SemaDecl.cpp revision 7ba107a1863ddfa1664555854f0d7bdb3c491c92
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/Analysis/CFG.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/BitVector.h"
35#include "llvm/ADT/STLExtras.h"
36#include <algorithm>
37#include <cstring>
38#include <functional>
39#include <queue>
40using namespace clang;
41
42/// getDeclName - Return a pretty name for the specified decl if possible, or
43/// an empty string if not.  This is used for pretty crash reporting.
44std::string Sema::getDeclName(DeclPtrTy d) {
45  Decl *D = d.getAs<Decl>();
46  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
47    return DN->getQualifiedNameAsString();
48  return "";
49}
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
52  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
53}
54
55/// \brief If the identifier refers to a type name within this scope,
56/// return the declaration of that type.
57///
58/// This routine performs ordinary name lookup of the identifier II
59/// within the given scope, with optional C++ scope specifier SS, to
60/// determine whether the name refers to a type. If so, returns an
61/// opaque pointer (actually a QualType) corresponding to that
62/// type. Otherwise, returns NULL.
63///
64/// If name lookup results in an ambiguity, this routine will complain
65/// and then return NULL.
66Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
67                                Scope *S, const CXXScopeSpec *SS,
68                                bool isClassName) {
69  // C++ [temp.res]p3:
70  //   A qualified-id that refers to a type and in which the
71  //   nested-name-specifier depends on a template-parameter (14.6.2)
72  //   shall be prefixed by the keyword typename to indicate that the
73  //   qualified-id denotes a type, forming an
74  //   elaborated-type-specifier (7.1.5.3).
75  //
76  // We therefore do not perform any name lookup if the result would
77  // refer to a member of an unknown specialization.
78  if (SS && isUnknownSpecialization(*SS)) {
79    if (!isClassName)
80      return 0;
81
82    // We know from the grammar that this name refers to a type, so build a
83    // TypenameType node to describe the type.
84    // FIXME: Record somewhere that this TypenameType node has no "typename"
85    // keyword associated with it.
86    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
87                             II, SS->getRange()).getAsOpaquePtr();
88  }
89
90  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
91  LookupParsedName(Result, S, SS, false);
92
93  NamedDecl *IIDecl = 0;
94  switch (Result.getResultKind()) {
95  case LookupResult::NotFound:
96  case LookupResult::FoundOverloaded:
97  case LookupResult::FoundUnresolvedValue:
98    return 0;
99
100  case LookupResult::Ambiguous:
101    // Recover from type-hiding ambiguities by hiding the type.  We'll
102    // do the lookup again when looking for an object, and we can
103    // diagnose the error then.  If we don't do this, then the error
104    // about hiding the type will be immediately followed by an error
105    // that only makes sense if the identifier was treated like a type.
106    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
107      Result.suppressDiagnostics();
108      return 0;
109    }
110
111    // Look to see if we have a type anywhere in the list of results.
112    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
113         Res != ResEnd; ++Res) {
114      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
115        if (!IIDecl ||
116            (*Res)->getLocation().getRawEncoding() <
117              IIDecl->getLocation().getRawEncoding())
118          IIDecl = *Res;
119      }
120    }
121
122    if (!IIDecl) {
123      // None of the entities we found is a type, so there is no way
124      // to even assume that the result is a type. In this case, don't
125      // complain about the ambiguity. The parser will either try to
126      // perform this lookup again (e.g., as an object name), which
127      // will produce the ambiguity, or will complain that it expected
128      // a type name.
129      Result.suppressDiagnostics();
130      return 0;
131    }
132
133    // We found a type within the ambiguous lookup; diagnose the
134    // ambiguity and then return that type. This might be the right
135    // answer, or it might not be, but it suppresses any attempt to
136    // perform the name lookup again.
137    break;
138
139  case LookupResult::Found:
140    IIDecl = Result.getFoundDecl();
141    break;
142  }
143
144  assert(IIDecl && "Didn't find decl");
145
146  QualType T;
147  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
148    DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150    // C++ [temp.local]p2:
151    //   Within the scope of a class template specialization or
152    //   partial specialization, when the injected-class-name is
153    //   not followed by a <, it is equivalent to the
154    //   injected-class-name followed by the template-argument s
155    //   of the class template specialization or partial
156    //   specialization enclosed in <>.
157    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
158      if (RD->isInjectedClassName())
159        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
160          T = Template->getInjectedClassNameType(Context);
161
162    if (T.isNull())
163      T = Context.getTypeDeclType(TD);
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
169    T = Context.getObjCInterfaceType(IDecl);
170  } else if (UnresolvedUsingTypenameDecl *UUDecl =
171               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
172    // FIXME: preserve source structure information.
173    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
174  } else {
175    // If it's not plausibly a type, suppress diagnostics.
176    Result.suppressDiagnostics();
177    return 0;
178  }
179
180  return T.getAsOpaquePtr();
181}
182
183/// isTagName() - This method is called *for error recovery purposes only*
184/// to determine if the specified name is a valid tag name ("struct foo").  If
185/// so, this returns the TST for the tag corresponding to it (TST_enum,
186/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
187/// where the user forgot to specify the tag.
188DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
189  // Do a tag name lookup in this scope.
190  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
191  LookupName(R, S, false);
192  R.suppressDiagnostics();
193  if (R.getResultKind() == LookupResult::Found)
194    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
195      switch (TD->getTagKind()) {
196      case TagDecl::TK_struct: return DeclSpec::TST_struct;
197      case TagDecl::TK_union:  return DeclSpec::TST_union;
198      case TagDecl::TK_class:  return DeclSpec::TST_class;
199      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
200      }
201    }
202
203  return DeclSpec::TST_unspecified;
204}
205
206bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
207                                   SourceLocation IILoc,
208                                   Scope *S,
209                                   const CXXScopeSpec *SS,
210                                   TypeTy *&SuggestedType) {
211  // We don't have anything to suggest (yet).
212  SuggestedType = 0;
213
214  // FIXME: Should we move the logic that tries to recover from a missing tag
215  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
216
217  if (!SS)
218    Diag(IILoc, diag::err_unknown_typename) << &II;
219  else if (DeclContext *DC = computeDeclContext(*SS, false))
220    Diag(IILoc, diag::err_typename_nested_not_found)
221      << &II << DC << SS->getRange();
222  else if (isDependentScopeSpecifier(*SS)) {
223    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
224      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
225      << SourceRange(SS->getRange().getBegin(), IILoc)
226      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
227                                               "typename ");
228    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
229  } else {
230    assert(SS && SS->isInvalid() &&
231           "Invalid scope specifier has already been diagnosed");
232  }
233
234  return true;
235}
236
237// Determines the context to return to after temporarily entering a
238// context.  This depends in an unnecessarily complicated way on the
239// exact ordering of callbacks from the parser.
240DeclContext *Sema::getContainingDC(DeclContext *DC) {
241
242  // Functions defined inline within classes aren't parsed until we've
243  // finished parsing the top-level class, so the top-level class is
244  // the context we'll need to return to.
245  if (isa<FunctionDecl>(DC)) {
246    DC = DC->getLexicalParent();
247
248    // A function not defined within a class will always return to its
249    // lexical context.
250    if (!isa<CXXRecordDecl>(DC))
251      return DC;
252
253    // A C++ inline method/friend is parsed *after* the topmost class
254    // it was declared in is fully parsed ("complete");  the topmost
255    // class is the context we need to return to.
256    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
257      DC = RD;
258
259    // Return the declaration context of the topmost class the inline method is
260    // declared in.
261    return DC;
262  }
263
264  if (isa<ObjCMethodDecl>(DC))
265    return Context.getTranslationUnitDecl();
266
267  return DC->getLexicalParent();
268}
269
270void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
271  assert(getContainingDC(DC) == CurContext &&
272      "The next DeclContext should be lexically contained in the current one.");
273  CurContext = DC;
274  S->setEntity(DC);
275}
276
277void Sema::PopDeclContext() {
278  assert(CurContext && "DeclContext imbalance!");
279
280  CurContext = getContainingDC(CurContext);
281}
282
283/// EnterDeclaratorContext - Used when we must lookup names in the context
284/// of a declarator's nested name specifier.
285void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
286  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
287  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
288  CurContext = DC;
289  assert(CurContext && "No context?");
290  S->setEntity(CurContext);
291}
292
293void Sema::ExitDeclaratorContext(Scope *S) {
294  S->setEntity(PreDeclaratorDC);
295  PreDeclaratorDC = 0;
296
297  // Reset CurContext to the nearest enclosing context.
298  while (!S->getEntity() && S->getParent())
299    S = S->getParent();
300  CurContext = static_cast<DeclContext*>(S->getEntity());
301  assert(CurContext && "No context?");
302}
303
304/// \brief Determine whether we allow overloading of the function
305/// PrevDecl with another declaration.
306///
307/// This routine determines whether overloading is possible, not
308/// whether some new function is actually an overload. It will return
309/// true in C++ (where we can always provide overloads) or, as an
310/// extension, in C when the previous function is already an
311/// overloaded function declaration or has the "overloadable"
312/// attribute.
313static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
314  if (Context.getLangOptions().CPlusPlus)
315    return true;
316
317  if (isa<OverloadedFunctionDecl>(PrevDecl))
318    return true;
319
320  return PrevDecl->getAttr<OverloadableAttr>() != 0;
321}
322
323/// Add this decl to the scope shadowed decl chains.
324void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
325  // Move up the scope chain until we find the nearest enclosing
326  // non-transparent context. The declaration will be introduced into this
327  // scope.
328  while (S->getEntity() &&
329         ((DeclContext *)S->getEntity())->isTransparentContext())
330    S = S->getParent();
331
332  // Add scoped declarations into their context, so that they can be
333  // found later. Declarations without a context won't be inserted
334  // into any context.
335  if (AddToContext)
336    CurContext->addDecl(D);
337
338  // Out-of-line function and variable definitions should not be pushed into
339  // scope.
340  if ((isa<FunctionTemplateDecl>(D) &&
341       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
342      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
343      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
344    return;
345
346  // If this replaces anything in the current scope,
347  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
348                               IEnd = IdResolver.end();
349  for (; I != IEnd; ++I) {
350    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
351      S->RemoveDecl(DeclPtrTy::make(*I));
352      IdResolver.RemoveDecl(*I);
353
354      // Should only need to replace one decl.
355      break;
356    }
357  }
358
359  S->AddDecl(DeclPtrTy::make(D));
360  IdResolver.AddDecl(D);
361}
362
363bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
364  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
365    // Look inside the overload set to determine if any of the declarations
366    // are in scope. (Possibly) build a new overload set containing only
367    // those declarations that are in scope.
368    OverloadedFunctionDecl *NewOvl = 0;
369    bool FoundInScope = false;
370    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
371         FEnd = Ovl->function_end();
372         F != FEnd; ++F) {
373      NamedDecl *FD = F->get();
374      if (!isDeclInScope(FD, Ctx, S)) {
375        if (!NewOvl && F != Ovl->function_begin()) {
376          NewOvl = OverloadedFunctionDecl::Create(Context,
377                                                  F->get()->getDeclContext(),
378                                                  F->get()->getDeclName());
379          D = NewOvl;
380          for (OverloadedFunctionDecl::function_iterator
381               First = Ovl->function_begin();
382               First != F; ++First)
383            NewOvl->addOverload(*First);
384        }
385      } else {
386        FoundInScope = true;
387        if (NewOvl)
388          NewOvl->addOverload(*F);
389      }
390    }
391
392    return FoundInScope;
393  }
394
395  return IdResolver.isDeclInScope(D, Ctx, Context, S);
396}
397
398static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
399  if (D->isUsed() || D->hasAttr<UnusedAttr>())
400    return false;
401
402  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
403    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
404      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
405        if (!RD->hasTrivialConstructor())
406          return false;
407        if (!RD->hasTrivialDestructor())
408          return false;
409      }
410    }
411  }
412
413  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
414          !isa<ImplicitParamDecl>(D) &&
415          D->getDeclContext()->isFunctionOrMethod());
416}
417
418void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
419  if (S->decl_empty()) return;
420  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
421         "Scope shouldn't contain decls!");
422
423  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
424       I != E; ++I) {
425    Decl *TmpD = (*I).getAs<Decl>();
426    assert(TmpD && "This decl didn't get pushed??");
427
428    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
429    NamedDecl *D = cast<NamedDecl>(TmpD);
430
431    if (!D->getDeclName()) continue;
432
433    // Diagnose unused variables in this scope.
434    if (ShouldDiagnoseUnusedDecl(D))
435      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
436
437    // Remove this name from our lexical scope.
438    IdResolver.RemoveDecl(D);
439  }
440}
441
442/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
443/// return 0 if one not found.
444ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
445  // The third "scope" argument is 0 since we aren't enabling lazy built-in
446  // creation from this context.
447  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
448
449  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
450}
451
452/// getNonFieldDeclScope - Retrieves the innermost scope, starting
453/// from S, where a non-field would be declared. This routine copes
454/// with the difference between C and C++ scoping rules in structs and
455/// unions. For example, the following code is well-formed in C but
456/// ill-formed in C++:
457/// @code
458/// struct S6 {
459///   enum { BAR } e;
460/// };
461///
462/// void test_S6() {
463///   struct S6 a;
464///   a.e = BAR;
465/// }
466/// @endcode
467/// For the declaration of BAR, this routine will return a different
468/// scope. The scope S will be the scope of the unnamed enumeration
469/// within S6. In C++, this routine will return the scope associated
470/// with S6, because the enumeration's scope is a transparent
471/// context but structures can contain non-field names. In C, this
472/// routine will return the translation unit scope, since the
473/// enumeration's scope is a transparent context and structures cannot
474/// contain non-field names.
475Scope *Sema::getNonFieldDeclScope(Scope *S) {
476  while (((S->getFlags() & Scope::DeclScope) == 0) ||
477         (S->getEntity() &&
478          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
479         (S->isClassScope() && !getLangOptions().CPlusPlus))
480    S = S->getParent();
481  return S;
482}
483
484void Sema::InitBuiltinVaListType() {
485  if (!Context.getBuiltinVaListType().isNull())
486    return;
487
488  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
489  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
490  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
491  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
492}
493
494/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
495/// file scope.  lazily create a decl for it. ForRedeclaration is true
496/// if we're creating this built-in in anticipation of redeclaring the
497/// built-in.
498NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
499                                     Scope *S, bool ForRedeclaration,
500                                     SourceLocation Loc) {
501  Builtin::ID BID = (Builtin::ID)bid;
502
503  if (Context.BuiltinInfo.hasVAListUse(BID))
504    InitBuiltinVaListType();
505
506  ASTContext::GetBuiltinTypeError Error;
507  QualType R = Context.GetBuiltinType(BID, Error);
508  switch (Error) {
509  case ASTContext::GE_None:
510    // Okay
511    break;
512
513  case ASTContext::GE_Missing_stdio:
514    if (ForRedeclaration)
515      Diag(Loc, diag::err_implicit_decl_requires_stdio)
516        << Context.BuiltinInfo.GetName(BID);
517    return 0;
518
519  case ASTContext::GE_Missing_setjmp:
520    if (ForRedeclaration)
521      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
522        << Context.BuiltinInfo.GetName(BID);
523    return 0;
524  }
525
526  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
527    Diag(Loc, diag::ext_implicit_lib_function_decl)
528      << Context.BuiltinInfo.GetName(BID)
529      << R;
530    if (Context.BuiltinInfo.getHeaderName(BID) &&
531        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
532          != Diagnostic::Ignored)
533      Diag(Loc, diag::note_please_include_header)
534        << Context.BuiltinInfo.getHeaderName(BID)
535        << Context.BuiltinInfo.GetName(BID);
536  }
537
538  FunctionDecl *New = FunctionDecl::Create(Context,
539                                           Context.getTranslationUnitDecl(),
540                                           Loc, II, R, /*DInfo=*/0,
541                                           FunctionDecl::Extern, false,
542                                           /*hasPrototype=*/true);
543  New->setImplicit();
544
545  // Create Decl objects for each parameter, adding them to the
546  // FunctionDecl.
547  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
548    llvm::SmallVector<ParmVarDecl*, 16> Params;
549    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
550      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
551                                           FT->getArgType(i), /*DInfo=*/0,
552                                           VarDecl::None, 0));
553    New->setParams(Context, Params.data(), Params.size());
554  }
555
556  AddKnownFunctionAttributes(New);
557
558  // TUScope is the translation-unit scope to insert this function into.
559  // FIXME: This is hideous. We need to teach PushOnScopeChains to
560  // relate Scopes to DeclContexts, and probably eliminate CurContext
561  // entirely, but we're not there yet.
562  DeclContext *SavedContext = CurContext;
563  CurContext = Context.getTranslationUnitDecl();
564  PushOnScopeChains(New, TUScope);
565  CurContext = SavedContext;
566  return New;
567}
568
569/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
570/// same name and scope as a previous declaration 'Old'.  Figure out
571/// how to resolve this situation, merging decls or emitting
572/// diagnostics as appropriate. If there was an error, set New to be invalid.
573///
574void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
575  // If either decl is known invalid already, set the new one to be invalid and
576  // don't bother doing any merging checks.
577  if (New->isInvalidDecl() || OldD->isInvalidDecl())
578    return New->setInvalidDecl();
579
580  // Allow multiple definitions for ObjC built-in typedefs.
581  // FIXME: Verify the underlying types are equivalent!
582  if (getLangOptions().ObjC1) {
583    const IdentifierInfo *TypeID = New->getIdentifier();
584    switch (TypeID->getLength()) {
585    default: break;
586    case 2:
587      if (!TypeID->isStr("id"))
588        break;
589      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
590      // Install the built-in type for 'id', ignoring the current definition.
591      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
592      return;
593    case 5:
594      if (!TypeID->isStr("Class"))
595        break;
596      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
597      // Install the built-in type for 'Class', ignoring the current definition.
598      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
599      return;
600    case 3:
601      if (!TypeID->isStr("SEL"))
602        break;
603      Context.setObjCSelType(Context.getTypeDeclType(New));
604      return;
605    case 8:
606      if (!TypeID->isStr("Protocol"))
607        break;
608      Context.setObjCProtoType(New->getUnderlyingType());
609      return;
610    }
611    // Fall through - the typedef name was not a builtin type.
612  }
613  // Verify the old decl was also a type.
614  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
615  if (!Old) {
616    Diag(New->getLocation(), diag::err_redefinition_different_kind)
617      << New->getDeclName();
618    if (OldD->getLocation().isValid())
619      Diag(OldD->getLocation(), diag::note_previous_definition);
620    return New->setInvalidDecl();
621  }
622
623  // Determine the "old" type we'll use for checking and diagnostics.
624  QualType OldType;
625  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
626    OldType = OldTypedef->getUnderlyingType();
627  else
628    OldType = Context.getTypeDeclType(Old);
629
630  // If the typedef types are not identical, reject them in all languages and
631  // with any extensions enabled.
632
633  if (OldType != New->getUnderlyingType() &&
634      Context.getCanonicalType(OldType) !=
635      Context.getCanonicalType(New->getUnderlyingType())) {
636    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
637      << New->getUnderlyingType() << OldType;
638    if (Old->getLocation().isValid())
639      Diag(Old->getLocation(), diag::note_previous_definition);
640    return New->setInvalidDecl();
641  }
642
643  if (getLangOptions().Microsoft)
644    return;
645
646  // C++ [dcl.typedef]p2:
647  //   In a given non-class scope, a typedef specifier can be used to
648  //   redefine the name of any type declared in that scope to refer
649  //   to the type to which it already refers.
650  if (getLangOptions().CPlusPlus) {
651    if (!isa<CXXRecordDecl>(CurContext))
652      return;
653    Diag(New->getLocation(), diag::err_redefinition)
654      << New->getDeclName();
655    Diag(Old->getLocation(), diag::note_previous_definition);
656    return New->setInvalidDecl();
657  }
658
659  // If we have a redefinition of a typedef in C, emit a warning.  This warning
660  // is normally mapped to an error, but can be controlled with
661  // -Wtypedef-redefinition.  If either the original or the redefinition is
662  // in a system header, don't emit this for compatibility with GCC.
663  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
664      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
665       Context.getSourceManager().isInSystemHeader(New->getLocation())))
666    return;
667
668  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
669    << New->getDeclName();
670  Diag(Old->getLocation(), diag::note_previous_definition);
671  return;
672}
673
674/// DeclhasAttr - returns true if decl Declaration already has the target
675/// attribute.
676static bool
677DeclHasAttr(const Decl *decl, const Attr *target) {
678  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
679    if (attr->getKind() == target->getKind())
680      return true;
681
682  return false;
683}
684
685/// MergeAttributes - append attributes from the Old decl to the New one.
686static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
687  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
688    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
689      Attr *NewAttr = attr->clone(C);
690      NewAttr->setInherited(true);
691      New->addAttr(NewAttr);
692    }
693  }
694}
695
696/// Used in MergeFunctionDecl to keep track of function parameters in
697/// C.
698struct GNUCompatibleParamWarning {
699  ParmVarDecl *OldParm;
700  ParmVarDecl *NewParm;
701  QualType PromotedType;
702};
703
704/// MergeFunctionDecl - We just parsed a function 'New' from
705/// declarator D which has the same name and scope as a previous
706/// declaration 'Old'.  Figure out how to resolve this situation,
707/// merging decls or emitting diagnostics as appropriate.
708///
709/// In C++, New and Old must be declarations that are not
710/// overloaded. Use IsOverload to determine whether New and Old are
711/// overloaded, and to select the Old declaration that New should be
712/// merged with.
713///
714/// Returns true if there was an error, false otherwise.
715bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
716  assert(!isa<OverloadedFunctionDecl>(OldD) &&
717         "Cannot merge with an overloaded function declaration");
718
719  // Verify the old decl was also a function.
720  FunctionDecl *Old = 0;
721  if (FunctionTemplateDecl *OldFunctionTemplate
722        = dyn_cast<FunctionTemplateDecl>(OldD))
723    Old = OldFunctionTemplate->getTemplatedDecl();
724  else
725    Old = dyn_cast<FunctionDecl>(OldD);
726  if (!Old) {
727    Diag(New->getLocation(), diag::err_redefinition_different_kind)
728      << New->getDeclName();
729    Diag(OldD->getLocation(), diag::note_previous_definition);
730    return true;
731  }
732
733  // Determine whether the previous declaration was a definition,
734  // implicit declaration, or a declaration.
735  diag::kind PrevDiag;
736  if (Old->isThisDeclarationADefinition())
737    PrevDiag = diag::note_previous_definition;
738  else if (Old->isImplicit())
739    PrevDiag = diag::note_previous_implicit_declaration;
740  else
741    PrevDiag = diag::note_previous_declaration;
742
743  QualType OldQType = Context.getCanonicalType(Old->getType());
744  QualType NewQType = Context.getCanonicalType(New->getType());
745
746  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
747      New->getStorageClass() == FunctionDecl::Static &&
748      Old->getStorageClass() != FunctionDecl::Static) {
749    Diag(New->getLocation(), diag::err_static_non_static)
750      << New;
751    Diag(Old->getLocation(), PrevDiag);
752    return true;
753  }
754
755  if (getLangOptions().CPlusPlus) {
756    // (C++98 13.1p2):
757    //   Certain function declarations cannot be overloaded:
758    //     -- Function declarations that differ only in the return type
759    //        cannot be overloaded.
760    QualType OldReturnType
761      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
762    QualType NewReturnType
763      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
764    if (OldReturnType != NewReturnType) {
765      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
766      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
767      return true;
768    }
769
770    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
771    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
772    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
773        NewMethod->getLexicalDeclContext()->isRecord()) {
774      //    -- Member function declarations with the same name and the
775      //       same parameter types cannot be overloaded if any of them
776      //       is a static member function declaration.
