.Identifier));
1914    NameInfo.setLoc(Name.StartLocation);
1915    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
1916    return NameInfo;
1917
1918  case UnqualifiedId::IK_ConversionFunctionId: {
1919    TypeSourceInfo *TInfo;
1920    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
1921    if (Ty.isNull())
1922      return DeclarationNameInfo();
1923    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
1924                                               Context.getCanonicalType(Ty)));
1925    NameInfo.setLoc(Name.StartLocation);
1926    NameInfo.setNamedTypeInfo(TInfo);
1927    return NameInfo;
1928  }
1929
1930  case UnqualifiedId::IK_ConstructorName: {
1931    TypeSourceInfo *TInfo;
1932    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
1933    if (Ty.isNull())
1934      return DeclarationNameInfo();
1935    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
1936                                              Context.getCanonicalType(Ty)));
1937    NameInfo.setLoc(Name.StartLocation);
1938    NameInfo.setNamedTypeInfo(TInfo);
1939    return NameInfo;
1940  }
1941
1942  case UnqualifiedId::IK_ConstructorTemplateId: {
1943    // In well-formed code, we can only have a constructor
1944    // template-id that refers to the current context, so go there
1945    // to find the actual type being constructed.
1946    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1947    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1948      return DeclarationNameInfo();
1949
1950    // Determine the type of the class being constructed.
1951    QualType CurClassType = Context.getTypeDeclType(CurClass);
1952
1953    // FIXME: Check two things: that the template-id names the same type as
1954    // CurClassType, and that the template-id does not occur when the name
1955    // was qualified.
1956
1957    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
1958                                    Context.getCanonicalType(CurClassType)));
1959    NameInfo.setLoc(Name.StartLocation);
1960    // FIXME: should we retrieve TypeSourceInfo?
1961    NameInfo.setNamedTypeInfo(0);
1962    return NameInfo;
1963  }
1964
1965  case UnqualifiedId::IK_DestructorName: {
1966    TypeSourceInfo *TInfo;
1967    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
1968    if (Ty.isNull())
1969      return DeclarationNameInfo();
1970    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
1971                                              Context.getCanonicalType(Ty)));
1972    NameInfo.setLoc(Name.StartLocation);
1973    NameInfo.setNamedTypeInfo(TInfo);
1974    return NameInfo;
1975  }
1976
1977  case UnqualifiedId::IK_TemplateId: {
1978    TemplateName TName
1979      = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1980    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
1981    return Context.getNameForTemplate(TName, TNameLoc);
1982  }
1983
1984  } // switch (Name.getKind())
1985
1986  assert(false && "Unknown name kind");
1987  return DeclarationNameInfo();
1988}
1989
1990/// isNearlyMatchingFunction - Determine whether the C++ functions
1991/// Declaration and Definition are "nearly" matching. This heuristic
1992/// is used to improve diagnostics in the case where an out-of-line
1993/// function definition doesn't match any declaration within
1994/// the class or namespace.
1995static bool isNearlyMatchingFunction(ASTContext &Context,
1996                                     FunctionDecl *Declaration,
1997                                     FunctionDecl *Definition) {
1998  if (Declaration->param_size() != Definition->param_size())
1999    return false;
2000  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2001    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2002    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2003
2004    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2005                                        DefParamTy.getNonReferenceType()))
2006      return false;
2007  }
2008
2009  return true;
2010}
2011
2012/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2013/// declarator needs to be rebuilt in the current instantiation.
2014/// Any bits of declarator which appear before the name are valid for
2015/// consideration here.  That's specifically the type in the decl spec
2016/// and the base type in any member-pointer chunks.
2017static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2018                                                    DeclarationName Name) {
2019  // The types we specifically need to rebuild are:
2020  //   - typenames, typeofs, and decltypes
2021  //   - types which will become injected class names
2022  // Of course, we also need to rebuild any type referencing such a
2023  // type.  It's safest to just say "dependent", but we call out a
2024  // few cases here.
2025
2026  DeclSpec &DS = D.getMutableDeclSpec();
2027  switch (DS.getTypeSpecType()) {
2028  case DeclSpec::TST_typename:
2029  case DeclSpec::TST_typeofType:
2030  case DeclSpec::TST_typeofExpr:
2031  case DeclSpec::TST_decltype: {
2032    // Grab the type from the parser.
2033    TypeSourceInfo *TSI = 0;
2034    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2035    if (T.isNull() || !T->isDependentType()) break;
2036
2037    // Make sure there's a type source info.  This isn't really much
2038    // of a waste; most dependent types should have type source info
2039    // attached already.
2040    if (!TSI)
2041      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2042
2043    // Rebuild the type in the current instantiation.
2044    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2045    if (!TSI) return true;
2046
2047    // Store the new type back in the decl spec.
2048    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2049    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2050    break;
2051  }
2052
2053  default:
2054    // Nothing to do for these decl specs.
2055    break;
2056  }
2057
2058  // It doesn't matter what order we do this in.
2059  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2060    DeclaratorChunk &Chunk = D.getTypeObject(I);
2061
2062    // The only type information in the declarator which can come
2063    // before the declaration name is the base type of a member
2064    // pointer.
2065    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2066      continue;
2067
2068    // Rebuild the scope specifier in-place.
2069    CXXScopeSpec &SS = Chunk.Mem.Scope();
2070    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2071      return true;
2072  }
2073
2074  return false;
2075}
2076
2077Sema::DeclPtrTy
2078Sema::HandleDeclarator(Scope *S, Declarator &D,
2079                       MultiTemplateParamsArg TemplateParamLists,
2080                       bool IsFunctionDefinition) {
2081  // TODO: consider using NameInfo for diagnostic.
2082  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2083  DeclarationName Name = NameInfo.getName();
2084
2085  // All of these full declarators require an identifier.  If it doesn't have
2086  // one, the ParsedFreeStandingDeclSpec action should be used.
2087  if (!Name) {
2088    if (!D.isInvalidType())  // Reject this if we think it is valid.
2089      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2090           diag::err_declarator_need_ident)
2091        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2092    return DeclPtrTy();
2093  }
2094
2095  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2096  // we find one that is.
2097  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2098         (S->getFlags() & Scope::TemplateParamScope) != 0)
2099    S = S->getParent();
2100
2101  DeclContext *DC = CurContext;
2102  if (D.getCXXScopeSpec().isInvalid())
2103    D.setInvalidType();
2104  else if (D.getCXXScopeSpec().isSet()) {
2105    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2106    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2107    if (!DC) {
2108      // If we could not compute the declaration context, it's because the
2109      // declaration context is dependent but does not refer to a class,
2110      // class template, or class template partial specialization. Complain
2111      // and return early, to avoid the coming semantic disaster.
2112      Diag(D.getIdentifierLoc(),
2113           diag::err_template_qualified_declarator_no_match)
2114        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2115        << D.getCXXScopeSpec().getRange();
2116      return DeclPtrTy();
2117    }
2118
2119    bool IsDependentContext = DC->isDependentContext();
2120
2121    if (!IsDependentContext &&
2122        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2123      return DeclPtrTy();
2124
2125    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2126      Diag(D.getIdentifierLoc(),
2127           diag::err_member_def_undefined_record)
2128        << Name << DC << D.getCXXScopeSpec().getRange();
2129      D.setInvalidType();
2130    }
2131
2132    // Check whether we need to rebuild the type of the given
2133    // declaration in the current instantiation.
2134    if (EnteringContext && IsDependentContext &&
2135        TemplateParamLists.size() != 0) {
2136      ContextRAII SavedContext(*this, DC);
2137      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2138        D.setInvalidType();
2139    }
2140  }
2141
2142  NamedDecl *New;
2143
2144  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2145  QualType R = TInfo->getType();
2146
2147  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2148                        ForRedeclaration);
2149
2150  // See if this is a redefinition of a variable in the same scope.
2151  if (!D.getCXXScopeSpec().isSet()) {
2152    bool IsLinkageLookup = false;
2153
2154    // If the declaration we're planning to build will be a function
2155    // or object with linkage, then look for another declaration with
2156    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2157    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2158      /* Do nothing*/;
2159    else if (R->isFunctionType()) {
2160      if (CurContext->isFunctionOrMethod() ||
2161          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2162        IsLinkageLookup = true;
2163    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2164      IsLinkageLookup = true;
2165    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2166             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2167      IsLinkageLookup = true;
2168
2169    if (IsLinkageLookup)
2170      Previous.clear(LookupRedeclarationWithLinkage);
2171
2172    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2173  } else { // Something like "int foo::x;"
2174    LookupQualifiedName(Previous, DC);
2175
2176    // Don't consider using declarations as previous declarations for
2177    // out-of-line members.
2178    RemoveUsingDecls(Previous);
2179
2180    // C++ 7.3.1.2p2:
2181    // Members (including explicit specializations of templates) of a named
2182    // namespace can also be defined outside that namespace by explicit
2183    // qualification of the name being defined, provided that the entity being
2184    // defined was already declared in the namespace and the definition appears
2185    // after the point of declaration in a namespace that encloses the
2186    // declarations namespace.
2187    //
2188    // Note that we only check the context at this point. We don't yet
2189    // have enough information to make sure that PrevDecl is actually
2190    // the declaration we want to match. For example, given:
2191    //
2192    //   class X {
2193    //     void f();
2194    //     void f(float);
2195    //   };
2196    //
2197    //   void X::f(int) { } // ill-formed
2198    //
2199    // In this case, PrevDecl will point to the overload set
2200    // containing the two f's declared in X, but neither of them
2201    // matches.
2202
2203    // First check whether we named the global scope.
2204    if (isa<TranslationUnitDecl>(DC)) {
2205      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2206        << Name << D.getCXXScopeSpec().getRange();
2207    } else {
2208      DeclContext *Cur = CurContext;
2209      while (isa<LinkageSpecDecl>(Cur))
2210        Cur = Cur->getParent();
2211      if (!Cur->Encloses(DC)) {
2212        // The qualifying scope doesn't enclose the original declaration.
2213        // Emit diagnostic based on current scope.
2214        SourceLocation L = D.getIdentifierLoc();
2215        SourceRange R = D.getCXXScopeSpec().getRange();
2216        if (isa<FunctionDecl>(Cur))
2217          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2218        else
2219          Diag(L, diag::err_invalid_declarator_scope)
2220            << Name << cast<NamedDecl>(DC) << R;
2221        D.setInvalidType();
2222      }
2223    }
2224  }
2225
2226  if (Previous.isSingleResult() &&
2227      Previous.getFoundDecl()->isTemplateParameter()) {
2228    // Maybe we will complain about the shadowed template parameter.
2229    if (!D.isInvalidType())
2230      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2231                                          Previous.getFoundDecl()))
2232        D.setInvalidType();
2233
2234    // Just pretend that we didn't see the previous declaration.
2235    Previous.clear();
2236  }
2237
2238  // In C++, the previous declaration we find might be a tag type
2239  // (class or enum). In this case, the new declaration will hide the
2240  // tag type. Note that this does does not apply if we're declaring a
2241  // typedef (C++ [dcl.typedef]p4).
2242  if (Previous.isSingleTagDecl() &&
2243      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2244    Previous.clear();
2245
2246  bool Redeclaration = false;
2247  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2248    if (TemplateParamLists.size()) {
2249      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2250      return DeclPtrTy();
2251    }
2252
2253    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2254  } else if (R->isFunctionType()) {
2255    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2256                                  move(TemplateParamLists),
2257                                  IsFunctionDefinition, Redeclaration);
2258  } else {
2259    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2260                                  move(TemplateParamLists),
2261                                  Redeclaration);
2262  }
2263
2264  if (New == 0)
2265    return DeclPtrTy();
2266
2267  // If this has an identifier and is not an invalid redeclaration or
2268  // function template specialization, add it to the scope stack.
2269  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2270    PushOnScopeChains(New, S);
2271
2272  return DeclPtrTy::make(New);
2273}
2274
2275/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2276/// types into constant array types in certain situations which would otherwise
2277/// be errors (for GCC compatibility).
2278static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2279                                                    ASTContext &Context,
2280                                                    bool &SizeIsNegative) {
2281  // This method tries to turn a variable array into a constant
2282  // array even when the size isn't an ICE.  This is necessary
2283  // for compatibility with code that depends on gcc's buggy
2284  // constant expression folding, like struct {char x[(int)(char*)2];}
2285  SizeIsNegative = false;
2286
2287  QualifierCollector Qs;
2288  const Type *Ty = Qs.strip(T);
2289
2290  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2291    QualType Pointee = PTy->getPointeeType();
2292    QualType FixedType =
2293        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2294    if (FixedType.isNull()) return FixedType;
2295    FixedType = Context.getPointerType(FixedType);
2296    return Qs.apply(FixedType);
2297  }
2298
2299  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2300  if (!VLATy)
2301    return QualType();
2302  // FIXME: We should probably handle this case
2303  if (VLATy->getElementType()->isVariablyModifiedType())
2304    return QualType();
2305
2306  Expr::EvalResult EvalResult;
2307  if (!VLATy->getSizeExpr() ||
2308      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2309      !EvalResult.Val.isInt())
2310    return QualType();
2311
2312  llvm::APSInt &Res = EvalResult.Val.getInt();
2313  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2314    // TODO: preserve the size expression in declarator info
2315    return Context.getConstantArrayType(VLATy->getElementType(),
2316                                        Res, ArrayType::Normal, 0);
2317  }
2318
2319  SizeIsNegative = true;
2320  return QualType();
2321}
2322
2323/// \brief Register the given locally-scoped external C declaration so
2324/// that it can be found later for redeclarations
2325void
2326Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2327                                       const LookupResult &Previous,
2328                                       Scope *S) {
2329  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2330         "Decl is not a locally-scoped decl!");
2331  // Note that we have a locally-scoped external with this name.
2332  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2333
2334  if (!Previous.isSingleResult())
2335    return;
2336
2337  NamedDecl *PrevDecl = Previous.getFoundDecl();
2338
2339  // If there was a previous declaration of this variable, it may be
2340  // in our identifier chain. Update the identifier chain with the new
2341  // declaration.
2342  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2343    // The previous declaration was found on the identifer resolver
2344    // chain, so remove it from its scope.
2345    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2346      S = S->getParent();
2347
2348    if (S)
2349      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2350  }
2351}
2352
2353/// \brief Diagnose function specifiers on a declaration of an identifier that
2354/// does not identify a function.
2355void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2356  // FIXME: We should probably indicate the identifier in question to avoid
2357  // confusion for constructs like "inline int a(), b;"
2358  if (D.getDeclSpec().isInlineSpecified())
2359    Diag(D.getDeclSpec().getInlineSpecLoc(),
2360         diag::err_inline_non_function);
2361
2362  if (D.getDeclSpec().isVirtualSpecified())
2363    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2364         diag::err_virtual_non_function);
2365
2366  if (D.getDeclSpec().isExplicitSpecified())
2367    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2368         diag::err_explicit_non_function);
2369}
2370
2371NamedDecl*
2372Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2373                             QualType R,  TypeSourceInfo *TInfo,
2374                             LookupResult &Previous, bool &Redeclaration) {
2375  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2376  if (D.getCXXScopeSpec().isSet()) {
2377    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2378      << D.getCXXScopeSpec().getRange();
2379    D.setInvalidType();
2380    // Pretend we didn't see the scope specifier.
2381    DC = CurContext;
2382    Previous.clear();
2383  }
2384
2385  if (getLangOptions().CPlusPlus) {
2386    // Check that there are no default arguments (C++ only).
2387    CheckExtraCXXDefaultArguments(D);
2388  }
2389
2390  DiagnoseFunctionSpecifiers(D);
2391
2392  if (D.getDeclSpec().isThreadSpecified())
2393    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2394
2395  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2396    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2397      << D.getName().getSourceRange();
2398    return 0;
2399  }
2400
2401  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2402  if (!NewTD) return 0;
2403
2404  // Handle attributes prior to checking for duplicates in MergeVarDecl
2405  ProcessDeclAttributes(S, NewTD, D);
2406
2407  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2408  // then it shall have block scope.
2409  // Note that variably modified types must be fixed before merging the decl so
2410  // that redeclarations will match.
2411  QualType T = NewTD->getUnderlyingType();
2412  if (T->isVariablyModifiedType()) {
2413    setFunctionHasBranchProtectedScope();
2414
2415    if (S->getFnParent() == 0) {
2416      bool SizeIsNegative;
2417      QualType FixedTy =
2418          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2419      if (!FixedTy.isNull()) {
2420        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2421        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2422      } else {
2423        if (SizeIsNegative)
2424          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2425        else if (T->isVariableArrayType())
2426          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2427        else
2428          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2429        NewTD->setInvalidDecl();
2430      }
2431    }
2432  }
2433
2434  // Merge the decl with the existing one if appropriate. If the decl is
2435  // in an outer scope, it isn't the same thing.
2436  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2437  if (!Previous.empty()) {
2438    Redeclaration = true;
2439    MergeTypeDefDecl(NewTD, Previous);
2440  }
2441
2442  // If this is the C FILE type, notify the AST context.
2443  if (IdentifierInfo *II = NewTD->getIdentifier())
2444    if (!NewTD->isInvalidDecl() &&
2445        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2446      if (II->isStr("FILE"))
2447        Context.setFILEDecl(NewTD);
2448      else if (II->isStr("jmp_buf"))
2449        Context.setjmp_bufDecl(NewTD);
2450      else if (II->isStr("sigjmp_buf"))
2451        Context.setsigjmp_bufDecl(NewTD);
2452    }
2453
2454  return NewTD;
2455}
2456
2457/// \brief Determines whether the given declaration is an out-of-scope
2458/// previous declaration.
2459///
2460/// This routine should be invoked when name lookup has found a
2461/// previous declaration (PrevDecl) that is not in the scope where a
2462/// new declaration by the same name is being introduced. If the new
2463/// declaration occurs in a local scope, previous declarations with
2464/// linkage may still be considered previous declarations (C99
2465/// 6.2.2p4-5, C++ [basic.link]p6).
2466///
2467/// \param PrevDecl the previous declaration found by name
2468/// lookup
2469///
2470/// \param DC the context in which the new declaration is being
2471/// declared.
2472///
2473/// \returns true if PrevDecl is an out-of-scope previous declaration
2474/// for a new delcaration with the same name.
2475static bool
2476isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2477                                ASTContext &Context) {
2478  if (!PrevDecl)
2479    return 0;
2480
2481  if (!PrevDecl->hasLinkage())
2482    return false;
2483
2484  if (Context.getLangOptions().CPlusPlus) {
2485    // C++ [basic.link]p6:
2486    //   If there is a visible declaration of an entity with linkage
2487    //   having the same name and type, ignoring entities declared
2488    //   outside the innermost enclosing namespace scope, the block
2489    //   scope declaration declares that same entity and receives the
2490    //   linkage of the previous declaration.
2491    DeclContext *OuterContext = DC->getLookupContext();
2492    if (!OuterContext->isFunctionOrMethod())
2493      // This rule only applies to block-scope declarations.
2494      return false;
2495    else {
2496      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2497      if (PrevOuterContext->isRecord())
2498        // We found a member function: ignore it.
2499        return false;
2500      else {
2501        // Find the innermost enclosing namespace for the new and
2502        // previous declarations.
2503        while (!OuterContext->isFileContext())
2504          OuterContext = OuterContext->getParent();
2505        while (!PrevOuterContext->isFileContext())
2506          PrevOuterContext = PrevOuterContext->getParent();
2507
2508        // The previous declaration is in a different namespace, so it
2509        // isn't the same function.
2510        if (OuterContext->getPrimaryContext() !=
2511            PrevOuterContext->getPrimaryContext())
2512          return false;
2513      }
2514    }
2515  }
2516
2517  return true;
2518}
2519
2520static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2521  CXXScopeSpec &SS = D.getCXXScopeSpec();
2522  if (!SS.isSet()) return;
2523  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2524                       SS.getRange());
2525}
2526
2527NamedDecl*
2528Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2529                              QualType R, TypeSourceInfo *TInfo,
2530                              LookupResult &Previous,
2531                              MultiTemplateParamsArg TemplateParamLists,
2532                              bool &Redeclaration) {
2533  DeclarationName Name = GetNameForDeclarator(D).getName();
2534
2535  // Check that there are no default arguments (C++ only).
