SemaDecl.cpp revision 7dd239cabd29ed5090e81db0e51b874b3ab94a20
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  Decl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50    case LookupResult::NotFound:
51    case LookupResult::FoundOverloaded:
52      return 0;
53
54    case LookupResult::AmbiguousBaseSubobjectTypes:
55    case LookupResult::AmbiguousBaseSubobjects:
56    case LookupResult::AmbiguousReference:
57      DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58      return 0;
59
60    case LookupResult::Found:
61      IIDecl = Result.getAsDecl();
62      break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl))
67      return Context.getTypeDeclType(TD).getAsOpaquePtr();
68    else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl))
69      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
70  }
71  return 0;
72}
73
74DeclContext *Sema::getContainingDC(DeclContext *DC) {
75  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
76    // A C++ out-of-line method will return to the file declaration context.
77    if (MD->isOutOfLineDefinition())
78      return MD->getLexicalDeclContext();
79
80    // A C++ inline method is parsed *after* the topmost class it was declared
81    // in is fully parsed (it's "complete").
82    // The parsing of a C++ inline method happens at the declaration context of
83    // the topmost (non-nested) class it is lexically declared in.
84    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
85    DC = MD->getParent();
86    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
87      DC = RD;
88
89    // Return the declaration context of the topmost class the inline method is
90    // declared in.
91    return DC;
92  }
93
94  if (isa<ObjCMethodDecl>(DC))
95    return Context.getTranslationUnitDecl();
96
97  if (Decl *D = dyn_cast<Decl>(DC))
98    return D->getLexicalDeclContext();
99
100  return DC->getLexicalParent();
101}
102
103void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
104  assert(getContainingDC(DC) == CurContext &&
105      "The next DeclContext should be lexically contained in the current one.");
106  CurContext = DC;
107  S->setEntity(DC);
108}
109
110void Sema::PopDeclContext() {
111  assert(CurContext && "DeclContext imbalance!");
112
113  CurContext = getContainingDC(CurContext);
114}
115
116/// \brief Determine whether we allow overloading of the function
117/// PrevDecl with another declaration.
118///
119/// This routine determines whether overloading is possible, not
120/// whether some new function is actually an overload. It will return
121/// true in C++ (where we can always provide overloads) or, as an
122/// extension, in C when the previous function is already an
123/// overloaded function declaration or has the "overloadable"
124/// attribute.
125static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
126  if (Context.getLangOptions().CPlusPlus)
127    return true;
128
129  if (isa<OverloadedFunctionDecl>(PrevDecl))
130    return true;
131
132  return PrevDecl->getAttr<OverloadableAttr>() != 0;
133}
134
135/// Add this decl to the scope shadowed decl chains.
136void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
137  // Move up the scope chain until we find the nearest enclosing
138  // non-transparent context. The declaration will be introduced into this
139  // scope.
140  while (S->getEntity() &&
141         ((DeclContext *)S->getEntity())->isTransparentContext())
142    S = S->getParent();
143
144  S->AddDecl(D);
145
146  // Add scoped declarations into their context, so that they can be
147  // found later. Declarations without a context won't be inserted
148  // into any context.
149  CurContext->addDecl(D);
150
151  // C++ [basic.scope]p4:
152  //   -- exactly one declaration shall declare a class name or
153  //   enumeration name that is not a typedef name and the other
154  //   declarations shall all refer to the same object or
155  //   enumerator, or all refer to functions and function templates;
156  //   in this case the class name or enumeration name is hidden.
157  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
158    // We are pushing the name of a tag (enum or class).
159    if (CurContext->getLookupContext()
160          == TD->getDeclContext()->getLookupContext()) {
161      // We're pushing the tag into the current context, which might
162      // require some reshuffling in the identifier resolver.
163      IdentifierResolver::iterator
164        I = IdResolver.begin(TD->getDeclName()),
165        IEnd = IdResolver.end();
166      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
167        NamedDecl *PrevDecl = *I;
168        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
169             PrevDecl = *I, ++I) {
170          if (TD->declarationReplaces(*I)) {
171            // This is a redeclaration. Remove it from the chain and
172            // break out, so that we'll add in the shadowed
173            // declaration.
174            S->RemoveDecl(*I);
175            if (PrevDecl == *I) {
176              IdResolver.RemoveDecl(*I);
177              IdResolver.AddDecl(TD);
178              return;
179            } else {
180              IdResolver.RemoveDecl(*I);
181              break;
182            }
183          }
184        }
185
186        // There is already a declaration with the same name in the same
187        // scope, which is not a tag declaration. It must be found
188        // before we find the new declaration, so insert the new
189        // declaration at the end of the chain.
190        IdResolver.AddShadowedDecl(TD, PrevDecl);
191
192        return;
193      }
194    }
195  } else if (isa<FunctionDecl>(D) &&
196             AllowOverloadingOfFunction(D, Context)) {
197    // We are pushing the name of a function, which might be an
198    // overloaded name.
199    FunctionDecl *FD = cast<FunctionDecl>(D);
200    IdentifierResolver::iterator Redecl
201      = std::find_if(IdResolver.begin(FD->getDeclName()),
202                     IdResolver.end(),
203                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
204                                  FD));
205    if (Redecl != IdResolver.end()) {
206      // There is already a declaration of a function on our
207      // IdResolver chain. Replace it with this declaration.
208      S->RemoveDecl(*Redecl);
209      IdResolver.RemoveDecl(*Redecl);
210    }
211  }
212
213  IdResolver.AddDecl(D);
214}
215
216void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
217  if (S->decl_empty()) return;
218  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
219	 "Scope shouldn't contain decls!");
220
221  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
222       I != E; ++I) {
223    Decl *TmpD = static_cast<Decl*>(*I);
224    assert(TmpD && "This decl didn't get pushed??");
225
226    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
227    NamedDecl *D = cast<NamedDecl>(TmpD);
228
229    if (!D->getDeclName()) continue;
230
231    // Remove this name from our lexical scope.
232    IdResolver.RemoveDecl(D);
233  }
234}
235
236/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
237/// return 0 if one not found.
238ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
239  // The third "scope" argument is 0 since we aren't enabling lazy built-in
240  // creation from this context.
241  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
242
243  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
244}
245
246/// getNonFieldDeclScope - Retrieves the innermost scope, starting
247/// from S, where a non-field would be declared. This routine copes
248/// with the difference between C and C++ scoping rules in structs and
249/// unions. For example, the following code is well-formed in C but
250/// ill-formed in C++:
251/// @code
252/// struct S6 {
253///   enum { BAR } e;
254/// };
255///
256/// void test_S6() {
257///   struct S6 a;
258///   a.e = BAR;
259/// }
260/// @endcode
261/// For the declaration of BAR, this routine will return a different
262/// scope. The scope S will be the scope of the unnamed enumeration
263/// within S6. In C++, this routine will return the scope associated
264/// with S6, because the enumeration's scope is a transparent
265/// context but structures can contain non-field names. In C, this
266/// routine will return the translation unit scope, since the
267/// enumeration's scope is a transparent context and structures cannot
268/// contain non-field names.
269Scope *Sema::getNonFieldDeclScope(Scope *S) {
270  while (((S->getFlags() & Scope::DeclScope) == 0) ||
271         (S->getEntity() &&
272          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
273         (S->isClassScope() && !getLangOptions().CPlusPlus))
274    S = S->getParent();
275  return S;
276}
277
278void Sema::InitBuiltinVaListType() {
279  if (!Context.getBuiltinVaListType().isNull())
280    return;
281
282  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
283  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
284  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
285  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
286}
287
288/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
289/// file scope.  lazily create a decl for it. ForRedeclaration is true
290/// if we're creating this built-in in anticipation of redeclaring the
291/// built-in.
292NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
293                                     Scope *S, bool ForRedeclaration,
294                                     SourceLocation Loc) {
295  Builtin::ID BID = (Builtin::ID)bid;
296
297  if (Context.BuiltinInfo.hasVAListUse(BID))
298    InitBuiltinVaListType();
299
300  Builtin::Context::GetBuiltinTypeError Error;
301  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
302  switch (Error) {
303  case Builtin::Context::GE_None:
304    // Okay
305    break;
306
307  case Builtin::Context::GE_Missing_FILE:
308    if (ForRedeclaration)
309      Diag(Loc, diag::err_implicit_decl_requires_stdio)
310        << Context.BuiltinInfo.GetName(BID);
311    return 0;
312  }
313
314  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
315    Diag(Loc, diag::ext_implicit_lib_function_decl)
316      << Context.BuiltinInfo.GetName(BID)
317      << R;
318    if (!Context.BuiltinInfo.getHeaderName(BID).empty() &&
319        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
320          != diag::MAP_IGNORE)
321      Diag(Loc, diag::note_please_include_header)
322        << Context.BuiltinInfo.getHeaderName(BID)
323        << Context.BuiltinInfo.GetName(BID);
324  }
325
326  FunctionDecl *New = FunctionDecl::Create(Context,
327                                           Context.getTranslationUnitDecl(),
328                                           Loc, II, R,
329                                           FunctionDecl::Extern, false);
330  New->setImplicit();
331
332  // Create Decl objects for each parameter, adding them to the
333  // FunctionDecl.
334  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
335    llvm::SmallVector<ParmVarDecl*, 16> Params;
336    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
337      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
338                                           FT->getArgType(i), VarDecl::None, 0));
339    New->setParams(Context, &Params[0], Params.size());
340  }
341
342  AddKnownFunctionAttributes(New);
343
344  // TUScope is the translation-unit scope to insert this function into.
345  // FIXME: This is hideous. We need to teach PushOnScopeChains to
346  // relate Scopes to DeclContexts, and probably eliminate CurContext
347  // entirely, but we're not there yet.