777      if (OldMethod->isStatic() || NewMethod->isStatic()) {
778        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
780        return true;
781      }
782
783      // C++ [class.mem]p1:
784      //   [...] A member shall not be declared twice in the
785      //   member-specification, except that a nested class or member
786      //   class template can be declared and then later defined.
787      unsigned NewDiag;
788      if (isa<CXXConstructorDecl>(OldMethod))
789        NewDiag = diag::err_constructor_redeclared;
790      else if (isa<CXXDestructorDecl>(NewMethod))
791        NewDiag = diag::err_destructor_redeclared;
792      else if (isa<CXXConversionDecl>(NewMethod))
793        NewDiag = diag::err_conv_function_redeclared;
794      else
795        NewDiag = diag::err_member_redeclared;
796
797      Diag(New->getLocation(), NewDiag);
798      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
799    }
800
801    // (C++98 8.3.5p3):
802    //   All declarations for a function shall agree exactly in both the
803    //   return type and the parameter-type-list.
804    if (OldQType == NewQType)
805      return MergeCompatibleFunctionDecls(New, Old);
806
807    // Fall through for conflicting redeclarations and redefinitions.
808  }
809
810  // C: Function types need to be compatible, not identical. This handles
811  // duplicate function decls like "void f(int); void f(enum X);" properly.
812  if (!getLangOptions().CPlusPlus &&
813      Context.typesAreCompatible(OldQType, NewQType)) {
814    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
815    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
816    const FunctionProtoType *OldProto = 0;
817    if (isa<FunctionNoProtoType>(NewFuncType) &&
818        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
819      // The old declaration provided a function prototype, but the
820      // new declaration does not. Merge in the prototype.
821      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
822      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
823                                                 OldProto->arg_type_end());
824      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
825                                         ParamTypes.data(), ParamTypes.size(),
826                                         OldProto->isVariadic(),
827                                         OldProto->getTypeQuals());
828      New->setType(NewQType);
829      New->setHasInheritedPrototype();
830
831      // Synthesize a parameter for each argument type.
832      llvm::SmallVector<ParmVarDecl*, 16> Params;
833      for (FunctionProtoType::arg_type_iterator
834             ParamType = OldProto->arg_type_begin(),
835             ParamEnd = OldProto->arg_type_end();
836           ParamType != ParamEnd; ++ParamType) {
837        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
838                                                 SourceLocation(), 0,
839                                                 *ParamType, /*DInfo=*/0,
840                                                 VarDecl::None, 0);
841        Param->setImplicit();
842        Params.push_back(Param);
843      }
844
845      New->setParams(Context, Params.data(), Params.size());
846    }
847
848    return MergeCompatibleFunctionDecls(New, Old);
849  }
850
851  // GNU C permits a K&R definition to follow a prototype declaration
852  // if the declared types of the parameters in the K&R definition
853  // match the types in the prototype declaration, even when the
854  // promoted types of the parameters from the K&R definition differ
855  // from the types in the prototype. GCC then keeps the types from
856  // the prototype.
857  //
858  // If a variadic prototype is followed by a non-variadic K&R definition,
859  // the K&R definition becomes variadic.  This is sort of an edge case, but
860  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
861  // C99 6.9.1p8.
862  if (!getLangOptions().CPlusPlus &&
863      Old->hasPrototype() && !New->hasPrototype() &&
864      New->getType()->getAs<FunctionProtoType>() &&
865      Old->getNumParams() == New->getNumParams()) {
866    llvm::SmallVector<QualType, 16> ArgTypes;
867    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
868    const FunctionProtoType *OldProto
869      = Old->getType()->getAs<FunctionProtoType>();
870    const FunctionProtoType *NewProto
871      = New->getType()->getAs<FunctionProtoType>();
872
873    // Determine whether this is the GNU C extension.
874    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
875                                               NewProto->getResultType());
876    bool LooseCompatible = !MergedReturn.isNull();
877    for (unsigned Idx = 0, End = Old->getNumParams();
878         LooseCompatible && Idx != End; ++Idx) {
879      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
880      ParmVarDecl *NewParm = New->getParamDecl(Idx);
881      if (Context.typesAreCompatible(OldParm->getType(),
882                                     NewProto->getArgType(Idx))) {
883        ArgTypes.push_back(NewParm->getType());
884      } else if (Context.typesAreCompatible(OldParm->getType(),
885                                            NewParm->getType())) {
886        GNUCompatibleParamWarning Warn
887          = { OldParm, NewParm, NewProto->getArgType(Idx) };
888        Warnings.push_back(Warn);
889        ArgTypes.push_back(NewParm->getType());
890      } else
891        LooseCompatible = false;
892    }
893
894    if (LooseCompatible) {
895      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
896        Diag(Warnings[Warn].NewParm->getLocation(),
897             diag::ext_param_promoted_not_compatible_with_prototype)
898          << Warnings[Warn].PromotedType
899          << Warnings[Warn].OldParm->getType();
900        Diag(Warnings[Warn].OldParm->getLocation(),
901             diag::note_previous_declaration);
902      }
903
904      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
905                                           ArgTypes.size(),
906                                           OldProto->isVariadic(), 0));
907      return MergeCompatibleFunctionDecls(New, Old);
908    }
909
910    // Fall through to diagnose conflicting types.
911  }
912
913  // A function that has already been declared has been redeclared or defined
914  // with a different type- show appropriate diagnostic
915  if (unsigned BuiltinID = Old->getBuiltinID()) {
916    // The user has declared a builtin function with an incompatible
917    // signature.
918    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
919      // The function the user is redeclaring is a library-defined
920      // function like 'malloc' or 'printf'. Warn about the
921      // redeclaration, then pretend that we don't know about this
922      // library built-in.
923      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
924      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
925        << Old << Old->getType();
926      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
927      Old->setInvalidDecl();
928      return false;
929    }
930
931    PrevDiag = diag::note_previous_builtin_declaration;
932  }
933
934  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
935  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
936  return true;
937}
938
939/// \brief Completes the merge of two function declarations that are
940/// known to be compatible.
941///
942/// This routine handles the merging of attributes and other
943/// properties of function declarations form the old declaration to
944/// the new declaration, once we know that New is in fact a
945/// redeclaration of Old.
946///
947/// \returns false
948bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
949  // Merge the attributes
950  MergeAttributes(New, Old, Context);
951
952  // Merge the storage class.
953  if (Old->getStorageClass() != FunctionDecl::Extern &&
954      Old->getStorageClass() != FunctionDecl::None)
955    New->setStorageClass(Old->getStorageClass());
956
957  // Merge "pure" flag.
958  if (Old->isPure())
959    New->setPure();
960
961  // Merge the "deleted" flag.
962  if (Old->isDeleted())
963    New->setDeleted();
964
965  if (getLangOptions().CPlusPlus)
966    return MergeCXXFunctionDecl(New, Old);
967
968  return false;
969}
970
971/// MergeVarDecl - We just parsed a variable 'New' which has the same name
972/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
973/// situation, merging decls or emitting diagnostics as appropriate.
974///
975/// Tentative definition rules (C99 6.9.2p2) are checked by
976/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
977/// definitions here, since the initializer hasn't been attached.
978///
979void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
980  // If either decl is invalid, make sure the new one is marked invalid and
981  // don't do any other checking.
982  if (New->isInvalidDecl() || OldD->isInvalidDecl())
983    return New->setInvalidDecl();
984
985  // Verify the old decl was also a variable.
986  VarDecl *Old = dyn_cast<VarDecl>(OldD);
987  if (!Old) {
988    Diag(New->getLocation(), diag::err_redefinition_different_kind)
989      << New->getDeclName();
990    Diag(OldD->getLocation(), diag::note_previous_definition);
991    return New->setInvalidDecl();
992  }
993
994  MergeAttributes(New, Old, Context);
995
996  // Merge the types
997  QualType MergedT;
998  if (getLangOptions().CPlusPlus) {
999    if (Context.hasSameType(New->getType(), Old->getType()))
1000      MergedT = New->getType();
1001    // C++ [basic.types]p7:
1002    //   [...] The declared type of an array object might be an array of
1003    //   unknown size and therefore be incomplete at one point in a
1004    //   translation unit and complete later on; [...]
1005    else if (Old->getType()->isIncompleteArrayType() &&
1006             New->getType()->isArrayType()) {
1007      CanQual<ArrayType> OldArray
1008        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1009      CanQual<ArrayType> NewArray
1010        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1011      if (OldArray->getElementType() == NewArray->getElementType())
1012        MergedT = New->getType();
1013    }
1014  } else {
1015    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1016  }
1017  if (MergedT.isNull()) {
1018    Diag(New->getLocation(), diag::err_redefinition_different_type)
1019      << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021    return New->setInvalidDecl();
1022  }
1023  New->setType(MergedT);
1024
1025  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1026  if (New->getStorageClass() == VarDecl::Static &&
1027      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1028    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1029    Diag(Old->getLocation(), diag::note_previous_definition);
1030    return New->setInvalidDecl();
1031  }
1032  // C99 6.2.2p4:
1033  //   For an identifier declared with the storage-class specifier
1034  //   extern in a scope in which a prior declaration of that
1035  //   identifier is visible,23) if the prior declaration specifies
1036  //   internal or external linkage, the linkage of the identifier at
1037  //   the later declaration is the same as the linkage specified at
1038  //   the prior declaration. If no prior declaration is visible, or
1039  //   if the prior declaration specifies no linkage, then the
1040  //   identifier has external linkage.
1041  if (New->hasExternalStorage() && Old->hasLinkage())
1042    /* Okay */;
1043  else if (New->getStorageClass() != VarDecl::Static &&
1044           Old->getStorageClass() == VarDecl::Static) {
1045    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1046    Diag(Old->getLocation(), diag::note_previous_definition);
1047    return New->setInvalidDecl();
1048  }
1049
1050  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1051
1052  // FIXME: The test for external storage here seems wrong? We still
1053  // need to check for mismatches.
1054  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1055      // Don't complain about out-of-line definitions of static members.
1056      !(Old->getLexicalDeclContext()->isRecord() &&
1057        !New->getLexicalDeclContext()->isRecord())) {
1058    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1059    Diag(Old->getLocation(), diag::note_previous_definition);
1060    return New->setInvalidDecl();
1061  }
1062
1063  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1064    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1065    Diag(Old->getLocation(), diag::note_previous_definition);
1066  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1067    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1068    Diag(Old->getLocation(), diag::note_previous_definition);
1069  }
1070
1071  // Keep a chain of previous declarations.
1072  New->setPreviousDeclaration(Old);
1073}
1074
1075/// CheckFallThrough - Check that we don't fall off the end of a
1076/// Statement that should return a value.
1077///
1078/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1079/// MaybeFallThrough iff we might or might not fall off the end,
1080/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1081/// return.  We assume NeverFallThrough iff we never fall off the end of the
1082/// statement but we may return.  We assume that functions not marked noreturn
1083/// will return.
1084Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1085  // FIXME: Eventually share this CFG object when we have other warnings based
1086  // of the CFG.  This can be done using AnalysisContext.
1087  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1088
1089  // FIXME: They should never return 0, fix that, delete this code.
1090  if (cfg == 0)
1091    // FIXME: This should be NeverFallThrough
1092    return NeverFallThroughOrReturn;
1093  // The CFG leaves in dead things, and we don't want to dead code paths to
1094  // confuse us, so we mark all live things first.
1095  std::queue<CFGBlock*> workq;
1096  llvm::BitVector live(cfg->getNumBlockIDs());
1097  // Prep work queue
1098  workq.push(&cfg->getEntry());
1099  // Solve
1100  while (!workq.empty()) {
1101    CFGBlock *item = workq.front();
1102    workq.pop();
1103    live.set(item->getBlockID());
1104    for (CFGBlock::succ_iterator I=item->succ_begin(),
1105           E=item->succ_end();
1106         I != E;
1107         ++I) {
1108      if ((*I) && !live[(*I)->getBlockID()]) {
1109        live.set((*I)->getBlockID());
1110        workq.push(*I);
1111      }
1112    }
1113  }
1114
1115  // Now we know what is live, we check the live precessors of the exit block
1116  // and look for fall through paths, being careful to ignore normal returns,
1117  // and exceptional paths.
1118  bool HasLiveReturn = false;
1119  bool HasFakeEdge = false;
1120  bool HasPlainEdge = false;
1121  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1122         E = cfg->getExit().pred_end();
1123       I != E;
1124       ++I) {
1125    CFGBlock& B = **I;
1126    if (!live[B.getBlockID()])
1127      continue;
1128    if (B.size() == 0) {
1129      // A labeled empty statement, or the entry block...
1130      HasPlainEdge = true;
1131      continue;
1132    }
1133    Stmt *S = B[B.size()-1];
1134    if (isa<ReturnStmt>(S)) {
1135      HasLiveReturn = true;
1136      continue;
1137    }
1138    if (isa<ObjCAtThrowStmt>(S)) {
1139      HasFakeEdge = true;
1140      continue;
1141    }
1142    if (isa<CXXThrowExpr>(S)) {
1143      HasFakeEdge = true;
1144      continue;
1145    }
1146    bool NoReturnEdge = false;
1147    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1148      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1149      if (CEE->getType().getNoReturnAttr()) {
1150        NoReturnEdge = true;
1151        HasFakeEdge = true;
1152      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1153        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1154          if (FD->hasAttr<NoReturnAttr>()) {
1155            NoReturnEdge = true;
1156            HasFakeEdge = true;
1157          }
1158        }
1159      }
1160    }
1161    // FIXME: Add noreturn message sends.
1162    if (NoReturnEdge == false)
1163      HasPlainEdge = true;
1164  }
1165  if (!HasPlainEdge) {
1166    if (HasLiveReturn)
1167      return NeverFallThrough;
1168    return NeverFallThroughOrReturn;
1169  }
1170  if (HasFakeEdge || HasLiveReturn)
1171    return MaybeFallThrough;
1172  // This says AlwaysFallThrough for calls to functions that are not marked
1173  // noreturn, that don't return.  If people would like this warning to be more
1174  // accurate, such functions should be marked as noreturn.
1175  return AlwaysFallThrough;
1176}
1177
1178/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1179/// function that should return a value.  Check that we don't fall off the end
1180/// of a noreturn function.  We assume that functions and blocks not marked
1181/// noreturn will return.
1182void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1183  // FIXME: Would be nice if we had a better way to control cascading errors,
1184  // but for now, avoid them.  The problem is that when Parse sees:
1185  //   int foo() { return a; }
1186  // The return is eaten and the Sema code sees just:
1187  //   int foo() { }
1188  // which this code would then warn about.
1189  if (getDiagnostics().hasErrorOccurred())
1190    return;
1191
1192  bool ReturnsVoid = false;
1193  bool HasNoReturn = false;
1194  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1195    // If the result type of the function is a dependent type, we don't know
1196    // whether it will be void or not, so don't
1197    if (FD->getResultType()->isDependentType())
1198      return;
1199    if (FD->getResultType()->isVoidType())
1200      ReturnsVoid = true;
1201    if (FD->hasAttr<NoReturnAttr>())
1202      HasNoReturn = true;
1203  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1204    if (MD->getResultType()->isVoidType())
1205      ReturnsVoid = true;
1206    if (MD->hasAttr<NoReturnAttr>())
1207      HasNoReturn = true;
1208  }
1209
1210  // Short circuit for compilation speed.
1211  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1212       == Diagnostic::Ignored || ReturnsVoid)
1213      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1214          == Diagnostic::Ignored || !HasNoReturn)
1215      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1216          == Diagnostic::Ignored || !ReturnsVoid))
1217    return;
1218  // FIXME: Function try block
1219  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1220    switch (CheckFallThrough(Body)) {
1221    case MaybeFallThrough:
1222      if (HasNoReturn)
1223        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1224      else if (!ReturnsVoid)
1225        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1226      break;
1227    case AlwaysFallThrough:
1228      if (HasNoReturn)
1229        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1230      else if (!ReturnsVoid)
1231        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1232      break;
1233    case NeverFallThroughOrReturn:
1234      if (ReturnsVoid && !HasNoReturn)
1235        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1236      break;
1237    case NeverFallThrough:
1238      break;
1239    }
1240  }
1241}
1242
1243/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1244/// that should return a value.  Check that we don't fall off the end of a
1245/// noreturn block.  We assume that functions and blocks not marked noreturn
1246/// will return.
1247void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1248  // FIXME: Would be nice if we had a better way to control cascading errors,
1249  // but for now, avoid them.  The problem is that when Parse sees:
1250  //   int foo() { return a; }
1251  // The return is eaten and the Sema code sees just:
1252  //   int foo() { }
1253  // which this code would then warn about.
1254  if (getDiagnostics().hasErrorOccurred())
1255    return;
1256  bool ReturnsVoid = false;
1257  bool HasNoReturn = false;
1258  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1259    if (FT->getResultType()->isVoidType())
1260      ReturnsVoid = true;
1261    if (FT->getNoReturnAttr())
1262      HasNoReturn = true;
1263  }
1264
1265  // Short circuit for compilation speed.
1266  if (ReturnsVoid
1267      && !HasNoReturn
1268      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1269          == Diagnostic::Ignored || !ReturnsVoid))
1270    return;
1271  // FIXME: Funtion try block
1272  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1273    switch (CheckFallThrough(Body)) {
1274    case MaybeFallThrough:
1275      if (HasNoReturn)
1276        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1277      else if (!ReturnsVoid)
1278        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1279      break;
1280    case AlwaysFallThrough:
1281      if (HasNoReturn)
1282        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1283      else if (!ReturnsVoid)
1284        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1285      break;
1286    case NeverFallThroughOrReturn:
1287      if (ReturnsVoid)
1288        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1289      break;
1290    case NeverFallThrough:
1291      break;
1292    }
1293  }
1294}
1295
1296/// CheckParmsForFunctionDef - Check that the parameters of the given
1297/// function are appropriate for the definition of a function. This
1298/// takes care of any checks that cannot be performed on the
1299/// declaration itself, e.g., that the types of each of the function
1300/// parameters are complete.
1301bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1302  bool HasInvalidParm = false;
1303  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1304    ParmVarDecl *Param = FD->getParamDecl(p);
1305
1306    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1307    // function declarator that is part of a function definition of
1308    // that function shall not have incomplete type.
1309    //
1310    // This is also C++ [dcl.fct]p6.
1311    if (!Param->isInvalidDecl() &&
1312        RequireCompleteType(Param->getLocation(), Param->getType(),
1313                               diag::err_typecheck_decl_incomplete_type)) {
1314      Param->setInvalidDecl();
1315      HasInvalidParm = true;
1316    }
1317
1318    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1319    // declaration of each parameter shall include an identifier.
1320    if (Param->getIdentifier() == 0 &&
1321        !Param->isImplicit() &&
1322        !getLangOptions().CPlusPlus)
1323      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1324  }
1325
1326  return HasInvalidParm;
1327}
1328
1329/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1330/// no declarator (e.g. "struct foo;") is parsed.
1331Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1332  // FIXME: Error on auto/register at file scope
1333  // FIXME: Error on inline/virtual/explicit
1334  // FIXME: Error on invalid restrict
1335  // FIXME: Warn on useless __thread
1336  // FIXME: Warn on useless const/volatile
1337  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1338  // FIXME: Warn on useless attributes
1339  Decl *TagD = 0;
1340  TagDecl *Tag = 0;
1341  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1342      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1343      DS.getTypeSpecType() == DeclSpec::TST_union ||
1344      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1345    TagD = static_cast<Decl *>(DS.getTypeRep());
1346
1347    if (!TagD) // We probably had an error
1348      return DeclPtrTy();
1349
1350    // Note that the above type specs guarantee that the
1351    // type rep is a Decl, whereas in many of the others
1352    // it's a Type.
1353    Tag = dyn_cast<TagDecl>(TagD);
1354  }
1355
1356  if (DS.isFriendSpecified()) {
1357    // If we're dealing with a class template decl, assume that the
1358    // template routines are handling it.
1359    if (TagD && isa<ClassTemplateDecl>(TagD))
1360      return DeclPtrTy();
1361    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1362  }
1363
1364  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1365    // If there are attributes in the DeclSpec, apply them to the record.
1366    if (const AttributeList *AL = DS.getAttributes())
1367      ProcessDeclAttributeList(S, Record, AL);
1368
1369    if (!Record->getDeclName() && Record->isDefinition() &&
1370        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1371      if (getLangOptions().CPlusPlus ||
1372          Record->getDeclContext()->isRecord())
1373        return BuildAnonymousStructOrUnion(S, DS, Record);
1374
1375      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1376        << DS.getSourceRange();
1377    }
1378
1379    // Microsoft allows unnamed struct/union fields. Don't complain
1380    // about them.
1381    // FIXME: Should we support Microsoft's extensions in this area?
1382    if (Record->getDeclName() && getLangOptions().Microsoft)
1383      return DeclPtrTy::make(Tag);
1384  }
1385
1386  if (!DS.isMissingDeclaratorOk() &&
1387      DS.getTypeSpecType() != DeclSpec::TST_error) {
1388    // Warn about typedefs of enums without names, since this is an
1389    // extension in both Microsoft an GNU.
1390    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1391        Tag && isa<EnumDecl>(Tag)) {
1392      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1393        << DS.getSourceRange();
1394      return DeclPtrTy::make(Tag);
1395    }
1396
1397    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1398      << DS.getSourceRange();
1399    return DeclPtrTy();
1400  }
1401
1402  return DeclPtrTy::make(Tag);
1403}
1404
1405/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1406/// anonymous struct or union AnonRecord into the owning context Owner
1407/// and scope S. This routine will be invoked just after we realize
1408/// that an unnamed union or struct is actually an anonymous union or
1409/// struct, e.g.,
1410///
1411/// @code
1412/// union {
1413///   int i;
1414///   float f;
1415/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1416///    // f into the surrounding scope.x
1417/// @endcode
1418///
1419/// This routine is recursive, injecting the names of nested anonymous
1420/// structs/unions into the owning context and scope as well.
1421bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1422                                               RecordDecl *AnonRecord) {
1423  bool Invalid = false;
1424  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1425                               FEnd = AnonRecord->field_end();
1426       F != FEnd; ++F) {
1427    if ((*F)->getDeclName()) {
1428      LookupResult R(*this, (*F)->getDeclName(), SourceLocation(),
1429                     LookupOrdinaryName, LookupResult::ForRedeclaration);
1430      LookupQualifiedName(R, Owner);
1431      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1432      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1433        // C++ [class.union]p2:
1434        //   The names of the members of an anonymous union shall be
1435        //   distinct from the names of any other entity in the
1436        //   scope in which the anonymous union is declared.
1437        unsigned diagKind
1438          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1439                                 : diag::err_anonymous_struct_member_redecl;
1440        Diag((*F)->getLocation(), diagKind)
1441          << (*F)->getDeclName();
1442        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1443        Invalid = true;
1444      } else {
1445        // C++ [class.union]p2:
1446        //   For the purpose of name lookup, after the anonymous union
1447        //   definition, the members of the anonymous union are
1448        //   considered to have been defined in the scope in which the
1449        //   anonymous union is declared.
1450        Owner->makeDeclVisibleInContext(*F);
1451        S->AddDecl(DeclPtrTy::make(*F));
1452        IdResolver.AddDecl(*F);
1453      }
1454    } else if (const RecordType *InnerRecordType
1455                 = (*F)->getType()->getAs<RecordType>()) {
1456      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1457      if (InnerRecord->isAnonymousStructOrUnion())
1458        Invalid = Invalid ||
1459          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1460    }
1461  }
1462
1463  return Invalid;
1464}
1465
1466/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1467/// anonymous structure or union. Anonymous unions are a C++ feature
1468/// (C++ [class.union]) and a GNU C extension; anonymous structures
1469/// are a GNU C and GNU C++ extension.