2536  if (getLangOptions().CPlusPlus)
2537    CheckExtraCXXDefaultArguments(D);
2538
2539  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2540  assert(SCSpec != DeclSpec::SCS_typedef &&
2541         "Parser allowed 'typedef' as storage class VarDecl.");
2542  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2543  if (SCSpec == DeclSpec::SCS_mutable) {
2544    // mutable can only appear on non-static class members, so it's always
2545    // an error here
2546    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2547    D.setInvalidType();
2548    SC = VarDecl::None;
2549  }
2550  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2551  VarDecl::StorageClass SCAsWritten
2552    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2553
2554  IdentifierInfo *II = Name.getAsIdentifierInfo();
2555  if (!II) {
2556    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2557      << Name.getAsString();
2558    return 0;
2559  }
2560
2561  DiagnoseFunctionSpecifiers(D);
2562
2563  if (!DC->isRecord() && S->getFnParent() == 0) {
2564    // C99 6.9p2: The storage-class specifiers auto and register shall not
2565    // appear in the declaration specifiers in an external declaration.
2566    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2567
2568      // If this is a register variable with an asm label specified, then this
2569      // is a GNU extension.
2570      if (SC == VarDecl::Register && D.getAsmLabel())
2571        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2572      else
2573        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2574      D.setInvalidType();
2575    }
2576  }
2577  if (DC->isRecord() && !CurContext->isRecord()) {
2578    // This is an out-of-line definition of a static data member.
2579    if (SC == VarDecl::Static) {
2580      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2581           diag::err_static_out_of_line)
2582        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2583    } else if (SC == VarDecl::None)
2584      SC = VarDecl::Static;
2585  }
2586  if (SC == VarDecl::Static) {
2587    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2588      if (RD->isLocalClass())
2589        Diag(D.getIdentifierLoc(),
2590             diag::err_static_data_member_not_allowed_in_local_class)
2591          << Name << RD->getDeclName();
2592    }
2593  }
2594
2595  // Match up the template parameter lists with the scope specifier, then
2596  // determine whether we have a template or a template specialization.
2597  bool isExplicitSpecialization = false;
2598  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2599  bool Invalid = false;
2600  if (TemplateParameterList *TemplateParams
2601        = MatchTemplateParametersToScopeSpecifier(
2602                                  D.getDeclSpec().getSourceRange().getBegin(),
2603                                                  D.getCXXScopeSpec(),
2604                        (TemplateParameterList**)TemplateParamLists.get(),
2605                                                   TemplateParamLists.size(),
2606                                                  /*never a friend*/ false,
2607                                                  isExplicitSpecialization,
2608                                                  Invalid)) {
2609    // All but one template parameter lists have been matching.
2610    --NumMatchedTemplateParamLists;
2611
2612    if (TemplateParams->size() > 0) {
2613      // There is no such thing as a variable template.
2614      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2615        << II
2616        << SourceRange(TemplateParams->getTemplateLoc(),
2617                       TemplateParams->getRAngleLoc());
2618      return 0;
2619    } else {
2620      // There is an extraneous 'template<>' for this variable. Complain
2621      // about it, but allow the declaration of the variable.
2622      Diag(TemplateParams->getTemplateLoc(),
2623           diag::err_template_variable_noparams)
2624        << II
2625        << SourceRange(TemplateParams->getTemplateLoc(),
2626                       TemplateParams->getRAngleLoc());
2627
2628      isExplicitSpecialization = true;
2629    }
2630  }
2631
2632  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2633                                   II, R, TInfo, SC, SCAsWritten);
2634
2635  if (D.isInvalidType() || Invalid)
2636    NewVD->setInvalidDecl();
2637
2638  SetNestedNameSpecifier(NewVD, D);
2639
2640  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2641    NewVD->setTemplateParameterListsInfo(Context,
2642                                         NumMatchedTemplateParamLists,
2643                        (TemplateParameterList**)TemplateParamLists.release());
2644  }
2645
2646  if (D.getDeclSpec().isThreadSpecified()) {
2647    if (NewVD->hasLocalStorage())
2648      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2649    else if (!Context.Target.isTLSSupported())
2650      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2651    else
2652      NewVD->setThreadSpecified(true);
2653  }
2654
2655  // Set the lexical context. If the declarator has a C++ scope specifier, the
2656  // lexical context will be different from the semantic context.
2657  NewVD->setLexicalDeclContext(CurContext);
2658
2659  // Handle attributes prior to checking for duplicates in MergeVarDecl
2660  ProcessDeclAttributes(S, NewVD, D);
2661
2662  // Handle GNU asm-label extension (encoded as an attribute).
2663  if (Expr *E = (Expr*) D.getAsmLabel()) {
2664    // The parser guarantees this is a string.
2665    StringLiteral *SE = cast<StringLiteral>(E);
2666    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2667  }
2668
2669  // Diagnose shadowed variables before filtering for scope.
2670  if (!D.getCXXScopeSpec().isSet())
2671    CheckShadow(S, NewVD, Previous);
2672
2673  // Don't consider existing declarations that are in a different
2674  // scope and are out-of-semantic-context declarations (if the new
2675  // declaration has linkage).
2676  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2677
2678  // Merge the decl with the existing one if appropriate.
2679  if (!Previous.empty()) {
2680    if (Previous.isSingleResult() &&
2681        isa<FieldDecl>(Previous.getFoundDecl()) &&
2682        D.getCXXScopeSpec().isSet()) {
2683      // The user tried to define a non-static data member
2684      // out-of-line (C++ [dcl.meaning]p1).
2685      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2686        << D.getCXXScopeSpec().getRange();
2687      Previous.clear();
2688      NewVD->setInvalidDecl();
2689    }
2690  } else if (D.getCXXScopeSpec().isSet()) {
2691    // No previous declaration in the qualifying scope.
2692    Diag(D.getIdentifierLoc(), diag::err_no_member)
2693      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2694      << D.getCXXScopeSpec().getRange();
2695    NewVD->setInvalidDecl();
2696  }
2697
2698  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2699
2700  // This is an explicit specialization of a static data member. Check it.
2701  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2702      CheckMemberSpecialization(NewVD, Previous))
2703    NewVD->setInvalidDecl();
2704
2705  // attributes declared post-definition are currently ignored
2706  if (Previous.isSingleResult()) {
2707    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2708    if (Def && (Def = Def->getDefinition()) &&
2709        Def != NewVD && D.hasAttributes()) {
2710      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2711      Diag(Def->getLocation(), diag::note_previous_definition);
2712    }
2713  }
2714
2715  // If this is a locally-scoped extern C variable, update the map of
2716  // such variables.
2717  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2718      !NewVD->isInvalidDecl())
2719    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2720
2721  // If there's a #pragma GCC visibility in scope, and this isn't a class
2722  // member, set the visibility of this variable.
2723  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2724    AddPushedVisibilityAttribute(NewVD);
2725
2726  return NewVD;
2727}
2728
2729/// \brief Diagnose variable or built-in function shadowing.  Implements
2730/// -Wshadow.
2731///
2732/// This method is called whenever a VarDecl is added to a "useful"
2733/// scope.
2734///
2735/// \param S the scope in which the shadowing name is being declared
2736/// \param R the lookup of the name
2737///
2738void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2739  // Return if warning is ignored.
2740  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2741    return;
2742
2743  // Don't diagnose declarations at file scope.  The scope might not
2744  // have a DeclContext if (e.g.) we're parsing a function prototype.
2745  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2746  if (NewDC && NewDC->isFileContext())
2747    return;
2748
2749  // Only diagnose if we're shadowing an unambiguous field or variable.
2750  if (R.getResultKind() != LookupResult::Found)
2751    return;
2752
2753  NamedDecl* ShadowedDecl = R.getFoundDecl();
2754  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2755    return;
2756
2757  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2758
2759  // Only warn about certain kinds of shadowing for class members.
2760  if (NewDC && NewDC->isRecord()) {
2761    // In particular, don't warn about shadowing non-class members.
2762    if (!OldDC->isRecord())
2763      return;
2764
2765    // TODO: should we warn about static data members shadowing
2766    // static data members from base classes?
2767
2768    // TODO: don't diagnose for inaccessible shadowed members.
2769    // This is hard to do perfectly because we might friend the
2770    // shadowing context, but that's just a false negative.
2771  }
2772
2773  // Determine what kind of declaration we're shadowing.
2774  unsigned Kind;
2775  if (isa<RecordDecl>(OldDC)) {
2776    if (isa<FieldDecl>(ShadowedDecl))
2777      Kind = 3; // field
2778    else
2779      Kind = 2; // static data member
2780  } else if (OldDC->isFileContext())
2781    Kind = 1; // global
2782  else
2783    Kind = 0; // local
2784
2785  DeclarationName Name = R.getLookupName();
2786
2787  // Emit warning and note.
2788  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2789  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2790}
2791
2792/// \brief Check -Wshadow without the advantage of a previous lookup.
2793void Sema::CheckShadow(Scope *S, VarDecl *D) {
2794  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2795                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2796  LookupName(R, S);
2797  CheckShadow(S, D, R);
2798}
2799
2800/// \brief Perform semantic checking on a newly-created variable
2801/// declaration.
2802///
2803/// This routine performs all of the type-checking required for a
2804/// variable declaration once it has been built. It is used both to
2805/// check variables after they have been parsed and their declarators
2806/// have been translated into a declaration, and to check variables
2807/// that have been instantiated from a template.
2808///
2809/// Sets NewVD->isInvalidDecl() if an error was encountered.
2810void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2811                                    LookupResult &Previous,
2812                                    bool &Redeclaration) {
2813  // If the decl is already known invalid, don't check it.
2814  if (NewVD->isInvalidDecl())
2815    return;
2816
2817  QualType T = NewVD->getType();
2818
2819  if (T->isObjCObjectType()) {
2820    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2821    return NewVD->setInvalidDecl();
2822  }
2823
2824  // Emit an error if an address space was applied to decl with local storage.
2825  // This includes arrays of objects with address space qualifiers, but not
2826  // automatic variables that point to other address spaces.
2827  // ISO/IEC TR 18037 S5.1.2
2828  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2829    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2830    return NewVD->setInvalidDecl();
2831  }
2832
2833  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2834      && !NewVD->hasAttr<BlocksAttr>())
2835    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2836
2837  bool isVM = T->isVariablyModifiedType();
2838  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2839      NewVD->hasAttr<BlocksAttr>())
2840    setFunctionHasBranchProtectedScope();
2841
2842  if ((isVM && NewVD->hasLinkage()) ||
2843      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2844    bool SizeIsNegative;
2845    QualType FixedTy =
2846        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2847
2848    if (FixedTy.isNull() && T->isVariableArrayType()) {
2849      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2850      // FIXME: This won't give the correct result for
2851      // int a[10][n];
2852      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2853
2854      if (NewVD->isFileVarDecl())
2855        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2856        << SizeRange;
2857      else if (NewVD->getStorageClass() == VarDecl::Static)
2858        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2859        << SizeRange;
2860      else
2861        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2862        << SizeRange;
2863      return NewVD->setInvalidDecl();
2864    }
2865
2866    if (FixedTy.isNull()) {
2867      if (NewVD->isFileVarDecl())
2868        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2869      else
2870        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2871      return NewVD->setInvalidDecl();
2872    }
2873
2874    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2875    NewVD->setType(FixedTy);
2876  }
2877
2878  if (Previous.empty() && NewVD->isExternC()) {
2879    // Since we did not find anything by this name and we're declaring
2880    // an extern "C" variable, look for a non-visible extern "C"
2881    // declaration with the same name.
2882    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2883      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2884    if (Pos != LocallyScopedExternalDecls.end())
2885      Previous.addDecl(Pos->second);
2886  }
2887
2888  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2889    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2890      << T;
2891    return NewVD->setInvalidDecl();
2892  }
2893
2894  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2895    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2896    return NewVD->setInvalidDecl();
2897  }
2898
2899  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2900    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2901    return NewVD->setInvalidDecl();
2902  }
2903
2904  // Function pointers and references cannot have qualified function type, only
2905  // function pointer-to-members can do that.
2906  QualType Pointee;
2907  unsigned PtrOrRef = 0;
2908  if (const PointerType *Ptr = T->getAs<PointerType>())
2909    Pointee = Ptr->getPointeeType();
2910  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2911    Pointee = Ref->getPointeeType();
2912    PtrOrRef = 1;
2913  }
2914  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2915      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2916    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2917        << PtrOrRef;
2918    return NewVD->setInvalidDecl();
2919  }
2920
2921  if (!Previous.empty()) {
2922    Redeclaration = true;
2923    MergeVarDecl(NewVD, Previous);
2924  }
2925}
2926
2927/// \brief Data used with FindOverriddenMethod
2928struct FindOverriddenMethodData {
2929  Sema *S;
2930  CXXMethodDecl *Method;
2931};
2932
2933/// \brief Member lookup function that determines whether a given C++
2934/// method overrides a method in a base class, to be used with
2935/// CXXRecordDecl::lookupInBases().
2936static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2937                                 CXXBasePath &Path,
2938                                 void *UserData) {
2939  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2940
2941  FindOverriddenMethodData *Data
2942    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2943
2944  DeclarationName Name = Data->Method->getDeclName();
2945
2946  // FIXME: Do we care about other names here too?
2947  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2948    // We really want to find the base class destructor here.
2949    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2950    CanQualType CT = Data->S->Context.getCanonicalType(T);
2951
2952    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2953  }
2954
2955  for (Path.Decls = BaseRecord->lookup(Name);
2956       Path.Decls.first != Path.Decls.second;
2957       ++Path.Decls.first) {
2958    NamedDecl *D = *Path.Decls.first;
2959    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2960      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2961        return true;
2962    }
2963  }
2964
2965  return false;
2966}
2967
2968/// AddOverriddenMethods - See if a method overrides any in the base classes,
2969/// and if so, check that it's a valid override and remember it.
2970void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2971  // Look for virtual methods in base classes that this method might override.
2972  CXXBasePaths Paths;
2973  FindOverriddenMethodData Data;
2974  Data.Method = MD;
2975  Data.S = this;
2976  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2977    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2978         E = Paths.found_decls_end(); I != E; ++I) {
2979      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2980        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2981            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2982            !CheckOverridingFunctionAttributes(MD, OldMD))
2983          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2984      }
2985    }
2986  }
2987}
2988
2989NamedDecl*
2990Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2991                              QualType R, TypeSourceInfo *TInfo,
2992                              LookupResult &Previous,
2993                              MultiTemplateParamsArg TemplateParamLists,
2994                              bool IsFunctionDefinition, bool &Redeclaration) {
2995  assert(R.getTypePtr()->isFunctionType());
2996
2997  // TODO: consider using NameInfo for diagnostic.
2998  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2999  DeclarationName Name = NameInfo.getName();
3000  FunctionDecl::StorageClass SC = FunctionDecl::None;
3001  switch (D.getDeclSpec().getStorageClassSpec()) {
3002  default: assert(0 && "Unknown storage class!");
3003  case DeclSpec::SCS_auto:
3004  case DeclSpec::SCS_register:
3005  case DeclSpec::SCS_mutable:
3006    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3007         diag::err_typecheck_sclass_func);
3008    D.setInvalidType();
3009    break;
3010  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
3011  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
3012  case DeclSpec::SCS_static: {
3013    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
3014      // C99 6.7.1p5:
3015      //   The declaration of an identifier for a function that has
3016      //   block scope shall have no explicit storage-class specifier
3017      //   other than extern
3018      // See also (C++ [dcl.stc]p4).
3019      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3020           diag::err_static_block_func);
3021      SC = FunctionDecl::None;
3022    } else
3023      SC = FunctionDecl::Static;
3024    break;
3025  }
3026  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
3027  }
3028
3029  if (D.getDeclSpec().isThreadSpecified())
3030    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3031
3032  bool isFriend = D.getDeclSpec().isFriendSpecified();
3033  bool isInline = D.getDeclSpec().isInlineSpecified();
3034  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3035  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3036
3037  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3038  FunctionDecl::StorageClass SCAsWritten
3039    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3040
3041  // Check that the return type is not an abstract class type.
3042  // For record types, this is done by the AbstractClassUsageDiagnoser once
3043  // the class has been completely parsed.
3044  if (!DC->isRecord() &&
3045      RequireNonAbstractType(D.getIdentifierLoc(),
3046                             R->getAs<FunctionType>()->getResultType(),
3047                             diag::err_abstract_type_in_decl,
3048                             AbstractReturnType))
3049    D.setInvalidType();
3050
3051  // Do not allow returning a objc interface by-value.
3052  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3053    Diag(D.getIdentifierLoc(),
3054         diag::err_object_cannot_be_passed_returned_by_value) << 0
3055      << R->getAs<FunctionType>()->getResultType();
3056    D.setInvalidType();
3057  }
3058
3059  bool isVirtualOkay = false;
3060  FunctionDecl *NewFD;
3061
3062  if (isFriend) {
3063    // C++ [class.friend]p5
3064    //   A function can be defined in a friend declaration of a
3065    //   class . . . . Such a function is implicitly inline.
3066    isInline |= IsFunctionDefinition;
3067  }
3068
3069  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3070    // This is a C++ constructor declaration.
3071    assert(DC->isRecord() &&
3072           "Constructors can only be declared in a member context");
3073
3074    R = CheckConstructorDeclarator(D, R, SC);
3075
3076    // Create the new declaration
3077    NewFD = CXXConstructorDecl::Create(Context,
3078                                       cast<CXXRecordDecl>(DC),
3079                                       NameInfo, R, TInfo,
3080                                       isExplicit, isInline,
3081                                       /*isImplicitlyDeclared=*/false);
3082  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3083    // This is a C++ destructor declaration.
3084    if (DC->isRecord()) {
3085      R = CheckDestructorDeclarator(D, R, SC);
3086
3087      NewFD = CXXDestructorDecl::Create(Context,
3088                                        cast<CXXRecordDecl>(DC),
3089                                        NameInfo, R,
3090                                        isInline,
3091                                        /*isImplicitlyDeclared=*/false);
3092      NewFD->setTypeSourceInfo(TInfo);
3093
3094      isVirtualOkay = true;
3095    } else {
3096      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3097
3098      // Create a FunctionDecl to satisfy the function definition parsing
3099      // code path.
3100      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3101                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3102                                   /*hasPrototype=*/true);
3103      D.setInvalidType();
3104    }
3105  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3106    if (!DC->isRecord()) {
3107      Diag(D.getIdentifierLoc(),
3108           diag::err_conv_function_not_member);
3109      return 0;
3110    }
3111
3112    CheckConversionDeclarator(D, R, SC);
3113    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3114                                      NameInfo, R, TInfo,
3115                                      isInline, isExplicit);
3116
3117    isVirtualOkay = true;
3118  } else if (DC->isRecord()) {
3119    // If the of the function is the same as the name of the record, then this
3120    // must be an invalid constructor that has a return type.
3121    // (The parser checks for a return type and makes the declarator a
3122    // constructor if it has no return type).
3123    // must have an invalid constructor that has a return type
3124    if (Name.getAsIdentifierInfo() &&
3125        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3126      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3127        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3128        << SourceRange(D.getIdentifierLoc());
3129      return 0;
3130    }
3131
3132    bool isStatic = SC == FunctionDecl::Static;
3133
3134    // [class.free]p1:
3135    // Any allocation function for a class T is a static member
3136    // (even if not explicitly declared static).
3137    if (Name.getCXXOverloadedOperator() == OO_New ||
3138        Name.getCXXOverloadedOperator() == OO_Array_New)
3139      isStatic = true;
3140
3141    // [class.free]p6 Any deallocation function for a class X is a static member
3142    // (even if not explicitly declared static).
3143    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3144        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3145      isStatic = true;
3146
3147    // This is a C++ method declaration.
3148    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3149                                  NameInfo, R, TInfo,
3150                                  isStatic, SCAsWritten, isInline);
3151
3152    isVirtualOkay = !isStatic;
3153  } else {
3154    // Determine whether the function was written with a
3155    // prototype. This true when:
3156    //   - we're in C++ (where every function has a prototype),
3157    //   - there is a prototype in the declarator, or
3158    //   - the type R of the function is some kind of typedef or other reference
3159    //     to a type name (which eventually refers to a function type).
3160    bool HasPrototype =
3161       getLangOptions().CPlusPlus ||
3162       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3163       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3164
3165    NewFD = FunctionDecl::Create(Context, DC,
3166                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3167                                 HasPrototype);
3168  }
3169
3170  if (D.isInvalidType())
3171    NewFD->setInvalidDecl();
3172
3173  SetNestedNameSpecifier(NewFD, D);
3174
3175  // Set the lexical context. If the declarator has a C++
3176  // scope specifier, or is the object of a friend declaration, the
3177  // lexical context will be different from the semantic context.
3178  NewFD->setLexicalDeclContext(CurContext);
3179
3180  // Match up the template parameter lists with the scope specifier, then
3181  // determine whether we have a template or a template specialization.