348  DeclContext *SavedContext = CurContext;
349  CurContext = Context.getTranslationUnitDecl();
350  PushOnScopeChains(New, TUScope);
351  CurContext = SavedContext;
352  return New;
353}
354
355/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
356/// everything from the standard library is defined.
357NamespaceDecl *Sema::GetStdNamespace() {
358  if (!StdNamespace) {
359    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
360    DeclContext *Global = Context.getTranslationUnitDecl();
361    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
362    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
363  }
364  return StdNamespace;
365}
366
367/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
368/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
369/// situation, merging decls or emitting diagnostics as appropriate.
370///
371TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
372  bool objc_types = false;
373  // Allow multiple definitions for ObjC built-in typedefs.
374  // FIXME: Verify the underlying types are equivalent!
375  if (getLangOptions().ObjC1) {
376    const IdentifierInfo *TypeID = New->getIdentifier();
377    switch (TypeID->getLength()) {
378    default: break;
379    case 2:
380      if (!TypeID->isStr("id"))
381        break;
382      Context.setObjCIdType(New);
383      objc_types = true;
384      break;
385    case 5:
386      if (!TypeID->isStr("Class"))
387        break;
388      Context.setObjCClassType(New);
389      objc_types = true;
390      return New;
391    case 3:
392      if (!TypeID->isStr("SEL"))
393        break;
394      Context.setObjCSelType(New);
395      objc_types = true;
396      return New;
397    case 8:
398      if (!TypeID->isStr("Protocol"))
399        break;
400      Context.setObjCProtoType(New->getUnderlyingType());
401      objc_types = true;
402      return New;
403    }
404    // Fall through - the typedef name was not a builtin type.
405  }
406  // Verify the old decl was also a type.
407  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
408  if (!Old) {
409    Diag(New->getLocation(), diag::err_redefinition_different_kind)
410      << New->getDeclName();
411    if (!objc_types)
412      Diag(OldD->getLocation(), diag::note_previous_definition);
413    return New;
414  }
415
416  // Determine the "old" type we'll use for checking and diagnostics.
417  QualType OldType;
418  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
419    OldType = OldTypedef->getUnderlyingType();
420  else
421    OldType = Context.getTypeDeclType(Old);
422
423  // If the typedef types are not identical, reject them in all languages and
424  // with any extensions enabled.
425
426  if (OldType != New->getUnderlyingType() &&
427      Context.getCanonicalType(OldType) !=
428      Context.getCanonicalType(New->getUnderlyingType())) {
429    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
430      << New->getUnderlyingType() << OldType;
431    if (!objc_types)
432      Diag(Old->getLocation(), diag::note_previous_definition);
433    return New;
434  }
435  if (objc_types) return New;
436  if (getLangOptions().Microsoft) return New;
437
438  // C++ [dcl.typedef]p2:
439  //   In a given non-class scope, a typedef specifier can be used to
440  //   redefine the name of any type declared in that scope to refer
441  //   to the type to which it already refers.
442  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
443    return New;
444
445  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
446  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
447  // *either* declaration is in a system header. The code below implements
448  // this adhoc compatibility rule. FIXME: The following code will not
449  // work properly when compiling ".i" files (containing preprocessed output).
450  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
451    SourceManager &SrcMgr = Context.getSourceManager();
452    if (SrcMgr.isInSystemHeader(Old->getLocation()))
453      return New;
454    if (SrcMgr.isInSystemHeader(New->getLocation()))
455      return New;
456  }
457
458  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
459  Diag(Old->getLocation(), diag::note_previous_definition);
460  return New;
461}
462
463/// DeclhasAttr - returns true if decl Declaration already has the target
464/// attribute.
465static bool DeclHasAttr(const Decl *decl, const Attr *target) {
466  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
467    if (attr->getKind() == target->getKind())
468      return true;
469
470  return false;
471}
472
473/// MergeAttributes - append attributes from the Old decl to the New one.
474static void MergeAttributes(Decl *New, Decl *Old) {
475  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
476
477  while (attr) {
478    tmp = attr;
479    attr = attr->getNext();
480
481    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
482      tmp->setInherited(true);
483      New->addAttr(tmp);
484    } else {
485      tmp->setNext(0);
486      delete(tmp);
487    }
488  }
489
490  Old->invalidateAttrs();
491}
492
493/// MergeFunctionDecl - We just parsed a function 'New' from
494/// declarator D which has the same name and scope as a previous
495/// declaration 'Old'.  Figure out how to resolve this situation,
496/// merging decls or emitting diagnostics as appropriate.
497/// Redeclaration will be set true if this New is a redeclaration OldD.
498///
499/// In C++, New and Old must be declarations that are not
500/// overloaded. Use IsOverload to determine whether New and Old are
501/// overloaded, and to select the Old declaration that New should be
502/// merged with.
503FunctionDecl *
504Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
505  assert(!isa<OverloadedFunctionDecl>(OldD) &&
506         "Cannot merge with an overloaded function declaration");
507
508  Redeclaration = false;
509  // Verify the old decl was also a function.
510  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind)
513      << New->getDeclName();
514    Diag(OldD->getLocation(), diag::note_previous_definition);
515    return New;
516  }
517
518  // Determine whether the previous declaration was a definition,
519  // implicit declaration, or a declaration.
520  diag::kind PrevDiag;
521  if (Old->isThisDeclarationADefinition())
522    PrevDiag = diag::note_previous_definition;
523  else if (Old->isImplicit()) {
524    if (Old->getBuiltinID(Context))
525      PrevDiag = diag::note_previous_builtin_declaration;
526    else
527      PrevDiag = diag::note_previous_implicit_declaration;
528  } else
529    PrevDiag = diag::note_previous_declaration;
530
531  QualType OldQType = Context.getCanonicalType(Old->getType());
532  QualType NewQType = Context.getCanonicalType(New->getType());
533
534  if (getLangOptions().CPlusPlus) {
535    // (C++98 13.1p2):
536    //   Certain function declarations cannot be overloaded:
537    //     -- Function declarations that differ only in the return type
538    //        cannot be overloaded.
539    QualType OldReturnType
540      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
541    QualType NewReturnType
542      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
543    if (OldReturnType != NewReturnType) {
544      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
545      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
546      Redeclaration = true;
547      return New;
548    }
549
550    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
551    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
552    if (OldMethod && NewMethod) {
553      //    -- Member function declarations with the same name and the
554      //       same parameter types cannot be overloaded if any of them
555      //       is a static member function declaration.
556      if (OldMethod->isStatic() || NewMethod->isStatic()) {
557        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
558        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
559        return New;
560      }
561
562      // C++ [class.mem]p1:
563      //   [...] A member shall not be declared twice in the
564      //   member-specification, except that a nested class or member
565      //   class template can be declared and then later defined.
566      if (OldMethod->getLexicalDeclContext() ==
567            NewMethod->getLexicalDeclContext()) {
568        unsigned NewDiag;
569        if (isa<CXXConstructorDecl>(OldMethod))
570          NewDiag = diag::err_constructor_redeclared;
571        else if (isa<CXXDestructorDecl>(NewMethod))
572          NewDiag = diag::err_destructor_redeclared;
573        else if (isa<CXXConversionDecl>(NewMethod))
574          NewDiag = diag::err_conv_function_redeclared;
575        else
576          NewDiag = diag::err_member_redeclared;
577
578        Diag(New->getLocation(), NewDiag);
579        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
580      }
581    }
582
583    // (C++98 8.3.5p3):
584    //   All declarations for a function shall agree exactly in both the
585    //   return type and the parameter-type-list.
586    if (OldQType == NewQType) {
587      // We have a redeclaration.
588      MergeAttributes(New, Old);
589      Redeclaration = true;
590      return MergeCXXFunctionDecl(New, Old);
591    }
592
593    // Fall through for conflicting redeclarations and redefinitions.
594  }
595
596  // C: Function types need to be compatible, not identical. This handles
597  // duplicate function decls like "void f(int); void f(enum X);" properly.
598  if (!getLangOptions().CPlusPlus &&
599      Context.typesAreCompatible(OldQType, NewQType)) {
600    MergeAttributes(New, Old);
601    Redeclaration = true;
602    return New;
603  }
604
605  // A function that has already been declared has been redeclared or defined
606  // with a different type- show appropriate diagnostic
607
608  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
609  // TODO: This is totally simplistic.  It should handle merging functions
610  // together etc, merging extern int X; int X; ...
611  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
612  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
613  return New;
614}
615
616/// Predicate for C "tentative" external object definitions (C99 6.9.2).
617static bool isTentativeDefinition(VarDecl *VD) {
618  if (VD->isFileVarDecl())
619    return (!VD->getInit() &&
620            (VD->getStorageClass() == VarDecl::None ||
621             VD->getStorageClass() == VarDecl::Static));
622  return false;
623}
624
625/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
626/// when dealing with C "tentative" external object definitions (C99 6.9.2).
627void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
628  bool VDIsTentative = isTentativeDefinition(VD);
629  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
630
631  // FIXME: I don't think this will actually see all of the
632  // redefinitions. Can't we check this property on-the-fly?
633  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
634                                    E = IdResolver.end();
635       I != E; ++I) {
636    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
637      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
638
639      // Handle the following case:
640      //   int a[10];
641      //   int a[];   - the code below makes sure we set the correct type.
642      //   int a[11]; - this is an error, size isn't 10.
643      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
644          OldDecl->getType()->isConstantArrayType())
645        VD->setType(OldDecl->getType());
646
647      // Check for "tentative" definitions. We can't accomplish this in
648      // MergeVarDecl since the initializer hasn't been attached.