1470Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1471                                                  RecordDecl *Record) {
1472  DeclContext *Owner = Record->getDeclContext();
1473
1474  // Diagnose whether this anonymous struct/union is an extension.
1475  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1476    Diag(Record->getLocation(), diag::ext_anonymous_union);
1477  else if (!Record->isUnion())
1478    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1479
1480  // C and C++ require different kinds of checks for anonymous
1481  // structs/unions.
1482  bool Invalid = false;
1483  if (getLangOptions().CPlusPlus) {
1484    const char* PrevSpec = 0;
1485    unsigned DiagID;
1486    // C++ [class.union]p3:
1487    //   Anonymous unions declared in a named namespace or in the
1488    //   global namespace shall be declared static.
1489    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1490        (isa<TranslationUnitDecl>(Owner) ||
1491         (isa<NamespaceDecl>(Owner) &&
1492          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1493      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1494      Invalid = true;
1495
1496      // Recover by adding 'static'.
1497      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1498                             PrevSpec, DiagID);
1499    }
1500    // C++ [class.union]p3:
1501    //   A storage class is not allowed in a declaration of an
1502    //   anonymous union in a class scope.
1503    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1504             isa<RecordDecl>(Owner)) {
1505      Diag(DS.getStorageClassSpecLoc(),
1506           diag::err_anonymous_union_with_storage_spec);
1507      Invalid = true;
1508
1509      // Recover by removing the storage specifier.
1510      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1511                             PrevSpec, DiagID);
1512    }
1513
1514    // C++ [class.union]p2:
1515    //   The member-specification of an anonymous union shall only
1516    //   define non-static data members. [Note: nested types and
1517    //   functions cannot be declared within an anonymous union. ]
1518    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1519                                 MemEnd = Record->decls_end();
1520         Mem != MemEnd; ++Mem) {
1521      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1522        // C++ [class.union]p3:
1523        //   An anonymous union shall not have private or protected
1524        //   members (clause 11).
1525        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1526          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1527            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1528          Invalid = true;
1529        }
1530      } else if ((*Mem)->isImplicit()) {
1531        // Any implicit members are fine.
1532      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1533        // This is a type that showed up in an
1534        // elaborated-type-specifier inside the anonymous struct or
1535        // union, but which actually declares a type outside of the
1536        // anonymous struct or union. It's okay.
1537      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1538        if (!MemRecord->isAnonymousStructOrUnion() &&
1539            MemRecord->getDeclName()) {
1540          // This is a nested type declaration.
1541          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1542            << (int)Record->isUnion();
1543          Invalid = true;
1544        }
1545      } else {
1546        // We have something that isn't a non-static data
1547        // member. Complain about it.
1548        unsigned DK = diag::err_anonymous_record_bad_member;
1549        if (isa<TypeDecl>(*Mem))
1550          DK = diag::err_anonymous_record_with_type;
1551        else if (isa<FunctionDecl>(*Mem))
1552          DK = diag::err_anonymous_record_with_function;
1553        else if (isa<VarDecl>(*Mem))
1554          DK = diag::err_anonymous_record_with_static;
1555        Diag((*Mem)->getLocation(), DK)
1556            << (int)Record->isUnion();
1557          Invalid = true;
1558      }
1559    }
1560  }
1561
1562  if (!Record->isUnion() && !Owner->isRecord()) {
1563    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1564      << (int)getLangOptions().CPlusPlus;
1565    Invalid = true;
1566  }
1567
1568  // Mock up a declarator.
1569  Declarator Dc(DS, Declarator::TypeNameContext);
1570  DeclaratorInfo *DInfo = 0;
1571  GetTypeForDeclarator(Dc, S, &DInfo);
1572  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1573
1574  // Create a declaration for this anonymous struct/union.
1575  NamedDecl *Anon = 0;
1576  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1577    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1578                             /*IdentifierInfo=*/0,
1579                             Context.getTypeDeclType(Record),
1580                             DInfo,
1581                             /*BitWidth=*/0, /*Mutable=*/false);
1582    Anon->setAccess(AS_public);
1583    if (getLangOptions().CPlusPlus)
1584      FieldCollector->Add(cast<FieldDecl>(Anon));
1585  } else {
1586    VarDecl::StorageClass SC;
1587    switch (DS.getStorageClassSpec()) {
1588    default: assert(0 && "Unknown storage class!");
1589    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1590    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1591    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1592    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1593    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1594    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1595    case DeclSpec::SCS_mutable:
1596      // mutable can only appear on non-static class members, so it's always
1597      // an error here
1598      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1599      Invalid = true;
1600      SC = VarDecl::None;
1601      break;
1602    }
1603
1604    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1605                           /*IdentifierInfo=*/0,
1606                           Context.getTypeDeclType(Record),
1607                           DInfo,
1608                           SC);
1609  }
1610  Anon->setImplicit();
1611
1612  // Add the anonymous struct/union object to the current
1613  // context. We'll be referencing this object when we refer to one of
1614  // its members.
1615  Owner->addDecl(Anon);
1616
1617  // Inject the members of the anonymous struct/union into the owning
1618  // context and into the identifier resolver chain for name lookup
1619  // purposes.
1620  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1621    Invalid = true;
1622
1623  // Mark this as an anonymous struct/union type. Note that we do not
1624  // do this until after we have already checked and injected the
1625  // members of this anonymous struct/union type, because otherwise
1626  // the members could be injected twice: once by DeclContext when it
1627  // builds its lookup table, and once by
1628  // InjectAnonymousStructOrUnionMembers.
1629  Record->setAnonymousStructOrUnion(true);
1630
1631  if (Invalid)
1632    Anon->setInvalidDecl();
1633
1634  return DeclPtrTy::make(Anon);
1635}
1636
1637
1638/// GetNameForDeclarator - Determine the full declaration name for the
1639/// given Declarator.
1640DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1641  return GetNameFromUnqualifiedId(D.getName());
1642}
1643
1644/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1645DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1646  switch (Name.getKind()) {
1647    case UnqualifiedId::IK_Identifier:
1648      return DeclarationName(Name.Identifier);
1649
1650    case UnqualifiedId::IK_OperatorFunctionId:
1651      return Context.DeclarationNames.getCXXOperatorName(
1652                                                         Name.OperatorFunctionId.Operator);
1653
1654    case UnqualifiedId::IK_ConversionFunctionId: {
1655      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1656      if (Ty.isNull())
1657        return DeclarationName();
1658
1659      return Context.DeclarationNames.getCXXConversionFunctionName(
1660                                                                   Context.getCanonicalType(Ty));
1661    }
1662
1663    case UnqualifiedId::IK_ConstructorName: {
1664      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1665      if (Ty.isNull())
1666        return DeclarationName();
1667
1668      return Context.DeclarationNames.getCXXConstructorName(
1669                                                            Context.getCanonicalType(Ty));
1670    }
1671
1672    case UnqualifiedId::IK_DestructorName: {
1673      QualType Ty = GetTypeFromParser(Name.DestructorName);
1674      if (Ty.isNull())
1675        return DeclarationName();
1676
1677      return Context.DeclarationNames.getCXXDestructorName(
1678                                                           Context.getCanonicalType(Ty));
1679    }
1680
1681    case UnqualifiedId::IK_TemplateId: {
1682      TemplateName TName
1683        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1684      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1685        return Template->getDeclName();
1686      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1687        return Ovl->getDeclName();
1688
1689      return DeclarationName();
1690    }
1691  }
1692
1693  assert(false && "Unknown name kind");
1694  return DeclarationName();
1695}
1696
1697/// isNearlyMatchingFunction - Determine whether the C++ functions
1698/// Declaration and Definition are "nearly" matching. This heuristic
1699/// is used to improve diagnostics in the case where an out-of-line
1700/// function definition doesn't match any declaration within
1701/// the class or namespace.
1702static bool isNearlyMatchingFunction(ASTContext &Context,
1703                                     FunctionDecl *Declaration,
1704                                     FunctionDecl *Definition) {
1705  if (Declaration->param_size() != Definition->param_size())
1706    return false;
1707  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1708    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1709    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1710
1711    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1712                                        DefParamTy.getNonReferenceType()))
1713      return false;
1714  }
1715
1716  return true;
1717}
1718
1719Sema::DeclPtrTy
1720Sema::HandleDeclarator(Scope *S, Declarator &D,
1721                       MultiTemplateParamsArg TemplateParamLists,
1722                       bool IsFunctionDefinition) {
1723  DeclarationName Name = GetNameForDeclarator(D);
1724
1725  // All of these full declarators require an identifier.  If it doesn't have
1726  // one, the ParsedFreeStandingDeclSpec action should be used.
1727  if (!Name) {
1728    if (!D.isInvalidType())  // Reject this if we think it is valid.
1729      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1730           diag::err_declarator_need_ident)
1731        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1732    return DeclPtrTy();
1733  }
1734
1735  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1736  // we find one that is.
1737  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1738         (S->getFlags() & Scope::TemplateParamScope) != 0)
1739    S = S->getParent();
1740
1741  // If this is an out-of-line definition of a member of a class template
1742  // or class template partial specialization, we may need to rebuild the
1743  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1744  // for more information.
1745  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1746  // handle expressions properly.
1747  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1748  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1749      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1750      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1751       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1752       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1753       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1754    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1755      // FIXME: Preserve type source info.
1756      QualType T = GetTypeFromParser(DS.getTypeRep());
1757      EnterDeclaratorContext(S, DC);
1758      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1759      ExitDeclaratorContext(S);
1760      if (T.isNull())
1761        return DeclPtrTy();
1762      DS.UpdateTypeRep(T.getAsOpaquePtr());
1763    }
1764  }
1765
1766  DeclContext *DC;
1767  NamedDecl *PrevDecl;
1768  NamedDecl *New;
1769
1770  DeclaratorInfo *DInfo = 0;
1771  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1772
1773  // See if this is a redefinition of a variable in the same scope.
1774  if (D.getCXXScopeSpec().isInvalid()) {
1775    DC = CurContext;
1776    PrevDecl = 0;
1777    D.setInvalidType();
1778  } else if (!D.getCXXScopeSpec().isSet()) {
1779    LookupNameKind NameKind = LookupOrdinaryName;
1780
1781    // If the declaration we're planning to build will be a function
1782    // or object with linkage, then look for another declaration with
1783    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1784    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1785      /* Do nothing*/;
1786    else if (R->isFunctionType()) {
1787      if (CurContext->isFunctionOrMethod() ||
1788          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1789        NameKind = LookupRedeclarationWithLinkage;
1790    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1791      NameKind = LookupRedeclarationWithLinkage;
1792    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1793             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1794      NameKind = LookupRedeclarationWithLinkage;
1795
1796    DC = CurContext;
1797    LookupResult R(*this, Name, D.getIdentifierLoc(), NameKind,
1798                   LookupResult::ForRedeclaration);
1799
1800    LookupName(R, S, NameKind == LookupRedeclarationWithLinkage);
1801    PrevDecl = R.getAsSingleDecl(Context);
1802  } else { // Something like "int foo::x;"
1803    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1804
1805    if (!DC) {
1806      // If we could not compute the declaration context, it's because the
1807      // declaration context is dependent but does not refer to a class,
1808      // class template, or class template partial specialization. Complain
1809      // and return early, to avoid the coming semantic disaster.
1810      Diag(D.getIdentifierLoc(),
1811           diag::err_template_qualified_declarator_no_match)
1812        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1813        << D.getCXXScopeSpec().getRange();
1814      return DeclPtrTy();
1815    }
1816
1817    if (!DC->isDependentContext() &&
1818        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1819      return DeclPtrTy();
1820
1821    LookupResult Res(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1822                     LookupResult::ForRedeclaration);
1823    LookupQualifiedName(Res, DC);
1824    PrevDecl = Res.getAsSingleDecl(Context);
1825
1826    // C++ 7.3.1.2p2:
1827    // Members (including explicit specializations of templates) of a named
1828    // namespace can also be defined outside that namespace by explicit
1829    // qualification of the name being defined, provided that the entity being
1830    // defined was already declared in the namespace and the definition appears
1831    // after the point of declaration in a namespace that encloses the
1832    // declarations namespace.
1833    //
1834    // Note that we only check the context at this point. We don't yet
1835    // have enough information to make sure that PrevDecl is actually
1836    // the declaration we want to match. For example, given:
1837    //
1838    //   class X {
1839    //     void f();
1840    //     void f(float);
1841    //   };
1842    //
1843    //   void X::f(int) { } // ill-formed
1844    //
1845    // In this case, PrevDecl will point to the overload set
1846    // containing the two f's declared in X, but neither of them
1847    // matches.
1848
1849    // First check whether we named the global scope.
1850    if (isa<TranslationUnitDecl>(DC)) {
1851      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1852        << Name << D.getCXXScopeSpec().getRange();
1853    } else {
1854      DeclContext *Cur = CurContext;
1855      while (isa<LinkageSpecDecl>(Cur))
1856        Cur = Cur->getParent();
1857      if (!Cur->Encloses(DC)) {
1858        // The qualifying scope doesn't enclose the original declaration.
1859        // Emit diagnostic based on current scope.
1860        SourceLocation L = D.getIdentifierLoc();
1861        SourceRange R = D.getCXXScopeSpec().getRange();
1862        if (isa<FunctionDecl>(Cur))
1863          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1864        else
1865          Diag(L, diag::err_invalid_declarator_scope)
1866            << Name << cast<NamedDecl>(DC) << R;
1867        D.setInvalidType();
1868      }
1869    }
1870  }
1871
1872  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1873    // Maybe we will complain about the shadowed template parameter.
1874    if (!D.isInvalidType())
1875      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1876        D.setInvalidType();
1877
1878    // Just pretend that we didn't see the previous declaration.
1879    PrevDecl = 0;
1880  }
1881
1882  // In C++, the previous declaration we find might be a tag type
1883  // (class or enum). In this case, the new declaration will hide the
1884  // tag type. Note that this does does not apply if we're declaring a
1885  // typedef (C++ [dcl.typedef]p4).
1886  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1887      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1888    PrevDecl = 0;
1889
1890  bool Redeclaration = false;
1891  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1892    if (TemplateParamLists.size()) {
1893      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1894      return DeclPtrTy();
1895    }
1896
1897    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1898  } else if (R->isFunctionType()) {
1899    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1900                                  move(TemplateParamLists),
1901                                  IsFunctionDefinition, Redeclaration);
1902  } else {
1903    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1904                                  move(TemplateParamLists),
1905                                  Redeclaration);
1906  }
1907
1908  if (New == 0)
1909    return DeclPtrTy();
1910
1911  // If this has an identifier and is not an invalid redeclaration or
1912  // function template specialization, add it to the scope stack.
1913  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1914      !(isa<FunctionDecl>(New) &&
1915        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1916    PushOnScopeChains(New, S);
1917
1918  return DeclPtrTy::make(New);
1919}
1920
1921/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1922/// types into constant array types in certain situations which would otherwise
1923/// be errors (for GCC compatibility).
1924static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1925                                                    ASTContext &Context,
1926                                                    bool &SizeIsNegative) {
1927  // This method tries to turn a variable array into a constant
1928  // array even when the size isn't an ICE.  This is necessary
1929  // for compatibility with code that depends on gcc's buggy
1930  // constant expression folding, like struct {char x[(int)(char*)2];}
1931  SizeIsNegative = false;
1932
1933  QualifierCollector Qs;
1934  const Type *Ty = Qs.strip(T);
1935
1936  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1937    QualType Pointee = PTy->getPointeeType();
1938    QualType FixedType =
1939        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1940    if (FixedType.isNull()) return FixedType;
1941    FixedType = Context.getPointerType(FixedType);
1942    return Qs.apply(FixedType);
1943  }
1944
1945  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1946  if (!VLATy)
1947    return QualType();
1948  // FIXME: We should probably handle this case
1949  if (VLATy->getElementType()->isVariablyModifiedType())
1950    return QualType();
1951
1952  Expr::EvalResult EvalResult;
1953  if (!VLATy->getSizeExpr() ||
1954      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1955      !EvalResult.Val.isInt())
1956    return QualType();
1957
1958  llvm::APSInt &Res = EvalResult.Val.getInt();
1959  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1960    // TODO: preserve the size expression in declarator info
1961    return Context.getConstantArrayType(VLATy->getElementType(),
1962                                        Res, ArrayType::Normal, 0);
1963  }
1964
1965  SizeIsNegative = true;
1966  return QualType();
1967}
1968
1969/// \brief Register the given locally-scoped external C declaration so
1970/// that it can be found later for redeclarations
1971void
1972Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1973                                       Scope *S) {
1974  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1975         "Decl is not a locally-scoped decl!");
1976  // Note that we have a locally-scoped external with this name.
1977  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1978
1979  if (!PrevDecl)
1980    return;
1981
1982  // If there was a previous declaration of this variable, it may be
1983  // in our identifier chain. Update the identifier chain with the new
1984  // declaration.
1985  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1986    // The previous declaration was found on the identifer resolver
1987    // chain, so remove it from its scope.
1988    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1989      S = S->getParent();
1990
1991    if (S)
1992      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1993  }
1994}
1995
1996/// \brief Diagnose function specifiers on a declaration of an identifier that
1997/// does not identify a function.
1998void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1999  // FIXME: We should probably indicate the identifier in question to avoid
2000  // confusion for constructs like "inline int a(), b;"
2001  if (D.getDeclSpec().isInlineSpecified())
2002    Diag(D.getDeclSpec().getInlineSpecLoc(),
2003         diag::err_inline_non_function);
2004
2005  if (D.getDeclSpec().isVirtualSpecified())
2006    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2007         diag::err_virtual_non_function);
2008
2009  if (D.getDeclSpec().isExplicitSpecified())
2010    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2011         diag::err_explicit_non_function);
2012}
2013
2014NamedDecl*
2015Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2016                             QualType R,  DeclaratorInfo *DInfo,
2017                             NamedDecl* PrevDecl, bool &Redeclaration) {
2018  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2019  if (D.getCXXScopeSpec().isSet()) {
2020    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2021      << D.getCXXScopeSpec().getRange();
2022    D.setInvalidType();
2023    // Pretend we didn't see the scope specifier.
2024    DC = 0;
2025  }
2026
2027  if (getLangOptions().CPlusPlus) {
2028    // Check that there are no default arguments (C++ only).
2029    CheckExtraCXXDefaultArguments(D);
2030  }
2031
2032  DiagnoseFunctionSpecifiers(D);
2033
2034  if (D.getDeclSpec().isThreadSpecified())
2035    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2036
2037  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2038  if (!NewTD) return 0;
2039
2040  // Handle attributes prior to checking for duplicates in MergeVarDecl
2041  ProcessDeclAttributes(S, NewTD, D);
2042  // Merge the decl with the existing one if appropriate. If the decl is
2043  // in an outer scope, it isn't the same thing.
2044  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2045    Redeclaration = true;
2046    MergeTypeDefDecl(NewTD, PrevDecl);
2047  }
2048
2049  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2050  // then it shall have block scope.
2051  QualType T = NewTD->getUnderlyingType();
2052  if (T->isVariablyModifiedType()) {
2053    CurFunctionNeedsScopeChecking = true;
2054
2055    if (S->getFnParent() == 0) {
2056      bool SizeIsNegative;
2057      QualType FixedTy =
2058          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2059      if (!FixedTy.isNull()) {
2060        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2061        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2062      } else {
2063        if (SizeIsNegative)
2064          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2065        else if (T->isVariableArrayType())
2066          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2067        else
2068          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2069        NewTD->setInvalidDecl();
2070      }
2071    }
2072  }
2073
2074  // If this is the C FILE type, notify the AST context.
2075  if (IdentifierInfo *II = NewTD->getIdentifier())
2076    if (!NewTD->isInvalidDecl() &&
2077        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2078      if (II->isStr("FILE"))
2079        Context.setFILEDecl(NewTD);
2080      else if (II->isStr("jmp_buf"))
2081        Context.setjmp_bufDecl(NewTD);
2082      else if (II->isStr("sigjmp_buf"))
2083        Context.setsigjmp_bufDecl(NewTD);
2084    }
2085
2086  return NewTD;
2087}
2088
2089/// \brief Determines whether the given declaration is an out-of-scope
2090/// previous declaration.
2091///
2092/// This routine should be invoked when name lookup has found a
2093/// previous declaration (PrevDecl) that is not in the scope where a
2094/// new declaration by the same name is being introduced. If the new
2095/// declaration occurs in a local scope, previous declarations with
2096/// linkage may still be considered previous declarations (C99
2097/// 6.2.2p4-5, C++ [basic.link]p6).
2098///
2099/// \param PrevDecl the previous declaration found by name
2100/// lookup
2101///
2102/// \param DC the context in which the new declaration is being
2103/// declared.
2104///
2105/// \returns true if PrevDecl is an out-of-scope previous declaration
2106/// for a new delcaration with the same name.
2107static bool
2108isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2109                                ASTContext &Context) {
2110  if (!PrevDecl)
2111    return 0;
2112
2113  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2114  // case we need to check each of the overloaded functions.
2115  if (!PrevDecl->hasLinkage())
2116    return false;
2117
2118  if (Context.getLangOptions().CPlusPlus) {
2119    // C++ [basic.link]p6:
2120    //   If there is a visible declaration of an entity with linkage
2121    //   having the same name and type, ignoring entities declared
2122    //   outside the innermost enclosing namespace scope, the block
2123    //   scope declaration declares that same entity and receives the
2124    //   linkage of the previous declaration.
2125    DeclContext *OuterContext = DC->getLookupContext();
2126    if (!OuterContext->isFunctionOrMethod())
2127      // This rule only applies to block-scope declarations.
2128      return false;
2129    else {
2130      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2131      if (PrevOuterContext->isRecord())
2132        // We found a member function: ignore it.
2133        return false;
2134      else {
2135        // Find the innermost enclosing namespace for the new and
2136        // previous declarations.
2137        while (!OuterContext->isFileContext())
2138          OuterContext = OuterContext->getParent();
2139        while (!PrevOuterContext->isFileContext())
2140          PrevOuterContext = PrevOuterContext->getParent();
2141
2142        // The previous declaration is in a different namespace, so it
2143        // isn't the same function.
2144        if (OuterContext->getPrimaryContext() !=
2145            PrevOuterContext->getPrimaryContext())
2146          return false;
2147      }
2148    }
2149  }
2150
2151  return true;
2152}
2153
2154NamedDecl*
2155Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2156                              QualType R, DeclaratorInfo *DInfo,
2157                              NamedDecl* PrevDecl,
2158                              MultiTemplateParamsArg TemplateParamLists,
2159                              bool &Redeclaration) {
2160  DeclarationName Name = GetNameForDeclarator(D);
2161
2162  // Check that there are no default arguments (C++ only).
2163  if (getLangOptions().CPlusPlus)
2164    CheckExtraCXXDefaultArguments(D);
2165
2166  VarDecl *NewVD;
2167  VarDecl::StorageClass SC;
2168  switch (D.getDeclSpec().getStorageClassSpec()) {
2169  default: assert(0 && "Unknown storage class!");
2170  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2171  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2172  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2173  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2174  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2175  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2176  case DeclSpec::SCS_mutable:
2177    // mutable can only appear on non-static class members, so it's always
2178    // an error here
2179    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2180    D.setInvalidType();
2181    SC = VarDecl::None;
2182    break;
2183  }
2184
2185  IdentifierInfo *II = Name.getAsIdentifierInfo();
2186  if (!II) {
2187    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2188      << Name.getAsString();
2189    return 0;
2190  }
2191
2192  DiagnoseFunctionSpecifiers(D);
2193
2194  if (!DC->isRecord() && S->getFnParent() == 0) {
2195    // C99 6.9p2: The storage-class specifiers auto and register shall not
2196    // appear in the declaration specifiers in an external declaration.