3182  FunctionTemplateDecl *FunctionTemplate = 0;
3183  bool isExplicitSpecialization = false;
3184  bool isFunctionTemplateSpecialization = false;
3185  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3186  bool Invalid = false;
3187  if (TemplateParameterList *TemplateParams
3188        = MatchTemplateParametersToScopeSpecifier(
3189                                  D.getDeclSpec().getSourceRange().getBegin(),
3190                                  D.getCXXScopeSpec(),
3191                           (TemplateParameterList**)TemplateParamLists.get(),
3192                                                  TemplateParamLists.size(),
3193                                                  isFriend,
3194                                                  isExplicitSpecialization,
3195                                                  Invalid)) {
3196    // All but one template parameter lists have been matching.
3197    --NumMatchedTemplateParamLists;
3198
3199    if (TemplateParams->size() > 0) {
3200      // This is a function template
3201
3202      // Check that we can declare a template here.
3203      if (CheckTemplateDeclScope(S, TemplateParams))
3204        return 0;
3205
3206      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3207                                                      NewFD->getLocation(),
3208                                                      Name, TemplateParams,
3209                                                      NewFD);
3210      FunctionTemplate->setLexicalDeclContext(CurContext);
3211      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3212    } else {
3213      // This is a function template specialization.
3214      isFunctionTemplateSpecialization = true;
3215
3216      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3217      if (isFriend && isFunctionTemplateSpecialization) {
3218        // We want to remove the "template<>", found here.
3219        SourceRange RemoveRange = TemplateParams->getSourceRange();
3220
3221        // If we remove the template<> and the name is not a
3222        // template-id, we're actually silently creating a problem:
3223        // the friend declaration will refer to an untemplated decl,
3224        // and clearly the user wants a template specialization.  So
3225        // we need to insert '<>' after the name.
3226        SourceLocation InsertLoc;
3227        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3228          InsertLoc = D.getName().getSourceRange().getEnd();
3229          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3230        }
3231
3232        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3233          << Name << RemoveRange
3234          << FixItHint::CreateRemoval(RemoveRange)
3235          << FixItHint::CreateInsertion(InsertLoc, "<>");
3236      }
3237    }
3238  }
3239
3240  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3241    NewFD->setTemplateParameterListsInfo(Context,
3242                                         NumMatchedTemplateParamLists,
3243                        (TemplateParameterList**)TemplateParamLists.release());
3244  }
3245
3246  if (Invalid) {
3247    NewFD->setInvalidDecl();
3248    if (FunctionTemplate)
3249      FunctionTemplate->setInvalidDecl();
3250  }
3251
3252  // C++ [dcl.fct.spec]p5:
3253  //   The virtual specifier shall only be used in declarations of
3254  //   nonstatic class member functions that appear within a
3255  //   member-specification of a class declaration; see 10.3.
3256  //
3257  if (isVirtual && !NewFD->isInvalidDecl()) {
3258    if (!isVirtualOkay) {
3259       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3260           diag::err_virtual_non_function);
3261    } else if (!CurContext->isRecord()) {
3262      // 'virtual' was specified outside of the class.
3263      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3264        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3265    } else {
3266      // Okay: Add virtual to the method.
3267      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3268      CurClass->setMethodAsVirtual(NewFD);
3269    }
3270  }
3271
3272  // C++ [dcl.fct.spec]p3:
3273  //  The inline specifier shall not appear on a block scope function declaration.
3274  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3275    if (CurContext->isFunctionOrMethod()) {
3276      // 'inline' is not allowed on block scope function declaration.
3277      Diag(D.getDeclSpec().getInlineSpecLoc(),
3278           diag::err_inline_declaration_block_scope) << Name
3279        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3280    }
3281  }
3282
3283  // C++ [dcl.fct.spec]p6:
3284  //  The explicit specifier shall be used only in the declaration of a
3285  //  constructor or conversion function within its class definition; see 12.3.1
3286  //  and 12.3.2.
3287  if (isExplicit && !NewFD->isInvalidDecl()) {
3288    if (!CurContext->isRecord()) {
3289      // 'explicit' was specified outside of the class.
3290      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3291           diag::err_explicit_out_of_class)
3292        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3293    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3294               !isa<CXXConversionDecl>(NewFD)) {
3295      // 'explicit' was specified on a function that wasn't a constructor
3296      // or conversion function.
3297      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3298           diag::err_explicit_non_ctor_or_conv_function)
3299        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3300    }
3301  }
3302
3303  // Filter out previous declarations that don't match the scope.
3304  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3305
3306  if (isFriend) {
3307    // DC is the namespace in which the function is being declared.
3308    assert((DC->isFileContext() || !Previous.empty()) &&
3309           "previously-undeclared friend function being created "
3310           "in a non-namespace context");
3311
3312    // For now, claim that the objects have no previous declaration.
3313    if (FunctionTemplate) {
3314      FunctionTemplate->setObjectOfFriendDecl(false);
3315      FunctionTemplate->setAccess(AS_public);
3316    }
3317    NewFD->setObjectOfFriendDecl(false);
3318    NewFD->setAccess(AS_public);
3319  }
3320
3321  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3322      !CurContext->isRecord()) {
3323    // C++ [class.static]p1:
3324    //   A data or function member of a class may be declared static
3325    //   in a class definition, in which case it is a static member of
3326    //   the class.
3327
3328    // Complain about the 'static' specifier if it's on an out-of-line
3329    // member function definition.
3330    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3331         diag::err_static_out_of_line)
3332      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3333  }
3334
3335  // Handle GNU asm-label extension (encoded as an attribute).
3336  if (Expr *E = (Expr*) D.getAsmLabel()) {
3337    // The parser guarantees this is a string.
3338    StringLiteral *SE = cast<StringLiteral>(E);
3339    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3340  }
3341
3342  // Copy the parameter declarations from the declarator D to the function
3343  // declaration NewFD, if they are available.  First scavenge them into Params.
3344  llvm::SmallVector<ParmVarDecl*, 16> Params;
3345  if (D.getNumTypeObjects() > 0) {
3346    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3347
3348    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3349    // function that takes no arguments, not a function that takes a
3350    // single void argument.
3351    // We let through "const void" here because Sema::GetTypeForDeclarator
3352    // already checks for that case.
3353    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3354        FTI.ArgInfo[0].Param &&
3355        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3356      // Empty arg list, don't push any params.
3357      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3358
3359      // In C++, the empty parameter-type-list must be spelled "void"; a
3360      // typedef of void is not permitted.
3361      if (getLangOptions().CPlusPlus &&
3362          Param->getType().getUnqualifiedType() != Context.VoidTy)
3363        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3364      // FIXME: Leaks decl?
3365    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3366      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3367        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3368        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3369        Param->setDeclContext(NewFD);
3370        Params.push_back(Param);
3371
3372        if (Param->isInvalidDecl())
3373          NewFD->setInvalidDecl();
3374      }
3375    }
3376
3377  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3378    // When we're declaring a function with a typedef, typeof, etc as in the
3379    // following example, we'll need to synthesize (unnamed)
3380    // parameters for use in the declaration.
3381    //
3382    // @code
3383    // typedef void fn(int);
3384    // fn f;
3385    // @endcode
3386
3387    // Synthesize a parameter for each argument type.
3388    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3389         AE = FT->arg_type_end(); AI != AE; ++AI) {
3390      ParmVarDecl *Param =
3391        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3392      Params.push_back(Param);
3393    }
3394  } else {
3395    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3396           "Should not need args for typedef of non-prototype fn");
3397  }
3398  // Finally, we know we have the right number of parameters, install them.
3399  NewFD->setParams(Params.data(), Params.size());
3400
3401  // If the declarator is a template-id, translate the parser's template
3402  // argument list into our AST format.
3403  bool HasExplicitTemplateArgs = false;
3404  TemplateArgumentListInfo TemplateArgs;
3405  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3406    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3407    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3408    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3409    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3410                                       TemplateId->getTemplateArgs(),
3411                                       TemplateId->NumArgs);
3412    translateTemplateArguments(TemplateArgsPtr,
3413                               TemplateArgs);
3414    TemplateArgsPtr.release();
3415
3416    HasExplicitTemplateArgs = true;
3417
3418    if (FunctionTemplate) {
3419      // FIXME: Diagnose function template with explicit template
3420      // arguments.
3421      HasExplicitTemplateArgs = false;
3422    } else if (!isFunctionTemplateSpecialization &&
3423               !D.getDeclSpec().isFriendSpecified()) {
3424      // We have encountered something that the user meant to be a
3425      // specialization (because it has explicitly-specified template
3426      // arguments) but that was not introduced with a "template<>" (or had
3427      // too few of them).
3428      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3429        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3430        << FixItHint::CreateInsertion(
3431                                   D.getDeclSpec().getSourceRange().getBegin(),
3432                                                 "template<> ");
3433      isFunctionTemplateSpecialization = true;
3434    } else {
3435      // "friend void foo<>(int);" is an implicit specialization decl.
3436      isFunctionTemplateSpecialization = true;
3437    }
3438  } else if (isFriend && isFunctionTemplateSpecialization) {
3439    // This combination is only possible in a recovery case;  the user
3440    // wrote something like:
3441    //   template <> friend void foo(int);
3442    // which we're recovering from as if the user had written:
3443    //   friend void foo<>(int);
3444    // Go ahead and fake up a template id.
3445    HasExplicitTemplateArgs = true;
3446    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3447    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3448  }
3449
3450  // If it's a friend (and only if it's a friend), it's possible
3451  // that either the specialized function type or the specialized
3452  // template is dependent, and therefore matching will fail.  In
3453  // this case, don't check the specialization yet.
3454  if (isFunctionTemplateSpecialization && isFriend &&
3455      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3456    assert(HasExplicitTemplateArgs &&
3457           "friend function specialization without template args");
3458    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3459                                                     Previous))
3460      NewFD->setInvalidDecl();
3461  } else if (isFunctionTemplateSpecialization) {
3462    if (CheckFunctionTemplateSpecialization(NewFD,
3463                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3464                                            Previous))
3465      NewFD->setInvalidDecl();
3466  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3467    if (CheckMemberSpecialization(NewFD, Previous))
3468      NewFD->setInvalidDecl();
3469  }
3470
3471  // Perform semantic checking on the function declaration.
3472  bool OverloadableAttrRequired = false; // FIXME: HACK!
3473  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3474                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3475
3476  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3477          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3478         "previous declaration set still overloaded");
3479
3480  NamedDecl *PrincipalDecl = (FunctionTemplate
3481                              ? cast<NamedDecl>(FunctionTemplate)
3482                              : NewFD);
3483
3484  if (isFriend && Redeclaration) {
3485    AccessSpecifier Access = AS_public;
3486    if (!NewFD->isInvalidDecl())
3487      Access = NewFD->getPreviousDeclaration()->getAccess();
3488
3489    NewFD->setAccess(Access);
3490    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3491
3492    PrincipalDecl->setObjectOfFriendDecl(true);
3493  }
3494
3495  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3496      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3497    PrincipalDecl->setNonMemberOperator();
3498
3499  // If we have a function template, check the template parameter
3500  // list. This will check and merge default template arguments.
3501  if (FunctionTemplate) {
3502    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3503    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3504                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3505             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3506                                                : TPC_FunctionTemplate);
3507  }
3508
3509  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3510    // Fake up an access specifier if it's supposed to be a class member.
3511    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3512      NewFD->setAccess(AS_public);
3513
3514    // An out-of-line member function declaration must also be a
3515    // definition (C++ [dcl.meaning]p1).
3516    // Note that this is not the case for explicit specializations of
3517    // function templates or member functions of class templates, per
3518    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3519    // for compatibility with old SWIG code which likes to generate them.
3520    if (!IsFunctionDefinition && !isFriend &&
3521        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3522      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3523        << D.getCXXScopeSpec().getRange();
3524    }
3525    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3526      // The user tried to provide an out-of-line definition for a
3527      // function that is a member of a class or namespace, but there
3528      // was no such member function declared (C++ [class.mfct]p2,
3529      // C++ [namespace.memdef]p2). For example:
3530      //
3531      // class X {
3532      //   void f() const;
3533      // };
3534      //
3535      // void X::f() { } // ill-formed
3536      //
3537      // Complain about this problem, and attempt to suggest close
3538      // matches (e.g., those that differ only in cv-qualifiers and
3539      // whether the parameter types are references).
3540      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3541        << Name << DC << D.getCXXScopeSpec().getRange();
3542      NewFD->setInvalidDecl();
3543
3544      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3545                        ForRedeclaration);
3546      LookupQualifiedName(Prev, DC);
3547      assert(!Prev.isAmbiguous() &&
3548             "Cannot have an ambiguity in previous-declaration lookup");
3549      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3550           Func != FuncEnd; ++Func) {
3551        if (isa<FunctionDecl>(*Func) &&
3552            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3553          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3554      }
3555    }
3556  }
3557
3558  // Handle attributes. We need to have merged decls when handling attributes
3559  // (for example to check for conflicts, etc).
3560  // FIXME: This needs to happen before we merge declarations. Then,
3561  // let attribute merging cope with attribute conflicts.
3562  ProcessDeclAttributes(S, NewFD, D);
3563
3564  // attributes declared post-definition are currently ignored
3565  if (Redeclaration && Previous.isSingleResult()) {
3566    const FunctionDecl *Def;
3567    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3568    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3569      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3570      Diag(Def->getLocation(), diag::note_previous_definition);
3571    }
3572  }
3573
3574  AddKnownFunctionAttributes(NewFD);
3575
3576  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3577    // If a function name is overloadable in C, then every function
3578    // with that name must be marked "overloadable".
3579    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3580      << Redeclaration << NewFD;
3581    if (!Previous.empty())
3582      Diag(Previous.getRepresentativeDecl()->getLocation(),
3583           diag::note_attribute_overloadable_prev_overload);
3584    NewFD->addAttr(::new (Context) OverloadableAttr());
3585  }
3586
3587  if (NewFD->hasAttr<OverloadableAttr>() &&
3588      !NewFD->getType()->getAs<FunctionProtoType>()) {
3589    Diag(NewFD->getLocation(),
3590         diag::err_attribute_overloadable_no_prototype)
3591      << NewFD;
3592
3593    // Turn this into a variadic function with no parameters.
3594    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3595    QualType R = Context.getFunctionType(FT->getResultType(),
3596                                         0, 0, true, 0, false, false, 0, 0,
3597                                         FT->getExtInfo());
3598    NewFD->setType(R);
3599  }
3600
3601  // If there's a #pragma GCC visibility in scope, and this isn't a class
3602  // member, set the visibility of this function.
3603  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3604    AddPushedVisibilityAttribute(NewFD);
3605
3606  // If this is a locally-scoped extern C function, update the
3607  // map of such names.
3608  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3609      && !NewFD->isInvalidDecl())
3610    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3611
3612  // Set this FunctionDecl's range up to the right paren.
3613  NewFD->setLocEnd(D.getSourceRange().getEnd());
3614
3615  if (FunctionTemplate && NewFD->isInvalidDecl())
3616    FunctionTemplate->setInvalidDecl();
3617
3618  if (FunctionTemplate)
3619    return FunctionTemplate;
3620
3621
3622  // Keep track of static, non-inlined function definitions that
3623  // have not been used. We will warn later.
3624  // FIXME: Also include static functions declared but not defined.
3625  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3626      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3627      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3628      && !NewFD->hasAttr<ConstructorAttr>()
3629      && !NewFD->hasAttr<DestructorAttr>())
3630    UnusedStaticFuncs.push_back(NewFD);
3631
3632  return NewFD;
3633}
3634
3635/// \brief Perform semantic checking of a new function declaration.
3636///
3637/// Performs semantic analysis of the new function declaration
3638/// NewFD. This routine performs all semantic checking that does not
3639/// require the actual declarator involved in the declaration, and is
3640/// used both for the declaration of functions as they are parsed
3641/// (called via ActOnDeclarator) and for the declaration of functions
3642/// that have been instantiated via C++ template instantiation (called
3643/// via InstantiateDecl).
3644///
3645/// \param IsExplicitSpecialiation whether this new function declaration is
3646/// an explicit specialization of the previous declaration.
3647///
3648/// This sets NewFD->isInvalidDecl() to true if there was an error.
3649void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3650                                    LookupResult &Previous,
3651                                    bool IsExplicitSpecialization,
3652                                    bool &Redeclaration,
3653                                    bool &OverloadableAttrRequired) {
3654  // If NewFD is already known erroneous, don't do any of this checking.
3655  if (NewFD->isInvalidDecl()) {
3656    // If this is a class member, mark the class invalid immediately.
3657    // This avoids some consistency errors later.
3658    if (isa<CXXMethodDecl>(NewFD))
3659      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3660
3661    return;
3662  }
3663
3664  if (NewFD->getResultType()->isVariablyModifiedType()) {
3665    // Functions returning a variably modified type violate C99 6.7.5.2p2
3666    // because all functions have linkage.
3667    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3668    return NewFD->setInvalidDecl();
3669  }
3670
3671  if (NewFD->isMain())
3672    CheckMain(NewFD);
3673
3674  // Check for a previous declaration of this name.
3675  if (Previous.empty() && NewFD->isExternC()) {
3676    // Since we did not find anything by this name and we're declaring
3677    // an extern "C" function, look for a non-visible extern "C"
3678    // declaration with the same name.
3679    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3680      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3681    if (Pos != LocallyScopedExternalDecls.end())
3682      Previous.addDecl(Pos->second);
3683  }
3684
3685  // Merge or overload the declaration with an existing declaration of
3686  // the same name, if appropriate.
3687  if (!Previous.empty()) {
3688    // Determine whether NewFD is an overload of PrevDecl or
3689    // a declaration that requires merging. If it's an overload,
3690    // there's no more work to do here; we'll just add the new
3691    // function to the scope.
3692
3693    NamedDecl *OldDecl = 0;
3694    if (!AllowOverloadingOfFunction(Previous, Context)) {
3695      Redeclaration = true;
3696      OldDecl = Previous.getFoundDecl();
3697    } else {
3698      if (!getLangOptions().CPlusPlus)
3699        OverloadableAttrRequired = true;
3700
3701      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3702                            /*NewIsUsingDecl*/ false)) {
3703      case Ovl_Match:
3704        Redeclaration = true;
3705        break;
3706
3707      case Ovl_NonFunction:
3708        Redeclaration = true;
3709        break;
3710
3711      case Ovl_Overload:
3712        Redeclaration = false;
3713        break;
3714      }
3715    }
3716
3717    if (Redeclaration) {
3718      // NewFD and OldDecl represent declarations that need to be
3719      // merged.
3720      if (MergeFunctionDecl(NewFD, OldDecl))
3721        return NewFD->setInvalidDecl();
3722
3723      Previous.clear();
3724      Previous.addDecl(OldDecl);
3725
3726      if (FunctionTemplateDecl *OldTemplateDecl
3727                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3728        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3729        FunctionTemplateDecl *NewTemplateDecl
3730          = NewFD->getDescribedFunctionTemplate();
3731        assert(NewTemplateDecl && "Template/non-template mismatch");
3732        if (CXXMethodDecl *Method
3733              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3734          Method->setAccess(OldTemplateDecl->getAccess());
3735          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3736        }
3737
3738        // If this is an explicit specialization of a member that is a function
3739        // template, mark it as a member specialization.
3740        if (IsExplicitSpecialization &&
3741            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3742          NewTemplateDecl->setMemberSpecialization();
3743          assert(OldTemplateDecl->isMemberSpecialization());
3744        }
3745      } else {
3746        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3747          NewFD->setAccess(OldDecl->getAccess());
3748        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3749      }
3750    }
3751  }
3752
3753  // Semantic checking for this function declaration (in isolation).
3754  if (getLangOptions().CPlusPlus) {
3755    // C++-specific checks.
3756    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3757      CheckConstructor(Constructor);
3758    } else if (CXXDestructorDecl *Destructor =
3759                dyn_cast<CXXDestructorDecl>(NewFD)) {
3760      CXXRecordDecl *Record = Destructor->getParent();
3761      QualType ClassType = Context.getTypeDeclType(Record);
3762
3763      // FIXME: Shouldn't we be able to perform this check even when the class
3764      // type is dependent? Both gcc and edg can handle that.
3765      if (!ClassType->isDependentType()) {
3766        DeclarationName Name
3767          = Context.DeclarationNames.getCXXDestructorName(
3768                                        Context.getCanonicalType(ClassType));
3769//         NewFD->getDeclName().dump();
3770//         Name.dump();
3771        if (NewFD->getDeclName() != Name) {
3772          Diag(NewFD->getLocation(), diag::err_destructor_name);
3773          return NewFD->setInvalidDecl();
3774        }
3775      }
3776
3777      Record->setUserDeclaredDestructor(true);
3778      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3779      // user-defined destructor.
3780      Record->setPOD(false);
3781
3782      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3783      // declared destructor.