649      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
650        continue;
651
652      // Handle __private_extern__ just like extern.
653      if (OldDecl->getStorageClass() != VarDecl::Extern &&
654          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
655          VD->getStorageClass() != VarDecl::Extern &&
656          VD->getStorageClass() != VarDecl::PrivateExtern) {
657        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
658        Diag(OldDecl->getLocation(), diag::note_previous_definition);
659        // One redefinition error is enough.
660        break;
661      }
662    }
663  }
664}
665
666/// MergeVarDecl - We just parsed a variable 'New' which has the same name
667/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
668/// situation, merging decls or emitting diagnostics as appropriate.
669///
670/// Tentative definition rules (C99 6.9.2p2) are checked by
671/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
672/// definitions here, since the initializer hasn't been attached.
673///
674VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
675  // Verify the old decl was also a variable.
676  VarDecl *Old = dyn_cast<VarDecl>(OldD);
677  if (!Old) {
678    Diag(New->getLocation(), diag::err_redefinition_different_kind)
679      << New->getDeclName();
680    Diag(OldD->getLocation(), diag::note_previous_definition);
681    return New;
682  }
683
684  MergeAttributes(New, Old);
685
686  // Merge the types
687  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
688  if (MergedT.isNull()) {
689    Diag(New->getLocation(), diag::err_redefinition_different_type)
690      << New->getDeclName();
691    Diag(Old->getLocation(), diag::note_previous_definition);
692    return New;
693  }
694  New->setType(MergedT);
695  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
696  if (New->getStorageClass() == VarDecl::Static &&
697      (Old->getStorageClass() == VarDecl::None ||
698       Old->getStorageClass() == VarDecl::Extern)) {
699    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
700    Diag(Old->getLocation(), diag::note_previous_definition);
701    return New;
702  }
703  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
704  if (New->getStorageClass() != VarDecl::Static &&
705      Old->getStorageClass() == VarDecl::Static) {
706    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
707    Diag(Old->getLocation(), diag::note_previous_definition);
708    return New;
709  }
710  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
711  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
712    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
713    Diag(Old->getLocation(), diag::note_previous_definition);
714  }
715  return New;
716}
717
718/// CheckParmsForFunctionDef - Check that the parameters of the given
719/// function are appropriate for the definition of a function. This
720/// takes care of any checks that cannot be performed on the
721/// declaration itself, e.g., that the types of each of the function
722/// parameters are complete.
723bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
724  bool HasInvalidParm = false;
725  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
726    ParmVarDecl *Param = FD->getParamDecl(p);
727
728    // C99 6.7.5.3p4: the parameters in a parameter type list in a
729    // function declarator that is part of a function definition of
730    // that function shall not have incomplete type.
731    if (!Param->isInvalidDecl() &&
732        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
733                               diag::err_typecheck_decl_incomplete_type)) {
734      Param->setInvalidDecl();
735      HasInvalidParm = true;
736    }
737
738    // C99 6.9.1p5: If the declarator includes a parameter type list, the
739    // declaration of each parameter shall include an identifier.
740    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
741      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
742  }
743
744  return HasInvalidParm;
745}
746
747/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
748/// no declarator (e.g. "struct foo;") is parsed.
749Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
750  TagDecl *Tag = 0;
751  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
752      DS.getTypeSpecType() == DeclSpec::TST_struct ||
753      DS.getTypeSpecType() == DeclSpec::TST_union ||
754      DS.getTypeSpecType() == DeclSpec::TST_enum)
755    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
756
757  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
758    if (!Record->getDeclName() && Record->isDefinition() &&
759        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
760      return BuildAnonymousStructOrUnion(S, DS, Record);
761
762    // Microsoft allows unnamed struct/union fields. Don't complain
763    // about them.
764    // FIXME: Should we support Microsoft's extensions in this area?
765    if (Record->getDeclName() && getLangOptions().Microsoft)
766      return Tag;
767  }
768
769  if (!DS.isMissingDeclaratorOk() &&
770      DS.getTypeSpecType() != DeclSpec::TST_error) {
771    // Warn about typedefs of enums without names, since this is an
772    // extension in both Microsoft an GNU.
773    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
774        Tag && isa<EnumDecl>(Tag)) {
775      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
776        << DS.getSourceRange();
777      return Tag;
778    }
779
780    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
781      << DS.getSourceRange();
782    return 0;
783  }
784
785  return Tag;
786}
787
788/// InjectAnonymousStructOrUnionMembers - Inject the members of the
789/// anonymous struct or union AnonRecord into the owning context Owner
790/// and scope S. This routine will be invoked just after we realize
791/// that an unnamed union or struct is actually an anonymous union or
792/// struct, e.g.,
793///
794/// @code
795/// union {
796///   int i;
797///   float f;
798/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
799///    // f into the surrounding scope.x
800/// @endcode
801///
802/// This routine is recursive, injecting the names of nested anonymous
803/// structs/unions into the owning context and scope as well.
804bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
805                                               RecordDecl *AnonRecord) {
806  bool Invalid = false;
807  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
808                               FEnd = AnonRecord->field_end();
809       F != FEnd; ++F) {
810    if ((*F)->getDeclName()) {
811      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
812                                                LookupOrdinaryName, true);
813      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
814        // C++ [class.union]p2:
815        //   The names of the members of an anonymous union shall be
816        //   distinct from the names of any other entity in the
817        //   scope in which the anonymous union is declared.
818        unsigned diagKind
819          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
820                                 : diag::err_anonymous_struct_member_redecl;
821        Diag((*F)->getLocation(), diagKind)
822          << (*F)->getDeclName();
823        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
824        Invalid = true;
825      } else {
826        // C++ [class.union]p2:
827        //   For the purpose of name lookup, after the anonymous union
828        //   definition, the members of the anonymous union are
829        //   considered to have been defined in the scope in which the
830        //   anonymous union is declared.
831        Owner->makeDeclVisibleInContext(*F);
832        S->AddDecl(*F);
833        IdResolver.AddDecl(*F);
834      }
835    } else if (const RecordType *InnerRecordType
836                 = (*F)->getType()->getAsRecordType()) {
837      RecordDecl *InnerRecord = InnerRecordType->getDecl();
838      if (InnerRecord->isAnonymousStructOrUnion())
839        Invalid = Invalid ||
840          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
841    }
842  }
843
844  return Invalid;
845}
846
847/// ActOnAnonymousStructOrUnion - Handle the declaration of an
848/// anonymous structure or union. Anonymous unions are a C++ feature
849/// (C++ [class.union]) and a GNU C extension; anonymous structures
850/// are a GNU C and GNU C++ extension.
851Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
852                                                RecordDecl *Record) {
853  DeclContext *Owner = Record->getDeclContext();
854
855  // Diagnose whether this anonymous struct/union is an extension.
856  if (Record->isUnion() && !getLangOptions().CPlusPlus)
857    Diag(Record->getLocation(), diag::ext_anonymous_union);
858  else if (!Record->isUnion())
859    Diag(Record->getLocation(), diag::ext_anonymous_struct);
860
861  // C and C++ require different kinds of checks for anonymous
862  // structs/unions.
863  bool Invalid = false;
864  if (getLangOptions().CPlusPlus) {
865    const char* PrevSpec = 0;
866    // C++ [class.union]p3:
867    //   Anonymous unions declared in a named namespace or in the
868    //   global namespace shall be declared static.
869    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
870        (isa<TranslationUnitDecl>(Owner) ||
871         (isa<NamespaceDecl>(Owner) &&
872          cast<NamespaceDecl>(Owner)->getDeclName()))) {
873      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
874      Invalid = true;
875
876      // Recover by adding 'static'.
877      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
878    }
879    // C++ [class.union]p3:
880    //   A storage class is not allowed in a declaration of an
881    //   anonymous union in a class scope.
882    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
883             isa<RecordDecl>(Owner)) {
884      Diag(DS.getStorageClassSpecLoc(),
885           diag::err_anonymous_union_with_storage_spec);
886      Invalid = true;
887
888      // Recover by removing the storage specifier.
889      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
890                             PrevSpec);
891    }
892
893    // C++ [class.union]p2:
894    //   The member-specification of an anonymous union shall only
895    //   define non-static data members. [Note: nested types and
896    //   functions cannot be declared within an anonymous union. ]
897    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
898                                 MemEnd = Record->decls_end();
899         Mem != MemEnd; ++Mem) {
900      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
901        // C++ [class.union]p3:
902        //   An anonymous union shall not have private or protected
903        //   members (clause 11).
904        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
905          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
906            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
907          Invalid = true;
908        }
909      } else if ((*Mem)->isImplicit()) {
910        // Any implicit members are fine.
911      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
912        // This is a type that showed up in an
913        // elaborated-type-specifier inside the anonymous struct or
914        // union, but which actually declares a type outside of the
915        // anonymous struct or union. It's okay.
916      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
917        if (!MemRecord->isAnonymousStructOrUnion() &&
918            MemRecord->getDeclName()) {
919          // This is a nested type declaration.
920          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
921            << (int)Record->isUnion();
922          Invalid = true;
923        }
924      } else {
925        // We have something that isn't a non-static data
926        // member. Complain about it.
927        unsigned DK = diag::err_anonymous_record_bad_member;
928        if (isa<TypeDecl>(*Mem))
929          DK = diag::err_anonymous_record_with_type;
930        else if (isa<FunctionDecl>(*Mem))
931          DK = diag::err_anonymous_record_with_function;
932        else if (isa<VarDecl>(*Mem))
933          DK = diag::err_anonymous_record_with_static;
934        Diag((*Mem)->getLocation(), DK)
935            << (int)Record->isUnion();
936          Invalid = true;
937      }
938    }
939  } else {
940    // FIXME: Check GNU C semantics
941    if (Record->isUnion() && !Owner->isRecord()) {
942      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
943        << (int)getLangOptions().CPlusPlus;
944      Invalid = true;
945    }
946  }
947
948  if (!Record->isUnion() && !Owner->isRecord()) {
949    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
950      << (int)getLangOptions().CPlusPlus;
951    Invalid = true;
952  }
953
954  // Create a declaration for this anonymous struct/union.