2197    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2198
2199      // If this is a register variable with an asm label specified, then this
2200      // is a GNU extension.
2201      if (SC == VarDecl::Register && D.getAsmLabel())
2202        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2203      else
2204        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2205      D.setInvalidType();
2206    }
2207  }
2208  if (DC->isRecord() && !CurContext->isRecord()) {
2209    // This is an out-of-line definition of a static data member.
2210    if (SC == VarDecl::Static) {
2211      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2212           diag::err_static_out_of_line)
2213        << CodeModificationHint::CreateRemoval(
2214                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2215    } else if (SC == VarDecl::None)
2216      SC = VarDecl::Static;
2217  }
2218  if (SC == VarDecl::Static) {
2219    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2220      if (RD->isLocalClass())
2221        Diag(D.getIdentifierLoc(),
2222             diag::err_static_data_member_not_allowed_in_local_class)
2223          << Name << RD->getDeclName();
2224    }
2225  }
2226
2227  // Match up the template parameter lists with the scope specifier, then
2228  // determine whether we have a template or a template specialization.
2229  bool isExplicitSpecialization = false;
2230  if (TemplateParameterList *TemplateParams
2231        = MatchTemplateParametersToScopeSpecifier(
2232                                  D.getDeclSpec().getSourceRange().getBegin(),
2233                                                  D.getCXXScopeSpec(),
2234                        (TemplateParameterList**)TemplateParamLists.get(),
2235                                                   TemplateParamLists.size(),
2236                                                  isExplicitSpecialization)) {
2237    if (TemplateParams->size() > 0) {
2238      // There is no such thing as a variable template.
2239      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2240        << II
2241        << SourceRange(TemplateParams->getTemplateLoc(),
2242                       TemplateParams->getRAngleLoc());
2243      return 0;
2244    } else {
2245      // There is an extraneous 'template<>' for this variable. Complain
2246      // about it, but allow the declaration of the variable.
2247      Diag(TemplateParams->getTemplateLoc(),
2248           diag::err_template_variable_noparams)
2249        << II
2250        << SourceRange(TemplateParams->getTemplateLoc(),
2251                       TemplateParams->getRAngleLoc());
2252
2253      isExplicitSpecialization = true;
2254    }
2255  }
2256
2257  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2258                          II, R, DInfo, SC);
2259
2260  if (D.isInvalidType())
2261    NewVD->setInvalidDecl();
2262
2263  if (D.getDeclSpec().isThreadSpecified()) {
2264    if (NewVD->hasLocalStorage())
2265      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2266    else if (!Context.Target.isTLSSupported())
2267      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2268    else
2269      NewVD->setThreadSpecified(true);
2270  }
2271
2272  // Set the lexical context. If the declarator has a C++ scope specifier, the
2273  // lexical context will be different from the semantic context.
2274  NewVD->setLexicalDeclContext(CurContext);
2275
2276  // Handle attributes prior to checking for duplicates in MergeVarDecl
2277  ProcessDeclAttributes(S, NewVD, D);
2278
2279  // Handle GNU asm-label extension (encoded as an attribute).
2280  if (Expr *E = (Expr*) D.getAsmLabel()) {
2281    // The parser guarantees this is a string.
2282    StringLiteral *SE = cast<StringLiteral>(E);
2283    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2284                                                        SE->getByteLength())));
2285  }
2286
2287  // If name lookup finds a previous declaration that is not in the
2288  // same scope as the new declaration, this may still be an
2289  // acceptable redeclaration.
2290  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2291      !(NewVD->hasLinkage() &&
2292        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2293    PrevDecl = 0;
2294
2295  // Merge the decl with the existing one if appropriate.
2296  if (PrevDecl) {
2297    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2298      // The user tried to define a non-static data member
2299      // out-of-line (C++ [dcl.meaning]p1).
2300      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2301        << D.getCXXScopeSpec().getRange();
2302      PrevDecl = 0;
2303      NewVD->setInvalidDecl();
2304    }
2305  } else if (D.getCXXScopeSpec().isSet()) {
2306    // No previous declaration in the qualifying scope.
2307    Diag(D.getIdentifierLoc(), diag::err_no_member)
2308      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2309      << D.getCXXScopeSpec().getRange();
2310    NewVD->setInvalidDecl();
2311  }
2312
2313  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2314
2315  // This is an explicit specialization of a static data member. Check it.
2316  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2317      CheckMemberSpecialization(NewVD, PrevDecl))
2318    NewVD->setInvalidDecl();
2319
2320  // attributes declared post-definition are currently ignored
2321  if (PrevDecl) {
2322    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2323    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2324      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2325      Diag(Def->getLocation(), diag::note_previous_definition);
2326    }
2327  }
2328
2329  // If this is a locally-scoped extern C variable, update the map of
2330  // such variables.
2331  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2332      !NewVD->isInvalidDecl())
2333    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2334
2335  return NewVD;
2336}
2337
2338/// \brief Perform semantic checking on a newly-created variable
2339/// declaration.
2340///
2341/// This routine performs all of the type-checking required for a
2342/// variable declaration once it has been built. It is used both to
2343/// check variables after they have been parsed and their declarators
2344/// have been translated into a declaration, and to check variables
2345/// that have been instantiated from a template.
2346///
2347/// Sets NewVD->isInvalidDecl() if an error was encountered.
2348void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2349                                    bool &Redeclaration) {
2350  // If the decl is already known invalid, don't check it.
2351  if (NewVD->isInvalidDecl())
2352    return;
2353
2354  QualType T = NewVD->getType();
2355
2356  if (T->isObjCInterfaceType()) {
2357    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2358    return NewVD->setInvalidDecl();
2359  }
2360
2361  // The variable can not have an abstract class type.
2362  if (RequireNonAbstractType(NewVD->getLocation(), T,
2363                             diag::err_abstract_type_in_decl,
2364                             AbstractVariableType))
2365    return NewVD->setInvalidDecl();
2366
2367  // Emit an error if an address space was applied to decl with local storage.
2368  // This includes arrays of objects with address space qualifiers, but not
2369  // automatic variables that point to other address spaces.
2370  // ISO/IEC TR 18037 S5.1.2
2371  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2372    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2373    return NewVD->setInvalidDecl();
2374  }
2375
2376  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2377      && !NewVD->hasAttr<BlocksAttr>())
2378    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2379
2380  bool isVM = T->isVariablyModifiedType();
2381  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2382      NewVD->hasAttr<BlocksAttr>())
2383    CurFunctionNeedsScopeChecking = true;
2384
2385  if ((isVM && NewVD->hasLinkage()) ||
2386      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2387    bool SizeIsNegative;
2388    QualType FixedTy =
2389        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2390
2391    if (FixedTy.isNull() && T->isVariableArrayType()) {
2392      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2393      // FIXME: This won't give the correct result for
2394      // int a[10][n];
2395      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2396
2397      if (NewVD->isFileVarDecl())
2398        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2399        << SizeRange;
2400      else if (NewVD->getStorageClass() == VarDecl::Static)
2401        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2402        << SizeRange;
2403      else
2404        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2405        << SizeRange;
2406      return NewVD->setInvalidDecl();
2407    }
2408
2409    if (FixedTy.isNull()) {
2410      if (NewVD->isFileVarDecl())
2411        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2412      else
2413        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2414      return NewVD->setInvalidDecl();
2415    }
2416
2417    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2418    NewVD->setType(FixedTy);
2419  }
2420
2421  if (!PrevDecl && NewVD->isExternC()) {
2422    // Since we did not find anything by this name and we're declaring
2423    // an extern "C" variable, look for a non-visible extern "C"
2424    // declaration with the same name.
2425    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2426      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2427    if (Pos != LocallyScopedExternalDecls.end())
2428      PrevDecl = Pos->second;
2429  }
2430
2431  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2432    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2433      << T;
2434    return NewVD->setInvalidDecl();
2435  }
2436
2437  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2438    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2439    return NewVD->setInvalidDecl();
2440  }
2441
2442  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2443    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2444    return NewVD->setInvalidDecl();
2445  }
2446
2447  if (PrevDecl) {
2448    Redeclaration = true;
2449    MergeVarDecl(NewVD, PrevDecl);
2450  }
2451}
2452
2453static bool isUsingDecl(Decl *D) {
2454  return isa<UsingDecl>(D) ||
2455         isa<UnresolvedUsingTypenameDecl>(D) ||
2456         isa<UnresolvedUsingValueDecl>(D);
2457}
2458
2459/// \brief Data used with FindOverriddenMethod
2460struct FindOverriddenMethodData {
2461  Sema *S;
2462  CXXMethodDecl *Method;
2463};
2464
2465/// \brief Member lookup function that determines whether a given C++
2466/// method overrides a method in a base class, to be used with
2467/// CXXRecordDecl::lookupInBases().
2468static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2469                                 CXXBasePath &Path,
2470                                 void *UserData) {
2471  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2472
2473  FindOverriddenMethodData *Data
2474    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2475  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2476       Path.Decls.first != Path.Decls.second;
2477       ++Path.Decls.first) {
2478    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2479      OverloadedFunctionDecl::function_iterator MatchedDecl;
2480      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2481        return true;
2482    }
2483  }
2484
2485  return false;
2486}
2487
2488NamedDecl*
2489Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2490                              QualType R, DeclaratorInfo *DInfo,
2491                              NamedDecl* PrevDecl,
2492                              MultiTemplateParamsArg TemplateParamLists,
2493                              bool IsFunctionDefinition, bool &Redeclaration) {
2494  assert(R.getTypePtr()->isFunctionType());
2495
2496  DeclarationName Name = GetNameForDeclarator(D);
2497  FunctionDecl::StorageClass SC = FunctionDecl::None;
2498  switch (D.getDeclSpec().getStorageClassSpec()) {
2499  default: assert(0 && "Unknown storage class!");
2500  case DeclSpec::SCS_auto:
2501  case DeclSpec::SCS_register:
2502  case DeclSpec::SCS_mutable:
2503    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2504         diag::err_typecheck_sclass_func);
2505    D.setInvalidType();
2506    break;
2507  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2508  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2509  case DeclSpec::SCS_static: {
2510    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2511      // C99 6.7.1p5:
2512      //   The declaration of an identifier for a function that has
2513      //   block scope shall have no explicit storage-class specifier
2514      //   other than extern
2515      // See also (C++ [dcl.stc]p4).
2516      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2517           diag::err_static_block_func);
2518      SC = FunctionDecl::None;
2519    } else
2520      SC = FunctionDecl::Static;
2521    break;
2522  }
2523  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2524  }
2525
2526  if (D.getDeclSpec().isThreadSpecified())
2527    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2528
2529  bool isFriend = D.getDeclSpec().isFriendSpecified();
2530  bool isInline = D.getDeclSpec().isInlineSpecified();
2531  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2532  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2533
2534  // Check that the return type is not an abstract class type.
2535  // For record types, this is done by the AbstractClassUsageDiagnoser once
2536  // the class has been completely parsed.
2537  if (!DC->isRecord() &&
2538      RequireNonAbstractType(D.getIdentifierLoc(),
2539                             R->getAs<FunctionType>()->getResultType(),
2540                             diag::err_abstract_type_in_decl,
2541                             AbstractReturnType))
2542    D.setInvalidType();
2543
2544  // Do not allow returning a objc interface by-value.
2545  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2546    Diag(D.getIdentifierLoc(),
2547         diag::err_object_cannot_be_passed_returned_by_value) << 0
2548      << R->getAs<FunctionType>()->getResultType();
2549    D.setInvalidType();
2550  }
2551
2552  bool isVirtualOkay = false;
2553  FunctionDecl *NewFD;
2554
2555  if (isFriend) {
2556    // DC is the namespace in which the function is being declared.
2557    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2558           "friend function being created in a non-namespace context");
2559
2560    // C++ [class.friend]p5
2561    //   A function can be defined in a friend declaration of a
2562    //   class . . . . Such a function is implicitly inline.
2563    isInline |= IsFunctionDefinition;
2564  }
2565
2566  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2567    // This is a C++ constructor declaration.
2568    assert(DC->isRecord() &&
2569           "Constructors can only be declared in a member context");
2570
2571    R = CheckConstructorDeclarator(D, R, SC);
2572
2573    // Create the new declaration
2574    NewFD = CXXConstructorDecl::Create(Context,
2575                                       cast<CXXRecordDecl>(DC),
2576                                       D.getIdentifierLoc(), Name, R, DInfo,
2577                                       isExplicit, isInline,
2578                                       /*isImplicitlyDeclared=*/false);
2579  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2580    // This is a C++ destructor declaration.
2581    if (DC->isRecord()) {
2582      R = CheckDestructorDeclarator(D, SC);
2583
2584      NewFD = CXXDestructorDecl::Create(Context,
2585                                        cast<CXXRecordDecl>(DC),
2586                                        D.getIdentifierLoc(), Name, R,
2587                                        isInline,
2588                                        /*isImplicitlyDeclared=*/false);
2589
2590      isVirtualOkay = true;
2591    } else {
2592      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2593
2594      // Create a FunctionDecl to satisfy the function definition parsing
2595      // code path.
2596      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2597                                   Name, R, DInfo, SC, isInline,
2598                                   /*hasPrototype=*/true);
2599      D.setInvalidType();
2600    }
2601  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2602    if (!DC->isRecord()) {
2603      Diag(D.getIdentifierLoc(),
2604           diag::err_conv_function_not_member);
2605      return 0;
2606    }
2607
2608    CheckConversionDeclarator(D, R, SC);
2609    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2610                                      D.getIdentifierLoc(), Name, R, DInfo,
2611                                      isInline, isExplicit);
2612
2613    isVirtualOkay = true;
2614  } else if (DC->isRecord()) {
2615    // If the of the function is the same as the name of the record, then this
2616    // must be an invalid constructor that has a return type.
2617    // (The parser checks for a return type and makes the declarator a
2618    // constructor if it has no return type).
2619    // must have an invalid constructor that has a return type
2620    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2621      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2622        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2623        << SourceRange(D.getIdentifierLoc());
2624      return 0;
2625    }
2626
2627    bool isStatic = SC == FunctionDecl::Static;
2628
2629    // [class.free]p1:
2630    // Any allocation function for a class T is a static member
2631    // (even if not explicitly declared static).
2632    if (Name.getCXXOverloadedOperator() == OO_New ||
2633        Name.getCXXOverloadedOperator() == OO_Array_New)
2634      isStatic = true;
2635
2636    // [class.free]p6 Any deallocation function for a class X is a static member
2637    // (even if not explicitly declared static).
2638    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2639        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2640      isStatic = true;
2641
2642    // This is a C++ method declaration.
2643    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2644                                  D.getIdentifierLoc(), Name, R, DInfo,
2645                                  isStatic, isInline);
2646
2647    isVirtualOkay = !isStatic;
2648  } else {
2649    // Determine whether the function was written with a
2650    // prototype. This true when:
2651    //   - we're in C++ (where every function has a prototype),
2652    //   - there is a prototype in the declarator, or
2653    //   - the type R of the function is some kind of typedef or other reference
2654    //     to a type name (which eventually refers to a function type).
2655    bool HasPrototype =
2656       getLangOptions().CPlusPlus ||
2657       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2658       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2659
2660    NewFD = FunctionDecl::Create(Context, DC,
2661                                 D.getIdentifierLoc(),
2662                                 Name, R, DInfo, SC, isInline, HasPrototype);
2663  }
2664
2665  if (D.isInvalidType())
2666    NewFD->setInvalidDecl();
2667
2668  // Set the lexical context. If the declarator has a C++
2669  // scope specifier, or is the object of a friend declaration, the
2670  // lexical context will be different from the semantic context.
2671  NewFD->setLexicalDeclContext(CurContext);
2672
2673  // Match up the template parameter lists with the scope specifier, then
2674  // determine whether we have a template or a template specialization.
2675  FunctionTemplateDecl *FunctionTemplate = 0;
2676  bool isExplicitSpecialization = false;
2677  bool isFunctionTemplateSpecialization = false;
2678  if (TemplateParameterList *TemplateParams
2679        = MatchTemplateParametersToScopeSpecifier(
2680                                  D.getDeclSpec().getSourceRange().getBegin(),
2681                                  D.getCXXScopeSpec(),
2682                           (TemplateParameterList**)TemplateParamLists.get(),
2683                                                  TemplateParamLists.size(),
2684                                                  isExplicitSpecialization)) {
2685    if (TemplateParams->size() > 0) {
2686      // This is a function template
2687
2688      // Check that we can declare a template here.
2689      if (CheckTemplateDeclScope(S, TemplateParams))
2690        return 0;
2691
2692      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2693                                                      NewFD->getLocation(),
2694                                                      Name, TemplateParams,
2695                                                      NewFD);
2696      FunctionTemplate->setLexicalDeclContext(CurContext);
2697      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2698    } else {
2699      // This is a function template specialization.
2700      isFunctionTemplateSpecialization = true;
2701    }
2702
2703    // FIXME: Free this memory properly.
2704    TemplateParamLists.release();
2705  }
2706
2707  // C++ [dcl.fct.spec]p5:
2708  //   The virtual specifier shall only be used in declarations of
2709  //   nonstatic class member functions that appear within a
2710  //   member-specification of a class declaration; see 10.3.
2711  //
2712  if (isVirtual && !NewFD->isInvalidDecl()) {
2713    if (!isVirtualOkay) {
2714       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2715           diag::err_virtual_non_function);
2716    } else if (!CurContext->isRecord()) {
2717      // 'virtual' was specified outside of the class.
2718      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2719        << CodeModificationHint::CreateRemoval(
2720                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2721    } else {
2722      // Okay: Add virtual to the method.
2723      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2724      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2725      CurClass->setAggregate(false);
2726      CurClass->setPOD(false);
2727      CurClass->setEmpty(false);
2728      CurClass->setPolymorphic(true);
2729      CurClass->setHasTrivialConstructor(false);
2730      CurClass->setHasTrivialCopyConstructor(false);
2731      CurClass->setHasTrivialCopyAssignment(false);
2732    }
2733  }
2734
2735  if (isFriend) {
2736    if (FunctionTemplate) {
2737      FunctionTemplate->setObjectOfFriendDecl(
2738                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2739      FunctionTemplate->setAccess(AS_public);
2740    }
2741    else
2742      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2743
2744    NewFD->setAccess(AS_public);
2745  }
2746
2747
2748  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2749    // Look for virtual methods in base classes that this method might override.
2750    CXXBasePaths Paths;
2751    FindOverriddenMethodData Data;
2752    Data.Method = NewMD;
2753    Data.S = this;
2754    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2755                                                Paths)) {
2756      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2757           E = Paths.found_decls_end(); I != E; ++I) {
2758        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2759          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2760              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2761            NewMD->addOverriddenMethod(OldMD);
2762        }
2763      }
2764    }
2765  }
2766
2767  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2768      !CurContext->isRecord()) {
2769    // C++ [class.static]p1:
2770    //   A data or function member of a class may be declared static
2771    //   in a class definition, in which case it is a static member of
2772    //   the class.
2773
2774    // Complain about the 'static' specifier if it's on an out-of-line
2775    // member function definition.
2776    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2777         diag::err_static_out_of_line)
2778      << CodeModificationHint::CreateRemoval(
2779                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2780  }
2781
2782  // Handle GNU asm-label extension (encoded as an attribute).
2783  if (Expr *E = (Expr*) D.getAsmLabel()) {
2784    // The parser guarantees this is a string.
2785    StringLiteral *SE = cast<StringLiteral>(E);
2786    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2787                                                        SE->getByteLength())));
2788  }
2789
2790  // Copy the parameter declarations from the declarator D to the function
2791  // declaration NewFD, if they are available.  First scavenge them into Params.
2792  llvm::SmallVector<ParmVarDecl*, 16> Params;
2793  if (D.getNumTypeObjects() > 0) {
2794    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2795
2796    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2797    // function that takes no arguments, not a function that takes a
2798    // single void argument.
2799    // We let through "const void" here because Sema::GetTypeForDeclarator
2800    // already checks for that case.
2801    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2802        FTI.ArgInfo[0].Param &&
2803        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2804      // Empty arg list, don't push any params.
2805      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2806
2807      // In C++, the empty parameter-type-list must be spelled "void"; a
2808      // typedef of void is not permitted.
2809      if (getLangOptions().CPlusPlus &&
2810          Param->getType().getUnqualifiedType() != Context.VoidTy)
2811        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2812      // FIXME: Leaks decl?
2813    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2814      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2815        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2816        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2817        Param->setDeclContext(NewFD);
2818        Params.push_back(Param);
2819      }
2820    }
2821
2822  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2823    // When we're declaring a function with a typedef, typeof, etc as in the
2824    // following example, we'll need to synthesize (unnamed)
2825    // parameters for use in the declaration.
2826    //
2827    // @code
2828    // typedef void fn(int);
2829    // fn f;
2830    // @endcode
2831
2832    // Synthesize a parameter for each argument type.
2833    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2834         AE = FT->arg_type_end(); AI != AE; ++AI) {
2835      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2836                                               SourceLocation(), 0,
2837                                               *AI, /*DInfo=*/0,
2838                                               VarDecl::None, 0);
2839      Param->setImplicit();
2840      Params.push_back(Param);
2841    }
2842  } else {
2843    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2844           "Should not need args for typedef of non-prototype fn");
2845  }
2846  // Finally, we know we have the right number of parameters, install them.
2847  NewFD->setParams(Context, Params.data(), Params.size());
2848
2849  // If name lookup finds a previous declaration that is not in the
2850  // same scope as the new declaration, this may still be an
2851  // acceptable redeclaration.
2852  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2853      !(NewFD->hasLinkage() &&
2854        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2855    PrevDecl = 0;
2856
2857  // If the declarator is a template-id, translate the parser's template
2858  // argument list into our AST format.
2859  bool HasExplicitTemplateArgs = false;
2860  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2861  SourceLocation LAngleLoc, RAngleLoc;
2862  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2863    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2864    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2865                                       TemplateId->getTemplateArgs(),
2866                                       TemplateId->NumArgs);
2867    translateTemplateArguments(TemplateArgsPtr,
2868                               TemplateArgs);
2869    TemplateArgsPtr.release();
2870
2871    HasExplicitTemplateArgs = true;
2872    LAngleLoc = TemplateId->LAngleLoc;
2873    RAngleLoc = TemplateId->RAngleLoc;
2874
2875    if (FunctionTemplate) {
2876      // FIXME: Diagnose function template with explicit template
2877      // arguments.
2878      HasExplicitTemplateArgs = false;
2879    } else if (!isFunctionTemplateSpecialization &&
2880               !D.getDeclSpec().isFriendSpecified()) {
2881      // We have encountered something that the user meant to be a
2882      // specialization (because it has explicitly-specified template
2883      // arguments) but that was not introduced with a "template<>" (or had
2884      // too few of them).
2885      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2886        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2887        << CodeModificationHint::CreateInsertion(
2888                                   D.getDeclSpec().getSourceRange().getBegin(),
2889                                                 "template<> ");
2890      isFunctionTemplateSpecialization = true;
2891    }
2892  }
2893
2894  if (isFunctionTemplateSpecialization) {
2895      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2896                                              LAngleLoc, TemplateArgs.data(),
2897                                              TemplateArgs.size(), RAngleLoc,
2898                                              PrevDecl))
2899        NewFD->setInvalidDecl();
2900  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2901             CheckMemberSpecialization(NewFD, PrevDecl))
2902    NewFD->setInvalidDecl();
2903
2904  // Perform semantic checking on the function declaration.
2905  bool OverloadableAttrRequired = false; // FIXME: HACK!
2906  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2907                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2908
2909  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2910    // An out-of-line member function declaration must also be a
2911    // definition (C++ [dcl.meaning]p1).
2912    // Note that this is not the case for explicit specializations of
2913    // function templates or member functions of class templates, per
2914    // C++ [temp.expl.spec]p2.
