SemaDecl.cpp revision 7d384dd5ace9ae9a22a69e700d2cacb256bc6c69
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Parse/Template.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Lex/HeaderSearch.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40#include <queue>
41using namespace clang;
42
43/// getDeclName - Return a pretty name for the specified decl if possible, or
44/// an empty string if not.  This is used for pretty crash reporting.
45std::string Sema::getDeclName(DeclPtrTy d) {
46  Decl *D = d.getAs<Decl>();
47  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
48    return DN->getQualifiedNameAsString();
49  return "";
50}
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
53  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
54}
55
56/// \brief If the identifier refers to a type name within this scope,
57/// return the declaration of that type.
58///
59/// This routine performs ordinary name lookup of the identifier II
60/// within the given scope, with optional C++ scope specifier SS, to
61/// determine whether the name refers to a type. If so, returns an
62/// opaque pointer (actually a QualType) corresponding to that
63/// type. Otherwise, returns NULL.
64///
65/// If name lookup results in an ambiguity, this routine will complain
66/// and then return NULL.
67Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
68                                Scope *S, const CXXScopeSpec *SS,
69                                bool isClassName) {
70  // C++ [temp.res]p3:
71  //   A qualified-id that refers to a type and in which the
72  //   nested-name-specifier depends on a template-parameter (14.6.2)
73  //   shall be prefixed by the keyword typename to indicate that the
74  //   qualified-id denotes a type, forming an
75  //   elaborated-type-specifier (7.1.5.3).
76  //
77  // We therefore do not perform any name lookup if the result would
78  // refer to a member of an unknown specialization.
79  if (SS && isUnknownSpecialization(*SS)) {
80    if (!isClassName)
81      return 0;
82
83    // We know from the grammar that this name refers to a type, so build a
84    // TypenameType node to describe the type.
85    // FIXME: Record somewhere that this TypenameType node has no "typename"
86    // keyword associated with it.
87    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
88                             II, SS->getRange()).getAsOpaquePtr();
89  }
90
91  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
92  LookupParsedName(Result, S, SS, false);
93
94  NamedDecl *IIDecl = 0;
95  switch (Result.getResultKind()) {
96  case LookupResult::NotFound:
97  case LookupResult::FoundOverloaded:
98  case LookupResult::FoundUnresolvedValue:
99    return 0;
100
101  case LookupResult::Ambiguous:
102    // Recover from type-hiding ambiguities by hiding the type.  We'll
103    // do the lookup again when looking for an object, and we can
104    // diagnose the error then.  If we don't do this, then the error
105    // about hiding the type will be immediately followed by an error
106    // that only makes sense if the identifier was treated like a type.
107    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
108      Result.suppressDiagnostics();
109      return 0;
110    }
111
112    // Look to see if we have a type anywhere in the list of results.
113    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
114         Res != ResEnd; ++Res) {
115      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
116        if (!IIDecl ||
117            (*Res)->getLocation().getRawEncoding() <
118              IIDecl->getLocation().getRawEncoding())
119          IIDecl = *Res;
120      }
121    }
122
123    if (!IIDecl) {
124      // None of the entities we found is a type, so there is no way
125      // to even assume that the result is a type. In this case, don't
126      // complain about the ambiguity. The parser will either try to
127      // perform this lookup again (e.g., as an object name), which
128      // will produce the ambiguity, or will complain that it expected
129      // a type name.
130      Result.suppressDiagnostics();
131      return 0;
132    }
133
134    // We found a type within the ambiguous lookup; diagnose the
135    // ambiguity and then return that type. This might be the right
136    // answer, or it might not be, but it suppresses any attempt to
137    // perform the name lookup again.
138    break;
139
140  case LookupResult::Found:
141    IIDecl = Result.getFoundDecl();
142    break;
143  }
144
145  assert(IIDecl && "Didn't find decl");
146
147  QualType T;
148  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
149    DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151    // C++ [temp.local]p2:
152    //   Within the scope of a class template specialization or
153    //   partial specialization, when the injected-class-name is
154    //   not followed by a <, it is equivalent to the
155    //   injected-class-name followed by the template-argument s
156    //   of the class template specialization or partial
157    //   specialization enclosed in <>.
158    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
159      if (RD->isInjectedClassName())
160        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
161          T = Template->getInjectedClassNameType(Context);
162
163    if (T.isNull())
164      T = Context.getTypeDeclType(TD);
165
166    if (SS)
167      T = getQualifiedNameType(*SS, T);
168
169  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
170    T = Context.getObjCInterfaceType(IDecl);
171  } else if (UnresolvedUsingTypenameDecl *UUDecl =
172               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
173    // FIXME: preserve source structure information.
174    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
175  } else {
176    // If it's not plausibly a type, suppress diagnostics.
177    Result.suppressDiagnostics();
178    return 0;
179  }
180
181  return T.getAsOpaquePtr();
182}
183
184/// isTagName() - This method is called *for error recovery purposes only*
185/// to determine if the specified name is a valid tag name ("struct foo").  If
186/// so, this returns the TST for the tag corresponding to it (TST_enum,
187/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
188/// where the user forgot to specify the tag.
189DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
190  // Do a tag name lookup in this scope.
191  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
192  LookupName(R, S, false);
193  R.suppressDiagnostics();
194  if (R.getResultKind() == LookupResult::Found)
195    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsSingleDecl(Context))) {
196      switch (TD->getTagKind()) {
197      case TagDecl::TK_struct: return DeclSpec::TST_struct;
198      case TagDecl::TK_union:  return DeclSpec::TST_union;
199      case TagDecl::TK_class:  return DeclSpec::TST_class;
200      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
201      }
202    }
203
204  return DeclSpec::TST_unspecified;
205}
206
207bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
208                                   SourceLocation IILoc,
209                                   Scope *S,
210                                   const CXXScopeSpec *SS,
211                                   TypeTy *&SuggestedType) {
212  // We don't have anything to suggest (yet).
213  SuggestedType = 0;
214
215  // FIXME: Should we move the logic that tries to recover from a missing tag
216  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
217
218  if (!SS)
219    Diag(IILoc, diag::err_unknown_typename) << &II;
220  else if (DeclContext *DC = computeDeclContext(*SS, false))
221    Diag(IILoc, diag::err_typename_nested_not_found)
222      << &II << DC << SS->getRange();
223  else if (isDependentScopeSpecifier(*SS)) {
224    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
225      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
226      << SourceRange(SS->getRange().getBegin(), IILoc)
227      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
228                                               "typename ");
229    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
230  } else {
231    assert(SS && SS->isInvalid() &&
232           "Invalid scope specifier has already been diagnosed");
233  }
234
235  return true;
236}
237
238// Determines the context to return to after temporarily entering a
239// context.  This depends in an unnecessarily complicated way on the
240// exact ordering of callbacks from the parser.
241DeclContext *Sema::getContainingDC(DeclContext *DC) {
242
243  // Functions defined inline within classes aren't parsed until we've
244  // finished parsing the top-level class, so the top-level class is
245  // the context we'll need to return to.
246  if (isa<FunctionDecl>(DC)) {
247    DC = DC->getLexicalParent();
248
249    // A function not defined within a class will always return to its
250    // lexical context.
251    if (!isa<CXXRecordDecl>(DC))
252      return DC;
253
254    // A C++ inline method/friend is parsed *after* the topmost class
255    // it was declared in is fully parsed ("complete");  the topmost
256    // class is the context we need to return to.
257    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
258      DC = RD;
259
260    // Return the declaration context of the topmost class the inline method is
261    // declared in.
262    return DC;
263  }
264
265  if (isa<ObjCMethodDecl>(DC))
266    return Context.getTranslationUnitDecl();
267
268  return DC->getLexicalParent();
269}
270
271void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
272  assert(getContainingDC(DC) == CurContext &&
273      "The next DeclContext should be lexically contained in the current one.");
274  CurContext = DC;
275  S->setEntity(DC);
276}
277
278void Sema::PopDeclContext() {
279  assert(CurContext && "DeclContext imbalance!");
280
281  CurContext = getContainingDC(CurContext);
282}
283
284/// EnterDeclaratorContext - Used when we must lookup names in the context
285/// of a declarator's nested name specifier.
286void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
287  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
288  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
289  CurContext = DC;
290  assert(CurContext && "No context?");
291  S->setEntity(CurContext);
292}
293
294void Sema::ExitDeclaratorContext(Scope *S) {
295  S->setEntity(PreDeclaratorDC);
296  PreDeclaratorDC = 0;
297
298  // Reset CurContext to the nearest enclosing context.
299  while (!S->getEntity() && S->getParent())
300    S = S->getParent();
301  CurContext = static_cast<DeclContext*>(S->getEntity());
302  assert(CurContext && "No context?");
303}
304
305/// \brief Determine whether we allow overloading of the function
306/// PrevDecl with another declaration.
307///
308/// This routine determines whether overloading is possible, not
309/// whether some new function is actually an overload. It will return
310/// true in C++ (where we can always provide overloads) or, as an
311/// extension, in C when the previous function is already an
312/// overloaded function declaration or has the "overloadable"
313/// attribute.
314static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
315  if (Context.getLangOptions().CPlusPlus)
316    return true;
317
318  if (isa<OverloadedFunctionDecl>(PrevDecl))
319    return true;
320
321  return PrevDecl->getAttr<OverloadableAttr>() != 0;
322}
323
324/// Add this decl to the scope shadowed decl chains.
325void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
326  // Move up the scope chain until we find the nearest enclosing
327  // non-transparent context. The declaration will be introduced into this
328  // scope.
329  while (S->getEntity() &&
330         ((DeclContext *)S->getEntity())->isTransparentContext())
331    S = S->getParent();
332
333  // Add scoped declarations into their context, so that they can be
334  // found later. Declarations without a context won't be inserted
335  // into any context.
336  if (AddToContext)
337    CurContext->addDecl(D);
338
339  // Out-of-line function and variable definitions should not be pushed into
340  // scope.
341  if ((isa<FunctionTemplateDecl>(D) &&
342       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
343      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
344      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
345    return;
346
347  // If this replaces anything in the current scope,
348  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
349                               IEnd = IdResolver.end();
350  for (; I != IEnd; ++I) {
351    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
352      S->RemoveDecl(DeclPtrTy::make(*I));
353      IdResolver.RemoveDecl(*I);
354
355      // Should only need to replace one decl.
356      break;
357    }
358  }
359
360  S->AddDecl(DeclPtrTy::make(D));
361  IdResolver.AddDecl(D);
362}
363
364bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
365  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
366    // Look inside the overload set to determine if any of the declarations
367    // are in scope. (Possibly) build a new overload set containing only
368    // those declarations that are in scope.
369    OverloadedFunctionDecl *NewOvl = 0;
370    bool FoundInScope = false;
371    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
372         FEnd = Ovl->function_end();
373         F != FEnd; ++F) {
374      NamedDecl *FD = F->get();
375      if (!isDeclInScope(FD, Ctx, S)) {
376        if (!NewOvl && F != Ovl->function_begin()) {
377          NewOvl = OverloadedFunctionDecl::Create(Context,
378                                                  F->get()->getDeclContext(),
379                                                  F->get()->getDeclName());
380          D = NewOvl;
381          for (OverloadedFunctionDecl::function_iterator
382               First = Ovl->function_begin();
383               First != F; ++First)
384            NewOvl->addOverload(*First);
385        }
386      } else {
387        FoundInScope = true;
388        if (NewOvl)
389          NewOvl->addOverload(*F);
390      }
391    }
392
393    return FoundInScope;
394  }
395
396  return IdResolver.isDeclInScope(D, Ctx, Context, S);
397}
398
399static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
400  if (D->isUsed() || D->hasAttr<UnusedAttr>())
401    return false;
402
403  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
404    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
405      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
406        if (!RD->hasTrivialConstructor())
407          return false;
408        if (!RD->hasTrivialDestructor())
409          return false;
410      }
411    }
412  }
413
414  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
415          !isa<ImplicitParamDecl>(D) &&
416          D->getDeclContext()->isFunctionOrMethod());
417}
418
419void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
420  if (S->decl_empty()) return;
421  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
422         "Scope shouldn't contain decls!");
423
424  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
425       I != E; ++I) {
426    Decl *TmpD = (*I).getAs<Decl>();
427    assert(TmpD && "This decl didn't get pushed??");
428
429    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
430    NamedDecl *D = cast<NamedDecl>(TmpD);
431
432    if (!D->getDeclName()) continue;
433
434    // Diagnose unused variables in this scope.
435    if (ShouldDiagnoseUnusedDecl(D))
436      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
437
438    // Remove this name from our lexical scope.
439    IdResolver.RemoveDecl(D);
440  }
441}
442
443/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
444/// return 0 if one not found.
445ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
446  // The third "scope" argument is 0 since we aren't enabling lazy built-in
447  // creation from this context.
448  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
449
450  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
451}
452
453/// getNonFieldDeclScope - Retrieves the innermost scope, starting
454/// from S, where a non-field would be declared. This routine copes
455/// with the difference between C and C++ scoping rules in structs and
456/// unions. For example, the following code is well-formed in C but
457/// ill-formed in C++:
458/// @code
459/// struct S6 {
460///   enum { BAR } e;
461/// };
462///
463/// void test_S6() {
464///   struct S6 a;
465///   a.e = BAR;
466/// }
467/// @endcode
468/// For the declaration of BAR, this routine will return a different
469/// scope. The scope S will be the scope of the unnamed enumeration
470/// within S6. In C++, this routine will return the scope associated
471/// with S6, because the enumeration's scope is a transparent
472/// context but structures can contain non-field names. In C, this
473/// routine will return the translation unit scope, since the
474/// enumeration's scope is a transparent context and structures cannot
475/// contain non-field names.
476Scope *Sema::getNonFieldDeclScope(Scope *S) {
477  while (((S->getFlags() & Scope::DeclScope) == 0) ||
478         (S->getEntity() &&
479          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
480         (S->isClassScope() && !getLangOptions().CPlusPlus))
481    S = S->getParent();
482  return S;
483}
484
485void Sema::InitBuiltinVaListType() {
486  if (!Context.getBuiltinVaListType().isNull())
487    return;
488
489  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
490  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
491  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
492  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
493}
494
495/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
496/// file scope.  lazily create a decl for it. ForRedeclaration is true
497/// if we're creating this built-in in anticipation of redeclaring the
498/// built-in.
499NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
500                                     Scope *S, bool ForRedeclaration,
501                                     SourceLocation Loc) {
502  Builtin::ID BID = (Builtin::ID)bid;
503
504  if (Context.BuiltinInfo.hasVAListUse(BID))
505    InitBuiltinVaListType();
506
507  ASTContext::GetBuiltinTypeError Error;
508  QualType R = Context.GetBuiltinType(BID, Error);
509  switch (Error) {
510  case ASTContext::GE_None:
511    // Okay
512    break;
513
514  case ASTContext::GE_Missing_stdio:
515    if (ForRedeclaration)
516      Diag(Loc, diag::err_implicit_decl_requires_stdio)
517        << Context.BuiltinInfo.GetName(BID);
518    return 0;
519
520  case ASTContext::GE_Missing_setjmp:
521    if (ForRedeclaration)
522      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
523        << Context.BuiltinInfo.GetName(BID);
524    return 0;
525  }
526
527  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
528    Diag(Loc, diag::ext_implicit_lib_function_decl)
529      << Context.BuiltinInfo.GetName(BID)
530      << R;
531    if (Context.BuiltinInfo.getHeaderName(BID) &&
532        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
533          != Diagnostic::Ignored)
534      Diag(Loc, diag::note_please_include_header)
535        << Context.BuiltinInfo.getHeaderName(BID)
536        << Context.BuiltinInfo.GetName(BID);
537  }
538
539  FunctionDecl *New = FunctionDecl::Create(Context,
540                                           Context.getTranslationUnitDecl(),
541                                           Loc, II, R, /*DInfo=*/0,
542                                           FunctionDecl::Extern, false,
543                                           /*hasPrototype=*/true);
544  New->setImplicit();
545
546  // Create Decl objects for each parameter, adding them to the
547  // FunctionDecl.
548  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
549    llvm::SmallVector<ParmVarDecl*, 16> Params;
550    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
551      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
552                                           FT->getArgType(i), /*DInfo=*/0,
553                                           VarDecl::None, 0));
554    New->setParams(Context, Params.data(), Params.size());
555  }
556
557  AddKnownFunctionAttributes(New);
558
559  // TUScope is the translation-unit scope to insert this function into.
560  // FIXME: This is hideous. We need to teach PushOnScopeChains to
561  // relate Scopes to DeclContexts, and probably eliminate CurContext
562  // entirely, but we're not there yet.
563  DeclContext *SavedContext = CurContext;
564  CurContext = Context.getTranslationUnitDecl();
565  PushOnScopeChains(New, TUScope);
566  CurContext = SavedContext;
567  return New;
568}
569
570/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
571/// same name and scope as a previous declaration 'Old'.  Figure out
572/// how to resolve this situation, merging decls or emitting
573/// diagnostics as appropriate. If there was an error, set New to be invalid.
574///
575void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
576  // If either decl is known invalid already, set the new one to be invalid and
577  // don't bother doing any merging checks.
578  if (New->isInvalidDecl() || OldD->isInvalidDecl())
579    return New->setInvalidDecl();
580
581  // Allow multiple definitions for ObjC built-in typedefs.
582  // FIXME: Verify the underlying types are equivalent!
583  if (getLangOptions().ObjC1) {
584    const IdentifierInfo *TypeID = New->getIdentifier();
585    switch (TypeID->getLength()) {
586    default: break;
587    case 2:
588      if (!TypeID->isStr("id"))
589        break;
590      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
591      // Install the built-in type for 'id', ignoring the current definition.
592      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
593      return;
594    case 5:
595      if (!TypeID->isStr("Class"))
596        break;
597      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
598      // Install the built-in type for 'Class', ignoring the current definition.
599      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
600      return;
601    case 3:
602      if (!TypeID->isStr("SEL"))
603        break;
604      Context.setObjCSelType(Context.getTypeDeclType(New));
605      return;
606    case 8:
607      if (!TypeID->isStr("Protocol"))
608        break;
609      Context.setObjCProtoType(New->getUnderlyingType());
610      return;
611    }
612    // Fall through - the typedef name was not a builtin type.
613  }
614  // Verify the old decl was also a type.
615  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
616  if (!Old) {
617    Diag(New->getLocation(), diag::err_redefinition_different_kind)
618      << New->getDeclName();
619    if (OldD->getLocation().isValid())
620      Diag(OldD->getLocation(), diag::note_previous_definition);
621    return New->setInvalidDecl();
622  }
623
624  // Determine the "old" type we'll use for checking and diagnostics.
625  QualType OldType;
626  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
627    OldType = OldTypedef->getUnderlyingType();
628  else
629    OldType = Context.getTypeDeclType(Old);
630
631  // If the typedef types are not identical, reject them in all languages and
632  // with any extensions enabled.
633
634  if (OldType != New->getUnderlyingType() &&
635      Context.getCanonicalType(OldType) !=
636      Context.getCanonicalType(New->getUnderlyingType())) {
637    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
638      << New->getUnderlyingType() << OldType;
639    if (Old->getLocation().isValid())
640      Diag(Old->getLocation(), diag::note_previous_definition);
641    return New->setInvalidDecl();
642  }
643
644  if (getLangOptions().Microsoft)
645    return;
646
647  // C++ [dcl.typedef]p2:
648  //   In a given non-class scope, a typedef specifier can be used to
649  //   redefine the name of any type declared in that scope to refer
650  //   to the type to which it already refers.
651  if (getLangOptions().CPlusPlus) {
652    if (!isa<CXXRecordDecl>(CurContext))
653      return;
654    Diag(New->getLocation(), diag::err_redefinition)
655      << New->getDeclName();
656    Diag(Old->getLocation(), diag::note_previous_definition);
657    return New->setInvalidDecl();
658  }
659
660  // If we have a redefinition of a typedef in C, emit a warning.  This warning
661  // is normally mapped to an error, but can be controlled with
662  // -Wtypedef-redefinition.  If either the original or the redefinition is
663  // in a system header, don't emit this for compatibility with GCC.
664  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
665      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
666       Context.getSourceManager().isInSystemHeader(New->getLocation())))
667    return;
668
669  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
670    << New->getDeclName();
671  Diag(Old->getLocation(), diag::note_previous_definition);
672  return;
673}
674
675/// DeclhasAttr - returns true if decl Declaration already has the target
676/// attribute.
677static bool
678DeclHasAttr(const Decl *decl, const Attr *target) {
679  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
680    if (attr->getKind() == target->getKind())
681      return true;
682
683  return false;
684}
685
686/// MergeAttributes - append attributes from the Old decl to the New one.
687static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
688  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
689    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
690      Attr *NewAttr = attr->clone(C);
691      NewAttr->setInherited(true);
692      New->addAttr(NewAttr);
693    }
694  }
695}
696
697/// Used in MergeFunctionDecl to keep track of function parameters in
698/// C.
699struct GNUCompatibleParamWarning {
700  ParmVarDecl *OldParm;
701  ParmVarDecl *NewParm;
702  QualType PromotedType;
703};
704
705/// MergeFunctionDecl - We just parsed a function 'New' from
706/// declarator D which has the same name and scope as a previous
707/// declaration 'Old'.  Figure out how to resolve this situation,
708/// merging decls or emitting diagnostics as appropriate.
709///
710/// In C++, New and Old must be declarations that are not
711/// overloaded. Use IsOverload to determine whether New and Old are
712/// overloaded, and to select the Old declaration that New should be
713/// merged with.
714///
715/// Returns true if there was an error, false otherwise.
716bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
717  assert(!isa<OverloadedFunctionDecl>(OldD) &&
718         "Cannot merge with an overloaded function declaration");
719
720  // Verify the old decl was also a function.
721  FunctionDecl *Old = 0;
722  if (FunctionTemplateDecl *OldFunctionTemplate
723        = dyn_cast<FunctionTemplateDecl>(OldD))
724    Old = OldFunctionTemplate->getTemplatedDecl();
725  else
726    Old = dyn_cast<FunctionDecl>(OldD);
727  if (!Old) {
728    Diag(New->getLocation(), diag::err_redefinition_different_kind)
729      << New->getDeclName();
730    Diag(OldD->getLocation(), diag::note_previous_definition);
731    return true;
732  }
733
734  // Determine whether the previous declaration was a definition,
735  // implicit declaration, or a declaration.
736  diag::kind PrevDiag;
737  if (Old->isThisDeclarationADefinition())
738    PrevDiag = diag::note_previous_definition;
739  else if (Old->isImplicit())
740    PrevDiag = diag::note_previous_implicit_declaration;
741  else
742    PrevDiag = diag::note_previous_declaration;
743
744  QualType OldQType = Context.getCanonicalType(Old->getType());
745  QualType NewQType = Context.getCanonicalType(New->getType());
746
747  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
748      New->getStorageClass() == FunctionDecl::Static &&
749      Old->getStorageClass() != FunctionDecl::Static) {
750    Diag(New->getLocation(), diag::err_static_non_static)
751      << New;
752    Diag(Old->getLocation(), PrevDiag);
753    return true;
754  }
755
756  if (getLangOptions().CPlusPlus) {
757    // (C++98 13.1p2):
758    //   Certain function declarations cannot be overloaded:
759    //     -- Function declarations that differ only in the return type
760    //        cannot be overloaded.
761    QualType OldReturnType
762      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
763    QualType NewReturnType
764      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
765    if (OldReturnType != NewReturnType) {
766      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
767      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
768      return true;
769    }
770
771    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
772    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
773    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
774        NewMethod->getLexicalDeclContext()->isRecord()) {
775      //    -- Member function declarations with the same name and the
776      //       same parameter types cannot be overloaded if any of them
777      //       is a static member function declaration.