3784      // FIXME: C++0x: don't do this for "= default" destructors
3785      Record->setHasTrivialDestructor(false);
3786    } else if (CXXConversionDecl *Conversion
3787               = dyn_cast<CXXConversionDecl>(NewFD)) {
3788      ActOnConversionDeclarator(Conversion);
3789    }
3790
3791    // Find any virtual functions that this function overrides.
3792    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3793      if (!Method->isFunctionTemplateSpecialization() &&
3794          !Method->getDescribedFunctionTemplate())
3795        AddOverriddenMethods(Method->getParent(), Method);
3796    }
3797
3798    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3799    if (NewFD->isOverloadedOperator() &&
3800        CheckOverloadedOperatorDeclaration(NewFD))
3801      return NewFD->setInvalidDecl();
3802
3803    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3804    if (NewFD->getLiteralIdentifier() &&
3805        CheckLiteralOperatorDeclaration(NewFD))
3806      return NewFD->setInvalidDecl();
3807
3808    // In C++, check default arguments now that we have merged decls. Unless
3809    // the lexical context is the class, because in this case this is done
3810    // during delayed parsing anyway.
3811    if (!CurContext->isRecord())
3812      CheckCXXDefaultArguments(NewFD);
3813  }
3814}
3815
3816void Sema::CheckMain(FunctionDecl* FD) {
3817  // C++ [basic.start.main]p3:  A program that declares main to be inline
3818  //   or static is ill-formed.
3819  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3820  //   shall not appear in a declaration of main.
3821  // static main is not an error under C99, but we should warn about it.
3822  bool isInline = FD->isInlineSpecified();
3823  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3824  if (isInline || isStatic) {
3825    unsigned diagID = diag::warn_unusual_main_decl;
3826    if (isInline || getLangOptions().CPlusPlus)
3827      diagID = diag::err_unusual_main_decl;
3828
3829    int which = isStatic + (isInline << 1) - 1;
3830    Diag(FD->getLocation(), diagID) << which;
3831  }
3832
3833  QualType T = FD->getType();
3834  assert(T->isFunctionType() && "function decl is not of function type");
3835  const FunctionType* FT = T->getAs<FunctionType>();
3836
3837  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3838    // TODO: add a replacement fixit to turn the return type into 'int'.
3839    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3840    FD->setInvalidDecl(true);
3841  }
3842
3843  // Treat protoless main() as nullary.
3844  if (isa<FunctionNoProtoType>(FT)) return;
3845
3846  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3847  unsigned nparams = FTP->getNumArgs();
3848  assert(FD->getNumParams() == nparams);
3849
3850  bool HasExtraParameters = (nparams > 3);
3851
3852  // Darwin passes an undocumented fourth argument of type char**.  If
3853  // other platforms start sprouting these, the logic below will start
3854  // getting shifty.
3855  if (nparams == 4 &&
3856      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3857    HasExtraParameters = false;
3858
3859  if (HasExtraParameters) {
3860    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3861    FD->setInvalidDecl(true);
3862    nparams = 3;
3863  }
3864
3865  // FIXME: a lot of the following diagnostics would be improved
3866  // if we had some location information about types.
3867
3868  QualType CharPP =
3869    Context.getPointerType(Context.getPointerType(Context.CharTy));
3870  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3871
3872  for (unsigned i = 0; i < nparams; ++i) {
3873    QualType AT = FTP->getArgType(i);
3874
3875    bool mismatch = true;
3876
3877    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3878      mismatch = false;
3879    else if (Expected[i] == CharPP) {
3880      // As an extension, the following forms are okay:
3881      //   char const **
3882      //   char const * const *
3883      //   char * const *
3884
3885      QualifierCollector qs;
3886      const PointerType* PT;
3887      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3888          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3889          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3890        qs.removeConst();
3891        mismatch = !qs.empty();
3892      }
3893    }
3894
3895    if (mismatch) {
3896      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3897      // TODO: suggest replacing given type with expected type
3898      FD->setInvalidDecl(true);
3899    }
3900  }
3901
3902  if (nparams == 1 && !FD->isInvalidDecl()) {
3903    Diag(FD->getLocation(), diag::warn_main_one_arg);
3904  }
3905}
3906
3907bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3908  // FIXME: Need strict checking.  In C89, we need to check for
3909  // any assignment, increment, decrement, function-calls, or
3910  // commas outside of a sizeof.  In C99, it's the same list,
3911  // except that the aforementioned are allowed in unevaluated
3912  // expressions.  Everything else falls under the
3913  // "may accept other forms of constant expressions" exception.
3914  // (We never end up here for C++, so the constant expression
3915  // rules there don't matter.)
3916  if (Init->isConstantInitializer(Context, false))
3917    return false;
3918  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3919    << Init->getSourceRange();
3920  return true;
3921}
3922
3923void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3924  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3925}
3926
3927/// AddInitializerToDecl - Adds the initializer Init to the
3928/// declaration dcl. If DirectInit is true, this is C++ direct
3929/// initialization rather than copy initialization.
3930void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3931  Decl *RealDecl = dcl.getAs<Decl>();
3932  // If there is no declaration, there was an error parsing it.  Just ignore
3933  // the initializer.
3934  if (RealDecl == 0)
3935    return;
3936
3937  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3938    // With declarators parsed the way they are, the parser cannot
3939    // distinguish between a normal initializer and a pure-specifier.
3940    // Thus this grotesque test.
3941    IntegerLiteral *IL;
3942    Expr *Init = static_cast<Expr *>(init.get());
3943    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3944        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3945      CheckPureMethod(Method, Init->getSourceRange());
3946    else {
3947      Diag(Method->getLocation(), diag::err_member_function_initialization)
3948        << Method->getDeclName() << Init->getSourceRange();
3949      Method->setInvalidDecl();
3950    }
3951    return;
3952  }
3953
3954  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3955  if (!VDecl) {
3956    if (getLangOptions().CPlusPlus &&
3957        RealDecl->getLexicalDeclContext()->isRecord() &&
3958        isa<NamedDecl>(RealDecl))
3959      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3960        << cast<NamedDecl>(RealDecl)->getDeclName();
3961    else
3962      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3963    RealDecl->setInvalidDecl();
3964    return;
3965  }
3966
3967  // A definition must end up with a complete type, which means it must be
3968  // complete with the restriction that an array type might be completed by the
3969  // initializer; note that later code assumes this restriction.
3970  QualType BaseDeclType = VDecl->getType();
3971  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3972    BaseDeclType = Array->getElementType();
3973  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3974                          diag::err_typecheck_decl_incomplete_type)) {
3975    RealDecl->setInvalidDecl();
3976    return;
3977  }
3978
3979  // The variable can not have an abstract class type.
3980  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3981                             diag::err_abstract_type_in_decl,
3982                             AbstractVariableType))
3983    VDecl->setInvalidDecl();
3984
3985  const VarDecl *Def;
3986  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3987    Diag(VDecl->getLocation(), diag::err_redefinition)
3988      << VDecl->getDeclName();
3989    Diag(Def->getLocation(), diag::note_previous_definition);
3990    VDecl->setInvalidDecl();
3991    return;
3992  }
3993
3994  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
3995    setFunctionHasBranchProtectedScope();
3996
3997  // Take ownership of the expression, now that we're sure we have somewhere
3998  // to put it.
3999  Expr *Init = init.takeAs<Expr>();
4000  assert(Init && "missing initializer");
4001
4002  // Capture the variable that is being initialized and the style of
4003  // initialization.
4004  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4005
4006  // FIXME: Poor source location information.
4007  InitializationKind Kind
4008    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4009                                                   Init->getLocStart(),
4010                                                   Init->getLocEnd())
4011                : InitializationKind::CreateCopy(VDecl->getLocation(),
4012                                                 Init->getLocStart());
4013
4014  // Get the decls type and save a reference for later, since
4015  // CheckInitializerTypes may change it.
4016  QualType DclT = VDecl->getType(), SavT = DclT;
4017  if (VDecl->isBlockVarDecl()) {
4018    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4019      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4020      VDecl->setInvalidDecl();
4021    } else if (!VDecl->isInvalidDecl()) {
4022      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4023      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4024                                          MultiExprArg(*this, (void**)&Init, 1),
4025                                                &DclT);
4026      if (Result.isInvalid()) {
4027        VDecl->setInvalidDecl();
4028        return;
4029      }
4030
4031      Init = Result.takeAs<Expr>();
4032
4033      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4034      // Don't check invalid declarations to avoid emitting useless diagnostics.
4035      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4036        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
4037          CheckForConstantInitializer(Init, DclT);
4038      }
4039    }
4040  } else if (VDecl->isStaticDataMember() &&
4041             VDecl->getLexicalDeclContext()->isRecord()) {
4042    // This is an in-class initialization for a static data member, e.g.,
4043    //
4044    // struct S {
4045    //   static const int value = 17;
4046    // };
4047
4048    // Attach the initializer
4049    VDecl->setInit(Init);
4050
4051    // C++ [class.mem]p4:
4052    //   A member-declarator can contain a constant-initializer only
4053    //   if it declares a static member (9.4) of const integral or
4054    //   const enumeration type, see 9.4.2.
4055    QualType T = VDecl->getType();
4056    if (!T->isDependentType() &&
4057        (!Context.getCanonicalType(T).isConstQualified() ||
4058         !T->isIntegralOrEnumerationType())) {
4059      Diag(VDecl->getLocation(), diag::err_member_initialization)
4060        << VDecl->getDeclName() << Init->getSourceRange();
4061      VDecl->setInvalidDecl();
4062    } else {
4063      // C++ [class.static.data]p4:
4064      //   If a static data member is of const integral or const
4065      //   enumeration type, its declaration in the class definition
4066      //   can specify a constant-initializer which shall be an
4067      //   integral constant expression (5.19).
4068      if (!Init->isTypeDependent() &&
4069          !Init->getType()->isIntegralOrEnumerationType()) {
4070        // We have a non-dependent, non-integral or enumeration type.
4071        Diag(Init->getSourceRange().getBegin(),
4072             diag::err_in_class_initializer_non_integral_type)
4073          << Init->getType() << Init->getSourceRange();
4074        VDecl->setInvalidDecl();
4075      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4076        // Check whether the expression is a constant expression.
4077        llvm::APSInt Value;
4078        SourceLocation Loc;
4079        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4080          Diag(Loc, diag::err_in_class_initializer_non_constant)
4081            << Init->getSourceRange();
4082          VDecl->setInvalidDecl();
4083        } else if (!VDecl->getType()->isDependentType())
4084          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4085      }
4086    }
4087  } else if (VDecl->isFileVarDecl()) {
4088    if (VDecl->getStorageClass() == VarDecl::Extern &&
4089        (!getLangOptions().CPlusPlus ||
4090         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4091      Diag(VDecl->getLocation(), diag::warn_extern_init);
4092    if (!VDecl->isInvalidDecl()) {
4093      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4094      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4095                                          MultiExprArg(*this, (void**)&Init, 1),
4096                                                &DclT);
4097      if (Result.isInvalid()) {
4098        VDecl->setInvalidDecl();
4099        return;
4100      }
4101
4102      Init = Result.takeAs<Expr>();
4103    }
4104
4105    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4106    // Don't check invalid declarations to avoid emitting useless diagnostics.
4107    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4108      // C99 6.7.8p4. All file scoped initializers need to be constant.
4109      CheckForConstantInitializer(Init, DclT);
4110    }
4111  }
4112  // If the type changed, it means we had an incomplete type that was
4113  // completed by the initializer. For example:
4114  //   int ary[] = { 1, 3, 5 };
4115  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4116  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4117    VDecl->setType(DclT);
4118    Init->setType(DclT);
4119  }
4120
4121  Init = MaybeCreateCXXExprWithTemporaries(Init);
4122  // Attach the initializer to the decl.
4123  VDecl->setInit(Init);
4124
4125  if (getLangOptions().CPlusPlus) {
4126    if (!VDecl->isInvalidDecl() &&
4127        !VDecl->getDeclContext()->isDependentContext() &&
4128        VDecl->hasGlobalStorage() &&
4129        !Init->isConstantInitializer(Context,
4130                                     VDecl->getType()->isReferenceType()))
4131      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4132        << Init->getSourceRange();
4133
4134    // Make sure we mark the destructor as used if necessary.
4135    QualType InitType = VDecl->getType();
4136    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4137      InitType = Context.getBaseElementType(Array);
4138    if (const RecordType *Record = InitType->getAs<RecordType>())
4139      FinalizeVarWithDestructor(VDecl, Record);
4140  }
4141
4142  return;
4143}
4144
4145/// ActOnInitializerError - Given that there was an error parsing an
4146/// initializer for the given declaration, try to return to some form
4147/// of sanity.
4148void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4149  // Our main concern here is re-establishing invariants like "a
4150  // variable's type is either dependent or complete".
4151  Decl *D = dcl.getAs<Decl>();
4152  if (!D || D->isInvalidDecl()) return;
4153
4154  VarDecl *VD = dyn_cast<VarDecl>(D);
4155  if (!VD) return;
4156
4157  QualType Ty = VD->getType();
4158  if (Ty->isDependentType()) return;
4159
4160  // Require a complete type.
4161  if (RequireCompleteType(VD->getLocation(),
4162                          Context.getBaseElementType(Ty),
4163                          diag::err_typecheck_decl_incomplete_type)) {
4164    VD->setInvalidDecl();
4165    return;
4166  }
4167
4168  // Require an abstract type.
4169  if (RequireNonAbstractType(VD->getLocation(), Ty,
4170                             diag::err_abstract_type_in_decl,
4171                             AbstractVariableType)) {
4172    VD->setInvalidDecl();
4173    return;
4174  }
4175
4176  // Don't bother complaining about constructors or destructors,
4177  // though.
4178}
4179
4180void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4181                                  bool TypeContainsUndeducedAuto) {
4182  Decl *RealDecl = dcl.getAs<Decl>();
4183
4184  // If there is no declaration, there was an error parsing it. Just ignore it.
4185  if (RealDecl == 0)
4186    return;
4187
4188  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4189    QualType Type = Var->getType();
4190
4191    // C++0x [dcl.spec.auto]p3
4192    if (TypeContainsUndeducedAuto) {
4193      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4194        << Var->getDeclName() << Type;
4195      Var->setInvalidDecl();
4196      return;
4197    }
4198
4199    switch (Var->isThisDeclarationADefinition()) {
4200    case VarDecl::Definition:
4201      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4202        break;
4203
4204      // We have an out-of-line definition of a static data member
4205      // that has an in-class initializer, so we type-check this like
4206      // a declaration.
4207      //
4208      // Fall through
4209
4210    case VarDecl::DeclarationOnly:
4211      // It's only a declaration.
4212
4213      // Block scope. C99 6.7p7: If an identifier for an object is
4214      // declared with no linkage (C99 6.2.2p6), the type for the
4215      // object shall be complete.
4216      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4217          !Var->getLinkage() && !Var->isInvalidDecl() &&
4218          RequireCompleteType(Var->getLocation(), Type,
4219                              diag::err_typecheck_decl_incomplete_type))
4220        Var->setInvalidDecl();
4221
4222      // Make sure that the type is not abstract.
4223      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4224          RequireNonAbstractType(Var->getLocation(), Type,
4225                                 diag::err_abstract_type_in_decl,
4226                                 AbstractVariableType))
4227        Var->setInvalidDecl();
4228      return;
4229
4230    case VarDecl::TentativeDefinition:
4231      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4232      // object that has file scope without an initializer, and without a
4233      // storage-class specifier or with the storage-class specifier "static",
4234      // constitutes a tentative definition. Note: A tentative definition with
4235      // external linkage is valid (C99 6.2.2p5).
4236      if (!Var->isInvalidDecl()) {
4237        if (const IncompleteArrayType *ArrayT
4238                                    = Context.getAsIncompleteArrayType(Type)) {
4239          if (RequireCompleteType(Var->getLocation(),
4240                                  ArrayT->getElementType(),
4241                                  diag::err_illegal_decl_array_incomplete_type))
4242            Var->setInvalidDecl();
4243        } else if (Var->getStorageClass() == VarDecl::Static) {
4244          // C99 6.9.2p3: If the declaration of an identifier for an object is
4245          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4246          // declared type shall not be an incomplete type.
4247          // NOTE: code such as the following
4248          //     static struct s;
4249          //     struct s { int a; };
4250          // is accepted by gcc. Hence here we issue a warning instead of
4251          // an error and we do not invalidate the static declaration.
4252          // NOTE: to avoid multiple warnings, only check the first declaration.
4253          if (Var->getPreviousDeclaration() == 0)
4254            RequireCompleteType(Var->getLocation(), Type,
4255                                diag::ext_typecheck_decl_incomplete_type);
4256        }
4257      }
4258
4259      // Record the tentative definition; we're done.
4260      if (!Var->isInvalidDecl())
4261        TentativeDefinitions.push_back(Var);
4262      return;
4263    }
4264
4265    // Provide a specific diagnostic for uninitialized variable
4266    // definitions with incomplete array type.
4267    if (Type->isIncompleteArrayType()) {
4268      Diag(Var->getLocation(),
4269           diag::err_typecheck_incomplete_array_needs_initializer);
4270      Var->setInvalidDecl();
4271      return;
4272    }
4273
4274    // Provide a specific diagnostic for uninitialized variable
4275    // definitions with reference type.
4276    if (Type->isReferenceType()) {
4277      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4278        << Var->getDeclName()
4279        << SourceRange(Var->getLocation(), Var->getLocation());
4280      Var->setInvalidDecl();
4281      return;
4282    }
4283
4284    // Do not attempt to type-check the default initializer for a
4285    // variable with dependent type.
4286    if (Type->isDependentType())
4287      return;
4288
4289    if (Var->isInvalidDecl())
4290      return;
4291
4292    if (RequireCompleteType(Var->getLocation(),
4293                            Context.getBaseElementType(Type),
4294                            diag::err_typecheck_decl_incomplete_type)) {
4295      Var->setInvalidDecl();
4296      return;
4297    }
4298
4299    // The variable can not have an abstract class type.
4300    if (RequireNonAbstractType(Var->getLocation(), Type,
4301                               diag::err_abstract_type_in_decl,
4302                               AbstractVariableType)) {
4303      Var->setInvalidDecl();
4304      return;
4305    }
4306
4307    const RecordType *Record
4308      = Context.getBaseElementType(Type)->getAs<RecordType>();
4309    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4310        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4311      // C++03 [dcl.init]p9:
4312      //   If no initializer is specified for an object, and the
4313      //   object is of (possibly cv-qualified) non-POD class type (or
4314      //   array thereof), the object shall be default-initialized; if
4315      //   the object is of const-qualified type, the underlying class
4316      //   type shall have a user-declared default
4317      //   constructor. Otherwise, if no initializer is specified for
4318      //   a non- static object, the object and its subobjects, if
4319      //   any, have an indeterminate initial value); if the object
4320      //   or any of its subobjects are of const-qualified type, the
4321      //   program is ill-formed.
4322      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4323    } else {
4324      // Check for jumps past the implicit initializer.  C++0x
4325      // clarifies that this applies to a "variable with automatic
4326      // storage duration", not a "local variable".
4327      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4328        setFunctionHasBranchProtectedScope();
4329
4330      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4331      InitializationKind Kind
4332        = InitializationKind::CreateDefault(Var->getLocation());
4333
4334      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4335      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4336                                              MultiExprArg(*this, 0, 0));
4337      if (Init.isInvalid())
4338        Var->setInvalidDecl();
4339      else if (Init.get()) {
4340        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4341
4342        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4343            Var->hasGlobalStorage() &&
4344            !Var->getDeclContext()->isDependentContext() &&
4345            !Var->getInit()->isConstantInitializer(Context, false))
4346          Diag(Var->getLocation(), diag::warn_global_constructor);
4347      }
4348    }
4349
4350    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4351      FinalizeVarWithDestructor(Var, Record);
4352  }
4353}
4354
4355Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4356                                                   DeclPtrTy *Group,
4357                                                   unsigned NumDecls) {
4358  llvm::SmallVector<Decl*, 8> Decls;
4359
4360  if (DS.isTypeSpecOwned())
4361    Decls.push_back((Decl*)DS.getTypeRep());
4362
4363  for (unsigned i = 0; i != NumDecls; ++i)
4364    if (Decl *D = Group[i].getAs<Decl>())
4365      Decls.push_back(D);
4366
4367  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4368                                                   Decls.data(), Decls.size()));
4369}
4370
4371
4372/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4373/// to introduce parameters into function prototype scope.
