SemaDecl.cpp revision 7a8a2e3c7ff283bc98b5292b6a579d4fca63e36b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo,
75                             IdentifierInfo **CorrectedII) {
76  // Determine where we will perform name lookup.
77  DeclContext *LookupCtx = 0;
78  if (ObjectTypePtr) {
79    QualType ObjectType = ObjectTypePtr.get();
80    if (ObjectType->isRecordType())
81      LookupCtx = computeDeclContext(ObjectType);
82  } else if (SS && SS->isNotEmpty()) {
83    LookupCtx = computeDeclContext(*SS, false);
84
85    if (!LookupCtx) {
86      if (isDependentScopeSpecifier(*SS)) {
87        // C++ [temp.res]p3:
88        //   A qualified-id that refers to a type and in which the
89        //   nested-name-specifier depends on a template-parameter (14.6.2)
90        //   shall be prefixed by the keyword typename to indicate that the
91        //   qualified-id denotes a type, forming an
92        //   elaborated-type-specifier (7.1.5.3).
93        //
94        // We therefore do not perform any name lookup if the result would
95        // refer to a member of an unknown specialization.
96        if (!isClassName)
97          return ParsedType();
98
99        // We know from the grammar that this name refers to a type,
100        // so build a dependent node to describe the type.
101        if (WantNontrivialTypeSourceInfo)
102          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
103
104        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
105        QualType T =
106          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
107                            II, NameLoc);
108
109          return ParsedType::make(T);
110      }
111
112      return ParsedType();
113    }
114
115    if (!LookupCtx->isDependentContext() &&
116        RequireCompleteDeclContext(*SS, LookupCtx))
117      return ParsedType();
118  }
119
120  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
121  // lookup for class-names.
122  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
123                                      LookupOrdinaryName;
124  LookupResult Result(*this, &II, NameLoc, Kind);
125  if (LookupCtx) {
126    // Perform "qualified" name lookup into the declaration context we
127    // computed, which is either the type of the base of a member access
128    // expression or the declaration context associated with a prior
129    // nested-name-specifier.
130    LookupQualifiedName(Result, LookupCtx);
131
132    if (ObjectTypePtr && Result.empty()) {
133      // C++ [basic.lookup.classref]p3:
134      //   If the unqualified-id is ~type-name, the type-name is looked up
135      //   in the context of the entire postfix-expression. If the type T of
136      //   the object expression is of a class type C, the type-name is also
137      //   looked up in the scope of class C. At least one of the lookups shall
138      //   find a name that refers to (possibly cv-qualified) T.
139      LookupName(Result, S);
140    }
141  } else {
142    // Perform unqualified name lookup.
143    LookupName(Result, S);
144  }
145
146  NamedDecl *IIDecl = 0;
147  switch (Result.getResultKind()) {
148  case LookupResult::NotFound:
149  case LookupResult::NotFoundInCurrentInstantiation:
150    if (CorrectedII) {
151      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
152                                              Kind, S, SS, 0, false,
153                                              Sema::CTC_Type);
154      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
155      TemplateTy Template;
156      bool MemberOfUnknownSpecialization;
157      UnqualifiedId TemplateName;
158      TemplateName.setIdentifier(NewII, NameLoc);
159      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
160      CXXScopeSpec NewSS, *NewSSPtr = SS;
161      if (SS && NNS) {
162        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
163        NewSSPtr = &NewSS;
164      }
165      if (Correction && (NNS || NewII != &II) &&
166          // Ignore a correction to a template type as the to-be-corrected
167          // identifier is not a template (typo correction for template names
168          // is handled elsewhere).
169          !(getLangOptions().CPlusPlus && NewSSPtr &&
170            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
171                           false, Template, MemberOfUnknownSpecialization))) {
172        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
173                                    isClassName, HasTrailingDot, ObjectTypePtr,
174                                    WantNontrivialTypeSourceInfo);
175        if (Ty) {
176          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
177          std::string CorrectedQuotedStr(
178              Correction.getQuoted(getLangOptions()));
179          Diag(NameLoc, diag::err_unknown_typename_suggest)
180              << Result.getLookupName() << CorrectedQuotedStr
181              << FixItHint::CreateReplacement(SourceRange(NameLoc),
182                                              CorrectedStr);
183          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
184            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
185              << CorrectedQuotedStr;
186
187          if (SS && NNS)
188            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
189          *CorrectedII = NewII;
190          return Ty;
191        }
192      }
193    }
194    // If typo correction failed or was not performed, fall through
195  case LookupResult::FoundOverloaded:
196  case LookupResult::FoundUnresolvedValue:
197    Result.suppressDiagnostics();
198    return ParsedType();
199
200  case LookupResult::Ambiguous:
201    // Recover from type-hiding ambiguities by hiding the type.  We'll
202    // do the lookup again when looking for an object, and we can
203    // diagnose the error then.  If we don't do this, then the error
204    // about hiding the type will be immediately followed by an error
205    // that only makes sense if the identifier was treated like a type.
206    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
207      Result.suppressDiagnostics();
208      return ParsedType();
209    }
210
211    // Look to see if we have a type anywhere in the list of results.
212    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
213         Res != ResEnd; ++Res) {
214      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
215        if (!IIDecl ||
216            (*Res)->getLocation().getRawEncoding() <
217              IIDecl->getLocation().getRawEncoding())
218          IIDecl = *Res;
219      }
220    }
221
222    if (!IIDecl) {
223      // None of the entities we found is a type, so there is no way
224      // to even assume that the result is a type. In this case, don't
225      // complain about the ambiguity. The parser will either try to
226      // perform this lookup again (e.g., as an object name), which
227      // will produce the ambiguity, or will complain that it expected
228      // a type name.
229      Result.suppressDiagnostics();
230      return ParsedType();
231    }
232
233    // We found a type within the ambiguous lookup; diagnose the
234    // ambiguity and then return that type. This might be the right
235    // answer, or it might not be, but it suppresses any attempt to
236    // perform the name lookup again.
237    break;
238
239  case LookupResult::Found:
240    IIDecl = Result.getFoundDecl();
241    break;
242  }
243
244  assert(IIDecl && "Didn't find decl");
245
246  QualType T;
247  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
248    DiagnoseUseOfDecl(IIDecl, NameLoc);
249
250    if (T.isNull())
251      T = Context.getTypeDeclType(TD);
252
253    if (SS && SS->isNotEmpty()) {
254      if (WantNontrivialTypeSourceInfo) {
255        // Construct a type with type-source information.
256        TypeLocBuilder Builder;
257        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
258
259        T = getElaboratedType(ETK_None, *SS, T);
260        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
261        ElabTL.setKeywordLoc(SourceLocation());
262        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
263        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
264      } else {
265        T = getElaboratedType(ETK_None, *SS, T);
266      }
267    }
268  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
269    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
270    if (!HasTrailingDot)
271      T = Context.getObjCInterfaceType(IDecl);
272  }
273
274  if (T.isNull()) {
275    // If it's not plausibly a type, suppress diagnostics.
276    Result.suppressDiagnostics();
277    return ParsedType();
278  }
279  return ParsedType::make(T);
280}
281
282/// isTagName() - This method is called *for error recovery purposes only*
283/// to determine if the specified name is a valid tag name ("struct foo").  If
284/// so, this returns the TST for the tag corresponding to it (TST_enum,
285/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
286/// where the user forgot to specify the tag.
287DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
288  // Do a tag name lookup in this scope.
289  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
290  LookupName(R, S, false);
291  R.suppressDiagnostics();
292  if (R.getResultKind() == LookupResult::Found)
293    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
294      switch (TD->getTagKind()) {
295      default:         return DeclSpec::TST_unspecified;
296      case TTK_Struct: return DeclSpec::TST_struct;
297      case TTK_Union:  return DeclSpec::TST_union;
298      case TTK_Class:  return DeclSpec::TST_class;
299      case TTK_Enum:   return DeclSpec::TST_enum;
300      }
301    }
302
303  return DeclSpec::TST_unspecified;
304}
305
306/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
307/// if a CXXScopeSpec's type is equal to the type of one of the base classes
308/// then downgrade the missing typename error to a warning.
309/// This is needed for MSVC compatibility; Example:
310/// @code
311/// template<class T> class A {
312/// public:
313///   typedef int TYPE;
314/// };
315/// template<class T> class B : public A<T> {
316/// public:
317///   A<T>::TYPE a; // no typename required because A<T> is a base class.
318/// };
319/// @endcode
320bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
321  if (CurContext->isRecord()) {
322    const Type *Ty = SS->getScopeRep()->getAsType();
323
324    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
325    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
326          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
327      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
328        return true;
329    return S->isFunctionPrototypeScope();
330  }
331  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
332}
333
334bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
335                                   SourceLocation IILoc,
336                                   Scope *S,
337                                   CXXScopeSpec *SS,
338                                   ParsedType &SuggestedType) {
339  // We don't have anything to suggest (yet).
340  SuggestedType = ParsedType();
341
342  // There may have been a typo in the name of the type. Look up typo
343  // results, in case we have something that we can suggest.
344  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
345                                             LookupOrdinaryName, S, SS, NULL,
346                                             false, CTC_Type)) {
347    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
348    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
349
350    if (Corrected.isKeyword()) {
351      // We corrected to a keyword.
352      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
353      Diag(IILoc, diag::err_unknown_typename_suggest)
354        << &II << CorrectedQuotedStr;
355      return true;
356    } else {
357      NamedDecl *Result = Corrected.getCorrectionDecl();
358      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
359          !Result->isInvalidDecl()) {
360        // We found a similarly-named type or interface; suggest that.
361        if (!SS || !SS->isSet())
362          Diag(IILoc, diag::err_unknown_typename_suggest)
363            << &II << CorrectedQuotedStr
364            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
365        else if (DeclContext *DC = computeDeclContext(*SS, false))
366          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
367            << &II << DC << CorrectedQuotedStr << SS->getRange()
368            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
369        else
370          llvm_unreachable("could not have corrected a typo here");
371
372        Diag(Result->getLocation(), diag::note_previous_decl)
373          << CorrectedQuotedStr;
374
375        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
376                                    false, false, ParsedType(),
377                                    /*NonTrivialTypeSourceInfo=*/true);
378        return true;
379      }
380    }
381  }
382
383  if (getLangOptions().CPlusPlus) {
384    // See if II is a class template that the user forgot to pass arguments to.
385    UnqualifiedId Name;
386    Name.setIdentifier(&II, IILoc);
387    CXXScopeSpec EmptySS;
388    TemplateTy TemplateResult;
389    bool MemberOfUnknownSpecialization;
390    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
391                       Name, ParsedType(), true, TemplateResult,
392                       MemberOfUnknownSpecialization) == TNK_Type_template) {
393      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
394      Diag(IILoc, diag::err_template_missing_args) << TplName;
395      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
396        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
397          << TplDecl->getTemplateParameters()->getSourceRange();
398      }
399      return true;
400    }
401  }
402
403  // FIXME: Should we move the logic that tries to recover from a missing tag
404  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
405
406  if (!SS || (!SS->isSet() && !SS->isInvalid()))
407    Diag(IILoc, diag::err_unknown_typename) << &II;
408  else if (DeclContext *DC = computeDeclContext(*SS, false))
409    Diag(IILoc, diag::err_typename_nested_not_found)
410      << &II << DC << SS->getRange();
411  else if (isDependentScopeSpecifier(*SS)) {
412    unsigned DiagID = diag::err_typename_missing;
413    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
414      DiagID = diag::warn_typename_missing;
415
416    Diag(SS->getRange().getBegin(), DiagID)
417      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
418      << SourceRange(SS->getRange().getBegin(), IILoc)
419      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
420    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
421                                                                         .get();
422  } else {
423    assert(SS && SS->isInvalid() &&
424           "Invalid scope specifier has already been diagnosed");
425  }
426
427  return true;
428}
429
430/// \brief Determine whether the given result set contains either a type name
431/// or
432static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
433  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
434                       NextToken.is(tok::less);
435
436  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
437    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
438      return true;
439
440    if (CheckTemplate && isa<TemplateDecl>(*I))
441      return true;
442  }
443
444  return false;
445}
446
447Sema::NameClassification Sema::ClassifyName(Scope *S,
448                                            CXXScopeSpec &SS,
449                                            IdentifierInfo *&Name,
450                                            SourceLocation NameLoc,
451                                            const Token &NextToken) {
452  DeclarationNameInfo NameInfo(Name, NameLoc);
453  ObjCMethodDecl *CurMethod = getCurMethodDecl();
454
455  if (NextToken.is(tok::coloncolon)) {
456    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
457                                QualType(), false, SS, 0, false);
458
459  }
460
461  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
462  LookupParsedName(Result, S, &SS, !CurMethod);
463
464  // Perform lookup for Objective-C instance variables (including automatically
465  // synthesized instance variables), if we're in an Objective-C method.
466  // FIXME: This lookup really, really needs to be folded in to the normal
467  // unqualified lookup mechanism.
468  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
469    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
470    if (E.get() || E.isInvalid())
471      return E;
472  }
473
474  bool SecondTry = false;
475  bool IsFilteredTemplateName = false;
476
477Corrected:
478  switch (Result.getResultKind()) {
479  case LookupResult::NotFound:
480    // If an unqualified-id is followed by a '(', then we have a function
481    // call.
482    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
483      // In C++, this is an ADL-only call.
484      // FIXME: Reference?
485      if (getLangOptions().CPlusPlus)
486        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
487
488      // C90 6.3.2.2:
489      //   If the expression that precedes the parenthesized argument list in a
490      //   function call consists solely of an identifier, and if no
491      //   declaration is visible for this identifier, the identifier is
492      //   implicitly declared exactly as if, in the innermost block containing
493      //   the function call, the declaration
494      //
495      //     extern int identifier ();
496      //
497      //   appeared.
498      //
499      // We also allow this in C99 as an extension.
500      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
501        Result.addDecl(D);
502        Result.resolveKind();
503        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
504      }
505    }
506
507    // In C, we first see whether there is a tag type by the same name, in
508    // which case it's likely that the user just forget to write "enum",
509    // "struct", or "union".
510    if (!getLangOptions().CPlusPlus && !SecondTry) {
511      Result.clear(LookupTagName);
512      LookupParsedName(Result, S, &SS);
513      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
514        const char *TagName = 0;
515        const char *FixItTagName = 0;
516        switch (Tag->getTagKind()) {
517          case TTK_Class:
518            TagName = "class";
519            FixItTagName = "class ";
520            break;
521
522          case TTK_Enum:
523            TagName = "enum";
524            FixItTagName = "enum ";
525            break;
526
527          case TTK_Struct:
528            TagName = "struct";
529            FixItTagName = "struct ";
530            break;
531
532          case TTK_Union:
533            TagName = "union";
534            FixItTagName = "union ";
535            break;
536        }
537
538        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
539          << Name << TagName << getLangOptions().CPlusPlus
540          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
541        break;
542      }
543
544      Result.clear(LookupOrdinaryName);
545    }
546
547    // Perform typo correction to determine if there is another name that is
548    // close to this name.
549    if (!SecondTry) {
550      SecondTry = true;
551      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
552                                                 Result.getLookupKind(), S,
553                                                 &SS)) {
554        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
555        unsigned QualifiedDiag = diag::err_no_member_suggest;
556        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
557        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
558
559        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
560        NamedDecl *UnderlyingFirstDecl
561          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
562        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
563            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
564          UnqualifiedDiag = diag::err_no_template_suggest;
565          QualifiedDiag = diag::err_no_member_template_suggest;
566        } else if (UnderlyingFirstDecl &&
567                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
569                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
570           UnqualifiedDiag = diag::err_unknown_typename_suggest;
571           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
572         }
573
574        if (SS.isEmpty())
575          Diag(NameLoc, UnqualifiedDiag)
576            << Name << CorrectedQuotedStr
577            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
578        else
579          Diag(NameLoc, QualifiedDiag)
580            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
581            << SS.getRange()
582            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
583
584        // Update the name, so that the caller has the new name.
585        Name = Corrected.getCorrectionAsIdentifierInfo();
586
587        // Also update the LookupResult...
588        // FIXME: This should probably go away at some point
589        Result.clear();
590        Result.setLookupName(Corrected.getCorrection());
591        if (FirstDecl) Result.addDecl(FirstDecl);
592
593        // Typo correction corrected to a keyword.
594        if (Corrected.isKeyword())
595          return Corrected.getCorrectionAsIdentifierInfo();
596
597        if (FirstDecl)
598          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
599            << CorrectedQuotedStr;
600
601        // If we found an Objective-C instance variable, let
602        // LookupInObjCMethod build the appropriate expression to
603        // reference the ivar.
604        // FIXME: This is a gross hack.
605        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
606          Result.clear();
607          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
608          return move(E);
609        }
610
611        goto Corrected;
612      }
613    }
614
615    // We failed to correct; just fall through and let the parser deal with it.
616    Result.suppressDiagnostics();
617    return NameClassification::Unknown();
618
619  case LookupResult::NotFoundInCurrentInstantiation:
620    // We performed name lookup into the current instantiation, and there were
621    // dependent bases, so we treat this result the same way as any other
622    // dependent nested-name-specifier.
623
624    // C++ [temp.res]p2:
625    //   A name used in a template declaration or definition and that is
626    //   dependent on a template-parameter is assumed not to name a type
627    //   unless the applicable name lookup finds a type name or the name is
628    //   qualified by the keyword typename.
629    //
630    // FIXME: If the next token is '<', we might want to ask the parser to
631    // perform some heroics to see if we actually have a
632    // template-argument-list, which would indicate a missing 'template'
633    // keyword here.
634    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
635
636  case LookupResult::Found:
637  case LookupResult::FoundOverloaded:
638  case LookupResult::FoundUnresolvedValue:
639    break;
640
641  case LookupResult::Ambiguous:
642    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
643        hasAnyAcceptableTemplateNames(Result)) {
644      // C++ [temp.local]p3:
645      //   A lookup that finds an injected-class-name (10.2) can result in an
646      //   ambiguity in certain cases (for example, if it is found in more than
647      //   one base class). If all of the injected-class-names that are found
648      //   refer to specializations of the same class template, and if the name
649      //   is followed by a template-argument-list, the reference refers to the
650      //   class template itself and not a specialization thereof, and is not
651      //   ambiguous.
652      //
653      // This filtering can make an ambiguous result into an unambiguous one,
654      // so try again after filtering out template names.
655      FilterAcceptableTemplateNames(Result);
656      if (!Result.isAmbiguous()) {
657        IsFilteredTemplateName = true;
658        break;
659      }
660    }
661
662    // Diagnose the ambiguity and return an error.
663    return NameClassification::Error();
664  }
665
666  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
667      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
668    // C++ [temp.names]p3:
669    //   After name lookup (3.4) finds that a name is a template-name or that
670    //   an operator-function-id or a literal- operator-id refers to a set of
671    //   overloaded functions any member of which is a function template if
672    //   this is followed by a <, the < is always taken as the delimiter of a
673    //   template-argument-list and never as the less-than operator.
674    if (!IsFilteredTemplateName)
675      FilterAcceptableTemplateNames(Result);
676
677    if (!Result.empty()) {
678      bool IsFunctionTemplate;
679      TemplateName Template;
680      if (Result.end() - Result.begin() > 1) {
681        IsFunctionTemplate = true;
682        Template = Context.getOverloadedTemplateName(Result.begin(),
683                                                     Result.end());
684      } else {
685        TemplateDecl *TD
686          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
687        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
688
689        if (SS.isSet() && !SS.isInvalid())
690          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
691                                                    /*TemplateKeyword=*/false,
692                                                      TD);
693        else
694          Template = TemplateName(TD);
695      }
696
697      if (IsFunctionTemplate) {
698        // Function templates always go through overload resolution, at which
699        // point we'll perform the various checks (e.g., accessibility) we need
700        // to based on which function we selected.
701        Result.suppressDiagnostics();
702
703        return NameClassification::FunctionTemplate(Template);
704      }
705
706      return NameClassification::TypeTemplate(Template);
707    }
708  }
709
710  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
711  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
712    DiagnoseUseOfDecl(Type, NameLoc);
713    QualType T = Context.getTypeDeclType(Type);
714    return ParsedType::make(T);
715  }
716
717  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
718  if (!Class) {
719    // FIXME: It's unfortunate that we don't have a Type node for handling this.
720    if (ObjCCompatibleAliasDecl *Alias
721                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
722      Class = Alias->getClassInterface();
723  }
724
725  if (Class) {
726    DiagnoseUseOfDecl(Class, NameLoc);
727
728    if (NextToken.is(tok::period)) {
729      // Interface. <something> is parsed as a property reference expression.
730      // Just return "unknown" as a fall-through for now.
731      Result.suppressDiagnostics();
732      return NameClassification::Unknown();
733    }
734
735    QualType T = Context.getObjCInterfaceType(Class);
736    return ParsedType::make(T);
737  }
738
739  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
740    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
741
742  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
743  return BuildDeclarationNameExpr(SS, Result, ADL);
744}
745
746// Determines the context to return to after temporarily entering a
747// context.  This depends in an unnecessarily complicated way on the
748// exact ordering of callbacks from the parser.
749DeclContext *Sema::getContainingDC(DeclContext *DC) {
750
751  // Functions defined inline within classes aren't parsed until we've
752  // finished parsing the top-level class, so the top-level class is
753  // the context we'll need to return to.
754  if (isa<FunctionDecl>(DC)) {
755    DC = DC->getLexicalParent();
756
757    // A function not defined within a class will always return to its
758    // lexical context.
759    if (!isa<CXXRecordDecl>(DC))
760      return DC;
761
762    // A C++ inline method/friend is parsed *after* the topmost class
763    // it was declared in is fully parsed ("complete");  the topmost
764    // class is the context we need to return to.
765    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
766      DC = RD;
767
768    // Return the declaration context of the topmost class the inline method is
769    // declared in.
770    return DC;
771  }
772
773  return DC->getLexicalParent();
774}
775
776void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
777  assert(getContainingDC(DC) == CurContext &&
778      "The next DeclContext should be lexically contained in the current one.");
779  CurContext = DC;
780  S->setEntity(DC);
781}
782
783void Sema::PopDeclContext() {
784  assert(CurContext && "DeclContext imbalance!");
785
786  CurContext = getContainingDC(CurContext);
787  assert(CurContext && "Popped translation unit!");
788}
789
790/// EnterDeclaratorContext - Used when we must lookup names in the context
791/// of a declarator's nested name specifier.
792///
793void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
794  // C++0x [basic.lookup.unqual]p13:
795  //   A name used in the definition of a static data member of class
796  //   X (after the qualified-id of the static member) is looked up as
797  //   if the name was used in a member function of X.
798  // C++0x [basic.lookup.unqual]p14:
799  //   If a variable member of a namespace is defined outside of the
800  //   scope of its namespace then any name used in the definition of
801  //   the variable member (after the declarator-id) is looked up as
802  //   if the definition of the variable member occurred in its
803  //   namespace.
804  // Both of these imply that we should push a scope whose context
805  // is the semantic context of the declaration.  We can't use
806  // PushDeclContext here because that context is not necessarily
807  // lexically contained in the current context.  Fortunately,
808  // the containing scope should have the appropriate information.
809
810  assert(!S->getEntity() && "scope already has entity");
811
812#ifndef NDEBUG
813  Scope *Ancestor = S->getParent();
814  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
815  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
816#endif
817
818  CurContext = DC;
819  S->setEntity(DC);
820}
821
822void Sema::ExitDeclaratorContext(Scope *S) {
823  assert(S->getEntity() == CurContext && "Context imbalance!");
824
825  // Switch back to the lexical context.  The safety of this is
826  // enforced by an assert in EnterDeclaratorContext.
827  Scope *Ancestor = S->getParent();
828  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
829  CurContext = (DeclContext*) Ancestor->getEntity();
830
831  // We don't need to do anything with the scope, which is going to
832  // disappear.
833}
834
835
836void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
837  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
838  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
839    // We assume that the caller has already called
840    // ActOnReenterTemplateScope
841    FD = TFD->getTemplatedDecl();
842  }
843  if (!FD)
844    return;
845
846  PushDeclContext(S, FD);
847  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
848    ParmVarDecl *Param = FD->getParamDecl(P);
849    // If the parameter has an identifier, then add it to the scope
850    if (Param->getIdentifier()) {
851      S->AddDecl(Param);
852      IdResolver.AddDecl(Param);
853    }
854  }
855}
856
857
858/// \brief Determine whether we allow overloading of the function
859/// PrevDecl with another declaration.
860///
861/// This routine determines whether overloading is possible, not
862/// whether some new function is actually an overload. It will return
863/// true in C++ (where we can always provide overloads) or, as an
864/// extension, in C when the previous function is already an
865/// overloaded function declaration or has the "overloadable"
866/// attribute.
867static bool AllowOverloadingOfFunction(LookupResult &Previous,
868                                       ASTContext &Context) {
869  if (Context.getLangOptions().CPlusPlus)
870    return true;
871
872  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
873    return true;
874
875  return (Previous.getResultKind() == LookupResult::Found
876          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
877}
878
879/// Add this decl to the scope shadowed decl chains.
880void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
881  // Move up the scope chain until we find the nearest enclosing
882  // non-transparent context. The declaration will be introduced into this
883  // scope.
884  while (S->getEntity() &&
885         ((DeclContext *)S->getEntity())->isTransparentContext())
886    S = S->getParent();
887
888  // Add scoped declarations into their context, so that they can be
889  // found later. Declarations without a context won't be inserted
890  // into any context.
891  if (AddToContext)
892    CurContext->addDecl(D);
893
894  // Out-of-line definitions shouldn't be pushed into scope in C++.
895  // Out-of-line variable and function definitions shouldn't even in C.
896  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
897      D->isOutOfLine() &&
898      !D->getDeclContext()->getRedeclContext()->Equals(
899        D->getLexicalDeclContext()->getRedeclContext()))
900    return;
901
902  // Template instantiations should also not be pushed into scope.
903  if (isa<FunctionDecl>(D) &&
904      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
905    return;
906
907  // If this replaces anything in the current scope,
908  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
909                               IEnd = IdResolver.end();
910  for (; I != IEnd; ++I) {
911    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
912      S->RemoveDecl(*I);
913      IdResolver.RemoveDecl(*I);
914
915      // Should only need to replace one decl.
916      break;
917    }
918  }
919
920  S->AddDecl(D);
921
922  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
923    // Implicitly-generated labels may end up getting generated in an order that
924    // isn't strictly lexical, which breaks name lookup. Be careful to insert
925    // the label at the appropriate place in the identifier chain.
926    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
927      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
928      if (IDC == CurContext) {
929        if (!S->isDeclScope(*I))
930          continue;
931      } else if (IDC->Encloses(CurContext))
932        break;
933    }
934
935    IdResolver.InsertDeclAfter(I, D);
936  } else {
937    IdResolver.AddDecl(D);
938  }
939}
940
941bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
942                         bool ExplicitInstantiationOrSpecialization) {
943  return IdResolver.isDeclInScope(D, Ctx, Context, S,
944                                  ExplicitInstantiationOrSpecialization);
945}
946
947Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
948  DeclContext *TargetDC = DC->getPrimaryContext();
949  do {
950    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
951      if (ScopeDC->getPrimaryContext() == TargetDC)
952        return S;
953  } while ((S = S->getParent()));
954
955  return 0;
956}
957
958static bool isOutOfScopePreviousDeclaration(NamedDecl *,
959                                            DeclContext*,
960                                            ASTContext&);
961
962/// Filters out lookup results that don't fall within the given scope
963/// as determined by isDeclInScope.
964void Sema::FilterLookupForScope(LookupResult &R,
965                                DeclContext *Ctx, Scope *S,
966                                bool ConsiderLinkage,
967                                bool ExplicitInstantiationOrSpecialization) {
968  LookupResult::Filter F = R.makeFilter();
969  while (F.hasNext()) {
970    NamedDecl *D = F.next();
971
972    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
973      continue;
974
975    if (ConsiderLinkage &&
976        isOutOfScopePreviousDeclaration(D, Ctx, Context))
977      continue;
978
979    F.erase();
980  }
981
982  F.done();
983}
984
985static bool isUsingDecl(NamedDecl *D) {
986  return isa<UsingShadowDecl>(D) ||
987         isa<UnresolvedUsingTypenameDecl>(D) ||
988         isa<UnresolvedUsingValueDecl>(D);
989}
990
991/// Removes using shadow declarations from the lookup results.
992static void RemoveUsingDecls(LookupResult &R) {
993  LookupResult::Filter F = R.makeFilter();
994  while (F.hasNext())
995    if (isUsingDecl(F.next()))
996      F.erase();
997
998  F.done();
999}
1000
1001/// \brief Check for this common pattern:
1002/// @code
1003/// class S {
1004///   S(const S&); // DO NOT IMPLEMENT
1005///   void operator=(const S&); // DO NOT IMPLEMENT
1006/// };
1007/// @endcode
1008static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1009  // FIXME: Should check for private access too but access is set after we get
1010  // the decl here.
1011  if (D->doesThisDeclarationHaveABody())
1012    return false;
1013
1014  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1015    return CD->isCopyConstructor();
1016  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1017    return Method->isCopyAssignmentOperator();
1018  return false;
1019}
1020
1021bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1022  assert(D);
1023
1024  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  // Ignore class templates.
1028  if (D->getDeclContext()->isDependentContext() ||
1029      D->getLexicalDeclContext()->isDependentContext())
1030    return false;
1031
1032  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1033    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1034      return false;
1035
1036    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1037      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1038        return false;
1039    } else {
1040      // 'static inline' functions are used in headers; don't warn.
1041      if (FD->getStorageClass() == SC_Static &&
1042          FD->isInlineSpecified())
1043        return false;
1044    }
1045
1046    if (FD->doesThisDeclarationHaveABody() &&
1047        Context.DeclMustBeEmitted(FD))
1048      return false;
1049  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1050    if (!VD->isFileVarDecl() ||
1051        VD->getType().isConstant(Context) ||
1052        Context.DeclMustBeEmitted(VD))
1053      return false;
1054
1055    if (VD->isStaticDataMember() &&
1056        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1057      return false;
1058
1059  } else {
1060    return false;
1061  }
1062
1063  // Only warn for unused decls internal to the translation unit.
1064  if (D->getLinkage() == ExternalLinkage)
1065    return false;
1066
1067  return true;
1068}
1069
1070void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1071  if (!D)
1072    return;
1073
1074  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1075    const FunctionDecl *First = FD->getFirstDeclaration();
1076    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1077      return; // First should already be in the vector.
1078  }
1079
1080  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1081    const VarDecl *First = VD->getFirstDeclaration();
1082    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1083      return; // First should already be in the vector.
1084  }
1085
1086   if (ShouldWarnIfUnusedFileScopedDecl(D))
1087     UnusedFileScopedDecls.push_back(D);
1088 }
1089
1090static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1091  if (D->isInvalidDecl())
1092    return false;
1093
1094  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1095    return false;
1096
1097  if (isa<LabelDecl>(D))
1098    return true;
1099
1100  // White-list anything that isn't a local variable.
1101  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1102      !D->getDeclContext()->isFunctionOrMethod())
1103    return false;
1104
1105  // Types of valid local variables should be complete, so this should succeed.
1106  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1107
1108    // White-list anything with an __attribute__((unused)) type.
1109    QualType Ty = VD->getType();
1110
1111    // Only look at the outermost level of typedef.
1112    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1113      if (TT->getDecl()->hasAttr<UnusedAttr>())
1114        return false;
1115    }
1116
1117    // If we failed to complete the type for some reason, or if the type is
1118    // dependent, don't diagnose the variable.
1119    if (Ty->isIncompleteType() || Ty->isDependentType())
1120      return false;
1121
1122    if (const TagType *TT = Ty->getAs<TagType>()) {
1123      const TagDecl *Tag = TT->getDecl();
1124      if (Tag->hasAttr<UnusedAttr>())
1125        return false;
1126
1127      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1128        // FIXME: Checking for the presence of a user-declared constructor
1129        // isn't completely accurate; we'd prefer to check that the initializer
1130        // has no side effects.
1131        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1132          return false;
1133      }
1134    }
1135
1136    // TODO: __attribute__((unused)) templates?
1137  }
1138
1139  return true;
1140}
1141
1142static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1143                                     FixItHint &Hint) {
1144  if (isa<LabelDecl>(D)) {
1145    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1146                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1147    if (AfterColon.isInvalid())
1148      return;
1149    Hint = FixItHint::CreateRemoval(CharSourceRange::
1150                                    getCharRange(D->getLocStart(), AfterColon));
1151  }
1152  return;
1153}
1154
1155/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1156/// unless they are marked attr(unused).
1157void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1158  FixItHint Hint;
1159  if (!ShouldDiagnoseUnusedDecl(D))
1160    return;
1161
1162  GenerateFixForUnusedDecl(D, Context, Hint);
1163
1164  unsigned DiagID;
1165  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1166    DiagID = diag::warn_unused_exception_param;
1167  else if (isa<LabelDecl>(D))
1168    DiagID = diag::warn_unused_label;
1169  else
1170    DiagID = diag::warn_unused_variable;
1171
1172  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1173}
1174
1175static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1176  // Verify that we have no forward references left.  If so, there was a goto
1177  // or address of a label taken, but no definition of it.  Label fwd
1178  // definitions are indicated with a null substmt.
1179  if (L->getStmt() == 0)
1180    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1181}
1182
1183void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1184  if (S->decl_empty()) return;
1185  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1186         "Scope shouldn't contain decls!");
1187
1188  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1189       I != E; ++I) {
1190    Decl *TmpD = (*I);
1191    assert(TmpD && "This decl didn't get pushed??");
1192
1193    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1194    NamedDecl *D = cast<NamedDecl>(TmpD);
1195
1196    if (!D->getDeclName()) continue;
1197
1198    // Diagnose unused variables in this scope.
1199    if (!S->hasErrorOccurred())
1200      DiagnoseUnusedDecl(D);
1201
1202    // If this was a forward reference to a label, verify it was defined.
1203    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1204      CheckPoppedLabel(LD, *this);
1205
1206    // Remove this name from our lexical scope.
1207    IdResolver.RemoveDecl(D);
1208  }
1209}
1210
1211/// \brief Look for an Objective-C class in the translation unit.
1212///
1213/// \param Id The name of the Objective-C class we're looking for. If
1214/// typo-correction fixes this name, the Id will be updated
1215/// to the fixed name.
1216///
1217/// \param IdLoc The location of the name in the translation unit.
1218///
1219/// \param TypoCorrection If true, this routine will attempt typo correction
1220/// if there is no class with the given name.
1221///
1222/// \returns The declaration of the named Objective-C class, or NULL if the
1223/// class could not be found.
1224ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1225                                              SourceLocation IdLoc,
1226                                              bool DoTypoCorrection) {
1227  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1228  // creation from this context.
1229  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1230
1231  if (!IDecl && DoTypoCorrection) {
1232    // Perform typo correction at the given location, but only if we
1233    // find an Objective-C class name.
1234    TypoCorrection C;
1235    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1236                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1237        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1238      Diag(IdLoc, diag::err_undef_interface_suggest)
1239        << Id << IDecl->getDeclName()
1240        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1241      Diag(IDecl->getLocation(), diag::note_previous_decl)
1242        << IDecl->getDeclName();
1243
1244      Id = IDecl->getIdentifier();
1245    }
1246  }
1247
1248  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1249}
1250
1251/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1252/// from S, where a non-field would be declared. This routine copes
1253/// with the difference between C and C++ scoping rules in structs and
1254/// unions. For example, the following code is well-formed in C but
1255/// ill-formed in C++:
1256/// @code
1257/// struct S6 {
1258///   enum { BAR } e;
1259/// };
1260///
1261/// void test_S6() {
1262///   struct S6 a;
1263///   a.e = BAR;
1264/// }
1265/// @endcode
1266/// For the declaration of BAR, this routine will return a different
1267/// scope. The scope S will be the scope of the unnamed enumeration
1268/// within S6. In C++, this routine will return the scope associated
1269/// with S6, because the enumeration's scope is a transparent
1270/// context but structures can contain non-field names. In C, this
1271/// routine will return the translation unit scope, since the
1272/// enumeration's scope is a transparent context and structures cannot
1273/// contain non-field names.
1274Scope *Sema::getNonFieldDeclScope(Scope *S) {
1275  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1276         (S->getEntity() &&
1277          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1278         (S->isClassScope() && !getLangOptions().CPlusPlus))
1279    S = S->getParent();
1280  return S;
1281}
1282
1283/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1284/// file scope.  lazily create a decl for it. ForRedeclaration is true
1285/// if we're creating this built-in in anticipation of redeclaring the
1286/// built-in.
1287NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1288                                     Scope *S, bool ForRedeclaration,
1289                                     SourceLocation Loc) {
1290  Builtin::ID BID = (Builtin::ID)bid;
1291
1292  ASTContext::GetBuiltinTypeError Error;
1293  QualType R = Context.GetBuiltinType(BID, Error);
1294  switch (Error) {
1295  case ASTContext::GE_None:
1296    // Okay
1297    break;
1298
1299  case ASTContext::GE_Missing_stdio:
1300    if (ForRedeclaration)
1301      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1302        << Context.BuiltinInfo.GetName(BID);
1303    return 0;
1304
1305  case ASTContext::GE_Missing_setjmp:
1306    if (ForRedeclaration)
1307      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1308        << Context.BuiltinInfo.GetName(BID);
1309    return 0;
1310  }
1311
1312  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1313    Diag(Loc, diag::ext_implicit_lib_function_decl)
1314      << Context.BuiltinInfo.GetName(BID)
1315      << R;
1316    if (Context.BuiltinInfo.getHeaderName(BID) &&
1317        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1318          != DiagnosticsEngine::Ignored)
1319      Diag(Loc, diag::note_please_include_header)
1320        << Context.BuiltinInfo.getHeaderName(BID)
1321        << Context.BuiltinInfo.GetName(BID);
1322  }
1323
1324  FunctionDecl *New = FunctionDecl::Create(Context,
1325                                           Context.getTranslationUnitDecl(),
1326                                           Loc, Loc, II, R, /*TInfo=*/0,
1327                                           SC_Extern,
1328                                           SC_None, false,
1329                                           /*hasPrototype=*/true);
1330  New->setImplicit();
1331
1332  // Create Decl objects for each parameter, adding them to the
1333  // FunctionDecl.
1334  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1335    SmallVector<ParmVarDecl*, 16> Params;
1336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1337      ParmVarDecl *parm =
1338        ParmVarDecl::Create(Context, New, SourceLocation(),
1339                            SourceLocation(), 0,
1340                            FT->getArgType(i), /*TInfo=*/0,
1341                            SC_None, SC_None, 0);
1342      parm->setScopeInfo(0, i);
1343      Params.push_back(parm);
1344    }
1345    New->setParams(Params);
1346  }
1347
1348  AddKnownFunctionAttributes(New);
1349
1350  // TUScope is the translation-unit scope to insert this function into.
1351  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1352  // relate Scopes to DeclContexts, and probably eliminate CurContext
1353  // entirely, but we're not there yet.
1354  DeclContext *SavedContext = CurContext;
1355  CurContext = Context.getTranslationUnitDecl();
1356  PushOnScopeChains(New, TUScope);
1357  CurContext = SavedContext;
1358  return New;
1359}
1360
1361/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1362/// same name and scope as a previous declaration 'Old'.  Figure out
1363/// how to resolve this situation, merging decls or emitting
1364/// diagnostics as appropriate. If there was an error, set New to be invalid.
1365///
1366void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1367  // If the new decl is known invalid already, don't bother doing any
1368  // merging checks.
1369  if (New->isInvalidDecl()) return;
1370
1371  // Allow multiple definitions for ObjC built-in typedefs.
1372  // FIXME: Verify the underlying types are equivalent!