778      if (OldMethod->isStatic() || NewMethod->isStatic()) {
779        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
780        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
781        return true;
782      }
783
784      // C++ [class.mem]p1:
785      //   [...] A member shall not be declared twice in the
786      //   member-specification, except that a nested class or member
787      //   class template can be declared and then later defined.
788      unsigned NewDiag;
789      if (isa<CXXConstructorDecl>(OldMethod))
790        NewDiag = diag::err_constructor_redeclared;
791      else if (isa<CXXDestructorDecl>(NewMethod))
792        NewDiag = diag::err_destructor_redeclared;
793      else if (isa<CXXConversionDecl>(NewMethod))
794        NewDiag = diag::err_conv_function_redeclared;
795      else
796        NewDiag = diag::err_member_redeclared;
797
798      Diag(New->getLocation(), NewDiag);
799      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
800    }
801
802    // (C++98 8.3.5p3):
803    //   All declarations for a function shall agree exactly in both the
804    //   return type and the parameter-type-list.
805    if (OldQType == NewQType)
806      return MergeCompatibleFunctionDecls(New, Old);
807
808    // Fall through for conflicting redeclarations and redefinitions.
809  }
810
811  // C: Function types need to be compatible, not identical. This handles
812  // duplicate function decls like "void f(int); void f(enum X);" properly.
813  if (!getLangOptions().CPlusPlus &&
814      Context.typesAreCompatible(OldQType, NewQType)) {
815    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
816    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
817    const FunctionProtoType *OldProto = 0;
818    if (isa<FunctionNoProtoType>(NewFuncType) &&
819        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
820      // The old declaration provided a function prototype, but the
821      // new declaration does not. Merge in the prototype.
822      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
823      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
824                                                 OldProto->arg_type_end());
825      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
826                                         ParamTypes.data(), ParamTypes.size(),
827                                         OldProto->isVariadic(),
828                                         OldProto->getTypeQuals());
829      New->setType(NewQType);
830      New->setHasInheritedPrototype();
831
832      // Synthesize a parameter for each argument type.
833      llvm::SmallVector<ParmVarDecl*, 16> Params;
834      for (FunctionProtoType::arg_type_iterator
835             ParamType = OldProto->arg_type_begin(),
836             ParamEnd = OldProto->arg_type_end();
837           ParamType != ParamEnd; ++ParamType) {
838        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
839                                                 SourceLocation(), 0,
840                                                 *ParamType, /*DInfo=*/0,
841                                                 VarDecl::None, 0);
842        Param->setImplicit();
843        Params.push_back(Param);
844      }
845
846      New->setParams(Context, Params.data(), Params.size());
847    }
848
849    return MergeCompatibleFunctionDecls(New, Old);
850  }
851
852  // GNU C permits a K&R definition to follow a prototype declaration
853  // if the declared types of the parameters in the K&R definition
854  // match the types in the prototype declaration, even when the
855  // promoted types of the parameters from the K&R definition differ
856  // from the types in the prototype. GCC then keeps the types from
857  // the prototype.
858  //
859  // If a variadic prototype is followed by a non-variadic K&R definition,
860  // the K&R definition becomes variadic.  This is sort of an edge case, but
861  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
862  // C99 6.9.1p8.
863  if (!getLangOptions().CPlusPlus &&
864      Old->hasPrototype() && !New->hasPrototype() &&
865      New->getType()->getAs<FunctionProtoType>() &&
866      Old->getNumParams() == New->getNumParams()) {
867    llvm::SmallVector<QualType, 16> ArgTypes;
868    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
869    const FunctionProtoType *OldProto
870      = Old->getType()->getAs<FunctionProtoType>();
871    const FunctionProtoType *NewProto
872      = New->getType()->getAs<FunctionProtoType>();
873
874    // Determine whether this is the GNU C extension.
875    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
876                                               NewProto->getResultType());
877    bool LooseCompatible = !MergedReturn.isNull();
878    for (unsigned Idx = 0, End = Old->getNumParams();
879         LooseCompatible && Idx != End; ++Idx) {
880      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
881      ParmVarDecl *NewParm = New->getParamDecl(Idx);
882      if (Context.typesAreCompatible(OldParm->getType(),
883                                     NewProto->getArgType(Idx))) {
884        ArgTypes.push_back(NewParm->getType());
885      } else if (Context.typesAreCompatible(OldParm->getType(),
886                                            NewParm->getType())) {
887        GNUCompatibleParamWarning Warn
888          = { OldParm, NewParm, NewProto->getArgType(Idx) };
889        Warnings.push_back(Warn);
890        ArgTypes.push_back(NewParm->getType());
891      } else
892        LooseCompatible = false;
893    }
894
895    if (LooseCompatible) {
896      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
897        Diag(Warnings[Warn].NewParm->getLocation(),
898             diag::ext_param_promoted_not_compatible_with_prototype)
899          << Warnings[Warn].PromotedType
900          << Warnings[Warn].OldParm->getType();
901        Diag(Warnings[Warn].OldParm->getLocation(),
902             diag::note_previous_declaration);
903      }
904
905      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
906                                           ArgTypes.size(),
907                                           OldProto->isVariadic(), 0));
908      return MergeCompatibleFunctionDecls(New, Old);
909    }
910
911    // Fall through to diagnose conflicting types.
912  }
913
914  // A function that has already been declared has been redeclared or defined
915  // with a different type- show appropriate diagnostic
916  if (unsigned BuiltinID = Old->getBuiltinID()) {
917    // The user has declared a builtin function with an incompatible
918    // signature.
919    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
920      // The function the user is redeclaring is a library-defined
921      // function like 'malloc' or 'printf'. Warn about the
922      // redeclaration, then pretend that we don't know about this
923      // library built-in.
924      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
925      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
926        << Old << Old->getType();
927      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
928      Old->setInvalidDecl();
929      return false;
930    }
931
932    PrevDiag = diag::note_previous_builtin_declaration;
933  }
934
935  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
936  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
937  return true;
938}
939
940/// \brief Completes the merge of two function declarations that are
941/// known to be compatible.
942///
943/// This routine handles the merging of attributes and other
944/// properties of function declarations form the old declaration to
945/// the new declaration, once we know that New is in fact a
946/// redeclaration of Old.
947///
948/// \returns false
949bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
950  // Merge the attributes
951  MergeAttributes(New, Old, Context);
952
953  // Merge the storage class.
954  if (Old->getStorageClass() != FunctionDecl::Extern &&
955      Old->getStorageClass() != FunctionDecl::None)
956    New->setStorageClass(Old->getStorageClass());
957
958  // Merge "pure" flag.
959  if (Old->isPure())
960    New->setPure();
961
962  // Merge the "deleted" flag.
963  if (Old->isDeleted())
964    New->setDeleted();
965
966  if (getLangOptions().CPlusPlus)
967    return MergeCXXFunctionDecl(New, Old);
968
969  return false;
970}
971
972/// MergeVarDecl - We just parsed a variable 'New' which has the same name
973/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
974/// situation, merging decls or emitting diagnostics as appropriate.
975///
976/// Tentative definition rules (C99 6.9.2p2) are checked by
977/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
978/// definitions here, since the initializer hasn't been attached.
979///
980void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
981  // If either decl is invalid, make sure the new one is marked invalid and
982  // don't do any other checking.
983  if (New->isInvalidDecl() || OldD->isInvalidDecl())
984    return New->setInvalidDecl();
985
986  // Verify the old decl was also a variable.
987  VarDecl *Old = dyn_cast<VarDecl>(OldD);
988  if (!Old) {
989    Diag(New->getLocation(), diag::err_redefinition_different_kind)
990      << New->getDeclName();
991    Diag(OldD->getLocation(), diag::note_previous_definition);
992    return New->setInvalidDecl();
993  }
994
995  MergeAttributes(New, Old, Context);
996
997  // Merge the types
998  QualType MergedT;
999  if (getLangOptions().CPlusPlus) {
1000    if (Context.hasSameType(New->getType(), Old->getType()))
1001      MergedT = New->getType();
1002    // C++ [basic.types]p7:
1003    //   [...] The declared type of an array object might be an array of
1004    //   unknown size and therefore be incomplete at one point in a
1005    //   translation unit and complete later on; [...]
1006    else if (Old->getType()->isIncompleteArrayType() &&
1007             New->getType()->isArrayType()) {
1008      CanQual<ArrayType> OldArray
1009        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1010      CanQual<ArrayType> NewArray
1011        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1012      if (OldArray->getElementType() == NewArray->getElementType())
1013        MergedT = New->getType();
1014    }
1015  } else {
1016    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1017  }
1018  if (MergedT.isNull()) {
1019    Diag(New->getLocation(), diag::err_redefinition_different_type)
1020      << New->getDeclName();
1021    Diag(Old->getLocation(), diag::note_previous_definition);
1022    return New->setInvalidDecl();
1023  }
1024  New->setType(MergedT);
1025
1026  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1027  if (New->getStorageClass() == VarDecl::Static &&
1028      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1029    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1030    Diag(Old->getLocation(), diag::note_previous_definition);
1031    return New->setInvalidDecl();
1032  }
1033  // C99 6.2.2p4:
1034  //   For an identifier declared with the storage-class specifier
1035  //   extern in a scope in which a prior declaration of that
1036  //   identifier is visible,23) if the prior declaration specifies
1037  //   internal or external linkage, the linkage of the identifier at
1038  //   the later declaration is the same as the linkage specified at
1039  //   the prior declaration. If no prior declaration is visible, or
1040  //   if the prior declaration specifies no linkage, then the
1041  //   identifier has external linkage.
1042  if (New->hasExternalStorage() && Old->hasLinkage())
1043    /* Okay */;
1044  else if (New->getStorageClass() != VarDecl::Static &&
1045           Old->getStorageClass() == VarDecl::Static) {
1046    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1047    Diag(Old->getLocation(), diag::note_previous_definition);
1048    return New->setInvalidDecl();
1049  }
1050
1051  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1052
1053  // FIXME: The test for external storage here seems wrong? We still
1054  // need to check for mismatches.
1055  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1056      // Don't complain about out-of-line definitions of static members.
1057      !(Old->getLexicalDeclContext()->isRecord() &&
1058        !New->getLexicalDeclContext()->isRecord())) {
1059    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1060    Diag(Old->getLocation(), diag::note_previous_definition);
1061    return New->setInvalidDecl();
1062  }
1063
1064  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1065    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1066    Diag(Old->getLocation(), diag::note_previous_definition);
1067  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1068    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1069    Diag(Old->getLocation(), diag::note_previous_definition);
1070  }
1071
1072  // Keep a chain of previous declarations.
1073  New->setPreviousDeclaration(Old);
1074}
1075
1076/// CheckFallThrough - Check that we don't fall off the end of a
1077/// Statement that should return a value.
1078///
1079/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1080/// MaybeFallThrough iff we might or might not fall off the end,
1081/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1082/// return.  We assume NeverFallThrough iff we never fall off the end of the
1083/// statement but we may return.  We assume that functions not marked noreturn
1084/// will return.
1085Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1086  // FIXME: Eventually share this CFG object when we have other warnings based
1087  // of the CFG.  This can be done using AnalysisContext.
1088  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1089
1090  // FIXME: They should never return 0, fix that, delete this code.
1091  if (cfg == 0)
1092    // FIXME: This should be NeverFallThrough
1093    return NeverFallThroughOrReturn;
1094  // The CFG leaves in dead things, and we don't want to dead code paths to
1095  // confuse us, so we mark all live things first.
1096  std::queue<CFGBlock*> workq;
1097  llvm::BitVector live(cfg->getNumBlockIDs());
1098  // Prep work queue
1099  workq.push(&cfg->getEntry());
1100  // Solve
1101  while (!workq.empty()) {
1102    CFGBlock *item = workq.front();
1103    workq.pop();
1104    live.set(item->getBlockID());
1105    for (CFGBlock::succ_iterator I=item->succ_begin(),
1106           E=item->succ_end();
1107         I != E;
1108         ++I) {
1109      if ((*I) && !live[(*I)->getBlockID()]) {
1110        live.set((*I)->getBlockID());
1111        workq.push(*I);
1112      }
1113    }
1114  }
1115
1116  // Now we know what is live, we check the live precessors of the exit block
1117  // and look for fall through paths, being careful to ignore normal returns,
1118  // and exceptional paths.
1119  bool HasLiveReturn = false;
1120  bool HasFakeEdge = false;
1121  bool HasPlainEdge = false;
1122  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1123         E = cfg->getExit().pred_end();
1124       I != E;
1125       ++I) {
1126    CFGBlock& B = **I;
1127    if (!live[B.getBlockID()])
1128      continue;
1129    if (B.size() == 0) {
1130      // A labeled empty statement, or the entry block...
1131      HasPlainEdge = true;
1132      continue;
1133    }
1134    Stmt *S = B[B.size()-1];
1135    if (isa<ReturnStmt>(S)) {
1136      HasLiveReturn = true;
1137      continue;
1138    }
1139    if (isa<ObjCAtThrowStmt>(S)) {
1140      HasFakeEdge = true;
1141      continue;
1142    }
1143    if (isa<CXXThrowExpr>(S)) {
1144      HasFakeEdge = true;
1145      continue;
1146    }
1147    bool NoReturnEdge = false;
1148    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1149      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1150      if (CEE->getType().getNoReturnAttr()) {
1151        NoReturnEdge = true;
1152        HasFakeEdge = true;
1153      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1154        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1155          if (FD->hasAttr<NoReturnAttr>()) {
1156            NoReturnEdge = true;
1157            HasFakeEdge = true;
1158          }
1159        }
1160      }
1161    }
1162    // FIXME: Add noreturn message sends.
1163    if (NoReturnEdge == false)
1164      HasPlainEdge = true;
1165  }
1166  if (!HasPlainEdge) {
1167    if (HasLiveReturn)
1168      return NeverFallThrough;
1169    return NeverFallThroughOrReturn;
1170  }
1171  if (HasFakeEdge || HasLiveReturn)
1172    return MaybeFallThrough;
1173  // This says AlwaysFallThrough for calls to functions that are not marked
1174  // noreturn, that don't return.  If people would like this warning to be more
1175  // accurate, such functions should be marked as noreturn.
1176  return AlwaysFallThrough;
1177}
1178
1179/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1180/// function that should return a value.  Check that we don't fall off the end
1181/// of a noreturn function.  We assume that functions and blocks not marked
1182/// noreturn will return.
1183void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1184  // FIXME: Would be nice if we had a better way to control cascading errors,
1185  // but for now, avoid them.  The problem is that when Parse sees:
1186  //   int foo() { return a; }
1187  // The return is eaten and the Sema code sees just:
1188  //   int foo() { }
1189  // which this code would then warn about.
1190  if (getDiagnostics().hasErrorOccurred())
1191    return;
1192
1193  bool ReturnsVoid = false;
1194  bool HasNoReturn = false;
1195  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1196    // If the result type of the function is a dependent type, we don't know
1197    // whether it will be void or not, so don't
1198    if (FD->getResultType()->isDependentType())
1199      return;
1200    if (FD->getResultType()->isVoidType())
1201      ReturnsVoid = true;
1202    if (FD->hasAttr<NoReturnAttr>())
1203      HasNoReturn = true;
1204  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1205    if (MD->getResultType()->isVoidType())
1206      ReturnsVoid = true;
1207    if (MD->hasAttr<NoReturnAttr>())
1208      HasNoReturn = true;
1209  }
1210
1211  // Short circuit for compilation speed.
1212  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1213       == Diagnostic::Ignored || ReturnsVoid)
1214      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1215          == Diagnostic::Ignored || !HasNoReturn)
1216      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1217          == Diagnostic::Ignored || !ReturnsVoid))
1218    return;
1219  // FIXME: Function try block
1220  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1221    switch (CheckFallThrough(Body)) {
1222    case MaybeFallThrough:
1223      if (HasNoReturn)
1224        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1225      else if (!ReturnsVoid)
1226        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1227      break;
1228    case AlwaysFallThrough:
1229      if (HasNoReturn)
1230        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1231      else if (!ReturnsVoid)
1232        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1233      break;
1234    case NeverFallThroughOrReturn:
1235      if (ReturnsVoid && !HasNoReturn)
1236        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1237      break;
1238    case NeverFallThrough:
1239      break;
1240    }
1241  }
1242}
1243
1244/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1245/// that should return a value.  Check that we don't fall off the end of a
1246/// noreturn block.  We assume that functions and blocks not marked noreturn
1247/// will return.
1248void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1249  // FIXME: Would be nice if we had a better way to control cascading errors,
1250  // but for now, avoid them.  The problem is that when Parse sees:
1251  //   int foo() { return a; }
1252  // The return is eaten and the Sema code sees just:
1253  //   int foo() { }
1254  // which this code would then warn about.
1255  if (getDiagnostics().hasErrorOccurred())
1256    return;
1257  bool ReturnsVoid = false;
1258  bool HasNoReturn = false;
1259  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1260    if (FT->getResultType()->isVoidType())
1261      ReturnsVoid = true;
1262    if (FT->getNoReturnAttr())
1263      HasNoReturn = true;
1264  }
1265
1266  // Short circuit for compilation speed.
1267  if (ReturnsVoid
1268      && !HasNoReturn
1269      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1270          == Diagnostic::Ignored || !ReturnsVoid))
1271    return;
1272  // FIXME: Funtion try block
1273  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1274    switch (CheckFallThrough(Body)) {
1275    case MaybeFallThrough:
1276      if (HasNoReturn)
1277        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1278      else if (!ReturnsVoid)
1279        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1280      break;
1281    case AlwaysFallThrough:
1282      if (HasNoReturn)
1283        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1284      else if (!ReturnsVoid)
1285        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1286      break;
1287    case NeverFallThroughOrReturn:
1288      if (ReturnsVoid)
1289        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1290      break;
1291    case NeverFallThrough:
1292      break;
1293    }
1294  }
1295}
1296
1297/// CheckParmsForFunctionDef - Check that the parameters of the given
1298/// function are appropriate for the definition of a function. This
1299/// takes care of any checks that cannot be performed on the
1300/// declaration itself, e.g., that the types of each of the function
1301/// parameters are complete.
1302bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1303  bool HasInvalidParm = false;
1304  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1305    ParmVarDecl *Param = FD->getParamDecl(p);
1306
1307    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1308    // function declarator that is part of a function definition of
1309    // that function shall not have incomplete type.
1310    //
1311    // This is also C++ [dcl.fct]p6.
1312    if (!Param->isInvalidDecl() &&
1313        RequireCompleteType(Param->getLocation(), Param->getType(),
1314                               diag::err_typecheck_decl_incomplete_type)) {
1315      Param->setInvalidDecl();
1316      HasInvalidParm = true;
1317    }
1318
1319    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1320    // declaration of each parameter shall include an identifier.
1321    if (Param->getIdentifier() == 0 &&
1322        !Param->isImplicit() &&
1323        !getLangOptions().CPlusPlus)
1324      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1325  }
1326
1327  return HasInvalidParm;
1328}
1329
1330/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1331/// no declarator (e.g. "struct foo;") is parsed.
1332Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1333  // FIXME: Error on auto/register at file scope
1334  // FIXME: Error on inline/virtual/explicit
1335  // FIXME: Error on invalid restrict
1336  // FIXME: Warn on useless __thread
1337  // FIXME: Warn on useless const/volatile
1338  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1339  // FIXME: Warn on useless attributes
1340  Decl *TagD = 0;
1341  TagDecl *Tag = 0;
1342  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1343      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1344      DS.getTypeSpecType() == DeclSpec::TST_union ||
1345      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1346    TagD = static_cast<Decl *>(DS.getTypeRep());
1347
1348    if (!TagD) // We probably had an error
1349      return DeclPtrTy();
1350
1351    // Note that the above type specs guarantee that the
1352    // type rep is a Decl, whereas in many of the others
1353    // it's a Type.
1354    Tag = dyn_cast<TagDecl>(TagD);
1355  }
1356
1357  if (DS.isFriendSpecified()) {
1358    // If we're dealing with a class template decl, assume that the
1359    // template routines are handling it.
1360    if (TagD && isa<ClassTemplateDecl>(TagD))
1361      return DeclPtrTy();
1362    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1363  }
1364
1365  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1366    // If there are attributes in the DeclSpec, apply them to the record.
1367    if (const AttributeList *AL = DS.getAttributes())
1368      ProcessDeclAttributeList(S, Record, AL);
1369
1370    if (!Record->getDeclName() && Record->isDefinition() &&
1371        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1372      if (getLangOptions().CPlusPlus ||
1373          Record->getDeclContext()->isRecord())
1374        return BuildAnonymousStructOrUnion(S, DS, Record);
1375
1376      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1377        << DS.getSourceRange();
1378    }
1379
1380    // Microsoft allows unnamed struct/union fields. Don't complain
1381    // about them.
1382    // FIXME: Should we support Microsoft's extensions in this area?
1383    if (Record->getDeclName() && getLangOptions().Microsoft)
1384      return DeclPtrTy::make(Tag);
1385  }
1386
1387  if (!DS.isMissingDeclaratorOk() &&
1388      DS.getTypeSpecType() != DeclSpec::TST_error) {
1389    // Warn about typedefs of enums without names, since this is an
1390    // extension in both Microsoft an GNU.
1391    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1392        Tag && isa<EnumDecl>(Tag)) {
1393      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1394        << DS.getSourceRange();
1395      return DeclPtrTy::make(Tag);
1396    }
1397
1398    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1399      << DS.getSourceRange();
1400    return DeclPtrTy();
1401  }
1402
1403  return DeclPtrTy::make(Tag);
1404}
1405
1406/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1407/// anonymous struct or union AnonRecord into the owning context Owner
1408/// and scope S. This routine will be invoked just after we realize
1409/// that an unnamed union or struct is actually an anonymous union or
1410/// struct, e.g.,
1411///
1412/// @code
1413/// union {
1414///   int i;
1415///   float f;
1416/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1417///    // f into the surrounding scope.x
1418/// @endcode
1419///
1420/// This routine is recursive, injecting the names of nested anonymous
1421/// structs/unions into the owning context and scope as well.
1422bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1423                                               RecordDecl *AnonRecord) {
1424  bool Invalid = false;
1425  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1426                               FEnd = AnonRecord->field_end();
1427       F != FEnd; ++F) {
1428    if ((*F)->getDeclName()) {
1429      LookupResult R(*this, (*F)->getDeclName(), SourceLocation(),
1430                     LookupOrdinaryName, ForRedeclaration);
1431      LookupQualifiedName(R, Owner);
1432      NamedDecl *PrevDecl = R.getAsSingleDecl(Context);
1433      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1434        // C++ [class.union]p2:
1435        //   The names of the members of an anonymous union shall be
1436        //   distinct from the names of any other entity in the
1437        //   scope in which the anonymous union is declared.
1438        unsigned diagKind
1439          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1440                                 : diag::err_anonymous_struct_member_redecl;
1441        Diag((*F)->getLocation(), diagKind)
1442          << (*F)->getDeclName();
1443        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1444        Invalid = true;
1445      } else {
1446        // C++ [class.union]p2:
1447        //   For the purpose of name lookup, after the anonymous union
1448        //   definition, the members of the anonymous union are
1449        //   considered to have been defined in the scope in which the
1450        //   anonymous union is declared.
1451        Owner->makeDeclVisibleInContext(*F);
1452        S->AddDecl(DeclPtrTy::make(*F));
1453        IdResolver.AddDecl(*F);
1454      }
1455    } else if (const RecordType *InnerRecordType
1456                 = (*F)->getType()->getAs<RecordType>()) {
1457      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1458      if (InnerRecord->isAnonymousStructOrUnion())
1459        Invalid = Invalid ||
1460          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1461    }
1462  }
1463
1464  return Invalid;
1465}
1466
1467/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1468/// anonymous structure or union. Anonymous unions are a C++ feature
1469/// (C++ [class.union]) and a GNU C extension; anonymous structures
1470/// are a GNU C and GNU C++ extension.
1471Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1472                                                  RecordDecl *Record) {
1473  DeclContext *Owner = Record->getDeclContext();
1474
1475  // Diagnose whether this anonymous struct/union is an extension.