955  NamedDecl *Anon = 0;
956  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
957    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
958                             /*IdentifierInfo=*/0,
959                             Context.getTypeDeclType(Record),
960                             /*BitWidth=*/0, /*Mutable=*/false);
961    Anon->setAccess(AS_public);
962    if (getLangOptions().CPlusPlus)
963      FieldCollector->Add(cast<FieldDecl>(Anon));
964  } else {
965    VarDecl::StorageClass SC;
966    switch (DS.getStorageClassSpec()) {
967    default: assert(0 && "Unknown storage class!");
968    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
969    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
970    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
971    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
972    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
973    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
974    case DeclSpec::SCS_mutable:
975      // mutable can only appear on non-static class members, so it's always
976      // an error here
977      Diag(Record->getLocation(), diag::err_mutable_nonmember);
978      Invalid = true;
979      SC = VarDecl::None;
980      break;
981    }
982
983    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
984                           /*IdentifierInfo=*/0,
985                           Context.getTypeDeclType(Record),
986                           SC, DS.getSourceRange().getBegin());
987  }
988  Anon->setImplicit();
989
990  // Add the anonymous struct/union object to the current
991  // context. We'll be referencing this object when we refer to one of
992  // its members.
993  Owner->addDecl(Anon);
994
995  // Inject the members of the anonymous struct/union into the owning
996  // context and into the identifier resolver chain for name lookup
997  // purposes.
998  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
999    Invalid = true;
1000
1001  // Mark this as an anonymous struct/union type. Note that we do not
1002  // do this until after we have already checked and injected the
1003  // members of this anonymous struct/union type, because otherwise
1004  // the members could be injected twice: once by DeclContext when it
1005  // builds its lookup table, and once by
1006  // InjectAnonymousStructOrUnionMembers.
1007  Record->setAnonymousStructOrUnion(true);
1008
1009  if (Invalid)
1010    Anon->setInvalidDecl();
1011
1012  return Anon;
1013}
1014
1015bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1016                                  bool DirectInit) {
1017  // Get the type before calling CheckSingleAssignmentConstraints(), since
1018  // it can promote the expression.
1019  QualType InitType = Init->getType();
1020
1021  if (getLangOptions().CPlusPlus) {
1022    // FIXME: I dislike this error message. A lot.
1023    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1024      return Diag(Init->getSourceRange().getBegin(),
1025                  diag::err_typecheck_convert_incompatible)
1026        << DeclType << Init->getType() << "initializing"
1027        << Init->getSourceRange();
1028
1029    return false;
1030  }
1031
1032  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1033  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1034                                  InitType, Init, "initializing");
1035}
1036
1037bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1038  const ArrayType *AT = Context.getAsArrayType(DeclT);
1039
1040  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1041    // C99 6.7.8p14. We have an array of character type with unknown size
1042    // being initialized to a string literal.
1043    llvm::APSInt ConstVal(32);
1044    ConstVal = strLiteral->getByteLength() + 1;
1045    // Return a new array type (C99 6.7.8p22).
1046    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1047                                         ArrayType::Normal, 0);
1048  } else {
1049    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1050    // C99 6.7.8p14. We have an array of character type with known size.
1051    // FIXME: Avoid truncation for 64-bit length strings.
1052    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1053      Diag(strLiteral->getSourceRange().getBegin(),
1054           diag::warn_initializer_string_for_char_array_too_long)
1055        << strLiteral->getSourceRange();
1056  }
1057  // Set type from "char *" to "constant array of char".
1058  strLiteral->setType(DeclT);
1059  // For now, we always return false (meaning success).
1060  return false;
1061}
1062
1063StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1064  const ArrayType *AT = Context.getAsArrayType(DeclType);
1065  if (AT && AT->getElementType()->isCharType()) {
1066    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1067  }
1068  return 0;
1069}
1070
1071bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1072                                 SourceLocation InitLoc,
1073                                 DeclarationName InitEntity,
1074                                 bool DirectInit) {
1075  if (DeclType->isDependentType() || Init->isTypeDependent())
1076    return false;
1077
1078  // C++ [dcl.init.ref]p1:
1079  //   A variable declared to be a T&, that is "reference to type T"
1080  //   (8.3.2), shall be initialized by an object, or function, of
1081  //   type T or by an object that can be converted into a T.
1082  if (DeclType->isReferenceType())
1083    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1084
1085  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1086  // of unknown size ("[]") or an object type that is not a variable array type.
1087  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1088    return Diag(InitLoc,  diag::err_variable_object_no_init)
1089      << VAT->getSizeExpr()->getSourceRange();
1090
1091  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1092  if (!InitList) {
1093    // FIXME: Handle wide strings
1094    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1095      return CheckStringLiteralInit(strLiteral, DeclType);
1096
1097    // C++ [dcl.init]p14:
1098    //   -- If the destination type is a (possibly cv-qualified) class
1099    //      type:
1100    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1101      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1102      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1103
1104      //   -- If the initialization is direct-initialization, or if it is
1105      //      copy-initialization where the cv-unqualified version of the
1106      //      source type is the same class as, or a derived class of, the
1107      //      class of the destination, constructors are considered.
1108      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1109          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1110        CXXConstructorDecl *Constructor
1111          = PerformInitializationByConstructor(DeclType, &Init, 1,
1112                                               InitLoc, Init->getSourceRange(),
1113                                               InitEntity,
1114                                               DirectInit? IK_Direct : IK_Copy);
1115        return Constructor == 0;
1116      }
1117
1118      //   -- Otherwise (i.e., for the remaining copy-initialization
1119      //      cases), user-defined conversion sequences that can
1120      //      convert from the source type to the destination type or
1121      //      (when a conversion function is used) to a derived class
1122      //      thereof are enumerated as described in 13.3.1.4, and the
1123      //      best one is chosen through overload resolution
1124      //      (13.3). If the conversion cannot be done or is
1125      //      ambiguous, the initialization is ill-formed. The
1126      //      function selected is called with the initializer
1127      //      expression as its argument; if the function is a
1128      //      constructor, the call initializes a temporary of the
1129      //      destination type.
1130      // FIXME: We're pretending to do copy elision here; return to
1131      // this when we have ASTs for such things.
1132      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1133        return false;
1134
1135      if (InitEntity)
1136        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1137          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1138          << Init->getType() << Init->getSourceRange();
1139      else
1140        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1141          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1142          << Init->getType() << Init->getSourceRange();
1143    }
1144
1145    // C99 6.7.8p16.
1146    if (DeclType->isArrayType())
1147      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1148        << Init->getSourceRange();
1149
1150    return CheckSingleInitializer(Init, DeclType, DirectInit);
1151  }
1152
1153  bool hadError = CheckInitList(InitList, DeclType);
1154  Init = InitList;
1155  return hadError;
1156}
1157
1158/// GetNameForDeclarator - Determine the full declaration name for the
1159/// given Declarator.
1160DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1161  switch (D.getKind()) {
1162  case Declarator::DK_Abstract:
1163    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1164    return DeclarationName();
1165
1166  case Declarator::DK_Normal:
1167    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1168    return DeclarationName(D.getIdentifier());
1169
1170  case Declarator::DK_Constructor: {
1171    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1172    Ty = Context.getCanonicalType(Ty);
1173    return Context.DeclarationNames.getCXXConstructorName(Ty);
1174  }
1175
1176  case Declarator::DK_Destructor: {
1177    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1178    Ty = Context.getCanonicalType(Ty);
1179    return Context.DeclarationNames.getCXXDestructorName(Ty);
1180  }
1181
1182  case Declarator::DK_Conversion: {
1183    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1184    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1185    Ty = Context.getCanonicalType(Ty);
1186    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1187  }
1188
1189  case Declarator::DK_Operator:
1190    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1191    return Context.DeclarationNames.getCXXOperatorName(
1192                                                D.getOverloadedOperator());
1193  }
1194
1195  assert(false && "Unknown name kind");
1196  return DeclarationName();
1197}
1198
1199/// isNearlyMatchingFunction - Determine whether the C++ functions
1200/// Declaration and Definition are "nearly" matching. This heuristic
1201/// is used to improve diagnostics in the case where an out-of-line
1202/// function definition doesn't match any declaration within
1203/// the class or namespace.
1204static bool isNearlyMatchingFunction(ASTContext &Context,
1205                                     FunctionDecl *Declaration,
1206                                     FunctionDecl *Definition) {
1207  if (Declaration->param_size() != Definition->param_size())
1208    return false;
1209  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1210    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1211    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1212
1213    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1214    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1215    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1216      return false;
1217  }
1218
1219  return true;
1220}
1221
1222Sema::DeclTy *
1223Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1224                      bool IsFunctionDefinition) {
1225  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1226  DeclarationName Name = GetNameForDeclarator(D);
1227
1228  // All of these full declarators require an identifier.  If it doesn't have
1229  // one, the ParsedFreeStandingDeclSpec action should be used.
1230  if (!Name) {
1231    if (!D.getInvalidType())  // Reject this if we think it is valid.
1232      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1233           diag::err_declarator_need_ident)
1234        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1235    return 0;
1236  }
1237
1238  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1239  // we find one that is.