1373  if (getLangOptions().ObjC1) {
1374    const IdentifierInfo *TypeID = New->getIdentifier();
1375    switch (TypeID->getLength()) {
1376    default: break;
1377    case 2:
1378      if (!TypeID->isStr("id"))
1379        break;
1380      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1381      // Install the built-in type for 'id', ignoring the current definition.
1382      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1383      return;
1384    case 5:
1385      if (!TypeID->isStr("Class"))
1386        break;
1387      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1388      // Install the built-in type for 'Class', ignoring the current definition.
1389      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1390      return;
1391    case 3:
1392      if (!TypeID->isStr("SEL"))
1393        break;
1394      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1395      // Install the built-in type for 'SEL', ignoring the current definition.
1396      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1397      return;
1398    }
1399    // Fall through - the typedef name was not a builtin type.
1400  }
1401
1402  // Verify the old decl was also a type.
1403  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1404  if (!Old) {
1405    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1406      << New->getDeclName();
1407
1408    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1409    if (OldD->getLocation().isValid())
1410      Diag(OldD->getLocation(), diag::note_previous_definition);
1411
1412    return New->setInvalidDecl();
1413  }
1414
1415  // If the old declaration is invalid, just give up here.
1416  if (Old->isInvalidDecl())
1417    return New->setInvalidDecl();
1418
1419  // Determine the "old" type we'll use for checking and diagnostics.
1420  QualType OldType;
1421  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1422    OldType = OldTypedef->getUnderlyingType();
1423  else
1424    OldType = Context.getTypeDeclType(Old);
1425
1426  // If the typedef types are not identical, reject them in all languages and
1427  // with any extensions enabled.
1428
1429  if (OldType != New->getUnderlyingType() &&
1430      Context.getCanonicalType(OldType) !=
1431      Context.getCanonicalType(New->getUnderlyingType())) {
1432    int Kind = 0;
1433    if (isa<TypeAliasDecl>(Old))
1434      Kind = 1;
1435    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1436      << Kind << New->getUnderlyingType() << OldType;
1437    if (Old->getLocation().isValid())
1438      Diag(Old->getLocation(), diag::note_previous_definition);
1439    return New->setInvalidDecl();
1440  }
1441
1442  // The types match.  Link up the redeclaration chain if the old
1443  // declaration was a typedef.
1444  // FIXME: this is a potential source of weirdness if the type
1445  // spellings don't match exactly.
1446  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1447    New->setPreviousDeclaration(Typedef);
1448
1449  // __module_private__ is propagated to later declarations.
1450  if (Old->isModulePrivate())
1451    New->setModulePrivate();
1452  else if (New->isModulePrivate())
1453    diagnoseModulePrivateRedeclaration(New, Old);
1454
1455  if (getLangOptions().MicrosoftExt)
1456    return;
1457
1458  if (getLangOptions().CPlusPlus) {
1459    // C++ [dcl.typedef]p2:
1460    //   In a given non-class scope, a typedef specifier can be used to
1461    //   redefine the name of any type declared in that scope to refer
1462    //   to the type to which it already refers.
1463    if (!isa<CXXRecordDecl>(CurContext))
1464      return;
1465
1466    // C++0x [dcl.typedef]p4:
1467    //   In a given class scope, a typedef specifier can be used to redefine
1468    //   any class-name declared in that scope that is not also a typedef-name
1469    //   to refer to the type to which it already refers.
1470    //
1471    // This wording came in via DR424, which was a correction to the
1472    // wording in DR56, which accidentally banned code like:
1473    //
1474    //   struct S {
1475    //     typedef struct A { } A;
1476    //   };
1477    //
1478    // in the C++03 standard. We implement the C++0x semantics, which
1479    // allow the above but disallow
1480    //
1481    //   struct S {
1482    //     typedef int I;
1483    //     typedef int I;
1484    //   };
1485    //
1486    // since that was the intent of DR56.
1487    if (!isa<TypedefNameDecl>(Old))
1488      return;
1489
1490    Diag(New->getLocation(), diag::err_redefinition)
1491      << New->getDeclName();
1492    Diag(Old->getLocation(), diag::note_previous_definition);
1493    return New->setInvalidDecl();
1494  }
1495
1496  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1497  // is normally mapped to an error, but can be controlled with
1498  // -Wtypedef-redefinition.  If either the original or the redefinition is
1499  // in a system header, don't emit this for compatibility with GCC.
1500  if (getDiagnostics().getSuppressSystemWarnings() &&
1501      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1502       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1503    return;
1504
1505  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1506    << New->getDeclName();
1507  Diag(Old->getLocation(), diag::note_previous_definition);
1508  return;
1509}
1510
1511/// DeclhasAttr - returns true if decl Declaration already has the target
1512/// attribute.
1513static bool
1514DeclHasAttr(const Decl *D, const Attr *A) {
1515  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1516  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1517  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1518    if ((*i)->getKind() == A->getKind()) {
1519      if (Ann) {
1520        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1521          return true;
1522        continue;
1523      }
1524      // FIXME: Don't hardcode this check
1525      if (OA && isa<OwnershipAttr>(*i))
1526        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1527      return true;
1528    }
1529
1530  return false;
1531}
1532
1533/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1534static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1535                                ASTContext &C, bool mergeDeprecation = true) {
1536  if (!oldDecl->hasAttrs())
1537    return;
1538
1539  bool foundAny = newDecl->hasAttrs();
1540
1541  // Ensure that any moving of objects within the allocated map is done before
1542  // we process them.
1543  if (!foundAny) newDecl->setAttrs(AttrVec());
1544
1545  for (specific_attr_iterator<InheritableAttr>
1546       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1547       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1548    // Ignore deprecated/unavailable/availability attributes if requested.
1549    if (!mergeDeprecation &&
1550        (isa<DeprecatedAttr>(*i) ||
1551         isa<UnavailableAttr>(*i) ||
1552         isa<AvailabilityAttr>(*i)))
1553      continue;
1554
1555    if (!DeclHasAttr(newDecl, *i)) {
1556      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1557      newAttr->setInherited(true);
1558      newDecl->addAttr(newAttr);
1559      foundAny = true;
1560    }
1561  }
1562
1563  if (!foundAny) newDecl->dropAttrs();
1564}
1565
1566/// mergeParamDeclAttributes - Copy attributes from the old parameter
1567/// to the new one.
1568static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1569                                     const ParmVarDecl *oldDecl,
1570                                     ASTContext &C) {
1571  if (!oldDecl->hasAttrs())
1572    return;
1573
1574  bool foundAny = newDecl->hasAttrs();
1575
1576  // Ensure that any moving of objects within the allocated map is
1577  // done before we process them.
1578  if (!foundAny) newDecl->setAttrs(AttrVec());
1579
1580  for (specific_attr_iterator<InheritableParamAttr>
1581       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1582       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1583    if (!DeclHasAttr(newDecl, *i)) {
1584      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1585      newAttr->setInherited(true);
1586      newDecl->addAttr(newAttr);
1587      foundAny = true;
1588    }
1589  }
1590
1591  if (!foundAny) newDecl->dropAttrs();
1592}
1593
1594namespace {
1595
1596/// Used in MergeFunctionDecl to keep track of function parameters in
1597/// C.
1598struct GNUCompatibleParamWarning {
1599  ParmVarDecl *OldParm;
1600  ParmVarDecl *NewParm;
1601  QualType PromotedType;
1602};
1603
1604}
1605
1606/// getSpecialMember - get the special member enum for a method.
1607Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1608  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1609    if (Ctor->isDefaultConstructor())
1610      return Sema::CXXDefaultConstructor;
1611
1612    if (Ctor->isCopyConstructor())
1613      return Sema::CXXCopyConstructor;
1614
1615    if (Ctor->isMoveConstructor())
1616      return Sema::CXXMoveConstructor;
1617  } else if (isa<CXXDestructorDecl>(MD)) {
1618    return Sema::CXXDestructor;
1619  } else if (MD->isCopyAssignmentOperator()) {
1620    return Sema::CXXCopyAssignment;
1621  } else if (MD->isMoveAssignmentOperator()) {
1622    return Sema::CXXMoveAssignment;
1623  }
1624
1625  return Sema::CXXInvalid;
1626}
1627
1628/// canRedefineFunction - checks if a function can be redefined. Currently,
1629/// only extern inline functions can be redefined, and even then only in
1630/// GNU89 mode.
1631static bool canRedefineFunction(const FunctionDecl *FD,
1632                                const LangOptions& LangOpts) {
1633  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1634          !LangOpts.CPlusPlus &&
1635          FD->isInlineSpecified() &&
1636          FD->getStorageClass() == SC_Extern);
1637}
1638
1639/// MergeFunctionDecl - We just parsed a function 'New' from
1640/// declarator D which has the same name and scope as a previous
1641/// declaration 'Old'.  Figure out how to resolve this situation,
1642/// merging decls or emitting diagnostics as appropriate.
1643///
1644/// In C++, New and Old must be declarations that are not
1645/// overloaded. Use IsOverload to determine whether New and Old are
1646/// overloaded, and to select the Old declaration that New should be
1647/// merged with.
1648///
1649/// Returns true if there was an error, false otherwise.
1650bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1651  // Verify the old decl was also a function.
1652  FunctionDecl *Old = 0;
1653  if (FunctionTemplateDecl *OldFunctionTemplate
1654        = dyn_cast<FunctionTemplateDecl>(OldD))
1655    Old = OldFunctionTemplate->getTemplatedDecl();
1656  else
1657    Old = dyn_cast<FunctionDecl>(OldD);
1658  if (!Old) {
1659    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1660      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1661      Diag(Shadow->getTargetDecl()->getLocation(),
1662           diag::note_using_decl_target);
1663      Diag(Shadow->getUsingDecl()->getLocation(),
1664           diag::note_using_decl) << 0;
1665      return true;
1666    }
1667
1668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1669      << New->getDeclName();
1670    Diag(OldD->getLocation(), diag::note_previous_definition);
1671    return true;
1672  }
1673
1674  // Determine whether the previous declaration was a definition,
1675  // implicit declaration, or a declaration.
1676  diag::kind PrevDiag;
1677  if (Old->isThisDeclarationADefinition())
1678    PrevDiag = diag::note_previous_definition;
1679  else if (Old->isImplicit())
1680    PrevDiag = diag::note_previous_implicit_declaration;
1681  else
1682    PrevDiag = diag::note_previous_declaration;
1683
1684  QualType OldQType = Context.getCanonicalType(Old->getType());
1685  QualType NewQType = Context.getCanonicalType(New->getType());
1686
1687  // Don't complain about this if we're in GNU89 mode and the old function
1688  // is an extern inline function.
1689  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1690      New->getStorageClass() == SC_Static &&
1691      Old->getStorageClass() != SC_Static &&
1692      !canRedefineFunction(Old, getLangOptions())) {
1693    if (getLangOptions().MicrosoftExt) {
1694      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1695      Diag(Old->getLocation(), PrevDiag);
1696    } else {
1697      Diag(New->getLocation(), diag::err_static_non_static) << New;
1698      Diag(Old->getLocation(), PrevDiag);
1699      return true;
1700    }
1701  }
1702
1703  // If a function is first declared with a calling convention, but is
1704  // later declared or defined without one, the second decl assumes the
1705  // calling convention of the first.
1706  //
1707  // For the new decl, we have to look at the NON-canonical type to tell the
1708  // difference between a function that really doesn't have a calling
1709  // convention and one that is declared cdecl. That's because in
1710  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1711  // because it is the default calling convention.
1712  //
1713  // Note also that we DO NOT return at this point, because we still have
1714  // other tests to run.
1715  const FunctionType *OldType = cast<FunctionType>(OldQType);
1716  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1717  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1718  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1719  bool RequiresAdjustment = false;
1720  if (OldTypeInfo.getCC() != CC_Default &&
1721      NewTypeInfo.getCC() == CC_Default) {
1722    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1723    RequiresAdjustment = true;
1724  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1725                                     NewTypeInfo.getCC())) {
1726    // Calling conventions really aren't compatible, so complain.
1727    Diag(New->getLocation(), diag::err_cconv_change)
1728      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1729      << (OldTypeInfo.getCC() == CC_Default)
1730      << (OldTypeInfo.getCC() == CC_Default ? "" :
1731          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1732    Diag(Old->getLocation(), diag::note_previous_declaration);
1733    return true;
1734  }
1735
1736  // FIXME: diagnose the other way around?
1737  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1738    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1739    RequiresAdjustment = true;
1740  }
1741
1742  // Merge regparm attribute.
1743  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1744      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1745    if (NewTypeInfo.getHasRegParm()) {
1746      Diag(New->getLocation(), diag::err_regparm_mismatch)
1747        << NewType->getRegParmType()
1748        << OldType->getRegParmType();
1749      Diag(Old->getLocation(), diag::note_previous_declaration);
1750      return true;
1751    }
1752
1753    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1754    RequiresAdjustment = true;
1755  }
1756
1757  // Merge ns_returns_retained attribute.
1758  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1759    if (NewTypeInfo.getProducesResult()) {
1760      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1761      Diag(Old->getLocation(), diag::note_previous_declaration);
1762      return true;
1763    }
1764
1765    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1766    RequiresAdjustment = true;
1767  }
1768
1769  if (RequiresAdjustment) {
1770    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1771    New->setType(QualType(NewType, 0));
1772    NewQType = Context.getCanonicalType(New->getType());
1773  }
1774
1775  if (getLangOptions().CPlusPlus) {
1776    // (C++98 13.1p2):
1777    //   Certain function declarations cannot be overloaded:
1778    //     -- Function declarations that differ only in the return type
1779    //        cannot be overloaded.
1780    QualType OldReturnType = OldType->getResultType();
1781    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1782    QualType ResQT;
1783    if (OldReturnType != NewReturnType) {
1784      if (NewReturnType->isObjCObjectPointerType()
1785          && OldReturnType->isObjCObjectPointerType())
1786        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1787      if (ResQT.isNull()) {
1788        if (New->isCXXClassMember() && New->isOutOfLine())
1789          Diag(New->getLocation(),
1790               diag::err_member_def_does_not_match_ret_type) << New;
1791        else
1792          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1793        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1794        return true;
1795      }
1796      else
1797        NewQType = ResQT;
1798    }
1799
1800    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1801    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1802    if (OldMethod && NewMethod) {
1803      // Preserve triviality.
1804      NewMethod->setTrivial(OldMethod->isTrivial());
1805
1806      // MSVC allows explicit template specialization at class scope:
1807      // 2 CXMethodDecls referring to the same function will be injected.
1808      // We don't want a redeclartion error.
1809      bool IsClassScopeExplicitSpecialization =
1810                              OldMethod->isFunctionTemplateSpecialization() &&
1811                              NewMethod->isFunctionTemplateSpecialization();
1812      bool isFriend = NewMethod->getFriendObjectKind();
1813
1814      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1815          !IsClassScopeExplicitSpecialization) {
1816        //    -- Member function declarations with the same name and the
1817        //       same parameter types cannot be overloaded if any of them
1818        //       is a static member function declaration.
1819        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1820          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1821          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1822          return true;
1823        }
1824
1825        // C++ [class.mem]p1:
1826        //   [...] A member shall not be declared twice in the
1827        //   member-specification, except that a nested class or member
1828        //   class template can be declared and then later defined.
1829        unsigned NewDiag;
1830        if (isa<CXXConstructorDecl>(OldMethod))
1831          NewDiag = diag::err_constructor_redeclared;
1832        else if (isa<CXXDestructorDecl>(NewMethod))
1833          NewDiag = diag::err_destructor_redeclared;
1834        else if (isa<CXXConversionDecl>(NewMethod))
1835          NewDiag = diag::err_conv_function_redeclared;
1836        else
1837          NewDiag = diag::err_member_redeclared;
1838
1839        Diag(New->getLocation(), NewDiag);
1840        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1841
1842      // Complain if this is an explicit declaration of a special
1843      // member that was initially declared implicitly.
1844      //
1845      // As an exception, it's okay to befriend such methods in order
1846      // to permit the implicit constructor/destructor/operator calls.
1847      } else if (OldMethod->isImplicit()) {
1848        if (isFriend) {
1849          NewMethod->setImplicit();
1850        } else {
1851          Diag(NewMethod->getLocation(),
1852               diag::err_definition_of_implicitly_declared_member)
1853            << New << getSpecialMember(OldMethod);
1854          return true;
1855        }
1856      } else if (OldMethod->isExplicitlyDefaulted()) {
1857        Diag(NewMethod->getLocation(),
1858             diag::err_definition_of_explicitly_defaulted_member)
1859          << getSpecialMember(OldMethod);
1860        return true;
1861      }
1862    }
1863
1864    // (C++98 8.3.5p3):
1865    //   All declarations for a function shall agree exactly in both the
1866    //   return type and the parameter-type-list.
1867    // We also want to respect all the extended bits except noreturn.
1868
1869    // noreturn should now match unless the old type info didn't have it.
1870    QualType OldQTypeForComparison = OldQType;
1871    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1872      assert(OldQType == QualType(OldType, 0));
1873      const FunctionType *OldTypeForComparison
1874        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1875      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1876      assert(OldQTypeForComparison.isCanonical());
1877    }
1878
1879    if (OldQTypeForComparison == NewQType)
1880      return MergeCompatibleFunctionDecls(New, Old);
1881
1882    // Fall through for conflicting redeclarations and redefinitions.
1883  }
1884
1885  // C: Function types need to be compatible, not identical. This handles
1886  // duplicate function decls like "void f(int); void f(enum X);" properly.
1887  if (!getLangOptions().CPlusPlus &&
1888      Context.typesAreCompatible(OldQType, NewQType)) {
1889    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1890    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1891    const FunctionProtoType *OldProto = 0;
1892    if (isa<FunctionNoProtoType>(NewFuncType) &&
1893        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1894      // The old declaration provided a function prototype, but the
1895      // new declaration does not. Merge in the prototype.
1896      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1897      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1898                                                 OldProto->arg_type_end());
1899      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1900                                         ParamTypes.data(), ParamTypes.size(),
1901                                         OldProto->getExtProtoInfo());
1902      New->setType(NewQType);
1903      New->setHasInheritedPrototype();
1904
1905      // Synthesize a parameter for each argument type.
1906      SmallVector<ParmVarDecl*, 16> Params;
1907      for (FunctionProtoType::arg_type_iterator
1908             ParamType = OldProto->arg_type_begin(),
1909             ParamEnd = OldProto->arg_type_end();
1910           ParamType != ParamEnd; ++ParamType) {
1911        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1912                                                 SourceLocation(),
1913                                                 SourceLocation(), 0,
1914                                                 *ParamType, /*TInfo=*/0,
1915                                                 SC_None, SC_None,
1916                                                 0);
1917        Param->setScopeInfo(0, Params.size());
1918        Param->setImplicit();
1919        Params.push_back(Param);
1920      }
1921
1922      New->setParams(Params);
1923    }
1924
1925    return MergeCompatibleFunctionDecls(New, Old);
1926  }
1927
1928  // GNU C permits a K&R definition to follow a prototype declaration
1929  // if the declared types of the parameters in the K&R definition
1930  // match the types in the prototype declaration, even when the
1931  // promoted types of the parameters from the K&R definition differ
1932  // from the types in the prototype. GCC then keeps the types from
1933  // the prototype.
1934  //
1935  // If a variadic prototype is followed by a non-variadic K&R definition,
1936  // the K&R definition becomes variadic.  This is sort of an edge case, but
1937  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1938  // C99 6.9.1p8.
1939  if (!getLangOptions().CPlusPlus &&
1940      Old->hasPrototype() && !New->hasPrototype() &&
1941      New->getType()->getAs<FunctionProtoType>() &&
1942      Old->getNumParams() == New->getNumParams()) {
1943    SmallVector<QualType, 16> ArgTypes;
1944    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1945    const FunctionProtoType *OldProto
1946      = Old->getType()->getAs<FunctionProtoType>();
1947    const FunctionProtoType *NewProto
1948      = New->getType()->getAs<FunctionProtoType>();
1949
1950    // Determine whether this is the GNU C extension.
1951    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1952                                               NewProto->getResultType());
1953    bool LooseCompatible = !MergedReturn.isNull();
1954    for (unsigned Idx = 0, End = Old->getNumParams();
1955         LooseCompatible && Idx != End; ++Idx) {
1956      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1957      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1958      if (Context.typesAreCompatible(OldParm->getType(),
1959                                     NewProto->getArgType(Idx))) {
1960        ArgTypes.push_back(NewParm->getType());
1961      } else if (Context.typesAreCompatible(OldParm->getType(),
1962                                            NewParm->getType(),
1963                                            /*CompareUnqualified=*/true)) {
1964        GNUCompatibleParamWarning Warn
1965          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1966        Warnings.push_back(Warn);
1967        ArgTypes.push_back(NewParm->getType());
1968      } else
1969        LooseCompatible = false;
1970    }
1971
1972    if (LooseCompatible) {
1973      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1974        Diag(Warnings[Warn].NewParm->getLocation(),
1975             diag::ext_param_promoted_not_compatible_with_prototype)
1976          << Warnings[Warn].PromotedType
1977          << Warnings[Warn].OldParm->getType();
1978        if (Warnings[Warn].OldParm->getLocation().isValid())
1979          Diag(Warnings[Warn].OldParm->getLocation(),
1980               diag::note_previous_declaration);
1981      }
1982
1983      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1984                                           ArgTypes.size(),
1985                                           OldProto->getExtProtoInfo()));
1986      return MergeCompatibleFunctionDecls(New, Old);
1987    }
1988
1989    // Fall through to diagnose conflicting types.
1990  }
1991
1992  // A function that has already been declared has been redeclared or defined
1993  // with a different type- show appropriate diagnostic
1994  if (unsigned BuiltinID = Old->getBuiltinID()) {
1995    // The user has declared a builtin function with an incompatible
1996    // signature.
1997    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1998      // The function the user is redeclaring is a library-defined
1999      // function like 'malloc' or 'printf'. Warn about the
2000      // redeclaration, then pretend that we don't know about this
2001      // library built-in.
2002      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2003      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2004        << Old << Old->getType();
2005      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2006      Old->setInvalidDecl();
2007      return false;
2008    }
2009
2010    PrevDiag = diag::note_previous_builtin_declaration;
2011  }
2012
2013  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2014  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2015  return true;
2016}
2017
2018/// \brief Completes the merge of two function declarations that are
2019/// known to be compatible.
2020///
2021/// This routine handles the merging of attributes and other
2022/// properties of function declarations form the old declaration to
2023/// the new declaration, once we know that New is in fact a
2024/// redeclaration of Old.
2025///
2026/// \returns false
2027bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2028  // Merge the attributes
2029  mergeDeclAttributes(New, Old, Context);
2030
2031  // Merge the storage class.
2032  if (Old->getStorageClass() != SC_Extern &&
2033      Old->getStorageClass() != SC_None)
2034    New->setStorageClass(Old->getStorageClass());
2035
2036  // Merge "pure" flag.
2037  if (Old->isPure())
2038    New->setPure();
2039
2040  // __module_private__ is propagated to later declarations.
2041  if (Old->isModulePrivate())
2042    New->setModulePrivate();
2043  else if (New->isModulePrivate())
2044    diagnoseModulePrivateRedeclaration(New, Old);
2045
2046  // Merge attributes from the parameters.  These can mismatch with K&R
2047  // declarations.
2048  if (New->getNumParams() == Old->getNumParams())
2049    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2050      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2051                               Context);
2052
2053  if (getLangOptions().CPlusPlus)
2054    return MergeCXXFunctionDecl(New, Old);
2055
2056  return false;
2057}
2058
2059
2060void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2061                                const ObjCMethodDecl *oldMethod) {
2062  // We don't want to merge unavailable and deprecated attributes
2063  // except from interface to implementation.
2064  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2065
2066  // Merge the attributes.
2067  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2068
2069  // Merge attributes from the parameters.
2070  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2071  for (ObjCMethodDecl::param_iterator
2072         ni = newMethod->param_begin(), ne = newMethod->param_end();
2073       ni != ne; ++ni, ++oi)
2074    mergeParamDeclAttributes(*ni, *oi, Context);
2075
2076  CheckObjCMethodOverride(newMethod, oldMethod, true);
2077}
2078
2079/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2080/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2081/// emitting diagnostics as appropriate.
2082///
2083/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2084/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2085/// check them before the initializer is attached.
2086///
2087void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2088  if (New->isInvalidDecl() || Old->isInvalidDecl())
2089    return;
2090
2091  QualType MergedT;
2092  if (getLangOptions().CPlusPlus) {
2093    AutoType *AT = New->getType()->getContainedAutoType();
2094    if (AT && !AT->isDeduced()) {
2095      // We don't know what the new type is until the initializer is attached.
2096      return;
2097    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2098      // These could still be something that needs exception specs checked.
2099      return MergeVarDeclExceptionSpecs(New, Old);
2100    }
2101    // C++ [basic.link]p10:
2102    //   [...] the types specified by all declarations referring to a given
2103    //   object or function shall be identical, except that declarations for an
2104    //   array object can specify array types that differ by the presence or
2105    //   absence of a major array bound (8.3.4).
2106    else if (Old->getType()->isIncompleteArrayType() &&
2107             New->getType()->isArrayType()) {
2108      CanQual<ArrayType> OldArray
2109        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2110      CanQual<ArrayType> NewArray
2111        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2112      if (OldArray->getElementType() == NewArray->getElementType())
2113        MergedT = New->getType();
2114    } else if (Old->getType()->isArrayType() &&
2115             New->getType()->isIncompleteArrayType()) {
2116      CanQual<ArrayType> OldArray
2117        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2118      CanQual<ArrayType> NewArray
2119        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2120      if (OldArray->getElementType() == NewArray->getElementType())
2121        MergedT = Old->getType();
2122    } else if (New->getType()->isObjCObjectPointerType()
2123               && Old->getType()->isObjCObjectPointerType()) {
2124        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2125                                                        Old->getType());
2126    }
2127  } else {
2128    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2129  }
2130  if (MergedT.isNull()) {
2131    Diag(New->getLocation(), diag::err_redefinition_different_type)
2132      << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  New->setType(MergedT);
2137}
2138
2139/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2140/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2141/// situation, merging decls or emitting diagnostics as appropriate.
2142///
2143/// Tentative definition rules (C99 6.9.2p2) are checked by
2144/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2145/// definitions here, since the initializer hasn't been attached.
2146///
2147void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2148  // If the new decl is already invalid, don't do any other checking.
2149  if (New->isInvalidDecl())
2150    return;
2151
2152  // Verify the old decl was also a variable.
2153  VarDecl *Old = 0;
2154  if (!Previous.isSingleResult() ||
2155      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2156    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2157      << New->getDeclName();
2158    Diag(Previous.getRepresentativeDecl()->getLocation(),
2159         diag::note_previous_definition);
2160    return New->setInvalidDecl();
2161  }
2162
2163  // C++ [class.mem]p1:
2164  //   A member shall not be declared twice in the member-specification [...]
2165  //
2166  // Here, we need only consider static data members.
2167  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2168    Diag(New->getLocation(), diag::err_duplicate_member)
2169      << New->getIdentifier();
2170    Diag(Old->getLocation(), diag::note_previous_declaration);
2171    New->setInvalidDecl();
2172  }
2173
2174  mergeDeclAttributes(New, Old, Context);
2175  // Warn if an already-declared variable is made a weak_import in a subsequent
2176  // declaration
2177  if (New->getAttr<WeakImportAttr>() &&
2178      Old->getStorageClass() == SC_None &&
2179      !Old->getAttr<WeakImportAttr>()) {
2180    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2181    Diag(Old->getLocation(), diag::note_previous_definition);
2182    // Remove weak_import attribute on new declaration.
2183    New->dropAttr<WeakImportAttr>();
2184  }
2185
2186  // Merge the types.
2187  MergeVarDeclTypes(New, Old);
2188  if (New->isInvalidDecl())
2189    return;
2190
2191  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2192  if (New->getStorageClass() == SC_Static &&
2193      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2194    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2195    Diag(Old->getLocation(), diag::note_previous_definition);
2196    return New->setInvalidDecl();
2197  }
2198  // C99 6.2.2p4:
2199  //   For an identifier declared with the storage-class specifier
2200  //   extern in a scope in which a prior declaration of that
2201  //   identifier is visible,23) if the prior declaration specifies
2202  //   internal or external linkage, the linkage of the identifier at
2203  //   the later declaration is the same as the linkage specified at
2204  //   the prior declaration. If no prior declaration is visible, or
2205  //   if the prior declaration specifies no linkage, then the
2206  //   identifier has external linkage.
2207  if (New->hasExternalStorage() && Old->hasLinkage())
2208    /* Okay */;
2209  else if (New->getStorageClass() != SC_Static &&
2210           Old->getStorageClass() == SC_Static) {
2211    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2212    Diag(Old->getLocation(), diag::note_previous_definition);
2213    return New->setInvalidDecl();
2214  }
2215
2216  // Check if extern is followed by non-extern and vice-versa.
2217  if (New->hasExternalStorage() &&
2218      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2219    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2220    Diag(Old->getLocation(), diag::note_previous_definition);
2221    return New->setInvalidDecl();
2222  }
2223  if (Old->hasExternalStorage() &&
2224      !New->hasLinkage() && New->isLocalVarDecl()) {
2225    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2226    Diag(Old->getLocation(), diag::note_previous_definition);
2227    return New->setInvalidDecl();
2228  }
2229
2230  // __module_private__ is propagated to later declarations.
2231  if (Old->isModulePrivate())
2232    New->setModulePrivate();
2233  else if (New->isModulePrivate())
2234    diagnoseModulePrivateRedeclaration(New, Old);
2235
2236  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2237
2238  // FIXME: The test for external storage here seems wrong? We still
2239  // need to check for mismatches.
2240  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2241      // Don't complain about out-of-line definitions of static members.
2242      !(Old->getLexicalDeclContext()->isRecord() &&
2243        !New->getLexicalDeclContext()->isRecord())) {
2244    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2245    Diag(Old->getLocation(), diag::note_previous_definition);
2246    return New->setInvalidDecl();
2247  }
2248
2249  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2250    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2251    Diag(Old->getLocation(), diag::note_previous_definition);
2252  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2253    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2254    Diag(Old->getLocation(), diag::note_previous_definition);
2255  }
2256
2257  // C++ doesn't have tentative definitions, so go right ahead and check here.
2258  const VarDecl *Def;
2259  if (getLangOptions().CPlusPlus &&
2260      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2261      (Def = Old->getDefinition())) {
2262    Diag(New->getLocation(), diag::err_redefinition)
2263      << New->getDeclName();
2264    Diag(Def->getLocation(), diag::note_previous_definition);
2265    New->setInvalidDecl();
2266    return;
2267  }
2268  // c99 6.2.2 P4.
2269  // For an identifier declared with the storage-class specifier extern in a
2270  // scope in which a prior declaration of that identifier is visible, if
2271  // the prior declaration specifies internal or external linkage, the linkage
2272  // of the identifier at the later declaration is the same as the linkage
2273  // specified at the prior declaration.
2274  // FIXME. revisit this code.
2275  if (New->hasExternalStorage() &&
2276      Old->getLinkage() == InternalLinkage &&
2277      New->getDeclContext() == Old->getDeclContext())
2278    New->setStorageClass(Old->getStorageClass());
2279
2280  // Keep a chain of previous declarations.
2281  New->setPreviousDeclaration(Old);
2282
2283  // Inherit access appropriately.
2284  New->setAccess(Old->getAccess());
2285}
2286
2287/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2288/// no declarator (e.g. "struct foo;") is parsed.
2289Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2290                                       DeclSpec &DS) {
2291  return ParsedFreeStandingDeclSpec(S, AS, DS,
2292                                    MultiTemplateParamsArg(*this, 0, 0));
2293}
2294
2295/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2296/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2297/// parameters to cope with template friend declarations.
2298Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2299                                       DeclSpec &DS,
2300                                       MultiTemplateParamsArg TemplateParams) {
2301  Decl *TagD = 0;
2302  TagDecl *Tag = 0;
2303  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2304      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2305      DS.getTypeSpecType() == DeclSpec::TST_union ||
2306      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2307    TagD = DS.getRepAsDecl();
2308
2309    if (!TagD) // We probably had an error
2310      return 0;
2311
2312    // Note that the above type specs guarantee that the
2313    // type rep is a Decl, whereas in many of the others
2314    // it's a Type.
2315    Tag = dyn_cast<TagDecl>(TagD);
2316  }
2317
2318  if (Tag)
2319    Tag->setFreeStanding();
2320
2321  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2322    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2323    // or incomplete types shall not be restrict-qualified."
2324    if (TypeQuals & DeclSpec::TQ_restrict)
2325      Diag(DS.getRestrictSpecLoc(),
2326           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2327           << DS.getSourceRange();
2328  }
2329
2330  if (DS.isConstexprSpecified()) {
2331    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2332    // and definitions of functions and variables.
2333    if (Tag)
2334      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2335        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2336            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2337            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2338    else
2339      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2340    // Don't emit warnings after this error.
2341    return TagD;
2342  }
2343
2344  if (DS.isFriendSpecified()) {
2345    // If we're dealing with a decl but not a TagDecl, assume that
2346    // whatever routines created it handled the friendship aspect.
2347    if (TagD && !Tag)
2348      return 0;
2349    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2350  }
2351
2352  // Track whether we warned about the fact that there aren't any
2353  // declarators.
2354  bool emittedWarning = false;
2355
2356  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2357    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2358
2359    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2360        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2361      if (getLangOptions().CPlusPlus ||
2362          Record->getDeclContext()->isRecord())
2363        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2364
2365      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2366        << DS.getSourceRange();
2367      emittedWarning = true;
2368    }
2369  }
2370
2371  // Check for Microsoft C extension: anonymous struct.
2372  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2373      CurContext->isRecord() &&
2374      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2375    // Handle 2 kinds of anonymous struct:
2376    //   struct STRUCT;
2377    // and
2378    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2379    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2380    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2381        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2382         DS.getRepAsType().get()->isStructureType())) {
2383      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2384        << DS.getSourceRange();
2385      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2386    }
2387  }
2388
2389  if (getLangOptions().CPlusPlus &&
2390      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2391    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2392      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2393          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2394        Diag(Enum->getLocation(), diag::ext_no_declarators)
2395          << DS.getSourceRange();
2396        emittedWarning = true;
2397      }
2398
2399  // Skip all the checks below if we have a type error.
2400  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2401
2402  if (!DS.isMissingDeclaratorOk()) {
2403    // Warn about typedefs of enums without names, since this is an
2404    // extension in both Microsoft and GNU.
2405    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2406        Tag && isa<EnumDecl>(Tag)) {
2407      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2408        << DS.getSourceRange();
2409      return Tag;
2410    }
2411
2412    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2413      << DS.getSourceRange();
2414    emittedWarning = true;
2415  }
2416
2417  // We're going to complain about a bunch of spurious specifiers;
2418  // only do this if we're declaring a tag, because otherwise we
2419  // should be getting diag::ext_no_declarators.
2420  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2421    return TagD;
2422
2423  // Note that a linkage-specification sets a storage class, but
2424  // 'extern "C" struct foo;' is actually valid and not theoretically
2425  // useless.
2426  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2427    if (!DS.isExternInLinkageSpec())
2428      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2429        << DeclSpec::getSpecifierName(scs);
2430
2431  if (DS.isThreadSpecified())
2432    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2433  if (DS.getTypeQualifiers()) {
2434    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2435      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2436    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2437      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2438    // Restrict is covered above.
2439  }
2440  if (DS.isInlineSpecified())
2441    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2442  if (DS.isVirtualSpecified())
2443    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2444  if (DS.isExplicitSpecified())
2445    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2446
2447  if (DS.isModulePrivateSpecified() &&
2448      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2449    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2450      << Tag->getTagKind()
2451      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2452
2453  // FIXME: Warn on useless attributes
2454
2455  return TagD;
2456}
2457
2458/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2459/// builds a statement for it and returns it so it is evaluated.
2460StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2461  StmtResult R;
2462  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2463    Expr *Exp = DS.getRepAsExpr();
2464    QualType Ty = Exp->getType();
2465    if (Ty->isPointerType()) {
2466      do
2467        Ty = Ty->getAs<PointerType>()->getPointeeType();
2468      while (Ty->isPointerType());
2469    }
2470    if (Ty->isVariableArrayType()) {
2471      R = ActOnExprStmt(MakeFullExpr(Exp));
2472    }
2473  }
2474  return R;
2475}
2476
2477/// We are trying to inject an anonymous member into the given scope;
2478/// check if there's an existing declaration that can't be overloaded.
2479///
2480/// \return true if this is a forbidden redeclaration
2481static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2482                                         Scope *S,
2483                                         DeclContext *Owner,
2484                                         DeclarationName Name,
2485                                         SourceLocation NameLoc,
2486                                         unsigned diagnostic) {
2487  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2488                 Sema::ForRedeclaration);
2489  if (!SemaRef.LookupName(R, S)) return false;
2490
2491  if (R.getAsSingle<TagDecl>())
2492    return false;
2493
2494  // Pick a representative declaration.
2495  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2496  assert(PrevDecl && "Expected a non-null Decl");
2497
2498  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2499    return false;
2500
2501  SemaRef.Diag(NameLoc, diagnostic) << Name;
2502  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2503
2504  return true;
2505}
2506
2507/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2508/// anonymous struct or union AnonRecord into the owning context Owner
2509/// and scope S. This routine will be invoked just after we realize
2510/// that an unnamed union or struct is actually an anonymous union or
2511/// struct, e.g.,
2512///
2513/// @code
2514/// union {
2515///   int i;
2516///   float f;
2517/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2518///    // f into the surrounding scope.x
2519/// @endcode
2520///
2521/// This routine is recursive, injecting the names of nested anonymous
2522/// structs/unions into the owning context and scope as well.
2523static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2524                                                DeclContext *Owner,
2525                                                RecordDecl *AnonRecord,
2526                                                AccessSpecifier AS,
2527                              SmallVector<NamedDecl*, 2> &Chaining,
2528                                                      bool MSAnonStruct) {
2529  unsigned diagKind
2530    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2531                            : diag::err_anonymous_struct_member_redecl;
2532
2533  bool Invalid = false;
2534
2535  // Look every FieldDecl and IndirectFieldDecl with a name.
2536  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2537                               DEnd = AnonRecord->decls_end();
2538       D != DEnd; ++D) {
2539    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2540        cast<NamedDecl>(*D)->getDeclName()) {
2541      ValueDecl *VD = cast<ValueDecl>(*D);
2542      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2543                                       VD->getLocation(), diagKind)) {
2544        // C++ [class.union]p2:
2545        //   The names of the members of an anonymous union shall be
2546        //   distinct from the names of any other entity in the
2547        //   scope in which the anonymous union is declared.
2548        Invalid = true;
2549      } else {
2550        // C++ [class.union]p2:
2551        //   For the purpose of name lookup, after the anonymous union
2552        //   definition, the members of the anonymous union are
2553        //   considered to have been defined in the scope in which the
2554        //   anonymous union is declared.
2555        unsigned OldChainingSize = Chaining.size();
2556        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2557          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2558               PE = IF->chain_end(); PI != PE; ++PI)
2559            Chaining.push_back(*PI);
2560        else
2561          Chaining.push_back(VD);
2562
2563        assert(Chaining.size() >= 2);
2564        NamedDecl **NamedChain =
2565          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2566        for (unsigned i = 0; i < Chaining.size(); i++)
2567          NamedChain[i] = Chaining[i];
2568
2569        IndirectFieldDecl* IndirectField =
2570          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2571                                    VD->getIdentifier(), VD->getType(),
2572                                    NamedChain, Chaining.size());
2573
2574        IndirectField->setAccess(AS);
2575        IndirectField->setImplicit();
2576        SemaRef.PushOnScopeChains(IndirectField, S);
2577
2578        // That includes picking up the appropriate access specifier.