1476  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1477    Diag(Record->getLocation(), diag::ext_anonymous_union);
1478  else if (!Record->isUnion())
1479    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1480
1481  // C and C++ require different kinds of checks for anonymous
1482  // structs/unions.
1483  bool Invalid = false;
1484  if (getLangOptions().CPlusPlus) {
1485    const char* PrevSpec = 0;
1486    unsigned DiagID;
1487    // C++ [class.union]p3:
1488    //   Anonymous unions declared in a named namespace or in the
1489    //   global namespace shall be declared static.
1490    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1491        (isa<TranslationUnitDecl>(Owner) ||
1492         (isa<NamespaceDecl>(Owner) &&
1493          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1494      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1495      Invalid = true;
1496
1497      // Recover by adding 'static'.
1498      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1499                             PrevSpec, DiagID);
1500    }
1501    // C++ [class.union]p3:
1502    //   A storage class is not allowed in a declaration of an
1503    //   anonymous union in a class scope.
1504    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1505             isa<RecordDecl>(Owner)) {
1506      Diag(DS.getStorageClassSpecLoc(),
1507           diag::err_anonymous_union_with_storage_spec);
1508      Invalid = true;
1509
1510      // Recover by removing the storage specifier.
1511      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1512                             PrevSpec, DiagID);
1513    }
1514
1515    // C++ [class.union]p2:
1516    //   The member-specification of an anonymous union shall only
1517    //   define non-static data members. [Note: nested types and
1518    //   functions cannot be declared within an anonymous union. ]
1519    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1520                                 MemEnd = Record->decls_end();
1521         Mem != MemEnd; ++Mem) {
1522      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1523        // C++ [class.union]p3:
1524        //   An anonymous union shall not have private or protected
1525        //   members (clause 11).
1526        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1527          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1528            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1529          Invalid = true;
1530        }
1531      } else if ((*Mem)->isImplicit()) {
1532        // Any implicit members are fine.
1533      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1534        // This is a type that showed up in an
1535        // elaborated-type-specifier inside the anonymous struct or
1536        // union, but which actually declares a type outside of the
1537        // anonymous struct or union. It's okay.
1538      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1539        if (!MemRecord->isAnonymousStructOrUnion() &&
1540            MemRecord->getDeclName()) {
1541          // This is a nested type declaration.
1542          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1543            << (int)Record->isUnion();
1544          Invalid = true;
1545        }
1546      } else {
1547        // We have something that isn't a non-static data
1548        // member. Complain about it.
1549        unsigned DK = diag::err_anonymous_record_bad_member;
1550        if (isa<TypeDecl>(*Mem))
1551          DK = diag::err_anonymous_record_with_type;
1552        else if (isa<FunctionDecl>(*Mem))
1553          DK = diag::err_anonymous_record_with_function;
1554        else if (isa<VarDecl>(*Mem))
1555          DK = diag::err_anonymous_record_with_static;
1556        Diag((*Mem)->getLocation(), DK)
1557            << (int)Record->isUnion();
1558          Invalid = true;
1559      }
1560    }
1561  }
1562
1563  if (!Record->isUnion() && !Owner->isRecord()) {
1564    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1565      << (int)getLangOptions().CPlusPlus;
1566    Invalid = true;
1567  }
1568
1569  // Mock up a declarator.
1570  Declarator Dc(DS, Declarator::TypeNameContext);
1571  DeclaratorInfo *DInfo = 0;
1572  GetTypeForDeclarator(Dc, S, &DInfo);
1573  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1574
1575  // Create a declaration for this anonymous struct/union.
1576  NamedDecl *Anon = 0;
1577  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1578    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1579                             /*IdentifierInfo=*/0,
1580                             Context.getTypeDeclType(Record),
1581                             DInfo,
1582                             /*BitWidth=*/0, /*Mutable=*/false);
1583    Anon->setAccess(AS_public);
1584    if (getLangOptions().CPlusPlus)
1585      FieldCollector->Add(cast<FieldDecl>(Anon));
1586  } else {
1587    VarDecl::StorageClass SC;
1588    switch (DS.getStorageClassSpec()) {
1589    default: assert(0 && "Unknown storage class!");
1590    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1591    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1592    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1593    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1594    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1595    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1596    case DeclSpec::SCS_mutable:
1597      // mutable can only appear on non-static class members, so it's always
1598      // an error here
1599      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1600      Invalid = true;
1601      SC = VarDecl::None;
1602      break;
1603    }
1604
1605    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1606                           /*IdentifierInfo=*/0,
1607                           Context.getTypeDeclType(Record),
1608                           DInfo,
1609                           SC);
1610  }
1611  Anon->setImplicit();
1612
1613  // Add the anonymous struct/union object to the current
1614  // context. We'll be referencing this object when we refer to one of
1615  // its members.
1616  Owner->addDecl(Anon);
1617
1618  // Inject the members of the anonymous struct/union into the owning
1619  // context and into the identifier resolver chain for name lookup
1620  // purposes.
1621  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1622    Invalid = true;
1623
1624  // Mark this as an anonymous struct/union type. Note that we do not
1625  // do this until after we have already checked and injected the
1626  // members of this anonymous struct/union type, because otherwise
1627  // the members could be injected twice: once by DeclContext when it
1628  // builds its lookup table, and once by
1629  // InjectAnonymousStructOrUnionMembers.
1630  Record->setAnonymousStructOrUnion(true);
1631
1632  if (Invalid)
1633    Anon->setInvalidDecl();
1634
1635  return DeclPtrTy::make(Anon);
1636}
1637
1638
1639/// GetNameForDeclarator - Determine the full declaration name for the
1640/// given Declarator.
1641DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1642  return GetNameFromUnqualifiedId(D.getName());
1643}
1644
1645/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1646DeclarationName Sema::GetNameFromUnqualifiedId(UnqualifiedId &Name) {
1647  switch (Name.getKind()) {
1648    case UnqualifiedId::IK_Identifier:
1649      return DeclarationName(Name.Identifier);
1650
1651    case UnqualifiedId::IK_OperatorFunctionId:
1652      return Context.DeclarationNames.getCXXOperatorName(
1653                                                         Name.OperatorFunctionId.Operator);
1654
1655    case UnqualifiedId::IK_ConversionFunctionId: {
1656      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1657      if (Ty.isNull())
1658        return DeclarationName();
1659
1660      return Context.DeclarationNames.getCXXConversionFunctionName(
1661                                                                   Context.getCanonicalType(Ty));
1662    }
1663
1664    case UnqualifiedId::IK_ConstructorName: {
1665      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1666      if (Ty.isNull())
1667        return DeclarationName();
1668
1669      return Context.DeclarationNames.getCXXConstructorName(
1670                                                            Context.getCanonicalType(Ty));
1671    }
1672
1673    case UnqualifiedId::IK_DestructorName: {
1674      QualType Ty = GetTypeFromParser(Name.DestructorName);
1675      if (Ty.isNull())
1676        return DeclarationName();
1677
1678      return Context.DeclarationNames.getCXXDestructorName(
1679                                                           Context.getCanonicalType(Ty));
1680    }
1681
1682    case UnqualifiedId::IK_TemplateId: {
1683      TemplateName TName
1684        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1685      if (TemplateDecl *Template = TName.getAsTemplateDecl())
1686        return Template->getDeclName();
1687      if (OverloadedFunctionDecl *Ovl = TName.getAsOverloadedFunctionDecl())
1688        return Ovl->getDeclName();
1689
1690      return DeclarationName();
1691    }
1692  }
1693
1694  assert(false && "Unknown name kind");
1695  return DeclarationName();
1696}
1697
1698/// isNearlyMatchingFunction - Determine whether the C++ functions
1699/// Declaration and Definition are "nearly" matching. This heuristic
1700/// is used to improve diagnostics in the case where an out-of-line
1701/// function definition doesn't match any declaration within
1702/// the class or namespace.
1703static bool isNearlyMatchingFunction(ASTContext &Context,
1704                                     FunctionDecl *Declaration,
1705                                     FunctionDecl *Definition) {
1706  if (Declaration->param_size() != Definition->param_size())
1707    return false;
1708  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1709    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1710    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1711
1712    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1713                                        DefParamTy.getNonReferenceType()))
1714      return false;
1715  }
1716
1717  return true;
1718}
1719
1720Sema::DeclPtrTy
1721Sema::HandleDeclarator(Scope *S, Declarator &D,
1722                       MultiTemplateParamsArg TemplateParamLists,
1723                       bool IsFunctionDefinition) {
1724  DeclarationName Name = GetNameForDeclarator(D);
1725
1726  // All of these full declarators require an identifier.  If it doesn't have
1727  // one, the ParsedFreeStandingDeclSpec action should be used.
1728  if (!Name) {
1729    if (!D.isInvalidType())  // Reject this if we think it is valid.
1730      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1731           diag::err_declarator_need_ident)
1732        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1733    return DeclPtrTy();
1734  }
1735
1736  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1737  // we find one that is.
1738  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1739         (S->getFlags() & Scope::TemplateParamScope) != 0)
1740    S = S->getParent();
1741
1742  // If this is an out-of-line definition of a member of a class template
1743  // or class template partial specialization, we may need to rebuild the
1744  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1745  // for more information.
1746  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1747  // handle expressions properly.
1748  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1749  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1750      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1751      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1752       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1753       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1754       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1755    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1756      // FIXME: Preserve type source info.
1757      QualType T = GetTypeFromParser(DS.getTypeRep());
1758      EnterDeclaratorContext(S, DC);
1759      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1760      ExitDeclaratorContext(S);
1761      if (T.isNull())
1762        return DeclPtrTy();
1763      DS.UpdateTypeRep(T.getAsOpaquePtr());
1764    }
1765  }
1766
1767  DeclContext *DC;
1768  NamedDecl *PrevDecl;
1769  NamedDecl *New;
1770
1771  DeclaratorInfo *DInfo = 0;
1772  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1773
1774  // See if this is a redefinition of a variable in the same scope.
1775  if (D.getCXXScopeSpec().isInvalid()) {
1776    DC = CurContext;
1777    PrevDecl = 0;
1778    D.setInvalidType();
1779  } else if (!D.getCXXScopeSpec().isSet()) {
1780    LookupNameKind NameKind = LookupOrdinaryName;
1781
1782    // If the declaration we're planning to build will be a function
1783    // or object with linkage, then look for another declaration with
1784    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1785    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1786      /* Do nothing*/;
1787    else if (R->isFunctionType()) {
1788      if (CurContext->isFunctionOrMethod() ||
1789          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1790        NameKind = LookupRedeclarationWithLinkage;
1791    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1792      NameKind = LookupRedeclarationWithLinkage;
1793    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1794             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1795      NameKind = LookupRedeclarationWithLinkage;
1796
1797    DC = CurContext;
1798    LookupResult R(*this, Name, D.getIdentifierLoc(), NameKind,
1799                   ForRedeclaration);
1800
1801    LookupName(R, S, NameKind == LookupRedeclarationWithLinkage);
1802    PrevDecl = R.getAsSingleDecl(Context);
1803  } else { // Something like "int foo::x;"
1804    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1805
1806    if (!DC) {
1807      // If we could not compute the declaration context, it's because the
1808      // declaration context is dependent but does not refer to a class,
1809      // class template, or class template partial specialization. Complain
1810      // and return early, to avoid the coming semantic disaster.
1811      Diag(D.getIdentifierLoc(),
1812           diag::err_template_qualified_declarator_no_match)
1813        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1814        << D.getCXXScopeSpec().getRange();
1815      return DeclPtrTy();
1816    }
1817
1818    if (!DC->isDependentContext() &&
1819        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1820      return DeclPtrTy();
1821
1822    LookupResult Res(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1823                     ForRedeclaration);
1824    LookupQualifiedName(Res, DC);
1825    PrevDecl = Res.getAsSingleDecl(Context);
1826
1827    // C++ 7.3.1.2p2:
1828    // Members (including explicit specializations of templates) of a named
1829    // namespace can also be defined outside that namespace by explicit
1830    // qualification of the name being defined, provided that the entity being
1831    // defined was already declared in the namespace and the definition appears
1832    // after the point of declaration in a namespace that encloses the
1833    // declarations namespace.
1834    //
1835    // Note that we only check the context at this point. We don't yet
1836    // have enough information to make sure that PrevDecl is actually
1837    // the declaration we want to match. For example, given:
1838    //
1839    //   class X {
1840    //     void f();
1841    //     void f(float);
1842    //   };
1843    //
1844    //   void X::f(int) { } // ill-formed
1845    //
1846    // In this case, PrevDecl will point to the overload set
1847    // containing the two f's declared in X, but neither of them
1848    // matches.
1849
1850    // First check whether we named the global scope.
1851    if (isa<TranslationUnitDecl>(DC)) {
1852      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1853        << Name << D.getCXXScopeSpec().getRange();
1854    } else {
1855      DeclContext *Cur = CurContext;
1856      while (isa<LinkageSpecDecl>(Cur))
1857        Cur = Cur->getParent();
1858      if (!Cur->Encloses(DC)) {
1859        // The qualifying scope doesn't enclose the original declaration.
1860        // Emit diagnostic based on current scope.
1861        SourceLocation L = D.getIdentifierLoc();
1862        SourceRange R = D.getCXXScopeSpec().getRange();
1863        if (isa<FunctionDecl>(Cur))
1864          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1865        else
1866          Diag(L, diag::err_invalid_declarator_scope)
1867            << Name << cast<NamedDecl>(DC) << R;
1868        D.setInvalidType();
1869      }
1870    }
1871  }
1872
1873  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1874    // Maybe we will complain about the shadowed template parameter.
1875    if (!D.isInvalidType())
1876      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1877        D.setInvalidType();
1878
1879    // Just pretend that we didn't see the previous declaration.
1880    PrevDecl = 0;
1881  }
1882
1883  // In C++, the previous declaration we find might be a tag type
1884  // (class or enum). In this case, the new declaration will hide the
1885  // tag type. Note that this does does not apply if we're declaring a
1886  // typedef (C++ [dcl.typedef]p4).
1887  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1888      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1889    PrevDecl = 0;
1890
1891  bool Redeclaration = false;
1892  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1893    if (TemplateParamLists.size()) {
1894      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1895      return DeclPtrTy();
1896    }
1897
1898    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1899  } else if (R->isFunctionType()) {
1900    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1901                                  move(TemplateParamLists),
1902                                  IsFunctionDefinition, Redeclaration);
1903  } else {
1904    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1905                                  move(TemplateParamLists),
1906                                  Redeclaration);
1907  }
1908
1909  if (New == 0)
1910    return DeclPtrTy();
1911
1912  // If this has an identifier and is not an invalid redeclaration or
1913  // function template specialization, add it to the scope stack.
1914  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1915      !(isa<FunctionDecl>(New) &&
1916        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1917    PushOnScopeChains(New, S);
1918
1919  return DeclPtrTy::make(New);
1920}
1921
1922/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1923/// types into constant array types in certain situations which would otherwise
1924/// be errors (for GCC compatibility).
1925static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1926                                                    ASTContext &Context,
1927                                                    bool &SizeIsNegative) {
1928  // This method tries to turn a variable array into a constant
1929  // array even when the size isn't an ICE.  This is necessary
1930  // for compatibility with code that depends on gcc's buggy
1931  // constant expression folding, like struct {char x[(int)(char*)2];}
1932  SizeIsNegative = false;
1933
1934  QualifierCollector Qs;
1935  const Type *Ty = Qs.strip(T);
1936
1937  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1938    QualType Pointee = PTy->getPointeeType();
1939    QualType FixedType =
1940        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1941    if (FixedType.isNull()) return FixedType;
1942    FixedType = Context.getPointerType(FixedType);
1943    return Qs.apply(FixedType);
1944  }
1945
1946  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1947  if (!VLATy)
1948    return QualType();
1949  // FIXME: We should probably handle this case
1950  if (VLATy->getElementType()->isVariablyModifiedType())
1951    return QualType();
1952
1953  Expr::EvalResult EvalResult;
1954  if (!VLATy->getSizeExpr() ||
1955      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1956      !EvalResult.Val.isInt())
1957    return QualType();
1958
1959  llvm::APSInt &Res = EvalResult.Val.getInt();
1960  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1961    // TODO: preserve the size expression in declarator info
1962    return Context.getConstantArrayType(VLATy->getElementType(),
1963                                        Res, ArrayType::Normal, 0);
1964  }
1965
1966  SizeIsNegative = true;
1967  return QualType();
1968}
1969
1970/// \brief Register the given locally-scoped external C declaration so
1971/// that it can be found later for redeclarations
1972void
1973Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1974                                       Scope *S) {
1975  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1976         "Decl is not a locally-scoped decl!");
1977  // Note that we have a locally-scoped external with this name.
1978  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1979
1980  if (!PrevDecl)
1981    return;
1982
1983  // If there was a previous declaration of this variable, it may be
1984  // in our identifier chain. Update the identifier chain with the new
1985  // declaration.
1986  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1987    // The previous declaration was found on the identifer resolver
1988    // chain, so remove it from its scope.
1989    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1990      S = S->getParent();
1991
1992    if (S)
1993      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1994  }
1995}
1996
1997/// \brief Diagnose function specifiers on a declaration of an identifier that
1998/// does not identify a function.
1999void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2000  // FIXME: We should probably indicate the identifier in question to avoid
2001  // confusion for constructs like "inline int a(), b;"
2002  if (D.getDeclSpec().isInlineSpecified())
2003    Diag(D.getDeclSpec().getInlineSpecLoc(),
2004         diag::err_inline_non_function);
2005
2006  if (D.getDeclSpec().isVirtualSpecified())
2007    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2008         diag::err_virtual_non_function);
2009
2010  if (D.getDeclSpec().isExplicitSpecified())
2011    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2012         diag::err_explicit_non_function);
2013}
2014
2015NamedDecl*
2016Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2017                             QualType R,  DeclaratorInfo *DInfo,
2018                             NamedDecl* PrevDecl, bool &Redeclaration) {
2019  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2020  if (D.getCXXScopeSpec().isSet()) {
2021    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2022      << D.getCXXScopeSpec().getRange();
2023    D.setInvalidType();
2024    // Pretend we didn't see the scope specifier.
2025    DC = 0;
2026  }
2027
2028  if (getLangOptions().CPlusPlus) {
2029    // Check that there are no default arguments (C++ only).
2030    CheckExtraCXXDefaultArguments(D);
2031  }
2032
2033  DiagnoseFunctionSpecifiers(D);
2034
2035  if (D.getDeclSpec().isThreadSpecified())
2036    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2037
2038  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2039  if (!NewTD) return 0;
2040
2041  // Handle attributes prior to checking for duplicates in MergeVarDecl
2042  ProcessDeclAttributes(S, NewTD, D);
2043  // Merge the decl with the existing one if appropriate. If the decl is
2044  // in an outer scope, it isn't the same thing.
2045  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2046    Redeclaration = true;
2047    MergeTypeDefDecl(NewTD, PrevDecl);
2048  }
2049
2050  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2051  // then it shall have block scope.
2052  QualType T = NewTD->getUnderlyingType();
2053  if (T->isVariablyModifiedType()) {
2054    CurFunctionNeedsScopeChecking = true;
2055
2056    if (S->getFnParent() == 0) {
2057      bool SizeIsNegative;
2058      QualType FixedTy =
2059          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2060      if (!FixedTy.isNull()) {
2061        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2062        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2063      } else {
2064        if (SizeIsNegative)
2065          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2066        else if (T->isVariableArrayType())
2067          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2068        else
2069          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2070        NewTD->setInvalidDecl();
2071      }
2072    }
2073  }
2074
2075  // If this is the C FILE type, notify the AST context.
2076  if (IdentifierInfo *II = NewTD->getIdentifier())
2077    if (!NewTD->isInvalidDecl() &&
2078        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2079      if (II->isStr("FILE"))
2080        Context.setFILEDecl(NewTD);
2081      else if (II->isStr("jmp_buf"))
2082        Context.setjmp_bufDecl(NewTD);
2083      else if (II->isStr("sigjmp_buf"))
2084        Context.setsigjmp_bufDecl(NewTD);
2085    }
2086
2087  return NewTD;
2088}
2089
2090/// \brief Determines whether the given declaration is an out-of-scope
2091/// previous declaration.
2092///
2093/// This routine should be invoked when name lookup has found a
2094/// previous declaration (PrevDecl) that is not in the scope where a
2095/// new declaration by the same name is being introduced. If the new
2096/// declaration occurs in a local scope, previous declarations with
2097/// linkage may still be considered previous declarations (C99
2098/// 6.2.2p4-5, C++ [basic.link]p6).
2099///
2100/// \param PrevDecl the previous declaration found by name
2101/// lookup
2102///
2103/// \param DC the context in which the new declaration is being
2104/// declared.
2105///
2106/// \returns true if PrevDecl is an out-of-scope previous declaration
2107/// for a new delcaration with the same name.
2108static bool
2109isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2110                                ASTContext &Context) {
2111  if (!PrevDecl)
2112    return 0;
2113
2114  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2115  // case we need to check each of the overloaded functions.
2116  if (!PrevDecl->hasLinkage())
2117    return false;
2118
2119  if (Context.getLangOptions().CPlusPlus) {
2120    // C++ [basic.link]p6:
2121    //   If there is a visible declaration of an entity with linkage
2122    //   having the same name and type, ignoring entities declared
2123    //   outside the innermost enclosing namespace scope, the block
2124    //   scope declaration declares that same entity and receives the
2125    //   linkage of the previous declaration.
2126    DeclContext *OuterContext = DC->getLookupContext();
2127    if (!OuterContext->isFunctionOrMethod())
2128      // This rule only applies to block-scope declarations.
2129      return false;
2130    else {
2131      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2132      if (PrevOuterContext->isRecord())
2133        // We found a member function: ignore it.
2134        return false;
2135      else {
2136        // Find the innermost enclosing namespace for the new and
2137        // previous declarations.
2138        while (!OuterContext->isFileContext())
2139          OuterContext = OuterContext->getParent();
2140        while (!PrevOuterContext->isFileContext())
2141          PrevOuterContext = PrevOuterContext->getParent();
2142
2143        // The previous declaration is in a different namespace, so it
2144        // isn't the same function.
2145        if (OuterContext->getPrimaryContext() !=
2146            PrevOuterContext->getPrimaryContext())
2147          return false;
2148      }
2149    }
2150  }
2151
2152  return true;
2153}
2154
2155NamedDecl*
2156Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2157                              QualType R, DeclaratorInfo *DInfo,
2158                              NamedDecl* PrevDecl,
2159                              MultiTemplateParamsArg TemplateParamLists,
2160                              bool &Redeclaration) {
2161  DeclarationName Name = GetNameForDeclarator(D);
2162
2163  // Check that there are no default arguments (C++ only).
2164  if (getLangOptions().CPlusPlus)
2165    CheckExtraCXXDefaultArguments(D);
2166
2167  VarDecl *NewVD;
2168  VarDecl::StorageClass SC;
2169  switch (D.getDeclSpec().getStorageClassSpec()) {
2170  default: assert(0 && "Unknown storage class!");
2171  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2172  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2173  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2174  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2175  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2176  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2177  case DeclSpec::SCS_mutable:
2178    // mutable can only appear on non-static class members, so it's always
2179    // an error here
2180    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2181    D.setInvalidType();
2182    SC = VarDecl::None;
2183    break;
2184  }
2185
2186  IdentifierInfo *II = Name.getAsIdentifierInfo();
2187  if (!II) {
2188    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2189      << Name.getAsString();
2190    return 0;
2191  }
2192
2193  DiagnoseFunctionSpecifiers(D);
2194
2195  if (!DC->isRecord() && S->getFnParent() == 0) {
2196    // C99 6.9p2: The storage-class specifiers auto and register shall not
2197    // appear in the declaration specifiers in an external declaration.