1240  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1241         (S->getFlags() & Scope::TemplateParamScope) != 0)
1242    S = S->getParent();
1243
1244  DeclContext *DC;
1245  NamedDecl *PrevDecl;
1246  NamedDecl *New;
1247  bool InvalidDecl = false;
1248
1249  // See if this is a redefinition of a variable in the same scope.
1250  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1251    DC = CurContext;
1252    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1253                          D.getIdentifierLoc());
1254  } else { // Something like "int foo::x;"
1255    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1256    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1257
1258    // C++ 7.3.1.2p2:
1259    // Members (including explicit specializations of templates) of a named
1260    // namespace can also be defined outside that namespace by explicit
1261    // qualification of the name being defined, provided that the entity being
1262    // defined was already declared in the namespace and the definition appears
1263    // after the point of declaration in a namespace that encloses the
1264    // declarations namespace.
1265    //
1266    // Note that we only check the context at this point. We don't yet
1267    // have enough information to make sure that PrevDecl is actually
1268    // the declaration we want to match. For example, given:
1269    //
1270    //   class X {
1271    //     void f();
1272    //     void f(float);
1273    //   };
1274    //
1275    //   void X::f(int) { } // ill-formed
1276    //
1277    // In this case, PrevDecl will point to the overload set
1278    // containing the two f's declared in X, but neither of them
1279    // matches.
1280
1281    // First check whether we named the global scope.
1282    if (isa<TranslationUnitDecl>(DC)) {
1283      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1284        << Name << D.getCXXScopeSpec().getRange();
1285    } else if (!CurContext->Encloses(DC)) {
1286      // The qualifying scope doesn't enclose the original declaration.
1287      // Emit diagnostic based on current scope.
1288      SourceLocation L = D.getIdentifierLoc();
1289      SourceRange R = D.getCXXScopeSpec().getRange();
1290      if (isa<FunctionDecl>(CurContext))
1291        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1292      else
1293        Diag(L, diag::err_invalid_declarator_scope)
1294          << Name << cast<NamedDecl>(DC) << R;
1295      InvalidDecl = true;
1296    }
1297  }
1298
1299  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1300    // Maybe we will complain about the shadowed template parameter.
1301    InvalidDecl = InvalidDecl
1302      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1303    // Just pretend that we didn't see the previous declaration.
1304    PrevDecl = 0;
1305  }
1306
1307  // In C++, the previous declaration we find might be a tag type
1308  // (class or enum). In this case, the new declaration will hide the
1309  // tag type. Note that this does does not apply if we're declaring a
1310  // typedef (C++ [dcl.typedef]p4).
1311  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1312      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1313    PrevDecl = 0;
1314
1315  QualType R = GetTypeForDeclarator(D, S);
1316  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1317
1318  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1319    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1320                                 InvalidDecl);
1321  } else if (R.getTypePtr()->isFunctionType()) {
1322    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1323                                  IsFunctionDefinition, InvalidDecl);
1324  } else {
1325    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1326                                  InvalidDecl);
1327  }
1328
1329  if (New == 0)
1330    return 0;
1331
1332  // Set the lexical context. If the declarator has a C++ scope specifier, the
1333  // lexical context will be different from the semantic context.
1334  New->setLexicalDeclContext(CurContext);
1335
1336  // If this has an identifier, add it to the scope stack.
1337  if (Name)
1338    PushOnScopeChains(New, S);
1339  // If any semantic error occurred, mark the decl as invalid.
1340  if (D.getInvalidType() || InvalidDecl)
1341    New->setInvalidDecl();
1342
1343  return New;
1344}
1345
1346NamedDecl*
1347Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1348                             QualType R, Decl* LastDeclarator,
1349                             Decl* PrevDecl, bool& InvalidDecl) {
1350  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1351  if (D.getCXXScopeSpec().isSet()) {
1352    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1353      << D.getCXXScopeSpec().getRange();
1354    InvalidDecl = true;
1355    // Pretend we didn't see the scope specifier.
1356    DC = 0;
1357  }
1358
1359  // Check that there are no default arguments (C++ only).
1360  if (getLangOptions().CPlusPlus)
1361    CheckExtraCXXDefaultArguments(D);
1362
1363  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1364  if (!NewTD) return 0;
1365
1366  // Handle attributes prior to checking for duplicates in MergeVarDecl
1367  ProcessDeclAttributes(NewTD, D);
1368  // Merge the decl with the existing one if appropriate. If the decl is
1369  // in an outer scope, it isn't the same thing.
1370  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1371    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1372    if (NewTD == 0) return 0;
1373  }
1374
1375  if (S->getFnParent() == 0) {
1376    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1377    // then it shall have block scope.
1378    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1379      if (NewTD->getUnderlyingType()->isVariableArrayType())
1380        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1381      else
1382        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1383
1384      InvalidDecl = true;
1385    }
1386  }
1387  return NewTD;
1388}
1389
1390NamedDecl*
1391Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1392                              QualType R, Decl* LastDeclarator,
1393                              Decl* PrevDecl, bool& InvalidDecl) {
1394  DeclarationName Name = GetNameForDeclarator(D);
1395
1396  // Check that there are no default arguments (C++ only).
1397  if (getLangOptions().CPlusPlus)
1398    CheckExtraCXXDefaultArguments(D);
1399
1400  if (R.getTypePtr()->isObjCInterfaceType()) {
1401    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1402      << D.getIdentifier();
1403    InvalidDecl = true;
1404  }
1405
1406  VarDecl *NewVD;
1407  VarDecl::StorageClass SC;
1408  switch (D.getDeclSpec().getStorageClassSpec()) {
1409  default: assert(0 && "Unknown storage class!");
1410  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1411  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1412  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1413  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1414  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1415  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1416  case DeclSpec::SCS_mutable:
1417    // mutable can only appear on non-static class members, so it's always
1418    // an error here
1419    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1420    InvalidDecl = true;
1421    SC = VarDecl::None;
1422    break;
1423  }
1424
1425  IdentifierInfo *II = Name.getAsIdentifierInfo();
1426  if (!II) {
1427    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1428      << Name.getAsString();
1429    return 0;
1430  }
1431
1432  if (DC->isRecord()) {
1433    // This is a static data member for a C++ class.
1434    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1435                                    D.getIdentifierLoc(), II,
1436                                    R);
1437  } else {
1438    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1439    if (S->getFnParent() == 0) {
1440      // C99 6.9p2: The storage-class specifiers auto and register shall not
1441      // appear in the declaration specifiers in an external declaration.
1442      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1443        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1444        InvalidDecl = true;
1445      }
1446    }
1447    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1448                            II, R, SC,
1449                            // FIXME: Move to DeclGroup...
1450                            D.getDeclSpec().getSourceRange().getBegin());
1451    NewVD->setThreadSpecified(ThreadSpecified);
1452  }
1453  NewVD->setNextDeclarator(LastDeclarator);
1454
1455  // Handle attributes prior to checking for duplicates in MergeVarDecl
1456  ProcessDeclAttributes(NewVD, D);
1457
1458  // Handle GNU asm-label extension (encoded as an attribute).
1459  if (Expr *E = (Expr*) D.getAsmLabel()) {
1460    // The parser guarantees this is a string.
1461    StringLiteral *SE = cast<StringLiteral>(E);
1462    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1463                                                SE->getByteLength())));
1464  }
1465
1466  // Emit an error if an address space was applied to decl with local storage.
1467  // This includes arrays of objects with address space qualifiers, but not
1468  // automatic variables that point to other address spaces.
1469  // ISO/IEC TR 18037 S5.1.2
1470  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1471    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1472    InvalidDecl = true;
1473  }
1474  // Merge the decl with the existing one if appropriate. If the decl is
1475  // in an outer scope, it isn't the same thing.
1476  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1477    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1478      // The user tried to define a non-static data member
1479      // out-of-line (C++ [dcl.meaning]p1).
1480      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1481        << D.getCXXScopeSpec().getRange();
1482      NewVD->Destroy(Context);
1483      return 0;
1484    }
1485
1486    NewVD = MergeVarDecl(NewVD, PrevDecl);
1487    if (NewVD == 0) return 0;
1488
1489    if (D.getCXXScopeSpec().isSet()) {
1490      // No previous declaration in the qualifying scope.
1491      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1492        << Name << D.getCXXScopeSpec().getRange();
1493      InvalidDecl = true;
1494    }
1495  }
1496  return NewVD;
1497}
1498
1499NamedDecl*
1500Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1501                              QualType R, Decl *LastDeclarator,
1502                              Decl* PrevDecl, bool IsFunctionDefinition,
1503                              bool& InvalidDecl) {
1504  assert(R.getTypePtr()->isFunctionType());
1505
1506  DeclarationName Name = GetNameForDeclarator(D);
1507  FunctionDecl::StorageClass SC = FunctionDecl::None;
1508  switch (D.getDeclSpec().getStorageClassSpec()) {
1509  default: assert(0 && "Unknown storage class!");
1510  case DeclSpec::SCS_auto:
1511  case DeclSpec::SCS_register:
1512  case DeclSpec::SCS_mutable:
1513    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1514    InvalidDecl = true;
1515    break;
1516  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1517  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1518  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1519  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1520  }
1521
1522  bool isInline = D.getDeclSpec().isInlineSpecified();
1523  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1524  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1525
1526  FunctionDecl *NewFD;
1527  if (D.getKind() == Declarator::DK_Constructor) {
1528    // This is a C++ constructor declaration.
1529    assert(DC->isRecord() &&
1530           "Constructors can only be declared in a member context");
1531
1532    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1533
1534    // Create the new declaration
1535    NewFD = CXXConstructorDecl::Create(Context,
1536                                       cast<CXXRecordDecl>(DC),
1537                                       D.getIdentifierLoc(), Name, R,
1538                                       isExplicit, isInline,
1539                                       /*isImplicitlyDeclared=*/false);
1540
1541    if (InvalidDecl)
1542      NewFD->setInvalidDecl();
1543  } else if (D.getKind() == Declarator::DK_Destructor) {
1544    // This is a C++ destructor declaration.