2579        if (AS != AS_none) IndirectField->setAccess(AS);
2580
2581        Chaining.resize(OldChainingSize);
2582      }
2583    }
2584  }
2585
2586  return Invalid;
2587}
2588
2589/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2590/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2591/// illegal input values are mapped to SC_None.
2592static StorageClass
2593StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2594  switch (StorageClassSpec) {
2595  case DeclSpec::SCS_unspecified:    return SC_None;
2596  case DeclSpec::SCS_extern:         return SC_Extern;
2597  case DeclSpec::SCS_static:         return SC_Static;
2598  case DeclSpec::SCS_auto:           return SC_Auto;
2599  case DeclSpec::SCS_register:       return SC_Register;
2600  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2601    // Illegal SCSs map to None: error reporting is up to the caller.
2602  case DeclSpec::SCS_mutable:        // Fall through.
2603  case DeclSpec::SCS_typedef:        return SC_None;
2604  }
2605  llvm_unreachable("unknown storage class specifier");
2606}
2607
2608/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2609/// a StorageClass. Any error reporting is up to the caller:
2610/// illegal input values are mapped to SC_None.
2611static StorageClass
2612StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2613  switch (StorageClassSpec) {
2614  case DeclSpec::SCS_unspecified:    return SC_None;
2615  case DeclSpec::SCS_extern:         return SC_Extern;
2616  case DeclSpec::SCS_static:         return SC_Static;
2617  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2618    // Illegal SCSs map to None: error reporting is up to the caller.
2619  case DeclSpec::SCS_auto:           // Fall through.
2620  case DeclSpec::SCS_mutable:        // Fall through.
2621  case DeclSpec::SCS_register:       // Fall through.
2622  case DeclSpec::SCS_typedef:        return SC_None;
2623  }
2624  llvm_unreachable("unknown storage class specifier");
2625}
2626
2627/// BuildAnonymousStructOrUnion - Handle the declaration of an
2628/// anonymous structure or union. Anonymous unions are a C++ feature
2629/// (C++ [class.union]) and a GNU C extension; anonymous structures
2630/// are a GNU C and GNU C++ extension.
2631Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2632                                             AccessSpecifier AS,
2633                                             RecordDecl *Record) {
2634  DeclContext *Owner = Record->getDeclContext();
2635
2636  // Diagnose whether this anonymous struct/union is an extension.
2637  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2638    Diag(Record->getLocation(), diag::ext_anonymous_union);
2639  else if (!Record->isUnion())
2640    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2641
2642  // C and C++ require different kinds of checks for anonymous
2643  // structs/unions.
2644  bool Invalid = false;
2645  if (getLangOptions().CPlusPlus) {
2646    const char* PrevSpec = 0;
2647    unsigned DiagID;
2648    if (Record->isUnion()) {
2649      // C++ [class.union]p6:
2650      //   Anonymous unions declared in a named namespace or in the
2651      //   global namespace shall be declared static.
2652      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2653          (isa<TranslationUnitDecl>(Owner) ||
2654           (isa<NamespaceDecl>(Owner) &&
2655            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2656        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2657          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2658
2659        // Recover by adding 'static'.
2660        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2661                               PrevSpec, DiagID);
2662      }
2663      // C++ [class.union]p6:
2664      //   A storage class is not allowed in a declaration of an
2665      //   anonymous union in a class scope.
2666      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2667               isa<RecordDecl>(Owner)) {
2668        Diag(DS.getStorageClassSpecLoc(),
2669             diag::err_anonymous_union_with_storage_spec)
2670          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2671
2672        // Recover by removing the storage specifier.
2673        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2674                               SourceLocation(),
2675                               PrevSpec, DiagID);
2676      }
2677    }
2678
2679    // Ignore const/volatile/restrict qualifiers.
2680    if (DS.getTypeQualifiers()) {
2681      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2682        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2683          << Record->isUnion() << 0
2684          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2685      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2686        Diag(DS.getVolatileSpecLoc(),
2687             diag::ext_anonymous_struct_union_qualified)
2688          << Record->isUnion() << 1
2689          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2690      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2691        Diag(DS.getRestrictSpecLoc(),
2692             diag::ext_anonymous_struct_union_qualified)
2693          << Record->isUnion() << 2
2694          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2695
2696      DS.ClearTypeQualifiers();
2697    }
2698
2699    // C++ [class.union]p2:
2700    //   The member-specification of an anonymous union shall only
2701    //   define non-static data members. [Note: nested types and
2702    //   functions cannot be declared within an anonymous union. ]
2703    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2704                                 MemEnd = Record->decls_end();
2705         Mem != MemEnd; ++Mem) {
2706      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2707        // C++ [class.union]p3:
2708        //   An anonymous union shall not have private or protected
2709        //   members (clause 11).
2710        assert(FD->getAccess() != AS_none);
2711        if (FD->getAccess() != AS_public) {
2712          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2713            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2714          Invalid = true;
2715        }
2716
2717        // C++ [class.union]p1
2718        //   An object of a class with a non-trivial constructor, a non-trivial
2719        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2720        //   assignment operator cannot be a member of a union, nor can an
2721        //   array of such objects.
2722        if (CheckNontrivialField(FD))
2723          Invalid = true;
2724      } else if ((*Mem)->isImplicit()) {
2725        // Any implicit members are fine.
2726      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2727        // This is a type that showed up in an
2728        // elaborated-type-specifier inside the anonymous struct or
2729        // union, but which actually declares a type outside of the
2730        // anonymous struct or union. It's okay.
2731      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2732        if (!MemRecord->isAnonymousStructOrUnion() &&
2733            MemRecord->getDeclName()) {
2734          // Visual C++ allows type definition in anonymous struct or union.
2735          if (getLangOptions().MicrosoftExt)
2736            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2737              << (int)Record->isUnion();
2738          else {
2739            // This is a nested type declaration.
2740            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2741              << (int)Record->isUnion();
2742            Invalid = true;
2743          }
2744        }
2745      } else if (isa<AccessSpecDecl>(*Mem)) {
2746        // Any access specifier is fine.
2747      } else {
2748        // We have something that isn't a non-static data
2749        // member. Complain about it.
2750        unsigned DK = diag::err_anonymous_record_bad_member;
2751        if (isa<TypeDecl>(*Mem))
2752          DK = diag::err_anonymous_record_with_type;
2753        else if (isa<FunctionDecl>(*Mem))
2754          DK = diag::err_anonymous_record_with_function;
2755        else if (isa<VarDecl>(*Mem))
2756          DK = diag::err_anonymous_record_with_static;
2757
2758        // Visual C++ allows type definition in anonymous struct or union.
2759        if (getLangOptions().MicrosoftExt &&
2760            DK == diag::err_anonymous_record_with_type)
2761          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2762            << (int)Record->isUnion();
2763        else {
2764          Diag((*Mem)->getLocation(), DK)
2765              << (int)Record->isUnion();
2766          Invalid = true;
2767        }
2768      }
2769    }
2770  }
2771
2772  if (!Record->isUnion() && !Owner->isRecord()) {
2773    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2774      << (int)getLangOptions().CPlusPlus;
2775    Invalid = true;
2776  }
2777
2778  // Mock up a declarator.
2779  Declarator Dc(DS, Declarator::MemberContext);
2780  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2781  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2782
2783  // Create a declaration for this anonymous struct/union.
2784  NamedDecl *Anon = 0;
2785  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2786    Anon = FieldDecl::Create(Context, OwningClass,
2787                             DS.getSourceRange().getBegin(),
2788                             Record->getLocation(),
2789                             /*IdentifierInfo=*/0,
2790                             Context.getTypeDeclType(Record),
2791                             TInfo,
2792                             /*BitWidth=*/0, /*Mutable=*/false,
2793                             /*HasInit=*/false);
2794    Anon->setAccess(AS);
2795    if (getLangOptions().CPlusPlus)
2796      FieldCollector->Add(cast<FieldDecl>(Anon));
2797  } else {
2798    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2799    assert(SCSpec != DeclSpec::SCS_typedef &&
2800           "Parser allowed 'typedef' as storage class VarDecl.");
2801    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2802    if (SCSpec == DeclSpec::SCS_mutable) {
2803      // mutable can only appear on non-static class members, so it's always
2804      // an error here
2805      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2806      Invalid = true;
2807      SC = SC_None;
2808    }
2809    SCSpec = DS.getStorageClassSpecAsWritten();
2810    VarDecl::StorageClass SCAsWritten
2811      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2812
2813    Anon = VarDecl::Create(Context, Owner,
2814                           DS.getSourceRange().getBegin(),
2815                           Record->getLocation(), /*IdentifierInfo=*/0,
2816                           Context.getTypeDeclType(Record),
2817                           TInfo, SC, SCAsWritten);
2818
2819    // Default-initialize the implicit variable. This initialization will be
2820    // trivial in almost all cases, except if a union member has an in-class
2821    // initializer:
2822    //   union { int n = 0; };
2823    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2824  }
2825  Anon->setImplicit();
2826
2827  // Add the anonymous struct/union object to the current
2828  // context. We'll be referencing this object when we refer to one of
2829  // its members.
2830  Owner->addDecl(Anon);
2831
2832  // Inject the members of the anonymous struct/union into the owning
2833  // context and into the identifier resolver chain for name lookup
2834  // purposes.
2835  SmallVector<NamedDecl*, 2> Chain;
2836  Chain.push_back(Anon);
2837
2838  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2839                                          Chain, false))
2840    Invalid = true;
2841
2842  // Mark this as an anonymous struct/union type. Note that we do not
2843  // do this until after we have already checked and injected the
2844  // members of this anonymous struct/union type, because otherwise
2845  // the members could be injected twice: once by DeclContext when it
2846  // builds its lookup table, and once by
2847  // InjectAnonymousStructOrUnionMembers.
2848  Record->setAnonymousStructOrUnion(true);
2849
2850  if (Invalid)
2851    Anon->setInvalidDecl();
2852
2853  return Anon;
2854}
2855
2856/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2857/// Microsoft C anonymous structure.
2858/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2859/// Example:
2860///
2861/// struct A { int a; };
2862/// struct B { struct A; int b; };
2863///
2864/// void foo() {
2865///   B var;
2866///   var.a = 3;
2867/// }
2868///
2869Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2870                                           RecordDecl *Record) {
2871
2872  // If there is no Record, get the record via the typedef.
2873  if (!Record)
2874    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2875
2876  // Mock up a declarator.
2877  Declarator Dc(DS, Declarator::TypeNameContext);
2878  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2879  assert(TInfo && "couldn't build declarator info for anonymous struct");
2880
2881  // Create a declaration for this anonymous struct.
2882  NamedDecl* Anon = FieldDecl::Create(Context,
2883                             cast<RecordDecl>(CurContext),
2884                             DS.getSourceRange().getBegin(),
2885                             DS.getSourceRange().getBegin(),
2886                             /*IdentifierInfo=*/0,
2887                             Context.getTypeDeclType(Record),
2888                             TInfo,
2889                             /*BitWidth=*/0, /*Mutable=*/false,
2890                             /*HasInit=*/false);
2891  Anon->setImplicit();
2892
2893  // Add the anonymous struct object to the current context.
2894  CurContext->addDecl(Anon);
2895
2896  // Inject the members of the anonymous struct into the current
2897  // context and into the identifier resolver chain for name lookup
2898  // purposes.
2899  SmallVector<NamedDecl*, 2> Chain;
2900  Chain.push_back(Anon);
2901
2902  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2903                                          Record->getDefinition(),
2904                                          AS_none, Chain, true))
2905    Anon->setInvalidDecl();
2906
2907  return Anon;
2908}
2909
2910/// GetNameForDeclarator - Determine the full declaration name for the
2911/// given Declarator.
2912DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2913  return GetNameFromUnqualifiedId(D.getName());
2914}
2915
2916/// \brief Retrieves the declaration name from a parsed unqualified-id.
2917DeclarationNameInfo
2918Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2919  DeclarationNameInfo NameInfo;
2920  NameInfo.setLoc(Name.StartLocation);
2921
2922  switch (Name.getKind()) {
2923
2924  case UnqualifiedId::IK_ImplicitSelfParam:
2925  case UnqualifiedId::IK_Identifier:
2926    NameInfo.setName(Name.Identifier);
2927    NameInfo.setLoc(Name.StartLocation);
2928    return NameInfo;
2929
2930  case UnqualifiedId::IK_OperatorFunctionId:
2931    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2932                                           Name.OperatorFunctionId.Operator));
2933    NameInfo.setLoc(Name.StartLocation);
2934    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2935      = Name.OperatorFunctionId.SymbolLocations[0];
2936    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2937      = Name.EndLocation.getRawEncoding();
2938    return NameInfo;
2939
2940  case UnqualifiedId::IK_LiteralOperatorId:
2941    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2942                                                           Name.Identifier));
2943    NameInfo.setLoc(Name.StartLocation);
2944    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2945    return NameInfo;
2946
2947  case UnqualifiedId::IK_ConversionFunctionId: {
2948    TypeSourceInfo *TInfo;
2949    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2950    if (Ty.isNull())
2951      return DeclarationNameInfo();
2952    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2953                                               Context.getCanonicalType(Ty)));
2954    NameInfo.setLoc(Name.StartLocation);
2955    NameInfo.setNamedTypeInfo(TInfo);
2956    return NameInfo;
2957  }
2958
2959  case UnqualifiedId::IK_ConstructorName: {
2960    TypeSourceInfo *TInfo;
2961    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2962    if (Ty.isNull())
2963      return DeclarationNameInfo();
2964    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2965                                              Context.getCanonicalType(Ty)));
2966    NameInfo.setLoc(Name.StartLocation);
2967    NameInfo.setNamedTypeInfo(TInfo);
2968    return NameInfo;
2969  }
2970
2971  case UnqualifiedId::IK_ConstructorTemplateId: {
2972    // In well-formed code, we can only have a constructor
2973    // template-id that refers to the current context, so go there
2974    // to find the actual type being constructed.
2975    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2976    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2977      return DeclarationNameInfo();
2978
2979    // Determine the type of the class being constructed.
2980    QualType CurClassType = Context.getTypeDeclType(CurClass);
2981
2982    // FIXME: Check two things: that the template-id names the same type as
2983    // CurClassType, and that the template-id does not occur when the name
2984    // was qualified.
2985
2986    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2987                                    Context.getCanonicalType(CurClassType)));
2988    NameInfo.setLoc(Name.StartLocation);
2989    // FIXME: should we retrieve TypeSourceInfo?
2990    NameInfo.setNamedTypeInfo(0);
2991    return NameInfo;
2992  }
2993
2994  case UnqualifiedId::IK_DestructorName: {
2995    TypeSourceInfo *TInfo;
2996    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2997    if (Ty.isNull())
2998      return DeclarationNameInfo();
2999    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3000                                              Context.getCanonicalType(Ty)));
3001    NameInfo.setLoc(Name.StartLocation);
3002    NameInfo.setNamedTypeInfo(TInfo);
3003    return NameInfo;
3004  }
3005
3006  case UnqualifiedId::IK_TemplateId: {
3007    TemplateName TName = Name.TemplateId->Template.get();
3008    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3009    return Context.getNameForTemplate(TName, TNameLoc);
3010  }
3011
3012  } // switch (Name.getKind())
3013
3014  llvm_unreachable("Unknown name kind");
3015}
3016
3017static QualType getCoreType(QualType Ty) {
3018  do {
3019    if (Ty->isPointerType() || Ty->isReferenceType())
3020      Ty = Ty->getPointeeType();
3021    else if (Ty->isArrayType())
3022      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3023    else
3024      return Ty.withoutLocalFastQualifiers();
3025  } while (true);
3026}
3027
3028/// hasSimilarParameters - Determine whether the C++ functions Declaration
3029/// and Definition have "nearly" matching parameters. This heuristic is
3030/// used to improve diagnostics in the case where an out-of-line function
3031/// definition doesn't match any declaration within the class or namespace.
3032/// Also sets Params to the list of indices to the parameters that differ
3033/// between the declaration and the definition. If hasSimilarParameters
3034/// returns true and Params is empty, then all of the parameters match.
3035static bool hasSimilarParameters(ASTContext &Context,
3036                                     FunctionDecl *Declaration,
3037                                     FunctionDecl *Definition,
3038                                     llvm::SmallVectorImpl<unsigned> &Params) {
3039  Params.clear();
3040  if (Declaration->param_size() != Definition->param_size())
3041    return false;
3042  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3043    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3044    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3045
3046    // The parameter types are identical
3047    if (Context.hasSameType(DefParamTy, DeclParamTy))
3048      continue;
3049
3050    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3051    QualType DefParamBaseTy = getCoreType(DefParamTy);
3052    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3053    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3054
3055    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3056        (DeclTyName && DeclTyName == DefTyName))
3057      Params.push_back(Idx);
3058    else  // The two parameters aren't even close
3059      return false;
3060  }
3061
3062  return true;
3063}
3064
3065/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3066/// declarator needs to be rebuilt in the current instantiation.
3067/// Any bits of declarator which appear before the name are valid for
3068/// consideration here.  That's specifically the type in the decl spec
3069/// and the base type in any member-pointer chunks.
3070static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3071                                                    DeclarationName Name) {
3072  // The types we specifically need to rebuild are:
3073  //   - typenames, typeofs, and decltypes
3074  //   - types which will become injected class names
3075  // Of course, we also need to rebuild any type referencing such a
3076  // type.  It's safest to just say "dependent", but we call out a
3077  // few cases here.
3078
3079  DeclSpec &DS = D.getMutableDeclSpec();
3080  switch (DS.getTypeSpecType()) {
3081  case DeclSpec::TST_typename:
3082  case DeclSpec::TST_typeofType:
3083  case DeclSpec::TST_decltype:
3084  case DeclSpec::TST_underlyingType:
3085  case DeclSpec::TST_atomic: {
3086    // Grab the type from the parser.
3087    TypeSourceInfo *TSI = 0;
3088    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3089    if (T.isNull() || !T->isDependentType()) break;
3090
3091    // Make sure there's a type source info.  This isn't really much
3092    // of a waste; most dependent types should have type source info
3093    // attached already.
3094    if (!TSI)
3095      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3096
3097    // Rebuild the type in the current instantiation.
3098    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3099    if (!TSI) return true;
3100
3101    // Store the new type back in the decl spec.
3102    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3103    DS.UpdateTypeRep(LocType);
3104    break;
3105  }
3106
3107  case DeclSpec::TST_typeofExpr: {
3108    Expr *E = DS.getRepAsExpr();
3109    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3110    if (Result.isInvalid()) return true;
3111    DS.UpdateExprRep(Result.get());
3112    break;
3113  }
3114
3115  default:
3116    // Nothing to do for these decl specs.
3117    break;
3118  }
3119
3120  // It doesn't matter what order we do this in.
3121  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3122    DeclaratorChunk &Chunk = D.getTypeObject(I);
3123
3124    // The only type information in the declarator which can come
3125    // before the declaration name is the base type of a member
3126    // pointer.
3127    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3128      continue;
3129
3130    // Rebuild the scope specifier in-place.
3131    CXXScopeSpec &SS = Chunk.Mem.Scope();
3132    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3133      return true;
3134  }
3135
3136  return false;
3137}
3138
3139Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3140  D.setFunctionDefinition(false);
3141  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3142}
3143
3144/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3145///   If T is the name of a class, then each of the following shall have a
3146///   name different from T:
3147///     - every static data member of class T;
3148///     - every member function of class T
3149///     - every member of class T that is itself a type;
3150/// \returns true if the declaration name violates these rules.
3151bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3152                                   DeclarationNameInfo NameInfo) {
3153  DeclarationName Name = NameInfo.getName();
3154
3155  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3156    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3157      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3158      return true;
3159    }
3160
3161  return false;
3162}
3163
3164Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3165                             MultiTemplateParamsArg TemplateParamLists) {
3166  // TODO: consider using NameInfo for diagnostic.
3167  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3168  DeclarationName Name = NameInfo.getName();
3169
3170  // All of these full declarators require an identifier.  If it doesn't have
3171  // one, the ParsedFreeStandingDeclSpec action should be used.
3172  if (!Name) {
3173    if (!D.isInvalidType())  // Reject this if we think it is valid.
3174      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3175           diag::err_declarator_need_ident)
3176        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3177    return 0;
3178  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3179    return 0;
3180
3181  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3182  // we find one that is.
3183  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3184         (S->getFlags() & Scope::TemplateParamScope) != 0)
3185    S = S->getParent();
3186
3187  DeclContext *DC = CurContext;
3188  if (D.getCXXScopeSpec().isInvalid())
3189    D.setInvalidType();
3190  else if (D.getCXXScopeSpec().isSet()) {
3191    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3192                                        UPPC_DeclarationQualifier))
3193      return 0;
3194
3195    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3196    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3197    if (!DC) {
3198      // If we could not compute the declaration context, it's because the
3199      // declaration context is dependent but does not refer to a class,
3200      // class template, or class template partial specialization. Complain
3201      // and return early, to avoid the coming semantic disaster.
3202      Diag(D.getIdentifierLoc(),
3203           diag::err_template_qualified_declarator_no_match)
3204        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3205        << D.getCXXScopeSpec().getRange();
3206      return 0;
3207    }
3208    bool IsDependentContext = DC->isDependentContext();
3209
3210    if (!IsDependentContext &&
3211        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3212      return 0;
3213
3214    if (isa<CXXRecordDecl>(DC)) {
3215      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3216        Diag(D.getIdentifierLoc(),
3217             diag::err_member_def_undefined_record)
3218          << Name << DC << D.getCXXScopeSpec().getRange();
3219        D.setInvalidType();
3220      } else if (isa<CXXRecordDecl>(CurContext) &&
3221                 !D.getDeclSpec().isFriendSpecified()) {
3222        // The user provided a superfluous scope specifier inside a class
3223        // definition:
3224        //
3225        // class X {
3226        //   void X::f();
3227        // };
3228        if (CurContext->Equals(DC))
3229          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3230            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3231        else
3232          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3233            << Name << D.getCXXScopeSpec().getRange();
3234
3235        // Pretend that this qualifier was not here.
3236        D.getCXXScopeSpec().clear();
3237      }
3238    }
3239
3240    // Check whether we need to rebuild the type of the given
3241    // declaration in the current instantiation.
3242    if (EnteringContext && IsDependentContext &&
3243        TemplateParamLists.size() != 0) {
3244      ContextRAII SavedContext(*this, DC);
3245      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3246        D.setInvalidType();
3247    }
3248  }
3249
3250  if (DiagnoseClassNameShadow(DC, NameInfo))
3251    // If this is a typedef, we'll end up spewing multiple diagnostics.
3252    // Just return early; it's safer.
3253    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3254      return 0;
3255
3256  NamedDecl *New;
3257
3258  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3259  QualType R = TInfo->getType();
3260
3261  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3262                                      UPPC_DeclarationType))
3263    D.setInvalidType();
3264
3265  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3266                        ForRedeclaration);
3267
3268  // See if this is a redefinition of a variable in the same scope.
3269  if (!D.getCXXScopeSpec().isSet()) {
3270    bool IsLinkageLookup = false;
3271
3272    // If the declaration we're planning to build will be a function
3273    // or object with linkage, then look for another declaration with
3274    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3275    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3276      /* Do nothing*/;
3277    else if (R->isFunctionType()) {
3278      if (CurContext->isFunctionOrMethod() ||
3279          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3280        IsLinkageLookup = true;
3281    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3282      IsLinkageLookup = true;
3283    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3284             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3285      IsLinkageLookup = true;
3286
3287    if (IsLinkageLookup)
3288      Previous.clear(LookupRedeclarationWithLinkage);
3289
3290    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3291  } else { // Something like "int foo::x;"
3292    LookupQualifiedName(Previous, DC);
3293
3294    // Don't consider using declarations as previous declarations for
3295    // out-of-line members.
3296    RemoveUsingDecls(Previous);
3297
3298    // C++ 7.3.1.2p2:
3299    // Members (including explicit specializations of templates) of a named
3300    // namespace can also be defined outside that namespace by explicit
3301    // qualification of the name being defined, provided that the entity being
3302    // defined was already declared in the namespace and the definition appears
3303    // after the point of declaration in a namespace that encloses the
3304    // declarations namespace.
3305    //
3306    // Note that we only check the context at this point. We don't yet
3307    // have enough information to make sure that PrevDecl is actually
3308    // the declaration we want to match. For example, given:
3309    //
3310    //   class X {
3311    //     void f();
3312    //     void f(float);
3313    //   };
3314    //
3315    //   void X::f(int) { } // ill-formed
3316    //
3317    // In this case, PrevDecl will point to the overload set
3318    // containing the two f's declared in X, but neither of them
3319    // matches.
3320
3321    // First check whether we named the global scope.
3322    if (isa<TranslationUnitDecl>(DC)) {
3323      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3324        << Name << D.getCXXScopeSpec().getRange();
3325    } else {
3326      DeclContext *Cur = CurContext;
3327      while (isa<LinkageSpecDecl>(Cur))
3328        Cur = Cur->getParent();
3329      if (!Cur->Encloses(DC)) {
3330        // The qualifying scope doesn't enclose the original declaration.
3331        // Emit diagnostic based on current scope.
3332        SourceLocation L = D.getIdentifierLoc();
3333        SourceRange R = D.getCXXScopeSpec().getRange();
3334        if (isa<FunctionDecl>(Cur))
3335          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3336        else
3337          Diag(L, diag::err_invalid_declarator_scope)
3338            << Name << cast<NamedDecl>(DC) << R;
3339        D.setInvalidType();
3340      }
3341    }
3342  }
3343
3344  if (Previous.isSingleResult() &&
3345      Previous.getFoundDecl()->isTemplateParameter()) {
3346    // Maybe we will complain about the shadowed template parameter.
3347    if (!D.isInvalidType())
3348      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3349                                      Previous.getFoundDecl());
3350
3351    // Just pretend that we didn't see the previous declaration.
3352    Previous.clear();
3353  }
3354
3355  // In C++, the previous declaration we find might be a tag type
3356  // (class or enum). In this case, the new declaration will hide the
3357  // tag type. Note that this does does not apply if we're declaring a
3358  // typedef (C++ [dcl.typedef]p4).
3359  if (Previous.isSingleTagDecl() &&
3360      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3361    Previous.clear();
3362
3363  bool AddToScope = true;
3364  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3365    if (TemplateParamLists.size()) {
3366      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3367      return 0;
3368    }
3369
3370    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3371  } else if (R->isFunctionType()) {
3372    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3373                                  move(TemplateParamLists),
3374                                  AddToScope);
3375  } else {
3376    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3377                                  move(TemplateParamLists));
3378  }
3379
3380  if (New == 0)
3381    return 0;
3382
3383  // If this has an identifier and is not an invalid redeclaration or
3384  // function template specialization, add it to the scope stack.
3385  if (New->getDeclName() && AddToScope &&
3386       !(D.isRedeclaration() && New->isInvalidDecl()))
3387    PushOnScopeChains(New, S);
3388
3389  return New;
3390}
3391
3392/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3393/// types into constant array types in certain situations which would otherwise
3394/// be errors (for GCC compatibility).
3395static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3396                                                    ASTContext &Context,
3397                                                    bool &SizeIsNegative,
3398                                                    llvm::APSInt &Oversized) {
3399  // This method tries to turn a variable array into a constant
3400  // array even when the size isn't an ICE.  This is necessary
3401  // for compatibility with code that depends on gcc's buggy
3402  // constant expression folding, like struct {char x[(int)(char*)2];}
3403  SizeIsNegative = false;
3404  Oversized = 0;
3405
3406  if (T->isDependentType())
3407    return QualType();
3408
3409  QualifierCollector Qs;
3410  const Type *Ty = Qs.strip(T);
3411
3412  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3413    QualType Pointee = PTy->getPointeeType();
3414    QualType FixedType =
3415        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3416                                            Oversized);
3417    if (FixedType.isNull()) return FixedType;
3418    FixedType = Context.getPointerType(FixedType);
3419    return Qs.apply(Context, FixedType);
3420  }
3421  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3422    QualType Inner = PTy->getInnerType();
3423    QualType FixedType =
3424        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3425                                            Oversized);
3426    if (FixedType.isNull()) return FixedType;
3427    FixedType = Context.getParenType(FixedType);
3428    return Qs.apply(Context, FixedType);
3429  }
3430
3431  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3432  if (!VLATy)
3433    return QualType();
3434  // FIXME: We should probably handle this case
3435  if (VLATy->getElementType()->isVariablyModifiedType())
3436    return QualType();
3437
3438  Expr::EvalResult EvalResult;
3439  if (!VLATy->getSizeExpr() ||
3440      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3441      !EvalResult.Val.isInt())
3442    return QualType();
3443
3444  // Check whether the array size is negative.
3445  llvm::APSInt &Res = EvalResult.Val.getInt();
3446  if (Res.isSigned() && Res.isNegative()) {
3447    SizeIsNegative = true;
3448    return QualType();
3449  }
3450
3451  // Check whether the array is too large to be addressed.
3452  unsigned ActiveSizeBits
3453    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3454                                              Res);
3455  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3456    Oversized = Res;
3457    return QualType();
3458  }
3459
3460  return Context.getConstantArrayType(VLATy->getElementType(),
3461                                      Res, ArrayType::Normal, 0);
3462}
3463
3464/// \brief Register the given locally-scoped external C declaration so
3465/// that it can be found later for redeclarations
3466void
3467Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3468                                       const LookupResult &Previous,
3469                                       Scope *S) {
3470  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3471         "Decl is not a locally-scoped decl!");
3472  // Note that we have a locally-scoped external with this name.
3473  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3474
3475  if (!Previous.isSingleResult())
3476    return;
3477
3478  NamedDecl *PrevDecl = Previous.getFoundDecl();
3479
3480  // If there was a previous declaration of this variable, it may be
3481  // in our identifier chain. Update the identifier chain with the new
3482  // declaration.
3483  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3484    // The previous declaration was found on the identifer resolver
3485    // chain, so remove it from its scope.
3486
3487    if (S->isDeclScope(PrevDecl)) {
3488      // Special case for redeclarations in the SAME scope.
3489      // Because this declaration is going to be added to the identifier chain
3490      // later, we should temporarily take it OFF the chain.
3491      IdResolver.RemoveDecl(ND);
3492
3493    } else {
3494      // Find the scope for the original declaration.
3495      while (S && !S->isDeclScope(PrevDecl))
3496        S = S->getParent();
3497    }
3498
3499    if (S)
3500      S->RemoveDecl(PrevDecl);
3501  }
3502}
3503
3504llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3505Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3506  if (ExternalSource) {
3507    // Load locally-scoped external decls from the external source.
3508    SmallVector<NamedDecl *, 4> Decls;
3509    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3510    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3511      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3512        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3513      if (Pos == LocallyScopedExternalDecls.end())
3514        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3515    }
3516  }
3517
3518  return LocallyScopedExternalDecls.find(Name);
3519}
3520
3521/// \brief Diagnose function specifiers on a declaration of an identifier that
3522/// does not identify a function.
3523void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3524  // FIXME: We should probably indicate the identifier in question to avoid
3525  // confusion for constructs like "inline int a(), b;"
3526  if (D.getDeclSpec().isInlineSpecified())
3527    Diag(D.getDeclSpec().getInlineSpecLoc(),
3528         diag::err_inline_non_function);
3529
3530  if (D.getDeclSpec().isVirtualSpecified())
3531    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3532         diag::err_virtual_non_function);
3533
3534  if (D.getDeclSpec().isExplicitSpecified())
3535    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3536         diag::err_explicit_non_function);
3537}
3538
3539NamedDecl*
3540Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3541                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3542  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3543  if (D.getCXXScopeSpec().isSet()) {
3544    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3545      << D.getCXXScopeSpec().getRange();
3546    D.setInvalidType();
3547    // Pretend we didn't see the scope specifier.
3548    DC = CurContext;
3549    Previous.clear();
3550  }
3551
3552  if (getLangOptions().CPlusPlus) {
3553    // Check that there are no default arguments (C++ only).
3554    CheckExtraCXXDefaultArguments(D);
3555  }
3556
3557  DiagnoseFunctionSpecifiers(D);
3558
3559  if (D.getDeclSpec().isThreadSpecified())
3560    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3561  if (D.getDeclSpec().isConstexprSpecified())
3562    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3563      << 1;
3564
3565  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3566    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3567      << D.getName().getSourceRange();
3568    return 0;
3569  }
3570
3571  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3572  if (!NewTD) return 0;
3573
3574  // Handle attributes prior to checking for duplicates in MergeVarDecl
3575  ProcessDeclAttributes(S, NewTD, D);
3576
3577  CheckTypedefForVariablyModifiedType(S, NewTD);
3578
3579  bool Redeclaration = D.isRedeclaration();
3580  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3581  D.setRedeclaration(Redeclaration);
3582  return ND;
3583}
3584
3585void
3586Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3587  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3588  // then it shall have block scope.
3589  // Note that variably modified types must be fixed before merging the decl so
3590  // that redeclarations will match.
3591  QualType T = NewTD->getUnderlyingType();
3592  if (T->isVariablyModifiedType()) {
3593    getCurFunction()->setHasBranchProtectedScope();
3594
3595    if (S->getFnParent() == 0) {
3596      bool SizeIsNegative;
3597      llvm::APSInt Oversized;
3598      QualType FixedTy =
3599          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3600                                              Oversized);
3601      if (!FixedTy.isNull()) {
3602        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3603        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3604      } else {
3605        if (SizeIsNegative)
3606          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3607        else if (T->isVariableArrayType())
3608          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3609        else if (Oversized.getBoolValue())
3610          Diag(NewTD->getLocation(), diag::err_array_too_large)
3611            << Oversized.toString(10);
3612        else
3613          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3614        NewTD->setInvalidDecl();
3615      }
3616    }
3617  }
3618}
3619
3620
3621/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3622/// declares a typedef-name, either using the 'typedef' type specifier or via
3623/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3624NamedDecl*
3625Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3626                           LookupResult &Previous, bool &Redeclaration) {
3627  // Merge the decl with the existing one if appropriate. If the decl is
3628  // in an outer scope, it isn't the same thing.
3629  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3630                       /*ExplicitInstantiationOrSpecialization=*/false);
3631  if (!Previous.empty()) {
3632    Redeclaration = true;
3633    MergeTypedefNameDecl(NewTD, Previous);
3634  }
3635
3636  // If this is the C FILE type, notify the AST context.
3637  if (IdentifierInfo *II = NewTD->getIdentifier())
3638    if (!NewTD->isInvalidDecl() &&
3639        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3640      if (II->isStr("FILE"))
3641        Context.setFILEDecl(NewTD);
3642      else if (II->isStr("jmp_buf"))
3643        Context.setjmp_bufDecl(NewTD);
3644      else if (II->isStr("sigjmp_buf"))
3645        Context.setsigjmp_bufDecl(NewTD);
3646      else if (II->isStr("__builtin_va_list"))
3647        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3648    }
3649
3650  return NewTD;
3651}
3652
3653/// \brief Determines whether the given declaration is an out-of-scope
3654/// previous declaration.
3655///
3656/// This routine should be invoked when name lookup has found a
3657/// previous declaration (PrevDecl) that is not in the scope where a
3658/// new declaration by the same name is being introduced. If the new
3659/// declaration occurs in a local scope, previous declarations with
3660/// linkage may still be considered previous declarations (C99
3661/// 6.2.2p4-5, C++ [basic.link]p6).
3662///
3663/// \param PrevDecl the previous declaration found by name
3664/// lookup
3665///
3666/// \param DC the context in which the new declaration is being
3667/// declared.
3668///
3669/// \returns true if PrevDecl is an out-of-scope previous declaration
3670/// for a new delcaration with the same name.
3671static bool
3672isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3673                                ASTContext &Context) {
3674  if (!PrevDecl)
3675    return false;
3676
3677  if (!PrevDecl->hasLinkage())
3678    return false;
3679
3680  if (Context.getLangOptions().CPlusPlus) {
3681    // C++ [basic.link]p6:
3682    //   If there is a visible declaration of an entity with linkage
3683    //   having the same name and type, ignoring entities declared
3684    //   outside the innermost enclosing namespace scope, the block
3685    //   scope declaration declares that same entity and receives the
3686    //   linkage of the previous declaration.
3687    DeclContext *OuterContext = DC->getRedeclContext();
3688    if (!OuterContext->isFunctionOrMethod())
3689      // This rule only applies to block-scope declarations.
3690      return false;
3691
3692    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3693    if (PrevOuterContext->isRecord())
3694      // We found a member function: ignore it.
3695      return false;
3696
3697    // Find the innermost enclosing namespace for the new and
3698    // previous declarations.
3699    OuterContext = OuterContext->getEnclosingNamespaceContext();
3700    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3701
3702    // The previous declaration is in a different namespace, so it
3703    // isn't the same function.
3704    if (!OuterContext->Equals(PrevOuterContext))
3705      return false;
3706  }
3707
3708  return true;
3709}
3710
3711static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3712  CXXScopeSpec &SS = D.getCXXScopeSpec();
3713  if (!SS.isSet()) return;
3714  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3715}
3716
3717bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3718  QualType type = decl->getType();
3719  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3720  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3721    // Various kinds of declaration aren't allowed to be __autoreleasing.
3722    unsigned kind = -1U;
3723    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3724      if (var->hasAttr<BlocksAttr>())
3725        kind = 0; // __block
3726      else if (!var->hasLocalStorage())
3727        kind = 1; // global
3728    } else if (isa<ObjCIvarDecl>(decl)) {
3729      kind = 3; // ivar
3730    } else if (isa<FieldDecl>(decl)) {
3731      kind = 2; // field
3732    }
3733
3734    if (kind != -1U) {
3735      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3736        << kind;
3737    }
3738  } else if (lifetime == Qualifiers::OCL_None) {
3739    // Try to infer lifetime.
3740    if (!type->isObjCLifetimeType())
3741      return false;
3742
3743    lifetime = type->getObjCARCImplicitLifetime();
3744    type = Context.getLifetimeQualifiedType(type, lifetime);
3745    decl->setType(type);
3746  }
3747
3748  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3749    // Thread-local variables cannot have lifetime.
3750    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3751        var->isThreadSpecified()) {
3752      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3753        << var->getType();
3754      return true;
3755    }
3756  }
3757
3758  return false;
3759}
3760
3761NamedDecl*
3762Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3763                              TypeSourceInfo *TInfo, LookupResult &Previous,
3764                              MultiTemplateParamsArg TemplateParamLists) {
3765  QualType R = TInfo->getType();
3766  DeclarationName Name = GetNameForDeclarator(D).getName();
3767
3768  // Check that there are no default arguments (C++ only).
3769  if (getLangOptions().CPlusPlus)
3770    CheckExtraCXXDefaultArguments(D);
3771
3772  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3773  assert(SCSpec != DeclSpec::SCS_typedef &&
3774         "Parser allowed 'typedef' as storage class VarDecl.");
3775  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3776  if (SCSpec == DeclSpec::SCS_mutable) {
3777    // mutable can only appear on non-static class members, so it's always
3778    // an error here
3779    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3780    D.setInvalidType();
3781    SC = SC_None;
3782  }
3783  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3784  VarDecl::StorageClass SCAsWritten
3785    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3786
3787  IdentifierInfo *II = Name.getAsIdentifierInfo();
3788  if (!II) {
3789    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3790      << Name;
3791    return 0;
3792  }
3793
3794  DiagnoseFunctionSpecifiers(D);
3795
3796  if (!DC->isRecord() && S->getFnParent() == 0) {
3797    // C99 6.9p2: The storage-class specifiers auto and register shall not
3798    // appear in the declaration specifiers in an external declaration.
3799    if (SC == SC_Auto || SC == SC_Register) {
3800
3801      // If this is a register variable with an asm label specified, then this
3802      // is a GNU extension.