4374Sema::DeclPtrTy
4375Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4376  const DeclSpec &DS = D.getDeclSpec();
4377
4378  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4379  VarDecl::StorageClass StorageClass = VarDecl::None;
4380  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4381  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4382    StorageClass = VarDecl::Register;
4383    StorageClassAsWritten = VarDecl::Register;
4384  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4385    Diag(DS.getStorageClassSpecLoc(),
4386         diag::err_invalid_storage_class_in_func_decl);
4387    D.getMutableDeclSpec().ClearStorageClassSpecs();
4388  }
4389
4390  if (D.getDeclSpec().isThreadSpecified())
4391    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4392
4393  DiagnoseFunctionSpecifiers(D);
4394
4395  // Check that there are no default arguments inside the type of this
4396  // parameter (C++ only).
4397  if (getLangOptions().CPlusPlus)
4398    CheckExtraCXXDefaultArguments(D);
4399
4400  TagDecl *OwnedDecl = 0;
4401  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4402  QualType parmDeclType = TInfo->getType();
4403
4404  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4405    // C++ [dcl.fct]p6:
4406    //   Types shall not be defined in return or parameter types.
4407    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4408      << Context.getTypeDeclType(OwnedDecl);
4409  }
4410
4411  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4412  IdentifierInfo *II = D.getIdentifier();
4413  if (II) {
4414    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4415                   ForRedeclaration);
4416    LookupName(R, S);
4417    if (R.isSingleResult()) {
4418      NamedDecl *PrevDecl = R.getFoundDecl();
4419      if (PrevDecl->isTemplateParameter()) {
4420        // Maybe we will complain about the shadowed template parameter.
4421        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4422        // Just pretend that we didn't see the previous declaration.
4423        PrevDecl = 0;
4424      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4425        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4426        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4427
4428        // Recover by removing the name
4429        II = 0;
4430        D.SetIdentifier(0, D.getIdentifierLoc());
4431        D.setInvalidType(true);
4432      }
4433    }
4434  }
4435
4436  // Temporarily put parameter variables in the translation unit, not
4437  // the enclosing context.  This prevents them from accidentally
4438  // looking like class members in C++.
4439  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4440                                    TInfo, parmDeclType, II,
4441                                    D.getIdentifierLoc(),
4442                                    StorageClass, StorageClassAsWritten);
4443
4444  if (D.isInvalidType())
4445    New->setInvalidDecl();
4446
4447  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4448  if (D.getCXXScopeSpec().isSet()) {
4449    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4450      << D.getCXXScopeSpec().getRange();
4451    New->setInvalidDecl();
4452  }
4453
4454  // Add the parameter declaration into this scope.
4455  S->AddDecl(DeclPtrTy::make(New));
4456  if (II)
4457    IdResolver.AddDecl(New);
4458
4459  ProcessDeclAttributes(S, New, D);
4460
4461  if (New->hasAttr<BlocksAttr>()) {
4462    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4463  }
4464  return DeclPtrTy::make(New);
4465}
4466
4467/// \brief Synthesizes a variable for a parameter arising from a
4468/// typedef.
4469ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4470                                              SourceLocation Loc,
4471                                              QualType T) {
4472  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4473                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4474                                           VarDecl::None, VarDecl::None, 0);
4475  Param->setImplicit();
4476  return Param;
4477}
4478
4479ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4480                                  TypeSourceInfo *TSInfo, QualType T,
4481                                  IdentifierInfo *Name,
4482                                  SourceLocation NameLoc,
4483                                  VarDecl::StorageClass StorageClass,
4484                                  VarDecl::StorageClass StorageClassAsWritten) {
4485  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4486                                         adjustParameterType(T), TSInfo,
4487                                         StorageClass, StorageClassAsWritten,
4488                                         0);
4489
4490  // Parameters can not be abstract class types.
4491  // For record types, this is done by the AbstractClassUsageDiagnoser once
4492  // the class has been completely parsed.
4493  if (!CurContext->isRecord() &&
4494      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4495                             AbstractParamType))
4496    New->setInvalidDecl();
4497
4498  // Parameter declarators cannot be interface types. All ObjC objects are
4499  // passed by reference.
4500  if (T->isObjCObjectType()) {
4501    Diag(NameLoc,
4502         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4503    New->setInvalidDecl();
4504  }
4505
4506  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4507  // duration shall not be qualified by an address-space qualifier."
4508  // Since all parameters have automatic store duration, they can not have
4509  // an address space.
4510  if (T.getAddressSpace() != 0) {
4511    Diag(NameLoc, diag::err_arg_with_address_space);
4512    New->setInvalidDecl();
4513  }
4514
4515  return New;
4516}
4517
4518void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4519                                           SourceLocation LocAfterDecls) {
4520  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4521         "Not a function declarator!");
4522  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4523
4524  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4525  // for a K&R function.
4526  if (!FTI.hasPrototype) {
4527    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4528      --i;
4529      if (FTI.ArgInfo[i].Param == 0) {
4530        llvm::SmallString<256> Code;
4531        llvm::raw_svector_ostream(Code) << "  int "
4532                                        << FTI.ArgInfo[i].Ident->getName()
4533                                        << ";\n";
4534        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4535          << FTI.ArgInfo[i].Ident
4536          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4537
4538        // Implicitly declare the argument as type 'int' for lack of a better
4539        // type.
4540        DeclSpec DS;
4541        const char* PrevSpec; // unused
4542        unsigned DiagID; // unused
4543        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4544                           PrevSpec, DiagID);
4545        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4546        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4547        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4548      }
4549    }
4550  }
4551}
4552
4553Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4554                                              Declarator &D) {
4555  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4556  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4557         "Not a function declarator!");
4558  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4559
4560  if (FTI.hasPrototype) {
4561    // FIXME: Diagnose arguments without names in C.
4562  }
4563
4564  Scope *ParentScope = FnBodyScope->getParent();
4565
4566  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4567                                  MultiTemplateParamsArg(*this),
4568                                  /*IsFunctionDefinition=*/true);
4569  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4570}
4571
4572static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4573  // Don't warn about invalid declarations.
4574  if (FD->isInvalidDecl())
4575    return false;
4576
4577  // Or declarations that aren't global.
4578  if (!FD->isGlobal())
4579    return false;
4580
4581  // Don't warn about C++ member functions.
4582  if (isa<CXXMethodDecl>(FD))
4583    return false;
4584
4585  // Don't warn about 'main'.
4586  if (FD->isMain())
4587    return false;
4588
4589  // Don't warn about inline functions.
4590  if (FD->isInlineSpecified())
4591    return false;
4592
4593  // Don't warn about function templates.
4594  if (FD->getDescribedFunctionTemplate())
4595    return false;
4596
4597  // Don't warn about function template specializations.
4598  if (FD->isFunctionTemplateSpecialization())
4599    return false;
4600
4601  bool MissingPrototype = true;
4602  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4603       Prev; Prev = Prev->getPreviousDeclaration()) {
4604    // Ignore any declarations that occur in function or method
4605    // scope, because they aren't visible from the header.
4606    if (Prev->getDeclContext()->isFunctionOrMethod())
4607      continue;
4608
4609    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4610    break;
4611  }
4612
4613  return MissingPrototype;
4614}
4615
4616Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4617  // Clear the last template instantiation error context.
4618  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4619
4620  if (!D)
4621    return D;
4622  FunctionDecl *FD = 0;
4623
4624  if (FunctionTemplateDecl *FunTmpl
4625        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4626    FD = FunTmpl->getTemplatedDecl();
4627  else
4628    FD = cast<FunctionDecl>(D.getAs<Decl>());
4629
4630  // Enter a new function scope
4631  PushFunctionScope();
4632
4633  // See if this is a redefinition.
4634  // But don't complain if we're in GNU89 mode and the previous definition
4635  // was an extern inline function.
4636  const FunctionDecl *Definition;
4637  if (FD->hasBody(Definition) &&
4638      !canRedefineFunction(Definition, getLangOptions())) {
4639    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4640    Diag(Definition->getLocation(), diag::note_previous_definition);
4641  }
4642
4643  // Builtin functions cannot be defined.
4644  if (unsigned BuiltinID = FD->getBuiltinID()) {
4645    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4646      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4647      FD->setInvalidDecl();
4648    }
4649  }
4650
4651  // The return type of a function definition must be complete
4652  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4653  QualType ResultType = FD->getResultType();
4654  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4655      !FD->isInvalidDecl() &&
4656      RequireCompleteType(FD->getLocation(), ResultType,
4657                          diag::err_func_def_incomplete_result))
4658    FD->setInvalidDecl();
4659
4660  // GNU warning -Wmissing-prototypes:
4661  //   Warn if a global function is defined without a previous
4662  //   prototype declaration. This warning is issued even if the
4663  //   definition itself provides a prototype. The aim is to detect
4664  //   global functions that fail to be declared in header files.
4665  if (ShouldWarnAboutMissingPrototype(FD))
4666    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4667
4668  if (FnBodyScope)
4669    PushDeclContext(FnBodyScope, FD);
4670
4671  // Check the validity of our function parameters
4672  CheckParmsForFunctionDef(FD);
4673
4674  bool ShouldCheckShadow =
4675    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4676
4677  // Introduce our parameters into the function scope
4678  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4679    ParmVarDecl *Param = FD->getParamDecl(p);
4680    Param->setOwningFunction(FD);
4681
4682    // If this has an identifier, add it to the scope stack.
4683    if (Param->getIdentifier() && FnBodyScope) {
4684      if (ShouldCheckShadow)
4685        CheckShadow(FnBodyScope, Param);
4686
4687      PushOnScopeChains(Param, FnBodyScope);
4688    }
4689  }
4690
4691  // Checking attributes of current function definition
4692  // dllimport attribute.
4693  if (FD->getAttr<DLLImportAttr>() &&
4694      (!FD->getAttr<DLLExportAttr>())) {
4695    // dllimport attribute cannot be applied to definition.
4696    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4697      Diag(FD->getLocation(),
4698           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4699        << "dllimport";
4700      FD->setInvalidDecl();
4701      return DeclPtrTy::make(FD);
4702    }
4703
4704    // Visual C++ appears to not think this is an issue, so only issue
4705    // a warning when Microsoft extensions are disabled.
4706    if (!LangOpts.Microsoft) {
4707      // If a symbol previously declared dllimport is later defined, the
4708      // attribute is ignored in subsequent references, and a warning is
4709      // emitted.
4710      Diag(FD->getLocation(),
4711           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4712        << FD->getNameAsCString() << "dllimport";
4713    }
4714  }
4715  return DeclPtrTy::make(FD);
4716}
4717
4718/// \brief Given the set of return statements within a function body,
4719/// compute the variables that are subject to the named return value
4720/// optimization.
4721///
4722/// Each of the variables that is subject to the named return value
4723/// optimization will be marked as NRVO variables in the AST, and any
4724/// return statement that has a marked NRVO variable as its NRVO candidate can
4725/// use the named return value optimization.
4726///
4727/// This function applies a very simplistic algorithm for NRVO: if every return
4728/// statement in the function has the same NRVO candidate, that candidate is
4729/// the NRVO variable.
4730///
4731/// FIXME: Employ a smarter algorithm that accounts for multiple return
4732/// statements and the lifetimes of the NRVO candidates. We should be able to
4733/// find a maximal set of NRVO variables.
4734static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4735  const VarDecl *NRVOCandidate = 0;
4736  for (unsigned I = 0; I != NumReturns; ++I) {
4737    if (!Returns[I]->getNRVOCandidate())
4738      return;
4739
4740    if (!NRVOCandidate)
4741      NRVOCandidate = Returns[I]->getNRVOCandidate();
4742    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4743      return;
4744  }
4745
4746  if (NRVOCandidate)
4747    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4748}
4749
4750Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4751  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4752}
4753
4754Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4755                                              bool IsInstantiation) {
4756  Decl *dcl = D.getAs<Decl>();
4757  Stmt *Body = BodyArg.takeAs<Stmt>();
4758
4759  FunctionDecl *FD = 0;
4760  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4761  if (FunTmpl)
4762    FD = FunTmpl->getTemplatedDecl();
4763  else
4764    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4765
4766  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4767
4768  if (FD) {
4769    FD->setBody(Body);
4770    if (FD->isMain()) {
4771      // C and C++ allow for main to automagically return 0.
4772      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4773      FD->setHasImplicitReturnZero(true);
4774      WP.disableCheckFallThrough();
4775    }
4776
4777    if (!FD->isInvalidDecl()) {
4778      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4779
4780      // If this is a constructor, we need a vtable.
4781      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4782        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4783
4784      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4785                  FunctionScopes.back()->Returns.size());
4786    }
4787
4788    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4789  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4790    assert(MD == getCurMethodDecl() && "Method parsing confused");
4791    MD->setBody(Body);
4792    MD->setEndLoc(Body->getLocEnd());
4793    if (!MD->isInvalidDecl())
4794      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4795  } else {
4796    return DeclPtrTy();
4797  }
4798
4799  // Verify and clean out per-function state.
4800
4801  // Check goto/label use.
4802  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4803       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4804    LabelStmt *L = I->second;
4805
4806    // Verify that we have no forward references left.  If so, there was a goto
4807    // or address of a label taken, but no definition of it.  Label fwd
4808    // definitions are indicated with a null substmt.
4809    if (L->getSubStmt() != 0)
4810      continue;
4811
4812    // Emit error.
4813    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4814
4815    // At this point, we have gotos that use the bogus label.  Stitch it into
4816    // the function body so that they aren't leaked and that the AST is well
4817    // formed.
4818    if (Body == 0) {
4819      // The whole function wasn't parsed correctly.
4820      continue;
4821    }
4822
4823    // Otherwise, the body is valid: we want to stitch the label decl into the
4824    // function somewhere so that it is properly owned and so that the goto
4825    // has a valid target.  Do this by creating a new compound stmt with the
4826    // label in it.
4827
4828    // Give the label a sub-statement.
4829    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4830
4831    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4832                               cast<CXXTryStmt>(Body)->getTryBlock() :
4833                               cast<CompoundStmt>(Body);
4834    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4835                                          Compound->body_end());
4836    Elements.push_back(L);
4837    Compound->setStmts(Context, Elements.data(), Elements.size());
4838  }
4839
4840  if (Body) {
4841    // C++ constructors that have function-try-blocks can't have return
4842    // statements in the handlers of that block. (C++ [except.handle]p14)
4843    // Verify this.
4844    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4845      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4846
4847    // Verify that that gotos and switch cases don't jump into scopes illegally.
4848    // Verify that that gotos and switch cases don't jump into scopes illegally.
4849    if (FunctionNeedsScopeChecking() &&
4850        !dcl->isInvalidDecl() &&
4851        !hasAnyErrorsInThisFunction())
4852      DiagnoseInvalidJumps(Body);
4853
4854    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
4855      if (!Destructor->getParent()->isDependentType())
4856        CheckDestructor(Destructor);
4857
4858      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4859                                             Destructor->getParent());
4860    }
4861
4862    // If any errors have occurred, clear out any temporaries that may have
4863    // been leftover. This ensures that these temporaries won't be picked up for
4864    // deletion in some later function.
4865    if (PP.getDiagnostics().hasErrorOccurred())
4866      ExprTemporaries.clear();
4867    else if (!isa<FunctionTemplateDecl>(dcl)) {
4868      // Since the body is valid, issue any analysis-based warnings that are
4869      // enabled.
4870      QualType ResultType;
4871      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4872        ResultType = FD->getResultType();
4873      }
4874      else {
4875        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4876        ResultType = MD->getResultType();
4877      }
4878      AnalysisWarnings.IssueWarnings(WP, dcl);
4879    }
4880
4881    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4882  }
4883
4884  if (!IsInstantiation)
4885    PopDeclContext();
4886
4887  PopFunctionOrBlockScope();
4888
4889  // If any errors have occurred, clear out any temporaries that may have
4890  // been leftover. This ensures that these temporaries won't be picked up for
4891  // deletion in some later function.
4892  if (getDiagnostics().hasErrorOccurred())
4893    ExprTemporaries.clear();
4894
4895  return D;
4896}
4897
4898/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4899/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4900NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4901                                          IdentifierInfo &II, Scope *S) {
4902  // Before we produce a declaration for an implicitly defined
4903  // function, see whether there was a locally-scoped declaration of
4904  // this name as a function or variable. If so, use that
4905  // (non-visible) declaration, and complain about it.
4906  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4907    = LocallyScopedExternalDecls.find(&II);
4908  if (Pos != LocallyScopedExternalDecls.end()) {
4909    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4910    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4911    return Pos->second;
4912  }
4913
4914  // Extension in C99.  Legal in C90, but warn about it.
4915  if (II.getName().startswith("__builtin_"))
4916    Diag(Loc, diag::warn_builtin_unknown) << &II;
4917  else if (getLangOptions().C99)
4918    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4919  else
4920    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4921
4922  // Set a Declarator for the implicit definition: int foo();
4923  const char *Dummy;
4924  DeclSpec DS;
4925  unsigned DiagID;
4926  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4927  Error = Error; // Silence warning.
4928  assert(!Error && "Error setting up implicit decl!");
4929  Declarator D(DS, Declarator::BlockContext);
4930  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4931                                             0, 0, false, SourceLocation(),
4932                                             false, 0,0,0, Loc, Loc, D),
4933                SourceLocation());
4934  D.SetIdentifier(&II, Loc);
4935
4936  // Insert this function into translation-unit scope.
4937
4938  DeclContext *PrevDC = CurContext;
4939  CurContext = Context.getTranslationUnitDecl();
4940
4941  FunctionDecl *FD =
4942 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4943  FD->setImplicit();
4944
4945  CurContext = PrevDC;
4946
4947  AddKnownFunctionAttributes(FD);
4948
4949  return FD;
4950}
4951
4952/// \brief Adds any function attributes that we know a priori based on
4953/// the declaration of this function.
4954///
4955/// These attributes can apply both to implicitly-declared builtins
4956/// (like __builtin___printf_chk) or to library-declared functions
4957/// like NSLog or printf.
4958void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4959  if (FD->isInvalidDecl())
4960    return;
4961
4962  // If this is a built-in function, map its builtin attributes to
4963  // actual attributes.
4964  if (unsigned BuiltinID = FD->getBuiltinID()) {
4965    // Handle printf-formatting attributes.
4966    unsigned FormatIdx;
4967    bool HasVAListArg;
4968    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4969      if (!FD->getAttr<FormatAttr>())
4970        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4971                                               HasVAListArg ? 0 : FormatIdx+2));
4972    }
4973    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
4974                                             HasVAListArg)) {
4975     if (!FD->getAttr<FormatAttr>())
4976       FD->addAttr(::new (Context) FormatAttr(Context, "scanf", FormatIdx+1,
4977                                              HasVAListArg ? 0 : FormatIdx+2));
4978    }
4979
4980    // Mark const if we don't care about errno and that is the only
4981    // thing preventing the function from being const. This allows
4982    // IRgen to use LLVM intrinsics for such functions.
4983    if (!getLangOptions().MathErrno &&
4984        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4985      if (!FD->getAttr<ConstAttr>())
4986        FD->addAttr(::new (Context) ConstAttr());
4987    }
4988
4989    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4990      FD->setType(Context.getNoReturnType(FD->getType()));
4991    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4992      FD->addAttr(::new (Context) NoThrowAttr());
4993    if (Context.BuiltinInfo.isConst(BuiltinID))
4994      FD->addAttr(::new (Context) ConstAttr());
4995  }
4996
4997  IdentifierInfo *Name = FD->getIdentifier();
4998  if (!Name)
4999    return;
5000  if ((!getLangOptions().CPlusPlus &&
5001       FD->getDeclContext()->isTranslationUnit()) ||
5002      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5003       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5004       LinkageSpecDecl::lang_c)) {
5005    // Okay: this could be a libc/libm/Objective-C function we know
5006    // about.
5007  } else
5008    return;
5009
5010  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5011    // FIXME: NSLog and NSLogv should be target specific
5012    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5013      // FIXME: We known better than our headers.
5014      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5015    } else
5016      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
5017                                             Name->isStr("NSLogv") ? 0 : 2));
5018  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5019    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5020    // target-specific builtins, perhaps?
5021    if (!FD->getAttr<FormatAttr>())
5022      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
5023                                             Name->isStr("vasprintf") ? 0 : 3));
5024  }
5025}
5026
5027TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5028                                    TypeSourceInfo *TInfo) {
5029  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5030  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5031
5032  if (!TInfo) {
5033    assert(D.isInvalidType() && "no declarator info for valid type");
5034    TInfo = Context.getTrivialTypeSourceInfo(T);
5035  }
5036
5037  // Scope manipulation handled by caller.
5038  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5039                                           D.getIdentifierLoc(),
5040                                           D.getIdentifier(),
5041                                           TInfo);
5042
5043  if (const TagType *TT = T->getAs<TagType>()) {
5044    TagDecl *TD = TT->getDecl();
5045
5046    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5047    // keep track of the TypedefDecl.