1545    if (DC->isRecord()) {
1546      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1547
1548      NewFD = CXXDestructorDecl::Create(Context,
1549                                        cast<CXXRecordDecl>(DC),
1550                                        D.getIdentifierLoc(), Name, R,
1551                                        isInline,
1552                                        /*isImplicitlyDeclared=*/false);
1553
1554      if (InvalidDecl)
1555        NewFD->setInvalidDecl();
1556    } else {
1557      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1558
1559      // Create a FunctionDecl to satisfy the function definition parsing
1560      // code path.
1561      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1562                                   Name, R, SC, isInline,
1563                                   // FIXME: Move to DeclGroup...
1564                                   D.getDeclSpec().getSourceRange().getBegin());
1565      InvalidDecl = true;
1566      NewFD->setInvalidDecl();
1567    }
1568  } else if (D.getKind() == Declarator::DK_Conversion) {
1569    if (!DC->isRecord()) {
1570      Diag(D.getIdentifierLoc(),
1571           diag::err_conv_function_not_member);
1572      return 0;
1573    } else {
1574      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1575
1576      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1577                                        D.getIdentifierLoc(), Name, R,
1578                                        isInline, isExplicit);
1579
1580      if (InvalidDecl)
1581        NewFD->setInvalidDecl();
1582    }
1583  } else if (DC->isRecord()) {
1584    // This is a C++ method declaration.
1585    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1586                                  D.getIdentifierLoc(), Name, R,
1587                                  (SC == FunctionDecl::Static), isInline);
1588  } else {
1589    NewFD = FunctionDecl::Create(Context, DC,
1590                                 D.getIdentifierLoc(),
1591                                 Name, R, SC, isInline,
1592                                 // FIXME: Move to DeclGroup...
1593                                 D.getDeclSpec().getSourceRange().getBegin());
1594  }
1595  NewFD->setNextDeclarator(LastDeclarator);
1596
1597  // Set the lexical context. If the declarator has a C++
1598  // scope specifier, the lexical context will be different
1599  // from the semantic context.
1600  NewFD->setLexicalDeclContext(CurContext);
1601
1602  // Handle GNU asm-label extension (encoded as an attribute).
1603  if (Expr *E = (Expr*) D.getAsmLabel()) {
1604    // The parser guarantees this is a string.
1605    StringLiteral *SE = cast<StringLiteral>(E);
1606    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1607                                                SE->getByteLength())));
1608  }
1609
1610  // Copy the parameter declarations from the declarator D to
1611  // the function declaration NewFD, if they are available.
1612  if (D.getNumTypeObjects() > 0) {
1613    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1614
1615    // Create Decl objects for each parameter, adding them to the
1616    // FunctionDecl.
1617    llvm::SmallVector<ParmVarDecl*, 16> Params;
1618
1619    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1620    // function that takes no arguments, not a function that takes a
1621    // single void argument.
1622    // We let through "const void" here because Sema::GetTypeForDeclarator
1623    // already checks for that case.
1624    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1625        FTI.ArgInfo[0].Param &&
1626        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1627      // empty arg list, don't push any params.
1628      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1629
1630      // In C++, the empty parameter-type-list must be spelled "void"; a
1631      // typedef of void is not permitted.
1632      if (getLangOptions().CPlusPlus &&
1633          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1634        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1635      }
1636    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1637      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1638        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1639    }
1640
1641    NewFD->setParams(Context, &Params[0], Params.size());
1642  } else if (R->getAsTypedefType()) {
1643    // When we're declaring a function with a typedef, as in the
1644    // following example, we'll need to synthesize (unnamed)
1645    // parameters for use in the declaration.
1646    //
1647    // @code
1648    // typedef void fn(int);
1649    // fn f;
1650    // @endcode
1651    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1652    if (!FT) {
1653      // This is a typedef of a function with no prototype, so we
1654      // don't need to do anything.
1655    } else if ((FT->getNumArgs() == 0) ||
1656               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1657                FT->getArgType(0)->isVoidType())) {
1658      // This is a zero-argument function. We don't need to do anything.
1659    } else {
1660      // Synthesize a parameter for each argument type.
1661      llvm::SmallVector<ParmVarDecl*, 16> Params;
1662      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1663           ArgType != FT->arg_type_end(); ++ArgType) {
1664        Params.push_back(ParmVarDecl::Create(Context, DC,
1665                                             SourceLocation(), 0,
1666                                             *ArgType, VarDecl::None,
1667                                             0));
1668      }
1669
1670      NewFD->setParams(Context, &Params[0], Params.size());
1671    }
1672  }
1673
1674  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1675    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1676  else if (isa<CXXDestructorDecl>(NewFD)) {
1677    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1678    Record->setUserDeclaredDestructor(true);
1679    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1680    // user-defined destructor.
1681    Record->setPOD(false);
1682  } else if (CXXConversionDecl *Conversion =
1683             dyn_cast<CXXConversionDecl>(NewFD))
1684    ActOnConversionDeclarator(Conversion);
1685
1686  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1687  if (NewFD->isOverloadedOperator() &&
1688      CheckOverloadedOperatorDeclaration(NewFD))
1689    NewFD->setInvalidDecl();
1690
1691  // Merge the decl with the existing one if appropriate. Since C functions
1692  // are in a flat namespace, make sure we consider decls in outer scopes.
1693  bool OverloadableAttrRequired = false;
1694  bool Redeclaration = false;
1695  if (PrevDecl &&
1696      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1697    // Determine whether NewFD is an overload of PrevDecl or
1698    // a declaration that requires merging. If it's an overload,
1699    // there's no more work to do here; we'll just add the new
1700    // function to the scope.
1701    OverloadedFunctionDecl::function_iterator MatchedDecl;
1702
1703    if (!getLangOptions().CPlusPlus &&
1704        AllowOverloadingOfFunction(PrevDecl, Context))
1705      OverloadableAttrRequired = true;
1706
1707    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1708        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1709      Decl *OldDecl = PrevDecl;
1710
1711      // If PrevDecl was an overloaded function, extract the
1712      // FunctionDecl that matched.
1713      if (isa<OverloadedFunctionDecl>(PrevDecl))
1714        OldDecl = *MatchedDecl;
1715
1716      // NewFD and PrevDecl represent declarations that need to be
1717      // merged.
1718      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1719
1720      if (NewFD == 0) return 0;
1721      if (Redeclaration) {
1722        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1723
1724        // An out-of-line member function declaration must also be a
1725        // definition (C++ [dcl.meaning]p1).
1726        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1727            !InvalidDecl) {
1728          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1729            << D.getCXXScopeSpec().getRange();
1730          NewFD->setInvalidDecl();
1731        }
1732      }
1733    }
1734  }
1735
1736  if (D.getCXXScopeSpec().isSet() &&
1737      (!PrevDecl || !Redeclaration)) {
1738    // The user tried to provide an out-of-line definition for a
1739    // function that is a member of a class or namespace, but there
1740    // was no such member function declared (C++ [class.mfct]p2,
1741    // C++ [namespace.memdef]p2). For example:
1742    //
1743    // class X {
1744    //   void f() const;
1745    // };
1746    //
1747    // void X::f() { } // ill-formed
1748    //
1749    // Complain about this problem, and attempt to suggest close
1750    // matches (e.g., those that differ only in cv-qualifiers and
1751    // whether the parameter types are references).
1752    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1753      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1754    InvalidDecl = true;
1755
1756    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1757                                            true);
1758    assert(!Prev.isAmbiguous() &&
1759           "Cannot have an ambiguity in previous-declaration lookup");
1760    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1761         Func != FuncEnd; ++Func) {
1762      if (isa<FunctionDecl>(*Func) &&
1763          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1764        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1765    }
1766
1767    PrevDecl = 0;
1768  }
1769
1770  // Handle attributes. We need to have merged decls when handling attributes
1771  // (for example to check for conflicts, etc).
1772  ProcessDeclAttributes(NewFD, D);
1773  AddKnownFunctionAttributes(NewFD);
1774
1775  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1776    // If a function name is overloadable in C, then every function
1777    // with that name must be marked "overloadable".
1778    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1779      << Redeclaration << NewFD;
1780    if (PrevDecl)
1781      Diag(PrevDecl->getLocation(),
1782           diag::note_attribute_overloadable_prev_overload);
1783    NewFD->addAttr(new OverloadableAttr);
1784  }
1785
1786  if (getLangOptions().CPlusPlus) {
1787    // In C++, check default arguments now that we have merged decls. Unless
1788    // the lexical context is the class, because in this case this is done
1789    // during delayed parsing anyway.
1790    if (!CurContext->isRecord())
1791      CheckCXXDefaultArguments(NewFD);
1792
1793    // An out-of-line member function declaration must also be a
1794    // definition (C++ [dcl.meaning]p1).