3803      if (SC == SC_Register && D.getAsmLabel())
3804        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3805      else
3806        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3807      D.setInvalidType();
3808    }
3809  }
3810
3811  if (getLangOptions().OpenCL) {
3812    // Set up the special work-group-local storage class for variables in the
3813    // OpenCL __local address space.
3814    if (R.getAddressSpace() == LangAS::opencl_local)
3815      SC = SC_OpenCLWorkGroupLocal;
3816  }
3817
3818  bool isExplicitSpecialization = false;
3819  VarDecl *NewVD;
3820  if (!getLangOptions().CPlusPlus) {
3821    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3822                            D.getIdentifierLoc(), II,
3823                            R, TInfo, SC, SCAsWritten);
3824
3825    if (D.isInvalidType())
3826      NewVD->setInvalidDecl();
3827  } else {
3828    if (DC->isRecord() && !CurContext->isRecord()) {
3829      // This is an out-of-line definition of a static data member.
3830      if (SC == SC_Static) {
3831        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3832             diag::err_static_out_of_line)
3833          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3834      } else if (SC == SC_None)
3835        SC = SC_Static;
3836    }
3837    if (SC == SC_Static) {
3838      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3839        if (RD->isLocalClass())
3840          Diag(D.getIdentifierLoc(),
3841               diag::err_static_data_member_not_allowed_in_local_class)
3842            << Name << RD->getDeclName();
3843
3844        // C++ [class.union]p1: If a union contains a static data member,
3845        // the program is ill-formed.
3846        //
3847        // We also disallow static data members in anonymous structs.
3848        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3849          Diag(D.getIdentifierLoc(),
3850               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3851            << Name << RD->isUnion();
3852      }
3853    }
3854
3855    // Match up the template parameter lists with the scope specifier, then
3856    // determine whether we have a template or a template specialization.
3857    isExplicitSpecialization = false;
3858    bool Invalid = false;
3859    if (TemplateParameterList *TemplateParams
3860        = MatchTemplateParametersToScopeSpecifier(
3861                                  D.getDeclSpec().getSourceRange().getBegin(),
3862                                                  D.getIdentifierLoc(),
3863                                                  D.getCXXScopeSpec(),
3864                                                  TemplateParamLists.get(),
3865                                                  TemplateParamLists.size(),
3866                                                  /*never a friend*/ false,
3867                                                  isExplicitSpecialization,
3868                                                  Invalid)) {
3869      if (TemplateParams->size() > 0) {
3870        // There is no such thing as a variable template.
3871        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3872          << II
3873          << SourceRange(TemplateParams->getTemplateLoc(),
3874                         TemplateParams->getRAngleLoc());
3875        return 0;
3876      } else {
3877        // There is an extraneous 'template<>' for this variable. Complain
3878        // about it, but allow the declaration of the variable.
3879        Diag(TemplateParams->getTemplateLoc(),
3880             diag::err_template_variable_noparams)
3881          << II
3882          << SourceRange(TemplateParams->getTemplateLoc(),
3883                         TemplateParams->getRAngleLoc());
3884      }
3885    }
3886
3887    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3888                            D.getIdentifierLoc(), II,
3889                            R, TInfo, SC, SCAsWritten);
3890
3891    // If this decl has an auto type in need of deduction, make a note of the
3892    // Decl so we can diagnose uses of it in its own initializer.
3893    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3894        R->getContainedAutoType())
3895      ParsingInitForAutoVars.insert(NewVD);
3896
3897    if (D.isInvalidType() || Invalid)
3898      NewVD->setInvalidDecl();
3899
3900    SetNestedNameSpecifier(NewVD, D);
3901
3902    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3903      NewVD->setTemplateParameterListsInfo(Context,
3904                                           TemplateParamLists.size(),
3905                                           TemplateParamLists.release());
3906    }
3907
3908    if (D.getDeclSpec().isConstexprSpecified()) {
3909      // FIXME: once we know whether there's an initializer, apply this to
3910      // static data members too.
3911      if (!NewVD->isStaticDataMember() &&
3912          !NewVD->isThisDeclarationADefinition()) {
3913        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3914        // of a variable. Suggest replacing it with 'const' if appropriate.
3915        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3916        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3917        // If the declarator is complex, we need to move the keyword to the
3918        // innermost chunk as we switch it from 'constexpr' to 'const'.
3919        int Kind = DeclaratorChunk::Paren;
3920        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3921          Kind = D.getTypeObject(I).Kind;
3922          if (Kind != DeclaratorChunk::Paren)
3923            break;
3924        }
3925        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3926            Kind == DeclaratorChunk::Reference)
3927          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3928            << FixItHint::CreateRemoval(ConstexprRange);
3929        else if (Kind == DeclaratorChunk::Paren)
3930          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3931            << FixItHint::CreateReplacement(ConstexprRange, "const");
3932        else
3933          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3934            << FixItHint::CreateRemoval(ConstexprRange)
3935            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3936      } else {
3937        NewVD->setConstexpr(true);
3938      }
3939    }
3940  }
3941
3942  // Set the lexical context. If the declarator has a C++ scope specifier, the
3943  // lexical context will be different from the semantic context.
3944  NewVD->setLexicalDeclContext(CurContext);
3945
3946  if (D.getDeclSpec().isThreadSpecified()) {
3947    if (NewVD->hasLocalStorage())
3948      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3949    else if (!Context.getTargetInfo().isTLSSupported())
3950      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3951    else
3952      NewVD->setThreadSpecified(true);
3953  }
3954
3955  if (D.getDeclSpec().isModulePrivateSpecified()) {
3956    if (isExplicitSpecialization)
3957      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3958        << 2
3959        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3960    else if (NewVD->hasLocalStorage())
3961      Diag(NewVD->getLocation(), diag::err_module_private_local)
3962        << 0 << NewVD->getDeclName()
3963        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3964        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3965    else
3966      NewVD->setModulePrivate();
3967  }
3968
3969  // Handle attributes prior to checking for duplicates in MergeVarDecl
3970  ProcessDeclAttributes(S, NewVD, D);
3971
3972  // In auto-retain/release, infer strong retension for variables of
3973  // retainable type.
3974  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3975    NewVD->setInvalidDecl();
3976
3977  // Handle GNU asm-label extension (encoded as an attribute).
3978  if (Expr *E = (Expr*)D.getAsmLabel()) {
3979    // The parser guarantees this is a string.
3980    StringLiteral *SE = cast<StringLiteral>(E);
3981    StringRef Label = SE->getString();
3982    if (S->getFnParent() != 0) {
3983      switch (SC) {
3984      case SC_None:
3985      case SC_Auto:
3986        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3987        break;
3988      case SC_Register:
3989        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3990          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3991        break;
3992      case SC_Static:
3993      case SC_Extern:
3994      case SC_PrivateExtern:
3995      case SC_OpenCLWorkGroupLocal:
3996        break;
3997      }
3998    }
3999
4000    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4001                                                Context, Label));
4002  }
4003
4004  // Diagnose shadowed variables before filtering for scope.
4005  if (!D.getCXXScopeSpec().isSet())
4006    CheckShadow(S, NewVD, Previous);
4007
4008  // Don't consider existing declarations that are in a different
4009  // scope and are out-of-semantic-context declarations (if the new
4010  // declaration has linkage).
4011  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4012                       isExplicitSpecialization);
4013
4014  if (!getLangOptions().CPlusPlus) {
4015    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4016  } else {
4017    // Merge the decl with the existing one if appropriate.
4018    if (!Previous.empty()) {
4019      if (Previous.isSingleResult() &&
4020          isa<FieldDecl>(Previous.getFoundDecl()) &&
4021          D.getCXXScopeSpec().isSet()) {
4022        // The user tried to define a non-static data member
4023        // out-of-line (C++ [dcl.meaning]p1).
4024        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4025          << D.getCXXScopeSpec().getRange();
4026        Previous.clear();
4027        NewVD->setInvalidDecl();
4028      }
4029    } else if (D.getCXXScopeSpec().isSet()) {
4030      // No previous declaration in the qualifying scope.
4031      Diag(D.getIdentifierLoc(), diag::err_no_member)
4032        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4033        << D.getCXXScopeSpec().getRange();
4034      NewVD->setInvalidDecl();
4035    }
4036
4037    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4038
4039    // This is an explicit specialization of a static data member. Check it.
4040    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4041        CheckMemberSpecialization(NewVD, Previous))
4042      NewVD->setInvalidDecl();
4043  }
4044
4045  // attributes declared post-definition are currently ignored
4046  // FIXME: This should be handled in attribute merging, not
4047  // here.
4048  if (Previous.isSingleResult()) {
4049    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4050    if (Def && (Def = Def->getDefinition()) &&
4051        Def != NewVD && D.hasAttributes()) {
4052      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4053      Diag(Def->getLocation(), diag::note_previous_definition);
4054    }
4055  }
4056
4057  // If this is a locally-scoped extern C variable, update the map of
4058  // such variables.
4059  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4060      !NewVD->isInvalidDecl())
4061    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4062
4063  // If there's a #pragma GCC visibility in scope, and this isn't a class
4064  // member, set the visibility of this variable.
4065  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4066    AddPushedVisibilityAttribute(NewVD);
4067
4068  MarkUnusedFileScopedDecl(NewVD);
4069
4070  return NewVD;
4071}
4072
4073/// \brief Diagnose variable or built-in function shadowing.  Implements
4074/// -Wshadow.
4075///
4076/// This method is called whenever a VarDecl is added to a "useful"
4077/// scope.
4078///
4079/// \param S the scope in which the shadowing name is being declared
4080/// \param R the lookup of the name
4081///
4082void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4083  // Return if warning is ignored.
4084  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4085        DiagnosticsEngine::Ignored)
4086    return;
4087
4088  // Don't diagnose declarations at file scope.
4089  if (D->hasGlobalStorage())
4090    return;
4091
4092  DeclContext *NewDC = D->getDeclContext();
4093
4094  // Only diagnose if we're shadowing an unambiguous field or variable.
4095  if (R.getResultKind() != LookupResult::Found)
4096    return;
4097
4098  NamedDecl* ShadowedDecl = R.getFoundDecl();
4099  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4100    return;
4101
4102  // Fields are not shadowed by variables in C++ static methods.
4103  if (isa<FieldDecl>(ShadowedDecl))
4104    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4105      if (MD->isStatic())
4106        return;
4107
4108  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4109    if (shadowedVar->isExternC()) {
4110      // For shadowing external vars, make sure that we point to the global
4111      // declaration, not a locally scoped extern declaration.
4112      for (VarDecl::redecl_iterator
4113             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4114           I != E; ++I)
4115        if (I->isFileVarDecl()) {
4116          ShadowedDecl = *I;
4117          break;
4118        }
4119    }
4120
4121  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4122
4123  // Only warn about certain kinds of shadowing for class members.
4124  if (NewDC && NewDC->isRecord()) {
4125    // In particular, don't warn about shadowing non-class members.
4126    if (!OldDC->isRecord())
4127      return;
4128
4129    // TODO: should we warn about static data members shadowing
4130    // static data members from base classes?
4131
4132    // TODO: don't diagnose for inaccessible shadowed members.
4133    // This is hard to do perfectly because we might friend the
4134    // shadowing context, but that's just a false negative.
4135  }
4136
4137  // Determine what kind of declaration we're shadowing.
4138  unsigned Kind;
4139  if (isa<RecordDecl>(OldDC)) {
4140    if (isa<FieldDecl>(ShadowedDecl))
4141      Kind = 3; // field
4142    else
4143      Kind = 2; // static data member
4144  } else if (OldDC->isFileContext())
4145    Kind = 1; // global
4146  else
4147    Kind = 0; // local
4148
4149  DeclarationName Name = R.getLookupName();
4150
4151  // Emit warning and note.
4152  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4153  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4154}
4155
4156/// \brief Check -Wshadow without the advantage of a previous lookup.
4157void Sema::CheckShadow(Scope *S, VarDecl *D) {
4158  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4159        DiagnosticsEngine::Ignored)
4160    return;
4161
4162  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4163                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4164  LookupName(R, S);
4165  CheckShadow(S, D, R);
4166}
4167
4168/// \brief Perform semantic checking on a newly-created variable
4169/// declaration.
4170///
4171/// This routine performs all of the type-checking required for a
4172/// variable declaration once it has been built. It is used both to
4173/// check variables after they have been parsed and their declarators
4174/// have been translated into a declaration, and to check variables
4175/// that have been instantiated from a template.
4176///
4177/// Sets NewVD->isInvalidDecl() if an error was encountered.
4178///
4179/// Returns true if the variable declaration is a redeclaration.
4180bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4181                                    LookupResult &Previous) {
4182  // If the decl is already known invalid, don't check it.
4183  if (NewVD->isInvalidDecl())
4184    return false;
4185
4186  QualType T = NewVD->getType();
4187
4188  if (T->isObjCObjectType()) {
4189    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4190      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4191    T = Context.getObjCObjectPointerType(T);
4192    NewVD->setType(T);
4193  }
4194
4195  // Emit an error if an address space was applied to decl with local storage.
4196  // This includes arrays of objects with address space qualifiers, but not
4197  // automatic variables that point to other address spaces.
4198  // ISO/IEC TR 18037 S5.1.2
4199  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4200    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4201    NewVD->setInvalidDecl();
4202    return false;
4203  }
4204
4205  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4206      && !NewVD->hasAttr<BlocksAttr>()) {
4207    if (getLangOptions().getGC() != LangOptions::NonGC)
4208      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4209    else
4210      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4211  }
4212
4213  bool isVM = T->isVariablyModifiedType();
4214  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4215      NewVD->hasAttr<BlocksAttr>())
4216    getCurFunction()->setHasBranchProtectedScope();
4217
4218  if ((isVM && NewVD->hasLinkage()) ||
4219      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4220    bool SizeIsNegative;
4221    llvm::APSInt Oversized;
4222    QualType FixedTy =
4223        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4224                                            Oversized);
4225
4226    if (FixedTy.isNull() && T->isVariableArrayType()) {
4227      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4228      // FIXME: This won't give the correct result for
4229      // int a[10][n];
4230      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4231
4232      if (NewVD->isFileVarDecl())
4233        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4234        << SizeRange;
4235      else if (NewVD->getStorageClass() == SC_Static)
4236        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4237        << SizeRange;
4238      else
4239        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4240        << SizeRange;
4241      NewVD->setInvalidDecl();
4242      return false;
4243    }
4244
4245    if (FixedTy.isNull()) {
4246      if (NewVD->isFileVarDecl())
4247        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4248      else
4249        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4250      NewVD->setInvalidDecl();
4251      return false;
4252    }
4253
4254    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4255    NewVD->setType(FixedTy);
4256  }
4257
4258  if (Previous.empty() && NewVD->isExternC()) {
4259    // Since we did not find anything by this name and we're declaring
4260    // an extern "C" variable, look for a non-visible extern "C"
4261    // declaration with the same name.
4262    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4263      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4264    if (Pos != LocallyScopedExternalDecls.end())
4265      Previous.addDecl(Pos->second);
4266  }
4267
4268  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4269    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4270      << T;
4271    NewVD->setInvalidDecl();
4272    return false;
4273  }
4274
4275  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4276    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4277    NewVD->setInvalidDecl();
4278    return false;
4279  }
4280
4281  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4282    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4283    NewVD->setInvalidDecl();
4284    return false;
4285  }
4286
4287  // Function pointers and references cannot have qualified function type, only
4288  // function pointer-to-members can do that.
4289  QualType Pointee;
4290  unsigned PtrOrRef = 0;
4291  if (const PointerType *Ptr = T->getAs<PointerType>())
4292    Pointee = Ptr->getPointeeType();
4293  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4294    Pointee = Ref->getPointeeType();
4295    PtrOrRef = 1;
4296  }
4297  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4298      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4299    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4300        << PtrOrRef;
4301    NewVD->setInvalidDecl();
4302    return false;
4303  }
4304
4305  if (!Previous.empty()) {
4306    MergeVarDecl(NewVD, Previous);
4307    return true;
4308  }
4309  return false;
4310}
4311
4312/// \brief Data used with FindOverriddenMethod
4313struct FindOverriddenMethodData {
4314  Sema *S;
4315  CXXMethodDecl *Method;
4316};
4317
4318/// \brief Member lookup function that determines whether a given C++
4319/// method overrides a method in a base class, to be used with
4320/// CXXRecordDecl::lookupInBases().
4321static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4322                                 CXXBasePath &Path,
4323                                 void *UserData) {
4324  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4325
4326  FindOverriddenMethodData *Data
4327    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4328
4329  DeclarationName Name = Data->Method->getDeclName();
4330
4331  // FIXME: Do we care about other names here too?
4332  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4333    // We really want to find the base class destructor here.
4334    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4335    CanQualType CT = Data->S->Context.getCanonicalType(T);
4336
4337    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4338  }
4339
4340  for (Path.Decls = BaseRecord->lookup(Name);
4341       Path.Decls.first != Path.Decls.second;
4342       ++Path.Decls.first) {
4343    NamedDecl *D = *Path.Decls.first;
4344    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4345      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4346        return true;
4347    }
4348  }
4349
4350  return false;
4351}
4352
4353/// AddOverriddenMethods - See if a method overrides any in the base classes,
4354/// and if so, check that it's a valid override and remember it.
4355bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4356  // Look for virtual methods in base classes that this method might override.
4357  CXXBasePaths Paths;
4358  FindOverriddenMethodData Data;
4359  Data.Method = MD;
4360  Data.S = this;
4361  bool AddedAny = false;
4362  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4363    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4364         E = Paths.found_decls_end(); I != E; ++I) {
4365      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4366        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4367        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4368            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4369            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4370          AddedAny = true;
4371        }
4372      }
4373    }
4374  }
4375
4376  return AddedAny;
4377}
4378
4379namespace {
4380  // Struct for holding all of the extra arguments needed by
4381  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4382  struct ActOnFDArgs {
4383    Scope *S;
4384    Declarator &D;
4385    MultiTemplateParamsArg TemplateParamLists;
4386    bool AddToScope;
4387  };
4388}
4389
4390/// \brief Generate diagnostics for an invalid function redeclaration.
4391///
4392/// This routine handles generating the diagnostic messages for an invalid
4393/// function redeclaration, including finding possible similar declarations
4394/// or performing typo correction if there are no previous declarations with
4395/// the same name.
4396///
4397/// Returns a NamedDecl iff typo correction was performed and substituting in
4398/// the new declaration name does not cause new errors.
4399static NamedDecl* DiagnoseInvalidRedeclaration(
4400    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4401    ActOnFDArgs &ExtraArgs) {
4402  NamedDecl *Result = NULL;
4403  DeclarationName Name = NewFD->getDeclName();
4404  DeclContext *NewDC = NewFD->getDeclContext();
4405  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4406                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4407  llvm::SmallVector<unsigned, 1> MismatchedParams;
4408  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4409  TypoCorrection Correction;
4410  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4411                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4412  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4413                                  : diag::err_member_def_does_not_match;
4414
4415  NewFD->setInvalidDecl();
4416  SemaRef.LookupQualifiedName(Prev, NewDC);
4417  assert(!Prev.isAmbiguous() &&
4418         "Cannot have an ambiguity in previous-declaration lookup");
4419  if (!Prev.empty()) {
4420    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4421         Func != FuncEnd; ++Func) {
4422      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4423      if (FD &&
4424          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4425        // Add 1 to the index so that 0 can mean the mismatch didn't
4426        // involve a parameter
4427        unsigned ParamNum =
4428            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4429        NearMatches.push_back(std::make_pair(FD, ParamNum));
4430      }
4431    }
4432  // If the qualified name lookup yielded nothing, try typo correction
4433  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4434                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4435             Correction.getCorrection() != Name) {
4436    // Trap errors.
4437    Sema::SFINAETrap Trap(SemaRef);
4438
4439    // Set up everything for the call to ActOnFunctionDeclarator
4440    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4441                              ExtraArgs.D.getIdentifierLoc());
4442    Previous.clear();
4443    Previous.setLookupName(Correction.getCorrection());
4444    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4445                                    CDeclEnd = Correction.end();
4446         CDecl != CDeclEnd; ++CDecl) {
4447      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4448      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4449                                     MismatchedParams)) {
4450        Previous.addDecl(FD);
4451      }
4452    }
4453    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4454    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4455    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4456    // eliminate the need for the parameter pack ExtraArgs.
4457    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4458                                             NewFD->getDeclContext(),
4459                                             NewFD->getTypeSourceInfo(),
4460                                             Previous,
4461                                             ExtraArgs.TemplateParamLists,
4462                                             ExtraArgs.AddToScope);
4463    if (Trap.hasErrorOccurred()) {
4464      // Pretend the typo correction never occurred
4465      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4466                                ExtraArgs.D.getIdentifierLoc());
4467      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4468      Previous.clear();
4469      Previous.setLookupName(Name);
4470      Result = NULL;
4471    } else {
4472      for (LookupResult::iterator Func = Previous.begin(),
4473                               FuncEnd = Previous.end();
4474           Func != FuncEnd; ++Func) {
4475        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4476          NearMatches.push_back(std::make_pair(FD, 0));
4477      }
4478    }
4479    if (NearMatches.empty()) {
4480      // Ignore the correction if it didn't yield any close FunctionDecl matches
4481      Correction = TypoCorrection();
4482    } else {
4483      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4484                             : diag::err_member_def_does_not_match_suggest;
4485    }
4486  }
4487
4488  if (Correction)
4489    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4490        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4491        << FixItHint::CreateReplacement(
4492            NewFD->getLocation(),
4493            Correction.getAsString(SemaRef.getLangOptions()));
4494  else
4495    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4496        << Name << NewDC << NewFD->getLocation();
4497
4498  bool NewFDisConst = false;
4499  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4500    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4501
4502  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4503       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4504       NearMatch != NearMatchEnd; ++NearMatch) {
4505    FunctionDecl *FD = NearMatch->first;
4506    bool FDisConst = false;
4507    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4508      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4509
4510    if (unsigned Idx = NearMatch->second) {
4511      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4512      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4513             diag::note_member_def_close_param_match)
4514          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4515    } else if (Correction) {
4516      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4517          << Correction.getQuoted(SemaRef.getLangOptions());
4518    } else if (FDisConst != NewFDisConst) {
4519      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4520          << NewFDisConst << FD->getSourceRange().getEnd();
4521    } else
4522      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4523  }
4524  return Result;
4525}
4526
4527static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4528                                                          Declarator &D) {
4529  switch (D.getDeclSpec().getStorageClassSpec()) {
4530  default: llvm_unreachable("Unknown storage class!");
4531  case DeclSpec::SCS_auto:
4532  case DeclSpec::SCS_register:
4533  case DeclSpec::SCS_mutable:
4534    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4535                 diag::err_typecheck_sclass_func);
4536    D.setInvalidType();
4537    break;
4538  case DeclSpec::SCS_unspecified: break;
4539  case DeclSpec::SCS_extern: return SC_Extern;
4540  case DeclSpec::SCS_static: {
4541    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4542      // C99 6.7.1p5:
4543      //   The declaration of an identifier for a function that has
4544      //   block scope shall have no explicit storage-class specifier
4545      //   other than extern
4546      // See also (C++ [dcl.stc]p4).
4547      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4548                   diag::err_static_block_func);
4549      break;
4550    } else
4551      return SC_Static;
4552  }
4553  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4554  }
4555
4556  // No explicit storage class has already been returned
4557  return SC_None;
4558}
4559
4560static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4561                                           DeclContext *DC, QualType &R,
4562                                           TypeSourceInfo *TInfo,
4563                                           FunctionDecl::StorageClass SC,
4564                                           bool &IsVirtualOkay) {
4565  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4566  DeclarationName Name = NameInfo.getName();
4567
4568  FunctionDecl *NewFD = 0;
4569  bool isInline = D.getDeclSpec().isInlineSpecified();
4570  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4571  FunctionDecl::StorageClass SCAsWritten
4572    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4573
4574  if (!SemaRef.getLangOptions().CPlusPlus) {
4575    // Determine whether the function was written with a
4576    // prototype. This true when:
4577    //   - there is a prototype in the declarator, or
4578    //   - the type R of the function is some kind of typedef or other reference
4579    //     to a type name (which eventually refers to a function type).
4580    bool HasPrototype =
4581      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4582      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4583
4584    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4585                                 D.getSourceRange().getBegin(), NameInfo, R,
4586                                 TInfo, SC, SCAsWritten, isInline,
4587                                 HasPrototype);
4588    if (D.isInvalidType())
4589      NewFD->setInvalidDecl();
4590
4591    // Set the lexical context.
4592    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4593
4594    return NewFD;
4595  }
4596
4597  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4598  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4599
4600  // Check that the return type is not an abstract class type.
4601  // For record types, this is done by the AbstractClassUsageDiagnoser once
4602  // the class has been completely parsed.
4603  if (!DC->isRecord() &&
4604      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4605                                     R->getAs<FunctionType>()->getResultType(),
4606                                     diag::err_abstract_type_in_decl,
4607                                     SemaRef.AbstractReturnType))
4608    D.setInvalidType();
4609
4610  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4611    // This is a C++ constructor declaration.
4612    assert(DC->isRecord() &&
4613           "Constructors can only be declared in a member context");
4614
4615    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4616    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4617                                      D.getSourceRange().getBegin(), NameInfo,
4618                                      R, TInfo, isExplicit, isInline,
4619                                      /*isImplicitlyDeclared=*/false,
4620                                      isConstexpr);
4621
4622  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4623    // This is a C++ destructor declaration.
4624    if (DC->isRecord()) {
4625      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4626      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4627      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4628                                        SemaRef.Context, Record,
4629                                        D.getSourceRange().getBegin(),
4630                                        NameInfo, R, TInfo, isInline,
4631                                        /*isImplicitlyDeclared=*/false);
4632
4633      // If the class is complete, then we now create the implicit exception
4634      // specification. If the class is incomplete or dependent, we can't do
4635      // it yet.
4636      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4637          Record->getDefinition() && !Record->isBeingDefined() &&
4638          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4639        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4640      }
4641
4642      IsVirtualOkay = true;
4643      return NewDD;
4644
4645    } else {
4646      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4647      D.setInvalidType();
4648
4649      // Create a FunctionDecl to satisfy the function definition parsing
4650      // code path.
4651      return FunctionDecl::Create(SemaRef.Context, DC,
4652                                  D.getSourceRange().getBegin(),
4653                                  D.getIdentifierLoc(), Name, R, TInfo,
4654                                  SC, SCAsWritten, isInline,
4655                                  /*hasPrototype=*/true, isConstexpr);
4656    }
4657
4658  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4659    if (!DC->isRecord()) {
4660      SemaRef.Diag(D.getIdentifierLoc(),
4661           diag::err_conv_function_not_member);
4662      return 0;
4663    }
4664
4665    SemaRef.CheckConversionDeclarator(D, R, SC);
4666    IsVirtualOkay = true;
4667    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4668                                     D.getSourceRange().getBegin(), NameInfo,
4669                                     R, TInfo, isInline, isExplicit,
4670                                     isConstexpr, SourceLocation());
4671
4672  } else if (DC->isRecord()) {
4673    // If the name of the function is the same as the name of the record,
4674    // then this must be an invalid constructor that has a return type.
4675    // (The parser checks for a return type and makes the declarator a
4676    // constructor if it has no return type).
4677    if (Name.getAsIdentifierInfo() &&
4678        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4679      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4680        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4681        << SourceRange(D.getIdentifierLoc());
4682      return 0;
4683    }
4684
4685    bool isStatic = SC == SC_Static;
4686
4687    // [class.free]p1:
4688    // Any allocation function for a class T is a static member
4689    // (even if not explicitly declared static).
4690    if (Name.getCXXOverloadedOperator() == OO_New ||
4691        Name.getCXXOverloadedOperator() == OO_Array_New)
4692      isStatic = true;
4693
4694    // [class.free]p6 Any deallocation function for a class X is a static member
4695    // (even if not explicitly declared static).
4696    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4697        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4698      isStatic = true;
4699
4700    IsVirtualOkay = !isStatic;
4701
4702    // This is a C++ method declaration.
4703    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4704                                 D.getSourceRange().getBegin(), NameInfo, R,
4705                                 TInfo, isStatic, SCAsWritten, isInline,
4706                                 isConstexpr, SourceLocation());
4707
4708  } else {
4709    // Determine whether the function was written with a
4710    // prototype. This true when:
4711    //   - we're in C++ (where every function has a prototype),
4712    return FunctionDecl::Create(SemaRef.Context, DC,
4713                                D.getSourceRange().getBegin(),
4714                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4715                                true/*HasPrototype*/, isConstexpr);
4716  }
4717}
4718
4719NamedDecl*
4720Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4721                              TypeSourceInfo *TInfo, LookupResult &Previous,
4722                              MultiTemplateParamsArg TemplateParamLists,
4723                              bool &AddToScope) {
4724  QualType R = TInfo->getType();
4725
4726  assert(R.getTypePtr()->isFunctionType());
4727
4728  // TODO: consider using NameInfo for diagnostic.
4729  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4730  DeclarationName Name = NameInfo.getName();
4731  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4732
4733  if (D.getDeclSpec().isThreadSpecified())
4734    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4735
4736  // Do not allow returning a objc interface by-value.
4737  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4738    Diag(D.getIdentifierLoc(),
4739         diag::err_object_cannot_be_passed_returned_by_value) << 0
4740    << R->getAs<FunctionType>()->getResultType()
4741    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4742
4743    QualType T = R->getAs<FunctionType>()->getResultType();
4744    T = Context.getObjCObjectPointerType(T);
4745    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4746      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4747      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4748                                  FPT->getNumArgs(), EPI);
4749    }
4750    else if (isa<FunctionNoProtoType>(R))
4751      R = Context.getFunctionNoProtoType(T);
4752  }
4753
4754  bool isFriend = false;
4755  FunctionTemplateDecl *FunctionTemplate = 0;
4756  bool isExplicitSpecialization = false;
4757  bool isFunctionTemplateSpecialization = false;
4758  bool isDependentClassScopeExplicitSpecialization = false;
4759  bool isVirtualOkay = false;
4760
4761  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4762                                              isVirtualOkay);
4763  if (!NewFD) return 0;
4764
4765  if (getLangOptions().CPlusPlus) {
4766    bool isInline = D.getDeclSpec().isInlineSpecified();
4767    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4768    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4769    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4770    isFriend = D.getDeclSpec().isFriendSpecified();
4771    if (isFriend && !isInline && D.isFunctionDefinition()) {
4772      // C++ [class.friend]p5
4773      //   A function can be defined in a friend declaration of a
4774      //   class . . . . Such a function is implicitly inline.
4775      NewFD->setImplicitlyInline();
4776    }
4777
4778    SetNestedNameSpecifier(NewFD, D);
4779    isExplicitSpecialization = false;
4780    isFunctionTemplateSpecialization = false;
4781    if (D.isInvalidType())
4782      NewFD->setInvalidDecl();
4783
4784    // Set the lexical context. If the declarator has a C++
4785    // scope specifier, or is the object of a friend declaration, the
4786    // lexical context will be different from the semantic context.
4787    NewFD->setLexicalDeclContext(CurContext);
4788
4789    // Match up the template parameter lists with the scope specifier, then
4790    // determine whether we have a template or a template specialization.
4791    bool Invalid = false;
4792    if (TemplateParameterList *TemplateParams
4793          = MatchTemplateParametersToScopeSpecifier(
4794                                  D.getDeclSpec().getSourceRange().getBegin(),
4795                                  D.getIdentifierLoc(),
4796                                  D.getCXXScopeSpec(),
4797                                  TemplateParamLists.get(),
4798                                  TemplateParamLists.size(),
4799                                  isFriend,
4800                                  isExplicitSpecialization,
4801                                  Invalid)) {
4802      if (TemplateParams->size() > 0) {
4803        // This is a function template
4804
4805        // Check that we can declare a template here.
4806        if (CheckTemplateDeclScope(S, TemplateParams))
4807          return 0;
4808
4809        // A destructor cannot be a template.
4810        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4811          Diag(NewFD->getLocation(), diag::err_destructor_template);
4812          return 0;
4813        }
4814
4815        // If we're adding a template to a dependent context, we may need to
4816        // rebuilding some of the types used within the template parameter list,
4817        // now that we know what the current instantiation is.
4818        if (DC->isDependentContext()) {
4819          ContextRAII SavedContext(*this, DC);
4820          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4821            Invalid = true;
4822        }
4823
4824
4825        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4826                                                        NewFD->getLocation(),
4827                                                        Name, TemplateParams,
4828                                                        NewFD);
4829        FunctionTemplate->setLexicalDeclContext(CurContext);
4830        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4831
4832        // For source fidelity, store the other template param lists.
4833        if (TemplateParamLists.size() > 1) {
4834          NewFD->setTemplateParameterListsInfo(Context,
4835                                               TemplateParamLists.size() - 1,
4836                                               TemplateParamLists.release());
4837        }
4838      } else {
4839        // This is a function template specialization.
4840        isFunctionTemplateSpecialization = true;
4841        // For source fidelity, store all the template param lists.
4842        NewFD->setTemplateParameterListsInfo(Context,
4843                                             TemplateParamLists.size(),
4844                                             TemplateParamLists.release());
4845
4846        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4847        if (isFriend) {
4848          // We want to remove the "template<>", found here.
4849          SourceRange RemoveRange = TemplateParams->getSourceRange();
4850
4851          // If we remove the template<> and the name is not a
4852          // template-id, we're actually silently creating a problem:
4853          // the friend declaration will refer to an untemplated decl,
4854          // and clearly the user wants a template specialization.  So
4855          // we need to insert '<>' after the name.
4856          SourceLocation InsertLoc;
4857          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4858            InsertLoc = D.getName().getSourceRange().getEnd();
4859            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4860          }
4861
4862          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4863            << Name << RemoveRange
4864            << FixItHint::CreateRemoval(RemoveRange)
4865            << FixItHint::CreateInsertion(InsertLoc, "<>");
4866        }
4867      }
4868    }
4869    else {
4870      // All template param lists were matched against the scope specifier:
4871      // this is NOT (an explicit specialization of) a template.
4872      if (TemplateParamLists.size() > 0)
4873        // For source fidelity, store all the template param lists.
4874        NewFD->setTemplateParameterListsInfo(Context,
4875                                             TemplateParamLists.size(),
4876                                             TemplateParamLists.release());
4877    }
4878
4879    if (Invalid) {
4880      NewFD->setInvalidDecl();
4881      if (FunctionTemplate)
4882        FunctionTemplate->setInvalidDecl();
4883    }
4884
4885    // C++ [dcl.fct.spec]p5:
4886    //   The virtual specifier shall only be used in declarations of
4887    //   nonstatic class member functions that appear within a
4888    //   member-specification of a class declaration; see 10.3.
4889    //
4890    if (isVirtual && !NewFD->isInvalidDecl()) {
4891      if (!isVirtualOkay) {
4892        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4893             diag::err_virtual_non_function);
4894      } else if (!CurContext->isRecord()) {
4895        // 'virtual' was specified outside of the class.
4896        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4897             diag::err_virtual_out_of_class)
4898          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4899      } else if (NewFD->getDescribedFunctionTemplate()) {
4900        // C++ [temp.mem]p3:
4901        //  A member function template shall not be virtual.
4902        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4903             diag::err_virtual_member_function_template)
4904          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4905      } else {
4906        // Okay: Add virtual to the method.
4907        NewFD->setVirtualAsWritten(true);
4908      }
4909    }
4910
4911    // C++ [dcl.fct.spec]p3:
4912    //  The inline specifier shall not appear on a block scope function
4913    //  declaration.
4914    if (isInline && !NewFD->isInvalidDecl()) {
4915      if (CurContext->isFunctionOrMethod()) {
4916        // 'inline' is not allowed on block scope function declaration.
4917        Diag(D.getDeclSpec().getInlineSpecLoc(),
4918             diag::err_inline_declaration_block_scope) << Name
4919          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4920      }
4921    }
4922
4923    // C++ [dcl.fct.spec]p6:
4924    //  The explicit specifier shall be used only in the declaration of a
4925    //  constructor or conversion function within its class definition;
4926    //  see 12.3.1 and 12.3.2.
4927    if (isExplicit && !NewFD->isInvalidDecl()) {
4928      if (!CurContext->isRecord()) {
4929        // 'explicit' was specified outside of the class.
4930        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4931             diag::err_explicit_out_of_class)
4932          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4933      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4934                 !isa<CXXConversionDecl>(NewFD)) {
4935        // 'explicit' was specified on a function that wasn't a constructor
4936        // or conversion function.
4937        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4938             diag::err_explicit_non_ctor_or_conv_function)
4939          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4940      }
4941    }
4942
4943    if (isConstexpr) {
4944      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4945      // are implicitly inline.
4946      NewFD->setImplicitlyInline();
4947
4948      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4949      // be either constructors or to return a literal type. Therefore,
4950      // destructors cannot be declared constexpr.
4951      if (isa<CXXDestructorDecl>(NewFD))
4952        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4953    }
4954
4955    // If __module_private__ was specified, mark the function accordingly.
4956    if (D.getDeclSpec().isModulePrivateSpecified()) {
4957      if (isFunctionTemplateSpecialization) {
4958        SourceLocation ModulePrivateLoc
4959          = D.getDeclSpec().getModulePrivateSpecLoc();
4960        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4961          << 0
4962          << FixItHint::CreateRemoval(ModulePrivateLoc);
4963      } else {
4964        NewFD->setModulePrivate();
4965        if (FunctionTemplate)
4966          FunctionTemplate->setModulePrivate();
4967      }
4968    }
4969
4970    if (isFriend) {
4971      // For now, claim that the objects have no previous declaration.
4972      if (FunctionTemplate) {
4973        FunctionTemplate->setObjectOfFriendDecl(false);
4974        FunctionTemplate->setAccess(AS_public);
4975      }
4976      NewFD->setObjectOfFriendDecl(false);
4977      NewFD->setAccess(AS_public);
4978    }
4979
4980    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4981        D.isFunctionDefinition()) {
4982      // A method is implicitly inline if it's defined in its class
4983      // definition.
4984      NewFD->setImplicitlyInline();
4985    }
4986
4987    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4988        !CurContext->isRecord()) {
4989      // C++ [class.static]p1:
4990      //   A data or function member of a class may be declared static
4991      //   in a class definition, in which case it is a static member of
4992      //   the class.
4993
4994      // Complain about the 'static' specifier if it's on an out-of-line
4995      // member function definition.
4996      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4997           diag::err_static_out_of_line)
4998        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4999    }
5000  }
5001
5002  // Filter out previous declarations that don't match the scope.
5003  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5004                       isExplicitSpecialization ||
5005                       isFunctionTemplateSpecialization);
5006
5007  // Handle GNU asm-label extension (encoded as an attribute).
5008  if (Expr *E = (Expr*) D.getAsmLabel()) {
5009    // The parser guarantees this is a string.
5010    StringLiteral *SE = cast<StringLiteral>(E);
5011    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5012                                                SE->getString()));
5013  }
5014
5015  // Copy the parameter declarations from the declarator D to the function
5016  // declaration NewFD, if they are available.  First scavenge them into Params.
5017  SmallVector<ParmVarDecl*, 16> Params;
5018  if (D.isFunctionDeclarator()) {
5019    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5020
5021    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5022    // function that takes no arguments, not a function that takes a
5023    // single void argument.
5024    // We let through "const void" here because Sema::GetTypeForDeclarator
5025    // already checks for that case.
5026    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5027        FTI.ArgInfo[0].Param &&
5028        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5029      // Empty arg list, don't push any params.
5030      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5031
5032      // In C++, the empty parameter-type-list must be spelled "void"; a
5033      // typedef of void is not permitted.