2915    if (!IsFunctionDefinition && !isFriend &&
2916        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2917      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2918        << D.getCXXScopeSpec().getRange();
2919      NewFD->setInvalidDecl();
2920    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2921      // The user tried to provide an out-of-line definition for a
2922      // function that is a member of a class or namespace, but there
2923      // was no such member function declared (C++ [class.mfct]p2,
2924      // C++ [namespace.memdef]p2). For example:
2925      //
2926      // class X {
2927      //   void f() const;
2928      // };
2929      //
2930      // void X::f() { } // ill-formed
2931      //
2932      // Complain about this problem, and attempt to suggest close
2933      // matches (e.g., those that differ only in cv-qualifiers and
2934      // whether the parameter types are references).
2935      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2936        << Name << DC << D.getCXXScopeSpec().getRange();
2937      NewFD->setInvalidDecl();
2938
2939      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2940                        LookupResult::ForRedeclaration);
2941      LookupQualifiedName(Prev, DC);
2942      assert(!Prev.isAmbiguous() &&
2943             "Cannot have an ambiguity in previous-declaration lookup");
2944      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2945           Func != FuncEnd; ++Func) {
2946        if (isa<FunctionDecl>(*Func) &&
2947            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2948          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2949      }
2950
2951      PrevDecl = 0;
2952    }
2953  }
2954
2955  // Handle attributes. We need to have merged decls when handling attributes
2956  // (for example to check for conflicts, etc).
2957  // FIXME: This needs to happen before we merge declarations. Then,
2958  // let attribute merging cope with attribute conflicts.
2959  ProcessDeclAttributes(S, NewFD, D);
2960
2961  // attributes declared post-definition are currently ignored
2962  if (Redeclaration && PrevDecl) {
2963    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2964    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2965      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2966      Diag(Def->getLocation(), diag::note_previous_definition);
2967    }
2968  }
2969
2970  AddKnownFunctionAttributes(NewFD);
2971
2972  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2973    // If a function name is overloadable in C, then every function
2974    // with that name must be marked "overloadable".
2975    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2976      << Redeclaration << NewFD;
2977    if (PrevDecl)
2978      Diag(PrevDecl->getLocation(),
2979           diag::note_attribute_overloadable_prev_overload);
2980    NewFD->addAttr(::new (Context) OverloadableAttr());
2981  }
2982
2983  // If this is a locally-scoped extern C function, update the
2984  // map of such names.
2985  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2986      && !NewFD->isInvalidDecl())
2987    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2988
2989  // Set this FunctionDecl's range up to the right paren.
2990  NewFD->setLocEnd(D.getSourceRange().getEnd());
2991
2992  if (FunctionTemplate && NewFD->isInvalidDecl())
2993    FunctionTemplate->setInvalidDecl();
2994
2995  if (FunctionTemplate)
2996    return FunctionTemplate;
2997
2998  return NewFD;
2999}
3000
3001/// \brief Perform semantic checking of a new function declaration.
3002///
3003/// Performs semantic analysis of the new function declaration
3004/// NewFD. This routine performs all semantic checking that does not
3005/// require the actual declarator involved in the declaration, and is
3006/// used both for the declaration of functions as they are parsed
3007/// (called via ActOnDeclarator) and for the declaration of functions
3008/// that have been instantiated via C++ template instantiation (called
3009/// via InstantiateDecl).
3010///
3011/// \param IsExplicitSpecialiation whether this new function declaration is
3012/// an explicit specialization of the previous declaration.
3013///
3014/// This sets NewFD->isInvalidDecl() to true if there was an error.
3015void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
3016                                    bool IsExplicitSpecialization,
3017                                    bool &Redeclaration,
3018                                    bool &OverloadableAttrRequired) {
3019  // If NewFD is already known erroneous, don't do any of this checking.
3020  if (NewFD->isInvalidDecl())
3021    return;
3022
3023  if (NewFD->getResultType()->isVariablyModifiedType()) {
3024    // Functions returning a variably modified type violate C99 6.7.5.2p2
3025    // because all functions have linkage.
3026    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3027    return NewFD->setInvalidDecl();
3028  }
3029
3030  if (NewFD->isMain())
3031    CheckMain(NewFD);
3032
3033  // Check for a previous declaration of this name.
3034  if (!PrevDecl && NewFD->isExternC()) {
3035    // Since we did not find anything by this name and we're declaring
3036    // an extern "C" function, look for a non-visible extern "C"
3037    // declaration with the same name.
3038    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3039      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3040    if (Pos != LocallyScopedExternalDecls.end())
3041      PrevDecl = Pos->second;
3042  }
3043
3044  // Merge or overload the declaration with an existing declaration of
3045  // the same name, if appropriate.
3046  if (PrevDecl) {
3047    // Determine whether NewFD is an overload of PrevDecl or
3048    // a declaration that requires merging. If it's an overload,
3049    // there's no more work to do here; we'll just add the new
3050    // function to the scope.
3051    OverloadedFunctionDecl::function_iterator MatchedDecl;
3052
3053    if (!getLangOptions().CPlusPlus &&
3054        AllowOverloadingOfFunction(PrevDecl, Context)) {
3055      OverloadableAttrRequired = true;
3056
3057      // Functions marked "overloadable" must have a prototype (that
3058      // we can't get through declaration merging).
3059      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3060        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3061          << NewFD;
3062        Redeclaration = true;
3063
3064        // Turn this into a variadic function with no parameters.
3065        QualType R = Context.getFunctionType(
3066                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3067                       0, 0, true, 0);
3068        NewFD->setType(R);
3069        return NewFD->setInvalidDecl();
3070      }
3071    }
3072
3073    if (PrevDecl &&
3074        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3075         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3076      Redeclaration = true;
3077      Decl *OldDecl = PrevDecl;
3078
3079      // If PrevDecl was an overloaded function, extract the
3080      // FunctionDecl that matched.
3081      if (isa<OverloadedFunctionDecl>(PrevDecl))
3082        OldDecl = *MatchedDecl;
3083
3084      // NewFD and OldDecl represent declarations that need to be
3085      // merged.
3086      if (MergeFunctionDecl(NewFD, OldDecl))
3087        return NewFD->setInvalidDecl();
3088
3089      if (FunctionTemplateDecl *OldTemplateDecl
3090                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3091        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3092        FunctionTemplateDecl *NewTemplateDecl
3093          = NewFD->getDescribedFunctionTemplate();
3094        assert(NewTemplateDecl && "Template/non-template mismatch");
3095        if (CXXMethodDecl *Method
3096              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3097          Method->setAccess(OldTemplateDecl->getAccess());
3098          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3099        }
3100
3101        // If this is an explicit specialization of a member that is a function
3102        // template, mark it as a member specialization.
3103        if (IsExplicitSpecialization &&
3104            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3105          NewTemplateDecl->setMemberSpecialization();
3106          assert(OldTemplateDecl->isMemberSpecialization());
3107        }
3108      } else {
3109        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3110          NewFD->setAccess(OldDecl->getAccess());
3111        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3112      }
3113    }
3114  }
3115
3116  // Semantic checking for this function declaration (in isolation).
3117  if (getLangOptions().CPlusPlus) {
3118    // C++-specific checks.
3119    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3120      CheckConstructor(Constructor);
3121    } else if (CXXDestructorDecl *Destructor =
3122                dyn_cast<CXXDestructorDecl>(NewFD)) {
3123      CXXRecordDecl *Record = Destructor->getParent();
3124      QualType ClassType = Context.getTypeDeclType(Record);
3125
3126      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3127      // type is dependent? Both gcc and edg can handle that.
3128      if (!ClassType->isDependentType()) {
3129        DeclarationName Name
3130          = Context.DeclarationNames.getCXXDestructorName(
3131                                        Context.getCanonicalType(ClassType));
3132        if (NewFD->getDeclName() != Name) {
3133          Diag(NewFD->getLocation(), diag::err_destructor_name);
3134          return NewFD->setInvalidDecl();
3135        }
3136
3137        CheckDestructor(Destructor);
3138      }
3139
3140      Record->setUserDeclaredDestructor(true);
3141      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3142      // user-defined destructor.
3143      Record->setPOD(false);
3144
3145      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3146      // declared destructor.
3147      // FIXME: C++0x: don't do this for "= default" destructors
3148      Record->setHasTrivialDestructor(false);
3149    } else if (CXXConversionDecl *Conversion
3150               = dyn_cast<CXXConversionDecl>(NewFD))
3151      ActOnConversionDeclarator(Conversion);
3152
3153    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3154    if (NewFD->isOverloadedOperator() &&
3155        CheckOverloadedOperatorDeclaration(NewFD))
3156      return NewFD->setInvalidDecl();
3157
3158    // In C++, check default arguments now that we have merged decls. Unless
3159    // the lexical context is the class, because in this case this is done
3160    // during delayed parsing anyway.
3161    if (!CurContext->isRecord())
3162      CheckCXXDefaultArguments(NewFD);
3163  }
3164}
3165
3166void Sema::CheckMain(FunctionDecl* FD) {
3167  // C++ [basic.start.main]p3:  A program that declares main to be inline
3168  //   or static is ill-formed.
3169  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3170  //   shall not appear in a declaration of main.
3171  // static main is not an error under C99, but we should warn about it.
3172  bool isInline = FD->isInlineSpecified();
3173  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3174  if (isInline || isStatic) {
3175    unsigned diagID = diag::warn_unusual_main_decl;
3176    if (isInline || getLangOptions().CPlusPlus)
3177      diagID = diag::err_unusual_main_decl;
3178
3179    int which = isStatic + (isInline << 1) - 1;
3180    Diag(FD->getLocation(), diagID) << which;
3181  }
3182
3183  QualType T = FD->getType();
3184  assert(T->isFunctionType() && "function decl is not of function type");
3185  const FunctionType* FT = T->getAs<FunctionType>();
3186
3187  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3188    // TODO: add a replacement fixit to turn the return type into 'int'.
3189    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3190    FD->setInvalidDecl(true);
3191  }
3192
3193  // Treat protoless main() as nullary.
3194  if (isa<FunctionNoProtoType>(FT)) return;
3195
3196  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3197  unsigned nparams = FTP->getNumArgs();
3198  assert(FD->getNumParams() == nparams);
3199
3200  if (nparams > 3) {
3201    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3202    FD->setInvalidDecl(true);
3203    nparams = 3;
3204  }
3205
3206  // FIXME: a lot of the following diagnostics would be improved
3207  // if we had some location information about types.
3208
3209  QualType CharPP =
3210    Context.getPointerType(Context.getPointerType(Context.CharTy));
3211  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3212
3213  for (unsigned i = 0; i < nparams; ++i) {
3214    QualType AT = FTP->getArgType(i);
3215
3216    bool mismatch = true;
3217
3218    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3219      mismatch = false;
3220    else if (Expected[i] == CharPP) {
3221      // As an extension, the following forms are okay:
3222      //   char const **
3223      //   char const * const *
3224      //   char * const *
3225
3226      QualifierCollector qs;
3227      const PointerType* PT;
3228      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3229          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3230          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3231        qs.removeConst();
3232        mismatch = !qs.empty();
3233      }
3234    }
3235
3236    if (mismatch) {
3237      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3238      // TODO: suggest replacing given type with expected type
3239      FD->setInvalidDecl(true);
3240    }
3241  }
3242
3243  if (nparams == 1 && !FD->isInvalidDecl()) {
3244    Diag(FD->getLocation(), diag::warn_main_one_arg);
3245  }
3246}
3247
3248bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3249  // FIXME: Need strict checking.  In C89, we need to check for
3250  // any assignment, increment, decrement, function-calls, or
3251  // commas outside of a sizeof.  In C99, it's the same list,
3252  // except that the aforementioned are allowed in unevaluated
3253  // expressions.  Everything else falls under the
3254  // "may accept other forms of constant expressions" exception.
3255  // (We never end up here for C++, so the constant expression
3256  // rules there don't matter.)
3257  if (Init->isConstantInitializer(Context))
3258    return false;
3259  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3260    << Init->getSourceRange();
3261  return true;
3262}
3263
3264void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3265  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3266}
3267
3268/// AddInitializerToDecl - Adds the initializer Init to the
3269/// declaration dcl. If DirectInit is true, this is C++ direct
3270/// initialization rather than copy initialization.
3271void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3272  Decl *RealDecl = dcl.getAs<Decl>();
3273  // If there is no declaration, there was an error parsing it.  Just ignore
3274  // the initializer.
3275  if (RealDecl == 0)
3276    return;
3277
3278  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3279    // With declarators parsed the way they are, the parser cannot
3280    // distinguish between a normal initializer and a pure-specifier.
3281    // Thus this grotesque test.
3282    IntegerLiteral *IL;
3283    Expr *Init = static_cast<Expr *>(init.get());
3284    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3285        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3286      if (Method->isVirtualAsWritten()) {
3287        Method->setPure();
3288
3289        // A class is abstract if at least one function is pure virtual.
3290        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3291      } else if (!Method->isInvalidDecl()) {
3292        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3293          << Method->getDeclName() << Init->getSourceRange();
3294        Method->setInvalidDecl();
3295      }
3296    } else {
3297      Diag(Method->getLocation(), diag::err_member_function_initialization)
3298        << Method->getDeclName() << Init->getSourceRange();
3299      Method->setInvalidDecl();
3300    }
3301    return;
3302  }
3303
3304  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3305  if (!VDecl) {
3306    if (getLangOptions().CPlusPlus &&
3307        RealDecl->getLexicalDeclContext()->isRecord() &&
3308        isa<NamedDecl>(RealDecl))
3309      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3310        << cast<NamedDecl>(RealDecl)->getDeclName();
3311    else
3312      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3313    RealDecl->setInvalidDecl();
3314    return;
3315  }
3316
3317  // A definition must end up with a complete type, which means it must be
3318  // complete with the restriction that an array type might be completed by the
3319  // initializer; note that later code assumes this restriction.
3320  QualType BaseDeclType = VDecl->getType();
3321  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3322    BaseDeclType = Array->getElementType();
3323  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3324                          diag::err_typecheck_decl_incomplete_type)) {
3325    RealDecl->setInvalidDecl();
3326    return;
3327  }
3328
3329  const VarDecl *Def = 0;
3330  if (VDecl->getDefinition(Def)) {
3331    Diag(VDecl->getLocation(), diag::err_redefinition)
3332      << VDecl->getDeclName();
3333    Diag(Def->getLocation(), diag::note_previous_definition);
3334    VDecl->setInvalidDecl();
3335    return;
3336  }
3337
3338  // Take ownership of the expression, now that we're sure we have somewhere
3339  // to put it.
3340  Expr *Init = init.takeAs<Expr>();
3341  assert(Init && "missing initializer");
3342
3343  // Get the decls type and save a reference for later, since
3344  // CheckInitializerTypes may change it.
3345  QualType DclT = VDecl->getType(), SavT = DclT;
3346  if (VDecl->isBlockVarDecl()) {
3347    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3348      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3349      VDecl->setInvalidDecl();
3350    } else if (!VDecl->isInvalidDecl()) {
3351      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3352                                VDecl->getDeclName(), DirectInit))
3353        VDecl->setInvalidDecl();
3354
3355      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3356      // Don't check invalid declarations to avoid emitting useless diagnostics.
3357      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3358        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3359          CheckForConstantInitializer(Init, DclT);
3360      }
3361    }
3362  } else if (VDecl->isStaticDataMember() &&
3363             VDecl->getLexicalDeclContext()->isRecord()) {
3364    // This is an in-class initialization for a static data member, e.g.,
3365    //
3366    // struct S {
3367    //   static const int value = 17;
3368    // };
3369
3370    // Attach the initializer
3371    VDecl->setInit(Context, Init);
3372
3373    // C++ [class.mem]p4:
3374    //   A member-declarator can contain a constant-initializer only
3375    //   if it declares a static member (9.4) of const integral or
3376    //   const enumeration type, see 9.4.2.
3377    QualType T = VDecl->getType();
3378    if (!T->isDependentType() &&
3379        (!Context.getCanonicalType(T).isConstQualified() ||
3380         !T->isIntegralType())) {
3381      Diag(VDecl->getLocation(), diag::err_member_initialization)
3382        << VDecl->getDeclName() << Init->getSourceRange();
3383      VDecl->setInvalidDecl();
3384    } else {
3385      // C++ [class.static.data]p4:
3386      //   If a static data member is of const integral or const
3387      //   enumeration type, its declaration in the class definition
3388      //   can specify a constant-initializer which shall be an
3389      //   integral constant expression (5.19).
3390      if (!Init->isTypeDependent() &&
3391          !Init->getType()->isIntegralType()) {
3392        // We have a non-dependent, non-integral or enumeration type.
3393        Diag(Init->getSourceRange().getBegin(),
3394             diag::err_in_class_initializer_non_integral_type)
3395          << Init->getType() << Init->getSourceRange();
3396        VDecl->setInvalidDecl();
3397      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3398        // Check whether the expression is a constant expression.
3399        llvm::APSInt Value;
3400        SourceLocation Loc;
3401        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3402          Diag(Loc, diag::err_in_class_initializer_non_constant)
3403            << Init->getSourceRange();
3404          VDecl->setInvalidDecl();
3405        } else if (!VDecl->getType()->isDependentType())
3406          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3407      }
3408    }
3409  } else if (VDecl->isFileVarDecl()) {
3410    if (VDecl->getStorageClass() == VarDecl::Extern)
3411      Diag(VDecl->getLocation(), diag::warn_extern_init);
3412    if (!VDecl->isInvalidDecl())
3413      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3414                                VDecl->getDeclName(), DirectInit))
3415        VDecl->setInvalidDecl();
3416
3417    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3418    // Don't check invalid declarations to avoid emitting useless diagnostics.
3419    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3420      // C99 6.7.8p4. All file scoped initializers need to be constant.
3421      CheckForConstantInitializer(Init, DclT);
3422    }
3423  }
3424  // If the type changed, it means we had an incomplete type that was
3425  // completed by the initializer. For example:
3426  //   int ary[] = { 1, 3, 5 };
3427  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3428  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3429    VDecl->setType(DclT);
3430    Init->setType(DclT);
3431  }
3432
3433  Init = MaybeCreateCXXExprWithTemporaries(Init,
3434                                           /*ShouldDestroyTemporaries=*/true);
3435  // Attach the initializer to the decl.
3436  VDecl->setInit(Context, Init);
3437
3438  // If the previous declaration of VDecl was a tentative definition,
3439  // remove it from the set of tentative definitions.
3440  if (VDecl->getPreviousDeclaration() &&
3441      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3442    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3443    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3444  }
3445
3446  return;
3447}
3448
3449void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3450                                  bool TypeContainsUndeducedAuto) {
3451  Decl *RealDecl = dcl.getAs<Decl>();
3452
3453  // If there is no declaration, there was an error parsing it. Just ignore it.
3454  if (RealDecl == 0)
3455    return;
3456
3457  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3458    QualType Type = Var->getType();
3459
3460    // Record tentative definitions.
3461    if (Var->isTentativeDefinition(Context)) {
3462      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3463        InsertPair =
3464           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3465
3466      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3467      // want the second one in the map.
3468      InsertPair.first->second = Var;
3469
3470      // However, for the list, we don't care about the order, just make sure
3471      // that there are no dupes for a given declaration name.
3472      if (InsertPair.second)
3473        TentativeDefinitionList.push_back(Var->getDeclName());
3474    }
3475
3476    // C++ [dcl.init.ref]p3:
3477    //   The initializer can be omitted for a reference only in a
3478    //   parameter declaration (8.3.5), in the declaration of a
3479    //   function return type, in the declaration of a class member
3480    //   within its class declaration (9.2), and where the extern
3481    //   specifier is explicitly used.
3482    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3483      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3484        << Var->getDeclName()
3485        << SourceRange(Var->getLocation(), Var->getLocation());
3486      Var->setInvalidDecl();
3487      return;
3488    }
3489
3490    // C++0x [dcl.spec.auto]p3
3491    if (TypeContainsUndeducedAuto) {
3492      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3493        << Var->getDeclName() << Type;
3494      Var->setInvalidDecl();
3495      return;
3496    }
3497
3498    // An array without size is an incomplete type, and there are no special
3499    // rules in C++ to make such a definition acceptable.
3500    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3501        !Var->hasExternalStorage()) {
3502      Diag(Var->getLocation(),
3503           diag::err_typecheck_incomplete_array_needs_initializer);
3504      Var->setInvalidDecl();
3505      return;
3506    }
3507
3508    // C++ [temp.expl.spec]p15:
3509    //   An explicit specialization of a static data member of a template is a
3510    //   definition if the declaration includes an initializer; otherwise, it
3511    //   is a declaration.
3512    if (Var->isStaticDataMember() &&
3513        Var->getInstantiatedFromStaticDataMember() &&
3514        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3515      return;
3516
3517    // C++ [dcl.init]p9:
3518    //   If no initializer is specified for an object, and the object
3519    //   is of (possibly cv-qualified) non-POD class type (or array
3520    //   thereof), the object shall be default-initialized; if the
3521    //   object is of const-qualified type, the underlying class type
3522    //   shall have a user-declared default constructor.
3523    //
3524    // FIXME: Diagnose the "user-declared default constructor" bit.
3525    if (getLangOptions().CPlusPlus) {
3526      QualType InitType = Type;
3527      if (const ArrayType *Array = Context.getAsArrayType(Type))
3528        InitType = Context.getBaseElementType(Array);
3529      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3530          InitType->isRecordType() && !InitType->isDependentType()) {
3531        if (!RequireCompleteType(Var->getLocation(), InitType,
3532                                 diag::err_invalid_incomplete_type_use)) {
3533          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3534
3535          CXXConstructorDecl *Constructor
3536            = PerformInitializationByConstructor(InitType,
3537                                                 MultiExprArg(*this, 0, 0),
3538                                                 Var->getLocation(),
3539                                               SourceRange(Var->getLocation(),
3540                                                           Var->getLocation()),
3541                                                 Var->getDeclName(),
3542                                                 IK_Default,
3543                                                 ConstructorArgs);
3544
3545          // FIXME: Location info for the variable initialization?
3546          if (!Constructor)
3547            Var->setInvalidDecl();
3548          else {
3549            // FIXME: Cope with initialization of arrays
3550            if (!Constructor->isTrivial() &&
3551                InitializeVarWithConstructor(Var, Constructor,
3552                                             move_arg(ConstructorArgs)))
3553              Var->setInvalidDecl();
3554
3555            FinalizeVarWithDestructor(Var, InitType);
3556          }
3557        } else {
3558          Var->setInvalidDecl();
3559        }
3560      }
3561    }
3562
3563#if 0
3564    // FIXME: Temporarily disabled because we are not properly parsing
3565    // linkage specifications on declarations, e.g.,
3566    //
3567    //   extern "C" const CGPoint CGPointerZero;
3568    //
3569    // C++ [dcl.init]p9:
3570    //
3571    //     If no initializer is specified for an object, and the
3572    //     object is of (possibly cv-qualified) non-POD class type (or
3573    //     array thereof), the object shall be default-initialized; if
3574    //     the object is of const-qualified type, the underlying class
3575    //     type shall have a user-declared default
3576    //     constructor. Otherwise, if no initializer is specified for
3577    //     an object, the object and its subobjects, if any, have an
3578    //     indeterminate initial value; if the object or any of its
3579    //     subobjects are of const-qualified type, the program is
3580    //     ill-formed.
3581    //
3582    // This isn't technically an error in C, so we don't diagnose it.
3583    //
3584    // FIXME: Actually perform the POD/user-defined default
3585    // constructor check.