1795    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1796      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1797        << D.getCXXScopeSpec().getRange();
1798      InvalidDecl = true;
1799    }
1800  }
1801  return NewFD;
1802}
1803
1804void Sema::InitializerElementNotConstant(const Expr *Init) {
1805  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1806    << Init->getSourceRange();
1807}
1808
1809bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1810  switch (Init->getStmtClass()) {
1811  default:
1812    InitializerElementNotConstant(Init);
1813    return true;
1814  case Expr::ParenExprClass: {
1815    const ParenExpr* PE = cast<ParenExpr>(Init);
1816    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1817  }
1818  case Expr::CompoundLiteralExprClass:
1819    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1820  case Expr::DeclRefExprClass:
1821  case Expr::QualifiedDeclRefExprClass: {
1822    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1823    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1824      if (VD->hasGlobalStorage())
1825        return false;
1826      InitializerElementNotConstant(Init);
1827      return true;
1828    }
1829    if (isa<FunctionDecl>(D))
1830      return false;
1831    InitializerElementNotConstant(Init);
1832    return true;
1833  }
1834  case Expr::MemberExprClass: {
1835    const MemberExpr *M = cast<MemberExpr>(Init);
1836    if (M->isArrow())
1837      return CheckAddressConstantExpression(M->getBase());
1838    return CheckAddressConstantExpressionLValue(M->getBase());
1839  }
1840  case Expr::ArraySubscriptExprClass: {
1841    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1842    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1843    return CheckAddressConstantExpression(ASE->getBase()) ||
1844           CheckArithmeticConstantExpression(ASE->getIdx());
1845  }
1846  case Expr::StringLiteralClass:
1847  case Expr::PredefinedExprClass:
1848    return false;
1849  case Expr::UnaryOperatorClass: {
1850    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1851
1852    // C99 6.6p9
1853    if (Exp->getOpcode() == UnaryOperator::Deref)
1854      return CheckAddressConstantExpression(Exp->getSubExpr());
1855
1856    InitializerElementNotConstant(Init);
1857    return true;
1858  }
1859  }
1860}
1861
1862bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1863  switch (Init->getStmtClass()) {
1864  default:
1865    InitializerElementNotConstant(Init);
1866    return true;
1867  case Expr::ParenExprClass:
1868    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1869  case Expr::StringLiteralClass:
1870  case Expr::ObjCStringLiteralClass:
1871    return false;
1872  case Expr::CallExprClass:
1873  case Expr::CXXOperatorCallExprClass:
1874    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1875    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1876           Builtin::BI__builtin___CFStringMakeConstantString)
1877      return false;
1878
1879    InitializerElementNotConstant(Init);
1880    return true;
1881
1882  case Expr::UnaryOperatorClass: {
1883    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1884
1885    // C99 6.6p9
1886    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1887      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1888
1889    if (Exp->getOpcode() == UnaryOperator::Extension)
1890      return CheckAddressConstantExpression(Exp->getSubExpr());
1891
1892    InitializerElementNotConstant(Init);
1893    return true;
1894  }
1895  case Expr::BinaryOperatorClass: {
1896    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1897    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1898
1899    Expr *PExp = Exp->getLHS();
1900    Expr *IExp = Exp->getRHS();
1901    if (IExp->getType()->isPointerType())
1902      std::swap(PExp, IExp);
1903
1904    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1905    return CheckAddressConstantExpression(PExp) ||
1906           CheckArithmeticConstantExpression(IExp);
1907  }
1908  case Expr::ImplicitCastExprClass:
1909  case Expr::CStyleCastExprClass: {
1910    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1911    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1912      // Check for implicit promotion
1913      if (SubExpr->getType()->isFunctionType() ||
1914          SubExpr->getType()->isArrayType())
1915        return CheckAddressConstantExpressionLValue(SubExpr);
1916    }
1917
1918    // Check for pointer->pointer cast
1919    if (SubExpr->getType()->isPointerType())
1920      return CheckAddressConstantExpression(SubExpr);
1921
1922    if (SubExpr->getType()->isIntegralType()) {
1923      // Check for the special-case of a pointer->int->pointer cast;
1924      // this isn't standard, but some code requires it. See
1925      // PR2720 for an example.
1926      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1927        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1928          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1929          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1930          if (IntWidth >= PointerWidth) {
1931            return CheckAddressConstantExpression(SubCast->getSubExpr());
1932          }
1933        }
1934      }
1935    }
1936    if (SubExpr->getType()->isArithmeticType()) {
1937      return CheckArithmeticConstantExpression(SubExpr);
1938    }
1939
1940    InitializerElementNotConstant(Init);
1941    return true;
1942  }
1943  case Expr::ConditionalOperatorClass: {
1944    // FIXME: Should we pedwarn here?
1945    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1946    if (!Exp->getCond()->getType()->isArithmeticType()) {
1947      InitializerElementNotConstant(Init);
1948      return true;
1949    }
1950    if (CheckArithmeticConstantExpression(Exp->getCond()))
1951      return true;
1952    if (Exp->getLHS() &&
1953        CheckAddressConstantExpression(Exp->getLHS()))
1954      return true;
1955    return CheckAddressConstantExpression(Exp->getRHS());
1956  }
1957  case Expr::AddrLabelExprClass:
1958    return false;
1959  }
1960}
1961
1962static const Expr* FindExpressionBaseAddress(const Expr* E);
1963
1964static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1965  switch (E->getStmtClass()) {
1966  default:
1967    return E;
1968  case Expr::ParenExprClass: {
1969    const ParenExpr* PE = cast<ParenExpr>(E);
1970    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1971  }
1972  case Expr::MemberExprClass: {
1973    const MemberExpr *M = cast<MemberExpr>(E);
1974    if (M->isArrow())
1975      return FindExpressionBaseAddress(M->getBase());
1976    return FindExpressionBaseAddressLValue(M->getBase());
1977  }
1978  case Expr::ArraySubscriptExprClass: {
1979    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1980    return FindExpressionBaseAddress(ASE->getBase());
1981  }
1982  case Expr::UnaryOperatorClass: {
1983    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1984
1985    if (Exp->getOpcode() == UnaryOperator::Deref)
1986      return FindExpressionBaseAddress(Exp->getSubExpr());
1987
1988    return E;
1989  }
1990  }
1991}
1992
1993static const Expr* FindExpressionBaseAddress(const Expr* E) {
1994  switch (E->getStmtClass()) {
1995  default:
1996    return E;
1997  case Expr::ParenExprClass: {
1998    const ParenExpr* PE = cast<ParenExpr>(E);
1999    return FindExpressionBaseAddress(PE->getSubExpr());
2000  }
2001  case Expr::UnaryOperatorClass: {
2002    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2003
2004    // C99 6.6p9
2005    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2006      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2007
2008    if (Exp->getOpcode() == UnaryOperator::Extension)
2009      return FindExpressionBaseAddress(Exp->getSubExpr());
2010
2011    return E;
2012  }
2013  case Expr::BinaryOperatorClass: {
2014    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2015
2016    Expr *PExp = Exp->getLHS();
2017    Expr *IExp = Exp->getRHS();
2018    if (IExp->getType()->isPointerType())
2019      std::swap(PExp, IExp);
2020
2021    return FindExpressionBaseAddress(PExp);
2022  }
2023  case Expr::ImplicitCastExprClass: {
2024    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2025
2026    // Check for implicit promotion
2027    if (SubExpr->getType()->isFunctionType() ||
2028        SubExpr->getType()->isArrayType())
2029      return FindExpressionBaseAddressLValue(SubExpr);
2030
2031    // Check for pointer->pointer cast
2032    if (SubExpr->getType()->isPointerType())
2033      return FindExpressionBaseAddress(SubExpr);
2034
2035    // We assume that we have an arithmetic expression here;
2036    // if we don't, we'll figure it out later
2037    return 0;
2038  }
2039  case Expr::CStyleCastExprClass: {
2040    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2041
2042    // Check for pointer->pointer cast
2043    if (SubExpr->getType()->isPointerType())
2044      return FindExpressionBaseAddress(SubExpr);
2045
2046    // We assume that we have an arithmetic expression here;
2047    // if we don't, we'll figure it out later
2048    return 0;
2049  }
2050  }
2051}
2052
2053bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2054  switch (Init->getStmtClass()) {
2055  default:
2056    InitializerElementNotConstant(Init);
2057    return true;
2058  case Expr::ParenExprClass: {
2059    const ParenExpr* PE = cast<ParenExpr>(Init);
2060    return CheckArithmeticConstantExpression(PE->getSubExpr());
2061  }
2062  case Expr::FloatingLiteralClass:
2063  case Expr::IntegerLiteralClass:
2064  case Expr::CharacterLiteralClass:
2065  case Expr::ImaginaryLiteralClass:
2066  case Expr::TypesCompatibleExprClass:
2067  case Expr::CXXBoolLiteralExprClass:
2068    return false;
2069  case Expr::CallExprClass:
2070  case Expr::CXXOperatorCallExprClass: {
2071    const CallExpr *CE = cast<CallExpr>(Init);
2072
2073    // Allow any constant foldable calls to builtins.
2074    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2075      return false;
2076
2077    InitializerElementNotConstant(Init);
2078    return true;
2079  }
2080  case Expr::DeclRefExprClass:
2081  case Expr::QualifiedDeclRefExprClass: {
2082    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2083    if (isa<EnumConstantDecl>(D))
2084      return false;
2085    InitializerElementNotConstant(Init);
2086    return true;
2087  }
2088  case Expr::CompoundLiteralExprClass:
2089    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2090    // but vectors are allowed to be magic.
2091    if (Init->getType()->isVectorType())
2092      return false;
2093    InitializerElementNotConstant(Init);
2094    return true;
2095  case Expr::UnaryOperatorClass: {
2096    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2097
2098    switch (Exp->getOpcode()) {
2099    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2100    // See C99 6.6p3.
2101    default:
2102      InitializerElementNotConstant(Init);
2103      return true;
2104    case UnaryOperator::OffsetOf:
2105      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2106        return false;
2107      InitializerElementNotConstant(Init);
2108      return true;
2109    case UnaryOperator::Extension:
2110    case UnaryOperator::LNot:
2111    case UnaryOperator::Plus:
2112    case UnaryOperator::Minus:
2113    case UnaryOperator::Not:
2114      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2115    }
2116  }
2117  case Expr::SizeOfAlignOfExprClass: {
2118    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2119    // Special check for void types, which are allowed as an extension
2120    if (Exp->getTypeOfArgument()->isVoidType())
2121      return false;
2122    // alignof always evaluates to a constant.