5034      if (getLangOptions().CPlusPlus &&
5035          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5036        bool IsTypeAlias = false;
5037        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5038          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5039        else if (const TemplateSpecializationType *TST =
5040                   Param->getType()->getAs<TemplateSpecializationType>())
5041          IsTypeAlias = TST->isTypeAlias();
5042        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5043          << IsTypeAlias;
5044      }
5045    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5046      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5047        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5048        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5049        Param->setDeclContext(NewFD);
5050        Params.push_back(Param);
5051
5052        if (Param->isInvalidDecl())
5053          NewFD->setInvalidDecl();
5054      }
5055    }
5056
5057  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5058    // When we're declaring a function with a typedef, typeof, etc as in the
5059    // following example, we'll need to synthesize (unnamed)
5060    // parameters for use in the declaration.
5061    //
5062    // @code
5063    // typedef void fn(int);
5064    // fn f;
5065    // @endcode
5066
5067    // Synthesize a parameter for each argument type.
5068    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5069         AE = FT->arg_type_end(); AI != AE; ++AI) {
5070      ParmVarDecl *Param =
5071        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5072      Param->setScopeInfo(0, Params.size());
5073      Params.push_back(Param);
5074    }
5075  } else {
5076    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5077           "Should not need args for typedef of non-prototype fn");
5078  }
5079
5080  // Finally, we know we have the right number of parameters, install them.
5081  NewFD->setParams(Params);
5082
5083  // Process the non-inheritable attributes on this declaration.
5084  ProcessDeclAttributes(S, NewFD, D,
5085                        /*NonInheritable=*/true, /*Inheritable=*/false);
5086
5087  if (!getLangOptions().CPlusPlus) {
5088    // Perform semantic checking on the function declaration.
5089    bool isExplicitSpecialization=false;
5090    if (!NewFD->isInvalidDecl()) {
5091      if (NewFD->getResultType()->isVariablyModifiedType()) {
5092        // Functions returning a variably modified type violate C99 6.7.5.2p2
5093        // because all functions have linkage.
5094        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5095        NewFD->setInvalidDecl();
5096      } else {
5097        if (NewFD->isMain())
5098          CheckMain(NewFD, D.getDeclSpec());
5099        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5100                                                    isExplicitSpecialization));
5101      }
5102    }
5103    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5104            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5105           "previous declaration set still overloaded");
5106  } else {
5107    // If the declarator is a template-id, translate the parser's template
5108    // argument list into our AST format.
5109    bool HasExplicitTemplateArgs = false;
5110    TemplateArgumentListInfo TemplateArgs;
5111    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5112      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5113      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5114      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5115      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5116                                         TemplateId->getTemplateArgs(),
5117                                         TemplateId->NumArgs);
5118      translateTemplateArguments(TemplateArgsPtr,
5119                                 TemplateArgs);
5120      TemplateArgsPtr.release();
5121
5122      HasExplicitTemplateArgs = true;
5123
5124      if (NewFD->isInvalidDecl()) {
5125        HasExplicitTemplateArgs = false;
5126      } else if (FunctionTemplate) {
5127        // Function template with explicit template arguments.
5128        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5129          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5130
5131        HasExplicitTemplateArgs = false;
5132      } else if (!isFunctionTemplateSpecialization &&
5133                 !D.getDeclSpec().isFriendSpecified()) {
5134        // We have encountered something that the user meant to be a
5135        // specialization (because it has explicitly-specified template
5136        // arguments) but that was not introduced with a "template<>" (or had
5137        // too few of them).
5138        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5139          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5140          << FixItHint::CreateInsertion(
5141                                    D.getDeclSpec().getSourceRange().getBegin(),
5142                                        "template<> ");
5143        isFunctionTemplateSpecialization = true;
5144      } else {
5145        // "friend void foo<>(int);" is an implicit specialization decl.
5146        isFunctionTemplateSpecialization = true;
5147      }
5148    } else if (isFriend && isFunctionTemplateSpecialization) {
5149      // This combination is only possible in a recovery case;  the user
5150      // wrote something like:
5151      //   template <> friend void foo(int);
5152      // which we're recovering from as if the user had written:
5153      //   friend void foo<>(int);
5154      // Go ahead and fake up a template id.
5155      HasExplicitTemplateArgs = true;
5156        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5157      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5158    }
5159
5160    // If it's a friend (and only if it's a friend), it's possible
5161    // that either the specialized function type or the specialized
5162    // template is dependent, and therefore matching will fail.  In
5163    // this case, don't check the specialization yet.
5164    bool InstantiationDependent = false;
5165    if (isFunctionTemplateSpecialization && isFriend &&
5166        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5167         TemplateSpecializationType::anyDependentTemplateArguments(
5168            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5169            InstantiationDependent))) {
5170      assert(HasExplicitTemplateArgs &&
5171             "friend function specialization without template args");
5172      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5173                                                       Previous))
5174        NewFD->setInvalidDecl();
5175    } else if (isFunctionTemplateSpecialization) {
5176      if (CurContext->isDependentContext() && CurContext->isRecord()
5177          && !isFriend) {
5178        isDependentClassScopeExplicitSpecialization = true;
5179        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5180          diag::ext_function_specialization_in_class :
5181          diag::err_function_specialization_in_class)
5182          << NewFD->getDeclName();
5183      } else if (CheckFunctionTemplateSpecialization(NewFD,
5184                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5185                                                     Previous))
5186        NewFD->setInvalidDecl();
5187
5188      // C++ [dcl.stc]p1:
5189      //   A storage-class-specifier shall not be specified in an explicit
5190      //   specialization (14.7.3)
5191      if (SC != SC_None) {
5192        if (SC != NewFD->getStorageClass())
5193          Diag(NewFD->getLocation(),
5194               diag::err_explicit_specialization_inconsistent_storage_class)
5195            << SC
5196            << FixItHint::CreateRemoval(
5197                                      D.getDeclSpec().getStorageClassSpecLoc());
5198
5199        else
5200          Diag(NewFD->getLocation(),
5201               diag::ext_explicit_specialization_storage_class)
5202            << FixItHint::CreateRemoval(
5203                                      D.getDeclSpec().getStorageClassSpecLoc());
5204      }
5205
5206    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5207      if (CheckMemberSpecialization(NewFD, Previous))
5208          NewFD->setInvalidDecl();
5209    }
5210
5211    // Perform semantic checking on the function declaration.
5212    if (!isDependentClassScopeExplicitSpecialization) {
5213      if (NewFD->isInvalidDecl()) {
5214        // If this is a class member, mark the class invalid immediately.
5215        // This avoids some consistency errors later.
5216        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5217          methodDecl->getParent()->setInvalidDecl();
5218      } else {
5219        if (NewFD->isMain())
5220          CheckMain(NewFD, D.getDeclSpec());
5221        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5222                                                    isExplicitSpecialization));
5223      }
5224    }
5225
5226    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5227            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5228           "previous declaration set still overloaded");
5229
5230    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5231        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5232      NewFD->setInvalidDecl();
5233
5234    NamedDecl *PrincipalDecl = (FunctionTemplate
5235                                ? cast<NamedDecl>(FunctionTemplate)
5236                                : NewFD);
5237
5238    if (isFriend && D.isRedeclaration()) {
5239      AccessSpecifier Access = AS_public;
5240      if (!NewFD->isInvalidDecl())
5241        Access = NewFD->getPreviousDeclaration()->getAccess();
5242
5243      NewFD->setAccess(Access);
5244      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5245
5246      PrincipalDecl->setObjectOfFriendDecl(true);
5247    }
5248
5249    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5250        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5251      PrincipalDecl->setNonMemberOperator();
5252
5253    // If we have a function template, check the template parameter
5254    // list. This will check and merge default template arguments.
5255    if (FunctionTemplate) {
5256      FunctionTemplateDecl *PrevTemplate =
5257                                     FunctionTemplate->getPreviousDeclaration();
5258      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5259                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5260                            D.getDeclSpec().isFriendSpecified()
5261                              ? (D.isFunctionDefinition()
5262                                   ? TPC_FriendFunctionTemplateDefinition
5263                                   : TPC_FriendFunctionTemplate)
5264                              : (D.getCXXScopeSpec().isSet() &&
5265                                 DC && DC->isRecord() &&
5266                                 DC->isDependentContext())
5267                                  ? TPC_ClassTemplateMember
5268                                  : TPC_FunctionTemplate);
5269    }
5270
5271    if (NewFD->isInvalidDecl()) {
5272      // Ignore all the rest of this.
5273    } else if (!D.isRedeclaration()) {
5274      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5275                                       AddToScope };
5276      // Fake up an access specifier if it's supposed to be a class member.
5277      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5278        NewFD->setAccess(AS_public);
5279
5280      // Qualified decls generally require a previous declaration.
5281      if (D.getCXXScopeSpec().isSet()) {
5282        // ...with the major exception of templated-scope or
5283        // dependent-scope friend declarations.
5284
5285        // TODO: we currently also suppress this check in dependent
5286        // contexts because (1) the parameter depth will be off when
5287        // matching friend templates and (2) we might actually be
5288        // selecting a friend based on a dependent factor.  But there
5289        // are situations where these conditions don't apply and we
5290        // can actually do this check immediately.
5291        if (isFriend &&
5292            (TemplateParamLists.size() ||
5293             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5294             CurContext->isDependentContext())) {
5295          // ignore these
5296        } else {
5297          // The user tried to provide an out-of-line definition for a
5298          // function that is a member of a class or namespace, but there
5299          // was no such member function declared (C++ [class.mfct]p2,
5300          // C++ [namespace.memdef]p2). For example:
5301          //
5302          // class X {
5303          //   void f() const;
5304          // };
5305          //
5306          // void X::f() { } // ill-formed
5307          //
5308          // Complain about this problem, and attempt to suggest close
5309          // matches (e.g., those that differ only in cv-qualifiers and
5310          // whether the parameter types are references).
5311
5312          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5313                                                               NewFD,
5314                                                               ExtraArgs)) {
5315            AddToScope = ExtraArgs.AddToScope;
5316            return Result;
5317          }
5318        }
5319
5320        // Unqualified local friend declarations are required to resolve
5321        // to something.
5322      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5323        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5324                                                             NewFD,
5325                                                             ExtraArgs)) {
5326          AddToScope = ExtraArgs.AddToScope;
5327          return Result;
5328        }
5329      }
5330
5331    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5332               !isFriend && !isFunctionTemplateSpecialization &&
5333               !isExplicitSpecialization) {
5334      // An out-of-line member function declaration must also be a
5335      // definition (C++ [dcl.meaning]p1).
5336      // Note that this is not the case for explicit specializations of
5337      // function templates or member functions of class templates, per
5338      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5339      // extension for compatibility with old SWIG code which likes to
5340      // generate them.
5341      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5342        << D.getCXXScopeSpec().getRange();
5343    }
5344  }
5345
5346
5347  // Handle attributes. We need to have merged decls when handling attributes
5348  // (for example to check for conflicts, etc).
5349  // FIXME: This needs to happen before we merge declarations. Then,
5350  // let attribute merging cope with attribute conflicts.
5351  ProcessDeclAttributes(S, NewFD, D,
5352                        /*NonInheritable=*/false, /*Inheritable=*/true);
5353
5354  // attributes declared post-definition are currently ignored
5355  // FIXME: This should happen during attribute merging
5356  if (D.isRedeclaration() && Previous.isSingleResult()) {
5357    const FunctionDecl *Def;
5358    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5359    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5360      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5361      Diag(Def->getLocation(), diag::note_previous_definition);
5362    }
5363  }
5364
5365  AddKnownFunctionAttributes(NewFD);
5366
5367  if (NewFD->hasAttr<OverloadableAttr>() &&
5368      !NewFD->getType()->getAs<FunctionProtoType>()) {
5369    Diag(NewFD->getLocation(),
5370         diag::err_attribute_overloadable_no_prototype)
5371      << NewFD;
5372
5373    // Turn this into a variadic function with no parameters.
5374    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5375    FunctionProtoType::ExtProtoInfo EPI;
5376    EPI.Variadic = true;
5377    EPI.ExtInfo = FT->getExtInfo();
5378
5379    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5380    NewFD->setType(R);
5381  }
5382
5383  // If there's a #pragma GCC visibility in scope, and this isn't a class
5384  // member, set the visibility of this function.
5385  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5386    AddPushedVisibilityAttribute(NewFD);
5387
5388  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5389  // marking the function.
5390  AddCFAuditedAttribute(NewFD);
5391
5392  // If this is a locally-scoped extern C function, update the
5393  // map of such names.
5394  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5395      && !NewFD->isInvalidDecl())
5396    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5397
5398  // Set this FunctionDecl's range up to the right paren.
5399  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5400
5401  if (getLangOptions().CPlusPlus) {
5402    if (FunctionTemplate) {
5403      if (NewFD->isInvalidDecl())
5404        FunctionTemplate->setInvalidDecl();
5405      return FunctionTemplate;
5406    }
5407  }
5408
5409  MarkUnusedFileScopedDecl(NewFD);
5410
5411  if (getLangOptions().CUDA)
5412    if (IdentifierInfo *II = NewFD->getIdentifier())
5413      if (!NewFD->isInvalidDecl() &&
5414          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5415        if (II->isStr("cudaConfigureCall")) {
5416          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5417            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5418
5419          Context.setcudaConfigureCallDecl(NewFD);
5420        }
5421      }
5422
5423  // Here we have an function template explicit specialization at class scope.
5424  // The actually specialization will be postponed to template instatiation
5425  // time via the ClassScopeFunctionSpecializationDecl node.
5426  if (isDependentClassScopeExplicitSpecialization) {
5427    ClassScopeFunctionSpecializationDecl *NewSpec =
5428                         ClassScopeFunctionSpecializationDecl::Create(
5429                                Context, CurContext,  SourceLocation(),
5430                                cast<CXXMethodDecl>(NewFD));
5431    CurContext->addDecl(NewSpec);
5432    AddToScope = false;
5433  }
5434
5435  return NewFD;
5436}
5437
5438/// \brief Perform semantic checking of a new function declaration.
5439///
5440/// Performs semantic analysis of the new function declaration
5441/// NewFD. This routine performs all semantic checking that does not
5442/// require the actual declarator involved in the declaration, and is
5443/// used both for the declaration of functions as they are parsed
5444/// (called via ActOnDeclarator) and for the declaration of functions
5445/// that have been instantiated via C++ template instantiation (called
5446/// via InstantiateDecl).
5447///
5448/// \param IsExplicitSpecialiation whether this new function declaration is
5449/// an explicit specialization of the previous declaration.
5450///
5451/// This sets NewFD->isInvalidDecl() to true if there was an error.
5452///
5453/// Returns true if the function declaration is a redeclaration.
5454bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5455                                    LookupResult &Previous,
5456                                    bool IsExplicitSpecialization) {
5457  assert(!NewFD->getResultType()->isVariablyModifiedType()
5458         && "Variably modified return types are not handled here");
5459
5460  // Check for a previous declaration of this name.
5461  if (Previous.empty() && NewFD->isExternC()) {
5462    // Since we did not find anything by this name and we're declaring
5463    // an extern "C" function, look for a non-visible extern "C"
5464    // declaration with the same name.
5465    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5466      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5467    if (Pos != LocallyScopedExternalDecls.end())
5468      Previous.addDecl(Pos->second);
5469  }
5470
5471  bool Redeclaration = false;
5472
5473  // Merge or overload the declaration with an existing declaration of
5474  // the same name, if appropriate.
5475  if (!Previous.empty()) {
5476    // Determine whether NewFD is an overload of PrevDecl or
5477    // a declaration that requires merging. If it's an overload,
5478    // there's no more work to do here; we'll just add the new
5479    // function to the scope.
5480
5481    NamedDecl *OldDecl = 0;
5482    if (!AllowOverloadingOfFunction(Previous, Context)) {
5483      Redeclaration = true;
5484      OldDecl = Previous.getFoundDecl();
5485    } else {
5486      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5487                            /*NewIsUsingDecl*/ false)) {
5488      case Ovl_Match:
5489        Redeclaration = true;
5490        break;
5491
5492      case Ovl_NonFunction:
5493        Redeclaration = true;
5494        break;
5495
5496      case Ovl_Overload:
5497        Redeclaration = false;
5498        break;
5499      }
5500
5501      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5502        // If a function name is overloadable in C, then every function
5503        // with that name must be marked "overloadable".
5504        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5505          << Redeclaration << NewFD;
5506        NamedDecl *OverloadedDecl = 0;
5507        if (Redeclaration)
5508          OverloadedDecl = OldDecl;
5509        else if (!Previous.empty())
5510          OverloadedDecl = Previous.getRepresentativeDecl();
5511        if (OverloadedDecl)
5512          Diag(OverloadedDecl->getLocation(),
5513               diag::note_attribute_overloadable_prev_overload);
5514        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5515                                                        Context));
5516      }
5517    }
5518
5519    if (Redeclaration) {
5520      // NewFD and OldDecl represent declarations that need to be
5521      // merged.
5522      if (MergeFunctionDecl(NewFD, OldDecl)) {
5523        NewFD->setInvalidDecl();
5524        return Redeclaration;
5525      }
5526
5527      Previous.clear();
5528      Previous.addDecl(OldDecl);
5529
5530      if (FunctionTemplateDecl *OldTemplateDecl
5531                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5532        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5533        FunctionTemplateDecl *NewTemplateDecl
5534          = NewFD->getDescribedFunctionTemplate();
5535        assert(NewTemplateDecl && "Template/non-template mismatch");
5536        if (CXXMethodDecl *Method
5537              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5538          Method->setAccess(OldTemplateDecl->getAccess());
5539          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5540        }
5541
5542        // If this is an explicit specialization of a member that is a function
5543        // template, mark it as a member specialization.
5544        if (IsExplicitSpecialization &&
5545            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5546          NewTemplateDecl->setMemberSpecialization();
5547          assert(OldTemplateDecl->isMemberSpecialization());
5548        }
5549
5550        if (OldTemplateDecl->isModulePrivate())
5551          NewTemplateDecl->setModulePrivate();
5552
5553      } else {
5554        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5555          NewFD->setAccess(OldDecl->getAccess());
5556        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5557      }
5558    }
5559  }
5560
5561  // Semantic checking for this function declaration (in isolation).
5562  if (getLangOptions().CPlusPlus) {
5563    // C++-specific checks.
5564    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5565      CheckConstructor(Constructor);
5566    } else if (CXXDestructorDecl *Destructor =
5567                dyn_cast<CXXDestructorDecl>(NewFD)) {
5568      CXXRecordDecl *Record = Destructor->getParent();
5569      QualType ClassType = Context.getTypeDeclType(Record);
5570
5571      // FIXME: Shouldn't we be able to perform this check even when the class
5572      // type is dependent? Both gcc and edg can handle that.
5573      if (!ClassType->isDependentType()) {
5574        DeclarationName Name
5575          = Context.DeclarationNames.getCXXDestructorName(
5576                                        Context.getCanonicalType(ClassType));
5577        if (NewFD->getDeclName() != Name) {
5578          Diag(NewFD->getLocation(), diag::err_destructor_name);
5579          NewFD->setInvalidDecl();
5580          return Redeclaration;
5581        }
5582      }
5583    } else if (CXXConversionDecl *Conversion
5584               = dyn_cast<CXXConversionDecl>(NewFD)) {
5585      ActOnConversionDeclarator(Conversion);
5586    }
5587
5588    // Find any virtual functions that this function overrides.
5589    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5590      if (!Method->isFunctionTemplateSpecialization() &&
5591          !Method->getDescribedFunctionTemplate()) {
5592        if (AddOverriddenMethods(Method->getParent(), Method)) {
5593          // If the function was marked as "static", we have a problem.
5594          if (NewFD->getStorageClass() == SC_Static) {
5595            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5596              << NewFD->getDeclName();
5597            for (CXXMethodDecl::method_iterator
5598                      Overridden = Method->begin_overridden_methods(),
5599                   OverriddenEnd = Method->end_overridden_methods();
5600                 Overridden != OverriddenEnd;
5601                 ++Overridden) {
5602              Diag((*Overridden)->getLocation(),
5603                   diag::note_overridden_virtual_function);
5604            }
5605          }
5606        }
5607      }
5608    }
5609
5610    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5611    if (NewFD->isOverloadedOperator() &&
5612        CheckOverloadedOperatorDeclaration(NewFD)) {
5613      NewFD->setInvalidDecl();
5614      return Redeclaration;
5615    }
5616
5617    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5618    if (NewFD->getLiteralIdentifier() &&
5619        CheckLiteralOperatorDeclaration(NewFD)) {
5620      NewFD->setInvalidDecl();
5621      return Redeclaration;
5622    }
5623
5624    // In C++, check default arguments now that we have merged decls. Unless
5625    // the lexical context is the class, because in this case this is done
5626    // during delayed parsing anyway.
5627    if (!CurContext->isRecord())
5628      CheckCXXDefaultArguments(NewFD);
5629
5630    // If this function declares a builtin function, check the type of this
5631    // declaration against the expected type for the builtin.
5632    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5633      ASTContext::GetBuiltinTypeError Error;
5634      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5635      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5636        // The type of this function differs from the type of the builtin,
5637        // so forget about the builtin entirely.
5638        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5639      }
5640    }
5641  }
5642  return Redeclaration;
5643}
5644
5645void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5646  // C++ [basic.start.main]p3:  A program that declares main to be inline
5647  //   or static is ill-formed.
5648  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5649  //   shall not appear in a declaration of main.
5650  // static main is not an error under C99, but we should warn about it.
5651  if (FD->getStorageClass() == SC_Static)
5652    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5653         ? diag::err_static_main : diag::warn_static_main)
5654      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5655  if (FD->isInlineSpecified())
5656    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5657      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5658
5659  QualType T = FD->getType();
5660  assert(T->isFunctionType() && "function decl is not of function type");
5661  const FunctionType* FT = T->getAs<FunctionType>();
5662
5663  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5664    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5665    FD->setInvalidDecl(true);
5666  }
5667
5668  // Treat protoless main() as nullary.
5669  if (isa<FunctionNoProtoType>(FT)) return;
5670
5671  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5672  unsigned nparams = FTP->getNumArgs();
5673  assert(FD->getNumParams() == nparams);
5674
5675  bool HasExtraParameters = (nparams > 3);
5676
5677  // Darwin passes an undocumented fourth argument of type char**.  If
5678  // other platforms start sprouting these, the logic below will start
5679  // getting shifty.
5680  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5681    HasExtraParameters = false;
5682
5683  if (HasExtraParameters) {
5684    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5685    FD->setInvalidDecl(true);
5686    nparams = 3;
5687  }
5688
5689  // FIXME: a lot of the following diagnostics would be improved
5690  // if we had some location information about types.
5691
5692  QualType CharPP =
5693    Context.getPointerType(Context.getPointerType(Context.CharTy));
5694  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5695
5696  for (unsigned i = 0; i < nparams; ++i) {
5697    QualType AT = FTP->getArgType(i);
5698
5699    bool mismatch = true;
5700
5701    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5702      mismatch = false;
5703    else if (Expected[i] == CharPP) {
5704      // As an extension, the following forms are okay:
5705      //   char const **
5706      //   char const * const *
5707      //   char * const *
5708
5709      QualifierCollector qs;
5710      const PointerType* PT;
5711      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5712          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5713          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5714        qs.removeConst();
5715        mismatch = !qs.empty();
5716      }
5717    }
5718
5719    if (mismatch) {
5720      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5721      // TODO: suggest replacing given type with expected type
5722      FD->setInvalidDecl(true);
5723    }
5724  }
5725
5726  if (nparams == 1 && !FD->isInvalidDecl()) {
5727    Diag(FD->getLocation(), diag::warn_main_one_arg);
5728  }
5729
5730  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5731    Diag(FD->getLocation(), diag::err_main_template_decl);
5732    FD->setInvalidDecl();
5733  }
5734}
5735
5736bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5737  // FIXME: Need strict checking.  In C89, we need to check for
5738  // any assignment, increment, decrement, function-calls, or
5739  // commas outside of a sizeof.  In C99, it's the same list,
5740  // except that the aforementioned are allowed in unevaluated
5741  // expressions.  Everything else falls under the
5742  // "may accept other forms of constant expressions" exception.
5743  // (We never end up here for C++, so the constant expression
5744  // rules there don't matter.)
5745  if (Init->isConstantInitializer(Context, false))
5746    return false;
5747  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5748    << Init->getSourceRange();
5749  return true;
5750}
5751
5752namespace {
5753  // Visits an initialization expression to see if OrigDecl is evaluated in
5754  // its own initialization and throws a warning if it does.
5755  class SelfReferenceChecker
5756      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5757    Sema &S;
5758    Decl *OrigDecl;
5759    bool isRecordType;
5760    bool isPODType;
5761
5762  public:
5763    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5764
5765    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5766                                                    S(S), OrigDecl(OrigDecl) {
5767      isPODType = false;
5768      isRecordType = false;
5769      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5770        isPODType = VD->getType().isPODType(S.Context);
5771        isRecordType = VD->getType()->isRecordType();
5772      }
5773    }
5774
5775    void VisitExpr(Expr *E) {
5776      if (isa<ObjCMessageExpr>(*E)) return;
5777      if (isRecordType) {
5778        Expr *expr = E;
5779        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5780          ValueDecl *VD = ME->getMemberDecl();
5781          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5782          expr = ME->getBase();
5783        }
5784        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5785          HandleDeclRefExpr(DRE);
5786          return;
5787        }
5788      }
5789      Inherited::VisitExpr(E);
5790    }
5791
5792    void VisitMemberExpr(MemberExpr *E) {
5793      if (E->getType()->canDecayToPointerType()) return;
5794      if (isa<FieldDecl>(E->getMemberDecl()))
5795        if (DeclRefExpr *DRE
5796              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5797          HandleDeclRefExpr(DRE);
5798          return;
5799        }
5800      Inherited::VisitMemberExpr(E);
5801    }
5802
5803    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5804      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5805          (isRecordType && E->getCastKind() == CK_NoOp)) {
5806        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5807        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5808          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5809        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5810          HandleDeclRefExpr(DRE);
5811          return;
5812        }
5813      }
5814      Inherited::VisitImplicitCastExpr(E);
5815    }
5816
5817    void VisitUnaryOperator(UnaryOperator *E) {
5818      // For POD record types, addresses of its own members are well-defined.
5819      if (isRecordType && isPODType) return;
5820      Inherited::VisitUnaryOperator(E);
5821    }
5822
5823    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5824      Decl* ReferenceDecl = DRE->getDecl();
5825      if (OrigDecl != ReferenceDecl) return;
5826      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5827                          Sema::NotForRedeclaration);
5828      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5829                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5830                              << Result.getLookupName()
5831                              << OrigDecl->getLocation()
5832                              << DRE->getSourceRange());
5833    }
5834  };
5835}
5836
5837/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5838void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5839  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5840}
5841
5842/// AddInitializerToDecl - Adds the initializer Init to the
5843/// declaration dcl. If DirectInit is true, this is C++ direct
5844/// initialization rather than copy initialization.
5845void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5846                                bool DirectInit, bool TypeMayContainAuto) {
5847  // If there is no declaration, there was an error parsing it.  Just ignore
5848  // the initializer.
5849  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5850    return;
5851
5852  // Check for self-references within variable initializers.
5853  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5854    // Variables declared within a function/method body are handled
5855    // by a dataflow analysis.
5856    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5857      CheckSelfReference(RealDecl, Init);
5858  }
5859  else {
5860    CheckSelfReference(RealDecl, Init);
5861  }
5862
5863  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5864    // With declarators parsed the way they are, the parser cannot
5865    // distinguish between a normal initializer and a pure-specifier.
5866    // Thus this grotesque test.
5867    IntegerLiteral *IL;
5868    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5869        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5870      CheckPureMethod(Method, Init->getSourceRange());
5871    else {
5872      Diag(Method->getLocation(), diag::err_member_function_initialization)
5873        << Method->getDeclName() << Init->getSourceRange();
5874      Method->setInvalidDecl();
5875    }
5876    return;
5877  }
5878
5879  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5880  if (!VDecl) {
5881    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5882    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5883    RealDecl->setInvalidDecl();
5884    return;
5885  }
5886
5887  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5888  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5889    TypeSourceInfo *DeducedType = 0;
5890    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5891      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5892        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5893        << Init->getSourceRange();
5894    if (!DeducedType) {
5895      RealDecl->setInvalidDecl();
5896      return;
5897    }
5898    VDecl->setTypeSourceInfo(DeducedType);
5899    VDecl->setType(DeducedType->getType());
5900
5901    // In ARC, infer lifetime.
5902    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5903      VDecl->setInvalidDecl();
5904
5905    // If this is a redeclaration, check that the type we just deduced matches
5906    // the previously declared type.
5907    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5908      MergeVarDeclTypes(VDecl, Old);
5909  }
5910
5911
5912  // A definition must end up with a complete type, which means it must be
5913  // complete with the restriction that an array type might be completed by the
5914  // initializer; note that later code assumes this restriction.
5915  QualType BaseDeclType = VDecl->getType();
5916  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5917    BaseDeclType = Array->getElementType();
5918  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5919                          diag::err_typecheck_decl_incomplete_type)) {
5920    RealDecl->setInvalidDecl();
5921    return;
5922  }
5923
5924  // The variable can not have an abstract class type.
5925  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5926                             diag::err_abstract_type_in_decl,
5927                             AbstractVariableType))
5928    VDecl->setInvalidDecl();
5929
5930  const VarDecl *Def;
5931  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5932    Diag(VDecl->getLocation(), diag::err_redefinition)
5933      << VDecl->getDeclName();
5934    Diag(Def->getLocation(), diag::note_previous_definition);
5935    VDecl->setInvalidDecl();
5936    return;
5937  }
5938
5939  const VarDecl* PrevInit = 0;
5940  if (getLangOptions().CPlusPlus) {
5941    // C++ [class.static.data]p4
5942    //   If a static data member is of const integral or const
5943    //   enumeration type, its declaration in the class definition can
5944    //   specify a constant-initializer which shall be an integral
5945    //   constant expression (5.19). In that case, the member can appear
5946    //   in integral constant expressions. The member shall still be
5947    //   defined in a namespace scope if it is used in the program and the
5948    //   namespace scope definition shall not contain an initializer.
5949    //
5950    // We already performed a redefinition check above, but for static
5951    // data members we also need to check whether there was an in-class
5952    // declaration with an initializer.
5953    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5954      Diag(VDecl->getLocation(), diag::err_redefinition)
5955        << VDecl->getDeclName();
5956      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5957      return;
5958    }
5959
5960    if (VDecl->hasLocalStorage())
5961      getCurFunction()->setHasBranchProtectedScope();
5962
5963    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5964      VDecl->setInvalidDecl();
5965      return;
5966    }
5967  }
5968
5969  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5970  // a kernel function cannot be initialized."
5971  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5972    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5973    VDecl->setInvalidDecl();
5974    return;
5975  }
5976
5977  // Capture the variable that is being initialized and the style of
5978  // initialization.
5979  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5980
5981  // FIXME: Poor source location information.
5982  InitializationKind Kind
5983    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5984                                                   Init->getLocStart(),
5985                                                   Init->getLocEnd())
5986                : InitializationKind::CreateCopy(VDecl->getLocation(),
5987                                                 Init->getLocStart());
5988
5989  // Get the decls type and save a reference for later, since
5990  // CheckInitializerTypes may change it.
5991  QualType DclT = VDecl->getType(), SavT = DclT;
5992  if (VDecl->isLocalVarDecl()) {
5993    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5994      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5995      VDecl->setInvalidDecl();
5996    } else if (!VDecl->isInvalidDecl()) {
5997      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5998      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5999                                                MultiExprArg(*this, &Init, 1),
6000                                                &DclT);
6001      if (Result.isInvalid()) {
6002        VDecl->setInvalidDecl();
6003        return;
6004      }
6005
6006      Init = Result.takeAs<Expr>();
6007
6008      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6009      // Don't check invalid declarations to avoid emitting useless diagnostics.
6010      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6011        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6012          CheckForConstantInitializer(Init, DclT);
6013      }
6014    }
6015  } else if (VDecl->isStaticDataMember() &&
6016             VDecl->getLexicalDeclContext()->isRecord()) {
6017    // This is an in-class initialization for a static data member, e.g.,
6018    //
6019    // struct S {
6020    //   static const int value = 17;
6021    // };
6022
6023    // Try to perform the initialization regardless.
6024    if (!VDecl->isInvalidDecl()) {
6025      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6026      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6027                                          MultiExprArg(*this, &Init, 1),
6028                                          &DclT);
6029      if (Result.isInvalid()) {
6030        VDecl->setInvalidDecl();
6031        return;
6032      }
6033
6034      Init = Result.takeAs<Expr>();
6035    }
6036
6037    // C++ [class.mem]p4:
6038    //   A member-declarator can contain a constant-initializer only
6039    //   if it declares a static member (9.4) of const integral or
6040    //   const enumeration type, see 9.4.2.
6041    //
6042    // C++0x [class.static.data]p3:
6043    //   If a non-volatile const static data member is of integral or
6044    //   enumeration type, its declaration in the class definition can
6045    //   specify a brace-or-equal-initializer in which every initalizer-clause
6046    //   that is an assignment-expression is a constant expression. A static
6047    //   data member of literal type can be declared in the class definition
6048    //   with the constexpr specifier; if so, its declaration shall specify a
6049    //   brace-or-equal-initializer in which every initializer-clause that is
6050    //   an assignment-expression is a constant expression.
6051    QualType T = VDecl->getType();
6052
6053    // Do nothing on dependent types.
6054    if (T->isDependentType()) {
6055
6056    // Allow any 'static constexpr' members, whether or not they are of literal
6057    // type. We separately check that the initializer is a constant expression,
6058    // which implicitly requires the member to be of literal type.
6059    } else if (VDecl->isConstexpr()) {
6060
6061    // Require constness.
6062    } else if (!T.isConstQualified()) {
6063      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6064        << Init->getSourceRange();
6065      VDecl->setInvalidDecl();
6066
6067    // We allow integer constant expressions in all cases.
6068    } else if (T->isIntegralOrEnumerationType()) {
6069      // Check whether the expression is a constant expression.
6070      SourceLocation Loc;
6071      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6072        // In C++0x, a non-constexpr const static data member with an
6073        // in-class initializer cannot be volatile.
6074        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6075      else if (Init->isValueDependent())
6076        ; // Nothing to check.
6077      else if (Init->isIntegerConstantExpr(Context, &Loc))
6078        ; // Ok, it's an ICE!
6079      else if (Init->isEvaluatable(Context)) {
6080        // If we can constant fold the initializer through heroics, accept it,
6081        // but report this as a use of an extension for -pedantic.
6082        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6083          << Init->getSourceRange();
6084      } else {
6085        // Otherwise, this is some crazy unknown case.  Report the issue at the
6086        // location provided by the isIntegerConstantExpr failed check.
6087        Diag(Loc, diag::err_in_class_initializer_non_constant)
6088          << Init->getSourceRange();
6089        VDecl->setInvalidDecl();
6090      }
6091
6092    // We allow floating-point constants as an extension.
6093    } else if (T->isFloatingType()) { // also permits complex, which is ok
6094      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6095        << T << Init->getSourceRange();
6096      if (getLangOptions().CPlusPlus0x)
6097        Diag(VDecl->getLocation(),
6098             diag::note_in_class_initializer_float_type_constexpr)
6099          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6100
6101      if (!Init->isValueDependent() &&
6102          !Init->isConstantInitializer(Context, false)) {
6103        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6104          << Init->getSourceRange();
6105        VDecl->setInvalidDecl();
6106      }
6107
6108    // Suggest adding 'constexpr' in C++0x for literal types.
6109    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6110      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6111        << T << Init->getSourceRange()
6112        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6113      VDecl->setConstexpr(true);
6114
6115    } else {
6116      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6117        << T << Init->getSourceRange();
6118      VDecl->setInvalidDecl();
6119    }
6120  } else if (VDecl->isFileVarDecl()) {
6121    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6122        (!getLangOptions().CPlusPlus ||
6123         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6124      Diag(VDecl->getLocation(), diag::warn_extern_init);
6125    if (!VDecl->isInvalidDecl()) {
6126      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6127      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6128                                                MultiExprArg(*this, &Init, 1),
6129                                                &DclT);
6130      if (Result.isInvalid()) {
6131        VDecl->setInvalidDecl();
6132        return;
6133      }
6134
6135      Init = Result.takeAs<Expr>();
6136    }
6137
6138    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6139    // Don't check invalid declarations to avoid emitting useless diagnostics.
6140    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6141      // C99 6.7.8p4. All file scoped initializers need to be constant.
6142      CheckForConstantInitializer(Init, DclT);
6143    }
6144  }
6145  // If the type changed, it means we had an incomplete type that was
6146  // completed by the initializer. For example:
6147  //   int ary[] = { 1, 3, 5 };
6148  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6149  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6150    VDecl->setType(DclT);
6151    Init->setType(DclT);
6152  }
6153
6154  // Check any implicit conversions within the expression.
6155  CheckImplicitConversions(Init, VDecl->getLocation());
6156
6157  if (!VDecl->isInvalidDecl())
6158    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6159
6160  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6161      !VDecl->getType()->isDependentType() &&
6162      !Init->isTypeDependent() && !Init->isValueDependent() &&
6163      !Init->isConstantInitializer(Context,
6164                                   VDecl->getType()->isReferenceType())) {
6165    // FIXME: Improve this diagnostic to explain why the initializer is not
6166    // a constant expression.
6167    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6168      << VDecl << Init->getSourceRange();
6169  }
6170
6171  Init = MaybeCreateExprWithCleanups(Init);
6172  // Attach the initializer to the decl.
6173  VDecl->setInit(Init);
6174
6175  CheckCompleteVariableDeclaration(VDecl);
6176}
6177
6178/// ActOnInitializerError - Given that there was an error parsing an
6179/// initializer for the given declaration, try to return to some form
6180/// of sanity.
6181void Sema::ActOnInitializerError(Decl *D) {
6182  // Our main concern here is re-establishing invariants like "a
6183  // variable's type is either dependent or complete".
6184  if (!D || D->isInvalidDecl()) return;
6185
6186  VarDecl *VD = dyn_cast<VarDecl>(D);
6187  if (!VD) return;
6188
6189  // Auto types are meaningless if we can't make sense of the initializer.
6190  if (ParsingInitForAutoVars.count(D)) {
6191    D->setInvalidDecl();
6192    return;
6193  }
6194
6195  QualType Ty = VD->getType();
6196  if (Ty->isDependentType()) return;
6197
6198  // Require a complete type.
6199  if (RequireCompleteType(VD->getLocation(),
6200                          Context.getBaseElementType(Ty),
6201                          diag::err_typecheck_decl_incomplete_type)) {
6202    VD->setInvalidDecl();
6203    return;
6204  }
6205
6206  // Require an abstract type.
6207  if (RequireNonAbstractType(VD->getLocation(), Ty,
6208                             diag::err_abstract_type_in_decl,
6209                             AbstractVariableType)) {
6210    VD->setInvalidDecl();
6211    return;
6212  }
6213
6214  // Don't bother complaining about constructors or destructors,
6215  // though.
6216}
6217
6218void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6219                                  bool TypeMayContainAuto) {
6220  // If there is no declaration, there was an error parsing it. Just ignore it.
6221  if (RealDecl == 0)
6222    return;
6223
6224  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6225    QualType Type = Var->getType();
6226
6227    // C++0x [dcl.spec.auto]p3
6228    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6229      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6230        << Var->getDeclName() << Type;
6231      Var->setInvalidDecl();
6232      return;
6233    }
6234
6235    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6236    // have an initializer.
6237    // C++0x [class.static.data]p3: A static data member can be declared with
6238    // the constexpr specifier; if so, its declaration shall specify
6239    // a brace-or-equal-initializer.
6240    //
6241    // A static data member's definition may inherit an initializer from an
6242    // in-class declaration.