2198    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2199
2200      // If this is a register variable with an asm label specified, then this
2201      // is a GNU extension.
2202      if (SC == VarDecl::Register && D.getAsmLabel())
2203        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2204      else
2205        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2206      D.setInvalidType();
2207    }
2208  }
2209  if (DC->isRecord() && !CurContext->isRecord()) {
2210    // This is an out-of-line definition of a static data member.
2211    if (SC == VarDecl::Static) {
2212      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2213           diag::err_static_out_of_line)
2214        << CodeModificationHint::CreateRemoval(
2215                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2216    } else if (SC == VarDecl::None)
2217      SC = VarDecl::Static;
2218  }
2219  if (SC == VarDecl::Static) {
2220    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2221      if (RD->isLocalClass())
2222        Diag(D.getIdentifierLoc(),
2223             diag::err_static_data_member_not_allowed_in_local_class)
2224          << Name << RD->getDeclName();
2225    }
2226  }
2227
2228  // Match up the template parameter lists with the scope specifier, then
2229  // determine whether we have a template or a template specialization.
2230  bool isExplicitSpecialization = false;
2231  if (TemplateParameterList *TemplateParams
2232        = MatchTemplateParametersToScopeSpecifier(
2233                                  D.getDeclSpec().getSourceRange().getBegin(),
2234                                                  D.getCXXScopeSpec(),
2235                        (TemplateParameterList**)TemplateParamLists.get(),
2236                                                   TemplateParamLists.size(),
2237                                                  isExplicitSpecialization)) {
2238    if (TemplateParams->size() > 0) {
2239      // There is no such thing as a variable template.
2240      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2241        << II
2242        << SourceRange(TemplateParams->getTemplateLoc(),
2243                       TemplateParams->getRAngleLoc());
2244      return 0;
2245    } else {
2246      // There is an extraneous 'template<>' for this variable. Complain
2247      // about it, but allow the declaration of the variable.
2248      Diag(TemplateParams->getTemplateLoc(),
2249           diag::err_template_variable_noparams)
2250        << II
2251        << SourceRange(TemplateParams->getTemplateLoc(),
2252                       TemplateParams->getRAngleLoc());
2253
2254      isExplicitSpecialization = true;
2255    }
2256  }
2257
2258  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2259                          II, R, DInfo, SC);
2260
2261  if (D.isInvalidType())
2262    NewVD->setInvalidDecl();
2263
2264  if (D.getDeclSpec().isThreadSpecified()) {
2265    if (NewVD->hasLocalStorage())
2266      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2267    else if (!Context.Target.isTLSSupported())
2268      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2269    else
2270      NewVD->setThreadSpecified(true);
2271  }
2272
2273  // Set the lexical context. If the declarator has a C++ scope specifier, the
2274  // lexical context will be different from the semantic context.
2275  NewVD->setLexicalDeclContext(CurContext);
2276
2277  // Handle attributes prior to checking for duplicates in MergeVarDecl
2278  ProcessDeclAttributes(S, NewVD, D);
2279
2280  // Handle GNU asm-label extension (encoded as an attribute).
2281  if (Expr *E = (Expr*) D.getAsmLabel()) {
2282    // The parser guarantees this is a string.
2283    StringLiteral *SE = cast<StringLiteral>(E);
2284    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2285                                                        SE->getByteLength())));
2286  }
2287
2288  // If name lookup finds a previous declaration that is not in the
2289  // same scope as the new declaration, this may still be an
2290  // acceptable redeclaration.
2291  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2292      !(NewVD->hasLinkage() &&
2293        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2294    PrevDecl = 0;
2295
2296  // Merge the decl with the existing one if appropriate.
2297  if (PrevDecl) {
2298    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2299      // The user tried to define a non-static data member
2300      // out-of-line (C++ [dcl.meaning]p1).
2301      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2302        << D.getCXXScopeSpec().getRange();
2303      PrevDecl = 0;
2304      NewVD->setInvalidDecl();
2305    }
2306  } else if (D.getCXXScopeSpec().isSet()) {
2307    // No previous declaration in the qualifying scope.
2308    Diag(D.getIdentifierLoc(), diag::err_no_member)
2309      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2310      << D.getCXXScopeSpec().getRange();
2311    NewVD->setInvalidDecl();
2312  }
2313
2314  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2315
2316  // This is an explicit specialization of a static data member. Check it.
2317  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2318      CheckMemberSpecialization(NewVD, PrevDecl))
2319    NewVD->setInvalidDecl();
2320
2321  // attributes declared post-definition are currently ignored
2322  if (PrevDecl) {
2323    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2324    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2325      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2326      Diag(Def->getLocation(), diag::note_previous_definition);
2327    }
2328  }
2329
2330  // If this is a locally-scoped extern C variable, update the map of
2331  // such variables.
2332  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2333      !NewVD->isInvalidDecl())
2334    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2335
2336  return NewVD;
2337}
2338
2339/// \brief Perform semantic checking on a newly-created variable
2340/// declaration.
2341///
2342/// This routine performs all of the type-checking required for a
2343/// variable declaration once it has been built. It is used both to
2344/// check variables after they have been parsed and their declarators
2345/// have been translated into a declaration, and to check variables
2346/// that have been instantiated from a template.
2347///
2348/// Sets NewVD->isInvalidDecl() if an error was encountered.
2349void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2350                                    bool &Redeclaration) {
2351  // If the decl is already known invalid, don't check it.
2352  if (NewVD->isInvalidDecl())
2353    return;
2354
2355  QualType T = NewVD->getType();
2356
2357  if (T->isObjCInterfaceType()) {
2358    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2359    return NewVD->setInvalidDecl();
2360  }
2361
2362  // The variable can not have an abstract class type.
2363  if (RequireNonAbstractType(NewVD->getLocation(), T,
2364                             diag::err_abstract_type_in_decl,
2365                             AbstractVariableType))
2366    return NewVD->setInvalidDecl();
2367
2368  // Emit an error if an address space was applied to decl with local storage.
2369  // This includes arrays of objects with address space qualifiers, but not
2370  // automatic variables that point to other address spaces.
2371  // ISO/IEC TR 18037 S5.1.2
2372  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2373    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2374    return NewVD->setInvalidDecl();
2375  }
2376
2377  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2378      && !NewVD->hasAttr<BlocksAttr>())
2379    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2380
2381  bool isVM = T->isVariablyModifiedType();
2382  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2383      NewVD->hasAttr<BlocksAttr>())
2384    CurFunctionNeedsScopeChecking = true;
2385
2386  if ((isVM && NewVD->hasLinkage()) ||
2387      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2388    bool SizeIsNegative;
2389    QualType FixedTy =
2390        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2391
2392    if (FixedTy.isNull() && T->isVariableArrayType()) {
2393      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2394      // FIXME: This won't give the correct result for
2395      // int a[10][n];
2396      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2397
2398      if (NewVD->isFileVarDecl())
2399        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2400        << SizeRange;
2401      else if (NewVD->getStorageClass() == VarDecl::Static)
2402        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2403        << SizeRange;
2404      else
2405        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2406        << SizeRange;
2407      return NewVD->setInvalidDecl();
2408    }
2409
2410    if (FixedTy.isNull()) {
2411      if (NewVD->isFileVarDecl())
2412        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2413      else
2414        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2415      return NewVD->setInvalidDecl();
2416    }
2417
2418    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2419    NewVD->setType(FixedTy);
2420  }
2421
2422  if (!PrevDecl && NewVD->isExternC()) {
2423    // Since we did not find anything by this name and we're declaring
2424    // an extern "C" variable, look for a non-visible extern "C"
2425    // declaration with the same name.
2426    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2427      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2428    if (Pos != LocallyScopedExternalDecls.end())
2429      PrevDecl = Pos->second;
2430  }
2431
2432  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2433    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2434      << T;
2435    return NewVD->setInvalidDecl();
2436  }
2437
2438  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2439    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2440    return NewVD->setInvalidDecl();
2441  }
2442
2443  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2444    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2445    return NewVD->setInvalidDecl();
2446  }
2447
2448  if (PrevDecl) {
2449    Redeclaration = true;
2450    MergeVarDecl(NewVD, PrevDecl);
2451  }
2452}
2453
2454static bool isUsingDecl(Decl *D) {
2455  return isa<UsingDecl>(D) ||
2456         isa<UnresolvedUsingTypenameDecl>(D) ||
2457         isa<UnresolvedUsingValueDecl>(D);
2458}
2459
2460/// \brief Data used with FindOverriddenMethod
2461struct FindOverriddenMethodData {
2462  Sema *S;
2463  CXXMethodDecl *Method;
2464};
2465
2466/// \brief Member lookup function that determines whether a given C++
2467/// method overrides a method in a base class, to be used with
2468/// CXXRecordDecl::lookupInBases().
2469static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2470                                 CXXBasePath &Path,
2471                                 void *UserData) {
2472  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2473
2474  FindOverriddenMethodData *Data
2475    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2476  for (Path.Decls = BaseRecord->lookup(Data->Method->getDeclName());
2477       Path.Decls.first != Path.Decls.second;
2478       ++Path.Decls.first) {
2479    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2480      OverloadedFunctionDecl::function_iterator MatchedDecl;
2481      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, MatchedDecl))
2482        return true;
2483    }
2484  }
2485
2486  return false;
2487}
2488
2489NamedDecl*
2490Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2491                              QualType R, DeclaratorInfo *DInfo,
2492                              NamedDecl* PrevDecl,
2493                              MultiTemplateParamsArg TemplateParamLists,
2494                              bool IsFunctionDefinition, bool &Redeclaration) {
2495  assert(R.getTypePtr()->isFunctionType());
2496
2497  DeclarationName Name = GetNameForDeclarator(D);
2498  FunctionDecl::StorageClass SC = FunctionDecl::None;
2499  switch (D.getDeclSpec().getStorageClassSpec()) {
2500  default: assert(0 && "Unknown storage class!");
2501  case DeclSpec::SCS_auto:
2502  case DeclSpec::SCS_register:
2503  case DeclSpec::SCS_mutable:
2504    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2505         diag::err_typecheck_sclass_func);
2506    D.setInvalidType();
2507    break;
2508  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2509  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2510  case DeclSpec::SCS_static: {
2511    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2512      // C99 6.7.1p5:
2513      //   The declaration of an identifier for a function that has
2514      //   block scope shall have no explicit storage-class specifier
2515      //   other than extern
2516      // See also (C++ [dcl.stc]p4).
2517      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2518           diag::err_static_block_func);
2519      SC = FunctionDecl::None;
2520    } else
2521      SC = FunctionDecl::Static;
2522    break;
2523  }
2524  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2525  }
2526
2527  if (D.getDeclSpec().isThreadSpecified())
2528    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2529
2530  bool isFriend = D.getDeclSpec().isFriendSpecified();
2531  bool isInline = D.getDeclSpec().isInlineSpecified();
2532  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2533  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2534
2535  // Check that the return type is not an abstract class type.
2536  // For record types, this is done by the AbstractClassUsageDiagnoser once
2537  // the class has been completely parsed.
2538  if (!DC->isRecord() &&
2539      RequireNonAbstractType(D.getIdentifierLoc(),
2540                             R->getAs<FunctionType>()->getResultType(),
2541                             diag::err_abstract_type_in_decl,
2542                             AbstractReturnType))
2543    D.setInvalidType();
2544
2545  // Do not allow returning a objc interface by-value.
2546  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2547    Diag(D.getIdentifierLoc(),
2548         diag::err_object_cannot_be_passed_returned_by_value) << 0
2549      << R->getAs<FunctionType>()->getResultType();
2550    D.setInvalidType();
2551  }
2552
2553  bool isVirtualOkay = false;
2554  FunctionDecl *NewFD;
2555
2556  if (isFriend) {
2557    // DC is the namespace in which the function is being declared.
2558    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2559           "friend function being created in a non-namespace context");
2560
2561    // C++ [class.friend]p5
2562    //   A function can be defined in a friend declaration of a
2563    //   class . . . . Such a function is implicitly inline.
2564    isInline |= IsFunctionDefinition;
2565  }
2566
2567  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2568    // This is a C++ constructor declaration.
2569    assert(DC->isRecord() &&
2570           "Constructors can only be declared in a member context");
2571
2572    R = CheckConstructorDeclarator(D, R, SC);
2573
2574    // Create the new declaration
2575    NewFD = CXXConstructorDecl::Create(Context,
2576                                       cast<CXXRecordDecl>(DC),
2577                                       D.getIdentifierLoc(), Name, R, DInfo,
2578                                       isExplicit, isInline,
2579                                       /*isImplicitlyDeclared=*/false);
2580  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2581    // This is a C++ destructor declaration.
2582    if (DC->isRecord()) {
2583      R = CheckDestructorDeclarator(D, SC);
2584
2585      NewFD = CXXDestructorDecl::Create(Context,
2586                                        cast<CXXRecordDecl>(DC),
2587                                        D.getIdentifierLoc(), Name, R,
2588                                        isInline,
2589                                        /*isImplicitlyDeclared=*/false);
2590
2591      isVirtualOkay = true;
2592    } else {
2593      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2594
2595      // Create a FunctionDecl to satisfy the function definition parsing
2596      // code path.
2597      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2598                                   Name, R, DInfo, SC, isInline,
2599                                   /*hasPrototype=*/true);
2600      D.setInvalidType();
2601    }
2602  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2603    if (!DC->isRecord()) {
2604      Diag(D.getIdentifierLoc(),
2605           diag::err_conv_function_not_member);
2606      return 0;
2607    }
2608
2609    CheckConversionDeclarator(D, R, SC);
2610    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2611                                      D.getIdentifierLoc(), Name, R, DInfo,
2612                                      isInline, isExplicit);
2613
2614    isVirtualOkay = true;
2615  } else if (DC->isRecord()) {
2616    // If the of the function is the same as the name of the record, then this
2617    // must be an invalid constructor that has a return type.
2618    // (The parser checks for a return type and makes the declarator a
2619    // constructor if it has no return type).
2620    // must have an invalid constructor that has a return type
2621    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2622      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2623        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2624        << SourceRange(D.getIdentifierLoc());
2625      return 0;
2626    }
2627
2628    bool isStatic = SC == FunctionDecl::Static;
2629
2630    // [class.free]p1:
2631    // Any allocation function for a class T is a static member
2632    // (even if not explicitly declared static).
2633    if (Name.getCXXOverloadedOperator() == OO_New ||
2634        Name.getCXXOverloadedOperator() == OO_Array_New)
2635      isStatic = true;
2636
2637    // [class.free]p6 Any deallocation function for a class X is a static member
2638    // (even if not explicitly declared static).
2639    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2640        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2641      isStatic = true;
2642
2643    // This is a C++ method declaration.
2644    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2645                                  D.getIdentifierLoc(), Name, R, DInfo,
2646                                  isStatic, isInline);
2647
2648    isVirtualOkay = !isStatic;
2649  } else {
2650    // Determine whether the function was written with a
2651    // prototype. This true when:
2652    //   - we're in C++ (where every function has a prototype),
2653    //   - there is a prototype in the declarator, or
2654    //   - the type R of the function is some kind of typedef or other reference
2655    //     to a type name (which eventually refers to a function type).
2656    bool HasPrototype =
2657       getLangOptions().CPlusPlus ||
2658       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2659       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2660
2661    NewFD = FunctionDecl::Create(Context, DC,
2662                                 D.getIdentifierLoc(),
2663                                 Name, R, DInfo, SC, isInline, HasPrototype);
2664  }
2665
2666  if (D.isInvalidType())
2667    NewFD->setInvalidDecl();
2668
2669  // Set the lexical context. If the declarator has a C++
2670  // scope specifier, or is the object of a friend declaration, the
2671  // lexical context will be different from the semantic context.
2672  NewFD->setLexicalDeclContext(CurContext);
2673
2674  // Match up the template parameter lists with the scope specifier, then
2675  // determine whether we have a template or a template specialization.
2676  FunctionTemplateDecl *FunctionTemplate = 0;
2677  bool isExplicitSpecialization = false;
2678  bool isFunctionTemplateSpecialization = false;
2679  if (TemplateParameterList *TemplateParams
2680        = MatchTemplateParametersToScopeSpecifier(
2681                                  D.getDeclSpec().getSourceRange().getBegin(),
2682                                  D.getCXXScopeSpec(),
2683                           (TemplateParameterList**)TemplateParamLists.get(),
2684                                                  TemplateParamLists.size(),
2685                                                  isExplicitSpecialization)) {
2686    if (TemplateParams->size() > 0) {
2687      // This is a function template
2688
2689      // Check that we can declare a template here.
2690      if (CheckTemplateDeclScope(S, TemplateParams))
2691        return 0;
2692
2693      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2694                                                      NewFD->getLocation(),
2695                                                      Name, TemplateParams,
2696                                                      NewFD);
2697      FunctionTemplate->setLexicalDeclContext(CurContext);
2698      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2699    } else {
2700      // This is a function template specialization.
2701      isFunctionTemplateSpecialization = true;
2702    }
2703
2704    // FIXME: Free this memory properly.
2705    TemplateParamLists.release();
2706  }
2707
2708  // C++ [dcl.fct.spec]p5:
2709  //   The virtual specifier shall only be used in declarations of
2710  //   nonstatic class member functions that appear within a
2711  //   member-specification of a class declaration; see 10.3.
2712  //
2713  if (isVirtual && !NewFD->isInvalidDecl()) {
2714    if (!isVirtualOkay) {
2715       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2716           diag::err_virtual_non_function);
2717    } else if (!CurContext->isRecord()) {
2718      // 'virtual' was specified outside of the class.
2719      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2720        << CodeModificationHint::CreateRemoval(
2721                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2722    } else {
2723      // Okay: Add virtual to the method.
2724      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2725      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2726      CurClass->setAggregate(false);
2727      CurClass->setPOD(false);
2728      CurClass->setEmpty(false);
2729      CurClass->setPolymorphic(true);
2730      CurClass->setHasTrivialConstructor(false);
2731      CurClass->setHasTrivialCopyConstructor(false);
2732      CurClass->setHasTrivialCopyAssignment(false);
2733    }
2734  }
2735
2736  if (isFriend) {
2737    if (FunctionTemplate) {
2738      FunctionTemplate->setObjectOfFriendDecl(
2739                                   /* PreviouslyDeclared= */ PrevDecl != NULL);
2740      FunctionTemplate->setAccess(AS_public);
2741    }
2742    else
2743      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2744
2745    NewFD->setAccess(AS_public);
2746  }
2747
2748
2749  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2750    // Look for virtual methods in base classes that this method might override.
2751    CXXBasePaths Paths;
2752    FindOverriddenMethodData Data;
2753    Data.Method = NewMD;
2754    Data.S = this;
2755    if (cast<CXXRecordDecl>(DC)->lookupInBases(&FindOverriddenMethod, &Data,
2756                                                Paths)) {
2757      for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2758           E = Paths.found_decls_end(); I != E; ++I) {
2759        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2760          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2761              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2762            NewMD->addOverriddenMethod(OldMD);
2763        }
2764      }
2765    }
2766  }
2767
2768  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2769      !CurContext->isRecord()) {
2770    // C++ [class.static]p1:
2771    //   A data or function member of a class may be declared static
2772    //   in a class definition, in which case it is a static member of
2773    //   the class.
2774
2775    // Complain about the 'static' specifier if it's on an out-of-line
2776    // member function definition.
2777    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2778         diag::err_static_out_of_line)
2779      << CodeModificationHint::CreateRemoval(
2780                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2781  }
2782
2783  // Handle GNU asm-label extension (encoded as an attribute).
2784  if (Expr *E = (Expr*) D.getAsmLabel()) {
2785    // The parser guarantees this is a string.
2786    StringLiteral *SE = cast<StringLiteral>(E);
2787    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2788                                                        SE->getByteLength())));
2789  }
2790
2791  // Copy the parameter declarations from the declarator D to the function
2792  // declaration NewFD, if they are available.  First scavenge them into Params.
2793  llvm::SmallVector<ParmVarDecl*, 16> Params;
2794  if (D.getNumTypeObjects() > 0) {
2795    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2796
2797    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2798    // function that takes no arguments, not a function that takes a
2799    // single void argument.
2800    // We let through "const void" here because Sema::GetTypeForDeclarator
2801    // already checks for that case.
2802    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2803        FTI.ArgInfo[0].Param &&
2804        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2805      // Empty arg list, don't push any params.
2806      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2807
2808      // In C++, the empty parameter-type-list must be spelled "void"; a
2809      // typedef of void is not permitted.
2810      if (getLangOptions().CPlusPlus &&
2811          Param->getType().getUnqualifiedType() != Context.VoidTy)
2812        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2813      // FIXME: Leaks decl?
2814    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2815      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2816        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2817        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2818        Param->setDeclContext(NewFD);
2819        Params.push_back(Param);
2820      }
2821    }
2822
2823  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2824    // When we're declaring a function with a typedef, typeof, etc as in the
2825    // following example, we'll need to synthesize (unnamed)
2826    // parameters for use in the declaration.
2827    //
2828    // @code
2829    // typedef void fn(int);
2830    // fn f;
2831    // @endcode
2832
2833    // Synthesize a parameter for each argument type.
2834    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2835         AE = FT->arg_type_end(); AI != AE; ++AI) {
2836      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2837                                               SourceLocation(), 0,
2838                                               *AI, /*DInfo=*/0,
2839                                               VarDecl::None, 0);
2840      Param->setImplicit();
2841      Params.push_back(Param);
2842    }
2843  } else {
2844    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2845           "Should not need args for typedef of non-prototype fn");
2846  }
2847  // Finally, we know we have the right number of parameters, install them.
2848  NewFD->setParams(Context, Params.data(), Params.size());
2849
2850  // If name lookup finds a previous declaration that is not in the
2851  // same scope as the new declaration, this may still be an
2852  // acceptable redeclaration.
2853  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2854      !(NewFD->hasLinkage() &&
2855        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2856    PrevDecl = 0;
2857
2858  // If the declarator is a template-id, translate the parser's template
2859  // argument list into our AST format.
2860  bool HasExplicitTemplateArgs = false;
2861  llvm::SmallVector<TemplateArgumentLoc, 16> TemplateArgs;
2862  SourceLocation LAngleLoc, RAngleLoc;
2863  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2864    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2865    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2866                                       TemplateId->getTemplateArgs(),
2867                                       TemplateId->NumArgs);
2868    translateTemplateArguments(TemplateArgsPtr,
2869                               TemplateArgs);
2870    TemplateArgsPtr.release();
2871
2872    HasExplicitTemplateArgs = true;
2873    LAngleLoc = TemplateId->LAngleLoc;
2874    RAngleLoc = TemplateId->RAngleLoc;
2875
2876    if (FunctionTemplate) {
2877      // FIXME: Diagnose function template with explicit template
2878      // arguments.
2879      HasExplicitTemplateArgs = false;
2880    } else if (!isFunctionTemplateSpecialization &&
2881               !D.getDeclSpec().isFriendSpecified()) {
2882      // We have encountered something that the user meant to be a
2883      // specialization (because it has explicitly-specified template
2884      // arguments) but that was not introduced with a "template<>" (or had
2885      // too few of them).
2886      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2887        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2888        << CodeModificationHint::CreateInsertion(
2889                                   D.getDeclSpec().getSourceRange().getBegin(),
2890                                                 "template<> ");
2891      isFunctionTemplateSpecialization = true;
2892    }
2893  }
2894
2895  if (isFunctionTemplateSpecialization) {
2896      if (CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2897                                              LAngleLoc, TemplateArgs.data(),
2898                                              TemplateArgs.size(), RAngleLoc,
2899                                              PrevDecl))
2900        NewFD->setInvalidDecl();
2901  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2902             CheckMemberSpecialization(NewFD, PrevDecl))
2903    NewFD->setInvalidDecl();
2904
2905  // Perform semantic checking on the function declaration.
2906  bool OverloadableAttrRequired = false; // FIXME: HACK!