5048    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5049      TD->setTypedefForAnonDecl(NewTD);
5050  }
5051
5052  if (D.isInvalidType())
5053    NewTD->setInvalidDecl();
5054  return NewTD;
5055}
5056
5057
5058/// \brief Determine whether a tag with a given kind is acceptable
5059/// as a redeclaration of the given tag declaration.
5060///
5061/// \returns true if the new tag kind is acceptable, false otherwise.
5062bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5063                                        TagTypeKind NewTag,
5064                                        SourceLocation NewTagLoc,
5065                                        const IdentifierInfo &Name) {
5066  // C++ [dcl.type.elab]p3:
5067  //   The class-key or enum keyword present in the
5068  //   elaborated-type-specifier shall agree in kind with the
5069  //   declaration to which the name in the elaborated-type-specifier
5070  //   refers. This rule also applies to the form of
5071  //   elaborated-type-specifier that declares a class-name or
5072  //   friend class since it can be construed as referring to the
5073  //   definition of the class. Thus, in any
5074  //   elaborated-type-specifier, the enum keyword shall be used to
5075  //   refer to an enumeration (7.2), the union class-key shall be
5076  //   used to refer to a union (clause 9), and either the class or
5077  //   struct class-key shall be used to refer to a class (clause 9)
5078  //   declared using the class or struct class-key.
5079  TagTypeKind OldTag = Previous->getTagKind();
5080  if (OldTag == NewTag)
5081    return true;
5082
5083  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5084      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5085    // Warn about the struct/class tag mismatch.
5086    bool isTemplate = false;
5087    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5088      isTemplate = Record->getDescribedClassTemplate();
5089
5090    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5091      << (NewTag == TTK_Class)
5092      << isTemplate << &Name
5093      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5094                              OldTag == TTK_Class? "class" : "struct");
5095    Diag(Previous->getLocation(), diag::note_previous_use);
5096    return true;
5097  }
5098  return false;
5099}
5100
5101/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5102/// former case, Name will be non-null.  In the later case, Name will be null.
5103/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5104/// reference/declaration/definition of a tag.
5105Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5106                               SourceLocation KWLoc, CXXScopeSpec &SS,
5107                               IdentifierInfo *Name, SourceLocation NameLoc,
5108                               AttributeList *Attr, AccessSpecifier AS,
5109                               MultiTemplateParamsArg TemplateParameterLists,
5110                               bool &OwnedDecl, bool &IsDependent) {
5111  // If this is not a definition, it must have a name.
5112  assert((Name != 0 || TUK == TUK_Definition) &&
5113         "Nameless record must be a definition!");
5114
5115  OwnedDecl = false;
5116  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5117
5118  // FIXME: Check explicit specializations more carefully.
5119  bool isExplicitSpecialization = false;
5120  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5121  bool Invalid = false;
5122  if (TUK != TUK_Reference) {
5123    if (TemplateParameterList *TemplateParams
5124          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5125                        (TemplateParameterList**)TemplateParameterLists.get(),
5126                                              TemplateParameterLists.size(),
5127                                                    TUK == TUK_Friend,
5128                                                    isExplicitSpecialization,
5129                                                    Invalid)) {
5130      // All but one template parameter lists have been matching.
5131      --NumMatchedTemplateParamLists;
5132
5133      if (TemplateParams->size() > 0) {
5134        // This is a declaration or definition of a class template (which may
5135        // be a member of another template).
5136        if (Invalid)
5137          return DeclPtrTy();
5138
5139        OwnedDecl = false;
5140        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5141                                               SS, Name, NameLoc, Attr,
5142                                               TemplateParams,
5143                                               AS);
5144        TemplateParameterLists.release();
5145        return Result.get();
5146      } else {
5147        // The "template<>" header is extraneous.
5148        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5149          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5150        isExplicitSpecialization = true;
5151      }
5152    }
5153  }
5154
5155  DeclContext *SearchDC = CurContext;
5156  DeclContext *DC = CurContext;
5157  bool isStdBadAlloc = false;
5158
5159  RedeclarationKind Redecl = ForRedeclaration;
5160  if (TUK == TUK_Friend || TUK == TUK_Reference)
5161    Redecl = NotForRedeclaration;
5162
5163  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5164
5165  if (Name && SS.isNotEmpty()) {
5166    // We have a nested-name tag ('struct foo::bar').
5167
5168    // Check for invalid 'foo::'.
5169    if (SS.isInvalid()) {
5170      Name = 0;
5171      goto CreateNewDecl;
5172    }
5173
5174    // If this is a friend or a reference to a class in a dependent
5175    // context, don't try to make a decl for it.
5176    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5177      DC = computeDeclContext(SS, false);
5178      if (!DC) {
5179        IsDependent = true;
5180        return DeclPtrTy();
5181      }
5182    } else {
5183      DC = computeDeclContext(SS, true);
5184      if (!DC) {
5185        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5186          << SS.getRange();
5187        return DeclPtrTy();
5188      }
5189    }
5190
5191    if (RequireCompleteDeclContext(SS, DC))
5192      return DeclPtrTy::make((Decl *)0);
5193
5194    SearchDC = DC;
5195    // Look-up name inside 'foo::'.
5196    LookupQualifiedName(Previous, DC);
5197
5198    if (Previous.isAmbiguous())
5199      return DeclPtrTy();
5200
5201    if (Previous.empty()) {
5202      // Name lookup did not find anything. However, if the
5203      // nested-name-specifier refers to the current instantiation,
5204      // and that current instantiation has any dependent base
5205      // classes, we might find something at instantiation time: treat
5206      // this as a dependent elaborated-type-specifier.
5207      if (Previous.wasNotFoundInCurrentInstantiation()) {
5208        IsDependent = true;
5209        return DeclPtrTy();
5210      }
5211
5212      // A tag 'foo::bar' must already exist.
5213      Diag(NameLoc, diag::err_not_tag_in_scope)
5214        << Kind << Name << DC << SS.getRange();
5215      Name = 0;
5216      Invalid = true;
5217      goto CreateNewDecl;
5218    }
5219  } else if (Name) {
5220    // If this is a named struct, check to see if there was a previous forward
5221    // declaration or definition.
5222    // FIXME: We're looking into outer scopes here, even when we
5223    // shouldn't be. Doing so can result in ambiguities that we
5224    // shouldn't be diagnosing.
5225    LookupName(Previous, S);
5226
5227    // Note:  there used to be some attempt at recovery here.
5228    if (Previous.isAmbiguous())
5229      return DeclPtrTy();
5230
5231    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5232      // FIXME: This makes sure that we ignore the contexts associated
5233      // with C structs, unions, and enums when looking for a matching
5234      // tag declaration or definition. See the similar lookup tweak
5235      // in Sema::LookupName; is there a better way to deal with this?
5236      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5237        SearchDC = SearchDC->getParent();
5238    }
5239  }
5240
5241  if (Previous.isSingleResult() &&
5242      Previous.getFoundDecl()->isTemplateParameter()) {
5243    // Maybe we will complain about the shadowed template parameter.
5244    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5245    // Just pretend that we didn't see the previous declaration.
5246    Previous.clear();
5247  }
5248
5249  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5250      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5251    // This is a declaration of or a reference to "std::bad_alloc".
5252    isStdBadAlloc = true;
5253
5254    if (Previous.empty() && StdBadAlloc) {
5255      // std::bad_alloc has been implicitly declared (but made invisible to
5256      // name lookup). Fill in this implicit declaration as the previous
5257      // declaration, so that the declarations get chained appropriately.
5258      Previous.addDecl(getStdBadAlloc());
5259    }
5260  }
5261
5262  // If we didn't find a previous declaration, and this is a reference
5263  // (or friend reference), move to the correct scope.  In C++, we
5264  // also need to do a redeclaration lookup there, just in case
5265  // there's a shadow friend decl.
5266  if (Name && Previous.empty() &&
5267      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5268    if (Invalid) goto CreateNewDecl;
5269    assert(SS.isEmpty());
5270
5271    if (TUK == TUK_Reference) {
5272      // C++ [basic.scope.pdecl]p5:
5273      //   -- for an elaborated-type-specifier of the form
5274      //
5275      //          class-key identifier
5276      //
5277      //      if the elaborated-type-specifier is used in the
5278      //      decl-specifier-seq or parameter-declaration-clause of a
5279      //      function defined in namespace scope, the identifier is
5280      //      declared as a class-name in the namespace that contains
5281      //      the declaration; otherwise, except as a friend
5282      //      declaration, the identifier is declared in the smallest
5283      //      non-class, non-function-prototype scope that contains the
5284      //      declaration.
5285      //
5286      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5287      // C structs and unions.
5288      //
5289      // It is an error in C++ to declare (rather than define) an enum
5290      // type, including via an elaborated type specifier.  We'll
5291      // diagnose that later; for now, declare the enum in the same
5292      // scope as we would have picked for any other tag type.
5293      //
5294      // GNU C also supports this behavior as part of its incomplete
5295      // enum types extension, while GNU C++ does not.
5296      //
5297      // Find the context where we'll be declaring the tag.
5298      // FIXME: We would like to maintain the current DeclContext as the
5299      // lexical context,
5300      while (SearchDC->isRecord())
5301        SearchDC = SearchDC->getParent();
5302
5303      // Find the scope where we'll be declaring the tag.
5304      while (S->isClassScope() ||
5305             (getLangOptions().CPlusPlus &&
5306              S->isFunctionPrototypeScope()) ||
5307             ((S->getFlags() & Scope::DeclScope) == 0) ||
5308             (S->getEntity() &&
5309              ((DeclContext *)S->getEntity())->isTransparentContext()))
5310        S = S->getParent();
5311    } else {
5312      assert(TUK == TUK_Friend);
5313      // C++ [namespace.memdef]p3:
5314      //   If a friend declaration in a non-local class first declares a
5315      //   class or function, the friend class or function is a member of
5316      //   the innermost enclosing namespace.
5317      SearchDC = SearchDC->getEnclosingNamespaceContext();
5318    }
5319
5320    // In C++, we need to do a redeclaration lookup to properly
5321    // diagnose some problems.
5322    if (getLangOptions().CPlusPlus) {
5323      Previous.setRedeclarationKind(ForRedeclaration);
5324      LookupQualifiedName(Previous, SearchDC);
5325    }
5326  }
5327
5328  if (!Previous.empty()) {
5329    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5330
5331    // It's okay to have a tag decl in the same scope as a typedef
5332    // which hides a tag decl in the same scope.  Finding this
5333    // insanity with a redeclaration lookup can only actually happen
5334    // in C++.
5335    //
5336    // This is also okay for elaborated-type-specifiers, which is
5337    // technically forbidden by the current standard but which is
5338    // okay according to the likely resolution of an open issue;
5339    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5340    if (getLangOptions().CPlusPlus) {
5341      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5342        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5343          TagDecl *Tag = TT->getDecl();
5344          if (Tag->getDeclName() == Name &&
5345              Tag->getDeclContext()->getLookupContext()
5346                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5347            PrevDecl = Tag;
5348            Previous.clear();
5349            Previous.addDecl(Tag);
5350          }
5351        }
5352      }
5353    }
5354
5355    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5356      // If this is a use of a previous tag, or if the tag is already declared
5357      // in the same scope (so that the definition/declaration completes or
5358      // rementions the tag), reuse the decl.
5359      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5360          isDeclInScope(PrevDecl, SearchDC, S)) {
5361        // Make sure that this wasn't declared as an enum and now used as a
5362        // struct or something similar.
5363        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5364          bool SafeToContinue
5365            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5366               Kind != TTK_Enum);
5367          if (SafeToContinue)
5368            Diag(KWLoc, diag::err_use_with_wrong_tag)
5369              << Name
5370              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5371                                              PrevTagDecl->getKindName());
5372          else
5373            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5374          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5375
5376          if (SafeToContinue)
5377            Kind = PrevTagDecl->getTagKind();
5378          else {
5379            // Recover by making this an anonymous redefinition.
5380            Name = 0;
5381            Previous.clear();
5382            Invalid = true;
5383          }
5384        }
5385
5386        if (!Invalid) {
5387          // If this is a use, just return the declaration we found.
5388
5389          // FIXME: In the future, return a variant or some other clue
5390          // for the consumer of this Decl to know it doesn't own it.
5391          // For our current ASTs this shouldn't be a problem, but will
5392          // need to be changed with DeclGroups.
5393          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5394              TUK == TUK_Friend)
5395            return DeclPtrTy::make(PrevTagDecl);
5396
5397          // Diagnose attempts to redefine a tag.
5398          if (TUK == TUK_Definition) {
5399            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5400              // If we're defining a specialization and the previous definition
5401              // is from an implicit instantiation, don't emit an error
5402              // here; we'll catch this in the general case below.
5403              if (!isExplicitSpecialization ||
5404                  !isa<CXXRecordDecl>(Def) ||
5405                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5406                                               == TSK_ExplicitSpecialization) {
5407                Diag(NameLoc, diag::err_redefinition) << Name;
5408                Diag(Def->getLocation(), diag::note_previous_definition);
5409                // If this is a redefinition, recover by making this
5410                // struct be anonymous, which will make any later
5411                // references get the previous definition.
5412                Name = 0;
5413                Previous.clear();
5414                Invalid = true;
5415              }
5416            } else {
5417              // If the type is currently being defined, complain
5418              // about a nested redefinition.
5419              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5420              if (Tag->isBeingDefined()) {
5421                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5422                Diag(PrevTagDecl->getLocation(),
5423                     diag::note_previous_definition);
5424                Name = 0;
5425                Previous.clear();
5426                Invalid = true;
5427              }
5428            }
5429
5430            // Okay, this is definition of a previously declared or referenced
5431            // tag PrevDecl. We're going to create a new Decl for it.
5432          }
5433        }
5434        // If we get here we have (another) forward declaration or we
5435        // have a definition.  Just create a new decl.
5436
5437      } else {
5438        // If we get here, this is a definition of a new tag type in a nested
5439        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5440        // new decl/type.  We set PrevDecl to NULL so that the entities
5441        // have distinct types.
5442        Previous.clear();
5443      }
5444      // If we get here, we're going to create a new Decl. If PrevDecl
5445      // is non-NULL, it's a definition of the tag declared by
5446      // PrevDecl. If it's NULL, we have a new definition.
5447
5448
5449    // Otherwise, PrevDecl is not a tag, but was found with tag
5450    // lookup.  This is only actually possible in C++, where a few
5451    // things like templates still live in the tag namespace.
5452    } else {
5453      assert(getLangOptions().CPlusPlus);
5454
5455      // Use a better diagnostic if an elaborated-type-specifier
5456      // found the wrong kind of type on the first
5457      // (non-redeclaration) lookup.
5458      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5459          !Previous.isForRedeclaration()) {
5460        unsigned Kind = 0;
5461        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5462        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5463        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5464        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5465        Invalid = true;
5466
5467      // Otherwise, only diagnose if the declaration is in scope.
5468      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5469        // do nothing
5470
5471      // Diagnose implicit declarations introduced by elaborated types.
5472      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5473        unsigned Kind = 0;
5474        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5475        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5476        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5477        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5478        Invalid = true;
5479
5480      // Otherwise it's a declaration.  Call out a particularly common
5481      // case here.
5482      } else if (isa<TypedefDecl>(PrevDecl)) {
5483        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5484          << Name
5485          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5486        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5487        Invalid = true;
5488
5489      // Otherwise, diagnose.
5490      } else {
5491        // The tag name clashes with something else in the target scope,
5492        // issue an error and recover by making this tag be anonymous.
5493        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5494        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5495        Name = 0;
5496        Invalid = true;
5497      }
5498
5499      // The existing declaration isn't relevant to us; we're in a
5500      // new scope, so clear out the previous declaration.
5501      Previous.clear();
5502    }
5503  }
5504
5505CreateNewDecl:
5506
5507  TagDecl *PrevDecl = 0;
5508  if (Previous.isSingleResult())
5509    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5510
5511  // If there is an identifier, use the location of the identifier as the
5512  // location of the decl, otherwise use the location of the struct/union
5513  // keyword.
5514  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5515
5516  // Otherwise, create a new declaration. If there is a previous
5517  // declaration of the same entity, the two will be linked via
5518  // PrevDecl.
5519  TagDecl *New;
5520
5521  if (Kind == TTK_Enum) {
5522    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5523    // enum X { A, B, C } D;    D should chain to X.
5524    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5525                           cast_or_null<EnumDecl>(PrevDecl));
5526    // If this is an undefined enum, warn.
5527    if (TUK != TUK_Definition && !Invalid) {
5528      TagDecl *Def;
5529      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5530        Diag(Loc, diag::ext_forward_ref_enum_def)
5531          << New;
5532        Diag(Def->getLocation(), diag::note_previous_definition);
5533      } else {
5534        Diag(Loc,
5535             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5536                                       : diag::ext_forward_ref_enum);
5537      }
5538    }
5539  } else {
5540    // struct/union/class
5541
5542    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5543    // struct X { int A; } D;    D should chain to X.
5544    if (getLangOptions().CPlusPlus) {
5545      // FIXME: Look for a way to use RecordDecl for simple structs.
5546      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5547                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5548
5549      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5550        StdBadAlloc = cast<CXXRecordDecl>(New);
5551    } else
5552      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5553                               cast_or_null<RecordDecl>(PrevDecl));
5554  }
5555
5556  // Maybe add qualifier info.
5557  if (SS.isNotEmpty()) {
5558    if (SS.isSet()) {
5559      NestedNameSpecifier *NNS
5560        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5561      New->setQualifierInfo(NNS, SS.getRange());
5562      if (NumMatchedTemplateParamLists > 0) {
5563        New->setTemplateParameterListsInfo(Context,
5564                                           NumMatchedTemplateParamLists,
5565                    (TemplateParameterList**) TemplateParameterLists.release());
5566      }
5567    }
5568    else
5569      Invalid = true;
5570  }
5571
5572  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5573    // Add alignment attributes if necessary; these attributes are checked when
5574    // the ASTContext lays out the structure.
5575    //
5576    // It is important for implementing the correct semantics that this
5577    // happen here (in act on tag decl). The #pragma pack stack is
5578    // maintained as a result of parser callbacks which can occur at
5579    // many points during the parsing of a struct declaration (because
5580    // the #pragma tokens are effectively skipped over during the
5581    // parsing of the struct).
5582    AddAlignmentAttributesForRecord(RD);
5583  }
5584
5585  // If this is a specialization of a member class (of a class template),
5586  // check the specialization.
5587  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5588    Invalid = true;
5589
5590  if (Invalid)
5591    New->setInvalidDecl();
5592
5593  if (Attr)
5594    ProcessDeclAttributeList(S, New, Attr);
5595
5596  // If we're declaring or defining a tag in function prototype scope
5597  // in C, note that this type can only be used within the function.
5598  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5599    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5600
5601  // Set the lexical context. If the tag has a C++ scope specifier, the
5602  // lexical context will be different from the semantic context.
5603  New->setLexicalDeclContext(CurContext);
5604
5605  // Mark this as a friend decl if applicable.
5606  if (TUK == TUK_Friend)
5607    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5608
5609  // Set the access specifier.
5610  if (!Invalid && SearchDC->isRecord())
5611    SetMemberAccessSpecifier(New, PrevDecl, AS);
5612
5613  if (TUK == TUK_Definition)
5614    New->startDefinition();
5615
5616  // If this has an identifier, add it to the scope stack.
5617  if (TUK == TUK_Friend) {
5618    // We might be replacing an existing declaration in the lookup tables;
5619    // if so, borrow its access specifier.
5620    if (PrevDecl)
5621      New->setAccess(PrevDecl->getAccess());
5622
5623    DeclContext *DC = New->getDeclContext()->getLookupContext();
5624    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5625    if (Name) // can be null along some error paths
5626      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5627        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5628  } else if (Name) {
5629    S = getNonFieldDeclScope(S);
5630    PushOnScopeChains(New, S);
5631  } else {
5632    CurContext->addDecl(New);
5633  }
5634
5635  // If this is the C FILE type, notify the AST context.
5636  if (IdentifierInfo *II = New->getIdentifier())
5637    if (!New->isInvalidDecl() &&
5638        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5639        II->isStr("FILE"))
5640      Context.setFILEDecl(New);
5641
5642  OwnedDecl = true;
5643  return DeclPtrTy::make(New);
5644}
5645
5646void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5647  AdjustDeclIfTemplate(TagD);
5648  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5649
5650  // Enter the tag context.
5651  PushDeclContext(S, Tag);
5652}
5653
5654void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5655                                           SourceLocation LBraceLoc) {
5656  AdjustDeclIfTemplate(TagD);
5657  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5658
5659  FieldCollector->StartClass();
5660
5661  if (!Record->getIdentifier())
5662    return;
5663
5664  // C++ [class]p2:
5665  //   [...] The class-name is also inserted into the scope of the
5666  //   class itself; this is known as the injected-class-name. For
5667  //   purposes of access checking, the injected-class-name is treated
5668  //   as if it were a public member name.