6243    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6244      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6245        << Var->getDeclName();
6246      Var->setInvalidDecl();
6247      return;
6248    }
6249
6250    switch (Var->isThisDeclarationADefinition()) {
6251    case VarDecl::Definition:
6252      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6253        break;
6254
6255      // We have an out-of-line definition of a static data member
6256      // that has an in-class initializer, so we type-check this like
6257      // a declaration.
6258      //
6259      // Fall through
6260
6261    case VarDecl::DeclarationOnly:
6262      // It's only a declaration.
6263
6264      // Block scope. C99 6.7p7: If an identifier for an object is
6265      // declared with no linkage (C99 6.2.2p6), the type for the
6266      // object shall be complete.
6267      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6268          !Var->getLinkage() && !Var->isInvalidDecl() &&
6269          RequireCompleteType(Var->getLocation(), Type,
6270                              diag::err_typecheck_decl_incomplete_type))
6271        Var->setInvalidDecl();
6272
6273      // Make sure that the type is not abstract.
6274      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6275          RequireNonAbstractType(Var->getLocation(), Type,
6276                                 diag::err_abstract_type_in_decl,
6277                                 AbstractVariableType))
6278        Var->setInvalidDecl();
6279      return;
6280
6281    case VarDecl::TentativeDefinition:
6282      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6283      // object that has file scope without an initializer, and without a
6284      // storage-class specifier or with the storage-class specifier "static",
6285      // constitutes a tentative definition. Note: A tentative definition with
6286      // external linkage is valid (C99 6.2.2p5).
6287      if (!Var->isInvalidDecl()) {
6288        if (const IncompleteArrayType *ArrayT
6289                                    = Context.getAsIncompleteArrayType(Type)) {
6290          if (RequireCompleteType(Var->getLocation(),
6291                                  ArrayT->getElementType(),
6292                                  diag::err_illegal_decl_array_incomplete_type))
6293            Var->setInvalidDecl();
6294        } else if (Var->getStorageClass() == SC_Static) {
6295          // C99 6.9.2p3: If the declaration of an identifier for an object is
6296          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6297          // declared type shall not be an incomplete type.
6298          // NOTE: code such as the following
6299          //     static struct s;
6300          //     struct s { int a; };
6301          // is accepted by gcc. Hence here we issue a warning instead of
6302          // an error and we do not invalidate the static declaration.
6303          // NOTE: to avoid multiple warnings, only check the first declaration.
6304          if (Var->getPreviousDeclaration() == 0)
6305            RequireCompleteType(Var->getLocation(), Type,
6306                                diag::ext_typecheck_decl_incomplete_type);
6307        }
6308      }
6309
6310      // Record the tentative definition; we're done.
6311      if (!Var->isInvalidDecl())
6312        TentativeDefinitions.push_back(Var);
6313      return;
6314    }
6315
6316    // Provide a specific diagnostic for uninitialized variable
6317    // definitions with incomplete array type.
6318    if (Type->isIncompleteArrayType()) {
6319      Diag(Var->getLocation(),
6320           diag::err_typecheck_incomplete_array_needs_initializer);
6321      Var->setInvalidDecl();
6322      return;
6323    }
6324
6325    // Provide a specific diagnostic for uninitialized variable
6326    // definitions with reference type.
6327    if (Type->isReferenceType()) {
6328      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6329        << Var->getDeclName()
6330        << SourceRange(Var->getLocation(), Var->getLocation());
6331      Var->setInvalidDecl();
6332      return;
6333    }
6334
6335    // Do not attempt to type-check the default initializer for a
6336    // variable with dependent type.
6337    if (Type->isDependentType())
6338      return;
6339
6340    if (Var->isInvalidDecl())
6341      return;
6342
6343    if (RequireCompleteType(Var->getLocation(),
6344                            Context.getBaseElementType(Type),
6345                            diag::err_typecheck_decl_incomplete_type)) {
6346      Var->setInvalidDecl();
6347      return;
6348    }
6349
6350    // The variable can not have an abstract class type.
6351    if (RequireNonAbstractType(Var->getLocation(), Type,
6352                               diag::err_abstract_type_in_decl,
6353                               AbstractVariableType)) {
6354      Var->setInvalidDecl();
6355      return;
6356    }
6357
6358    // Check for jumps past the implicit initializer.  C++0x
6359    // clarifies that this applies to a "variable with automatic
6360    // storage duration", not a "local variable".
6361    // C++11 [stmt.dcl]p3
6362    //   A program that jumps from a point where a variable with automatic
6363    //   storage duration is not in scope to a point where it is in scope is
6364    //   ill-formed unless the variable has scalar type, class type with a
6365    //   trivial default constructor and a trivial destructor, a cv-qualified
6366    //   version of one of these types, or an array of one of the preceding
6367    //   types and is declared without an initializer.
6368    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6369      if (const RecordType *Record
6370            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6371        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6372        // Mark the function for further checking even if the looser rules of
6373        // C++11 do not require such checks, so that we can diagnose
6374        // incompatibilities with C++98.
6375        if (!CXXRecord->isPOD())
6376          getCurFunction()->setHasBranchProtectedScope();
6377      }
6378    }
6379
6380    // C++03 [dcl.init]p9:
6381    //   If no initializer is specified for an object, and the
6382    //   object is of (possibly cv-qualified) non-POD class type (or
6383    //   array thereof), the object shall be default-initialized; if
6384    //   the object is of const-qualified type, the underlying class
6385    //   type shall have a user-declared default
6386    //   constructor. Otherwise, if no initializer is specified for
6387    //   a non- static object, the object and its subobjects, if
6388    //   any, have an indeterminate initial value); if the object
6389    //   or any of its subobjects are of const-qualified type, the
6390    //   program is ill-formed.
6391    // C++0x [dcl.init]p11:
6392    //   If no initializer is specified for an object, the object is
6393    //   default-initialized; [...].
6394    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6395    InitializationKind Kind
6396      = InitializationKind::CreateDefault(Var->getLocation());
6397
6398    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6399    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6400                                      MultiExprArg(*this, 0, 0));
6401    if (Init.isInvalid())
6402      Var->setInvalidDecl();
6403    else if (Init.get())
6404      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6405
6406    CheckCompleteVariableDeclaration(Var);
6407  }
6408}
6409
6410void Sema::ActOnCXXForRangeDecl(Decl *D) {
6411  VarDecl *VD = dyn_cast<VarDecl>(D);
6412  if (!VD) {
6413    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6414    D->setInvalidDecl();
6415    return;
6416  }
6417
6418  VD->setCXXForRangeDecl(true);
6419
6420  // for-range-declaration cannot be given a storage class specifier.
6421  int Error = -1;
6422  switch (VD->getStorageClassAsWritten()) {
6423  case SC_None:
6424    break;
6425  case SC_Extern:
6426    Error = 0;
6427    break;
6428  case SC_Static:
6429    Error = 1;
6430    break;
6431  case SC_PrivateExtern:
6432    Error = 2;
6433    break;
6434  case SC_Auto:
6435    Error = 3;
6436    break;
6437  case SC_Register:
6438    Error = 4;
6439    break;
6440  case SC_OpenCLWorkGroupLocal:
6441    llvm_unreachable("Unexpected storage class");
6442  }
6443  if (VD->isConstexpr())
6444    Error = 5;
6445  if (Error != -1) {
6446    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6447      << VD->getDeclName() << Error;
6448    D->setInvalidDecl();
6449  }
6450}
6451
6452void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6453  if (var->isInvalidDecl()) return;
6454
6455  // In ARC, don't allow jumps past the implicit initialization of a
6456  // local retaining variable.
6457  if (getLangOptions().ObjCAutoRefCount &&
6458      var->hasLocalStorage()) {
6459    switch (var->getType().getObjCLifetime()) {
6460    case Qualifiers::OCL_None:
6461    case Qualifiers::OCL_ExplicitNone:
6462    case Qualifiers::OCL_Autoreleasing:
6463      break;
6464
6465    case Qualifiers::OCL_Weak:
6466    case Qualifiers::OCL_Strong:
6467      getCurFunction()->setHasBranchProtectedScope();
6468      break;
6469    }
6470  }
6471
6472  // All the following checks are C++ only.
6473  if (!getLangOptions().CPlusPlus) return;
6474
6475  QualType baseType = Context.getBaseElementType(var->getType());
6476  if (baseType->isDependentType()) return;
6477
6478  // __block variables might require us to capture a copy-initializer.
6479  if (var->hasAttr<BlocksAttr>()) {
6480    // It's currently invalid to ever have a __block variable with an
6481    // array type; should we diagnose that here?
6482
6483    // Regardless, we don't want to ignore array nesting when
6484    // constructing this copy.
6485    QualType type = var->getType();
6486
6487    if (type->isStructureOrClassType()) {
6488      SourceLocation poi = var->getLocation();
6489      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6490      ExprResult result =
6491        PerformCopyInitialization(
6492                        InitializedEntity::InitializeBlock(poi, type, false),
6493                                  poi, Owned(varRef));
6494      if (!result.isInvalid()) {
6495        result = MaybeCreateExprWithCleanups(result);
6496        Expr *init = result.takeAs<Expr>();
6497        Context.setBlockVarCopyInits(var, init);
6498      }
6499    }
6500  }
6501
6502  // Check for global constructors.
6503  if (!var->getDeclContext()->isDependentContext() &&
6504      var->hasGlobalStorage() &&
6505      !var->isStaticLocal() &&
6506      var->getInit() &&
6507      !var->getInit()->isConstantInitializer(Context,
6508                                             baseType->isReferenceType()))
6509    Diag(var->getLocation(), diag::warn_global_constructor)
6510      << var->getInit()->getSourceRange();
6511
6512  // Require the destructor.
6513  if (const RecordType *recordType = baseType->getAs<RecordType>())
6514    FinalizeVarWithDestructor(var, recordType);
6515}
6516
6517/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6518/// any semantic actions necessary after any initializer has been attached.
6519void
6520Sema::FinalizeDeclaration(Decl *ThisDecl) {
6521  // Note that we are no longer parsing the initializer for this declaration.
6522  ParsingInitForAutoVars.erase(ThisDecl);
6523}
6524
6525Sema::DeclGroupPtrTy
6526Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6527                              Decl **Group, unsigned NumDecls) {
6528  SmallVector<Decl*, 8> Decls;
6529
6530  if (DS.isTypeSpecOwned())
6531    Decls.push_back(DS.getRepAsDecl());
6532
6533  for (unsigned i = 0; i != NumDecls; ++i)
6534    if (Decl *D = Group[i])
6535      Decls.push_back(D);
6536
6537  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6538                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6539}
6540
6541/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6542/// group, performing any necessary semantic checking.
6543Sema::DeclGroupPtrTy
6544Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6545                           bool TypeMayContainAuto) {
6546  // C++0x [dcl.spec.auto]p7:
6547  //   If the type deduced for the template parameter U is not the same in each
6548  //   deduction, the program is ill-formed.
6549  // FIXME: When initializer-list support is added, a distinction is needed
6550  // between the deduced type U and the deduced type which 'auto' stands for.
6551  //   auto a = 0, b = { 1, 2, 3 };
6552  // is legal because the deduced type U is 'int' in both cases.
6553  if (TypeMayContainAuto && NumDecls > 1) {
6554    QualType Deduced;
6555    CanQualType DeducedCanon;
6556    VarDecl *DeducedDecl = 0;
6557    for (unsigned i = 0; i != NumDecls; ++i) {
6558      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6559        AutoType *AT = D->getType()->getContainedAutoType();
6560        // Don't reissue diagnostics when instantiating a template.
6561        if (AT && D->isInvalidDecl())
6562          break;
6563        if (AT && AT->isDeduced()) {
6564          QualType U = AT->getDeducedType();
6565          CanQualType UCanon = Context.getCanonicalType(U);
6566          if (Deduced.isNull()) {
6567            Deduced = U;
6568            DeducedCanon = UCanon;
6569            DeducedDecl = D;
6570          } else if (DeducedCanon != UCanon) {
6571            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6572                 diag::err_auto_different_deductions)
6573              << Deduced << DeducedDecl->getDeclName()
6574              << U << D->getDeclName()
6575              << DeducedDecl->getInit()->getSourceRange()
6576              << D->getInit()->getSourceRange();
6577            D->setInvalidDecl();
6578            break;
6579          }
6580        }
6581      }
6582    }
6583  }
6584
6585  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6586}
6587
6588
6589/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6590/// to introduce parameters into function prototype scope.
6591Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6592  const DeclSpec &DS = D.getDeclSpec();
6593
6594  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6595  // C++03 [dcl.stc]p2 also permits 'auto'.
6596  VarDecl::StorageClass StorageClass = SC_None;
6597  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6598  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6599    StorageClass = SC_Register;
6600    StorageClassAsWritten = SC_Register;
6601  } else if (getLangOptions().CPlusPlus &&
6602             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6603    StorageClass = SC_Auto;
6604    StorageClassAsWritten = SC_Auto;
6605  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6606    Diag(DS.getStorageClassSpecLoc(),
6607         diag::err_invalid_storage_class_in_func_decl);
6608    D.getMutableDeclSpec().ClearStorageClassSpecs();
6609  }
6610
6611  if (D.getDeclSpec().isThreadSpecified())
6612    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6613  if (D.getDeclSpec().isConstexprSpecified())
6614    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6615      << 0;
6616
6617  DiagnoseFunctionSpecifiers(D);
6618
6619  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6620  QualType parmDeclType = TInfo->getType();
6621
6622  if (getLangOptions().CPlusPlus) {
6623    // Check that there are no default arguments inside the type of this
6624    // parameter.
6625    CheckExtraCXXDefaultArguments(D);
6626
6627    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6628    if (D.getCXXScopeSpec().isSet()) {
6629      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6630        << D.getCXXScopeSpec().getRange();
6631      D.getCXXScopeSpec().clear();
6632    }
6633  }
6634
6635  // Ensure we have a valid name
6636  IdentifierInfo *II = 0;
6637  if (D.hasName()) {
6638    II = D.getIdentifier();
6639    if (!II) {
6640      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6641        << GetNameForDeclarator(D).getName().getAsString();
6642      D.setInvalidType(true);
6643    }
6644  }
6645
6646  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6647  if (II) {
6648    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6649                   ForRedeclaration);
6650    LookupName(R, S);
6651    if (R.isSingleResult()) {
6652      NamedDecl *PrevDecl = R.getFoundDecl();
6653      if (PrevDecl->isTemplateParameter()) {
6654        // Maybe we will complain about the shadowed template parameter.
6655        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6656        // Just pretend that we didn't see the previous declaration.
6657        PrevDecl = 0;
6658      } else if (S->isDeclScope(PrevDecl)) {
6659        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6660        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6661
6662        // Recover by removing the name
6663        II = 0;
6664        D.SetIdentifier(0, D.getIdentifierLoc());
6665        D.setInvalidType(true);
6666      }
6667    }
6668  }
6669
6670  // Temporarily put parameter variables in the translation unit, not
6671  // the enclosing context.  This prevents them from accidentally
6672  // looking like class members in C++.
6673  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6674                                    D.getSourceRange().getBegin(),
6675                                    D.getIdentifierLoc(), II,
6676                                    parmDeclType, TInfo,
6677                                    StorageClass, StorageClassAsWritten);
6678
6679  if (D.isInvalidType())
6680    New->setInvalidDecl();
6681
6682  assert(S->isFunctionPrototypeScope());
6683  assert(S->getFunctionPrototypeDepth() >= 1);
6684  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6685                    S->getNextFunctionPrototypeIndex());
6686
6687  // Add the parameter declaration into this scope.
6688  S->AddDecl(New);
6689  if (II)
6690    IdResolver.AddDecl(New);
6691
6692  ProcessDeclAttributes(S, New, D);
6693
6694  if (D.getDeclSpec().isModulePrivateSpecified())
6695    Diag(New->getLocation(), diag::err_module_private_local)
6696      << 1 << New->getDeclName()
6697      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6698      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6699
6700  if (New->hasAttr<BlocksAttr>()) {
6701    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6702  }
6703  return New;
6704}
6705
6706/// \brief Synthesizes a variable for a parameter arising from a
6707/// typedef.
6708ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6709                                              SourceLocation Loc,
6710                                              QualType T) {
6711  /* FIXME: setting StartLoc == Loc.
6712     Would it be worth to modify callers so as to provide proper source
6713     location for the unnamed parameters, embedding the parameter's type? */
6714  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6715                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6716                                           SC_None, SC_None, 0);
6717  Param->setImplicit();
6718  return Param;
6719}
6720
6721void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6722                                    ParmVarDecl * const *ParamEnd) {
6723  // Don't diagnose unused-parameter errors in template instantiations; we
6724  // will already have done so in the template itself.
6725  if (!ActiveTemplateInstantiations.empty())
6726    return;
6727
6728  for (; Param != ParamEnd; ++Param) {
6729    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6730        !(*Param)->hasAttr<UnusedAttr>()) {
6731      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6732        << (*Param)->getDeclName();
6733    }
6734  }
6735}
6736
6737void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6738                                                  ParmVarDecl * const *ParamEnd,
6739                                                  QualType ReturnTy,
6740                                                  NamedDecl *D) {
6741  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6742    return;
6743
6744  // Warn if the return value is pass-by-value and larger than the specified
6745  // threshold.
6746  if (ReturnTy.isPODType(Context)) {
6747    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6748    if (Size > LangOpts.NumLargeByValueCopy)
6749      Diag(D->getLocation(), diag::warn_return_value_size)
6750          << D->getDeclName() << Size;
6751  }
6752
6753  // Warn if any parameter is pass-by-value and larger than the specified
6754  // threshold.
6755  for (; Param != ParamEnd; ++Param) {
6756    QualType T = (*Param)->getType();
6757    if (!T.isPODType(Context))
6758      continue;
6759    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6760    if (Size > LangOpts.NumLargeByValueCopy)
6761      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6762          << (*Param)->getDeclName() << Size;
6763  }
6764}
6765
6766ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6767                                  SourceLocation NameLoc, IdentifierInfo *Name,
6768                                  QualType T, TypeSourceInfo *TSInfo,
6769                                  VarDecl::StorageClass StorageClass,
6770                                  VarDecl::StorageClass StorageClassAsWritten) {
6771  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6772  if (getLangOptions().ObjCAutoRefCount &&
6773      T.getObjCLifetime() == Qualifiers::OCL_None &&
6774      T->isObjCLifetimeType()) {
6775
6776    Qualifiers::ObjCLifetime lifetime;
6777
6778    // Special cases for arrays:
6779    //   - if it's const, use __unsafe_unretained
6780    //   - otherwise, it's an error
6781    if (T->isArrayType()) {
6782      if (!T.isConstQualified()) {
6783        DelayedDiagnostics.add(
6784            sema::DelayedDiagnostic::makeForbiddenType(
6785            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6786      }
6787      lifetime = Qualifiers::OCL_ExplicitNone;
6788    } else {
6789      lifetime = T->getObjCARCImplicitLifetime();
6790    }
6791    T = Context.getLifetimeQualifiedType(T, lifetime);
6792  }
6793
6794  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6795                                         Context.getAdjustedParameterType(T),
6796                                         TSInfo,
6797                                         StorageClass, StorageClassAsWritten,
6798                                         0);
6799
6800  // Parameters can not be abstract class types.
6801  // For record types, this is done by the AbstractClassUsageDiagnoser once
6802  // the class has been completely parsed.
6803  if (!CurContext->isRecord() &&
6804      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6805                             AbstractParamType))
6806    New->setInvalidDecl();
6807
6808  // Parameter declarators cannot be interface types. All ObjC objects are
6809  // passed by reference.
6810  if (T->isObjCObjectType()) {
6811    Diag(NameLoc,
6812         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6813      << FixItHint::CreateInsertion(NameLoc, "*");
6814    T = Context.getObjCObjectPointerType(T);
6815    New->setType(T);
6816  }
6817
6818  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6819  // duration shall not be qualified by an address-space qualifier."
6820  // Since all parameters have automatic store duration, they can not have
6821  // an address space.
6822  if (T.getAddressSpace() != 0) {
6823    Diag(NameLoc, diag::err_arg_with_address_space);
6824    New->setInvalidDecl();
6825  }
6826
6827  return New;
6828}
6829
6830void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6831                                           SourceLocation LocAfterDecls) {
6832  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6833
6834  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6835  // for a K&R function.
6836  if (!FTI.hasPrototype) {
6837    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6838      --i;
6839      if (FTI.ArgInfo[i].Param == 0) {
6840        llvm::SmallString<256> Code;
6841        llvm::raw_svector_ostream(Code) << "  int "
6842                                        << FTI.ArgInfo[i].Ident->getName()
6843                                        << ";\n";
6844        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6845          << FTI.ArgInfo[i].Ident
6846          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6847
6848        // Implicitly declare the argument as type 'int' for lack of a better
6849        // type.
6850        AttributeFactory attrs;
6851        DeclSpec DS(attrs);
6852        const char* PrevSpec; // unused
6853        unsigned DiagID; // unused
6854        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6855                           PrevSpec, DiagID);
6856        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6857        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6858        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6859      }
6860    }
6861  }
6862}
6863
6864Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6865                                         Declarator &D) {
6866  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6867  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6868  Scope *ParentScope = FnBodyScope->getParent();
6869
6870  D.setFunctionDefinition(true);
6871  Decl *DP = HandleDeclarator(ParentScope, D,
6872                              MultiTemplateParamsArg(*this));
6873  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6874}
6875
6876static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6877  // Don't warn about invalid declarations.
6878  if (FD->isInvalidDecl())
6879    return false;
6880
6881  // Or declarations that aren't global.
6882  if (!FD->isGlobal())
6883    return false;
6884
6885  // Don't warn about C++ member functions.
6886  if (isa<CXXMethodDecl>(FD))
6887    return false;
6888
6889  // Don't warn about 'main'.
6890  if (FD->isMain())
6891    return false;
6892
6893  // Don't warn about inline functions.
6894  if (FD->isInlined())
6895    return false;
6896
6897  // Don't warn about function templates.
6898  if (FD->getDescribedFunctionTemplate())
6899    return false;
6900
6901  // Don't warn about function template specializations.
6902  if (FD->isFunctionTemplateSpecialization())
6903    return false;
6904
6905  bool MissingPrototype = true;
6906  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6907       Prev; Prev = Prev->getPreviousDeclaration()) {
6908    // Ignore any declarations that occur in function or method
6909    // scope, because they aren't visible from the header.
6910    if (Prev->getDeclContext()->isFunctionOrMethod())
6911      continue;
6912
6913    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6914    break;
6915  }
6916
6917  return MissingPrototype;
6918}
6919
6920void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6921  // Don't complain if we're in GNU89 mode and the previous definition
6922  // was an extern inline function.
6923  const FunctionDecl *Definition;
6924  if (FD->isDefined(Definition) &&
6925      !canRedefineFunction(Definition, getLangOptions())) {
6926    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6927        Definition->getStorageClass() == SC_Extern)
6928      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6929        << FD->getDeclName() << getLangOptions().CPlusPlus;
6930    else
6931      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6932    Diag(Definition->getLocation(), diag::note_previous_definition);
6933  }
6934}
6935
6936Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6937  // Clear the last template instantiation error context.
6938  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6939
6940  if (!D)
6941    return D;
6942  FunctionDecl *FD = 0;
6943
6944  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6945    FD = FunTmpl->getTemplatedDecl();
6946  else
6947    FD = cast<FunctionDecl>(D);
6948
6949  // Enter a new function scope
6950  PushFunctionScope();
6951
6952  // See if this is a redefinition.
6953  if (!FD->isLateTemplateParsed())
6954    CheckForFunctionRedefinition(FD);
6955
6956  // Builtin functions cannot be defined.
6957  if (unsigned BuiltinID = FD->getBuiltinID()) {
6958    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6959      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6960      FD->setInvalidDecl();
6961    }
6962  }
6963
6964  // The return type of a function definition must be complete
6965  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6966  QualType ResultType = FD->getResultType();
6967  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6968      !FD->isInvalidDecl() &&
6969      RequireCompleteType(FD->getLocation(), ResultType,
6970                          diag::err_func_def_incomplete_result))
6971    FD->setInvalidDecl();
6972
6973  // GNU warning -Wmissing-prototypes:
6974  //   Warn if a global function is defined without a previous
6975  //   prototype declaration. This warning is issued even if the
6976  //   definition itself provides a prototype. The aim is to detect
6977  //   global functions that fail to be declared in header files.
6978  if (ShouldWarnAboutMissingPrototype(FD))
6979    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6980
6981  if (FnBodyScope)
6982    PushDeclContext(FnBodyScope, FD);
6983
6984  // Check the validity of our function parameters
6985  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6986                           /*CheckParameterNames=*/true);
6987
6988  // Introduce our parameters into the function scope
6989  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6990    ParmVarDecl *Param = FD->getParamDecl(p);
6991    Param->setOwningFunction(FD);
6992
6993    // If this has an identifier, add it to the scope stack.
6994    if (Param->getIdentifier() && FnBodyScope) {
6995      CheckShadow(FnBodyScope, Param);
6996
6997      PushOnScopeChains(Param, FnBodyScope);
6998    }
6999  }
7000
7001  // Checking attributes of current function definition
7002  // dllimport attribute.
7003  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7004  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7005    // dllimport attribute cannot be directly applied to definition.
7006    // Microsoft accepts dllimport for functions defined within class scope.
7007    if (!DA->isInherited() &&
7008        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7009      Diag(FD->getLocation(),
7010           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7011        << "dllimport";
7012      FD->setInvalidDecl();
7013      return FD;
7014    }
7015
7016    // Visual C++ appears to not think this is an issue, so only issue
7017    // a warning when Microsoft extensions are disabled.
7018    if (!LangOpts.MicrosoftExt) {
7019      // If a symbol previously declared dllimport is later defined, the
7020      // attribute is ignored in subsequent references, and a warning is
7021      // emitted.
7022      Diag(FD->getLocation(),
7023           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7024        << FD->getName() << "dllimport";
7025    }
7026  }
7027  return FD;
7028}
7029
7030/// \brief Given the set of return statements within a function body,
7031/// compute the variables that are subject to the named return value
7032/// optimization.
7033///
7034/// Each of the variables that is subject to the named return value
7035/// optimization will be marked as NRVO variables in the AST, and any
7036/// return statement that has a marked NRVO variable as its NRVO candidate can
7037/// use the named return value optimization.
7038///
7039/// This function applies a very simplistic algorithm for NRVO: if every return
7040/// statement in the function has the same NRVO candidate, that candidate is
7041/// the NRVO variable.
7042///
7043/// FIXME: Employ a smarter algorithm that accounts for multiple return
7044/// statements and the lifetimes of the NRVO candidates. We should be able to
7045/// find a maximal set of NRVO variables.
7046void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7047  ReturnStmt **Returns = Scope->Returns.data();
7048
7049  const VarDecl *NRVOCandidate = 0;
7050  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7051    if (!Returns[I]->getNRVOCandidate())
7052      return;
7053
7054    if (!NRVOCandidate)
7055      NRVOCandidate = Returns[I]->getNRVOCandidate();
7056    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7057      return;
7058  }
7059
7060  if (NRVOCandidate)
7061    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7062}
7063
7064Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7065  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7066}
7067
7068Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7069                                    bool IsInstantiation) {
7070  FunctionDecl *FD = 0;
7071  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7072  if (FunTmpl)
7073    FD = FunTmpl->getTemplatedDecl();
7074  else
7075    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7076
7077  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7078  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7079
7080  if (FD) {
7081    FD->setBody(Body);
7082    if (FD->isMain()) {
7083      // C and C++ allow for main to automagically return 0.
7084      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7085      FD->setHasImplicitReturnZero(true);
7086      WP.disableCheckFallThrough();
7087    } else if (FD->hasAttr<NakedAttr>()) {
7088      // If the function is marked 'naked', don't complain about missing return
7089      // statements.
7090      WP.disableCheckFallThrough();
7091    }
7092
7093    // MSVC permits the use of pure specifier (=0) on function definition,
7094    // defined at class scope, warn about this non standard construct.
7095    if (getLangOptions().MicrosoftExt && FD->isPure())
7096      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7097
7098    if (!FD->isInvalidDecl()) {
7099      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7100      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7101                                             FD->getResultType(), FD);
7102
7103      // If this is a constructor, we need a vtable.
7104      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7105        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7106
7107      computeNRVO(Body, getCurFunction());
7108    }
7109
7110    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7111  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7112    assert(MD == getCurMethodDecl() && "Method parsing confused");
7113    MD->setBody(Body);
7114    if (Body)
7115      MD->setEndLoc(Body->getLocEnd());
7116    if (!MD->isInvalidDecl()) {
7117      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7118      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7119                                             MD->getResultType(), MD);
7120
7121      if (Body)
7122        computeNRVO(Body, getCurFunction());
7123    }
7124    if (ObjCShouldCallSuperDealloc) {
7125      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7126      ObjCShouldCallSuperDealloc = false;
7127    }
7128    if (ObjCShouldCallSuperFinalize) {
7129      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7130      ObjCShouldCallSuperFinalize = false;
7131    }
7132  } else {
7133    return 0;
7134  }
7135
7136  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7137         "ObjC methods, which should have been handled in the block above.");
7138  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7139         "ObjC methods, which should have been handled in the block above.");
7140
7141  // Verify and clean out per-function state.
7142  if (Body) {
7143    // C++ constructors that have function-try-blocks can't have return
7144    // statements in the handlers of that block. (C++ [except.handle]p14)
7145    // Verify this.
7146    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7147      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7148
7149    // Verify that gotos and switch cases don't jump into scopes illegally.
7150    if (getCurFunction()->NeedsScopeChecking() &&
7151        !dcl->isInvalidDecl() &&
7152        !hasAnyUnrecoverableErrorsInThisFunction())
7153      DiagnoseInvalidJumps(Body);
7154
7155    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7156      if (!Destructor->getParent()->isDependentType())
7157        CheckDestructor(Destructor);
7158
7159      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7160                                             Destructor->getParent());
7161    }
7162
7163    // If any errors have occurred, clear out any temporaries that may have
7164    // been leftover. This ensures that these temporaries won't be picked up for
7165    // deletion in some later function.
7166    if (PP.getDiagnostics().hasErrorOccurred() ||
7167        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7168      ExprTemporaries.clear();
7169      ExprNeedsCleanups = false;
7170    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7171      // Since the body is valid, issue any analysis-based warnings that are
7172      // enabled.
7173      ActivePolicy = &WP;
7174    }
7175
7176    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7177        !CheckConstexprFunctionBody(FD, Body))
7178      FD->setInvalidDecl();
7179
7180    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7181    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7182  }
7183
7184  if (!IsInstantiation)
7185    PopDeclContext();
7186
7187  PopFunctionOrBlockScope(ActivePolicy, dcl);
7188
7189  // If any errors have occurred, clear out any temporaries that may have
7190  // been leftover. This ensures that these temporaries won't be picked up for
7191  // deletion in some later function.
7192  if (getDiagnostics().hasErrorOccurred()) {
7193    ExprTemporaries.clear();
7194    ExprNeedsCleanups = false;
7195  }
7196
7197  return dcl;
7198}
7199
7200
7201/// When we finish delayed parsing of an attribute, we must attach it to the
7202/// relevant Decl.
7203void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7204                                       ParsedAttributes &Attrs) {
7205  ProcessDeclAttributeList(S, D, Attrs.getList());
7206}
7207
7208
7209/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7210/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7211NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7212                                          IdentifierInfo &II, Scope *S) {
7213  // Before we produce a declaration for an implicitly defined
7214  // function, see whether there was a locally-scoped declaration of
7215  // this name as a function or variable. If so, use that
7216  // (non-visible) declaration, and complain about it.
7217  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7218    = findLocallyScopedExternalDecl(&II);
7219  if (Pos != LocallyScopedExternalDecls.end()) {
7220    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7221    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7222    return Pos->second;
7223  }
7224
7225  // Extension in C99.  Legal in C90, but warn about it.
7226  if (II.getName().startswith("__builtin_"))
7227    Diag(Loc, diag::warn_builtin_unknown) << &II;
7228  else if (getLangOptions().C99)
7229    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7230  else
7231    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7232
7233  // Set a Declarator for the implicit definition: int foo();
7234  const char *Dummy;
7235  AttributeFactory attrFactory;
7236  DeclSpec DS(attrFactory);
7237  unsigned DiagID;
7238  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7239  (void)Error; // Silence warning.
7240  assert(!Error && "Error setting up implicit decl!");
7241  Declarator D(DS, Declarator::BlockContext);
7242  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7243                                             0, 0, true, SourceLocation(),
7244                                             SourceLocation(), SourceLocation(),
7245                                             SourceLocation(),
7246                                             EST_None, SourceLocation(),
7247                                             0, 0, 0, 0, Loc, Loc, D),
7248                DS.getAttributes(),
7249                SourceLocation());
7250  D.SetIdentifier(&II, Loc);
7251
7252  // Insert this function into translation-unit scope.
7253
7254  DeclContext *PrevDC = CurContext;
7255  CurContext = Context.getTranslationUnitDecl();
7256
7257  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7258  FD->setImplicit();
7259
7260  CurContext = PrevDC;
7261
7262  AddKnownFunctionAttributes(FD);
7263
7264  return FD;
7265}
7266
7267/// \brief Adds any function attributes that we know a priori based on
7268/// the declaration of this function.
7269///
7270/// These attributes can apply both to implicitly-declared builtins
7271/// (like __builtin___printf_chk) or to library-declared functions
7272/// like NSLog or printf.
7273///
7274/// We need to check for duplicate attributes both here and where user-written
7275/// attributes are applied to declarations.
7276void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7277  if (FD->isInvalidDecl())
7278    return;
7279
7280  // If this is a built-in function, map its builtin attributes to
7281  // actual attributes.
7282  if (unsigned BuiltinID = FD->getBuiltinID()) {
7283    // Handle printf-formatting attributes.
7284    unsigned FormatIdx;
7285    bool HasVAListArg;
7286    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7287      if (!FD->getAttr<FormatAttr>())
7288        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7289                                                "printf", FormatIdx+1,
7290                                               HasVAListArg ? 0 : FormatIdx+2));
7291    }
7292    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7293                                             HasVAListArg)) {
7294     if (!FD->getAttr<FormatAttr>())
7295       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7296                                              "scanf", FormatIdx+1,
7297                                              HasVAListArg ? 0 : FormatIdx+2));
7298    }
7299
7300    // Mark const if we don't care about errno and that is the only
7301    // thing preventing the function from being const. This allows
7302    // IRgen to use LLVM intrinsics for such functions.
7303    if (!getLangOptions().MathErrno &&
7304        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7305      if (!FD->getAttr<ConstAttr>())
7306        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7307    }
7308
7309    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7310        !FD->getAttr<ReturnsTwiceAttr>())
7311      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7312    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7313      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7314    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7315      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7316  }
7317
7318  IdentifierInfo *Name = FD->getIdentifier();
7319  if (!Name)
7320    return;
7321  if ((!getLangOptions().CPlusPlus &&
7322       FD->getDeclContext()->isTranslationUnit()) ||
7323      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7324       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7325       LinkageSpecDecl::lang_c)) {
7326    // Okay: this could be a libc/libm/Objective-C function we know
7327    // about.
7328  } else
7329    return;
7330
7331  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7332    // FIXME: NSLog and NSLogv should be target specific
7333    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7334      // FIXME: We known better than our headers.
7335      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7336    } else
7337      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7338                                             "printf", 1,
7339                                             Name->isStr("NSLogv") ? 0 : 2));
7340  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7341    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7342    // target-specific builtins, perhaps?
7343    if (!FD->getAttr<FormatAttr>())
7344      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7345                                             "printf", 2,
7346                                             Name->isStr("vasprintf") ? 0 : 3));
7347  }
7348}
7349
7350TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7351                                    TypeSourceInfo *TInfo) {
7352  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7353  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7354
7355  if (!TInfo) {
7356    assert(D.isInvalidType() && "no declarator info for valid type");
7357    TInfo = Context.getTrivialTypeSourceInfo(T);
7358  }
7359
7360  // Scope manipulation handled by caller.
7361  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7362                                           D.getSourceRange().getBegin(),
7363                                           D.getIdentifierLoc(),
7364                                           D.getIdentifier(),
7365                                           TInfo);
7366
7367  // Bail out immediately if we have an invalid declaration.
7368  if (D.isInvalidType()) {
7369    NewTD->setInvalidDecl();
7370    return NewTD;
7371  }
7372
7373  if (D.getDeclSpec().isModulePrivateSpecified()) {
7374    if (CurContext->isFunctionOrMethod())
7375      Diag(NewTD->getLocation(), diag::err_module_private_local)
7376        << 2 << NewTD->getDeclName()
7377        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7378        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7379    else
7380      NewTD->setModulePrivate();
7381  }
7382
7383  // C++ [dcl.typedef]p8:
7384  //   If the typedef declaration defines an unnamed class (or
7385  //   enum), the first typedef-name declared by the declaration
7386  //   to be that class type (or enum type) is used to denote the
7387  //   class type (or enum type) for linkage purposes only.
7388  // We need to check whether the type was declared in the declaration.
7389  switch (D.getDeclSpec().getTypeSpecType()) {
7390  case TST_enum:
7391  case TST_struct:
7392  case TST_union:
7393  case TST_class: {
7394    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7395
7396    // Do nothing if the tag is not anonymous or already has an
7397    // associated typedef (from an earlier typedef in this decl group).
7398    if (tagFromDeclSpec->getIdentifier()) break;
7399    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7400
7401    // A well-formed anonymous tag must always be a TUK_Definition.
7402    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7403
7404    // The type must match the tag exactly;  no qualifiers allowed.
7405    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7406      break;
7407
7408    // Otherwise, set this is the anon-decl typedef for the tag.
7409    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7410    break;
7411  }
7412
7413  default:
7414    break;
7415  }
7416
7417  return NewTD;
7418}
7419
7420
7421/// \brief Determine whether a tag with a given kind is acceptable
7422/// as a redeclaration of the given tag declaration.
7423///
7424/// \returns true if the new tag kind is acceptable, false otherwise.
7425bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7426                                        TagTypeKind NewTag, bool isDefinition,
7427                                        SourceLocation NewTagLoc,
7428                                        const IdentifierInfo &Name) {
7429  // C++ [dcl.type.elab]p3:
7430  //   The class-key or enum keyword present in the
7431  //   elaborated-type-specifier shall agree in kind with the
7432  //   declaration to which the name in the elaborated-type-specifier
7433  //   refers. This rule also applies to the form of
7434  //   elaborated-type-specifier that declares a class-name or
7435  //   friend class since it can be construed as referring to the
7436  //   definition of the class. Thus, in any
7437  //   elaborated-type-specifier, the enum keyword shall be used to
7438  //   refer to an enumeration (7.2), the union class-key shall be
7439  //   used to refer to a union (clause 9), and either the class or
7440  //   struct class-key shall be used to refer to a class (clause 9)
7441  //   declared using the class or struct class-key.
7442  TagTypeKind OldTag = Previous->getTagKind();
7443  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7444    if (OldTag == NewTag)
7445      return true;
7446
7447  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7448      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7449    // Warn about the struct/class tag mismatch.
7450    bool isTemplate = false;
7451    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7452      isTemplate = Record->getDescribedClassTemplate();
7453
7454    if (!ActiveTemplateInstantiations.empty()) {
7455      // In a template instantiation, do not offer fix-its for tag mismatches
7456      // since they usually mess up the template instead of fixing the problem.
7457      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7458        << (NewTag == TTK_Class) << isTemplate << &Name;
7459      return true;
7460    }
7461
7462    if (isDefinition) {
7463      // On definitions, check previous tags and issue a fix-it for each
7464      // one that doesn't match the current tag.
7465      if (Previous->getDefinition()) {
7466        // Don't suggest fix-its for redefinitions.