2907  CheckFunctionDeclaration(NewFD, PrevDecl, isExplicitSpecialization,
2908                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2909
2910  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2911    // An out-of-line member function declaration must also be a
2912    // definition (C++ [dcl.meaning]p1).
2913    // Note that this is not the case for explicit specializations of
2914    // function templates or member functions of class templates, per
2915    // C++ [temp.expl.spec]p2.
2916    if (!IsFunctionDefinition && !isFriend &&
2917        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2918      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2919        << D.getCXXScopeSpec().getRange();
2920      NewFD->setInvalidDecl();
2921    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2922      // The user tried to provide an out-of-line definition for a
2923      // function that is a member of a class or namespace, but there
2924      // was no such member function declared (C++ [class.mfct]p2,
2925      // C++ [namespace.memdef]p2). For example:
2926      //
2927      // class X {
2928      //   void f() const;
2929      // };
2930      //
2931      // void X::f() { } // ill-formed
2932      //
2933      // Complain about this problem, and attempt to suggest close
2934      // matches (e.g., those that differ only in cv-qualifiers and
2935      // whether the parameter types are references).
2936      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2937        << Name << DC << D.getCXXScopeSpec().getRange();
2938      NewFD->setInvalidDecl();
2939
2940      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2941                        ForRedeclaration);
2942      LookupQualifiedName(Prev, DC);
2943      assert(!Prev.isAmbiguous() &&
2944             "Cannot have an ambiguity in previous-declaration lookup");
2945      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2946           Func != FuncEnd; ++Func) {
2947        if (isa<FunctionDecl>(*Func) &&
2948            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2949          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2950      }
2951
2952      PrevDecl = 0;
2953    }
2954  }
2955
2956  // Handle attributes. We need to have merged decls when handling attributes
2957  // (for example to check for conflicts, etc).
2958  // FIXME: This needs to happen before we merge declarations. Then,
2959  // let attribute merging cope with attribute conflicts.
2960  ProcessDeclAttributes(S, NewFD, D);
2961
2962  // attributes declared post-definition are currently ignored
2963  if (Redeclaration && PrevDecl) {
2964    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2965    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2966      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2967      Diag(Def->getLocation(), diag::note_previous_definition);
2968    }
2969  }
2970
2971  AddKnownFunctionAttributes(NewFD);
2972
2973  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2974    // If a function name is overloadable in C, then every function
2975    // with that name must be marked "overloadable".
2976    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2977      << Redeclaration << NewFD;
2978    if (PrevDecl)
2979      Diag(PrevDecl->getLocation(),
2980           diag::note_attribute_overloadable_prev_overload);
2981    NewFD->addAttr(::new (Context) OverloadableAttr());
2982  }
2983
2984  // If this is a locally-scoped extern C function, update the
2985  // map of such names.
2986  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2987      && !NewFD->isInvalidDecl())
2988    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2989
2990  // Set this FunctionDecl's range up to the right paren.
2991  NewFD->setLocEnd(D.getSourceRange().getEnd());
2992
2993  if (FunctionTemplate && NewFD->isInvalidDecl())
2994    FunctionTemplate->setInvalidDecl();
2995
2996  if (FunctionTemplate)
2997    return FunctionTemplate;
2998
2999  return NewFD;
3000}
3001
3002/// \brief Perform semantic checking of a new function declaration.
3003///
3004/// Performs semantic analysis of the new function declaration
3005/// NewFD. This routine performs all semantic checking that does not
3006/// require the actual declarator involved in the declaration, and is
3007/// used both for the declaration of functions as they are parsed
3008/// (called via ActOnDeclarator) and for the declaration of functions
3009/// that have been instantiated via C++ template instantiation (called
3010/// via InstantiateDecl).
3011///
3012/// \param IsExplicitSpecialiation whether this new function declaration is
3013/// an explicit specialization of the previous declaration.
3014///
3015/// This sets NewFD->isInvalidDecl() to true if there was an error.
3016void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
3017                                    bool IsExplicitSpecialization,
3018                                    bool &Redeclaration,
3019                                    bool &OverloadableAttrRequired) {
3020  // If NewFD is already known erroneous, don't do any of this checking.
3021  if (NewFD->isInvalidDecl())
3022    return;
3023
3024  if (NewFD->getResultType()->isVariablyModifiedType()) {
3025    // Functions returning a variably modified type violate C99 6.7.5.2p2
3026    // because all functions have linkage.
3027    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3028    return NewFD->setInvalidDecl();
3029  }
3030
3031  if (NewFD->isMain())
3032    CheckMain(NewFD);
3033
3034  // Check for a previous declaration of this name.
3035  if (!PrevDecl && NewFD->isExternC()) {
3036    // Since we did not find anything by this name and we're declaring
3037    // an extern "C" function, look for a non-visible extern "C"
3038    // declaration with the same name.
3039    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3040      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3041    if (Pos != LocallyScopedExternalDecls.end())
3042      PrevDecl = Pos->second;
3043  }
3044
3045  // Merge or overload the declaration with an existing declaration of
3046  // the same name, if appropriate.
3047  if (PrevDecl) {
3048    // Determine whether NewFD is an overload of PrevDecl or
3049    // a declaration that requires merging. If it's an overload,
3050    // there's no more work to do here; we'll just add the new
3051    // function to the scope.
3052    OverloadedFunctionDecl::function_iterator MatchedDecl;
3053
3054    if (!getLangOptions().CPlusPlus &&
3055        AllowOverloadingOfFunction(PrevDecl, Context)) {
3056      OverloadableAttrRequired = true;
3057
3058      // Functions marked "overloadable" must have a prototype (that
3059      // we can't get through declaration merging).
3060      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3061        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3062          << NewFD;
3063        Redeclaration = true;
3064
3065        // Turn this into a variadic function with no parameters.
3066        QualType R = Context.getFunctionType(
3067                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3068                       0, 0, true, 0);
3069        NewFD->setType(R);
3070        return NewFD->setInvalidDecl();
3071      }
3072    }
3073
3074    if (PrevDecl &&
3075        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3076         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3077      Redeclaration = true;
3078      Decl *OldDecl = PrevDecl;
3079
3080      // If PrevDecl was an overloaded function, extract the
3081      // FunctionDecl that matched.
3082      if (isa<OverloadedFunctionDecl>(PrevDecl))
3083        OldDecl = *MatchedDecl;
3084
3085      // NewFD and OldDecl represent declarations that need to be
3086      // merged.
3087      if (MergeFunctionDecl(NewFD, OldDecl))
3088        return NewFD->setInvalidDecl();
3089
3090      if (FunctionTemplateDecl *OldTemplateDecl
3091                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3092        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3093        FunctionTemplateDecl *NewTemplateDecl
3094          = NewFD->getDescribedFunctionTemplate();
3095        assert(NewTemplateDecl && "Template/non-template mismatch");
3096        if (CXXMethodDecl *Method
3097              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3098          Method->setAccess(OldTemplateDecl->getAccess());
3099          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3100        }
3101
3102        // If this is an explicit specialization of a member that is a function
3103        // template, mark it as a member specialization.
3104        if (IsExplicitSpecialization &&
3105            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3106          NewTemplateDecl->setMemberSpecialization();
3107          assert(OldTemplateDecl->isMemberSpecialization());
3108        }
3109      } else {
3110        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3111          NewFD->setAccess(OldDecl->getAccess());
3112        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3113      }
3114    }
3115  }
3116
3117  // Semantic checking for this function declaration (in isolation).
3118  if (getLangOptions().CPlusPlus) {
3119    // C++-specific checks.
3120    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3121      CheckConstructor(Constructor);
3122    } else if (CXXDestructorDecl *Destructor =
3123                dyn_cast<CXXDestructorDecl>(NewFD)) {
3124      CXXRecordDecl *Record = Destructor->getParent();
3125      QualType ClassType = Context.getTypeDeclType(Record);
3126
3127      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3128      // type is dependent? Both gcc and edg can handle that.
3129      if (!ClassType->isDependentType()) {
3130        DeclarationName Name
3131          = Context.DeclarationNames.getCXXDestructorName(
3132                                        Context.getCanonicalType(ClassType));
3133        if (NewFD->getDeclName() != Name) {
3134          Diag(NewFD->getLocation(), diag::err_destructor_name);
3135          return NewFD->setInvalidDecl();
3136        }
3137
3138        CheckDestructor(Destructor);
3139      }
3140
3141      Record->setUserDeclaredDestructor(true);
3142      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3143      // user-defined destructor.
3144      Record->setPOD(false);
3145
3146      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3147      // declared destructor.
3148      // FIXME: C++0x: don't do this for "= default" destructors
3149      Record->setHasTrivialDestructor(false);
3150    } else if (CXXConversionDecl *Conversion
3151               = dyn_cast<CXXConversionDecl>(NewFD))
3152      ActOnConversionDeclarator(Conversion);
3153
3154    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3155    if (NewFD->isOverloadedOperator() &&
3156        CheckOverloadedOperatorDeclaration(NewFD))
3157      return NewFD->setInvalidDecl();
3158
3159    // In C++, check default arguments now that we have merged decls. Unless
3160    // the lexical context is the class, because in this case this is done
3161    // during delayed parsing anyway.
3162    if (!CurContext->isRecord())
3163      CheckCXXDefaultArguments(NewFD);
3164  }
3165}
3166
3167void Sema::CheckMain(FunctionDecl* FD) {
3168  // C++ [basic.start.main]p3:  A program that declares main to be inline
3169  //   or static is ill-formed.
3170  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3171  //   shall not appear in a declaration of main.
3172  // static main is not an error under C99, but we should warn about it.
3173  bool isInline = FD->isInlineSpecified();
3174  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3175  if (isInline || isStatic) {
3176    unsigned diagID = diag::warn_unusual_main_decl;
3177    if (isInline || getLangOptions().CPlusPlus)
3178      diagID = diag::err_unusual_main_decl;
3179
3180    int which = isStatic + (isInline << 1) - 1;
3181    Diag(FD->getLocation(), diagID) << which;
3182  }
3183
3184  QualType T = FD->getType();
3185  assert(T->isFunctionType() && "function decl is not of function type");
3186  const FunctionType* FT = T->getAs<FunctionType>();
3187
3188  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3189    // TODO: add a replacement fixit to turn the return type into 'int'.
3190    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3191    FD->setInvalidDecl(true);
3192  }
3193
3194  // Treat protoless main() as nullary.
3195  if (isa<FunctionNoProtoType>(FT)) return;
3196
3197  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3198  unsigned nparams = FTP->getNumArgs();
3199  assert(FD->getNumParams() == nparams);
3200
3201  if (nparams > 3) {
3202    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3203    FD->setInvalidDecl(true);
3204    nparams = 3;
3205  }
3206
3207  // FIXME: a lot of the following diagnostics would be improved
3208  // if we had some location information about types.
3209
3210  QualType CharPP =
3211    Context.getPointerType(Context.getPointerType(Context.CharTy));
3212  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3213
3214  for (unsigned i = 0; i < nparams; ++i) {
3215    QualType AT = FTP->getArgType(i);
3216
3217    bool mismatch = true;
3218
3219    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3220      mismatch = false;
3221    else if (Expected[i] == CharPP) {
3222      // As an extension, the following forms are okay:
3223      //   char const **
3224      //   char const * const *
3225      //   char * const *
3226
3227      QualifierCollector qs;
3228      const PointerType* PT;
3229      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3230          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3231          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3232        qs.removeConst();
3233        mismatch = !qs.empty();
3234      }
3235    }
3236
3237    if (mismatch) {
3238      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3239      // TODO: suggest replacing given type with expected type
3240      FD->setInvalidDecl(true);
3241    }
3242  }
3243
3244  if (nparams == 1 && !FD->isInvalidDecl()) {
3245    Diag(FD->getLocation(), diag::warn_main_one_arg);
3246  }
3247}
3248
3249bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3250  // FIXME: Need strict checking.  In C89, we need to check for
3251  // any assignment, increment, decrement, function-calls, or
3252  // commas outside of a sizeof.  In C99, it's the same list,
3253  // except that the aforementioned are allowed in unevaluated
3254  // expressions.  Everything else falls under the
3255  // "may accept other forms of constant expressions" exception.
3256  // (We never end up here for C++, so the constant expression
3257  // rules there don't matter.)
3258  if (Init->isConstantInitializer(Context))
3259    return false;
3260  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3261    << Init->getSourceRange();
3262  return true;
3263}
3264
3265void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3266  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3267}
3268
3269/// AddInitializerToDecl - Adds the initializer Init to the
3270/// declaration dcl. If DirectInit is true, this is C++ direct
3271/// initialization rather than copy initialization.
3272void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3273  Decl *RealDecl = dcl.getAs<Decl>();
3274  // If there is no declaration, there was an error parsing it.  Just ignore
3275  // the initializer.
3276  if (RealDecl == 0)
3277    return;
3278
3279  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3280    // With declarators parsed the way they are, the parser cannot
3281    // distinguish between a normal initializer and a pure-specifier.
3282    // Thus this grotesque test.
3283    IntegerLiteral *IL;
3284    Expr *Init = static_cast<Expr *>(init.get());
3285    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3286        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3287      if (Method->isVirtualAsWritten()) {
3288        Method->setPure();
3289
3290        // A class is abstract if at least one function is pure virtual.
3291        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3292      } else if (!Method->isInvalidDecl()) {
3293        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3294          << Method->getDeclName() << Init->getSourceRange();
3295        Method->setInvalidDecl();
3296      }
3297    } else {
3298      Diag(Method->getLocation(), diag::err_member_function_initialization)
3299        << Method->getDeclName() << Init->getSourceRange();
3300      Method->setInvalidDecl();
3301    }
3302    return;
3303  }
3304
3305  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3306  if (!VDecl) {
3307    if (getLangOptions().CPlusPlus &&
3308        RealDecl->getLexicalDeclContext()->isRecord() &&
3309        isa<NamedDecl>(RealDecl))
3310      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3311        << cast<NamedDecl>(RealDecl)->getDeclName();
3312    else
3313      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3314    RealDecl->setInvalidDecl();
3315    return;
3316  }
3317
3318  // A definition must end up with a complete type, which means it must be
3319  // complete with the restriction that an array type might be completed by the
3320  // initializer; note that later code assumes this restriction.
3321  QualType BaseDeclType = VDecl->getType();
3322  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3323    BaseDeclType = Array->getElementType();
3324  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3325                          diag::err_typecheck_decl_incomplete_type)) {
3326    RealDecl->setInvalidDecl();
3327    return;
3328  }
3329
3330  const VarDecl *Def = 0;
3331  if (VDecl->getDefinition(Def)) {
3332    Diag(VDecl->getLocation(), diag::err_redefinition)
3333      << VDecl->getDeclName();
3334    Diag(Def->getLocation(), diag::note_previous_definition);
3335    VDecl->setInvalidDecl();
3336    return;
3337  }
3338
3339  // Take ownership of the expression, now that we're sure we have somewhere
3340  // to put it.
3341  Expr *Init = init.takeAs<Expr>();
3342  assert(Init && "missing initializer");
3343
3344  // Get the decls type and save a reference for later, since
3345  // CheckInitializerTypes may change it.
3346  QualType DclT = VDecl->getType(), SavT = DclT;
3347  if (VDecl->isBlockVarDecl()) {
3348    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3349      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3350      VDecl->setInvalidDecl();
3351    } else if (!VDecl->isInvalidDecl()) {
3352      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3353                                VDecl->getDeclName(), DirectInit))
3354        VDecl->setInvalidDecl();
3355
3356      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3357      // Don't check invalid declarations to avoid emitting useless diagnostics.
3358      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3359        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3360          CheckForConstantInitializer(Init, DclT);
3361      }
3362    }
3363  } else if (VDecl->isStaticDataMember() &&
3364             VDecl->getLexicalDeclContext()->isRecord()) {
3365    // This is an in-class initialization for a static data member, e.g.,
3366    //
3367    // struct S {
3368    //   static const int value = 17;
3369    // };
3370
3371    // Attach the initializer
3372    VDecl->setInit(Context, Init);
3373
3374    // C++ [class.mem]p4:
3375    //   A member-declarator can contain a constant-initializer only
3376    //   if it declares a static member (9.4) of const integral or
3377    //   const enumeration type, see 9.4.2.
3378    QualType T = VDecl->getType();
3379    if (!T->isDependentType() &&
3380        (!Context.getCanonicalType(T).isConstQualified() ||
3381         !T->isIntegralType())) {
3382      Diag(VDecl->getLocation(), diag::err_member_initialization)
3383        << VDecl->getDeclName() << Init->getSourceRange();
3384      VDecl->setInvalidDecl();
3385    } else {
3386      // C++ [class.static.data]p4:
3387      //   If a static data member is of const integral or const
3388      //   enumeration type, its declaration in the class definition
3389      //   can specify a constant-initializer which shall be an
3390      //   integral constant expression (5.19).
3391      if (!Init->isTypeDependent() &&
3392          !Init->getType()->isIntegralType()) {
3393        // We have a non-dependent, non-integral or enumeration type.
3394        Diag(Init->getSourceRange().getBegin(),
3395             diag::err_in_class_initializer_non_integral_type)
3396          << Init->getType() << Init->getSourceRange();
3397        VDecl->setInvalidDecl();
3398      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3399        // Check whether the expression is a constant expression.
3400        llvm::APSInt Value;
3401        SourceLocation Loc;
3402        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3403          Diag(Loc, diag::err_in_class_initializer_non_constant)
3404            << Init->getSourceRange();
3405          VDecl->setInvalidDecl();
3406        } else if (!VDecl->getType()->isDependentType())
3407          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3408      }
3409    }
3410  } else if (VDecl->isFileVarDecl()) {
3411    if (VDecl->getStorageClass() == VarDecl::Extern)
3412      Diag(VDecl->getLocation(), diag::warn_extern_init);
3413    if (!VDecl->isInvalidDecl())
3414      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3415                                VDecl->getDeclName(), DirectInit))
3416        VDecl->setInvalidDecl();
3417
3418    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3419    // Don't check invalid declarations to avoid emitting useless diagnostics.
3420    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3421      // C99 6.7.8p4. All file scoped initializers need to be constant.
3422      CheckForConstantInitializer(Init, DclT);
3423    }
3424  }
3425  // If the type changed, it means we had an incomplete type that was
3426  // completed by the initializer. For example:
3427  //   int ary[] = { 1, 3, 5 };
3428  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3429  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3430    VDecl->setType(DclT);
3431    Init->setType(DclT);
3432  }
3433
3434  Init = MaybeCreateCXXExprWithTemporaries(Init,
3435                                           /*ShouldDestroyTemporaries=*/true);
3436  // Attach the initializer to the decl.
3437  VDecl->setInit(Context, Init);
3438
3439  // If the previous declaration of VDecl was a tentative definition,
3440  // remove it from the set of tentative definitions.
3441  if (VDecl->getPreviousDeclaration() &&
3442      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3443    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3444    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3445  }
3446
3447  return;
3448}
3449
3450void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3451                                  bool TypeContainsUndeducedAuto) {
3452  Decl *RealDecl = dcl.getAs<Decl>();
3453
3454  // If there is no declaration, there was an error parsing it. Just ignore it.
3455  if (RealDecl == 0)
3456    return;
3457
3458  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3459    QualType Type = Var->getType();
3460
3461    // Record tentative definitions.
3462    if (Var->isTentativeDefinition(Context)) {
3463      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3464        InsertPair =
3465           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3466
3467      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3468      // want the second one in the map.
3469      InsertPair.first->second = Var;
3470
3471      // However, for the list, we don't care about the order, just make sure
3472      // that there are no dupes for a given declaration name.
3473      if (InsertPair.second)
3474        TentativeDefinitionList.push_back(Var->getDeclName());
3475    }
3476
3477    // C++ [dcl.init.ref]p3:
3478    //   The initializer can be omitted for a reference only in a
3479    //   parameter declaration (8.3.5), in the declaration of a
3480    //   function return type, in the declaration of a class member
3481    //   within its class declaration (9.2), and where the extern
3482    //   specifier is explicitly used.
3483    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3484      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3485        << Var->getDeclName()
3486        << SourceRange(Var->getLocation(), Var->getLocation());
3487      Var->setInvalidDecl();
3488      return;
3489    }
3490
3491    // C++0x [dcl.spec.auto]p3
3492    if (TypeContainsUndeducedAuto) {
3493      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3494        << Var->getDeclName() << Type;
3495      Var->setInvalidDecl();
3496      return;
3497    }
3498
3499    // An array without size is an incomplete type, and there are no special
3500    // rules in C++ to make such a definition acceptable.
3501    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3502        !Var->hasExternalStorage()) {
3503      Diag(Var->getLocation(),
3504           diag::err_typecheck_incomplete_array_needs_initializer);
3505      Var->setInvalidDecl();
3506      return;
3507    }
3508
3509    // C++ [temp.expl.spec]p15:
3510    //   An explicit specialization of a static data member of a template is a
3511    //   definition if the declaration includes an initializer; otherwise, it
3512    //   is a declaration.
3513    if (Var->isStaticDataMember() &&
3514        Var->getInstantiatedFromStaticDataMember() &&
3515        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3516      return;
3517
3518    // C++ [dcl.init]p9:
3519    //   If no initializer is specified for an object, and the object
3520    //   is of (possibly cv-qualified) non-POD class type (or array
3521    //   thereof), the object shall be default-initialized; if the
3522    //   object is of const-qualified type, the underlying class type
3523    //   shall have a user-declared default constructor.
3524    //
3525    // FIXME: Diagnose the "user-declared default constructor" bit.
3526    if (getLangOptions().CPlusPlus) {
3527      QualType InitType = Type;
3528      if (const ArrayType *Array = Context.getAsArrayType(Type))
3529        InitType = Context.getBaseElementType(Array);
3530      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3531          InitType->isRecordType() && !InitType->isDependentType()) {
3532        if (!RequireCompleteType(Var->getLocation(), InitType,
3533                                 diag::err_invalid_incomplete_type_use)) {
3534          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3535
3536          CXXConstructorDecl *Constructor
3537            = PerformInitializationByConstructor(InitType,
3538                                                 MultiExprArg(*this, 0, 0),
3539                                                 Var->getLocation(),
3540                                               SourceRange(Var->getLocation(),
3541                                                           Var->getLocation()),
3542                                                 Var->getDeclName(),
3543                                                 IK_Default,
3544                                                 ConstructorArgs);
3545
3546          // FIXME: Location info for the variable initialization?
3547          if (!Constructor)
3548            Var->setInvalidDecl();
3549          else {
3550            // FIXME: Cope with initialization of arrays
3551            if (!Constructor->isTrivial() &&
3552                InitializeVarWithConstructor(Var, Constructor,
3553                                             move_arg(ConstructorArgs)))
3554              Var->setInvalidDecl();
3555
3556            FinalizeVarWithDestructor(Var, InitType);
3557          }
3558        } else {
3559          Var->setInvalidDecl();
3560        }
3561      }
3562    }
3563
3564#if 0
3565    // FIXME: Temporarily disabled because we are not properly parsing
3566    // linkage specifications on declarations, e.g.,
3567    //
3568    //   extern "C" const CGPoint CGPointerZero;
3569    //
3570    // C++ [dcl.init]p9:
3571    //
3572    //     If no initializer is specified for an object, and the
3573    //     object is of (possibly cv-qualified) non-POD class type (or
3574    //     array thereof), the object shall be default-initialized; if
3575    //     the object is of const-qualified type, the underlying class
3576    //     type shall have a user-declared default
3577    //     constructor. Otherwise, if no initializer is specified for
3578    //     an object, the object and its subobjects, if any, have an
3579    //     indeterminate initial value; if the object or any of its
3580    //     subobjects are of const-qualified type, the program is
3581    //     ill-formed.
3582    //
3583    // This isn't technically an error in C, so we don't diagnose it.
3584    //
3585    // FIXME: Actually perform the POD/user-defined default
3586    // constructor check.