3586    if (getLangOptions().CPlusPlus &&
3587        Context.getCanonicalType(Type).isConstQualified() &&
3588        !Var->hasExternalStorage())
3589      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3590        << Var->getName()
3591        << SourceRange(Var->getLocation(), Var->getLocation());
3592#endif
3593  }
3594}
3595
3596Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3597                                                   DeclPtrTy *Group,
3598                                                   unsigned NumDecls) {
3599  llvm::SmallVector<Decl*, 8> Decls;
3600
3601  if (DS.isTypeSpecOwned())
3602    Decls.push_back((Decl*)DS.getTypeRep());
3603
3604  for (unsigned i = 0; i != NumDecls; ++i)
3605    if (Decl *D = Group[i].getAs<Decl>())
3606      Decls.push_back(D);
3607
3608  // Perform semantic analysis that depends on having fully processed both
3609  // the declarator and initializer.
3610  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3611    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3612    if (!IDecl)
3613      continue;
3614    QualType T = IDecl->getType();
3615
3616    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3617    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3618    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3619      if (T->isDependentType()) {
3620        // If T is dependent, we should not require a complete type.
3621        // (RequireCompleteType shouldn't be called with dependent types.)
3622        // But we still can at least check if we've got an array of unspecified
3623        // size without an initializer.
3624        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3625            !IDecl->getInit()) {
3626          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3627            << T;
3628          IDecl->setInvalidDecl();
3629        }
3630      } else if (!IDecl->isInvalidDecl()) {
3631        // If T is an incomplete array type with an initializer list that is
3632        // dependent on something, its size has not been fixed. We could attempt
3633        // to fix the size for such arrays, but we would still have to check
3634        // here for initializers containing a C++0x vararg expansion, e.g.
3635        // template <typename... Args> void f(Args... args) {
3636        //   int vals[] = { args };
3637        // }
3638        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3639        Expr *Init = IDecl->getInit();
3640        if (IAT && Init &&
3641            (Init->isTypeDependent() || Init->isValueDependent())) {
3642          // Check that the member type of the array is complete, at least.
3643          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3644                                  diag::err_typecheck_decl_incomplete_type))
3645            IDecl->setInvalidDecl();
3646        } else if (RequireCompleteType(IDecl->getLocation(), T,
3647                                      diag::err_typecheck_decl_incomplete_type))
3648          IDecl->setInvalidDecl();
3649      }
3650    }
3651    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3652    // object that has file scope without an initializer, and without a
3653    // storage-class specifier or with the storage-class specifier "static",
3654    // constitutes a tentative definition. Note: A tentative definition with
3655    // external linkage is valid (C99 6.2.2p5).
3656    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3657      if (const IncompleteArrayType *ArrayT
3658          = Context.getAsIncompleteArrayType(T)) {
3659        if (RequireCompleteType(IDecl->getLocation(),
3660                                ArrayT->getElementType(),
3661                                diag::err_illegal_decl_array_incomplete_type))
3662          IDecl->setInvalidDecl();
3663      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3664        // C99 6.9.2p3: If the declaration of an identifier for an object is
3665        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3666        // declared type shall not be an incomplete type.
3667        // NOTE: code such as the following
3668        //     static struct s;
3669        //     struct s { int a; };
3670        // is accepted by gcc. Hence here we issue a warning instead of
3671        // an error and we do not invalidate the static declaration.
3672        // NOTE: to avoid multiple warnings, only check the first declaration.
3673        if (IDecl->getPreviousDeclaration() == 0)
3674          RequireCompleteType(IDecl->getLocation(), T,
3675                              diag::ext_typecheck_decl_incomplete_type);
3676      }
3677    }
3678  }
3679  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3680                                                   Decls.data(), Decls.size()));
3681}
3682
3683
3684/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3685/// to introduce parameters into function prototype scope.
3686Sema::DeclPtrTy
3687Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3688  const DeclSpec &DS = D.getDeclSpec();
3689
3690  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3691  VarDecl::StorageClass StorageClass = VarDecl::None;
3692  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3693    StorageClass = VarDecl::Register;
3694  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3695    Diag(DS.getStorageClassSpecLoc(),
3696         diag::err_invalid_storage_class_in_func_decl);
3697    D.getMutableDeclSpec().ClearStorageClassSpecs();
3698  }
3699
3700  if (D.getDeclSpec().isThreadSpecified())
3701    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3702
3703  DiagnoseFunctionSpecifiers(D);
3704
3705  // Check that there are no default arguments inside the type of this
3706  // parameter (C++ only).
3707  if (getLangOptions().CPlusPlus)
3708    CheckExtraCXXDefaultArguments(D);
3709
3710  DeclaratorInfo *DInfo = 0;
3711  TagDecl *OwnedDecl = 0;
3712  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3713
3714  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3715    // C++ [dcl.fct]p6:
3716    //   Types shall not be defined in return or parameter types.
3717    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3718      << Context.getTypeDeclType(OwnedDecl);
3719  }
3720
3721  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3722  // Can this happen for params?  We already checked that they don't conflict
3723  // among each other.  Here they can only shadow globals, which is ok.
3724  IdentifierInfo *II = D.getIdentifier();
3725  if (II) {
3726    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3727      if (PrevDecl->isTemplateParameter()) {
3728        // Maybe we will complain about the shadowed template parameter.
3729        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3730        // Just pretend that we didn't see the previous declaration.
3731        PrevDecl = 0;
3732      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3733        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3734
3735        // Recover by removing the name
3736        II = 0;
3737        D.SetIdentifier(0, D.getIdentifierLoc());
3738      }
3739    }
3740  }
3741
3742  // Parameters can not be abstract class types.
3743  // For record types, this is done by the AbstractClassUsageDiagnoser once
3744  // the class has been completely parsed.
3745  if (!CurContext->isRecord() &&
3746      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3747                             diag::err_abstract_type_in_decl,
3748                             AbstractParamType))
3749    D.setInvalidType(true);
3750
3751  QualType T = adjustParameterType(parmDeclType);
3752
3753  ParmVarDecl *New
3754    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3755                          T, DInfo, StorageClass, 0);
3756
3757  if (D.isInvalidType())
3758    New->setInvalidDecl();
3759
3760  // Parameter declarators cannot be interface types. All ObjC objects are
3761  // passed by reference.
3762  if (T->isObjCInterfaceType()) {
3763    Diag(D.getIdentifierLoc(),
3764         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3765    New->setInvalidDecl();
3766  }
3767
3768  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3769  if (D.getCXXScopeSpec().isSet()) {
3770    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3771      << D.getCXXScopeSpec().getRange();
3772    New->setInvalidDecl();
3773  }
3774
3775  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3776  // duration shall not be qualified by an address-space qualifier."
3777  // Since all parameters have automatic store duration, they can not have
3778  // an address space.
3779  if (T.getAddressSpace() != 0) {
3780    Diag(D.getIdentifierLoc(),
3781         diag::err_arg_with_address_space);
3782    New->setInvalidDecl();
3783  }
3784
3785
3786  // Add the parameter declaration into this scope.
3787  S->AddDecl(DeclPtrTy::make(New));
3788  if (II)
3789    IdResolver.AddDecl(New);
3790
3791  ProcessDeclAttributes(S, New, D);
3792
3793  if (New->hasAttr<BlocksAttr>()) {
3794    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3795  }
3796  return DeclPtrTy::make(New);
3797}
3798
3799void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3800                                           SourceLocation LocAfterDecls) {
3801  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3802         "Not a function declarator!");
3803  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3804
3805  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3806  // for a K&R function.
3807  if (!FTI.hasPrototype) {
3808    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3809      --i;
3810      if (FTI.ArgInfo[i].Param == 0) {
3811        llvm::SmallString<256> Code;
3812        llvm::raw_svector_ostream(Code) << "  int "
3813                                        << FTI.ArgInfo[i].Ident->getName()
3814                                        << ";\n";
3815        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3816          << FTI.ArgInfo[i].Ident
3817          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3818
3819        // Implicitly declare the argument as type 'int' for lack of a better
3820        // type.
3821        DeclSpec DS;
3822        const char* PrevSpec; // unused
3823        unsigned DiagID; // unused
3824        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3825                           PrevSpec, DiagID);
3826        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3827        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3828        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3829      }
3830    }
3831  }
3832}
3833
3834Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3835                                              Declarator &D) {
3836  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3837  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3838         "Not a function declarator!");
3839  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3840
3841  if (FTI.hasPrototype) {
3842    // FIXME: Diagnose arguments without names in C.
3843  }
3844
3845  Scope *ParentScope = FnBodyScope->getParent();
3846
3847  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3848                                  MultiTemplateParamsArg(*this),
3849                                  /*IsFunctionDefinition=*/true);
3850  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3851}
3852
3853Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3854  // Clear the last template instantiation error context.
3855  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3856
3857  if (!D)
3858    return D;
3859  FunctionDecl *FD = 0;
3860
3861  if (FunctionTemplateDecl *FunTmpl
3862        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3863    FD = FunTmpl->getTemplatedDecl();
3864  else
3865    FD = cast<FunctionDecl>(D.getAs<Decl>());
3866
3867  CurFunctionNeedsScopeChecking = false;
3868
3869  // See if this is a redefinition.
3870  const FunctionDecl *Definition;
3871  if (FD->getBody(Definition)) {
3872    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3873    Diag(Definition->getLocation(), diag::note_previous_definition);
3874  }
3875
3876  // Builtin functions cannot be defined.
3877  if (unsigned BuiltinID = FD->getBuiltinID()) {
3878    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3879      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3880      FD->setInvalidDecl();
3881    }
3882  }
3883
3884  // The return type of a function definition must be complete
3885  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3886  QualType ResultType = FD->getResultType();
3887  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3888      !FD->isInvalidDecl() &&
3889      RequireCompleteType(FD->getLocation(), ResultType,
3890                          diag::err_func_def_incomplete_result))
3891    FD->setInvalidDecl();
3892
3893  // GNU warning -Wmissing-prototypes:
3894  //   Warn if a global function is defined without a previous
3895  //   prototype declaration. This warning is issued even if the
3896  //   definition itself provides a prototype. The aim is to detect
3897  //   global functions that fail to be declared in header files.
3898  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3899      !FD->isMain()) {
3900    bool MissingPrototype = true;
3901    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3902         Prev; Prev = Prev->getPreviousDeclaration()) {
3903      // Ignore any declarations that occur in function or method
3904      // scope, because they aren't visible from the header.
3905      if (Prev->getDeclContext()->isFunctionOrMethod())
3906        continue;
3907
3908      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3909      break;
3910    }
3911
3912    if (MissingPrototype)
3913      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3914  }
3915
3916  if (FnBodyScope)
3917    PushDeclContext(FnBodyScope, FD);
3918
3919  // Check the validity of our function parameters
3920  CheckParmsForFunctionDef(FD);
3921
3922  // Introduce our parameters into the function scope
3923  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3924    ParmVarDecl *Param = FD->getParamDecl(p);
3925    Param->setOwningFunction(FD);
3926
3927    // If this has an identifier, add it to the scope stack.
3928    if (Param->getIdentifier() && FnBodyScope)
3929      PushOnScopeChains(Param, FnBodyScope);
3930  }
3931
3932  // Checking attributes of current function definition
3933  // dllimport attribute.
3934  if (FD->getAttr<DLLImportAttr>() &&
3935      (!FD->getAttr<DLLExportAttr>())) {
3936    // dllimport attribute cannot be applied to definition.
3937    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3938      Diag(FD->getLocation(),
3939           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3940        << "dllimport";
3941      FD->setInvalidDecl();
3942      return DeclPtrTy::make(FD);
3943    } else {
3944      // If a symbol previously declared dllimport is later defined, the
3945      // attribute is ignored in subsequent references, and a warning is
3946      // emitted.
3947      Diag(FD->getLocation(),
3948           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3949        << FD->getNameAsCString() << "dllimport";
3950    }
3951  }
3952  return DeclPtrTy::make(FD);
3953}
3954
3955Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3956  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3957}
3958
3959Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3960                                              bool IsInstantiation) {
3961  Decl *dcl = D.getAs<Decl>();
3962  Stmt *Body = BodyArg.takeAs<Stmt>();
3963
3964  FunctionDecl *FD = 0;
3965  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3966  if (FunTmpl)
3967    FD = FunTmpl->getTemplatedDecl();
3968  else
3969    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3970
3971  if (FD) {
3972    FD->setBody(Body);
3973    if (FD->isMain())
3974      // C and C++ allow for main to automagically return 0.
3975      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3976      FD->setHasImplicitReturnZero(true);
3977    else
3978      CheckFallThroughForFunctionDef(FD, Body);
3979
3980    if (!FD->isInvalidDecl())
3981      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3982
3983    // C++ [basic.def.odr]p2:
3984    //   [...] A virtual member function is used if it is not pure. [...]
3985    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3986      if (Method->isVirtual() && !Method->isPure())
3987        MarkDeclarationReferenced(Method->getLocation(), Method);
3988
3989    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3990  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3991    assert(MD == getCurMethodDecl() && "Method parsing confused");
3992    MD->setBody(Body);
3993    CheckFallThroughForFunctionDef(MD, Body);
3994    MD->setEndLoc(Body->getLocEnd());
3995
3996    if (!MD->isInvalidDecl())
3997      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3998  } else {
3999    Body->Destroy(Context);
4000    return DeclPtrTy();
4001  }
4002  if (!IsInstantiation)
4003    PopDeclContext();
4004
4005  // Verify and clean out per-function state.
4006
4007  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4008
4009  // Check goto/label use.
4010  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4011       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4012    LabelStmt *L = I->second;
4013
4014    // Verify that we have no forward references left.  If so, there was a goto
4015    // or address of a label taken, but no definition of it.  Label fwd
4016    // definitions are indicated with a null substmt.
4017    if (L->getSubStmt() != 0)
4018      continue;
4019
4020    // Emit error.
4021    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4022
4023    // At this point, we have gotos that use the bogus label.  Stitch it into
4024    // the function body so that they aren't leaked and that the AST is well
4025    // formed.
4026    if (Body == 0) {
4027      // The whole function wasn't parsed correctly, just delete this.
4028      L->Destroy(Context);
4029      continue;
4030    }
4031
4032    // Otherwise, the body is valid: we want to stitch the label decl into the
4033    // function somewhere so that it is properly owned and so that the goto
4034    // has a valid target.  Do this by creating a new compound stmt with the
4035    // label in it.
4036
4037    // Give the label a sub-statement.
4038    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4039
4040    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4041                               cast<CXXTryStmt>(Body)->getTryBlock() :
4042                               cast<CompoundStmt>(Body);
4043    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4044    Elements.push_back(L);
4045    Compound->setStmts(Context, &Elements[0], Elements.size());
4046  }
4047  FunctionLabelMap.clear();
4048
4049  if (!Body) return D;
4050
4051  // Verify that that gotos and switch cases don't jump into scopes illegally.
4052  if (CurFunctionNeedsScopeChecking)
4053    DiagnoseInvalidJumps(Body);
4054
4055  // C++ constructors that have function-try-blocks can't have return
4056  // statements in the handlers of that block. (C++ [except.handle]p14)
4057  // Verify this.
4058  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4059    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4060
4061  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4062    MarkBaseAndMemberDestructorsReferenced(Destructor);
4063
4064  // If any errors have occurred, clear out any temporaries that may have
4065  // been leftover. This ensures that these temporaries won't be picked up for
4066  // deletion in some later function.
4067  if (PP.getDiagnostics().hasErrorOccurred())
4068    ExprTemporaries.clear();
4069
4070  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4071  return D;
4072}
4073
4074/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4075/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4076NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4077                                          IdentifierInfo &II, Scope *S) {
4078  // Before we produce a declaration for an implicitly defined
4079  // function, see whether there was a locally-scoped declaration of
4080  // this name as a function or variable. If so, use that
4081  // (non-visible) declaration, and complain about it.
4082  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4083    = LocallyScopedExternalDecls.find(&II);
4084  if (Pos != LocallyScopedExternalDecls.end()) {
4085    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4086    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4087    return Pos->second;
4088  }
4089
4090  // Extension in C99.  Legal in C90, but warn about it.
4091  if (II.getName().startswith("__builtin_"))
4092    Diag(Loc, diag::warn_builtin_unknown) << &II;
4093  else if (getLangOptions().C99)
4094    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4095  else
4096    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4097
4098  // Set a Declarator for the implicit definition: int foo();
4099  const char *Dummy;
4100  DeclSpec DS;
4101  unsigned DiagID;
4102  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4103  Error = Error; // Silence warning.
4104  assert(!Error && "Error setting up implicit decl!");
4105  Declarator D(DS, Declarator::BlockContext);
4106  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4107                                             0, 0, false, SourceLocation(),
4108                                             false, 0,0,0, Loc, Loc, D),
4109                SourceLocation());
4110  D.SetIdentifier(&II, Loc);
4111
4112  // Insert this function into translation-unit scope.
4113
4114  DeclContext *PrevDC = CurContext;
4115  CurContext = Context.getTranslationUnitDecl();
4116
4117  FunctionDecl *FD =
4118 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4119  FD->setImplicit();
4120
4121  CurContext = PrevDC;
4122
4123  AddKnownFunctionAttributes(FD);
4124
4125  return FD;
4126}
4127
4128/// \brief Adds any function attributes that we know a priori based on
4129/// the declaration of this function.
4130///
4131/// These attributes can apply both to implicitly-declared builtins
4132/// (like __builtin___printf_chk) or to library-declared functions
4133/// like NSLog or printf.
4134void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4135  if (FD->isInvalidDecl())
4136    return;
4137
4138  // If this is a built-in function, map its builtin attributes to
4139  // actual attributes.
4140  if (unsigned BuiltinID = FD->getBuiltinID()) {
4141    // Handle printf-formatting attributes.
4142    unsigned FormatIdx;
4143    bool HasVAListArg;
4144    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4145      if (!FD->getAttr<FormatAttr>())
4146        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4147                                             HasVAListArg ? 0 : FormatIdx + 2));
4148    }
4149
4150    // Mark const if we don't care about errno and that is the only
4151    // thing preventing the function from being const. This allows
4152    // IRgen to use LLVM intrinsics for such functions.
4153    if (!getLangOptions().MathErrno &&
4154        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4155      if (!FD->getAttr<ConstAttr>())
4156        FD->addAttr(::new (Context) ConstAttr());
4157    }
4158
4159    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4160      FD->addAttr(::new (Context) NoReturnAttr());
4161  }
4162
4163  IdentifierInfo *Name = FD->getIdentifier();
4164  if (!Name)
4165    return;
4166  if ((!getLangOptions().CPlusPlus &&
4167       FD->getDeclContext()->isTranslationUnit()) ||
4168      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4169       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4170       LinkageSpecDecl::lang_c)) {
4171    // Okay: this could be a libc/libm/Objective-C function we know
4172    // about.
4173  } else
4174    return;
4175
4176  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4177    // FIXME: NSLog and NSLogv should be target specific
4178    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4179      // FIXME: We known better than our headers.
4180      const_cast<FormatAttr *>(Format)->setType("printf");
4181    } else
4182      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4183                                             Name->isStr("NSLogv") ? 0 : 2));
4184  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4185    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4186    // target-specific builtins, perhaps?
4187    if (!FD->getAttr<FormatAttr>())
4188      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4189                                             Name->isStr("vasprintf") ? 0 : 3));
4190  }
4191}
4192
4193TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4194                                    DeclaratorInfo *DInfo) {
4195  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4196  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4197
4198  if (!DInfo) {
4199    assert(D.isInvalidType() && "no declarator info for valid type");
4200    DInfo = Context.getTrivialDeclaratorInfo(T);
4201  }
4202
4203  // Scope manipulation handled by caller.
4204  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4205                                           D.getIdentifierLoc(),
4206                                           D.getIdentifier(),
4207                                           DInfo);
4208
4209  if (const TagType *TT = T->getAs<TagType>()) {
4210    TagDecl *TD = TT->getDecl();
4211
4212    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4213    // keep track of the TypedefDecl.
4214    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4215      TD->setTypedefForAnonDecl(NewTD);
4216  }
4217
4218  if (D.isInvalidType())
4219    NewTD->setInvalidDecl();
4220  return NewTD;
4221}
4222
4223
4224/// \brief Determine whether a tag with a given kind is acceptable
4225/// as a redeclaration of the given tag declaration.
4226///
4227/// \returns true if the new tag kind is acceptable, false otherwise.
4228bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4229                                        TagDecl::TagKind NewTag,
4230                                        SourceLocation NewTagLoc,
4231                                        const IdentifierInfo &Name) {
4232  // C++ [dcl.type.elab]p3:
4233  //   The class-key or enum keyword present in the
4234  //   elaborated-type-specifier shall agree in kind with the
4235  //   declaration to which the name in theelaborated-type-specifier
4236  //   refers. This rule also applies to the form of
4237  //   elaborated-type-specifier that declares a class-name or
4238  //   friend class since it can be construed as referring to the
4239  //   definition of the class. Thus, in any
4240  //   elaborated-type-specifier, the enum keyword shall be used to
4241  //   refer to an enumeration (7.2), the union class-keyshall be
4242  //   used to refer to a union (clause 9), and either the class or
4243  //   struct class-key shall be used to refer to a class (clause 9)
4244  //   declared using the class or struct class-key.
4245  TagDecl::TagKind OldTag = Previous->getTagKind();
4246  if (OldTag == NewTag)
4247    return true;
4248
4249  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4250      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4251    // Warn about the struct/class tag mismatch.
4252    bool isTemplate = false;
4253    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4254      isTemplate = Record->getDescribedClassTemplate();
4255
4256    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4257      << (NewTag == TagDecl::TK_class)
4258      << isTemplate << &Name
4259      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4260                              OldTag == TagDecl::TK_class? "class" : "struct");
4261    Diag(Previous->getLocation(), diag::note_previous_use);
4262    return true;
4263  }
4264  return false;
4265}
4266
4267/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4268/// former case, Name will be non-null.  In the later case, Name will be null.
4269/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4270/// reference/declaration/definition of a tag.
4271Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4272                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4273                               IdentifierInfo *Name, SourceLocation NameLoc,
4274                               AttributeList *Attr, AccessSpecifier AS,
4275                               MultiTemplateParamsArg TemplateParameterLists,
4276                               bool &OwnedDecl, bool &IsDependent) {
4277  // If this is not a definition, it must have a name.
4278  assert((Name != 0 || TUK == TUK_Definition) &&
4279         "Nameless record must be a definition!");
4280
4281  OwnedDecl = false;
4282  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4283
4284  // FIXME: Check explicit specializations more carefully.
4285  bool isExplicitSpecialization = false;
4286  if (TUK != TUK_Reference) {
4287    if (TemplateParameterList *TemplateParams
4288          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4289                        (TemplateParameterList**)TemplateParameterLists.get(),
4290                                              TemplateParameterLists.size(),
4291                                                    isExplicitSpecialization)) {
4292      if (TemplateParams->size() > 0) {
4293        // This is a declaration or definition of a class template (which may
4294        // be a member of another template).
4295        OwnedDecl = false;
4296        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4297                                               SS, Name, NameLoc, Attr,
4298                                               TemplateParams,
4299                                               AS);
4300        TemplateParameterLists.release();
4301        return Result.get();
4302      } else {
4303        // The "template<>" header is extraneous.
4304        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4305          << ElaboratedType::getNameForTagKind(Kind) << Name;
4306        isExplicitSpecialization = true;
4307      }
4308    }
4309
4310    TemplateParameterLists.release();
4311  }
4312
4313  DeclContext *SearchDC = CurContext;
4314  DeclContext *DC = CurContext;
4315  NamedDecl *PrevDecl = 0;
4316  bool isStdBadAlloc = false;
4317  bool Invalid = false;
4318
4319  LookupResult::RedeclarationKind Redecl =
4320    (LookupResult::RedeclarationKind) (TUK != TUK_Reference);
4321
4322  if (Name && SS.isNotEmpty()) {
4323    // We have a nested-name tag ('struct foo::bar').