7467        return true;
7468      }
7469
7470      bool previousMismatch = false;
7471      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7472           E(Previous->redecls_end()); I != E; ++I) {
7473        if (I->getTagKind() != NewTag) {
7474          if (!previousMismatch) {
7475            previousMismatch = true;
7476            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7477              << (NewTag == TTK_Class) << isTemplate << &Name;
7478          }
7479          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7480            << (NewTag == TTK_Class)
7481            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7482                                            NewTag == TTK_Class?
7483                                            "class" : "struct");
7484        }
7485      }
7486      return true;
7487    }
7488
7489    // Check for a previous definition.  If current tag and definition
7490    // are same type, do nothing.  If no definition, but disagree with
7491    // with previous tag type, give a warning, but no fix-it.
7492    const TagDecl *Redecl = Previous->getDefinition() ?
7493                            Previous->getDefinition() : Previous;
7494    if (Redecl->getTagKind() == NewTag) {
7495      return true;
7496    }
7497
7498    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7499      << (NewTag == TTK_Class)
7500      << isTemplate << &Name;
7501    Diag(Redecl->getLocation(), diag::note_previous_use);
7502
7503    // If there is a previous defintion, suggest a fix-it.
7504    if (Previous->getDefinition()) {
7505        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7506          << (Redecl->getTagKind() == TTK_Class)
7507          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7508                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7509    }
7510
7511    return true;
7512  }
7513  return false;
7514}
7515
7516/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7517/// former case, Name will be non-null.  In the later case, Name will be null.
7518/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7519/// reference/declaration/definition of a tag.
7520Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7521                     SourceLocation KWLoc, CXXScopeSpec &SS,
7522                     IdentifierInfo *Name, SourceLocation NameLoc,
7523                     AttributeList *Attr, AccessSpecifier AS,
7524                     SourceLocation ModulePrivateLoc,
7525                     MultiTemplateParamsArg TemplateParameterLists,
7526                     bool &OwnedDecl, bool &IsDependent,
7527                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7528                     TypeResult UnderlyingType) {
7529  // If this is not a definition, it must have a name.
7530  assert((Name != 0 || TUK == TUK_Definition) &&
7531         "Nameless record must be a definition!");
7532  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7533
7534  OwnedDecl = false;
7535  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7536
7537  // FIXME: Check explicit specializations more carefully.
7538  bool isExplicitSpecialization = false;
7539  bool Invalid = false;
7540
7541  // We only need to do this matching if we have template parameters
7542  // or a scope specifier, which also conveniently avoids this work
7543  // for non-C++ cases.
7544  if (TemplateParameterLists.size() > 0 ||
7545      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7546    if (TemplateParameterList *TemplateParams
7547          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7548                                                TemplateParameterLists.get(),
7549                                                TemplateParameterLists.size(),
7550                                                    TUK == TUK_Friend,
7551                                                    isExplicitSpecialization,
7552                                                    Invalid)) {
7553      if (TemplateParams->size() > 0) {
7554        // This is a declaration or definition of a class template (which may
7555        // be a member of another template).
7556
7557        if (Invalid)
7558          return 0;
7559
7560        OwnedDecl = false;
7561        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7562                                               SS, Name, NameLoc, Attr,
7563                                               TemplateParams, AS,
7564                                               ModulePrivateLoc,
7565                                           TemplateParameterLists.size() - 1,
7566                 (TemplateParameterList**) TemplateParameterLists.release());
7567        return Result.get();
7568      } else {
7569        // The "template<>" header is extraneous.
7570        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7571          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7572        isExplicitSpecialization = true;
7573      }
7574    }
7575  }
7576
7577  // Figure out the underlying type if this a enum declaration. We need to do
7578  // this early, because it's needed to detect if this is an incompatible
7579  // redeclaration.
7580  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7581
7582  if (Kind == TTK_Enum) {
7583    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7584      // No underlying type explicitly specified, or we failed to parse the
7585      // type, default to int.
7586      EnumUnderlying = Context.IntTy.getTypePtr();
7587    else if (UnderlyingType.get()) {
7588      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7589      // integral type; any cv-qualification is ignored.
7590      TypeSourceInfo *TI = 0;
7591      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7592      EnumUnderlying = TI;
7593
7594      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7595
7596      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7597        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7598          << T;
7599        // Recover by falling back to int.
7600        EnumUnderlying = Context.IntTy.getTypePtr();
7601      }
7602
7603      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7604                                          UPPC_FixedUnderlyingType))
7605        EnumUnderlying = Context.IntTy.getTypePtr();
7606
7607    } else if (getLangOptions().MicrosoftExt)
7608      // Microsoft enums are always of int type.
7609      EnumUnderlying = Context.IntTy.getTypePtr();
7610  }
7611
7612  DeclContext *SearchDC = CurContext;
7613  DeclContext *DC = CurContext;
7614  bool isStdBadAlloc = false;
7615
7616  RedeclarationKind Redecl = ForRedeclaration;
7617  if (TUK == TUK_Friend || TUK == TUK_Reference)
7618    Redecl = NotForRedeclaration;
7619
7620  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7621
7622  if (Name && SS.isNotEmpty()) {
7623    // We have a nested-name tag ('struct foo::bar').
7624
7625    // Check for invalid 'foo::'.
7626    if (SS.isInvalid()) {
7627      Name = 0;
7628      goto CreateNewDecl;
7629    }
7630
7631    // If this is a friend or a reference to a class in a dependent
7632    // context, don't try to make a decl for it.
7633    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7634      DC = computeDeclContext(SS, false);
7635      if (!DC) {
7636        IsDependent = true;
7637        return 0;
7638      }
7639    } else {
7640      DC = computeDeclContext(SS, true);
7641      if (!DC) {
7642        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7643          << SS.getRange();
7644        return 0;
7645      }
7646    }
7647
7648    if (RequireCompleteDeclContext(SS, DC))
7649      return 0;
7650
7651    SearchDC = DC;
7652    // Look-up name inside 'foo::'.
7653    LookupQualifiedName(Previous, DC);
7654
7655    if (Previous.isAmbiguous())
7656      return 0;
7657
7658    if (Previous.empty()) {
7659      // Name lookup did not find anything. However, if the
7660      // nested-name-specifier refers to the current instantiation,
7661      // and that current instantiation has any dependent base
7662      // classes, we might find something at instantiation time: treat
7663      // this as a dependent elaborated-type-specifier.
7664      // But this only makes any sense for reference-like lookups.
7665      if (Previous.wasNotFoundInCurrentInstantiation() &&
7666          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7667        IsDependent = true;
7668        return 0;
7669      }
7670
7671      // A tag 'foo::bar' must already exist.
7672      Diag(NameLoc, diag::err_not_tag_in_scope)
7673        << Kind << Name << DC << SS.getRange();
7674      Name = 0;
7675      Invalid = true;
7676      goto CreateNewDecl;
7677    }
7678  } else if (Name) {
7679    // If this is a named struct, check to see if there was a previous forward
7680    // declaration or definition.
7681    // FIXME: We're looking into outer scopes here, even when we
7682    // shouldn't be. Doing so can result in ambiguities that we
7683    // shouldn't be diagnosing.
7684    LookupName(Previous, S);
7685
7686    if (Previous.isAmbiguous() &&
7687        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7688      LookupResult::Filter F = Previous.makeFilter();
7689      while (F.hasNext()) {
7690        NamedDecl *ND = F.next();
7691        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7692          F.erase();
7693      }
7694      F.done();
7695    }
7696
7697    // Note:  there used to be some attempt at recovery here.
7698    if (Previous.isAmbiguous())
7699      return 0;
7700
7701    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7702      // FIXME: This makes sure that we ignore the contexts associated
7703      // with C structs, unions, and enums when looking for a matching
7704      // tag declaration or definition. See the similar lookup tweak
7705      // in Sema::LookupName; is there a better way to deal with this?
7706      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7707        SearchDC = SearchDC->getParent();
7708    }
7709  } else if (S->isFunctionPrototypeScope()) {
7710    // If this is an enum declaration in function prototype scope, set its
7711    // initial context to the translation unit.
7712    SearchDC = Context.getTranslationUnitDecl();
7713  }
7714
7715  if (Previous.isSingleResult() &&
7716      Previous.getFoundDecl()->isTemplateParameter()) {
7717    // Maybe we will complain about the shadowed template parameter.
7718    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7719    // Just pretend that we didn't see the previous declaration.
7720    Previous.clear();
7721  }
7722
7723  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7724      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7725    // This is a declaration of or a reference to "std::bad_alloc".
7726    isStdBadAlloc = true;
7727
7728    if (Previous.empty() && StdBadAlloc) {
7729      // std::bad_alloc has been implicitly declared (but made invisible to
7730      // name lookup). Fill in this implicit declaration as the previous
7731      // declaration, so that the declarations get chained appropriately.
7732      Previous.addDecl(getStdBadAlloc());
7733    }
7734  }
7735
7736  // If we didn't find a previous declaration, and this is a reference
7737  // (or friend reference), move to the correct scope.  In C++, we
7738  // also need to do a redeclaration lookup there, just in case
7739  // there's a shadow friend decl.
7740  if (Name && Previous.empty() &&
7741      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7742    if (Invalid) goto CreateNewDecl;
7743    assert(SS.isEmpty());
7744
7745    if (TUK == TUK_Reference) {
7746      // C++ [basic.scope.pdecl]p5:
7747      //   -- for an elaborated-type-specifier of the form
7748      //
7749      //          class-key identifier
7750      //
7751      //      if the elaborated-type-specifier is used in the
7752      //      decl-specifier-seq or parameter-declaration-clause of a
7753      //      function defined in namespace scope, the identifier is
7754      //      declared as a class-name in the namespace that contains
7755      //      the declaration; otherwise, except as a friend
7756      //      declaration, the identifier is declared in the smallest
7757      //      non-class, non-function-prototype scope that contains the
7758      //      declaration.
7759      //
7760      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7761      // C structs and unions.
7762      //
7763      // It is an error in C++ to declare (rather than define) an enum
7764      // type, including via an elaborated type specifier.  We'll
7765      // diagnose that later; for now, declare the enum in the same
7766      // scope as we would have picked for any other tag type.
7767      //
7768      // GNU C also supports this behavior as part of its incomplete
7769      // enum types extension, while GNU C++ does not.
7770      //
7771      // Find the context where we'll be declaring the tag.
7772      // FIXME: We would like to maintain the current DeclContext as the
7773      // lexical context,
7774      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7775        SearchDC = SearchDC->getParent();
7776
7777      // Find the scope where we'll be declaring the tag.
7778      while (S->isClassScope() ||
7779             (getLangOptions().CPlusPlus &&
7780              S->isFunctionPrototypeScope()) ||
7781             ((S->getFlags() & Scope::DeclScope) == 0) ||
7782             (S->getEntity() &&
7783              ((DeclContext *)S->getEntity())->isTransparentContext()))
7784        S = S->getParent();
7785    } else {
7786      assert(TUK == TUK_Friend);
7787      // C++ [namespace.memdef]p3:
7788      //   If a friend declaration in a non-local class first declares a
7789      //   class or function, the friend class or function is a member of
7790      //   the innermost enclosing namespace.
7791      SearchDC = SearchDC->getEnclosingNamespaceContext();
7792    }
7793
7794    // In C++, we need to do a redeclaration lookup to properly
7795    // diagnose some problems.
7796    if (getLangOptions().CPlusPlus) {
7797      Previous.setRedeclarationKind(ForRedeclaration);
7798      LookupQualifiedName(Previous, SearchDC);
7799    }
7800  }
7801
7802  if (!Previous.empty()) {
7803    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7804
7805    // It's okay to have a tag decl in the same scope as a typedef
7806    // which hides a tag decl in the same scope.  Finding this
7807    // insanity with a redeclaration lookup can only actually happen
7808    // in C++.
7809    //
7810    // This is also okay for elaborated-type-specifiers, which is
7811    // technically forbidden by the current standard but which is
7812    // okay according to the likely resolution of an open issue;
7813    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7814    if (getLangOptions().CPlusPlus) {
7815      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7816        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7817          TagDecl *Tag = TT->getDecl();
7818          if (Tag->getDeclName() == Name &&
7819              Tag->getDeclContext()->getRedeclContext()
7820                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7821            PrevDecl = Tag;
7822            Previous.clear();
7823            Previous.addDecl(Tag);
7824            Previous.resolveKind();
7825          }
7826        }
7827      }
7828    }
7829
7830    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7831      // If this is a use of a previous tag, or if the tag is already declared
7832      // in the same scope (so that the definition/declaration completes or
7833      // rementions the tag), reuse the decl.
7834      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7835          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7836        // Make sure that this wasn't declared as an enum and now used as a
7837        // struct or something similar.
7838        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7839                                          TUK == TUK_Definition, KWLoc,
7840                                          *Name)) {
7841          bool SafeToContinue
7842            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7843               Kind != TTK_Enum);
7844          if (SafeToContinue)
7845            Diag(KWLoc, diag::err_use_with_wrong_tag)
7846              << Name
7847              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7848                                              PrevTagDecl->getKindName());
7849          else
7850            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7851          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7852
7853          if (SafeToContinue)
7854            Kind = PrevTagDecl->getTagKind();
7855          else {
7856            // Recover by making this an anonymous redefinition.
7857            Name = 0;
7858            Previous.clear();
7859            Invalid = true;
7860          }
7861        }
7862
7863        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7864          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7865
7866          // All conflicts with previous declarations are recovered by
7867          // returning the previous declaration.
7868          if (ScopedEnum != PrevEnum->isScoped()) {
7869            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7870              << PrevEnum->isScoped();
7871            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7872            return PrevTagDecl;
7873          }
7874          else if (EnumUnderlying && PrevEnum->isFixed()) {
7875            QualType T;
7876            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7877                T = TI->getType();
7878            else
7879                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7880
7881            if (!Context.hasSameUnqualifiedType(T,
7882                                                PrevEnum->getIntegerType())) {
7883              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7884                   diag::err_enum_redeclare_type_mismatch)
7885                << T
7886                << PrevEnum->getIntegerType();
7887              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7888              return PrevTagDecl;
7889            }
7890          }
7891          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7892            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7893              << PrevEnum->isFixed();
7894            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7895            return PrevTagDecl;
7896          }
7897        }
7898
7899        if (!Invalid) {
7900          // If this is a use, just return the declaration we found.
7901
7902          // FIXME: In the future, return a variant or some other clue
7903          // for the consumer of this Decl to know it doesn't own it.
7904          // For our current ASTs this shouldn't be a problem, but will
7905          // need to be changed with DeclGroups.
7906          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7907               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7908            return PrevTagDecl;
7909
7910          // Diagnose attempts to redefine a tag.
7911          if (TUK == TUK_Definition) {
7912            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7913              // If we're defining a specialization and the previous definition
7914              // is from an implicit instantiation, don't emit an error
7915              // here; we'll catch this in the general case below.
7916              if (!isExplicitSpecialization ||
7917                  !isa<CXXRecordDecl>(Def) ||
7918                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7919                                               == TSK_ExplicitSpecialization) {
7920                Diag(NameLoc, diag::err_redefinition) << Name;
7921                Diag(Def->getLocation(), diag::note_previous_definition);
7922                // If this is a redefinition, recover by making this
7923                // struct be anonymous, which will make any later
7924                // references get the previous definition.
7925                Name = 0;
7926                Previous.clear();
7927                Invalid = true;
7928              }
7929            } else {
7930              // If the type is currently being defined, complain
7931              // about a nested redefinition.
7932              const TagType *Tag
7933                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7934              if (Tag->isBeingDefined()) {
7935                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7936                Diag(PrevTagDecl->getLocation(),
7937                     diag::note_previous_definition);
7938                Name = 0;
7939                Previous.clear();
7940                Invalid = true;
7941              }
7942            }
7943
7944            // Okay, this is definition of a previously declared or referenced
7945            // tag PrevDecl. We're going to create a new Decl for it.
7946          }
7947        }
7948        // If we get here we have (another) forward declaration or we
7949        // have a definition.  Just create a new decl.
7950
7951      } else {
7952        // If we get here, this is a definition of a new tag type in a nested
7953        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7954        // new decl/type.  We set PrevDecl to NULL so that the entities
7955        // have distinct types.
7956        Previous.clear();
7957      }
7958      // If we get here, we're going to create a new Decl. If PrevDecl
7959      // is non-NULL, it's a definition of the tag declared by
7960      // PrevDecl. If it's NULL, we have a new definition.
7961
7962
7963    // Otherwise, PrevDecl is not a tag, but was found with tag
7964    // lookup.  This is only actually possible in C++, where a few
7965    // things like templates still live in the tag namespace.
7966    } else {
7967      assert(getLangOptions().CPlusPlus);
7968
7969      // Use a better diagnostic if an elaborated-type-specifier
7970      // found the wrong kind of type on the first
7971      // (non-redeclaration) lookup.
7972      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7973          !Previous.isForRedeclaration()) {
7974        unsigned Kind = 0;
7975        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7976        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7977        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7978        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7979        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7980        Invalid = true;
7981
7982      // Otherwise, only diagnose if the declaration is in scope.
7983      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7984                                isExplicitSpecialization)) {
7985        // do nothing
7986
7987      // Diagnose implicit declarations introduced by elaborated types.
7988      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7989        unsigned Kind = 0;
7990        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7991        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7992        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7993        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7994        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7995        Invalid = true;
7996
7997      // Otherwise it's a declaration.  Call out a particularly common
7998      // case here.
7999      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8000        unsigned Kind = 0;
8001        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8002        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8003          << Name << Kind << TND->getUnderlyingType();
8004        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8005        Invalid = true;
8006
8007      // Otherwise, diagnose.
8008      } else {
8009        // The tag name clashes with something else in the target scope,
8010        // issue an error and recover by making this tag be anonymous.
8011        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8012        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8013        Name = 0;
8014        Invalid = true;
8015      }
8016
8017      // The existing declaration isn't relevant to us; we're in a
8018      // new scope, so clear out the previous declaration.
8019      Previous.clear();
8020    }
8021  }
8022
8023CreateNewDecl:
8024
8025  TagDecl *PrevDecl = 0;
8026  if (Previous.isSingleResult())
8027    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8028
8029  // If there is an identifier, use the location of the identifier as the
8030  // location of the decl, otherwise use the location of the struct/union
8031  // keyword.
8032  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8033
8034  // Otherwise, create a new declaration. If there is a previous
8035  // declaration of the same entity, the two will be linked via
8036  // PrevDecl.
8037  TagDecl *New;
8038
8039  bool IsForwardReference = false;
8040  if (Kind == TTK_Enum) {
8041    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8042    // enum X { A, B, C } D;    D should chain to X.
8043    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8044                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8045                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8046    // If this is an undefined enum, warn.
8047    if (TUK != TUK_Definition && !Invalid) {
8048      TagDecl *Def;
8049      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8050        // C++0x: 7.2p2: opaque-enum-declaration.
8051        // Conflicts are diagnosed above. Do nothing.
8052      }
8053      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8054        Diag(Loc, diag::ext_forward_ref_enum_def)
8055          << New;
8056        Diag(Def->getLocation(), diag::note_previous_definition);
8057      } else {
8058        unsigned DiagID = diag::ext_forward_ref_enum;
8059        if (getLangOptions().MicrosoftExt)
8060          DiagID = diag::ext_ms_forward_ref_enum;
8061        else if (getLangOptions().CPlusPlus)
8062          DiagID = diag::err_forward_ref_enum;
8063        Diag(Loc, DiagID);
8064
8065        // If this is a forward-declared reference to an enumeration, make a
8066        // note of it; we won't actually be introducing the declaration into
8067        // the declaration context.
8068        if (TUK == TUK_Reference)
8069          IsForwardReference = true;
8070      }
8071    }
8072
8073    if (EnumUnderlying) {
8074      EnumDecl *ED = cast<EnumDecl>(New);
8075      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8076        ED->setIntegerTypeSourceInfo(TI);
8077      else
8078        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8079      ED->setPromotionType(ED->getIntegerType());
8080    }
8081
8082  } else {
8083    // struct/union/class
8084
8085    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8086    // struct X { int A; } D;    D should chain to X.
8087    if (getLangOptions().CPlusPlus) {
8088      // FIXME: Look for a way to use RecordDecl for simple structs.
8089      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8090                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8091
8092      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8093        StdBadAlloc = cast<CXXRecordDecl>(New);
8094    } else
8095      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8096                               cast_or_null<RecordDecl>(PrevDecl));
8097  }
8098
8099  // Maybe add qualifier info.
8100  if (SS.isNotEmpty()) {
8101    if (SS.isSet()) {
8102      New->setQualifierInfo(SS.getWithLocInContext(Context));
8103      if (TemplateParameterLists.size() > 0) {
8104        New->setTemplateParameterListsInfo(Context,
8105                                           TemplateParameterLists.size(),
8106                    (TemplateParameterList**) TemplateParameterLists.release());
8107      }
8108    }
8109    else
8110      Invalid = true;
8111  }
8112
8113  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8114    // Add alignment attributes if necessary; these attributes are checked when
8115    // the ASTContext lays out the structure.
8116    //
8117    // It is important for implementing the correct semantics that this
8118    // happen here (in act on tag decl). The #pragma pack stack is
8119    // maintained as a result of parser callbacks which can occur at
8120    // many points during the parsing of a struct declaration (because
8121    // the #pragma tokens are effectively skipped over during the
8122    // parsing of the struct).
8123    AddAlignmentAttributesForRecord(RD);
8124
8125    AddMsStructLayoutForRecord(RD);
8126  }
8127
8128  if (PrevDecl && PrevDecl->isModulePrivate())
8129    New->setModulePrivate();
8130  else if (ModulePrivateLoc.isValid()) {
8131    if (isExplicitSpecialization)
8132      Diag(New->getLocation(), diag::err_module_private_specialization)
8133        << 2
8134        << FixItHint::CreateRemoval(ModulePrivateLoc);
8135    else if (PrevDecl && !PrevDecl->isModulePrivate())
8136      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8137    // __module_private__ does not apply to local classes. However, we only
8138    // diagnose this as an error when the declaration specifiers are
8139    // freestanding. Here, we just ignore the __module_private__.
8140    // foobar
8141    else if (!SearchDC->isFunctionOrMethod())
8142      New->setModulePrivate();
8143  }
8144
8145  // If this is a specialization of a member class (of a class template),
8146  // check the specialization.
8147  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8148    Invalid = true;
8149
8150  if (Invalid)
8151    New->setInvalidDecl();
8152
8153  if (Attr)
8154    ProcessDeclAttributeList(S, New, Attr);
8155
8156  // If we're declaring or defining a tag in function prototype scope
8157  // in C, note that this type can only be used within the function.
8158  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8159    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8160
8161  // Set the lexical context. If the tag has a C++ scope specifier, the
8162  // lexical context will be different from the semantic context.
8163  New->setLexicalDeclContext(CurContext);
8164
8165  // Mark this as a friend decl if applicable.
8166  // In Microsoft mode, a friend declaration also acts as a forward
8167  // declaration so we always pass true to setObjectOfFriendDecl to make
8168  // the tag name visible.
8169  if (TUK == TUK_Friend)
8170    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8171                               getLangOptions().MicrosoftExt);
8172
8173  // Set the access specifier.
8174  if (!Invalid && SearchDC->isRecord())
8175    SetMemberAccessSpecifier(New, PrevDecl, AS);
8176
8177  if (TUK == TUK_Definition)
8178    New->startDefinition();
8179
8180  // If this has an identifier, add it to the scope stack.
8181  if (TUK == TUK_Friend) {
8182    // We might be replacing an existing declaration in the lookup tables;
8183    // if so, borrow its access specifier.
8184    if (PrevDecl)
8185      New->setAccess(PrevDecl->getAccess());
8186
8187    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8188    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8189    if (Name) // can be null along some error paths
8190      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8191        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8192  } else if (Name) {
8193    S = getNonFieldDeclScope(S);
8194    PushOnScopeChains(New, S, !IsForwardReference);
8195    if (IsForwardReference)
8196      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8197
8198  } else {
8199    CurContext->addDecl(New);
8200  }
8201
8202  // If this is the C FILE type, notify the AST context.
8203  if (IdentifierInfo *II = New->getIdentifier())
8204    if (!New->isInvalidDecl() &&
8205        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8206        II->isStr("FILE"))
8207      Context.setFILEDecl(New);
8208
8209  OwnedDecl = true;
8210  return New;
8211}
8212
8213void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8214  AdjustDeclIfTemplate(TagD);
8215  TagDecl *Tag = cast<TagDecl>(TagD);
8216
8217  // Enter the tag context.
8218  PushDeclContext(S, Tag);
8219}
8220
8221Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8222  assert(isa<ObjCContainerDecl>(IDecl) &&
8223         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8224  DeclContext *OCD = cast<DeclContext>(IDecl);
8225  assert(getContainingDC(OCD) == CurContext &&
8226      "The next DeclContext should be lexically contained in the current one.");
8227  CurContext = OCD;
8228  return IDecl;
8229}
8230
8231void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8232                                           SourceLocation FinalLoc,
8233                                           SourceLocation LBraceLoc) {
8234  AdjustDeclIfTemplate(TagD);
8235  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8236
8237  FieldCollector->StartClass();
8238
8239  if (!Record->getIdentifier())
8240    return;
8241
8242  if (FinalLoc.isValid())
8243    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8244
8245  // C++ [class]p2:
8246  //   [...] The class-name is also inserted into the scope of the
8247  //   class itself; this is known as the injected-class-name. For
8248  //   purposes of access checking, the injected-class-name is treated
8249  //   as if it were a public member name.
8250  CXXRecordDecl *InjectedClassName
8251    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8252                            Record->getLocStart(), Record->getLocation(),
8253                            Record->getIdentifier(),
8254                            /*PrevDecl=*/0,
8255                            /*DelayTypeCreation=*/true);
8256  Context.getTypeDeclType(InjectedClassName, Record);
8257  InjectedClassName->setImplicit();
8258  InjectedClassName->setAccess(AS_public);
8259  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8260      InjectedClassName->setDescribedClassTemplate(Template);
8261  PushOnScopeChains(InjectedClassName, S);
8262  assert(InjectedClassName->isInjectedClassName() &&
8263         "Broken injected-class-name");
8264}
8265
8266void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8267                                    SourceLocation RBraceLoc) {
8268  AdjustDeclIfTemplate(TagD);
8269  TagDecl *Tag = cast<TagDecl>(TagD);
8270  Tag->setRBraceLoc(RBraceLoc);
8271
8272  if (isa<CXXRecordDecl>(Tag))
8273    FieldCollector->FinishClass();
8274
8275  // Exit this scope of this tag's definition.
8276  PopDeclContext();
8277
8278  // Notify the consumer that we've defined a tag.
8279  Consumer.HandleTagDeclDefinition(Tag);
8280}
8281
8282void Sema::ActOnObjCContainerFinishDefinition() {
8283  // Exit this scope of this interface definition.
8284  PopDeclContext();
8285}
8286
8287void Sema::ActOnObjCTemporaryExitContainerContext() {
8288  OriginalLexicalContext = CurContext;
8289  ActOnObjCContainerFinishDefinition();
8290}
8291
8292void Sema::ActOnObjCReenterContainerContext() {
8293  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8294  OriginalLexicalContext = 0;
8295}
8296
8297void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8298  AdjustDeclIfTemplate(TagD);
8299  TagDecl *Tag = cast<TagDecl>(TagD);
8300  Tag->setInvalidDecl();
8301
8302  // We're undoing ActOnTagStartDefinition here, not
8303  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8304  // the FieldCollector.
8305
8306  PopDeclContext();
8307}
8308
8309// Note that FieldName may be null for anonymous bitfields.
8310bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8311                          QualType FieldTy, const Expr *BitWidth,
8312                          bool *ZeroWidth) {
8313  // Default to true; that shouldn't confuse checks for emptiness
8314  if (ZeroWidth)
8315    *ZeroWidth = true;
8316
8317  // C99 6.7.2.1p4 - verify the field type.
8318  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8319  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8320    // Handle incomplete types with specific error.
8321    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8322      return true;
8323    if (FieldName)
8324      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8325        << FieldName << FieldTy << BitWidth->getSourceRange();
8326    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8327      << FieldTy << BitWidth->getSourceRange();
8328  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8329                                             UPPC_BitFieldWidth))
8330    return true;
8331
8332  // If the bit-width is type- or value-dependent, don't try to check
8333  // it now.
8334  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8335    return false;
8336
8337  llvm::APSInt Value;
8338  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8339    return true;
8340
8341  if (Value != 0 && ZeroWidth)
8342    *ZeroWidth = false;
8343
8344  // Zero-width bitfield is ok for anonymous field.
8345  if (Value == 0 && FieldName)
8346    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8347
8348  if (Value.isSigned() && Value.isNegative()) {
8349    if (FieldName)
8350      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8351               << FieldName << Value.toString(10);
8352    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8353      << Value.toString(10);
8354  }
8355
8356  if (!FieldTy->isDependentType()) {
8357    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8358    if (Value.getZExtValue() > TypeSize) {
8359      if (!getLangOptions().CPlusPlus) {
8360        if (FieldName)
8361          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8362            << FieldName << (unsigned)Value.getZExtValue()
8363            << (unsigned)TypeSize;
8364
8365        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8366          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8367      }
8368
8369      if (FieldName)
8370        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8371          << FieldName << (unsigned)Value.getZExtValue()
8372          << (unsigned)TypeSize;
8373      else
8374        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8375          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8376    }
8377  }
8378
8379  return false;
8380}
8381
8382/// ActOnField - Each field of a C struct/union is passed into this in order
8383/// to create a FieldDecl object for it.
8384Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8385                       Declarator &D, Expr *BitfieldWidth) {
8386  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8387                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8388                               /*HasInit=*/false, AS_public);
8389  return Res;
8390}
8391
8392/// HandleField - Analyze a field of a C struct or a C++ data member.
8393///
8394FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8395                             SourceLocation DeclStart,
8396                             Declarator &D, Expr *BitWidth, bool HasInit,
8397                             AccessSpecifier AS) {
8398  IdentifierInfo *II = D.getIdentifier();
8399  SourceLocation Loc = DeclStart;
8400  if (II) Loc = D.getIdentifierLoc();
8401
8402  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8403  QualType T = TInfo->getType();
8404  if (getLangOptions().CPlusPlus) {
8405    CheckExtraCXXDefaultArguments(D);
8406
8407    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8408                                        UPPC_DataMemberType)) {
8409      D.setInvalidType();
8410      T = Context.IntTy;
8411      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8412    }
8413  }
8414
8415  DiagnoseFunctionSpecifiers(D);
8416
8417  if (D.getDeclSpec().isThreadSpecified())
8418    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8419  if (D.getDeclSpec().isConstexprSpecified())
8420    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8421      << 2;
8422
8423  // Check to see if this name was declared as a member previously
8424  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8425  LookupName(Previous, S);
8426  assert((Previous.empty() || Previous.isOverloadedResult() ||
8427          Previous.isSingleResult())
8428    && "Lookup of member name should be either overloaded, single or null");
8429
8430  // If the name is overloaded then get any declaration else get the single
8431  // result
8432  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8433    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8434
8435  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8436    // Maybe we will complain about the shadowed template parameter.
8437    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8438    // Just pretend that we didn't see the previous declaration.
8439    PrevDecl = 0;
8440  }
8441
8442  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8443    PrevDecl = 0;
8444
8445  bool Mutable
8446    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8447  SourceLocation TSSL = D.getSourceRange().getBegin();
8448  FieldDecl *NewFD
8449    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8450                     TSSL, AS, PrevDecl, &D);
8451
8452  if (NewFD->isInvalidDecl())
8453    Record->setInvalidDecl();
8454
8455  if (D.getDeclSpec().isModulePrivateSpecified())
8456    NewFD->setModulePrivate();
8457
8458  if (NewFD->isInvalidDecl() && PrevDecl) {
8459    // Don't introduce NewFD into scope; there's already something
8460    // with the same name in the same scope.
8461  } else if (II) {
8462    PushOnScopeChains(NewFD, S);
8463  } else
8464    Record->addDecl(NewFD);
8465
8466  return NewFD;
8467}
8468
8469/// \brief Build a new FieldDecl and check its well-formedness.
8470///
8471/// This routine builds a new FieldDecl given the fields name, type,
8472/// record, etc. \p PrevDecl should refer to any previous declaration
8473/// with the same name and in the same scope as the field to be
8474/// created.
8475///
8476/// \returns a new FieldDecl.
8477///
8478/// \todo The Declarator argument is a hack. It will be removed once
8479FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8480                                TypeSourceInfo *TInfo,
8481                                RecordDecl *Record, SourceLocation Loc,
8482                                bool Mutable, Expr *BitWidth, bool HasInit,
8483                                SourceLocation TSSL,
8484                                AccessSpecifier AS, NamedDecl *PrevDecl,
8485                                Declarator *D) {
8486  IdentifierInfo *II = Name.getAsIdentifierInfo();
8487  bool InvalidDecl = false;
8488  if (D) InvalidDecl = D->isInvalidType();
8489
8490  // If we receive a broken type, recover by assuming 'int' and
8491  // marking this declaration as invalid.
8492  if (T.isNull()) {
8493    InvalidDecl = true;
8494    T = Context.IntTy;
8495  }
8496
8497  QualType EltTy = Context.getBaseElementType(T);
8498  if (!EltTy->isDependentType() &&
8499      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8500    // Fields of incomplete type force their record to be invalid.
8501    Record->setInvalidDecl();
8502    InvalidDecl = true;
8503  }
8504
8505  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8506  // than a variably modified type.
8507  if (!InvalidDecl && T->isVariablyModifiedType()) {
8508    bool SizeIsNegative;
8509    llvm::APSInt Oversized;
8510    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8511                                                           SizeIsNegative,
8512                                                           Oversized);
8513    if (!FixedTy.isNull()) {
8514      Diag(Loc, diag::warn_illegal_constant_array_size);
8515      T = FixedTy;
8516    } else {
8517      if (SizeIsNegative)
8518        Diag(Loc, diag::err_typecheck_negative_array_size);
8519      else if (Oversized.getBoolValue())
8520        Diag(Loc, diag::err_array_too_large)
8521          << Oversized.toString(10);
8522      else
8523        Diag(Loc, diag::err_typecheck_field_variable_size);
8524      InvalidDecl = true;
8525    }
8526  }
8527
8528  // Fields can not have abstract class types
8529  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8530                                             diag::err_abstract_type_in_decl,
8531                                             AbstractFieldType))
8532    InvalidDecl = true;
8533
8534  bool ZeroWidth = false;
8535  // If this is declared as a bit-field, check the bit-field.
8536  if (!InvalidDecl && BitWidth &&
8537      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8538    InvalidDecl = true;
8539    BitWidth = 0;
8540    ZeroWidth = false;
8541  }
8542
8543  // Check that 'mutable' is consistent with the type of the declaration.
8544  if (!InvalidDecl && Mutable) {
8545    unsigned DiagID = 0;
8546    if (T->isReferenceType())
8547      DiagID = diag::err_mutable_reference;
8548    else if (T.isConstQualified())
8549      DiagID = diag::err_mutable_const;
8550
8551    if (DiagID) {
8552      SourceLocation ErrLoc = Loc;
8553      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8554        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8555      Diag(ErrLoc, DiagID);
8556      Mutable = false;
8557      InvalidDecl = true;
8558    }
8559  }
8560
8561  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8562                                       BitWidth, Mutable, HasInit);
8563  if (InvalidDecl)
8564    NewFD->setInvalidDecl();
8565
8566  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8567    Diag(Loc, diag::err_duplicate_member) << II;
8568    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8569    NewFD->setInvalidDecl();
8570  }
8571
8572  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8573    if (Record->isUnion()) {
8574      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8575        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8576        if (RDecl->getDefinition()) {
8577          // C++ [class.union]p1: An object of a class with a non-trivial
8578          // constructor, a non-trivial copy constructor, a non-trivial
8579          // destructor, or a non-trivial copy assignment operator
8580          // cannot be a member of a union, nor can an array of such
8581          // objects.
8582          if (CheckNontrivialField(NewFD))
8583            NewFD->setInvalidDecl();
8584        }
8585      }
8586
8587      // C++ [class.union]p1: If a union contains a member of reference type,
8588      // the program is ill-formed.
8589      if (EltTy->isReferenceType()) {
8590        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8591          << NewFD->getDeclName() << EltTy;
8592        NewFD->setInvalidDecl();
8593      }
8594    }
8595  }
8596
8597  // FIXME: We need to pass in the attributes given an AST
8598  // representation, not a parser representation.
8599  if (D)
8600    // FIXME: What to pass instead of TUScope?
8601    ProcessDeclAttributes(TUScope, NewFD, *D);
8602
8603  // In auto-retain/release, infer strong retension for fields of
8604  // retainable type.
8605  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8606    NewFD->setInvalidDecl();
8607
8608  if (T.isObjCGCWeak())
8609    Diag(Loc, diag::warn_attribute_weak_on_field);
8610
8611  NewFD->setAccess(AS);
8612  return NewFD;
8613}
8614
8615bool Sema::CheckNontrivialField(FieldDecl *FD) {
8616  assert(FD);
8617  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8618
8619  if (FD->isInvalidDecl())
8620    return true;
8621
8622  QualType EltTy = Context.getBaseElementType(FD->getType());
8623  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8624    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8625    if (RDecl->getDefinition()) {
8626      // We check for copy constructors before constructors
8627      // because otherwise we'll never get complaints about
8628      // copy constructors.
8629
8630      CXXSpecialMember member = CXXInvalid;
8631      if (!RDecl->hasTrivialCopyConstructor())
8632        member = CXXCopyConstructor;
8633      else if (!RDecl->hasTrivialDefaultConstructor())
8634        member = CXXDefaultConstructor;
8635      else if (!RDecl->hasTrivialCopyAssignment())
8636        member = CXXCopyAssignment;
8637      else if (!RDecl->hasTrivialDestructor())
8638        member = CXXDestructor;
8639
8640      if (member != CXXInvalid) {
8641        if (!getLangOptions().CPlusPlus0x &&
8642            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8643          // Objective-C++ ARC: it is an error to have a non-trivial field of
8644          // a union. However, system headers in Objective-C programs
8645          // occasionally have Objective-C lifetime objects within unions,
8646          // and rather than cause the program to fail, we make those
8647          // members unavailable.
8648          SourceLocation Loc = FD->getLocation();
8649          if (getSourceManager().isInSystemHeader(Loc)) {
8650            if (!FD->hasAttr<UnavailableAttr>())
8651              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8652                                  "this system field has retaining ownership"));
8653            return false;
8654          }
8655        }
8656
8657        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8658               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8659               diag::err_illegal_union_or_anon_struct_member)
8660          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8661        DiagnoseNontrivial(RT, member);
8662        return !getLangOptions().CPlusPlus0x;
8663      }
8664    }
8665  }
8666
8667  return false;
8668}
8669
8670/// DiagnoseNontrivial - Given that a class has a non-trivial
8671/// special member, figure out why.
8672void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8673  QualType QT(T, 0U);
8674  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8675
8676  // Check whether the member was user-declared.
8677  switch (member) {
8678  case CXXInvalid:
8679    break;
8680
8681  case CXXDefaultConstructor:
8682    if (RD->hasUserDeclaredConstructor()) {
8683      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8684      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8685        const FunctionDecl *body = 0;
8686        ci->hasBody(body);
8687        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8688          SourceLocation CtorLoc = ci->getLocation();
8689          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8690          return;
8691        }
8692      }
8693
8694      llvm_unreachable("found no user-declared constructors");
8695    }
8696    break;
8697
8698  case CXXCopyConstructor:
8699    if (RD->hasUserDeclaredCopyConstructor()) {
8700      SourceLocation CtorLoc =
8701        RD->getCopyConstructor(0)->getLocation();
8702      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8703      return;
8704    }
8705    break;
8706
8707  case CXXMoveConstructor:
8708    if (RD->hasUserDeclaredMoveConstructor()) {
8709      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8710      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8711      return;
8712    }
8713    break;
8714
8715  case CXXCopyAssignment:
8716    if (RD->hasUserDeclaredCopyAssignment()) {
8717      // FIXME: this should use the location of the copy
8718      // assignment, not the type.