3587    if (getLangOptions().CPlusPlus &&
3588        Context.getCanonicalType(Type).isConstQualified() &&
3589        !Var->hasExternalStorage())
3590      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3591        << Var->getName()
3592        << SourceRange(Var->getLocation(), Var->getLocation());
3593#endif
3594  }
3595}
3596
3597Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3598                                                   DeclPtrTy *Group,
3599                                                   unsigned NumDecls) {
3600  llvm::SmallVector<Decl*, 8> Decls;
3601
3602  if (DS.isTypeSpecOwned())
3603    Decls.push_back((Decl*)DS.getTypeRep());
3604
3605  for (unsigned i = 0; i != NumDecls; ++i)
3606    if (Decl *D = Group[i].getAs<Decl>())
3607      Decls.push_back(D);
3608
3609  // Perform semantic analysis that depends on having fully processed both
3610  // the declarator and initializer.
3611  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3612    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3613    if (!IDecl)
3614      continue;
3615    QualType T = IDecl->getType();
3616
3617    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3618    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3619    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3620      if (T->isDependentType()) {
3621        // If T is dependent, we should not require a complete type.
3622        // (RequireCompleteType shouldn't be called with dependent types.)
3623        // But we still can at least check if we've got an array of unspecified
3624        // size without an initializer.
3625        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3626            !IDecl->getInit()) {
3627          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3628            << T;
3629          IDecl->setInvalidDecl();
3630        }
3631      } else if (!IDecl->isInvalidDecl()) {
3632        // If T is an incomplete array type with an initializer list that is
3633        // dependent on something, its size has not been fixed. We could attempt
3634        // to fix the size for such arrays, but we would still have to check
3635        // here for initializers containing a C++0x vararg expansion, e.g.
3636        // template <typename... Args> void f(Args... args) {
3637        //   int vals[] = { args };
3638        // }
3639        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3640        Expr *Init = IDecl->getInit();
3641        if (IAT && Init &&
3642            (Init->isTypeDependent() || Init->isValueDependent())) {
3643          // Check that the member type of the array is complete, at least.
3644          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3645                                  diag::err_typecheck_decl_incomplete_type))
3646            IDecl->setInvalidDecl();
3647        } else if (RequireCompleteType(IDecl->getLocation(), T,
3648                                      diag::err_typecheck_decl_incomplete_type))
3649          IDecl->setInvalidDecl();
3650      }
3651    }
3652    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3653    // object that has file scope without an initializer, and without a
3654    // storage-class specifier or with the storage-class specifier "static",
3655    // constitutes a tentative definition. Note: A tentative definition with
3656    // external linkage is valid (C99 6.2.2p5).
3657    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3658      if (const IncompleteArrayType *ArrayT
3659          = Context.getAsIncompleteArrayType(T)) {
3660        if (RequireCompleteType(IDecl->getLocation(),
3661                                ArrayT->getElementType(),
3662                                diag::err_illegal_decl_array_incomplete_type))
3663          IDecl->setInvalidDecl();
3664      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3665        // C99 6.9.2p3: If the declaration of an identifier for an object is
3666        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3667        // declared type shall not be an incomplete type.
3668        // NOTE: code such as the following
3669        //     static struct s;
3670        //     struct s { int a; };
3671        // is accepted by gcc. Hence here we issue a warning instead of
3672        // an error and we do not invalidate the static declaration.
3673        // NOTE: to avoid multiple warnings, only check the first declaration.
3674        if (IDecl->getPreviousDeclaration() == 0)
3675          RequireCompleteType(IDecl->getLocation(), T,
3676                              diag::ext_typecheck_decl_incomplete_type);
3677      }
3678    }
3679  }
3680  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3681                                                   Decls.data(), Decls.size()));
3682}
3683
3684
3685/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3686/// to introduce parameters into function prototype scope.
3687Sema::DeclPtrTy
3688Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3689  const DeclSpec &DS = D.getDeclSpec();
3690
3691  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3692  VarDecl::StorageClass StorageClass = VarDecl::None;
3693  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3694    StorageClass = VarDecl::Register;
3695  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3696    Diag(DS.getStorageClassSpecLoc(),
3697         diag::err_invalid_storage_class_in_func_decl);
3698    D.getMutableDeclSpec().ClearStorageClassSpecs();
3699  }
3700
3701  if (D.getDeclSpec().isThreadSpecified())
3702    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3703
3704  DiagnoseFunctionSpecifiers(D);
3705
3706  // Check that there are no default arguments inside the type of this
3707  // parameter (C++ only).
3708  if (getLangOptions().CPlusPlus)
3709    CheckExtraCXXDefaultArguments(D);
3710
3711  DeclaratorInfo *DInfo = 0;
3712  TagDecl *OwnedDecl = 0;
3713  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3714
3715  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3716    // C++ [dcl.fct]p6:
3717    //   Types shall not be defined in return or parameter types.
3718    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3719      << Context.getTypeDeclType(OwnedDecl);
3720  }
3721
3722  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3723  // Can this happen for params?  We already checked that they don't conflict
3724  // among each other.  Here they can only shadow globals, which is ok.
3725  IdentifierInfo *II = D.getIdentifier();
3726  if (II) {
3727    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3728      if (PrevDecl->isTemplateParameter()) {
3729        // Maybe we will complain about the shadowed template parameter.
3730        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3731        // Just pretend that we didn't see the previous declaration.
3732        PrevDecl = 0;
3733      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3734        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3735
3736        // Recover by removing the name
3737        II = 0;
3738        D.SetIdentifier(0, D.getIdentifierLoc());
3739      }
3740    }
3741  }
3742
3743  // Parameters can not be abstract class types.
3744  // For record types, this is done by the AbstractClassUsageDiagnoser once
3745  // the class has been completely parsed.
3746  if (!CurContext->isRecord() &&
3747      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3748                             diag::err_abstract_type_in_decl,
3749                             AbstractParamType))
3750    D.setInvalidType(true);
3751
3752  QualType T = adjustParameterType(parmDeclType);
3753
3754  ParmVarDecl *New
3755    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3756                          T, DInfo, StorageClass, 0);
3757
3758  if (D.isInvalidType())
3759    New->setInvalidDecl();
3760
3761  // Parameter declarators cannot be interface types. All ObjC objects are
3762  // passed by reference.
3763  if (T->isObjCInterfaceType()) {
3764    Diag(D.getIdentifierLoc(),
3765         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3766    New->setInvalidDecl();
3767  }
3768
3769  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3770  if (D.getCXXScopeSpec().isSet()) {
3771    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3772      << D.getCXXScopeSpec().getRange();
3773    New->setInvalidDecl();
3774  }
3775
3776  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3777  // duration shall not be qualified by an address-space qualifier."
3778  // Since all parameters have automatic store duration, they can not have
3779  // an address space.
3780  if (T.getAddressSpace() != 0) {
3781    Diag(D.getIdentifierLoc(),
3782         diag::err_arg_with_address_space);
3783    New->setInvalidDecl();
3784  }
3785
3786
3787  // Add the parameter declaration into this scope.
3788  S->AddDecl(DeclPtrTy::make(New));
3789  if (II)
3790    IdResolver.AddDecl(New);
3791
3792  ProcessDeclAttributes(S, New, D);
3793
3794  if (New->hasAttr<BlocksAttr>()) {
3795    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3796  }
3797  return DeclPtrTy::make(New);
3798}
3799
3800void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3801                                           SourceLocation LocAfterDecls) {
3802  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3803         "Not a function declarator!");
3804  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3805
3806  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3807  // for a K&R function.
3808  if (!FTI.hasPrototype) {
3809    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3810      --i;
3811      if (FTI.ArgInfo[i].Param == 0) {
3812        llvm::SmallString<256> Code;
3813        llvm::raw_svector_ostream(Code) << "  int "
3814                                        << FTI.ArgInfo[i].Ident->getName()
3815                                        << ";\n";
3816        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3817          << FTI.ArgInfo[i].Ident
3818          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3819
3820        // Implicitly declare the argument as type 'int' for lack of a better
3821        // type.
3822        DeclSpec DS;
3823        const char* PrevSpec; // unused
3824        unsigned DiagID; // unused
3825        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3826                           PrevSpec, DiagID);
3827        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3828        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3829        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3830      }
3831    }
3832  }
3833}
3834
3835Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3836                                              Declarator &D) {
3837  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3838  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3839         "Not a function declarator!");
3840  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3841
3842  if (FTI.hasPrototype) {
3843    // FIXME: Diagnose arguments without names in C.
3844  }
3845
3846  Scope *ParentScope = FnBodyScope->getParent();
3847
3848  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3849                                  MultiTemplateParamsArg(*this),
3850                                  /*IsFunctionDefinition=*/true);
3851  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3852}
3853
3854Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3855  // Clear the last template instantiation error context.
3856  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3857
3858  if (!D)
3859    return D;
3860  FunctionDecl *FD = 0;
3861
3862  if (FunctionTemplateDecl *FunTmpl
3863        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3864    FD = FunTmpl->getTemplatedDecl();
3865  else
3866    FD = cast<FunctionDecl>(D.getAs<Decl>());
3867
3868  CurFunctionNeedsScopeChecking = false;
3869
3870  // See if this is a redefinition.
3871  const FunctionDecl *Definition;
3872  if (FD->getBody(Definition)) {
3873    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3874    Diag(Definition->getLocation(), diag::note_previous_definition);
3875  }
3876
3877  // Builtin functions cannot be defined.
3878  if (unsigned BuiltinID = FD->getBuiltinID()) {
3879    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3880      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3881      FD->setInvalidDecl();
3882    }
3883  }
3884
3885  // The return type of a function definition must be complete
3886  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3887  QualType ResultType = FD->getResultType();
3888  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3889      !FD->isInvalidDecl() &&
3890      RequireCompleteType(FD->getLocation(), ResultType,
3891                          diag::err_func_def_incomplete_result))
3892    FD->setInvalidDecl();
3893
3894  // GNU warning -Wmissing-prototypes:
3895  //   Warn if a global function is defined without a previous
3896  //   prototype declaration. This warning is issued even if the
3897  //   definition itself provides a prototype. The aim is to detect
3898  //   global functions that fail to be declared in header files.
3899  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3900      !FD->isMain()) {
3901    bool MissingPrototype = true;
3902    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3903         Prev; Prev = Prev->getPreviousDeclaration()) {
3904      // Ignore any declarations that occur in function or method
3905      // scope, because they aren't visible from the header.
3906      if (Prev->getDeclContext()->isFunctionOrMethod())
3907        continue;
3908
3909      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3910      break;
3911    }
3912
3913    if (MissingPrototype)
3914      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3915  }
3916
3917  if (FnBodyScope)
3918    PushDeclContext(FnBodyScope, FD);
3919
3920  // Check the validity of our function parameters
3921  CheckParmsForFunctionDef(FD);
3922
3923  // Introduce our parameters into the function scope
3924  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3925    ParmVarDecl *Param = FD->getParamDecl(p);
3926    Param->setOwningFunction(FD);
3927
3928    // If this has an identifier, add it to the scope stack.
3929    if (Param->getIdentifier() && FnBodyScope)
3930      PushOnScopeChains(Param, FnBodyScope);
3931  }
3932
3933  // Checking attributes of current function definition
3934  // dllimport attribute.
3935  if (FD->getAttr<DLLImportAttr>() &&
3936      (!FD->getAttr<DLLExportAttr>())) {
3937    // dllimport attribute cannot be applied to definition.
3938    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3939      Diag(FD->getLocation(),
3940           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3941        << "dllimport";
3942      FD->setInvalidDecl();
3943      return DeclPtrTy::make(FD);
3944    } else {
3945      // If a symbol previously declared dllimport is later defined, the
3946      // attribute is ignored in subsequent references, and a warning is
3947      // emitted.
3948      Diag(FD->getLocation(),
3949           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3950        << FD->getNameAsCString() << "dllimport";
3951    }
3952  }
3953  return DeclPtrTy::make(FD);
3954}
3955
3956Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3957  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3958}
3959
3960Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3961                                              bool IsInstantiation) {
3962  Decl *dcl = D.getAs<Decl>();
3963  Stmt *Body = BodyArg.takeAs<Stmt>();
3964
3965  FunctionDecl *FD = 0;
3966  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3967  if (FunTmpl)
3968    FD = FunTmpl->getTemplatedDecl();
3969  else
3970    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3971
3972  if (FD) {
3973    FD->setBody(Body);
3974    if (FD->isMain())
3975      // C and C++ allow for main to automagically return 0.
3976      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3977      FD->setHasImplicitReturnZero(true);
3978    else
3979      CheckFallThroughForFunctionDef(FD, Body);
3980
3981    if (!FD->isInvalidDecl())
3982      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3983
3984    // C++ [basic.def.odr]p2:
3985    //   [...] A virtual member function is used if it is not pure. [...]
3986    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3987      if (Method->isVirtual() && !Method->isPure())
3988        MarkDeclarationReferenced(Method->getLocation(), Method);
3989
3990    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3991  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3992    assert(MD == getCurMethodDecl() && "Method parsing confused");
3993    MD->setBody(Body);
3994    CheckFallThroughForFunctionDef(MD, Body);
3995    MD->setEndLoc(Body->getLocEnd());
3996
3997    if (!MD->isInvalidDecl())
3998      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3999  } else {
4000    Body->Destroy(Context);
4001    return DeclPtrTy();
4002  }
4003  if (!IsInstantiation)
4004    PopDeclContext();
4005
4006  // Verify and clean out per-function state.
4007
4008  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4009
4010  // Check goto/label use.
4011  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4012       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4013    LabelStmt *L = I->second;
4014
4015    // Verify that we have no forward references left.  If so, there was a goto
4016    // or address of a label taken, but no definition of it.  Label fwd
4017    // definitions are indicated with a null substmt.
4018    if (L->getSubStmt() != 0)
4019      continue;
4020
4021    // Emit error.
4022    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4023
4024    // At this point, we have gotos that use the bogus label.  Stitch it into
4025    // the function body so that they aren't leaked and that the AST is well
4026    // formed.
4027    if (Body == 0) {
4028      // The whole function wasn't parsed correctly, just delete this.
4029      L->Destroy(Context);
4030      continue;
4031    }
4032
4033    // Otherwise, the body is valid: we want to stitch the label decl into the
4034    // function somewhere so that it is properly owned and so that the goto
4035    // has a valid target.  Do this by creating a new compound stmt with the
4036    // label in it.
4037
4038    // Give the label a sub-statement.
4039    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4040
4041    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4042                               cast<CXXTryStmt>(Body)->getTryBlock() :
4043                               cast<CompoundStmt>(Body);
4044    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4045    Elements.push_back(L);
4046    Compound->setStmts(Context, &Elements[0], Elements.size());
4047  }
4048  FunctionLabelMap.clear();
4049
4050  if (!Body) return D;
4051
4052  // Verify that that gotos and switch cases don't jump into scopes illegally.
4053  if (CurFunctionNeedsScopeChecking)
4054    DiagnoseInvalidJumps(Body);
4055
4056  // C++ constructors that have function-try-blocks can't have return
4057  // statements in the handlers of that block. (C++ [except.handle]p14)
4058  // Verify this.
4059  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4060    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4061
4062  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4063    MarkBaseAndMemberDestructorsReferenced(Destructor);
4064
4065  // If any errors have occurred, clear out any temporaries that may have
4066  // been leftover. This ensures that these temporaries won't be picked up for
4067  // deletion in some later function.
4068  if (PP.getDiagnostics().hasErrorOccurred())
4069    ExprTemporaries.clear();
4070
4071  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4072  return D;
4073}
4074
4075/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4076/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4077NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4078                                          IdentifierInfo &II, Scope *S) {
4079  // Before we produce a declaration for an implicitly defined
4080  // function, see whether there was a locally-scoped declaration of
4081  // this name as a function or variable. If so, use that
4082  // (non-visible) declaration, and complain about it.
4083  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4084    = LocallyScopedExternalDecls.find(&II);
4085  if (Pos != LocallyScopedExternalDecls.end()) {
4086    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4087    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4088    return Pos->second;
4089  }
4090
4091  // Extension in C99.  Legal in C90, but warn about it.
4092  if (II.getName().startswith("__builtin_"))
4093    Diag(Loc, diag::warn_builtin_unknown) << &II;
4094  else if (getLangOptions().C99)
4095    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4096  else
4097    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4098
4099  // Set a Declarator for the implicit definition: int foo();
4100  const char *Dummy;
4101  DeclSpec DS;
4102  unsigned DiagID;
4103  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4104  Error = Error; // Silence warning.
4105  assert(!Error && "Error setting up implicit decl!");
4106  Declarator D(DS, Declarator::BlockContext);
4107  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4108                                             0, 0, false, SourceLocation(),
4109                                             false, 0,0,0, Loc, Loc, D),
4110                SourceLocation());
4111  D.SetIdentifier(&II, Loc);
4112
4113  // Insert this function into translation-unit scope.
4114
4115  DeclContext *PrevDC = CurContext;
4116  CurContext = Context.getTranslationUnitDecl();
4117
4118  FunctionDecl *FD =
4119 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4120  FD->setImplicit();
4121
4122  CurContext = PrevDC;
4123
4124  AddKnownFunctionAttributes(FD);
4125
4126  return FD;
4127}
4128
4129/// \brief Adds any function attributes that we know a priori based on
4130/// the declaration of this function.
4131///
4132/// These attributes can apply both to implicitly-declared builtins
4133/// (like __builtin___printf_chk) or to library-declared functions
4134/// like NSLog or printf.
4135void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4136  if (FD->isInvalidDecl())
4137    return;
4138
4139  // If this is a built-in function, map its builtin attributes to
4140  // actual attributes.
4141  if (unsigned BuiltinID = FD->getBuiltinID()) {
4142    // Handle printf-formatting attributes.
4143    unsigned FormatIdx;
4144    bool HasVAListArg;
4145    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4146      if (!FD->getAttr<FormatAttr>())
4147        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4148                                             HasVAListArg ? 0 : FormatIdx + 2));
4149    }
4150
4151    // Mark const if we don't care about errno and that is the only
4152    // thing preventing the function from being const. This allows
4153    // IRgen to use LLVM intrinsics for such functions.
4154    if (!getLangOptions().MathErrno &&
4155        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4156      if (!FD->getAttr<ConstAttr>())
4157        FD->addAttr(::new (Context) ConstAttr());
4158    }
4159
4160    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4161      FD->addAttr(::new (Context) NoReturnAttr());
4162  }
4163
4164  IdentifierInfo *Name = FD->getIdentifier();
4165  if (!Name)
4166    return;
4167  if ((!getLangOptions().CPlusPlus &&
4168       FD->getDeclContext()->isTranslationUnit()) ||
4169      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4170       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4171       LinkageSpecDecl::lang_c)) {
4172    // Okay: this could be a libc/libm/Objective-C function we know
4173    // about.
4174  } else
4175    return;
4176
4177  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4178    // FIXME: NSLog and NSLogv should be target specific
4179    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4180      // FIXME: We known better than our headers.
4181      const_cast<FormatAttr *>(Format)->setType("printf");
4182    } else
4183      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4184                                             Name->isStr("NSLogv") ? 0 : 2));
4185  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4186    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4187    // target-specific builtins, perhaps?
4188    if (!FD->getAttr<FormatAttr>())
4189      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4190                                             Name->isStr("vasprintf") ? 0 : 3));
4191  }
4192}
4193
4194TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4195                                    DeclaratorInfo *DInfo) {
4196  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4197  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4198
4199  if (!DInfo) {
4200    assert(D.isInvalidType() && "no declarator info for valid type");
4201    DInfo = Context.getTrivialDeclaratorInfo(T);
4202  }
4203
4204  // Scope manipulation handled by caller.
4205  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4206                                           D.getIdentifierLoc(),
4207                                           D.getIdentifier(),
4208                                           DInfo);
4209
4210  if (const TagType *TT = T->getAs<TagType>()) {
4211    TagDecl *TD = TT->getDecl();
4212
4213    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4214    // keep track of the TypedefDecl.
4215    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4216      TD->setTypedefForAnonDecl(NewTD);
4217  }
4218
4219  if (D.isInvalidType())
4220    NewTD->setInvalidDecl();
4221  return NewTD;
4222}
4223
4224
4225/// \brief Determine whether a tag with a given kind is acceptable
4226/// as a redeclaration of the given tag declaration.
4227///
4228/// \returns true if the new tag kind is acceptable, false otherwise.
4229bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4230                                        TagDecl::TagKind NewTag,
4231                                        SourceLocation NewTagLoc,
4232                                        const IdentifierInfo &Name) {
4233  // C++ [dcl.type.elab]p3:
4234  //   The class-key or enum keyword present in the
4235  //   elaborated-type-specifier shall agree in kind with the
4236  //   declaration to which the name in theelaborated-type-specifier
4237  //   refers. This rule also applies to the form of
4238  //   elaborated-type-specifier that declares a class-name or
4239  //   friend class since it can be construed as referring to the
4240  //   definition of the class. Thus, in any
4241  //   elaborated-type-specifier, the enum keyword shall be used to
4242  //   refer to an enumeration (7.2), the union class-keyshall be
4243  //   used to refer to a union (clause 9), and either the class or
4244  //   struct class-key shall be used to refer to a class (clause 9)
4245  //   declared using the class or struct class-key.
4246  TagDecl::TagKind OldTag = Previous->getTagKind();
4247  if (OldTag == NewTag)
4248    return true;
4249
4250  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4251      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4252    // Warn about the struct/class tag mismatch.
4253    bool isTemplate = false;
4254    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4255      isTemplate = Record->getDescribedClassTemplate();
4256
4257    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4258      << (NewTag == TagDecl::TK_class)
4259      << isTemplate << &Name
4260      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4261                              OldTag == TagDecl::TK_class? "class" : "struct");
4262    Diag(Previous->getLocation(), diag::note_previous_use);
4263    return true;
4264  }
4265  return false;
4266}
4267
4268/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4269/// former case, Name will be non-null.  In the later case, Name will be null.
4270/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4271/// reference/declaration/definition of a tag.
4272Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4273                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4274                               IdentifierInfo *Name, SourceLocation NameLoc,
4275                               AttributeList *Attr, AccessSpecifier AS,
4276                               MultiTemplateParamsArg TemplateParameterLists,
4277                               bool &OwnedDecl, bool &IsDependent) {
4278  // If this is not a definition, it must have a name.
4279  assert((Name != 0 || TUK == TUK_Definition) &&
4280         "Nameless record must be a definition!");
4281
4282  OwnedDecl = false;
4283  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4284
4285  // FIXME: Check explicit specializations more carefully.
4286  bool isExplicitSpecialization = false;
4287  if (TUK != TUK_Reference) {
4288    if (TemplateParameterList *TemplateParams
4289          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4290                        (TemplateParameterList**)TemplateParameterLists.get(),
4291                                              TemplateParameterLists.size(),
4292                                                    isExplicitSpecialization)) {
4293      if (TemplateParams->size() > 0) {
4294        // This is a declaration or definition of a class template (which may
4295        // be a member of another template).
4296        OwnedDecl = false;
4297        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4298                                               SS, Name, NameLoc, Attr,
4299                                               TemplateParams,
4300                                               AS);
4301        TemplateParameterLists.release();
4302        return Result.get();
4303      } else {
4304        // The "template<>" header is extraneous.
4305        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4306          << ElaboratedType::getNameForTagKind(Kind) << Name;
4307        isExplicitSpecialization = true;
4308      }
4309    }
4310
4311    TemplateParameterLists.release();
4312  }
4313
4314  DeclContext *SearchDC = CurContext;
4315  DeclContext *DC = CurContext;
4316  NamedDecl *PrevDecl = 0;
4317  bool isStdBadAlloc = false;
4318  bool Invalid = false;
4319
4320  RedeclarationKind Redecl = (RedeclarationKind) (TUK != TUK_Reference);
4321
4322  if (Name && SS.isNotEmpty()) {
4323    // We have a nested-name tag ('struct foo::bar').