5669  CXXRecordDecl *InjectedClassName
5670    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5671                            CurContext, Record->getLocation(),
5672                            Record->getIdentifier(),
5673                            Record->getTagKeywordLoc(),
5674                            Record);
5675  InjectedClassName->setImplicit();
5676  InjectedClassName->setAccess(AS_public);
5677  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5678      InjectedClassName->setDescribedClassTemplate(Template);
5679  PushOnScopeChains(InjectedClassName, S);
5680  assert(InjectedClassName->isInjectedClassName() &&
5681         "Broken injected-class-name");
5682}
5683
5684void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5685                                    SourceLocation RBraceLoc) {
5686  AdjustDeclIfTemplate(TagD);
5687  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5688  Tag->setRBraceLoc(RBraceLoc);
5689
5690  if (isa<CXXRecordDecl>(Tag))
5691    FieldCollector->FinishClass();
5692
5693  // Exit this scope of this tag's definition.
5694  PopDeclContext();
5695
5696  // Notify the consumer that we've defined a tag.
5697  Consumer.HandleTagDeclDefinition(Tag);
5698}
5699
5700void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5701  AdjustDeclIfTemplate(TagD);
5702  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5703  Tag->setInvalidDecl();
5704
5705  // We're undoing ActOnTagStartDefinition here, not
5706  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5707  // the FieldCollector.
5708
5709  PopDeclContext();
5710}
5711
5712// Note that FieldName may be null for anonymous bitfields.
5713bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5714                          QualType FieldTy, const Expr *BitWidth,
5715                          bool *ZeroWidth) {
5716  // Default to true; that shouldn't confuse checks for emptiness
5717  if (ZeroWidth)
5718    *ZeroWidth = true;
5719
5720  // C99 6.7.2.1p4 - verify the field type.
5721  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5722  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5723    // Handle incomplete types with specific error.
5724    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5725      return true;
5726    if (FieldName)
5727      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5728        << FieldName << FieldTy << BitWidth->getSourceRange();
5729    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5730      << FieldTy << BitWidth->getSourceRange();
5731  }
5732
5733  // If the bit-width is type- or value-dependent, don't try to check
5734  // it now.
5735  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5736    return false;
5737
5738  llvm::APSInt Value;
5739  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5740    return true;
5741
5742  if (Value != 0 && ZeroWidth)
5743    *ZeroWidth = false;
5744
5745  // Zero-width bitfield is ok for anonymous field.
5746  if (Value == 0 && FieldName)
5747    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5748
5749  if (Value.isSigned() && Value.isNegative()) {
5750    if (FieldName)
5751      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5752               << FieldName << Value.toString(10);
5753    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5754      << Value.toString(10);
5755  }
5756
5757  if (!FieldTy->isDependentType()) {
5758    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5759    if (Value.getZExtValue() > TypeSize) {
5760      if (!getLangOptions().CPlusPlus) {
5761        if (FieldName)
5762          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5763            << FieldName << (unsigned)Value.getZExtValue()
5764            << (unsigned)TypeSize;
5765
5766        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5767          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5768      }
5769
5770      if (FieldName)
5771        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5772          << FieldName << (unsigned)Value.getZExtValue()
5773          << (unsigned)TypeSize;
5774      else
5775        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5776          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5777    }
5778  }
5779
5780  return false;
5781}
5782
5783/// ActOnField - Each field of a struct/union/class is passed into this in order
5784/// to create a FieldDecl object for it.
5785Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5786                                 SourceLocation DeclStart,
5787                                 Declarator &D, ExprTy *BitfieldWidth) {
5788  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5789                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5790                               AS_public);
5791  return DeclPtrTy::make(Res);
5792}
5793
5794/// HandleField - Analyze a field of a C struct or a C++ data member.
5795///
5796FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5797                             SourceLocation DeclStart,
5798                             Declarator &D, Expr *BitWidth,
5799                             AccessSpecifier AS) {
5800  IdentifierInfo *II = D.getIdentifier();
5801  SourceLocation Loc = DeclStart;
5802  if (II) Loc = D.getIdentifierLoc();
5803
5804  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5805  QualType T = TInfo->getType();
5806  if (getLangOptions().CPlusPlus)
5807    CheckExtraCXXDefaultArguments(D);
5808
5809  DiagnoseFunctionSpecifiers(D);
5810
5811  if (D.getDeclSpec().isThreadSpecified())
5812    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5813
5814  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5815                                         ForRedeclaration);
5816
5817  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5818    // Maybe we will complain about the shadowed template parameter.
5819    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5820    // Just pretend that we didn't see the previous declaration.
5821    PrevDecl = 0;
5822  }
5823
5824  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5825    PrevDecl = 0;
5826
5827  bool Mutable
5828    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5829  SourceLocation TSSL = D.getSourceRange().getBegin();
5830  FieldDecl *NewFD
5831    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5832                     AS, PrevDecl, &D);
5833
5834  if (NewFD->isInvalidDecl())
5835    Record->setInvalidDecl();
5836
5837  if (NewFD->isInvalidDecl() && PrevDecl) {
5838    // Don't introduce NewFD into scope; there's already something
5839    // with the same name in the same scope.
5840  } else if (II) {
5841    PushOnScopeChains(NewFD, S);
5842  } else
5843    Record->addDecl(NewFD);
5844
5845  return NewFD;
5846}
5847
5848/// \brief Build a new FieldDecl and check its well-formedness.
5849///
5850/// This routine builds a new FieldDecl given the fields name, type,
5851/// record, etc. \p PrevDecl should refer to any previous declaration
5852/// with the same name and in the same scope as the field to be
5853/// created.
5854///
5855/// \returns a new FieldDecl.
5856///
5857/// \todo The Declarator argument is a hack. It will be removed once
5858FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5859                                TypeSourceInfo *TInfo,
5860                                RecordDecl *Record, SourceLocation Loc,
5861                                bool Mutable, Expr *BitWidth,
5862                                SourceLocation TSSL,
5863                                AccessSpecifier AS, NamedDecl *PrevDecl,
5864                                Declarator *D) {
5865  IdentifierInfo *II = Name.getAsIdentifierInfo();
5866  bool InvalidDecl = false;
5867  if (D) InvalidDecl = D->isInvalidType();
5868
5869  // If we receive a broken type, recover by assuming 'int' and
5870  // marking this declaration as invalid.
5871  if (T.isNull()) {
5872    InvalidDecl = true;
5873    T = Context.IntTy;
5874  }
5875
5876  QualType EltTy = Context.getBaseElementType(T);
5877  if (!EltTy->isDependentType() &&
5878      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5879    InvalidDecl = true;
5880
5881  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5882  // than a variably modified type.
5883  if (!InvalidDecl && T->isVariablyModifiedType()) {
5884    bool SizeIsNegative;
5885    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5886                                                           SizeIsNegative);
5887    if (!FixedTy.isNull()) {
5888      Diag(Loc, diag::warn_illegal_constant_array_size);
5889      T = FixedTy;
5890    } else {
5891      if (SizeIsNegative)
5892        Diag(Loc, diag::err_typecheck_negative_array_size);
5893      else
5894        Diag(Loc, diag::err_typecheck_field_variable_size);
5895      InvalidDecl = true;
5896    }
5897  }
5898
5899  // Fields can not have abstract class types
5900  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5901                                             diag::err_abstract_type_in_decl,
5902                                             AbstractFieldType))
5903    InvalidDecl = true;
5904
5905  bool ZeroWidth = false;
5906  // If this is declared as a bit-field, check the bit-field.
5907  if (!InvalidDecl && BitWidth &&
5908      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5909    InvalidDecl = true;
5910    DeleteExpr(BitWidth);
5911    BitWidth = 0;
5912    ZeroWidth = false;
5913  }
5914
5915  // Check that 'mutable' is consistent with the type of the declaration.
5916  if (!InvalidDecl && Mutable) {
5917    unsigned DiagID = 0;
5918    if (T->isReferenceType())
5919      DiagID = diag::err_mutable_reference;
5920    else if (T.isConstQualified())
5921      DiagID = diag::err_mutable_const;
5922
5923    if (DiagID) {
5924      SourceLocation ErrLoc = Loc;
5925      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5926        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5927      Diag(ErrLoc, DiagID);
5928      Mutable = false;
5929      InvalidDecl = true;
5930    }
5931  }
5932
5933  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5934                                       BitWidth, Mutable);
5935  if (InvalidDecl)
5936    NewFD->setInvalidDecl();
5937
5938  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5939    Diag(Loc, diag::err_duplicate_member) << II;
5940    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5941    NewFD->setInvalidDecl();
5942  }
5943
5944  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5945    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5946
5947    if (!T->isPODType())
5948      CXXRecord->setPOD(false);
5949    if (!ZeroWidth)
5950      CXXRecord->setEmpty(false);
5951
5952    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5953      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5954      if (RDecl->getDefinition()) {
5955        if (!RDecl->hasTrivialConstructor())
5956          CXXRecord->setHasTrivialConstructor(false);
5957        if (!RDecl->hasTrivialCopyConstructor())
5958          CXXRecord->setHasTrivialCopyConstructor(false);
5959        if (!RDecl->hasTrivialCopyAssignment())
5960          CXXRecord->setHasTrivialCopyAssignment(false);
5961        if (!RDecl->hasTrivialDestructor())
5962          CXXRecord->setHasTrivialDestructor(false);
5963
5964        // C++ 9.5p1: An object of a class with a non-trivial
5965        // constructor, a non-trivial copy constructor, a non-trivial
5966        // destructor, or a non-trivial copy assignment operator
5967        // cannot be a member of a union, nor can an array of such
5968        // objects.
5969        // TODO: C++0x alters this restriction significantly.
5970        if (Record->isUnion()) {
5971          // We check for copy constructors before constructors
5972          // because otherwise we'll never get complaints about
5973          // copy constructors.
5974
5975          CXXSpecialMember member = CXXInvalid;
5976          if (!RDecl->hasTrivialCopyConstructor())
5977            member = CXXCopyConstructor;
5978          else if (!RDecl->hasTrivialConstructor())
5979            member = CXXConstructor;
5980          else if (!RDecl->hasTrivialCopyAssignment())
5981            member = CXXCopyAssignment;
5982          else if (!RDecl->hasTrivialDestructor())
5983            member = CXXDestructor;
5984
5985          if (member != CXXInvalid) {
5986            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5987            DiagnoseNontrivial(RT, member);
5988            NewFD->setInvalidDecl();
5989          }
5990        }
5991      }
5992    }
5993  }
5994
5995  // FIXME: We need to pass in the attributes given an AST
5996  // representation, not a parser representation.
5997  if (D)
5998    // FIXME: What to pass instead of TUScope?
5999    ProcessDeclAttributes(TUScope, NewFD, *D);
6000
6001  if (T.isObjCGCWeak())
6002    Diag(Loc, diag::warn_attribute_weak_on_field);
6003
6004  NewFD->setAccess(AS);
6005
6006  // C++ [dcl.init.aggr]p1:
6007  //   An aggregate is an array or a class (clause 9) with [...] no
6008  //   private or protected non-static data members (clause 11).
6009  // A POD must be an aggregate.
6010  if (getLangOptions().CPlusPlus &&
6011      (AS == AS_private || AS == AS_protected)) {
6012    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6013    CXXRecord->setAggregate(false);
6014    CXXRecord->setPOD(false);
6015  }
6016
6017  return NewFD;
6018}
6019
6020/// DiagnoseNontrivial - Given that a class has a non-trivial
6021/// special member, figure out why.
6022void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6023  QualType QT(T, 0U);
6024  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6025
6026  // Check whether the member was user-declared.
6027  switch (member) {
6028  case CXXInvalid:
6029    break;
6030
6031  case CXXConstructor:
6032    if (RD->hasUserDeclaredConstructor()) {
6033      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6034      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6035        const FunctionDecl *body = 0;
6036        ci->hasBody(body);
6037        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6038          SourceLocation CtorLoc = ci->getLocation();
6039          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6040          return;
6041        }
6042      }
6043
6044      assert(0 && "found no user-declared constructors");
6045      return;
6046    }
6047    break;
6048
6049  case CXXCopyConstructor:
6050    if (RD->hasUserDeclaredCopyConstructor()) {
6051      SourceLocation CtorLoc =
6052        RD->getCopyConstructor(Context, 0)->getLocation();
6053      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6054      return;
6055    }
6056    break;
6057
6058  case CXXCopyAssignment:
6059    if (RD->hasUserDeclaredCopyAssignment()) {
6060      // FIXME: this should use the location of the copy
6061      // assignment, not the type.
6062      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6063      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6064      return;
6065    }
6066    break;
6067
6068  case CXXDestructor:
6069    if (RD->hasUserDeclaredDestructor()) {
6070      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6071      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6072      return;
6073    }
6074    break;
6075  }
6076
6077  typedef CXXRecordDecl::base_class_iterator base_iter;
6078
6079  // Virtual bases and members inhibit trivial copying/construction,
6080  // but not trivial destruction.
6081  if (member != CXXDestructor) {
6082    // Check for virtual bases.  vbases includes indirect virtual bases,
6083    // so we just iterate through the direct bases.
6084    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6085      if (bi->isVirtual()) {
6086        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6087        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6088        return;
6089      }
6090
6091    // Check for virtual methods.
6092    typedef CXXRecordDecl::method_iterator meth_iter;
6093    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6094         ++mi) {
6095      if (mi->isVirtual()) {
6096        SourceLocation MLoc = mi->getSourceRange().getBegin();
6097        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6098        return;
6099      }
6100    }
6101  }
6102
6103  bool (CXXRecordDecl::*hasTrivial)() const;
6104  switch (member) {
6105  case CXXConstructor:
6106    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6107  case CXXCopyConstructor:
6108    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6109  case CXXCopyAssignment:
6110    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6111  case CXXDestructor:
6112    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6113  default:
6114    assert(0 && "unexpected special member"); return;
6115  }
6116
6117  // Check for nontrivial bases (and recurse).
6118  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6119    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6120    assert(BaseRT && "Don't know how to handle dependent bases");
6121    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6122    if (!(BaseRecTy->*hasTrivial)()) {
6123      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6124      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6125      DiagnoseNontrivial(BaseRT, member);
6126      return;
6127    }
6128  }
6129
6130  // Check for nontrivial members (and recurse).
6131  typedef RecordDecl::field_iterator field_iter;
6132  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6133       ++fi) {
6134    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6135    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6136      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6137
6138      if (!(EltRD->*hasTrivial)()) {
6139        SourceLocation FLoc = (*fi)->getLocation();
6140        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6141        DiagnoseNontrivial(EltRT, member);
6142        return;
6143      }
6144    }
6145  }
6146
6147  assert(0 && "found no explanation for non-trivial member");
6148}
6149
6150/// TranslateIvarVisibility - Translate visibility from a token ID to an
6151///  AST enum value.
6152static ObjCIvarDecl::AccessControl
6153TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6154  switch (ivarVisibility) {
6155  default: assert(0 && "Unknown visitibility kind");
6156  case tok::objc_private: return ObjCIvarDecl::Private;
6157  case tok::objc_public: return ObjCIvarDecl::Public;
6158  case tok::objc_protected: return ObjCIvarDecl::Protected;
6159  case tok::objc_package: return ObjCIvarDecl::Package;
6160  }
6161}
6162
6163/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6164/// in order to create an IvarDecl object for it.
6165Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6166                                SourceLocation DeclStart,
6167                                DeclPtrTy IntfDecl,
6168                                Declarator &D, ExprTy *BitfieldWidth,
6169                                tok::ObjCKeywordKind Visibility) {
6170
6171  IdentifierInfo *II = D.getIdentifier();
6172  Expr *BitWidth = (Expr*)BitfieldWidth;
6173  SourceLocation Loc = DeclStart;
6174  if (II) Loc = D.getIdentifierLoc();
6175
6176  // FIXME: Unnamed fields can be handled in various different ways, for
6177  // example, unnamed unions inject all members into the struct namespace!
6178
6179  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6180  QualType T = TInfo->getType();
6181
6182  if (BitWidth) {
6183    // 6.7.2.1p3, 6.7.2.1p4
6184    if (VerifyBitField(Loc, II, T, BitWidth)) {
6185      D.setInvalidType();
6186      DeleteExpr(BitWidth);
6187      BitWidth = 0;
6188    }
6189  } else {
6190    // Not a bitfield.
6191
6192    // validate II.
6193
6194  }
6195  if (T->isReferenceType()) {
6196    Diag(Loc, diag::err_ivar_reference_type);
6197    D.setInvalidType();
6198  }
6199  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6200  // than a variably modified type.
6201  else if (T->isVariablyModifiedType()) {
6202    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6203    D.setInvalidType();
6204  }
6205
6206  // Get the visibility (access control) for this ivar.
6207  ObjCIvarDecl::AccessControl ac =
6208    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6209                                        : ObjCIvarDecl::None;
6210  // Must set ivar's DeclContext to its enclosing interface.
6211  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6212  ObjCContainerDecl *EnclosingContext;
6213  if (ObjCImplementationDecl *IMPDecl =
6214      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6215    // Case of ivar declared in an implementation. Context is that of its class.
6216    EnclosingContext = IMPDecl->getClassInterface();
6217    assert(EnclosingContext && "Implementation has no class interface!");
6218  } else {
6219    if (ObjCCategoryDecl *CDecl =
6220        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6221      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6222        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6223        return DeclPtrTy();
6224      }
6225    }
6226    EnclosingContext = EnclosingDecl;
6227  }
6228
6229  // Construct the decl.
6230  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6231                                             EnclosingContext, Loc, II, T,
6232                                             TInfo, ac, (Expr *)BitfieldWidth);
6233
6234  if (II) {
6235    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6236                                           ForRedeclaration);
6237    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6238        && !isa<TagDecl>(PrevDecl)) {
6239      Diag(Loc, diag::err_duplicate_member) << II;
6240      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6241      NewID->setInvalidDecl();
6242    }
6243  }
6244
6245  // Process attributes attached to the ivar.
6246  ProcessDeclAttributes(S, NewID, D);
6247
6248  if (D.isInvalidType())
6249    NewID->setInvalidDecl();
6250
6251  if (II) {
6252    // FIXME: When interfaces are DeclContexts, we'll need to add
6253    // these to the interface.
6254    S->AddDecl(DeclPtrTy::make(NewID));
6255    IdResolver.AddDecl(NewID);
6256  }
6257
6258  return DeclPtrTy::make(NewID);
6259}
6260
6261void Sema::ActOnFields(Scope* S,
6262                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6263                       DeclPtrTy *Fields, unsigned NumFields,
6264                       SourceLocation LBrac, SourceLocation RBrac,
6265                       AttributeList *Attr) {
6266  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6267  assert(EnclosingDecl && "missing record or interface decl");
6268
6269  // If the decl this is being inserted into is invalid, then it may be a
6270  // redeclaration or some other bogus case.  Don't try to add fields to it.
6271  if (EnclosingDecl->isInvalidDecl()) {
6272    // FIXME: Deallocate fields?
6273    return;
6274  }
6275
6276
6277  // Verify that all the fields are okay.
6278  unsigned NumNamedMembers = 0;
6279  llvm::SmallVector<FieldDecl*, 32> RecFields;
6280
6281  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6282  for (unsigned i = 0; i != NumFields; ++i) {
6283    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6284
6285    // Get the type for the field.
6286    Type *FDTy = FD->getType().getTypePtr();
6287
6288    if (!FD->isAnonymousStructOrUnion()) {
6289      // Remember all fields written by the user.
6290      RecFields.push_back(FD);
6291    }
6292
6293    // If the field is already invalid for some reason, don't emit more
6294    // diagnostics about it.
6295    if (FD->isInvalidDecl()) {
6296      EnclosingDecl->setInvalidDecl();
6297      continue;
6298    }
6299
6300    // C99 6.7.2.1p2:
6301    //   A structure or union shall not contain a member with
6302    //   incomplete or function type (hence, a structure shall not
6303    //   contain an instance of itself, but may contain a pointer to
6304    //   an instance of itself), except that the last member of a
6305    //   structure with more than one named member may have incomplete
6306    //   array type; such a structure (and any union containing,
6307    //   possibly recursively, a member that is such a structure)
6308    //   shall not be a member of a structure or an element of an
6309    //   array.
6310    if (FDTy->isFunctionType()) {
6311      // Field declared as a function.
6312      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6313        << FD->getDeclName();
6314      FD->setInvalidDecl();
6315      EnclosingDecl->setInvalidDecl();
6316      continue;
6317    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6318               Record && Record->isStruct()) {
6319      // Flexible array member.