8719      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8720      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8721      return;
8722    }
8723    break;
8724
8725  case CXXMoveAssignment:
8726    if (RD->hasUserDeclaredMoveAssignment()) {
8727      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8728      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8729      return;
8730    }
8731    break;
8732
8733  case CXXDestructor:
8734    if (RD->hasUserDeclaredDestructor()) {
8735      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8736      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8737      return;
8738    }
8739    break;
8740  }
8741
8742  typedef CXXRecordDecl::base_class_iterator base_iter;
8743
8744  // Virtual bases and members inhibit trivial copying/construction,
8745  // but not trivial destruction.
8746  if (member != CXXDestructor) {
8747    // Check for virtual bases.  vbases includes indirect virtual bases,
8748    // so we just iterate through the direct bases.
8749    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8750      if (bi->isVirtual()) {
8751        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8752        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8753        return;
8754      }
8755
8756    // Check for virtual methods.
8757    typedef CXXRecordDecl::method_iterator meth_iter;
8758    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8759         ++mi) {
8760      if (mi->isVirtual()) {
8761        SourceLocation MLoc = mi->getSourceRange().getBegin();
8762        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8763        return;
8764      }
8765    }
8766  }
8767
8768  bool (CXXRecordDecl::*hasTrivial)() const;
8769  switch (member) {
8770  case CXXDefaultConstructor:
8771    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8772  case CXXCopyConstructor:
8773    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8774  case CXXCopyAssignment:
8775    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8776  case CXXDestructor:
8777    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8778  default:
8779    llvm_unreachable("unexpected special member");
8780  }
8781
8782  // Check for nontrivial bases (and recurse).
8783  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8784    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8785    assert(BaseRT && "Don't know how to handle dependent bases");
8786    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8787    if (!(BaseRecTy->*hasTrivial)()) {
8788      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8789      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8790      DiagnoseNontrivial(BaseRT, member);
8791      return;
8792    }
8793  }
8794
8795  // Check for nontrivial members (and recurse).
8796  typedef RecordDecl::field_iterator field_iter;
8797  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8798       ++fi) {
8799    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8800    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8801      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8802
8803      if (!(EltRD->*hasTrivial)()) {
8804        SourceLocation FLoc = (*fi)->getLocation();
8805        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8806        DiagnoseNontrivial(EltRT, member);
8807        return;
8808      }
8809    }
8810
8811    if (EltTy->isObjCLifetimeType()) {
8812      switch (EltTy.getObjCLifetime()) {
8813      case Qualifiers::OCL_None:
8814      case Qualifiers::OCL_ExplicitNone:
8815        break;
8816
8817      case Qualifiers::OCL_Autoreleasing:
8818      case Qualifiers::OCL_Weak:
8819      case Qualifiers::OCL_Strong:
8820        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8821          << QT << EltTy.getObjCLifetime();
8822        return;
8823      }
8824    }
8825  }
8826
8827  llvm_unreachable("found no explanation for non-trivial member");
8828}
8829
8830/// TranslateIvarVisibility - Translate visibility from a token ID to an
8831///  AST enum value.
8832static ObjCIvarDecl::AccessControl
8833TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8834  switch (ivarVisibility) {
8835  default: llvm_unreachable("Unknown visitibility kind");
8836  case tok::objc_private: return ObjCIvarDecl::Private;
8837  case tok::objc_public: return ObjCIvarDecl::Public;
8838  case tok::objc_protected: return ObjCIvarDecl::Protected;
8839  case tok::objc_package: return ObjCIvarDecl::Package;
8840  }
8841}
8842
8843/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8844/// in order to create an IvarDecl object for it.
8845Decl *Sema::ActOnIvar(Scope *S,
8846                                SourceLocation DeclStart,
8847                                Declarator &D, Expr *BitfieldWidth,
8848                                tok::ObjCKeywordKind Visibility) {
8849
8850  IdentifierInfo *II = D.getIdentifier();
8851  Expr *BitWidth = (Expr*)BitfieldWidth;
8852  SourceLocation Loc = DeclStart;
8853  if (II) Loc = D.getIdentifierLoc();
8854
8855  // FIXME: Unnamed fields can be handled in various different ways, for
8856  // example, unnamed unions inject all members into the struct namespace!
8857
8858  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8859  QualType T = TInfo->getType();
8860
8861  if (BitWidth) {
8862    // 6.7.2.1p3, 6.7.2.1p4
8863    if (VerifyBitField(Loc, II, T, BitWidth)) {
8864      D.setInvalidType();
8865      BitWidth = 0;
8866    }
8867  } else {
8868    // Not a bitfield.
8869
8870    // validate II.
8871
8872  }
8873  if (T->isReferenceType()) {
8874    Diag(Loc, diag::err_ivar_reference_type);
8875    D.setInvalidType();
8876  }
8877  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8878  // than a variably modified type.
8879  else if (T->isVariablyModifiedType()) {
8880    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8881    D.setInvalidType();
8882  }
8883
8884  // Get the visibility (access control) for this ivar.
8885  ObjCIvarDecl::AccessControl ac =
8886    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8887                                        : ObjCIvarDecl::None;
8888  // Must set ivar's DeclContext to its enclosing interface.
8889  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8890  ObjCContainerDecl *EnclosingContext;
8891  if (ObjCImplementationDecl *IMPDecl =
8892      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8893    if (!LangOpts.ObjCNonFragileABI2) {
8894    // Case of ivar declared in an implementation. Context is that of its class.
8895      EnclosingContext = IMPDecl->getClassInterface();
8896      assert(EnclosingContext && "Implementation has no class interface!");
8897    }
8898    else
8899      EnclosingContext = EnclosingDecl;
8900  } else {
8901    if (ObjCCategoryDecl *CDecl =
8902        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8903      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8904        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8905        return 0;
8906      }
8907    }
8908    EnclosingContext = EnclosingDecl;
8909  }
8910
8911  // Construct the decl.
8912  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8913                                             DeclStart, Loc, II, T,
8914                                             TInfo, ac, (Expr *)BitfieldWidth);
8915
8916  if (II) {
8917    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8918                                           ForRedeclaration);
8919    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8920        && !isa<TagDecl>(PrevDecl)) {
8921      Diag(Loc, diag::err_duplicate_member) << II;
8922      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8923      NewID->setInvalidDecl();
8924    }
8925  }
8926
8927  // Process attributes attached to the ivar.
8928  ProcessDeclAttributes(S, NewID, D);
8929
8930  if (D.isInvalidType())
8931    NewID->setInvalidDecl();
8932
8933  // In ARC, infer 'retaining' for ivars of retainable type.
8934  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8935    NewID->setInvalidDecl();
8936
8937  if (D.getDeclSpec().isModulePrivateSpecified())
8938    NewID->setModulePrivate();
8939
8940  if (II) {
8941    // FIXME: When interfaces are DeclContexts, we'll need to add
8942    // these to the interface.
8943    S->AddDecl(NewID);
8944    IdResolver.AddDecl(NewID);
8945  }
8946
8947  return NewID;
8948}
8949
8950/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8951/// class and class extensions. For every class @interface and class
8952/// extension @interface, if the last ivar is a bitfield of any type,
8953/// then add an implicit `char :0` ivar to the end of that interface.
8954void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8955                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8956  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8957    return;
8958
8959  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8960  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8961
8962  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8963    return;
8964  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8965  if (!ID) {
8966    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8967      if (!CD->IsClassExtension())
8968        return;
8969    }
8970    // No need to add this to end of @implementation.
8971    else
8972      return;
8973  }
8974  // All conditions are met. Add a new bitfield to the tail end of ivars.
8975  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8976  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8977
8978  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8979                              DeclLoc, DeclLoc, 0,
8980                              Context.CharTy,
8981                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8982                                                               DeclLoc),
8983                              ObjCIvarDecl::Private, BW,
8984                              true);
8985  AllIvarDecls.push_back(Ivar);
8986}
8987
8988void Sema::ActOnFields(Scope* S,
8989                       SourceLocation RecLoc, Decl *EnclosingDecl,
8990                       llvm::ArrayRef<Decl *> Fields,
8991                       SourceLocation LBrac, SourceLocation RBrac,
8992                       AttributeList *Attr) {
8993  assert(EnclosingDecl && "missing record or interface decl");
8994
8995  // If the decl this is being inserted into is invalid, then it may be a
8996  // redeclaration or some other bogus case.  Don't try to add fields to it.
8997  if (EnclosingDecl->isInvalidDecl())
8998    return;
8999
9000  // Verify that all the fields are okay.
9001  unsigned NumNamedMembers = 0;
9002  SmallVector<FieldDecl*, 32> RecFields;
9003
9004  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9005  bool ARCErrReported = false;
9006  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9007       i != end; ++i) {
9008    FieldDecl *FD = cast<FieldDecl>(*i);
9009
9010    // Get the type for the field.
9011    const Type *FDTy = FD->getType().getTypePtr();
9012
9013    if (!FD->isAnonymousStructOrUnion()) {
9014      // Remember all fields written by the user.
9015      RecFields.push_back(FD);
9016    }
9017
9018    // If the field is already invalid for some reason, don't emit more
9019    // diagnostics about it.
9020    if (FD->isInvalidDecl()) {
9021      EnclosingDecl->setInvalidDecl();
9022      continue;
9023    }
9024
9025    // C99 6.7.2.1p2:
9026    //   A structure or union shall not contain a member with
9027    //   incomplete or function type (hence, a structure shall not
9028    //   contain an instance of itself, but may contain a pointer to
9029    //   an instance of itself), except that the last member of a
9030    //   structure with more than one named member may have incomplete
9031    //   array type; such a structure (and any union containing,
9032    //   possibly recursively, a member that is such a structure)
9033    //   shall not be a member of a structure or an element of an
9034    //   array.
9035    if (FDTy->isFunctionType()) {
9036      // Field declared as a function.
9037      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9038        << FD->getDeclName();
9039      FD->setInvalidDecl();
9040      EnclosingDecl->setInvalidDecl();
9041      continue;
9042    } else if (FDTy->isIncompleteArrayType() && Record &&
9043               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9044                ((getLangOptions().MicrosoftExt ||
9045                  getLangOptions().CPlusPlus) &&
9046                 (i + 1 == Fields.end() || Record->isUnion())))) {
9047      // Flexible array member.
9048      // Microsoft and g++ is more permissive regarding flexible array.
9049      // It will accept flexible array in union and also
9050      // as the sole element of a struct/class.
9051      if (getLangOptions().MicrosoftExt) {
9052        if (Record->isUnion())
9053          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9054            << FD->getDeclName();
9055        else if (Fields.size() == 1)
9056          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9057            << FD->getDeclName() << Record->getTagKind();
9058      } else if (getLangOptions().CPlusPlus) {
9059        if (Record->isUnion())
9060          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9061            << FD->getDeclName();
9062        else if (Fields.size() == 1)
9063          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9064            << FD->getDeclName() << Record->getTagKind();
9065      } else if (NumNamedMembers < 1) {
9066        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9067          << FD->getDeclName();
9068        FD->setInvalidDecl();
9069        EnclosingDecl->setInvalidDecl();
9070        continue;
9071      }
9072      if (!FD->getType()->isDependentType() &&
9073          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9074        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9075          << FD->getDeclName() << FD->getType();
9076        FD->setInvalidDecl();
9077        EnclosingDecl->setInvalidDecl();
9078        continue;
9079      }
9080      // Okay, we have a legal flexible array member at the end of the struct.
9081      if (Record)
9082        Record->setHasFlexibleArrayMember(true);
9083    } else if (!FDTy->isDependentType() &&
9084               RequireCompleteType(FD->getLocation(), FD->getType(),
9085                                   diag::err_field_incomplete)) {
9086      // Incomplete type
9087      FD->setInvalidDecl();
9088      EnclosingDecl->setInvalidDecl();
9089      continue;
9090    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9091      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9092        // If this is a member of a union, then entire union becomes "flexible".
9093        if (Record && Record->isUnion()) {
9094          Record->setHasFlexibleArrayMember(true);
9095        } else {
9096          // If this is a struct/class and this is not the last element, reject
9097          // it.  Note that GCC supports variable sized arrays in the middle of
9098          // structures.
9099          if (i + 1 != Fields.end())
9100            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9101              << FD->getDeclName() << FD->getType();
9102          else {
9103            // We support flexible arrays at the end of structs in
9104            // other structs as an extension.
9105            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9106              << FD->getDeclName();
9107            if (Record)
9108              Record->setHasFlexibleArrayMember(true);
9109          }
9110        }
9111      }
9112      if (Record && FDTTy->getDecl()->hasObjectMember())
9113        Record->setHasObjectMember(true);
9114    } else if (FDTy->isObjCObjectType()) {
9115      /// A field cannot be an Objective-c object
9116      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9117        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9118      QualType T = Context.getObjCObjectPointerType(FD->getType());
9119      FD->setType(T);
9120    }
9121    else if (!getLangOptions().CPlusPlus) {
9122      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9123        // It's an error in ARC if a field has lifetime.
9124        // We don't want to report this in a system header, though,
9125        // so we just make the field unavailable.
9126        // FIXME: that's really not sufficient; we need to make the type
9127        // itself invalid to, say, initialize or copy.
9128        QualType T = FD->getType();
9129        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9130        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9131          SourceLocation loc = FD->getLocation();
9132          if (getSourceManager().isInSystemHeader(loc)) {
9133            if (!FD->hasAttr<UnavailableAttr>()) {
9134              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9135                                "this system field has retaining ownership"));
9136            }
9137          } else {
9138            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9139          }
9140          ARCErrReported = true;
9141        }
9142      }
9143      else if (getLangOptions().ObjC1 &&
9144               getLangOptions().getGC() != LangOptions::NonGC &&
9145               Record && !Record->hasObjectMember()) {
9146        if (FD->getType()->isObjCObjectPointerType() ||
9147            FD->getType().isObjCGCStrong())
9148          Record->setHasObjectMember(true);
9149        else if (Context.getAsArrayType(FD->getType())) {
9150          QualType BaseType = Context.getBaseElementType(FD->getType());
9151          if (BaseType->isRecordType() &&
9152              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9153            Record->setHasObjectMember(true);
9154          else if (BaseType->isObjCObjectPointerType() ||
9155                   BaseType.isObjCGCStrong())
9156                 Record->setHasObjectMember(true);
9157        }
9158      }
9159    }
9160    // Keep track of the number of named members.
9161    if (FD->getIdentifier())
9162      ++NumNamedMembers;
9163  }
9164
9165  // Okay, we successfully defined 'Record'.
9166  if (Record) {
9167    bool Completed = false;
9168    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9169      if (!CXXRecord->isInvalidDecl()) {
9170        // Set access bits correctly on the directly-declared conversions.
9171        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9172        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9173             I != E; ++I)
9174          Convs->setAccess(I, (*I)->getAccess());
9175
9176        if (!CXXRecord->isDependentType()) {
9177          // Objective-C Automatic Reference Counting:
9178          //   If a class has a non-static data member of Objective-C pointer
9179          //   type (or array thereof), it is a non-POD type and its
9180          //   default constructor (if any), copy constructor, copy assignment
9181          //   operator, and destructor are non-trivial.
9182          //
9183          // This rule is also handled by CXXRecordDecl::completeDefinition().
9184          // However, here we check whether this particular class is only
9185          // non-POD because of the presence of an Objective-C pointer member.
9186          // If so, objects of this type cannot be shared between code compiled
9187          // with instant objects and code compiled with manual retain/release.
9188          if (getLangOptions().ObjCAutoRefCount &&
9189              CXXRecord->hasObjectMember() &&
9190              CXXRecord->getLinkage() == ExternalLinkage) {
9191            if (CXXRecord->isPOD()) {
9192              Diag(CXXRecord->getLocation(),
9193                   diag::warn_arc_non_pod_class_with_object_member)
9194               << CXXRecord;
9195            } else {
9196              // FIXME: Fix-Its would be nice here, but finding a good location
9197              // for them is going to be tricky.
9198              if (CXXRecord->hasTrivialCopyConstructor())
9199                Diag(CXXRecord->getLocation(),
9200                     diag::warn_arc_trivial_member_function_with_object_member)
9201                  << CXXRecord << 0;
9202              if (CXXRecord->hasTrivialCopyAssignment())
9203                Diag(CXXRecord->getLocation(),
9204                     diag::warn_arc_trivial_member_function_with_object_member)
9205                << CXXRecord << 1;
9206              if (CXXRecord->hasTrivialDestructor())
9207                Diag(CXXRecord->getLocation(),
9208                     diag::warn_arc_trivial_member_function_with_object_member)
9209                << CXXRecord << 2;
9210            }
9211          }
9212
9213          // Adjust user-defined destructor exception spec.
9214          if (getLangOptions().CPlusPlus0x &&
9215              CXXRecord->hasUserDeclaredDestructor())
9216            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9217
9218          // Add any implicitly-declared members to this class.
9219          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9220
9221          // If we have virtual base classes, we may end up finding multiple
9222          // final overriders for a given virtual function. Check for this
9223          // problem now.
9224          if (CXXRecord->getNumVBases()) {
9225            CXXFinalOverriderMap FinalOverriders;
9226            CXXRecord->getFinalOverriders(FinalOverriders);
9227
9228            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9229                                             MEnd = FinalOverriders.end();
9230                 M != MEnd; ++M) {
9231              for (OverridingMethods::iterator SO = M->second.begin(),
9232                                            SOEnd = M->second.end();
9233                   SO != SOEnd; ++SO) {
9234                assert(SO->second.size() > 0 &&
9235                       "Virtual function without overridding functions?");
9236                if (SO->second.size() == 1)
9237                  continue;
9238
9239                // C++ [class.virtual]p2:
9240                //   In a derived class, if a virtual member function of a base
9241                //   class subobject has more than one final overrider the
9242                //   program is ill-formed.
9243                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9244                  << (NamedDecl *)M->first << Record;
9245                Diag(M->first->getLocation(),
9246                     diag::note_overridden_virtual_function);
9247                for (OverridingMethods::overriding_iterator
9248                          OM = SO->second.begin(),
9249                       OMEnd = SO->second.end();
9250                     OM != OMEnd; ++OM)
9251                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9252                    << (NamedDecl *)M->first << OM->Method->getParent();
9253
9254                Record->setInvalidDecl();
9255              }
9256            }
9257            CXXRecord->completeDefinition(&FinalOverriders);
9258            Completed = true;
9259          }
9260        }
9261      }
9262    }
9263
9264    if (!Completed)
9265      Record->completeDefinition();
9266
9267    // Now that the record is complete, do any delayed exception spec checks
9268    // we were missing.
9269    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9270      const CXXDestructorDecl *Dtor =
9271              DelayedDestructorExceptionSpecChecks.back().first;
9272      if (Dtor->getParent() != Record)
9273        break;
9274
9275      assert(!Dtor->getParent()->isDependentType() &&
9276          "Should not ever add destructors of templates into the list.");
9277      CheckOverridingFunctionExceptionSpec(Dtor,
9278          DelayedDestructorExceptionSpecChecks.back().second);
9279      DelayedDestructorExceptionSpecChecks.pop_back();
9280    }
9281
9282  } else {
9283    ObjCIvarDecl **ClsFields =
9284      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9285    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9286      ID->setLocEnd(RBrac);
9287      // Add ivar's to class's DeclContext.
9288      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9289        ClsFields[i]->setLexicalDeclContext(ID);
9290        ID->addDecl(ClsFields[i]);
9291      }
9292      // Must enforce the rule that ivars in the base classes may not be
9293      // duplicates.
9294      if (ID->getSuperClass())
9295        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9296    } else if (ObjCImplementationDecl *IMPDecl =
9297                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9298      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9299      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9300        // Ivar declared in @implementation never belongs to the implementation.
9301        // Only it is in implementation's lexical context.
9302        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9303      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9304    } else if (ObjCCategoryDecl *CDecl =
9305                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9306      // case of ivars in class extension; all other cases have been
9307      // reported as errors elsewhere.
9308      // FIXME. Class extension does not have a LocEnd field.
9309      // CDecl->setLocEnd(RBrac);
9310      // Add ivar's to class extension's DeclContext.
9311      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9312        ClsFields[i]->setLexicalDeclContext(CDecl);
9313        CDecl->addDecl(ClsFields[i]);
9314      }
9315    }
9316  }
9317
9318  if (Attr)
9319    ProcessDeclAttributeList(S, Record, Attr);
9320
9321  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9322  // set the visibility of this record.
9323  if (Record && !Record->getDeclContext()->isRecord())
9324    AddPushedVisibilityAttribute(Record);
9325}
9326
9327/// \brief Determine whether the given integral value is representable within
9328/// the given type T.
9329static bool isRepresentableIntegerValue(ASTContext &Context,
9330                                        llvm::APSInt &Value,
9331                                        QualType T) {
9332  assert(T->isIntegralType(Context) && "Integral type required!");
9333  unsigned BitWidth = Context.getIntWidth(T);
9334
9335  if (Value.isUnsigned() || Value.isNonNegative()) {
9336    if (T->isSignedIntegerOrEnumerationType())
9337      --BitWidth;
9338    return Value.getActiveBits() <= BitWidth;
9339  }
9340  return Value.getMinSignedBits() <= BitWidth;
9341}
9342
9343// \brief Given an integral type, return the next larger integral type
9344// (or a NULL type of no such type exists).
9345static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9346  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9347  // enum checking below.
9348  assert(T->isIntegralType(Context) && "Integral type required!");
9349  const unsigned NumTypes = 4;
9350  QualType SignedIntegralTypes[NumTypes] = {
9351    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9352  };
9353  QualType UnsignedIntegralTypes[NumTypes] = {
9354    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9355    Context.UnsignedLongLongTy
9356  };
9357
9358  unsigned BitWidth = Context.getTypeSize(T);
9359  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9360                                                        : UnsignedIntegralTypes;
9361  for (unsigned I = 0; I != NumTypes; ++I)
9362    if (Context.getTypeSize(Types[I]) > BitWidth)
9363      return Types[I];
9364
9365  return QualType();
9366}
9367
9368EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9369                                          EnumConstantDecl *LastEnumConst,
9370                                          SourceLocation IdLoc,
9371                                          IdentifierInfo *Id,
9372                                          Expr *Val) {
9373  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9374  llvm::APSInt EnumVal(IntWidth);
9375  QualType EltTy;
9376
9377  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9378    Val = 0;
9379
9380  if (Val) {
9381    if (Enum->isDependentType() || Val->isTypeDependent())
9382      EltTy = Context.DependentTy;
9383    else {
9384      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9385      SourceLocation ExpLoc;
9386      if (!Val->isValueDependent() &&
9387          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9388        Val = 0;
9389      } else {
9390        if (!getLangOptions().CPlusPlus) {
9391          // C99 6.7.2.2p2:
9392          //   The expression that defines the value of an enumeration constant
9393          //   shall be an integer constant expression that has a value
9394          //   representable as an int.
9395
9396          // Complain if the value is not representable in an int.
9397          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9398            Diag(IdLoc, diag::ext_enum_value_not_int)
9399              << EnumVal.toString(10) << Val->getSourceRange()
9400              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9401          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9402            // Force the type of the expression to 'int'.
9403            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9404          }
9405        }
9406
9407        if (Enum->isFixed()) {
9408          EltTy = Enum->getIntegerType();
9409
9410          // C++0x [dcl.enum]p5:
9411          //   ... if the initializing value of an enumerator cannot be
9412          //   represented by the underlying type, the program is ill-formed.
9413          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9414            if (getLangOptions().MicrosoftExt) {
9415              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9416              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9417            } else
9418              Diag(IdLoc, diag::err_enumerator_too_large)
9419                << EltTy;
9420          } else
9421            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9422        }
9423        else {
9424          // C++0x [dcl.enum]p5:
9425          //   If the underlying type is not fixed, the type of each enumerator
9426          //   is the type of its initializing value:
9427          //     - If an initializer is specified for an enumerator, the
9428          //       initializing value has the same type as the expression.
9429          EltTy = Val->getType();
9430        }
9431      }
9432    }
9433  }
9434
9435  if (!Val) {
9436    if (Enum->isDependentType())
9437      EltTy = Context.DependentTy;
9438    else if (!LastEnumConst) {
9439      // C++0x [dcl.enum]p5:
9440      //   If the underlying type is not fixed, the type of each enumerator
9441      //   is the type of its initializing value:
9442      //     - If no initializer is specified for the first enumerator, the
9443      //       initializing value has an unspecified integral type.
9444      //
9445      // GCC uses 'int' for its unspecified integral type, as does
9446      // C99 6.7.2.2p3.
9447      if (Enum->isFixed()) {
9448        EltTy = Enum->getIntegerType();
9449      }
9450      else {
9451        EltTy = Context.IntTy;
9452      }
9453    } else {
9454      // Assign the last value + 1.
9455      EnumVal = LastEnumConst->getInitVal();
9456      ++EnumVal;
9457      EltTy = LastEnumConst->getType();
9458
9459      // Check for overflow on increment.
9460      if (EnumVal < LastEnumConst->getInitVal()) {
9461        // C++0x [dcl.enum]p5:
9462        //   If the underlying type is not fixed, the type of each enumerator
9463        //   is the type of its initializing value:
9464        //
9465        //     - Otherwise the type of the initializing value is the same as
9466        //       the type of the initializing value of the preceding enumerator
9467        //       unless the incremented value is not representable in that type,
9468        //       in which case the type is an unspecified integral type
9469        //       sufficient to contain the incremented value. If no such type
9470        //       exists, the program is ill-formed.
9471        QualType T = getNextLargerIntegralType(Context, EltTy);
9472        if (T.isNull() || Enum->isFixed()) {
9473          // There is no integral type larger enough to represent this
9474          // value. Complain, then allow the value to wrap around.
9475          EnumVal = LastEnumConst->getInitVal();
9476          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9477          ++EnumVal;
9478          if (Enum->isFixed())
9479            // When the underlying type is fixed, this is ill-formed.
9480            Diag(IdLoc, diag::err_enumerator_wrapped)
9481              << EnumVal.toString(10)
9482              << EltTy;
9483          else
9484            Diag(IdLoc, diag::warn_enumerator_too_large)
9485              << EnumVal.toString(10);
9486        } else {
9487          EltTy = T;
9488        }
9489
9490        // Retrieve the last enumerator's value, extent that type to the
9491        // type that is supposed to be large enough to represent the incremented
9492        // value, then increment.
9493        EnumVal = LastEnumConst->getInitVal();
9494        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9495        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9496        ++EnumVal;
9497
9498        // If we're not in C++, diagnose the overflow of enumerator values,
9499        // which in C99 means that the enumerator value is not representable in
9500        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9501        // permits enumerator values that are representable in some larger
9502        // integral type.
9503        if (!getLangOptions().CPlusPlus && !T.isNull())
9504          Diag(IdLoc, diag::warn_enum_value_overflow);
9505      } else if (!getLangOptions().CPlusPlus &&
9506                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9507        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9508        Diag(IdLoc, diag::ext_enum_value_not_int)
9509          << EnumVal.toString(10) << 1;
9510      }
9511    }
9512  }
9513
9514  if (!EltTy->isDependentType()) {
9515    // Make the enumerator value match the signedness and size of the
9516    // enumerator's type.
9517    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9518    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9519  }
9520
9521  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9522                                  Val, EnumVal);
9523}
9524
9525
9526Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9527                              SourceLocation IdLoc, IdentifierInfo *Id,
9528                              AttributeList *Attr,
9529                              SourceLocation EqualLoc, Expr *val) {
9530  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9531  EnumConstantDecl *LastEnumConst =
9532    cast_or_null<EnumConstantDecl>(lastEnumConst);
9533  Expr *Val = static_cast<Expr*>(val);
9534
9535  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9536  // we find one that is.
9537  S = getNonFieldDeclScope(S);
9538
9539  // Verify that there isn't already something declared with this name in this
9540  // scope.
9541  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9542                                         ForRedeclaration);
9543  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9544    // Maybe we will complain about the shadowed template parameter.
9545    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9546    // Just pretend that we didn't see the previous declaration.
9547    PrevDecl = 0;
9548  }
9549
9550  if (PrevDecl) {
9551    // When in C++, we may get a TagDecl with the same name; in this case the
9552    // enum constant will 'hide' the tag.
9553    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9554           "Received TagDecl when not in C++!");
9555    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9556      if (isa<EnumConstantDecl>(PrevDecl))
9557        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9558      else
9559        Diag(IdLoc, diag::err_redefinition) << Id;
9560      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9561      return 0;
9562    }
9563  }
9564
9565  // C++ [class.mem]p13:
9566  //   If T is the name of a class, then each of the following shall have a
9567  //   name different from T:
9568  //     - every enumerator of every member of class T that is an enumerated
9569  //       type
9570  if (CXXRecordDecl *Record
9571                      = dyn_cast<CXXRecordDecl>(
9572                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9573    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9574      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9575
9576  EnumConstantDecl *New =
9577    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9578
9579  if (New) {
9580    // Process attributes.
9581    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9582
9583    // Register this decl in the current scope stack.
9584    New->setAccess(TheEnumDecl->getAccess());
9585    PushOnScopeChains(New, S);
9586  }
9587
9588  return New;
9589}
9590
9591void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9592                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9593                         Decl **Elements, unsigned NumElements,
9594                         Scope *S, AttributeList *Attr) {
9595  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9596  QualType EnumType = Context.getTypeDeclType(Enum);
9597
9598  if (Attr)
9599    ProcessDeclAttributeList(S, Enum, Attr);
9600
9601  if (Enum->isDependentType()) {
9602    for (unsigned i = 0; i != NumElements; ++i) {
9603      EnumConstantDecl *ECD =
9604        cast_or_null<EnumConstantDecl>(Elements[i]);
9605      if (!ECD) continue;
9606
9607      ECD->setType(EnumType);
9608    }
9609
9610    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9611    return;
9612  }
9613
9614  // TODO: If the result value doesn't fit in an int, it must be a long or long
9615  // long value.  ISO C does not support this, but GCC does as an extension,
9616  // emit a warning.
9617  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9618  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9619  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9620
9621  // Verify that all the values are okay, compute the size of the values, and
9622  // reverse the list.
9623  unsigned NumNegativeBits = 0;
9624  unsigned NumPositiveBits = 0;
9625
9626  // Keep track of whether all elements have type int.
9627  bool AllElementsInt = true;
9628
9629  for (unsigned i = 0; i != NumElements; ++i) {
9630    EnumConstantDecl *ECD =
9631      cast_or_null<EnumConstantDecl>(Elements[i]);
9632    if (!ECD) continue;  // Already issued a diagnostic.
9633
9634    const llvm::APSInt &InitVal = ECD->getInitVal();
9635
9636    // Keep track of the size of positive and negative values.
9637    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9638      NumPositiveBits = std::max(NumPositiveBits,
9639                                 (unsigned)InitVal.getActiveBits());
9640    else
9641      NumNegativeBits = std::max(NumNegativeBits,
9642                                 (unsigned)InitVal.getMinSignedBits());
9643
9644    // Keep track of whether every enum element has type int (very commmon).
9645    if (AllElementsInt)
9646      AllElementsInt = ECD->getType() == Context.IntTy;
9647  }
9648
9649  // Figure out the type that should be used for this enum.
9650  QualType BestType;
9651  unsigned BestWidth;
9652
9653  // C++0x N3000 [conv.prom]p3:
9654  //   An rvalue of an unscoped enumeration type whose underlying
9655  //   type is not fixed can be converted to an rvalue of the first
9656  //   of the following types that can represent all the values of
9657  //   the enumeration: int, unsigned int, long int, unsigned long
9658  //   int, long long int, or unsigned long long int.
9659  // C99 6.4.4.3p2:
9660  //   An identifier declared as an enumeration constant has type int.
9661  // The C99 rule is modified by a gcc extension
9662  QualType BestPromotionType;
9663
9664  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9665  // -fshort-enums is the equivalent to specifying the packed attribute on all
9666  // enum definitions.
9667  if (LangOpts.ShortEnums)
9668    Packed = true;
9669
9670  if (Enum->isFixed()) {
9671    BestType = BestPromotionType = Enum->getIntegerType();
9672    // We don't need to set BestWidth, because BestType is going to be the type
9673    // of the enumerators, but we do anyway because otherwise some compilers
9674    // warn that it might be used uninitialized.
9675    BestWidth = CharWidth;
9676  }
9677  else if (NumNegativeBits) {
9678    // If there is a negative value, figure out the smallest integer type (of
9679    // int/long/longlong) that fits.
9680    // If it's packed, check also if it fits a char or a short.
9681    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9682      BestType = Context.SignedCharTy;
9683      BestWidth = CharWidth;
9684    } else if (Packed && NumNegativeBits <= ShortWidth &&
9685               NumPositiveBits < ShortWidth) {
9686      BestType = Context.ShortTy;
9687      BestWidth = ShortWidth;
9688    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9689      BestType = Context.IntTy;
9690      BestWidth = IntWidth;
9691    } else {
9692      BestWidth = Context.getTargetInfo().getLongWidth();
9693
9694      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9695        BestType = Context.LongTy;
9696      } else {
9697        BestWidth = Context.getTargetInfo().getLongLongWidth();
9698
9699        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9700          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9701        BestType = Context.LongLongTy;
9702      }
9703    }
9704    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9705  } else {
9706    // If there is no negative value, figure out the smallest type that fits
9707    // all of the enumerator values.
9708    // If it's packed, check also if it fits a char or a short.
9709    if (Packed && NumPositiveBits <= CharWidth) {
9710      BestType = Context.UnsignedCharTy;
9711      BestPromotionType = Context.IntTy;
9712      BestWidth = CharWidth;
9713    } else if (Packed && NumPositiveBits <= ShortWidth) {
9714      BestType = Context.UnsignedShortTy;
9715      BestPromotionType = Context.IntTy;
9716      BestWidth = ShortWidth;
9717    } else if (NumPositiveBits <= IntWidth) {
9718      BestType = Context.UnsignedIntTy;
9719      BestWidth = IntWidth;
9720      BestPromotionType
9721        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9722                           ? Context.UnsignedIntTy : Context.IntTy;
9723    } else if (NumPositiveBits <=
9724               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9725      BestType = Context.UnsignedLongTy;
9726      BestPromotionType
9727        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9728                           ? Context.UnsignedLongTy : Context.LongTy;
9729    } else {
9730      BestWidth = Context.getTargetInfo().getLongLongWidth();
9731      assert(NumPositiveBits <= BestWidth &&
9732             "How could an initializer get larger than ULL?");
9733      BestType = Context.UnsignedLongLongTy;
9734      BestPromotionType
9735        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9736                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9737    }
9738  }
9739
9740  // Loop over all of the enumerator constants, changing their types to match
9741  // the type of the enum if needed.
9742  for (unsigned i = 0; i != NumElements; ++i) {
9743    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9744    if (!ECD) continue;  // Already issued a diagnostic.
9745
9746    // Standard C says the enumerators have int type, but we allow, as an
9747    // extension, the enumerators to be larger than int size.  If each
9748    // enumerator value fits in an int, type it as an int, otherwise type it the
9749    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9750    // that X has type 'int', not 'unsigned'.
9751
9752    // Determine whether the value fits into an int.
9753    llvm::APSInt InitVal = ECD->getInitVal();
9754
9755    // If it fits into an integer type, force it.  Otherwise force it to match
9756    // the enum decl type.
9757    QualType NewTy;
9758    unsigned NewWidth;
9759    bool NewSign;
9760    if (!getLangOptions().CPlusPlus &&
9761        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9762      NewTy = Context.IntTy;
9763      NewWidth = IntWidth;
9764      NewSign = true;
9765    } else if (ECD->getType() == BestType) {
9766      // Already the right type!
9767      if (getLangOptions().CPlusPlus)
9768        // C++ [dcl.enum]p4: Following the closing brace of an
9769        // enum-specifier, each enumerator has the type of its
9770        // enumeration.
9771        ECD->setType(EnumType);
9772      continue;
9773    } else {
9774      NewTy = BestType;
9775      NewWidth = BestWidth;
9776      NewSign = BestType->isSignedIntegerOrEnumerationType();
9777    }
9778
9779    // Adjust the APSInt value.
9780    InitVal = InitVal.extOrTrunc(NewWidth);
9781    InitVal.setIsSigned(NewSign);
9782    ECD->setInitVal(InitVal);
9783
9784    // Adjust the Expr initializer and type.
9785    if (ECD->getInitExpr() &&
9786        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9787      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9788                                                CK_IntegralCast,
9789                                                ECD->getInitExpr(),
9790                                                /*base paths*/ 0,
9791                                                VK_RValue));
9792    if (getLangOptions().CPlusPlus)
9793      // C++ [dcl.enum]p4: Following the closing brace of an
9794      // enum-specifier, each enumerator has the type of its
9795      // enumeration.
9796      ECD->setType(EnumType);
9797    else
9798      ECD->setType(NewTy);
9799  }
9800
9801  Enum->completeDefinition(BestType, BestPromotionType,
9802                           NumPositiveBits, NumNegativeBits);
9803}
9804
9805Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9806                                  SourceLocation StartLoc,
9807                                  SourceLocation EndLoc) {
9808  StringLiteral *AsmString = cast<StringLiteral>(expr);
9809
9810  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9811                                                   AsmString, StartLoc,
9812                                                   EndLoc);
9813  CurContext->addDecl(New);
9814  return New;
9815}
9816
9817DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9818                                   IdentifierInfo &ModuleName,
9819                                   SourceLocation ModuleNameLoc) {
9820  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9821                                                     ModuleName, ModuleNameLoc);
9822  if (!Module)
9823    return true;
9824
9825  // FIXME: Actually create a declaration to describe the module import.
9826  (void)Module;
9827  return DeclResult((Decl *)0);
9828}
9829
9830void
9831Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9832                                         SourceLocation ModulePrivateKeyword) {
9833  assert(!Old->isModulePrivate() && "Old is module-private!");
9834
9835  Diag(New->getLocation(), diag::err_module_private_follows_public)
9836    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9837  Diag(Old->getLocation(), diag::note_previous_declaration)
9838    << Old->getDeclName();
9839
9840  // Drop the __module_private__ from the new declaration, since it's invalid.
9841  New->setModulePrivate(false);
9842}
9843
9844void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9845                             SourceLocation PragmaLoc,
9846                             SourceLocation NameLoc) {
9847  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9848
9849  if (PrevDecl) {
9850    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9851  } else {
9852    (void)WeakUndeclaredIdentifiers.insert(
9853      std::pair<IdentifierInfo*,WeakInfo>
9854        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9855  }
9856}
9857
9858void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9859                                IdentifierInfo* AliasName,
9860                                SourceLocation PragmaLoc,
9861                                SourceLocation NameLoc,
9862                                SourceLocation AliasNameLoc) {
9863  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9864                                    LookupOrdinaryName);
9865  WeakInfo W = WeakInfo(Name, NameLoc);
9866
9867  if (PrevDecl) {
9868    if (!PrevDecl->hasAttr<AliasAttr>())
9869      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9870        DeclApplyPragmaWeak(TUScope, ND, W);
9871  } else {
9872    (void)WeakUndeclaredIdentifiers.insert(
9873      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9874  }
9875}
9876
9877Decl *Sema::getObjCDeclContext() const {
9878  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9879}
9880
9881AvailabilityResult Sema::getCurContextAvailability() const {
9882  const Decl *D = cast<Decl>(getCurLexicalContext());
9883  // A category implicitly has the availability of the interface.
9884  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9885    D = CatD->getClassInterface();
9886
9887  return D->getAvailability();
9888}
9889