4324
4325    // Check for invalid 'foo::'.
4326    if (SS.isInvalid()) {
4327      Name = 0;
4328      goto CreateNewDecl;
4329    }
4330
4331    // If this is a friend or a reference to a class in a dependent
4332    // context, don't try to make a decl for it.
4333    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4334      DC = computeDeclContext(SS, false);
4335      if (!DC) {
4336        IsDependent = true;
4337        return DeclPtrTy();
4338      }
4339    }
4340
4341    if (RequireCompleteDeclContext(SS))
4342      return DeclPtrTy::make((Decl *)0);
4343
4344    DC = computeDeclContext(SS, true);
4345    SearchDC = DC;
4346    // Look-up name inside 'foo::'.
4347    LookupResult R(*this, Name, NameLoc, LookupTagName, Redecl);
4348    LookupQualifiedName(R, DC);
4349
4350    if (R.isAmbiguous())
4351      return DeclPtrTy();
4352
4353    if (R.getResultKind() == LookupResult::Found)
4354      PrevDecl = dyn_cast<TagDecl>(R.getFoundDecl());
4355
4356    // A tag 'foo::bar' must already exist.
4357    if (!PrevDecl) {
4358      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4359      Name = 0;
4360      Invalid = true;
4361      goto CreateNewDecl;
4362    }
4363  } else if (Name) {
4364    // If this is a named struct, check to see if there was a previous forward
4365    // declaration or definition.
4366    // FIXME: We're looking into outer scopes here, even when we
4367    // shouldn't be. Doing so can result in ambiguities that we
4368    // shouldn't be diagnosing.
4369    LookupResult R(*this, Name, NameLoc, LookupTagName, Redecl);
4370    LookupName(R, S);
4371    if (R.isAmbiguous()) {
4372      // FIXME: This is not best way to recover from case like:
4373      //
4374      // struct S s;
4375      //
4376      // causes needless "incomplete type" error later.
4377      Name = 0;
4378      PrevDecl = 0;
4379      Invalid = true;
4380    } else
4381      PrevDecl = R.getAsSingleDecl(Context);
4382
4383    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4384      // FIXME: This makes sure that we ignore the contexts associated
4385      // with C structs, unions, and enums when looking for a matching
4386      // tag declaration or definition. See the similar lookup tweak
4387      // in Sema::LookupName; is there a better way to deal with this?
4388      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4389        SearchDC = SearchDC->getParent();
4390    }
4391  }
4392
4393  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4394    // Maybe we will complain about the shadowed template parameter.
4395    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4396    // Just pretend that we didn't see the previous declaration.
4397    PrevDecl = 0;
4398  }
4399
4400  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4401      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4402    // This is a declaration of or a reference to "std::bad_alloc".
4403    isStdBadAlloc = true;
4404
4405    if (!PrevDecl && StdBadAlloc) {
4406      // std::bad_alloc has been implicitly declared (but made invisible to
4407      // name lookup). Fill in this implicit declaration as the previous
4408      // declaration, so that the declarations get chained appropriately.
4409      PrevDecl = StdBadAlloc;
4410    }
4411  }
4412
4413  if (PrevDecl) {
4414    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4415      // If this is a use of a previous tag, or if the tag is already declared
4416      // in the same scope (so that the definition/declaration completes or
4417      // rementions the tag), reuse the decl.
4418      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4419          isDeclInScope(PrevDecl, SearchDC, S)) {
4420        // Make sure that this wasn't declared as an enum and now used as a
4421        // struct or something similar.
4422        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4423          bool SafeToContinue
4424            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4425               Kind != TagDecl::TK_enum);
4426          if (SafeToContinue)
4427            Diag(KWLoc, diag::err_use_with_wrong_tag)
4428              << Name
4429              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4430                                                  PrevTagDecl->getKindName());
4431          else
4432            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4433          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4434
4435          if (SafeToContinue)
4436            Kind = PrevTagDecl->getTagKind();
4437          else {
4438            // Recover by making this an anonymous redefinition.
4439            Name = 0;
4440            PrevDecl = 0;
4441            Invalid = true;
4442          }
4443        }
4444
4445        if (!Invalid) {
4446          // If this is a use, just return the declaration we found.
4447
4448          // FIXME: In the future, return a variant or some other clue
4449          // for the consumer of this Decl to know it doesn't own it.
4450          // For our current ASTs this shouldn't be a problem, but will
4451          // need to be changed with DeclGroups.
4452          if (TUK == TUK_Reference || TUK == TUK_Friend)
4453            return DeclPtrTy::make(PrevDecl);
4454
4455          // Diagnose attempts to redefine a tag.
4456          if (TUK == TUK_Definition) {
4457            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4458              // If we're defining a specialization and the previous definition
4459              // is from an implicit instantiation, don't emit an error
4460              // here; we'll catch this in the general case below.
4461              if (!isExplicitSpecialization ||
4462                  !isa<CXXRecordDecl>(Def) ||
4463                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4464                                               == TSK_ExplicitSpecialization) {
4465                Diag(NameLoc, diag::err_redefinition) << Name;
4466                Diag(Def->getLocation(), diag::note_previous_definition);
4467                // If this is a redefinition, recover by making this
4468                // struct be anonymous, which will make any later
4469                // references get the previous definition.
4470                Name = 0;
4471                PrevDecl = 0;
4472                Invalid = true;
4473              }
4474            } else {
4475              // If the type is currently being defined, complain
4476              // about a nested redefinition.
4477              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4478              if (Tag->isBeingDefined()) {
4479                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4480                Diag(PrevTagDecl->getLocation(),
4481                     diag::note_previous_definition);
4482                Name = 0;
4483                PrevDecl = 0;
4484                Invalid = true;
4485              }
4486            }
4487
4488            // Okay, this is definition of a previously declared or referenced
4489            // tag PrevDecl. We're going to create a new Decl for it.
4490          }
4491        }
4492        // If we get here we have (another) forward declaration or we
4493        // have a definition.  Just create a new decl.
4494
4495      } else {
4496        // If we get here, this is a definition of a new tag type in a nested
4497        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4498        // new decl/type.  We set PrevDecl to NULL so that the entities
4499        // have distinct types.
4500        PrevDecl = 0;
4501      }
4502      // If we get here, we're going to create a new Decl. If PrevDecl
4503      // is non-NULL, it's a definition of the tag declared by
4504      // PrevDecl. If it's NULL, we have a new definition.
4505    } else {
4506      // PrevDecl is a namespace, template, or anything else
4507      // that lives in the IDNS_Tag identifier namespace.
4508      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4509        // The tag name clashes with a namespace name, issue an error and
4510        // recover by making this tag be anonymous.
4511        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4512        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4513        Name = 0;
4514        PrevDecl = 0;
4515        Invalid = true;
4516      } else {
4517        // The existing declaration isn't relevant to us; we're in a
4518        // new scope, so clear out the previous declaration.
4519        PrevDecl = 0;
4520      }
4521    }
4522  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4523             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4524    // C++ [basic.scope.pdecl]p5:
4525    //   -- for an elaborated-type-specifier of the form
4526    //
4527    //          class-key identifier
4528    //
4529    //      if the elaborated-type-specifier is used in the
4530    //      decl-specifier-seq or parameter-declaration-clause of a
4531    //      function defined in namespace scope, the identifier is
4532    //      declared as a class-name in the namespace that contains
4533    //      the declaration; otherwise, except as a friend
4534    //      declaration, the identifier is declared in the smallest
4535    //      non-class, non-function-prototype scope that contains the
4536    //      declaration.
4537    //
4538    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4539    // C structs and unions.
4540    //
4541    // GNU C also supports this behavior as part of its incomplete
4542    // enum types extension, while GNU C++ does not.
4543    //
4544    // Find the context where we'll be declaring the tag.
4545    // FIXME: We would like to maintain the current DeclContext as the
4546    // lexical context,
4547    while (SearchDC->isRecord())
4548      SearchDC = SearchDC->getParent();
4549
4550    // Find the scope where we'll be declaring the tag.
4551    while (S->isClassScope() ||
4552           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4553           ((S->getFlags() & Scope::DeclScope) == 0) ||
4554           (S->getEntity() &&
4555            ((DeclContext *)S->getEntity())->isTransparentContext()))
4556      S = S->getParent();
4557
4558  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4559    // C++ [namespace.memdef]p3:
4560    //   If a friend declaration in a non-local class first declares a
4561    //   class or function, the friend class or function is a member of
4562    //   the innermost enclosing namespace.
4563    while (!SearchDC->isFileContext())
4564      SearchDC = SearchDC->getParent();
4565
4566    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4567    while (S->getEntity() != SearchDC)
4568      S = S->getParent();
4569  }
4570
4571CreateNewDecl:
4572
4573  // If there is an identifier, use the location of the identifier as the
4574  // location of the decl, otherwise use the location of the struct/union
4575  // keyword.
4576  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4577
4578  // Otherwise, create a new declaration. If there is a previous
4579  // declaration of the same entity, the two will be linked via
4580  // PrevDecl.
4581  TagDecl *New;
4582
4583  if (Kind == TagDecl::TK_enum) {
4584    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4585    // enum X { A, B, C } D;    D should chain to X.
4586    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4587                           cast_or_null<EnumDecl>(PrevDecl));
4588    // If this is an undefined enum, warn.
4589    if (TUK != TUK_Definition && !Invalid)  {
4590      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4591                                              : diag::ext_forward_ref_enum;
4592      Diag(Loc, DK);
4593    }
4594  } else {
4595    // struct/union/class
4596
4597    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4598    // struct X { int A; } D;    D should chain to X.
4599    if (getLangOptions().CPlusPlus) {
4600      // FIXME: Look for a way to use RecordDecl for simple structs.
4601      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4602                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4603
4604      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4605        StdBadAlloc = cast<CXXRecordDecl>(New);
4606    } else
4607      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4608                               cast_or_null<RecordDecl>(PrevDecl));
4609  }
4610
4611  if (Kind != TagDecl::TK_enum) {
4612    // Handle #pragma pack: if the #pragma pack stack has non-default
4613    // alignment, make up a packed attribute for this decl. These
4614    // attributes are checked when the ASTContext lays out the
4615    // structure.
4616    //
4617    // It is important for implementing the correct semantics that this
4618    // happen here (in act on tag decl). The #pragma pack stack is
4619    // maintained as a result of parser callbacks which can occur at
4620    // many points during the parsing of a struct declaration (because
4621    // the #pragma tokens are effectively skipped over during the
4622    // parsing of the struct).
4623    if (unsigned Alignment = getPragmaPackAlignment())
4624      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4625  }
4626
4627  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4628    // C++ [dcl.typedef]p3:
4629    //   [...] Similarly, in a given scope, a class or enumeration
4630    //   shall not be declared with the same name as a typedef-name
4631    //   that is declared in that scope and refers to a type other
4632    //   than the class or enumeration itself.
4633    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4634                        ForRedeclaration);
4635    LookupName(Lookup, S);
4636    TypedefDecl *PrevTypedef = 0;
4637    if (NamedDecl *Prev = Lookup.getAsSingleDecl(Context))
4638      PrevTypedef = dyn_cast<TypedefDecl>(Prev);
4639
4640    NamedDecl *PrevTypedefNamed = PrevTypedef;
4641    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4642        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4643          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4644      Diag(Loc, diag::err_tag_definition_of_typedef)
4645        << Context.getTypeDeclType(New)
4646        << PrevTypedef->getUnderlyingType();
4647      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4648      Invalid = true;
4649    }
4650  }
4651
4652  // If this is a specialization of a member class (of a class template),
4653  // check the specialization.
4654  if (isExplicitSpecialization && CheckMemberSpecialization(New, PrevDecl))
4655    Invalid = true;
4656
4657  if (Invalid)
4658    New->setInvalidDecl();
4659
4660  if (Attr)
4661    ProcessDeclAttributeList(S, New, Attr);
4662
4663  // If we're declaring or defining a tag in function prototype scope
4664  // in C, note that this type can only be used within the function.
4665  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4666    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4667
4668  // Set the lexical context. If the tag has a C++ scope specifier, the
4669  // lexical context will be different from the semantic context.
4670  New->setLexicalDeclContext(CurContext);
4671
4672  // Mark this as a friend decl if applicable.
4673  if (TUK == TUK_Friend)
4674    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4675
4676  // Set the access specifier.
4677  if (!Invalid && TUK != TUK_Friend)
4678    SetMemberAccessSpecifier(New, PrevDecl, AS);
4679
4680  if (TUK == TUK_Definition)
4681    New->startDefinition();
4682
4683  // If this has an identifier, add it to the scope stack.
4684  if (TUK == TUK_Friend) {
4685    // We might be replacing an existing declaration in the lookup tables;
4686    // if so, borrow its access specifier.
4687    if (PrevDecl)
4688      New->setAccess(PrevDecl->getAccess());
4689
4690    // Friend tag decls are visible in fairly strange ways.
4691    if (!CurContext->isDependentContext()) {
4692      DeclContext *DC = New->getDeclContext()->getLookupContext();
4693      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4694      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4695        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4696    }
4697  } else if (Name) {
4698    S = getNonFieldDeclScope(S);
4699    PushOnScopeChains(New, S);
4700  } else {
4701    CurContext->addDecl(New);
4702  }
4703
4704  // If this is the C FILE type, notify the AST context.
4705  if (IdentifierInfo *II = New->getIdentifier())
4706    if (!New->isInvalidDecl() &&
4707        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4708        II->isStr("FILE"))
4709      Context.setFILEDecl(New);
4710
4711  OwnedDecl = true;
4712  return DeclPtrTy::make(New);
4713}
4714
4715void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4716  AdjustDeclIfTemplate(TagD);
4717  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4718
4719  // Enter the tag context.
4720  PushDeclContext(S, Tag);
4721
4722  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4723    FieldCollector->StartClass();
4724
4725    if (Record->getIdentifier()) {
4726      // C++ [class]p2:
4727      //   [...] The class-name is also inserted into the scope of the
4728      //   class itself; this is known as the injected-class-name. For
4729      //   purposes of access checking, the injected-class-name is treated
4730      //   as if it were a public member name.
4731      CXXRecordDecl *InjectedClassName
4732        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4733                                CurContext, Record->getLocation(),
4734                                Record->getIdentifier(),
4735                                Record->getTagKeywordLoc(),
4736                                Record);
4737      InjectedClassName->setImplicit();
4738      InjectedClassName->setAccess(AS_public);
4739      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4740        InjectedClassName->setDescribedClassTemplate(Template);
4741      PushOnScopeChains(InjectedClassName, S);
4742      assert(InjectedClassName->isInjectedClassName() &&
4743             "Broken injected-class-name");
4744    }
4745  }
4746}
4747
4748void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4749                                    SourceLocation RBraceLoc) {
4750  AdjustDeclIfTemplate(TagD);
4751  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4752  Tag->setRBraceLoc(RBraceLoc);
4753
4754  if (isa<CXXRecordDecl>(Tag))
4755    FieldCollector->FinishClass();
4756
4757  // Exit this scope of this tag's definition.
4758  PopDeclContext();
4759
4760  // Notify the consumer that we've defined a tag.
4761  Consumer.HandleTagDeclDefinition(Tag);
4762}
4763
4764// Note that FieldName may be null for anonymous bitfields.
4765bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4766                          QualType FieldTy, const Expr *BitWidth,
4767                          bool *ZeroWidth) {
4768  // Default to true; that shouldn't confuse checks for emptiness
4769  if (ZeroWidth)
4770    *ZeroWidth = true;
4771
4772  // C99 6.7.2.1p4 - verify the field type.
4773  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4774  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4775    // Handle incomplete types with specific error.
4776    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4777      return true;
4778    if (FieldName)
4779      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4780        << FieldName << FieldTy << BitWidth->getSourceRange();
4781    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4782      << FieldTy << BitWidth->getSourceRange();
4783  }
4784
4785  // If the bit-width is type- or value-dependent, don't try to check
4786  // it now.
4787  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4788    return false;
4789
4790  llvm::APSInt Value;
4791  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4792    return true;
4793
4794  if (Value != 0 && ZeroWidth)
4795    *ZeroWidth = false;
4796
4797  // Zero-width bitfield is ok for anonymous field.
4798  if (Value == 0 && FieldName)
4799    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4800
4801  if (Value.isSigned() && Value.isNegative()) {
4802    if (FieldName)
4803      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4804               << FieldName << Value.toString(10);
4805    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4806      << Value.toString(10);
4807  }
4808
4809  if (!FieldTy->isDependentType()) {
4810    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4811    if (Value.getZExtValue() > TypeSize) {
4812      if (FieldName)
4813        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4814          << FieldName << (unsigned)TypeSize;
4815      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4816        << (unsigned)TypeSize;
4817    }
4818  }
4819
4820  return false;
4821}
4822
4823/// ActOnField - Each field of a struct/union/class is passed into this in order
4824/// to create a FieldDecl object for it.
4825Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4826                                 SourceLocation DeclStart,
4827                                 Declarator &D, ExprTy *BitfieldWidth) {
4828  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4829                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4830                               AS_public);
4831  return DeclPtrTy::make(Res);
4832}
4833
4834/// HandleField - Analyze a field of a C struct or a C++ data member.
4835///
4836FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4837                             SourceLocation DeclStart,
4838                             Declarator &D, Expr *BitWidth,
4839                             AccessSpecifier AS) {
4840  IdentifierInfo *II = D.getIdentifier();
4841  SourceLocation Loc = DeclStart;
4842  if (II) Loc = D.getIdentifierLoc();
4843
4844  DeclaratorInfo *DInfo = 0;
4845  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4846  if (getLangOptions().CPlusPlus)
4847    CheckExtraCXXDefaultArguments(D);
4848
4849  DiagnoseFunctionSpecifiers(D);
4850
4851  if (D.getDeclSpec().isThreadSpecified())
4852    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4853
4854  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4855                                         ForRedeclaration);
4856
4857  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4858    // Maybe we will complain about the shadowed template parameter.
4859    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4860    // Just pretend that we didn't see the previous declaration.
4861    PrevDecl = 0;
4862  }
4863
4864  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4865    PrevDecl = 0;
4866
4867  bool Mutable
4868    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4869  SourceLocation TSSL = D.getSourceRange().getBegin();
4870  FieldDecl *NewFD
4871    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4872                     AS, PrevDecl, &D);
4873  if (NewFD->isInvalidDecl() && PrevDecl) {
4874    // Don't introduce NewFD into scope; there's already something
4875    // with the same name in the same scope.
4876  } else if (II) {
4877    PushOnScopeChains(NewFD, S);
4878  } else
4879    Record->addDecl(NewFD);
4880
4881  return NewFD;
4882}
4883
4884/// \brief Build a new FieldDecl and check its well-formedness.
4885///
4886/// This routine builds a new FieldDecl given the fields name, type,
4887/// record, etc. \p PrevDecl should refer to any previous declaration
4888/// with the same name and in the same scope as the field to be
4889/// created.
4890///
4891/// \returns a new FieldDecl.
4892///
4893/// \todo The Declarator argument is a hack. It will be removed once
4894FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4895                                DeclaratorInfo *DInfo,
4896                                RecordDecl *Record, SourceLocation Loc,
4897                                bool Mutable, Expr *BitWidth,
4898                                SourceLocation TSSL,
4899                                AccessSpecifier AS, NamedDecl *PrevDecl,
4900                                Declarator *D) {
4901  IdentifierInfo *II = Name.getAsIdentifierInfo();
4902  bool InvalidDecl = false;
4903  if (D) InvalidDecl = D->isInvalidType();
4904
4905  // If we receive a broken type, recover by assuming 'int' and
4906  // marking this declaration as invalid.
4907  if (T.isNull()) {
4908    InvalidDecl = true;
4909    T = Context.IntTy;
4910  }
4911
4912  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4913  // than a variably modified type.
4914  if (T->isVariablyModifiedType()) {
4915    bool SizeIsNegative;
4916    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4917                                                           SizeIsNegative);
4918    if (!FixedTy.isNull()) {
4919      Diag(Loc, diag::warn_illegal_constant_array_size);
4920      T = FixedTy;
4921    } else {
4922      if (SizeIsNegative)
4923        Diag(Loc, diag::err_typecheck_negative_array_size);
4924      else
4925        Diag(Loc, diag::err_typecheck_field_variable_size);
4926      InvalidDecl = true;
4927    }
4928  }
4929
4930  // Fields can not have abstract class types
4931  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4932                             AbstractFieldType))
4933    InvalidDecl = true;
4934
4935  bool ZeroWidth = false;
4936  // If this is declared as a bit-field, check the bit-field.
4937  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4938    InvalidDecl = true;
4939    DeleteExpr(BitWidth);
4940    BitWidth = 0;
4941    ZeroWidth = false;
4942  }
4943
4944  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4945                                       BitWidth, Mutable);
4946  if (InvalidDecl)
4947    NewFD->setInvalidDecl();
4948
4949  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4950    Diag(Loc, diag::err_duplicate_member) << II;
4951    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4952    NewFD->setInvalidDecl();
4953  }
4954
4955  if (getLangOptions().CPlusPlus) {
4956    QualType EltTy = Context.getBaseElementType(T);
4957
4958    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4959
4960    if (!T->isPODType())
4961      CXXRecord->setPOD(false);
4962    if (!ZeroWidth)
4963      CXXRecord->setEmpty(false);
4964
4965    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4966      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4967
4968      if (!RDecl->hasTrivialConstructor())
4969        CXXRecord->setHasTrivialConstructor(false);
4970      if (!RDecl->hasTrivialCopyConstructor())
4971        CXXRecord->setHasTrivialCopyConstructor(false);
4972      if (!RDecl->hasTrivialCopyAssignment())
4973        CXXRecord->setHasTrivialCopyAssignment(false);
4974      if (!RDecl->hasTrivialDestructor())
4975        CXXRecord->setHasTrivialDestructor(false);
4976
4977      // C++ 9.5p1: An object of a class with a non-trivial
4978      // constructor, a non-trivial copy constructor, a non-trivial
4979      // destructor, or a non-trivial copy assignment operator
4980      // cannot be a member of a union, nor can an array of such
4981      // objects.
4982      // TODO: C++0x alters this restriction significantly.
4983      if (Record->isUnion()) {
4984        // We check for copy constructors before constructors
4985        // because otherwise we'll never get complaints about
4986        // copy constructors.
4987
4988        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4989
4990        CXXSpecialMember member;
4991        if (!RDecl->hasTrivialCopyConstructor())
4992          member = CXXCopyConstructor;
4993        else if (!RDecl->hasTrivialConstructor())
4994          member = CXXDefaultConstructor;
4995        else if (!RDecl->hasTrivialCopyAssignment())
4996          member = CXXCopyAssignment;
4997        else if (!RDecl->hasTrivialDestructor())
4998          member = CXXDestructor;
4999        else
5000          member = invalid;
5001
5002        if (member != invalid) {
5003          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5004          DiagnoseNontrivial(RT, member);
5005          NewFD->setInvalidDecl();
5006        }
5007      }
5008    }
5009  }
5010
5011  // FIXME: We need to pass in the attributes given an AST
5012  // representation, not a parser representation.
5013  if (D)
5014    // FIXME: What to pass instead of TUScope?
5015    ProcessDeclAttributes(TUScope, NewFD, *D);
5016
5017  if (T.isObjCGCWeak())
5018    Diag(Loc, diag::warn_attribute_weak_on_field);
5019
5020  NewFD->setAccess(AS);
5021
5022  // C++ [dcl.init.aggr]p1:
5023  //   An aggregate is an array or a class (clause 9) with [...] no
5024  //   private or protected non-static data members (clause 11).
5025  // A POD must be an aggregate.
5026  if (getLangOptions().CPlusPlus &&
5027      (AS == AS_private || AS == AS_protected)) {
5028    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5029    CXXRecord->setAggregate(false);
5030    CXXRecord->setPOD(false);
5031  }
5032
5033  return NewFD;
5034}
5035
5036/// DiagnoseNontrivial - Given that a class has a non-trivial
5037/// special member, figure out why.