4324
4325    // Check for invalid 'foo::'.
4326    if (SS.isInvalid()) {
4327      Name = 0;
4328      goto CreateNewDecl;
4329    }
4330
4331    // If this is a friend or a reference to a class in a dependent
4332    // context, don't try to make a decl for it.
4333    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4334      DC = computeDeclContext(SS, false);
4335      if (!DC) {
4336        IsDependent = true;
4337        return DeclPtrTy();
4338      }
4339    }
4340
4341    if (RequireCompleteDeclContext(SS))
4342      return DeclPtrTy::make((Decl *)0);
4343
4344    DC = computeDeclContext(SS, true);
4345    SearchDC = DC;
4346    // Look-up name inside 'foo::'.
4347    LookupResult R(*this, Name, NameLoc, LookupTagName, Redecl);
4348    LookupQualifiedName(R, DC);
4349
4350    if (R.isAmbiguous())
4351      return DeclPtrTy();
4352
4353    if (R.getResultKind() == LookupResult::Found)
4354      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4355
4356    // A tag 'foo::bar' must already exist.
4357    if (!PrevDecl) {
4358      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4359      Name = 0;
4360      Invalid = true;
4361      goto CreateNewDecl;
4362    }
4363  } else if (Name) {
4364    // If this is a named struct, check to see if there was a previous forward
4365    // declaration or definition.
4366    // FIXME: We're looking into outer scopes here, even when we
4367    // shouldn't be. Doing so can result in ambiguities that we
4368    // shouldn't be diagnosing.
4369    LookupResult R(*this, Name, NameLoc, LookupTagName, Redecl);
4370    LookupName(R, S);
4371    if (R.isAmbiguous()) {
4372      // FIXME: This is not best way to recover from case like:
4373      //
4374      // struct S s;
4375      //
4376      // causes needless "incomplete type" error later.
4377      Name = 0;
4378      PrevDecl = 0;
4379      Invalid = true;
4380    } else
4381      PrevDecl = R.getAsSingleDecl(Context);
4382
4383    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4384      // FIXME: This makes sure that we ignore the contexts associated
4385      // with C structs, unions, and enums when looking for a matching
4386      // tag declaration or definition. See the similar lookup tweak
4387      // in Sema::LookupName; is there a better way to deal with this?
4388      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4389        SearchDC = SearchDC->getParent();
4390    }
4391  }
4392
4393  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4394    // Maybe we will complain about the shadowed template parameter.
4395    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4396    // Just pretend that we didn't see the previous declaration.
4397    PrevDecl = 0;
4398  }
4399
4400  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4401      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4402    // This is a declaration of or a reference to "std::bad_alloc".
4403    isStdBadAlloc = true;
4404
4405    if (!PrevDecl && StdBadAlloc) {
4406      // std::bad_alloc has been implicitly declared (but made invisible to
4407      // name lookup). Fill in this implicit declaration as the previous
4408      // declaration, so that the declarations get chained appropriately.
4409      PrevDecl = StdBadAlloc;
4410    }
4411  }
4412
4413  if (PrevDecl) {
4414    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4415      // If this is a use of a previous tag, or if the tag is already declared
4416      // in the same scope (so that the definition/declaration completes or
4417      // rementions the tag), reuse the decl.
4418      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4419          isDeclInScope(PrevDecl, SearchDC, S)) {
4420        // Make sure that this wasn't declared as an enum and now used as a
4421        // struct or something similar.
4422        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4423          bool SafeToContinue
4424            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4425               Kind != TagDecl::TK_enum);
4426          if (SafeToContinue)
4427            Diag(KWLoc, diag::err_use_with_wrong_tag)
4428              << Name
4429              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4430                                                  PrevTagDecl->getKindName());
4431          else
4432            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4433          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4434
4435          if (SafeToContinue)
4436            Kind = PrevTagDecl->getTagKind();
4437          else {
4438            // Recover by making this an anonymous redefinition.
4439            Name = 0;
4440            PrevDecl = 0;
4441            Invalid = true;
4442          }
4443        }
4444
4445        if (!Invalid) {
4446          // If this is a use, just return the declaration we found.
4447
4448          // FIXME: In the future, return a variant or some other clue
4449          // for the consumer of this Decl to know it doesn't own it.
4450          // For our current ASTs this shouldn't be a problem, but will
4451          // need to be changed with DeclGroups.
4452          if (TUK == TUK_Reference || TUK == TUK_Friend)
4453            return DeclPtrTy::make(PrevDecl);
4454
4455          // Diagnose attempts to redefine a tag.
4456          if (TUK == TUK_Definition) {
4457            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4458              // If we're defining a specialization and the previous definition
4459              // is from an implicit instantiation, don't emit an error
4460              // here; we'll catch this in the general case below.
4461              if (!isExplicitSpecialization ||
4462                  !isa<CXXRecordDecl>(Def) ||
4463                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4464                                               == TSK_ExplicitSpecialization) {
4465                Diag(NameLoc, diag::err_redefinition) << Name;
4466                Diag(Def->getLocation(), diag::note_previous_definition);
4467                // If this is a redefinition, recover by making this
4468                // struct be anonymous, which will make any later
4469                // references get the previous definition.
4470                Name = 0;
4471                PrevDecl = 0;
4472                Invalid = true;
4473              }
4474            } else {
4475              // If the type is currently being defined, complain
4476              // about a nested redefinition.
4477              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4478              if (Tag->isBeingDefined()) {
4479                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4480                Diag(PrevTagDecl->getLocation(),
4481                     diag::note_previous_definition);
4482                Name = 0;
4483                PrevDecl = 0;
4484                Invalid = true;
4485              }
4486            }
4487
4488            // Okay, this is definition of a previously declared or referenced
4489            // tag PrevDecl. We're going to create a new Decl for it.
4490          }
4491        }
4492        // If we get here we have (another) forward declaration or we
4493        // have a definition.  Just create a new decl.
4494
4495      } else {
4496        // If we get here, this is a definition of a new tag type in a nested
4497        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4498        // new decl/type.  We set PrevDecl to NULL so that the entities
4499        // have distinct types.
4500        PrevDecl = 0;
4501      }
4502      // If we get here, we're going to create a new Decl. If PrevDecl
4503      // is non-NULL, it's a definition of the tag declared by
4504      // PrevDecl. If it's NULL, we have a new definition.
4505    } else {
4506      // PrevDecl is a namespace, template, or anything else
4507      // that lives in the IDNS_Tag identifier namespace.
4508      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4509        // The tag name clashes with a namespace name, issue an error and
4510        // recover by making this tag be anonymous.
4511        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4512        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4513        Name = 0;
4514        PrevDecl = 0;
4515        Invalid = true;
4516      } else {
4517        // The existing declaration isn't relevant to us; we're in a
4518        // new scope, so clear out the previous declaration.
4519        PrevDecl = 0;
4520      }
4521    }
4522  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4523             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4524    // C++ [basic.scope.pdecl]p5:
4525    //   -- for an elaborated-type-specifier of the form
4526    //
4527    //          class-key identifier
4528    //
4529    //      if the elaborated-type-specifier is used in the
4530    //      decl-specifier-seq or parameter-declaration-clause of a
4531    //      function defined in namespace scope, the identifier is
4532    //      declared as a class-name in the namespace that contains
4533    //      the declaration; otherwise, except as a friend
4534    //      declaration, the identifier is declared in the smallest
4535    //      non-class, non-function-prototype scope that contains the
4536    //      declaration.
4537    //
4538    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4539    // C structs and unions.
4540    //
4541    // GNU C also supports this behavior as part of its incomplete
4542    // enum types extension, while GNU C++ does not.
4543    //
4544    // Find the context where we'll be declaring the tag.
4545    // FIXME: We would like to maintain the current DeclContext as the
4546    // lexical context,
4547    while (SearchDC->isRecord())
4548      SearchDC = SearchDC->getParent();
4549
4550    // Find the scope where we'll be declaring the tag.
4551    while (S->isClassScope() ||
4552           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4553           ((S->getFlags() & Scope::DeclScope) == 0) ||
4554           (S->getEntity() &&
4555            ((DeclContext *)S->getEntity())->isTransparentContext()))
4556      S = S->getParent();
4557
4558  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4559    // C++ [namespace.memdef]p3:
4560    //   If a friend declaration in a non-local class first declares a
4561    //   class or function, the friend class or function is a member of
4562    //   the innermost enclosing namespace.
4563    while (!SearchDC->isFileContext())
4564      SearchDC = SearchDC->getParent();
4565
4566    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4567    while (S->getEntity() != SearchDC)
4568      S = S->getParent();
4569  }
4570
4571CreateNewDecl:
4572
4573  // If there is an identifier, use the location of the identifier as the
4574  // location of the decl, otherwise use the location of the struct/union
4575  // keyword.
4576  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4577
4578  // Otherwise, create a new declaration. If there is a previous
4579  // declaration of the same entity, the two will be linked via
4580  // PrevDecl.
4581  TagDecl *New;
4582
4583  if (Kind == TagDecl::TK_enum) {
4584    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4585    // enum X { A, B, C } D;    D should chain to X.
4586    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4587                           cast_or_null<EnumDecl>(PrevDecl));
4588    // If this is an undefined enum, warn.
4589    if (TUK != TUK_Definition && !Invalid)  {
4590      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4591                                              : diag::ext_forward_ref_enum;
4592      Diag(Loc, DK);
4593    }
4594  } else {
4595    // struct/union/class
4596
4597    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4598    // struct X { int A; } D;    D should chain to X.
4599    if (getLangOptions().CPlusPlus) {
4600      // FIXME: Look for a way to use RecordDecl for simple structs.
4601      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4602                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4603
4604      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4605        StdBadAlloc = cast<CXXRecordDecl>(New);
4606    } else
4607      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4608                               cast_or_null<RecordDecl>(PrevDecl));
4609  }
4610
4611  if (Kind != TagDecl::TK_enum) {
4612    // Handle #pragma pack: if the #pragma pack stack has non-default
4613    // alignment, make up a packed attribute for this decl. These
4614    // attributes are checked when the ASTContext lays out the
4615    // structure.
4616    //
4617    // It is important for implementing the correct semantics that this
4618    // happen here (in act on tag decl). The #pragma pack stack is
4619    // maintained as a result of parser callbacks which can occur at
4620    // many points during the parsing of a struct declaration (because
4621    // the #pragma tokens are effectively skipped over during the
4622    // parsing of the struct).
4623    if (unsigned Alignment = getPragmaPackAlignment())
4624      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4625  }
4626
4627  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4628    // C++ [dcl.typedef]p3:
4629    //   [...] Similarly, in a given scope, a class or enumeration
4630    //   shall not be declared with the same name as a typedef-name
4631    //   that is declared in that scope and refers to a type other
4632    //   than the class or enumeration itself.
4633    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4634                        LookupResult::ForRedeclaration);
4635    LookupName(Lookup, S);
4636    TypedefDecl *PrevTypedef = 0;
4637    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4638      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4639
4640    NamedDecl *PrevTypedefNamed = PrevTypedef;
4641    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4642        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4643          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4644      Diag(Loc, diag::err_tag_definition_of_typedef)
4645        << Context.getTypeDeclType(New)
4646        << PrevTypedef->getUnderlyingType();
4647      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4648      Invalid = true;
4649    }
4650  }
4651
4652  // If this is a specialization of a member class (of a class template),
4653  // check the specialization.
4654  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4655    Invalid = true;
4656
4657  if (Invalid)
4658    New->setInvalidDecl();
4659
4660  if (Attr)
4661    ProcessDeclAttributeList(S, New, Attr);
4662
4663  // If we're declaring or defining a tag in function prototype scope
4664  // in C, note that this type can only be used within the function.
4665  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4666    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4667
4668  // Set the lexical context. If the tag has a C++ scope specifier, the
4669  // lexical context will be different from the semantic context.
4670  New->setLexicalDeclContext(CurContext);
4671
4672  // Mark this as a friend decl if applicable.
4673  if (TUK == TUK_Friend)
4674    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4675
4676  // Set the access specifier.
4677  if (!Invalid && TUK != TUK_Friend)
4678    SetMemberAccessSpecifier(New, PrevDecl, AS);
4679
4680  if (TUK == TUK_Definition)
4681    New->startDefinition();
4682
4683  // If this has an identifier, add it to the scope stack.
4684  if (TUK == TUK_Friend) {
4685    // We might be replacing an existing declaration in the lookup tables;
4686    // if so, borrow its access specifier.
4687    if (PrevDecl)
4688      New->setAccess(PrevDecl->getAccess());
4689
4690    // Friend tag decls are visible in fairly strange ways.
4691    if (!CurContext->isDependentContext()) {
4692      DeclContext *DC = New->getDeclContext()->getLookupContext();
4693      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4694      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4695        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4696    }
4697  } else if (Name) {
4698    S = getNonFieldDeclScope(S);
4699    PushOnScopeChains(New, S);
4700  } else {
4701    CurContext->addDecl(New);
4702  }
4703
4704  // If this is the C FILE type, notify the AST context.
4705  if (IdentifierInfo *II = New->getIdentifier())
4706    if (!New->isInvalidDecl() &&
4707        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4708        II->isStr("FILE"))
4709      Context.setFILEDecl(New);
4710
4711  OwnedDecl = true;
4712  return DeclPtrTy::make(New);
4713}
4714
4715void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4716  AdjustDeclIfTemplate(TagD);
4717  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4718
4719  // Enter the tag context.
4720  PushDeclContext(S, Tag);
4721
4722  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4723    FieldCollector->StartClass();
4724
4725    if (Record->getIdentifier()) {
4726      // C++ [class]p2:
4727      //   [...] The class-name is also inserted into the scope of the
4728      //   class itself; this is known as the injected-class-name. For
4729      //   purposes of access checking, the injected-class-name is treated
4730      //   as if it were a public member name.
4731      CXXRecordDecl *InjectedClassName
4732        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4733                                CurContext, Record->getLocation(),
4734                                Record->getIdentifier(),
4735                                Record->getTagKeywordLoc(),
4736                                Record);
4737      InjectedClassName->setImplicit();
4738      InjectedClassName->setAccess(AS_public);
4739      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4740        InjectedClassName->setDescribedClassTemplate(Template);
4741      PushOnScopeChains(InjectedClassName, S);
4742      assert(InjectedClassName->isInjectedClassName() &&
4743             "Broken injected-class-name");
4744    }
4745  }
4746}
4747
4748void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4749                                    SourceLocation RBraceLoc) {
4750  AdjustDeclIfTemplate(TagD);
4751  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4752  Tag->setRBraceLoc(RBraceLoc);
4753
4754  if (isa<CXXRecordDecl>(Tag))
4755    FieldCollector->FinishClass();
4756
4757  // Exit this scope of this tag's definition.
4758  PopDeclContext();
4759
4760  // Notify the consumer that we've defined a tag.
4761  Consumer.HandleTagDeclDefinition(Tag);
4762}
4763
4764// Note that FieldName may be null for anonymous bitfields.
4765bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4766                          QualType FieldTy, const Expr *BitWidth,
4767                          bool *ZeroWidth) {
4768  // Default to true; that shouldn't confuse checks for emptiness
4769  if (ZeroWidth)
4770    *ZeroWidth = true;
4771
4772  // C99 6.7.2.1p4 - verify the field type.
4773  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4774  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4775    // Handle incomplete types with specific error.
4776    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4777      return true;
4778    if (FieldName)
4779      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4780        << FieldName << FieldTy << BitWidth->getSourceRange();
4781    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4782      << FieldTy << BitWidth->getSourceRange();
4783  }
4784
4785  // If the bit-width is type- or value-dependent, don't try to check
4786  // it now.
4787  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4788    return false;
4789
4790  llvm::APSInt Value;
4791  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4792    return true;
4793
4794  if (Value != 0 && ZeroWidth)
4795    *ZeroWidth = false;
4796
4797  // Zero-width bitfield is ok for anonymous field.
4798  if (Value == 0 && FieldName)
4799    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4800
4801  if (Value.isSigned() && Value.isNegative()) {
4802    if (FieldName)
4803      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4804               << FieldName << Value.toString(10);
4805    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4806      << Value.toString(10);
4807  }
4808
4809  if (!FieldTy->isDependentType()) {
4810    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4811    if (Value.getZExtValue() > TypeSize) {
4812      if (FieldName)
4813        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4814          << FieldName << (unsigned)TypeSize;
4815      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4816        << (unsigned)TypeSize;
4817    }
4818  }
4819
4820  return false;
4821}
4822
4823/// ActOnField - Each field of a struct/union/class is passed into this in order
4824/// to create a FieldDecl object for it.
4825Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4826                                 SourceLocation DeclStart,
4827                                 Declarator &D, ExprTy *BitfieldWidth) {
4828  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4829                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4830                               AS_public);
4831  return DeclPtrTy::make(Res);
4832}
4833
4834/// HandleField - Analyze a field of a C struct or a C++ data member.
4835///
4836FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4837                             SourceLocation DeclStart,
4838                             Declarator &D, Expr *BitWidth,
4839                             AccessSpecifier AS) {
4840  IdentifierInfo *II = D.getIdentifier();
4841  SourceLocation Loc = DeclStart;
4842  if (II) Loc = D.getIdentifierLoc();
4843
4844  DeclaratorInfo *DInfo = 0;
4845  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4846  if (getLangOptions().CPlusPlus)
4847    CheckExtraCXXDefaultArguments(D);
4848
4849  DiagnoseFunctionSpecifiers(D);
4850
4851  if (D.getDeclSpec().isThreadSpecified())
4852    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4853
4854  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4855                                         LookupResult::ForRedeclaration);
4856
4857  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4858    // Maybe we will complain about the shadowed template parameter.
4859    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4860    // Just pretend that we didn't see the previous declaration.
4861    PrevDecl = 0;
4862  }
4863
4864  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4865    PrevDecl = 0;
4866
4867  bool Mutable
4868    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4869  SourceLocation TSSL = D.getSourceRange().getBegin();
4870  FieldDecl *NewFD
4871    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4872                     AS, PrevDecl, &D);
4873  if (NewFD->isInvalidDecl() && PrevDecl) {
4874    // Don't introduce NewFD into scope; there's already something
4875    // with the same name in the same scope.
4876  } else if (II) {
4877    PushOnScopeChains(NewFD, S);
4878  } else
4879    Record->addDecl(NewFD);
4880
4881  return NewFD;
4882}
4883
4884/// \brief Build a new FieldDecl and check its well-formedness.
4885///
4886/// This routine builds a new FieldDecl given the fields name, type,
4887/// record, etc. \p PrevDecl should refer to any previous declaration
4888/// with the same name and in the same scope as the field to be
4889/// created.
4890///
4891/// \returns a new FieldDecl.
4892///
4893/// \todo The Declarator argument is a hack. It will be removed once
4894FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4895                                DeclaratorInfo *DInfo,
4896                                RecordDecl *Record, SourceLocation Loc,
4897                                bool Mutable, Expr *BitWidth,
4898                                SourceLocation TSSL,
4899                                AccessSpecifier AS, NamedDecl *PrevDecl,
4900                                Declarator *D) {
4901  IdentifierInfo *II = Name.getAsIdentifierInfo();
4902  bool InvalidDecl = false;
4903  if (D) InvalidDecl = D->isInvalidType();
4904
4905  // If we receive a broken type, recover by assuming 'int' and
4906  // marking this declaration as invalid.
4907  if (T.isNull()) {
4908    InvalidDecl = true;
4909    T = Context.IntTy;
4910  }
4911
4912  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4913  // than a variably modified type.
4914  if (T->isVariablyModifiedType()) {
4915    bool SizeIsNegative;
4916    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4917                                                           SizeIsNegative);
4918    if (!FixedTy.isNull()) {
4919      Diag(Loc, diag::warn_illegal_constant_array_size);
4920      T = FixedTy;
4921    } else {
4922      if (SizeIsNegative)
4923        Diag(Loc, diag::err_typecheck_negative_array_size);
4924      else
4925        Diag(Loc, diag::err_typecheck_field_variable_size);
4926      InvalidDecl = true;
4927    }
4928  }
4929
4930  // Fields can not have abstract class types
4931  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4932                             AbstractFieldType))
4933    InvalidDecl = true;
4934
4935  bool ZeroWidth = false;
4936  // If this is declared as a bit-field, check the bit-field.
4937  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4938    InvalidDecl = true;
4939    DeleteExpr(BitWidth);
4940    BitWidth = 0;
4941    ZeroWidth = false;
4942  }
4943
4944  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4945                                       BitWidth, Mutable);
4946  if (InvalidDecl)
4947    NewFD->setInvalidDecl();
4948
4949  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4950    Diag(Loc, diag::err_duplicate_member) << II;
4951    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4952    NewFD->setInvalidDecl();
4953  }
4954
4955  if (getLangOptions().CPlusPlus) {
4956    QualType EltTy = Context.getBaseElementType(T);
4957
4958    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4959
4960    if (!T->isPODType())
4961      CXXRecord->setPOD(false);
4962    if (!ZeroWidth)
4963      CXXRecord->setEmpty(false);
4964
4965    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4966      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4967
4968      if (!RDecl->hasTrivialConstructor())
4969        CXXRecord->setHasTrivialConstructor(false);
4970      if (!RDecl->hasTrivialCopyConstructor())
4971        CXXRecord->setHasTrivialCopyConstructor(false);
4972      if (!RDecl->hasTrivialCopyAssignment())
4973        CXXRecord->setHasTrivialCopyAssignment(false);
4974      if (!RDecl->hasTrivialDestructor())
4975        CXXRecord->setHasTrivialDestructor(false);
4976
4977      // C++ 9.5p1: An object of a class with a non-trivial
4978      // constructor, a non-trivial copy constructor, a non-trivial
4979      // destructor, or a non-trivial copy assignment operator
4980      // cannot be a member of a union, nor can an array of such
4981      // objects.
4982      // TODO: C++0x alters this restriction significantly.
4983      if (Record->isUnion()) {
4984        // We check for copy constructors before constructors
4985        // because otherwise we'll never get complaints about
4986        // copy constructors.
4987
4988        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4989
4990        CXXSpecialMember member;
4991        if (!RDecl->hasTrivialCopyConstructor())
4992          member = CXXCopyConstructor;
4993        else if (!RDecl->hasTrivialConstructor())
4994          member = CXXDefaultConstructor;
4995        else if (!RDecl->hasTrivialCopyAssignment())
4996          member = CXXCopyAssignment;
4997        else if (!RDecl->hasTrivialDestructor())
4998          member = CXXDestructor;
4999        else
5000          member = invalid;
5001
5002        if (member != invalid) {
5003          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5004          DiagnoseNontrivial(RT, member);
5005          NewFD->setInvalidDecl();
5006        }
5007      }
5008    }
5009  }
5010
5011  // FIXME: We need to pass in the attributes given an AST
5012  // representation, not a parser representation.
5013  if (D)
5014    // FIXME: What to pass instead of TUScope?
5015    ProcessDeclAttributes(TUScope, NewFD, *D);
5016
5017  if (T.isObjCGCWeak())
5018    Diag(Loc, diag::warn_attribute_weak_on_field);
5019
5020  NewFD->setAccess(AS);
5021
5022  // C++ [dcl.init.aggr]p1:
5023  //   An aggregate is an array or a class (clause 9) with [...] no
5024  //   private or protected non-static data members (clause 11).
5025  // A POD must be an aggregate.
5026  if (getLangOptions().CPlusPlus &&
5027      (AS == AS_private || AS == AS_protected)) {
5028    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5029    CXXRecord->setAggregate(false);
5030    CXXRecord->setPOD(false);
5031  }
5032
5033  return NewFD;
5034}
5035
5036/// DiagnoseNontrivial - Given that a class has a non-trivial
5037/// special member, figure out why.