6320      if (NumNamedMembers < 1) {
6321        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6322          << FD->getDeclName();
6323        FD->setInvalidDecl();
6324        EnclosingDecl->setInvalidDecl();
6325        continue;
6326      }
6327      if (!FD->getType()->isDependentType() &&
6328          !Context.getBaseElementType(FD->getType())->isPODType()) {
6329        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6330          << FD->getDeclName() << FD->getType();
6331        FD->setInvalidDecl();
6332        EnclosingDecl->setInvalidDecl();
6333        continue;
6334      }
6335
6336      // Okay, we have a legal flexible array member at the end of the struct.
6337      if (Record)
6338        Record->setHasFlexibleArrayMember(true);
6339    } else if (!FDTy->isDependentType() &&
6340               RequireCompleteType(FD->getLocation(), FD->getType(),
6341                                   diag::err_field_incomplete)) {
6342      // Incomplete type
6343      FD->setInvalidDecl();
6344      EnclosingDecl->setInvalidDecl();
6345      continue;
6346    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6347      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6348        // If this is a member of a union, then entire union becomes "flexible".
6349        if (Record && Record->isUnion()) {
6350          Record->setHasFlexibleArrayMember(true);
6351        } else {
6352          // If this is a struct/class and this is not the last element, reject
6353          // it.  Note that GCC supports variable sized arrays in the middle of
6354          // structures.
6355          if (i != NumFields-1)
6356            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6357              << FD->getDeclName() << FD->getType();
6358          else {
6359            // We support flexible arrays at the end of structs in
6360            // other structs as an extension.
6361            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6362              << FD->getDeclName();
6363            if (Record)
6364              Record->setHasFlexibleArrayMember(true);
6365          }
6366        }
6367      }
6368      if (Record && FDTTy->getDecl()->hasObjectMember())
6369        Record->setHasObjectMember(true);
6370    } else if (FDTy->isObjCObjectType()) {
6371      /// A field cannot be an Objective-c object
6372      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6373      FD->setInvalidDecl();
6374      EnclosingDecl->setInvalidDecl();
6375      continue;
6376    } else if (getLangOptions().ObjC1 &&
6377               getLangOptions().getGCMode() != LangOptions::NonGC &&
6378               Record &&
6379               (FD->getType()->isObjCObjectPointerType() ||
6380                FD->getType().isObjCGCStrong()))
6381      Record->setHasObjectMember(true);
6382    else if (Context.getAsArrayType(FD->getType())) {
6383      QualType BaseType = Context.getBaseElementType(FD->getType());
6384      if (Record && BaseType->isRecordType() &&
6385          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6386        Record->setHasObjectMember(true);
6387    }
6388    // Keep track of the number of named members.
6389    if (FD->getIdentifier())
6390      ++NumNamedMembers;
6391  }
6392
6393  // Okay, we successfully defined 'Record'.
6394  if (Record) {
6395    Record->completeDefinition();
6396  } else {
6397    ObjCIvarDecl **ClsFields =
6398      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6399    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6400      ID->setLocEnd(RBrac);
6401      // Add ivar's to class's DeclContext.
6402      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6403        ClsFields[i]->setLexicalDeclContext(ID);
6404        ID->addDecl(ClsFields[i]);
6405      }
6406      // Must enforce the rule that ivars in the base classes may not be
6407      // duplicates.
6408      if (ID->getSuperClass())
6409        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6410    } else if (ObjCImplementationDecl *IMPDecl =
6411                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6412      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6413      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6414        // Ivar declared in @implementation never belongs to the implementation.
6415        // Only it is in implementation's lexical context.
6416        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6417      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6418    } else if (ObjCCategoryDecl *CDecl =
6419                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6420      // case of ivars in class extension; all other cases have been
6421      // reported as errors elsewhere.
6422      // FIXME. Class extension does not have a LocEnd field.
6423      // CDecl->setLocEnd(RBrac);
6424      // Add ivar's to class extension's DeclContext.
6425      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6426        ClsFields[i]->setLexicalDeclContext(CDecl);
6427        CDecl->addDecl(ClsFields[i]);
6428      }
6429    }
6430  }
6431
6432  if (Attr)
6433    ProcessDeclAttributeList(S, Record, Attr);
6434
6435  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6436  // set the visibility of this record.
6437  if (Record && !Record->getDeclContext()->isRecord())
6438    AddPushedVisibilityAttribute(Record);
6439}
6440
6441/// \brief Determine whether the given integral value is representable within
6442/// the given type T.
6443static bool isRepresentableIntegerValue(ASTContext &Context,
6444                                        llvm::APSInt &Value,
6445                                        QualType T) {
6446  assert(T->isIntegralType(Context) && "Integral type required!");
6447  unsigned BitWidth = Context.getIntWidth(T);
6448
6449  if (Value.isUnsigned() || Value.isNonNegative())
6450    return Value.getActiveBits() < BitWidth;
6451
6452  return Value.getMinSignedBits() <= BitWidth;
6453}
6454
6455// \brief Given an integral type, return the next larger integral type
6456// (or a NULL type of no such type exists).
6457static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6458  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6459  // enum checking below.
6460  assert(T->isIntegralType(Context) && "Integral type required!");
6461  const unsigned NumTypes = 4;
6462  QualType SignedIntegralTypes[NumTypes] = {
6463    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6464  };
6465  QualType UnsignedIntegralTypes[NumTypes] = {
6466    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6467    Context.UnsignedLongLongTy
6468  };
6469
6470  unsigned BitWidth = Context.getTypeSize(T);
6471  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6472                                            : UnsignedIntegralTypes;
6473  for (unsigned I = 0; I != NumTypes; ++I)
6474    if (Context.getTypeSize(Types[I]) > BitWidth)
6475      return Types[I];
6476
6477  return QualType();
6478}
6479
6480EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6481                                          EnumConstantDecl *LastEnumConst,
6482                                          SourceLocation IdLoc,
6483                                          IdentifierInfo *Id,
6484                                          ExprArg val) {
6485  Expr *Val = (Expr *)val.get();
6486
6487  unsigned IntWidth = Context.Target.getIntWidth();
6488  llvm::APSInt EnumVal(IntWidth);
6489  QualType EltTy;
6490  if (Val) {
6491    if (Enum->isDependentType() || Val->isTypeDependent())
6492      EltTy = Context.DependentTy;
6493    else {
6494      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6495      SourceLocation ExpLoc;
6496      if (!Val->isValueDependent() &&
6497          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6498        Val = 0;
6499      } else {
6500        if (!getLangOptions().CPlusPlus) {
6501          // C99 6.7.2.2p2:
6502          //   The expression that defines the value of an enumeration constant
6503          //   shall be an integer constant expression that has a value
6504          //   representable as an int.
6505
6506          // Complain if the value is not representable in an int.
6507          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6508            Diag(IdLoc, diag::ext_enum_value_not_int)
6509              << EnumVal.toString(10) << Val->getSourceRange()
6510              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6511          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6512            // Force the type of the expression to 'int'.
6513            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6514
6515            if (Val != val.get()) {
6516              val.release();
6517              val = Val;
6518            }
6519          }
6520        }
6521
6522        // C++0x [dcl.enum]p5:
6523        //   If the underlying type is not fixed, the type of each enumerator
6524        //   is the type of its initializing value:
6525        //     - If an initializer is specified for an enumerator, the
6526        //       initializing value has the same type as the expression.
6527        EltTy = Val->getType();
6528      }
6529    }
6530  }
6531
6532  if (!Val) {
6533    if (Enum->isDependentType())
6534      EltTy = Context.DependentTy;
6535    else if (!LastEnumConst) {
6536      // C++0x [dcl.enum]p5:
6537      //   If the underlying type is not fixed, the type of each enumerator
6538      //   is the type of its initializing value:
6539      //     - If no initializer is specified for the first enumerator, the
6540      //       initializing value has an unspecified integral type.
6541      //
6542      // GCC uses 'int' for its unspecified integral type, as does
6543      // C99 6.7.2.2p3.
6544      EltTy = Context.IntTy;
6545    } else {
6546      // Assign the last value + 1.
6547      EnumVal = LastEnumConst->getInitVal();
6548      ++EnumVal;
6549      EltTy = LastEnumConst->getType();
6550
6551      // Check for overflow on increment.
6552      if (EnumVal < LastEnumConst->getInitVal()) {
6553        // C++0x [dcl.enum]p5:
6554        //   If the underlying type is not fixed, the type of each enumerator
6555        //   is the type of its initializing value:
6556        //
6557        //     - Otherwise the type of the initializing value is the same as
6558        //       the type of the initializing value of the preceding enumerator
6559        //       unless the incremented value is not representable in that type,
6560        //       in which case the type is an unspecified integral type
6561        //       sufficient to contain the incremented value. If no such type
6562        //       exists, the program is ill-formed.
6563        QualType T = getNextLargerIntegralType(Context, EltTy);
6564        if (T.isNull()) {
6565          // There is no integral type larger enough to represent this
6566          // value. Complain, then allow the value to wrap around.
6567          EnumVal = LastEnumConst->getInitVal();
6568          EnumVal.zext(EnumVal.getBitWidth() * 2);
6569          Diag(IdLoc, diag::warn_enumerator_too_large)
6570            << EnumVal.toString(10);
6571        } else {
6572          EltTy = T;
6573        }
6574
6575        // Retrieve the last enumerator's value, extent that type to the
6576        // type that is supposed to be large enough to represent the incremented
6577        // value, then increment.
6578        EnumVal = LastEnumConst->getInitVal();
6579        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6580        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6581        ++EnumVal;
6582
6583        // If we're not in C++, diagnose the overflow of enumerator values,
6584        // which in C99 means that the enumerator value is not representable in
6585        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6586        // permits enumerator values that are representable in some larger
6587        // integral type.
6588        if (!getLangOptions().CPlusPlus && !T.isNull())
6589          Diag(IdLoc, diag::warn_enum_value_overflow);
6590      } else if (!getLangOptions().CPlusPlus &&
6591                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6592        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6593        Diag(IdLoc, diag::ext_enum_value_not_int)
6594          << EnumVal.toString(10) << 1;
6595      }
6596    }
6597  }
6598
6599  if (!EltTy->isDependentType()) {
6600    // Make the enumerator value match the signedness and size of the
6601    // enumerator's type.
6602    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6603    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6604  }
6605
6606  val.release();
6607  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6608                                  Val, EnumVal);
6609}
6610
6611
6612Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6613                                        DeclPtrTy lastEnumConst,
6614                                        SourceLocation IdLoc,
6615                                        IdentifierInfo *Id,
6616                                        SourceLocation EqualLoc, ExprTy *val) {
6617  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6618  EnumConstantDecl *LastEnumConst =
6619    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6620  Expr *Val = static_cast<Expr*>(val);
6621
6622  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6623  // we find one that is.
6624  S = getNonFieldDeclScope(S);
6625
6626  // Verify that there isn't already something declared with this name in this
6627  // scope.
6628  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6629                                         ForRedeclaration);
6630  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6631    // Maybe we will complain about the shadowed template parameter.
6632    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6633    // Just pretend that we didn't see the previous declaration.
6634    PrevDecl = 0;
6635  }
6636
6637  if (PrevDecl) {
6638    // When in C++, we may get a TagDecl with the same name; in this case the
6639    // enum constant will 'hide' the tag.
6640    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6641           "Received TagDecl when not in C++!");
6642    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6643      if (isa<EnumConstantDecl>(PrevDecl))
6644        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6645      else
6646        Diag(IdLoc, diag::err_redefinition) << Id;
6647      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6648      return DeclPtrTy();
6649    }
6650  }
6651
6652  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6653                                            IdLoc, Id, Owned(Val));
6654
6655  // Register this decl in the current scope stack.
6656  if (New) {
6657    New->setAccess(TheEnumDecl->getAccess());
6658    PushOnScopeChains(New, S);
6659  }
6660
6661  return DeclPtrTy::make(New);
6662}
6663
6664void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6665                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6666                         DeclPtrTy *Elements, unsigned NumElements,
6667                         Scope *S, AttributeList *Attr) {
6668  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6669  QualType EnumType = Context.getTypeDeclType(Enum);
6670
6671  if (Attr)
6672    ProcessDeclAttributeList(S, Enum, Attr);
6673
6674  if (Enum->isDependentType()) {
6675    for (unsigned i = 0; i != NumElements; ++i) {
6676      EnumConstantDecl *ECD =
6677        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6678      if (!ECD) continue;
6679
6680      ECD->setType(EnumType);
6681    }
6682
6683    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6684    return;
6685  }
6686
6687  // TODO: If the result value doesn't fit in an int, it must be a long or long
6688  // long value.  ISO C does not support this, but GCC does as an extension,
6689  // emit a warning.
6690  unsigned IntWidth = Context.Target.getIntWidth();
6691  unsigned CharWidth = Context.Target.getCharWidth();
6692  unsigned ShortWidth = Context.Target.getShortWidth();
6693
6694  // Verify that all the values are okay, compute the size of the values, and
6695  // reverse the list.
6696  unsigned NumNegativeBits = 0;
6697  unsigned NumPositiveBits = 0;
6698
6699  // Keep track of whether all elements have type int.
6700  bool AllElementsInt = true;
6701
6702  for (unsigned i = 0; i != NumElements; ++i) {
6703    EnumConstantDecl *ECD =
6704      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6705    if (!ECD) continue;  // Already issued a diagnostic.
6706
6707    const llvm::APSInt &InitVal = ECD->getInitVal();
6708
6709    // Keep track of the size of positive and negative values.
6710    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6711      NumPositiveBits = std::max(NumPositiveBits,
6712                                 (unsigned)InitVal.getActiveBits());
6713    else
6714      NumNegativeBits = std::max(NumNegativeBits,
6715                                 (unsigned)InitVal.getMinSignedBits());
6716
6717    // Keep track of whether every enum element has type int (very commmon).
6718    if (AllElementsInt)
6719      AllElementsInt = ECD->getType() == Context.IntTy;
6720  }
6721
6722  // Figure out the type that should be used for this enum.
6723  // FIXME: Support -fshort-enums.
6724  QualType BestType;
6725  unsigned BestWidth;
6726
6727  // C++0x N3000 [conv.prom]p3:
6728  //   An rvalue of an unscoped enumeration type whose underlying
6729  //   type is not fixed can be converted to an rvalue of the first
6730  //   of the following types that can represent all the values of
6731  //   the enumeration: int, unsigned int, long int, unsigned long
6732  //   int, long long int, or unsigned long long int.
6733  // C99 6.4.4.3p2:
6734  //   An identifier declared as an enumeration constant has type int.
6735  // The C99 rule is modified by a gcc extension
6736  QualType BestPromotionType;
6737
6738  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6739
6740  if (NumNegativeBits) {
6741    // If there is a negative value, figure out the smallest integer type (of
6742    // int/long/longlong) that fits.
6743    // If it's packed, check also if it fits a char or a short.
6744    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6745      BestType = Context.SignedCharTy;
6746      BestWidth = CharWidth;
6747    } else if (Packed && NumNegativeBits <= ShortWidth &&
6748               NumPositiveBits < ShortWidth) {
6749      BestType = Context.ShortTy;
6750      BestWidth = ShortWidth;
6751    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6752      BestType = Context.IntTy;
6753      BestWidth = IntWidth;
6754    } else {
6755      BestWidth = Context.Target.getLongWidth();
6756
6757      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6758        BestType = Context.LongTy;
6759      } else {
6760        BestWidth = Context.Target.getLongLongWidth();
6761
6762        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6763          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6764        BestType = Context.LongLongTy;
6765      }
6766    }
6767    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6768  } else {
6769    // If there is no negative value, figure out the smallest type that fits
6770    // all of the enumerator values.
6771    // If it's packed, check also if it fits a char or a short.
6772    if (Packed && NumPositiveBits <= CharWidth) {
6773      BestType = Context.UnsignedCharTy;
6774      BestPromotionType = Context.IntTy;
6775      BestWidth = CharWidth;
6776    } else if (Packed && NumPositiveBits <= ShortWidth) {
6777      BestType = Context.UnsignedShortTy;
6778      BestPromotionType = Context.IntTy;
6779      BestWidth = ShortWidth;
6780    } else if (NumPositiveBits <= IntWidth) {
6781      BestType = Context.UnsignedIntTy;
6782      BestWidth = IntWidth;
6783      BestPromotionType
6784        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6785                           ? Context.UnsignedIntTy : Context.IntTy;
6786    } else if (NumPositiveBits <=
6787               (BestWidth = Context.Target.getLongWidth())) {
6788      BestType = Context.UnsignedLongTy;
6789      BestPromotionType
6790        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6791                           ? Context.UnsignedLongTy : Context.LongTy;
6792    } else {
6793      BestWidth = Context.Target.getLongLongWidth();
6794      assert(NumPositiveBits <= BestWidth &&
6795             "How could an initializer get larger than ULL?");
6796      BestType = Context.UnsignedLongLongTy;
6797      BestPromotionType
6798        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6799                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6800    }
6801  }
6802
6803  // Loop over all of the enumerator constants, changing their types to match
6804  // the type of the enum if needed.
6805  for (unsigned i = 0; i != NumElements; ++i) {
6806    EnumConstantDecl *ECD =
6807      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6808    if (!ECD) continue;  // Already issued a diagnostic.
6809
6810    // Standard C says the enumerators have int type, but we allow, as an
6811    // extension, the enumerators to be larger than int size.  If each
6812    // enumerator value fits in an int, type it as an int, otherwise type it the
6813    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6814    // that X has type 'int', not 'unsigned'.
6815
6816    // Determine whether the value fits into an int.
6817    llvm::APSInt InitVal = ECD->getInitVal();
6818
6819    // If it fits into an integer type, force it.  Otherwise force it to match
6820    // the enum decl type.
6821    QualType NewTy;
6822    unsigned NewWidth;
6823    bool NewSign;
6824    if (!getLangOptions().CPlusPlus &&
6825        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6826      NewTy = Context.IntTy;
6827      NewWidth = IntWidth;
6828      NewSign = true;
6829    } else if (ECD->getType() == BestType) {
6830      // Already the right type!
6831      if (getLangOptions().CPlusPlus)
6832        // C++ [dcl.enum]p4: Following the closing brace of an
6833        // enum-specifier, each enumerator has the type of its
6834        // enumeration.
6835        ECD->setType(EnumType);
6836      continue;
6837    } else {
6838      NewTy = BestType;
6839      NewWidth = BestWidth;
6840      NewSign = BestType->isSignedIntegerType();
6841    }
6842
6843    // Adjust the APSInt value.
6844    InitVal.extOrTrunc(NewWidth);
6845    InitVal.setIsSigned(NewSign);
6846    ECD->setInitVal(InitVal);
6847
6848    // Adjust the Expr initializer and type.
6849    if (ECD->getInitExpr())
6850      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
6851                                                CastExpr::CK_IntegralCast,
6852                                                ECD->getInitExpr(),
6853                                                /*base paths*/ 0,
6854                                                ImplicitCastExpr::RValue));
6855    if (getLangOptions().CPlusPlus)
6856      // C++ [dcl.enum]p4: Following the closing brace of an
6857      // enum-specifier, each enumerator has the type of its
6858      // enumeration.
6859      ECD->setType(EnumType);
6860    else
6861      ECD->setType(NewTy);
6862  }
6863
6864  Enum->completeDefinition(BestType, BestPromotionType,
6865                           NumPositiveBits, NumNegativeBits);
6866}
6867
6868Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6869                                            ExprArg expr) {
6870  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6871
6872  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6873                                                   Loc, AsmString);
6874  CurContext->addDecl(New);
6875  return DeclPtrTy::make(New);
6876}
6877
6878void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6879                             SourceLocation PragmaLoc,
6880                             SourceLocation NameLoc) {
6881  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6882
6883  if (PrevDecl) {
6884    PrevDecl->addAttr(::new (Context) WeakAttr());
6885  } else {
6886    (void)WeakUndeclaredIdentifiers.insert(
6887      std::pair<IdentifierInfo*,WeakInfo>
6888        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6889  }
6890}
6891
6892void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6893                                IdentifierInfo* AliasName,
6894                                SourceLocation PragmaLoc,
6895                                SourceLocation NameLoc,
6896                                SourceLocation AliasNameLoc) {
6897  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6898                                    LookupOrdinaryName);
6899  WeakInfo W = WeakInfo(Name, NameLoc);
6900
6901  if (PrevDecl) {
6902    if (!PrevDecl->hasAttr<AliasAttr>())
6903      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6904        DeclApplyPragmaWeak(TUScope, ND, W);
6905  } else {
6906    (void)WeakUndeclaredIdentifiers.insert(
6907      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6908  }
6909}
6910