5038void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5039  QualType QT(T, 0U);
5040  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5041
5042  // Check whether the member was user-declared.
5043  switch (member) {
5044  case CXXDefaultConstructor:
5045    if (RD->hasUserDeclaredConstructor()) {
5046      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5047      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5048        const FunctionDecl *body = 0;
5049        ci->getBody(body);
5050        if (!body ||
5051            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5052          SourceLocation CtorLoc = ci->getLocation();
5053          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5054          return;
5055        }
5056      }
5057
5058      assert(0 && "found no user-declared constructors");
5059      return;
5060    }
5061    break;
5062
5063  case CXXCopyConstructor:
5064    if (RD->hasUserDeclaredCopyConstructor()) {
5065      SourceLocation CtorLoc =
5066        RD->getCopyConstructor(Context, 0)->getLocation();
5067      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5068      return;
5069    }
5070    break;
5071
5072  case CXXCopyAssignment:
5073    if (RD->hasUserDeclaredCopyAssignment()) {
5074      // FIXME: this should use the location of the copy
5075      // assignment, not the type.
5076      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5077      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5078      return;
5079    }
5080    break;
5081
5082  case CXXDestructor:
5083    if (RD->hasUserDeclaredDestructor()) {
5084      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5085      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5086      return;
5087    }
5088    break;
5089  }
5090
5091  typedef CXXRecordDecl::base_class_iterator base_iter;
5092
5093  // Virtual bases and members inhibit trivial copying/construction,
5094  // but not trivial destruction.
5095  if (member != CXXDestructor) {
5096    // Check for virtual bases.  vbases includes indirect virtual bases,
5097    // so we just iterate through the direct bases.
5098    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5099      if (bi->isVirtual()) {
5100        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5101        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5102        return;
5103      }
5104
5105    // Check for virtual methods.
5106    typedef CXXRecordDecl::method_iterator meth_iter;
5107    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5108         ++mi) {
5109      if (mi->isVirtual()) {
5110        SourceLocation MLoc = mi->getSourceRange().getBegin();
5111        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5112        return;
5113      }
5114    }
5115  }
5116
5117  bool (CXXRecordDecl::*hasTrivial)() const;
5118  switch (member) {
5119  case CXXDefaultConstructor:
5120    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5121  case CXXCopyConstructor:
5122    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5123  case CXXCopyAssignment:
5124    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5125  case CXXDestructor:
5126    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5127  default:
5128    assert(0 && "unexpected special member"); return;
5129  }
5130
5131  // Check for nontrivial bases (and recurse).
5132  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5133    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5134    assert(BaseRT && "Don't know how to handle dependent bases");
5135    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5136    if (!(BaseRecTy->*hasTrivial)()) {
5137      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5138      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5139      DiagnoseNontrivial(BaseRT, member);
5140      return;
5141    }
5142  }
5143
5144  // Check for nontrivial members (and recurse).
5145  typedef RecordDecl::field_iterator field_iter;
5146  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5147       ++fi) {
5148    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5149    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5150      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5151
5152      if (!(EltRD->*hasTrivial)()) {
5153        SourceLocation FLoc = (*fi)->getLocation();
5154        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5155        DiagnoseNontrivial(EltRT, member);
5156        return;
5157      }
5158    }
5159  }
5160
5161  assert(0 && "found no explanation for non-trivial member");
5162}
5163
5164/// TranslateIvarVisibility - Translate visibility from a token ID to an
5165///  AST enum value.
5166static ObjCIvarDecl::AccessControl
5167TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5168  switch (ivarVisibility) {
5169  default: assert(0 && "Unknown visitibility kind");
5170  case tok::objc_private: return ObjCIvarDecl::Private;
5171  case tok::objc_public: return ObjCIvarDecl::Public;
5172  case tok::objc_protected: return ObjCIvarDecl::Protected;
5173  case tok::objc_package: return ObjCIvarDecl::Package;
5174  }
5175}
5176
5177/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5178/// in order to create an IvarDecl object for it.
5179Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5180                                SourceLocation DeclStart,
5181                                DeclPtrTy IntfDecl,
5182                                Declarator &D, ExprTy *BitfieldWidth,
5183                                tok::ObjCKeywordKind Visibility) {
5184
5185  IdentifierInfo *II = D.getIdentifier();
5186  Expr *BitWidth = (Expr*)BitfieldWidth;
5187  SourceLocation Loc = DeclStart;
5188  if (II) Loc = D.getIdentifierLoc();
5189
5190  // FIXME: Unnamed fields can be handled in various different ways, for
5191  // example, unnamed unions inject all members into the struct namespace!
5192
5193  DeclaratorInfo *DInfo = 0;
5194  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5195
5196  if (BitWidth) {
5197    // 6.7.2.1p3, 6.7.2.1p4
5198    if (VerifyBitField(Loc, II, T, BitWidth)) {
5199      D.setInvalidType();
5200      DeleteExpr(BitWidth);
5201      BitWidth = 0;
5202    }
5203  } else {
5204    // Not a bitfield.
5205
5206    // validate II.
5207
5208  }
5209
5210  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5211  // than a variably modified type.
5212  if (T->isVariablyModifiedType()) {
5213    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5214    D.setInvalidType();
5215  }
5216
5217  // Get the visibility (access control) for this ivar.
5218  ObjCIvarDecl::AccessControl ac =
5219    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5220                                        : ObjCIvarDecl::None;
5221  // Must set ivar's DeclContext to its enclosing interface.
5222  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5223  DeclContext *EnclosingContext;
5224  if (ObjCImplementationDecl *IMPDecl =
5225      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5226    // Case of ivar declared in an implementation. Context is that of its class.
5227    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5228    assert(IDecl && "No class- ActOnIvar");
5229    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5230  } else
5231    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5232  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5233
5234  // Construct the decl.
5235  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5236                                             EnclosingContext, Loc, II, T,
5237                                             DInfo, ac, (Expr *)BitfieldWidth);
5238
5239  if (II) {
5240    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5241                                           ForRedeclaration);
5242    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5243        && !isa<TagDecl>(PrevDecl)) {
5244      Diag(Loc, diag::err_duplicate_member) << II;
5245      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5246      NewID->setInvalidDecl();
5247    }
5248  }
5249
5250  // Process attributes attached to the ivar.
5251  ProcessDeclAttributes(S, NewID, D);
5252
5253  if (D.isInvalidType())
5254    NewID->setInvalidDecl();
5255
5256  if (II) {
5257    // FIXME: When interfaces are DeclContexts, we'll need to add
5258    // these to the interface.
5259    S->AddDecl(DeclPtrTy::make(NewID));
5260    IdResolver.AddDecl(NewID);
5261  }
5262
5263  return DeclPtrTy::make(NewID);
5264}
5265
5266void Sema::ActOnFields(Scope* S,
5267                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5268                       DeclPtrTy *Fields, unsigned NumFields,
5269                       SourceLocation LBrac, SourceLocation RBrac,
5270                       AttributeList *Attr) {
5271  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5272  assert(EnclosingDecl && "missing record or interface decl");
5273
5274  // If the decl this is being inserted into is invalid, then it may be a
5275  // redeclaration or some other bogus case.  Don't try to add fields to it.
5276  if (EnclosingDecl->isInvalidDecl()) {
5277    // FIXME: Deallocate fields?
5278    return;
5279  }
5280
5281
5282  // Verify that all the fields are okay.
5283  unsigned NumNamedMembers = 0;
5284  llvm::SmallVector<FieldDecl*, 32> RecFields;
5285
5286  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5287  for (unsigned i = 0; i != NumFields; ++i) {
5288    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5289
5290    // Get the type for the field.
5291    Type *FDTy = FD->getType().getTypePtr();
5292
5293    if (!FD->isAnonymousStructOrUnion()) {
5294      // Remember all fields written by the user.
5295      RecFields.push_back(FD);
5296    }
5297
5298    // If the field is already invalid for some reason, don't emit more
5299    // diagnostics about it.
5300    if (FD->isInvalidDecl())
5301      continue;
5302
5303    // C99 6.7.2.1p2:
5304    //   A structure or union shall not contain a member with
5305    //   incomplete or function type (hence, a structure shall not
5306    //   contain an instance of itself, but may contain a pointer to
5307    //   an instance of itself), except that the last member of a
5308    //   structure with more than one named member may have incomplete
5309    //   array type; such a structure (and any union containing,
5310    //   possibly recursively, a member that is such a structure)
5311    //   shall not be a member of a structure or an element of an
5312    //   array.
5313    if (FDTy->isFunctionType()) {
5314      // Field declared as a function.
5315      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5316        << FD->getDeclName();
5317      FD->setInvalidDecl();
5318      EnclosingDecl->setInvalidDecl();
5319      continue;
5320    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5321               Record && Record->isStruct()) {
5322      // Flexible array member.
5323      if (NumNamedMembers < 1) {
5324        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5325          << FD->getDeclName();
5326        FD->setInvalidDecl();
5327        EnclosingDecl->setInvalidDecl();
5328        continue;
5329      }
5330      // Okay, we have a legal flexible array member at the end of the struct.
5331      if (Record)
5332        Record->setHasFlexibleArrayMember(true);
5333    } else if (!FDTy->isDependentType() &&
5334               RequireCompleteType(FD->getLocation(), FD->getType(),
5335                                   diag::err_field_incomplete)) {
5336      // Incomplete type
5337      FD->setInvalidDecl();
5338      EnclosingDecl->setInvalidDecl();
5339      continue;
5340    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5341      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5342        // If this is a member of a union, then entire union becomes "flexible".
5343        if (Record && Record->isUnion()) {
5344          Record->setHasFlexibleArrayMember(true);
5345        } else {
5346          // If this is a struct/class and this is not the last element, reject
5347          // it.  Note that GCC supports variable sized arrays in the middle of
5348          // structures.
5349          if (i != NumFields-1)
5350            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5351              << FD->getDeclName() << FD->getType();
5352          else {
5353            // We support flexible arrays at the end of structs in
5354            // other structs as an extension.
5355            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5356              << FD->getDeclName();
5357            if (Record)
5358              Record->setHasFlexibleArrayMember(true);
5359          }
5360        }
5361      }
5362      if (Record && FDTTy->getDecl()->hasObjectMember())
5363        Record->setHasObjectMember(true);
5364    } else if (FDTy->isObjCInterfaceType()) {
5365      /// A field cannot be an Objective-c object
5366      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5367      FD->setInvalidDecl();
5368      EnclosingDecl->setInvalidDecl();
5369      continue;
5370    } else if (getLangOptions().ObjC1 &&
5371               getLangOptions().getGCMode() != LangOptions::NonGC &&
5372               Record &&
5373               (FD->getType()->isObjCObjectPointerType() ||
5374                FD->getType().isObjCGCStrong()))
5375      Record->setHasObjectMember(true);
5376    // Keep track of the number of named members.
5377    if (FD->getIdentifier())
5378      ++NumNamedMembers;
5379  }
5380
5381  // Okay, we successfully defined 'Record'.
5382  if (Record) {
5383    Record->completeDefinition(Context);
5384  } else {
5385    ObjCIvarDecl **ClsFields =
5386      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5387    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5388      ID->setIVarList(ClsFields, RecFields.size(), Context);
5389      ID->setLocEnd(RBrac);
5390      // Add ivar's to class's DeclContext.
5391      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5392        ClsFields[i]->setLexicalDeclContext(ID);
5393        ID->addDecl(ClsFields[i]);
5394      }
5395      // Must enforce the rule that ivars in the base classes may not be
5396      // duplicates.
5397      if (ID->getSuperClass()) {
5398        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5399             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5400          ObjCIvarDecl* Ivar = (*IVI);
5401
5402          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5403            ObjCIvarDecl* prevIvar =
5404              ID->getSuperClass()->lookupInstanceVariable(II);
5405            if (prevIvar) {
5406              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5407              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5408            }
5409          }
5410        }
5411      }
5412    } else if (ObjCImplementationDecl *IMPDecl =
5413                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5414      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5415      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5416        // Ivar declared in @implementation never belongs to the implementation.
5417        // Only it is in implementation's lexical context.
5418        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5419      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5420    }
5421  }
5422
5423  if (Attr)
5424    ProcessDeclAttributeList(S, Record, Attr);
5425}
5426
5427EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5428                                          EnumConstantDecl *LastEnumConst,
5429                                          SourceLocation IdLoc,
5430                                          IdentifierInfo *Id,
5431                                          ExprArg val) {
5432  Expr *Val = (Expr *)val.get();
5433
5434  llvm::APSInt EnumVal(32);
5435  QualType EltTy;
5436  if (Val) {
5437    if (Val->isTypeDependent())
5438      EltTy = Context.DependentTy;
5439    else {
5440      // Make sure to promote the operand type to int.
5441      UsualUnaryConversions(Val);
5442      if (Val != val.get()) {
5443        val.release();
5444        val = Val;
5445      }
5446
5447      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5448      SourceLocation ExpLoc;
5449      if (!Val->isValueDependent() &&
5450          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5451        Val = 0;
5452      } else {
5453        EltTy = Val->getType();
5454      }
5455    }
5456  }
5457
5458  if (!Val) {
5459    if (LastEnumConst) {
5460      // Assign the last value + 1.
5461      EnumVal = LastEnumConst->getInitVal();
5462      ++EnumVal;
5463
5464      // Check for overflow on increment.
5465      if (EnumVal < LastEnumConst->getInitVal())
5466        Diag(IdLoc, diag::warn_enum_value_overflow);
5467
5468      EltTy = LastEnumConst->getType();
5469    } else {
5470      // First value, set to zero.
5471      EltTy = Context.IntTy;
5472      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5473    }
5474  }
5475
5476  assert(!EltTy.isNull() && "Enum constant with NULL type");
5477
5478  val.release();
5479  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5480                                  Val, EnumVal);
5481}
5482
5483
5484Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5485                                        DeclPtrTy lastEnumConst,
5486                                        SourceLocation IdLoc,
5487                                        IdentifierInfo *Id,
5488                                        SourceLocation EqualLoc, ExprTy *val) {
5489  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5490  EnumConstantDecl *LastEnumConst =
5491    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5492  Expr *Val = static_cast<Expr*>(val);
5493
5494  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5495  // we find one that is.
5496  S = getNonFieldDeclScope(S);
5497
5498  // Verify that there isn't already something declared with this name in this
5499  // scope.
5500  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5501  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5502    // Maybe we will complain about the shadowed template parameter.
5503    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5504    // Just pretend that we didn't see the previous declaration.
5505    PrevDecl = 0;
5506  }
5507
5508  if (PrevDecl) {
5509    // When in C++, we may get a TagDecl with the same name; in this case the
5510    // enum constant will 'hide' the tag.
5511    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5512           "Received TagDecl when not in C++!");
5513    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5514      if (isa<EnumConstantDecl>(PrevDecl))
5515        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5516      else
5517        Diag(IdLoc, diag::err_redefinition) << Id;
5518      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5519      if (Val) Val->Destroy(Context);
5520      return DeclPtrTy();
5521    }
5522  }
5523
5524  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5525                                            IdLoc, Id, Owned(Val));
5526
5527  // Register this decl in the current scope stack.
5528  if (New)
5529    PushOnScopeChains(New, S);
5530
5531  return DeclPtrTy::make(New);
5532}
5533
5534void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5535                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5536                         DeclPtrTy *Elements, unsigned NumElements,
5537                         Scope *S, AttributeList *Attr) {
5538  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5539  QualType EnumType = Context.getTypeDeclType(Enum);
5540
5541  if (Attr)
5542    ProcessDeclAttributeList(S, Enum, Attr);
5543
5544  // TODO: If the result value doesn't fit in an int, it must be a long or long
5545  // long value.  ISO C does not support this, but GCC does as an extension,
5546  // emit a warning.
5547  unsigned IntWidth = Context.Target.getIntWidth();
5548  unsigned CharWidth = Context.Target.getCharWidth();
5549  unsigned ShortWidth = Context.Target.getShortWidth();
5550
5551  // Verify that all the values are okay, compute the size of the values, and
5552  // reverse the list.
5553  unsigned NumNegativeBits = 0;
5554  unsigned NumPositiveBits = 0;
5555
5556  // Keep track of whether all elements have type int.
5557  bool AllElementsInt = true;
5558
5559  for (unsigned i = 0; i != NumElements; ++i) {
5560    EnumConstantDecl *ECD =
5561      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5562    if (!ECD) continue;  // Already issued a diagnostic.
5563
5564    // If the enum value doesn't fit in an int, emit an extension warning.
5565    const llvm::APSInt &InitVal = ECD->getInitVal();
5566    assert(InitVal.getBitWidth() >= IntWidth &&
5567           "Should have promoted value to int");
5568    if (InitVal.getBitWidth() > IntWidth) {
5569      llvm::APSInt V(InitVal);
5570      V.trunc(IntWidth);
5571      V.extend(InitVal.getBitWidth());
5572      if (V != InitVal)
5573        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5574          << InitVal.toString(10);
5575    }
5576
5577    // Keep track of the size of positive and negative values.
5578    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5579      NumPositiveBits = std::max(NumPositiveBits,
5580                                 (unsigned)InitVal.getActiveBits());
5581    else
5582      NumNegativeBits = std::max(NumNegativeBits,
5583                                 (unsigned)InitVal.getMinSignedBits());
5584
5585    // Keep track of whether every enum element has type int (very commmon).
5586    if (AllElementsInt)
5587      AllElementsInt = ECD->getType() == Context.IntTy;
5588  }
5589
5590  // Figure out the type that should be used for this enum.
5591  // FIXME: Support -fshort-enums.
5592  QualType BestType;
5593  unsigned BestWidth;
5594
5595  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5596
5597  if (NumNegativeBits) {
5598    // If there is a negative value, figure out the smallest integer type (of
5599    // int/long/longlong) that fits.
5600    // If it's packed, check also if it fits a char or a short.
5601    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5602        BestType = Context.SignedCharTy;
5603        BestWidth = CharWidth;
5604    } else if (Packed && NumNegativeBits <= ShortWidth &&
5605               NumPositiveBits < ShortWidth) {
5606        BestType = Context.ShortTy;
5607        BestWidth = ShortWidth;
5608    }
5609    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5610      BestType = Context.IntTy;
5611      BestWidth = IntWidth;
5612    } else {
5613      BestWidth = Context.Target.getLongWidth();
5614
5615      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5616        BestType = Context.LongTy;
5617      else {
5618        BestWidth = Context.Target.getLongLongWidth();
5619
5620        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5621          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5622        BestType = Context.LongLongTy;
5623      }
5624    }
5625  } else {
5626    // If there is no negative value, figure out which of uint, ulong, ulonglong
5627    // fits.
5628    // If it's packed, check also if it fits a char or a short.
5629    if (Packed && NumPositiveBits <= CharWidth) {
5630        BestType = Context.UnsignedCharTy;
5631        BestWidth = CharWidth;
5632    } else if (Packed && NumPositiveBits <= ShortWidth) {
5633        BestType = Context.UnsignedShortTy;
5634        BestWidth = ShortWidth;
5635    }
5636    else if (NumPositiveBits <= IntWidth) {
5637      BestType = Context.UnsignedIntTy;
5638      BestWidth = IntWidth;
5639    } else if (NumPositiveBits <=
5640               (BestWidth = Context.Target.getLongWidth())) {
5641      BestType = Context.UnsignedLongTy;
5642    } else {
5643      BestWidth = Context.Target.getLongLongWidth();
5644      assert(NumPositiveBits <= BestWidth &&
5645             "How could an initializer get larger than ULL?");
5646      BestType = Context.UnsignedLongLongTy;
5647    }
5648  }
5649
5650  // Loop over all of the enumerator constants, changing their types to match
5651  // the type of the enum if needed.
5652  for (unsigned i = 0; i != NumElements; ++i) {
5653    EnumConstantDecl *ECD =
5654      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5655    if (!ECD) continue;  // Already issued a diagnostic.
5656
5657    // Standard C says the enumerators have int type, but we allow, as an
5658    // extension, the enumerators to be larger than int size.  If each
5659    // enumerator value fits in an int, type it as an int, otherwise type it the
5660    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5661    // that X has type 'int', not 'unsigned'.
5662    if (ECD->getType() == Context.IntTy) {
5663      // Make sure the init value is signed.
5664      llvm::APSInt IV = ECD->getInitVal();
5665      IV.setIsSigned(true);
5666      ECD->setInitVal(IV);
5667
5668      if (getLangOptions().CPlusPlus)
5669        // C++ [dcl.enum]p4: Following the closing brace of an
5670        // enum-specifier, each enumerator has the type of its
5671        // enumeration.
5672        ECD->setType(EnumType);
5673      continue;  // Already int type.
5674    }
5675
5676    // Determine whether the value fits into an int.
5677    llvm::APSInt InitVal = ECD->getInitVal();
5678    bool FitsInInt;
5679    if (InitVal.isUnsigned() || !InitVal.isNegative())
5680      FitsInInt = InitVal.getActiveBits() < IntWidth;
5681    else
5682      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5683
5684    // If it fits into an integer type, force it.  Otherwise force it to match
5685    // the enum decl type.
5686    QualType NewTy;
5687    unsigned NewWidth;
5688    bool NewSign;
5689    if (FitsInInt) {
5690      NewTy = Context.IntTy;
5691      NewWidth = IntWidth;
5692      NewSign = true;
5693    } else if (ECD->getType() == BestType) {
5694      // Already the right type!
5695      if (getLangOptions().CPlusPlus)
5696        // C++ [dcl.enum]p4: Following the closing brace of an
5697        // enum-specifier, each enumerator has the type of its
5698        // enumeration.
5699        ECD->setType(EnumType);
5700      continue;
5701    } else {
5702      NewTy = BestType;
5703      NewWidth = BestWidth;
5704      NewSign = BestType->isSignedIntegerType();
5705    }
5706
5707    // Adjust the APSInt value.
5708    InitVal.extOrTrunc(NewWidth);
5709    InitVal.setIsSigned(NewSign);
5710    ECD->setInitVal(InitVal);
5711
5712    // Adjust the Expr initializer and type.
5713    if (ECD->getInitExpr())
5714      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5715                                                      CastExpr::CK_IntegralCast,
5716                                                      ECD->getInitExpr(),
5717                                                      /*isLvalue=*/false));
5718    if (getLangOptions().CPlusPlus)
5719      // C++ [dcl.enum]p4: Following the closing brace of an
5720      // enum-specifier, each enumerator has the type of its
5721      // enumeration.
5722      ECD->setType(EnumType);
5723    else
5724      ECD->setType(NewTy);
5725  }
5726
5727  Enum->completeDefinition(Context, BestType);
5728}
5729
5730Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5731                                            ExprArg expr) {
5732  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5733
5734  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5735                                                   Loc, AsmString);
5736  CurContext->addDecl(New);
5737  return DeclPtrTy::make(New);
5738}
5739
5740void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5741                             SourceLocation PragmaLoc,
5742                             SourceLocation NameLoc) {
5743  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5744
5745  if (PrevDecl) {
5746    PrevDecl->addAttr(::new (Context) WeakAttr());
5747  } else {
5748    (void)WeakUndeclaredIdentifiers.insert(
5749      std::pair<IdentifierInfo*,WeakInfo>
5750        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5751  }
5752}
5753
5754void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5755                                IdentifierInfo* AliasName,
5756                                SourceLocation PragmaLoc,
5757                                SourceLocation NameLoc,
5758                                SourceLocation AliasNameLoc) {
5759  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5760  WeakInfo W = WeakInfo(Name, NameLoc);
5761
5762  if (PrevDecl) {
5763    if (!PrevDecl->hasAttr<AliasAttr>())
5764      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5765        DeclApplyPragmaWeak(TUScope, ND, W);
5766  } else {
5767    (void)WeakUndeclaredIdentifiers.insert(
5768      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5769  }
5770}
5771