5038void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5039  QualType QT(T, 0U);
5040  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5041
5042  // Check whether the member was user-declared.
5043  switch (member) {
5044  case CXXDefaultConstructor:
5045    if (RD->hasUserDeclaredConstructor()) {
5046      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5047      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5048        const FunctionDecl *body = 0;
5049        ci->getBody(body);
5050        if (!body ||
5051            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5052          SourceLocation CtorLoc = ci->getLocation();
5053          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5054          return;
5055        }
5056      }
5057
5058      assert(0 && "found no user-declared constructors");
5059      return;
5060    }
5061    break;
5062
5063  case CXXCopyConstructor:
5064    if (RD->hasUserDeclaredCopyConstructor()) {
5065      SourceLocation CtorLoc =
5066        RD->getCopyConstructor(Context, 0)->getLocation();
5067      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5068      return;
5069    }
5070    break;
5071
5072  case CXXCopyAssignment:
5073    if (RD->hasUserDeclaredCopyAssignment()) {
5074      // FIXME: this should use the location of the copy
5075      // assignment, not the type.
5076      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5077      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5078      return;
5079    }
5080    break;
5081
5082  case CXXDestructor:
5083    if (RD->hasUserDeclaredDestructor()) {
5084      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5085      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5086      return;
5087    }
5088    break;
5089  }
5090
5091  typedef CXXRecordDecl::base_class_iterator base_iter;
5092
5093  // Virtual bases and members inhibit trivial copying/construction,
5094  // but not trivial destruction.
5095  if (member != CXXDestructor) {
5096    // Check for virtual bases.  vbases includes indirect virtual bases,
5097    // so we just iterate through the direct bases.
5098    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5099      if (bi->isVirtual()) {
5100        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5101        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5102        return;
5103      }
5104
5105    // Check for virtual methods.
5106    typedef CXXRecordDecl::method_iterator meth_iter;
5107    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5108         ++mi) {
5109      if (mi->isVirtual()) {
5110        SourceLocation MLoc = mi->getSourceRange().getBegin();
5111        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5112        return;
5113      }
5114    }
5115  }
5116
5117  bool (CXXRecordDecl::*hasTrivial)() const;
5118  switch (member) {
5119  case CXXDefaultConstructor:
5120    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5121  case CXXCopyConstructor:
5122    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5123  case CXXCopyAssignment:
5124    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5125  case CXXDestructor:
5126    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5127  default:
5128    assert(0 && "unexpected special member"); return;
5129  }
5130
5131  // Check for nontrivial bases (and recurse).
5132  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5133    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5134    assert(BaseRT && "Don't know how to handle dependent bases");
5135    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5136    if (!(BaseRecTy->*hasTrivial)()) {
5137      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5138      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5139      DiagnoseNontrivial(BaseRT, member);
5140      return;
5141    }
5142  }
5143
5144  // Check for nontrivial members (and recurse).
5145  typedef RecordDecl::field_iterator field_iter;
5146  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5147       ++fi) {
5148    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5149    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5150      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5151
5152      if (!(EltRD->*hasTrivial)()) {
5153        SourceLocation FLoc = (*fi)->getLocation();
5154        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5155        DiagnoseNontrivial(EltRT, member);
5156        return;
5157      }
5158    }
5159  }
5160
5161  assert(0 && "found no explanation for non-trivial member");
5162}
5163
5164/// TranslateIvarVisibility - Translate visibility from a token ID to an
5165///  AST enum value.
5166static ObjCIvarDecl::AccessControl
5167TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5168  switch (ivarVisibility) {
5169  default: assert(0 && "Unknown visitibility kind");
5170  case tok::objc_private: return ObjCIvarDecl::Private;
5171  case tok::objc_public: return ObjCIvarDecl::Public;
5172  case tok::objc_protected: return ObjCIvarDecl::Protected;
5173  case tok::objc_package: return ObjCIvarDecl::Package;
5174  }
5175}
5176
5177/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5178/// in order to create an IvarDecl object for it.
5179Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5180                                SourceLocation DeclStart,
5181                                DeclPtrTy IntfDecl,
5182                                Declarator &D, ExprTy *BitfieldWidth,
5183                                tok::ObjCKeywordKind Visibility) {
5184
5185  IdentifierInfo *II = D.getIdentifier();
5186  Expr *BitWidth = (Expr*)BitfieldWidth;
5187  SourceLocation Loc = DeclStart;
5188  if (II) Loc = D.getIdentifierLoc();
5189
5190  // FIXME: Unnamed fields can be handled in various different ways, for
5191  // example, unnamed unions inject all members into the struct namespace!
5192
5193  DeclaratorInfo *DInfo = 0;
5194  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5195
5196  if (BitWidth) {
5197    // 6.7.2.1p3, 6.7.2.1p4
5198    if (VerifyBitField(Loc, II, T, BitWidth)) {
5199      D.setInvalidType();
5200      DeleteExpr(BitWidth);
5201      BitWidth = 0;
5202    }
5203  } else {
5204    // Not a bitfield.
5205
5206    // validate II.
5207
5208  }
5209
5210  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5211  // than a variably modified type.
5212  if (T->isVariablyModifiedType()) {
5213    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5214    D.setInvalidType();
5215  }
5216
5217  // Get the visibility (access control) for this ivar.
5218  ObjCIvarDecl::AccessControl ac =
5219    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5220                                        : ObjCIvarDecl::None;
5221  // Must set ivar's DeclContext to its enclosing interface.
5222  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5223  DeclContext *EnclosingContext;
5224  if (ObjCImplementationDecl *IMPDecl =
5225      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5226    // Case of ivar declared in an implementation. Context is that of its class.
5227    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5228    assert(IDecl && "No class- ActOnIvar");
5229    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5230  } else
5231    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5232  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5233
5234  // Construct the decl.
5235  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5236                                             EnclosingContext, Loc, II, T,
5237                                             DInfo, ac, (Expr *)BitfieldWidth);
5238
5239  if (II) {
5240    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5241                                           LookupResult::ForRedeclaration);
5242    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5243        && !isa<TagDecl>(PrevDecl)) {
5244      Diag(Loc, diag::err_duplicate_member) << II;
5245      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5246      NewID->setInvalidDecl();
5247    }
5248  }
5249
5250  // Process attributes attached to the ivar.
5251  ProcessDeclAttributes(S, NewID, D);
5252
5253  if (D.isInvalidType())
5254    NewID->setInvalidDecl();
5255
5256  if (II) {
5257    // FIXME: When interfaces are DeclContexts, we'll need to add
5258    // these to the interface.
5259    S->AddDecl(DeclPtrTy::make(NewID));
5260    IdResolver.AddDecl(NewID);
5261  }
5262
5263  return DeclPtrTy::make(NewID);
5264}
5265
5266void Sema::ActOnFields(Scope* S,
5267                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5268                       DeclPtrTy *Fields, unsigned NumFields,
5269                       SourceLocation LBrac, SourceLocation RBrac,
5270                       AttributeList *Attr) {
5271  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5272  assert(EnclosingDecl && "missing record or interface decl");
5273
5274  // If the decl this is being inserted into is invalid, then it may be a
5275  // redeclaration or some other bogus case.  Don't try to add fields to it.
5276  if (EnclosingDecl->isInvalidDecl()) {
5277    // FIXME: Deallocate fields?
5278    return;
5279  }
5280
5281
5282  // Verify that all the fields are okay.
5283  unsigned NumNamedMembers = 0;
5284  llvm::SmallVector<FieldDecl*, 32> RecFields;
5285
5286  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5287  for (unsigned i = 0; i != NumFields; ++i) {
5288    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5289
5290    // Get the type for the field.
5291    Type *FDTy = FD->getType().getTypePtr();
5292
5293    if (!FD->isAnonymousStructOrUnion()) {
5294      // Remember all fields written by the user.
5295      RecFields.push_back(FD);
5296    }
5297
5298    // If the field is already invalid for some reason, don't emit more
5299    // diagnostics about it.
5300    if (FD->isInvalidDecl())
5301      continue;
5302
5303    // C99 6.7.2.1p2:
5304    //   A structure or union shall not contain a member with
5305    //   incomplete or function type (hence, a structure shall not
5306    //   contain an instance of itself, but may contain a pointer to
5307    //   an instance of itself), except that the last member of a
5308    //   structure with more than one named member may have incomplete
5309    //   array type; such a structure (and any union containing,
5310    //   possibly recursively, a member that is such a structure)
5311    //   shall not be a member of a structure or an element of an
5312    //   array.
5313    if (FDTy->isFunctionType()) {
5314      // Field declared as a function.
5315      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5316        << FD->getDeclName();
5317      FD->setInvalidDecl();
5318      EnclosingDecl->setInvalidDecl();
5319      continue;
5320    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5321               Record && Record->isStruct()) {
5322      // Flexible array member.
5323      if (NumNamedMembers < 1) {
5324        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5325          << FD->getDeclName();
5326        FD->setInvalidDecl();
5327        EnclosingDecl->setInvalidDecl();
5328        continue;
5329      }
5330      // Okay, we have a legal flexible array member at the end of the struct.
5331      if (Record)
5332        Record->setHasFlexibleArrayMember(true);
5333    } else if (!FDTy->isDependentType() &&
5334               RequireCompleteType(FD->getLocation(), FD->getType(),
5335                                   diag::err_field_incomplete)) {
5336      // Incomplete type
5337      FD->setInvalidDecl();
5338      EnclosingDecl->setInvalidDecl();
5339      continue;
5340    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5341      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5342        // If this is a member of a union, then entire union becomes "flexible".
5343        if (Record && Record->isUnion()) {
5344          Record->setHasFlexibleArrayMember(true);
5345        } else {
5346          // If this is a struct/class and this is not the last element, reject
5347          // it.  Note that GCC supports variable sized arrays in the middle of
5348          // structures.
5349          if (i != NumFields-1)
5350            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5351              << FD->getDeclName() << FD->getType();
5352          else {
5353            // We support flexible arrays at the end of structs in
5354            // other structs as an extension.
5355            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5356              << FD->getDeclName();
5357            if (Record)
5358              Record->setHasFlexibleArrayMember(true);
5359          }
5360        }
5361      }
5362      if (Record && FDTTy->getDecl()->hasObjectMember())
5363        Record->setHasObjectMember(true);
5364    } else if (FDTy->isObjCInterfaceType()) {
5365      /// A field cannot be an Objective-c object
5366      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5367      FD->setInvalidDecl();
5368      EnclosingDecl->setInvalidDecl();
5369      continue;
5370    } else if (getLangOptions().ObjC1 &&
5371               getLangOptions().getGCMode() != LangOptions::NonGC &&
5372               Record &&
5373               (FD->getType()->isObjCObjectPointerType() ||
5374                FD->getType().isObjCGCStrong()))
5375      Record->setHasObjectMember(true);
5376    // Keep track of the number of named members.
5377    if (FD->getIdentifier())
5378      ++NumNamedMembers;
5379  }
5380
5381  // Okay, we successfully defined 'Record'.
5382  if (Record) {
5383    Record->completeDefinition(Context);
5384  } else {
5385    ObjCIvarDecl **ClsFields =
5386      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5387    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5388      ID->setIVarList(ClsFields, RecFields.size(), Context);
5389      ID->setLocEnd(RBrac);
5390      // Add ivar's to class's DeclContext.
5391      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5392        ClsFields[i]->setLexicalDeclContext(ID);
5393        ID->addDecl(ClsFields[i]);
5394      }
5395      // Must enforce the rule that ivars in the base classes may not be
5396      // duplicates.
5397      if (ID->getSuperClass()) {
5398        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5399             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5400          ObjCIvarDecl* Ivar = (*IVI);
5401
5402          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5403            ObjCIvarDecl* prevIvar =
5404              ID->getSuperClass()->lookupInstanceVariable(II);
5405            if (prevIvar) {
5406              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5407              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5408            }
5409          }
5410        }
5411      }
5412    } else if (ObjCImplementationDecl *IMPDecl =
5413                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5414      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5415      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5416        // Ivar declared in @implementation never belongs to the implementation.
5417        // Only it is in implementation's lexical context.
5418        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5419      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5420    }
5421  }
5422
5423  if (Attr)
5424    ProcessDeclAttributeList(S, Record, Attr);
5425}
5426
5427EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5428                                          EnumConstantDecl *LastEnumConst,
5429                                          SourceLocation IdLoc,
5430                                          IdentifierInfo *Id,
5431                                          ExprArg val) {
5432  Expr *Val = (Expr *)val.get();
5433
5434  llvm::APSInt EnumVal(32);
5435  QualType EltTy;
5436  if (Val) {
5437    if (Val->isTypeDependent())
5438      EltTy = Context.DependentTy;
5439    else {
5440      // Make sure to promote the operand type to int.
5441      UsualUnaryConversions(Val);
5442      if (Val != val.get()) {
5443        val.release();
5444        val = Val;
5445      }
5446
5447      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5448      SourceLocation ExpLoc;
5449      if (!Val->isValueDependent() &&
5450          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5451        Val = 0;
5452      } else {
5453        EltTy = Val->getType();
5454      }
5455    }
5456  }
5457
5458  if (!Val) {
5459    if (LastEnumConst) {
5460      // Assign the last value + 1.
5461      EnumVal = LastEnumConst->getInitVal();
5462      ++EnumVal;
5463
5464      // Check for overflow on increment.
5465      if (EnumVal < LastEnumConst->getInitVal())
5466        Diag(IdLoc, diag::warn_enum_value_overflow);
5467
5468      EltTy = LastEnumConst->getType();
5469    } else {
5470      // First value, set to zero.
5471      EltTy = Context.IntTy;
5472      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5473    }
5474  }
5475
5476  assert(!EltTy.isNull() && "Enum constant with NULL type");
5477
5478  val.release();
5479  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5480                                  Val, EnumVal);
5481}
5482
5483
5484Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5485                                        DeclPtrTy lastEnumConst,
5486                                        SourceLocation IdLoc,
5487                                        IdentifierInfo *Id,
5488                                        SourceLocation EqualLoc, ExprTy *val) {
5489  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5490  EnumConstantDecl *LastEnumConst =
5491    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5492  Expr *Val = static_cast<Expr*>(val);
5493
5494  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5495  // we find one that is.
5496  S = getNonFieldDeclScope(S);
5497
5498  // Verify that there isn't already something declared with this name in this
5499  // scope.
5500  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5501  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5502    // Maybe we will complain about the shadowed template parameter.
5503    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5504    // Just pretend that we didn't see the previous declaration.
5505    PrevDecl = 0;
5506  }
5507
5508  if (PrevDecl) {
5509    // When in C++, we may get a TagDecl with the same name; in this case the
5510    // enum constant will 'hide' the tag.
5511    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5512           "Received TagDecl when not in C++!");
5513    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5514      if (isa<EnumConstantDecl>(PrevDecl))
5515        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5516      else
5517        Diag(IdLoc, diag::err_redefinition) << Id;
5518      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5519      if (Val) Val->Destroy(Context);
5520      return DeclPtrTy();
5521    }
5522  }
5523
5524  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5525                                            IdLoc, Id, Owned(Val));
5526
5527  // Register this decl in the current scope stack.
5528  if (New)
5529    PushOnScopeChains(New, S);
5530
5531  return DeclPtrTy::make(New);
5532}
5533
5534void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5535                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5536                         DeclPtrTy *Elements, unsigned NumElements,
5537                         Scope *S, AttributeList *Attr) {
5538  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5539  QualType EnumType = Context.getTypeDeclType(Enum);
5540
5541  if (Attr)
5542    ProcessDeclAttributeList(S, Enum, Attr);
5543
5544  // TODO: If the result value doesn't fit in an int, it must be a long or long
5545  // long value.  ISO C does not support this, but GCC does as an extension,
5546  // emit a warning.
5547  unsigned IntWidth = Context.Target.getIntWidth();
5548  unsigned CharWidth = Context.Target.getCharWidth();
5549  unsigned ShortWidth = Context.Target.getShortWidth();
5550
5551  // Verify that all the values are okay, compute the size of the values, and
5552  // reverse the list.
5553  unsigned NumNegativeBits = 0;
5554  unsigned NumPositiveBits = 0;
5555
5556  // Keep track of whether all elements have type int.
5557  bool AllElementsInt = true;
5558
5559  for (unsigned i = 0; i != NumElements; ++i) {
5560    EnumConstantDecl *ECD =
5561      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5562    if (!ECD) continue;  // Already issued a diagnostic.
5563
5564    // If the enum value doesn't fit in an int, emit an extension warning.
5565    const llvm::APSInt &InitVal = ECD->getInitVal();
5566    assert(InitVal.getBitWidth() >= IntWidth &&
5567           "Should have promoted value to int");
5568    if (InitVal.getBitWidth() > IntWidth) {
5569      llvm::APSInt V(InitVal);
5570      V.trunc(IntWidth);
5571      V.extend(InitVal.getBitWidth());
5572      if (V != InitVal)
5573        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5574          << InitVal.toString(10);
5575    }
5576
5577    // Keep track of the size of positive and negative values.
5578    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5579      NumPositiveBits = std::max(NumPositiveBits,
5580                                 (unsigned)InitVal.getActiveBits());
5581    else
5582      NumNegativeBits = std::max(NumNegativeBits,
5583                                 (unsigned)InitVal.getMinSignedBits());
5584
5585    // Keep track of whether every enum element has type int (very commmon).
5586    if (AllElementsInt)
5587      AllElementsInt = ECD->getType() == Context.IntTy;
5588  }
5589
5590  // Figure out the type that should be used for this enum.
5591  // FIXME: Support -fshort-enums.
5592  QualType BestType;
5593  unsigned BestWidth;
5594
5595  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5596
5597  if (NumNegativeBits) {
5598    // If there is a negative value, figure out the smallest integer type (of
5599    // int/long/longlong) that fits.
5600    // If it's packed, check also if it fits a char or a short.
5601    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5602        BestType = Context.SignedCharTy;
5603        BestWidth = CharWidth;
5604    } else if (Packed && NumNegativeBits <= ShortWidth &&
5605               NumPositiveBits < ShortWidth) {
5606        BestType = Context.ShortTy;
5607        BestWidth = ShortWidth;
5608    }
5609    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5610      BestType = Context.IntTy;
5611      BestWidth = IntWidth;
5612    } else {
5613      BestWidth = Context.Target.getLongWidth();
5614
5615      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5616        BestType = Context.LongTy;
5617      else {
5618        BestWidth = Context.Target.getLongLongWidth();
5619
5620        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5621          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5622        BestType = Context.LongLongTy;
5623      }
5624    }
5625  } else {
5626    // If there is no negative value, figure out which of uint, ulong, ulonglong
5627    // fits.
5628    // If it's packed, check also if it fits a char or a short.
5629    if (Packed && NumPositiveBits <= CharWidth) {
5630        BestType = Context.UnsignedCharTy;
5631        BestWidth = CharWidth;
5632    } else if (Packed && NumPositiveBits <= ShortWidth) {
5633        BestType = Context.UnsignedShortTy;
5634        BestWidth = ShortWidth;
5635    }
5636    else if (NumPositiveBits <= IntWidth) {
5637      BestType = Context.UnsignedIntTy;
5638      BestWidth = IntWidth;
5639    } else if (NumPositiveBits <=
5640               (BestWidth = Context.Target.getLongWidth())) {
5641      BestType = Context.UnsignedLongTy;
5642    } else {
5643      BestWidth = Context.Target.getLongLongWidth();
5644      assert(NumPositiveBits <= BestWidth &&
5645             "How could an initializer get larger than ULL?");
5646      BestType = Context.UnsignedLongLongTy;
5647    }
5648  }
5649
5650  // Loop over all of the enumerator constants, changing their types to match
5651  // the type of the enum if needed.
5652  for (unsigned i = 0; i != NumElements; ++i) {
5653    EnumConstantDecl *ECD =
5654      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5655    if (!ECD) continue;  // Already issued a diagnostic.
5656
5657    // Standard C says the enumerators have int type, but we allow, as an
5658    // extension, the enumerators to be larger than int size.  If each
5659    // enumerator value fits in an int, type it as an int, otherwise type it the
5660    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5661    // that X has type 'int', not 'unsigned'.
5662    if (ECD->getType() == Context.IntTy) {
5663      // Make sure the init value is signed.
5664      llvm::APSInt IV = ECD->getInitVal();
5665      IV.setIsSigned(true);
5666      ECD->setInitVal(IV);
5667
5668      if (getLangOptions().CPlusPlus)
5669        // C++ [dcl.enum]p4: Following the closing brace of an
5670        // enum-specifier, each enumerator has the type of its
5671        // enumeration.
5672        ECD->setType(EnumType);
5673      continue;  // Already int type.
5674    }
5675
5676    // Determine whether the value fits into an int.
5677    llvm::APSInt InitVal = ECD->getInitVal();
5678    bool FitsInInt;
5679    if (InitVal.isUnsigned() || !InitVal.isNegative())
5680      FitsInInt = InitVal.getActiveBits() < IntWidth;
5681    else
5682      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5683
5684    // If it fits into an integer type, force it.  Otherwise force it to match
5685    // the enum decl type.
5686    QualType NewTy;
5687    unsigned NewWidth;
5688    bool NewSign;
5689    if (FitsInInt) {
5690      NewTy = Context.IntTy;
5691      NewWidth = IntWidth;
5692      NewSign = true;
5693    } else if (ECD->getType() == BestType) {
5694      // Already the right type!
5695      if (getLangOptions().CPlusPlus)
5696        // C++ [dcl.enum]p4: Following the closing brace of an
5697        // enum-specifier, each enumerator has the type of its
5698        // enumeration.
5699        ECD->setType(EnumType);
5700      continue;
5701    } else {
5702      NewTy = BestType;
5703      NewWidth = BestWidth;
5704      NewSign = BestType->isSignedIntegerType();
5705    }
5706
5707    // Adjust the APSInt value.
5708    InitVal.extOrTrunc(NewWidth);
5709    InitVal.setIsSigned(NewSign);
5710    ECD->setInitVal(InitVal);
5711
5712    // Adjust the Expr initializer and type.
5713    if (ECD->getInitExpr())
5714      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5715                                                      CastExpr::CK_IntegralCast,
5716                                                      ECD->getInitExpr(),
5717                                                      /*isLvalue=*/false));
5718    if (getLangOptions().CPlusPlus)
5719      // C++ [dcl.enum]p4: Following the closing brace of an
5720      // enum-specifier, each enumerator has the type of its
5721      // enumeration.
5722      ECD->setType(EnumType);
5723    else
5724      ECD->setType(NewTy);
5725  }
5726
5727  Enum->completeDefinition(Context, BestType);
5728}
5729
5730Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5731                                            ExprArg expr) {
5732  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5733
5734  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5735                                                   Loc, AsmString);
5736  CurContext->addDecl(New);
5737  return DeclPtrTy::make(New);
5738}
5739
5740void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5741                             SourceLocation PragmaLoc,
5742                             SourceLocation NameLoc) {
5743  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5744
5745  if (PrevDecl) {
5746    PrevDecl->addAttr(::new (Context) WeakAttr());
5747  } else {
5748    (void)WeakUndeclaredIdentifiers.insert(
5749      std::pair<IdentifierInfo*,WeakInfo>
5750        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5751  }
5752}
5753
5754void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5755                                IdentifierInfo* AliasName,
5756                                SourceLocation PragmaLoc,
5757                                SourceLocation NameLoc,
5758                                SourceLocation AliasNameLoc) {
5759  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5760  WeakInfo W = WeakInfo(Name, NameLoc);
5761
5762  if (PrevDecl) {
5763    if (!PrevDecl->hasAttr<AliasAttr>())
5764      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5765        DeclApplyPragmaWeak(TUScope, ND, W);
5766  } else {
5767    (void)WeakUndeclaredIdentifiers.insert(
5768      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5769  }
5770}
5771