2123    // FIXME: is sizeof(int[3.0]) a constant expression?
2124    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2125      InitializerElementNotConstant(Init);
2126      return true;
2127    }
2128    return false;
2129  }
2130  case Expr::BinaryOperatorClass: {
2131    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2132
2133    if (Exp->getLHS()->getType()->isArithmeticType() &&
2134        Exp->getRHS()->getType()->isArithmeticType()) {
2135      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2136             CheckArithmeticConstantExpression(Exp->getRHS());
2137    }
2138
2139    if (Exp->getLHS()->getType()->isPointerType() &&
2140        Exp->getRHS()->getType()->isPointerType()) {
2141      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2142      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2143
2144      // Only allow a null (constant integer) base; we could
2145      // allow some additional cases if necessary, but this
2146      // is sufficient to cover offsetof-like constructs.
2147      if (!LHSBase && !RHSBase) {
2148        return CheckAddressConstantExpression(Exp->getLHS()) ||
2149               CheckAddressConstantExpression(Exp->getRHS());
2150      }
2151    }
2152
2153    InitializerElementNotConstant(Init);
2154    return true;
2155  }
2156  case Expr::ImplicitCastExprClass:
2157  case Expr::CStyleCastExprClass: {
2158    const CastExpr *CE = cast<CastExpr>(Init);
2159    const Expr *SubExpr = CE->getSubExpr();
2160
2161    if (SubExpr->getType()->isArithmeticType())
2162      return CheckArithmeticConstantExpression(SubExpr);
2163
2164    if (SubExpr->getType()->isPointerType()) {
2165      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2166      if (Base) {
2167        // the cast is only valid if done to a wide enough type
2168        if (Context.getTypeSize(CE->getType()) >=
2169            Context.getTypeSize(SubExpr->getType()))
2170          return false;
2171      } else {
2172        // If the pointer has a null base, this is an offsetof-like construct
2173        return CheckAddressConstantExpression(SubExpr);
2174      }
2175    }
2176
2177    InitializerElementNotConstant(Init);
2178    return true;
2179  }
2180  case Expr::ConditionalOperatorClass: {
2181    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2182
2183    // If GNU extensions are disabled, we require all operands to be arithmetic
2184    // constant expressions.
2185    if (getLangOptions().NoExtensions) {
2186      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2187          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2188             CheckArithmeticConstantExpression(Exp->getRHS());
2189    }
2190
2191    // Otherwise, we have to emulate some of the behavior of fold here.
2192    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2193    // because it can constant fold things away.  To retain compatibility with
2194    // GCC code, we see if we can fold the condition to a constant (which we
2195    // should always be able to do in theory).  If so, we only require the
2196    // specified arm of the conditional to be a constant.  This is a horrible
2197    // hack, but is require by real world code that uses __builtin_constant_p.
2198    Expr::EvalResult EvalResult;
2199    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2200        EvalResult.HasSideEffects) {
2201      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2202      // won't be able to either.  Use it to emit the diagnostic though.
2203      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2204      assert(Res && "Evaluate couldn't evaluate this constant?");
2205      return Res;
2206    }
2207
2208    // Verify that the side following the condition is also a constant.
2209    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2210    if (EvalResult.Val.getInt() == 0)
2211      std::swap(TrueSide, FalseSide);
2212
2213    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2214      return true;
2215
2216    // Okay, the evaluated side evaluates to a constant, so we accept this.
2217    // Check to see if the other side is obviously not a constant.  If so,
2218    // emit a warning that this is a GNU extension.
2219    if (FalseSide && !FalseSide->isEvaluatable(Context))
2220      Diag(Init->getExprLoc(),
2221           diag::ext_typecheck_expression_not_constant_but_accepted)
2222        << FalseSide->getSourceRange();
2223    return false;
2224  }
2225  }
2226}
2227
2228bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2229  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2230    Init = DIE->getInit();
2231
2232  Init = Init->IgnoreParens();
2233
2234  if (Init->isEvaluatable(Context))
2235    return false;
2236
2237  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2238  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2239    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2240
2241  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2242    return CheckForConstantInitializer(e->getInitializer(), DclT);
2243
2244  if (isa<ImplicitValueInitExpr>(Init)) {
2245    // FIXME: In C++, check for non-POD types.
2246    return false;
2247  }
2248
2249  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2250    unsigned numInits = Exp->getNumInits();
2251    for (unsigned i = 0; i < numInits; i++) {
2252      // FIXME: Need to get the type of the declaration for C++,
2253      // because it could be a reference?
2254
2255      if (CheckForConstantInitializer(Exp->getInit(i),
2256                                      Exp->getInit(i)->getType()))
2257        return true;
2258    }
2259    return false;
2260  }
2261
2262  // FIXME: We can probably remove some of this code below, now that
2263  // Expr::Evaluate is doing the heavy lifting for scalars.
2264
2265  if (Init->isNullPointerConstant(Context))
2266    return false;
2267  if (Init->getType()->isArithmeticType()) {
2268    QualType InitTy = Context.getCanonicalType(Init->getType())
2269                             .getUnqualifiedType();
2270    if (InitTy == Context.BoolTy) {
2271      // Special handling for pointers implicitly cast to bool;
2272      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2273      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2274        Expr* SubE = ICE->getSubExpr();
2275        if (SubE->getType()->isPointerType() ||
2276            SubE->getType()->isArrayType() ||
2277            SubE->getType()->isFunctionType()) {
2278          return CheckAddressConstantExpression(Init);
2279        }
2280      }
2281    } else if (InitTy->isIntegralType()) {
2282      Expr* SubE = 0;
2283      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2284        SubE = CE->getSubExpr();
2285      // Special check for pointer cast to int; we allow as an extension
2286      // an address constant cast to an integer if the integer
2287      // is of an appropriate width (this sort of code is apparently used
2288      // in some places).
2289      // FIXME: Add pedwarn?
2290      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2291      if (SubE && (SubE->getType()->isPointerType() ||
2292                   SubE->getType()->isArrayType() ||
2293                   SubE->getType()->isFunctionType())) {
2294        unsigned IntWidth = Context.getTypeSize(Init->getType());
2295        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2296        if (IntWidth >= PointerWidth)
2297          return CheckAddressConstantExpression(Init);
2298      }
2299    }
2300
2301    return CheckArithmeticConstantExpression(Init);
2302  }
2303
2304  if (Init->getType()->isPointerType())
2305    return CheckAddressConstantExpression(Init);
2306
2307  // An array type at the top level that isn't an init-list must
2308  // be a string literal
2309  if (Init->getType()->isArrayType())
2310    return false;
2311
2312  if (Init->getType()->isFunctionType())
2313    return false;
2314
2315  // Allow block exprs at top level.
2316  if (Init->getType()->isBlockPointerType())
2317    return false;
2318
2319  // GCC cast to union extension
2320  // note: the validity of the cast expr is checked by CheckCastTypes()
2321  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2322    QualType T = C->getType();
2323    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2324  }
2325
2326  InitializerElementNotConstant(Init);
2327  return true;
2328}
2329
2330void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2331  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2332}
2333
2334/// AddInitializerToDecl - Adds the initializer Init to the
2335/// declaration dcl. If DirectInit is true, this is C++ direct
2336/// initialization rather than copy initialization.
2337void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2338  Decl *RealDecl = static_cast<Decl *>(dcl);
2339  Expr *Init = static_cast<Expr *>(init.release());
2340  assert(Init && "missing initializer");
2341
2342  // If there is no declaration, there was an error parsing it.  Just ignore
2343  // the initializer.
2344  if (RealDecl == 0) {
2345    Init->Destroy(Context);
2346    return;
2347  }
2348
2349  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2350  if (!VDecl) {
2351    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2352    RealDecl->setInvalidDecl();
2353    return;
2354  }
2355  // Get the decls type and save a reference for later, since
2356  // CheckInitializerTypes may change it.
2357  QualType DclT = VDecl->getType(), SavT = DclT;
2358  if (VDecl->isBlockVarDecl()) {
2359    VarDecl::StorageClass SC = VDecl->getStorageClass();
2360    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2361      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2362      VDecl->setInvalidDecl();
2363    } else if (!VDecl->isInvalidDecl()) {
2364      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2365                                VDecl->getDeclName(), DirectInit))
2366        VDecl->setInvalidDecl();
2367
2368      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2369      if (!getLangOptions().CPlusPlus) {
2370        if (SC == VarDecl::Static) // C99 6.7.8p4.
2371          CheckForConstantInitializer(Init, DclT);
2372      }
2373    }
2374  } else if (VDecl->isFileVarDecl()) {
2375    if (VDecl->getStorageClass() == VarDecl::Extern)
2376      Diag(VDecl->getLocation(), diag::warn_extern_init);
2377    if (!VDecl->isInvalidDecl())
2378      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2379                                VDecl->getDeclName(), DirectInit))
2380        VDecl->setInvalidDecl();
2381
2382    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2383    if (!getLangOptions().CPlusPlus) {
2384      // C99 6.7.8p4. All file scoped initializers need to be constant.
2385      CheckForConstantInitializer(Init, DclT);
2386    }
2387  }
2388  // If the type changed, it means we had an incomplete type that was
2389  // completed by the initializer. For example:
2390  //   int ary[] = { 1, 3, 5 };
2391  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2392  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2393    VDecl->setType(DclT);
2394    Init->setType(DclT);
2395  }
2396
2397  // Attach the initializer to the decl.
2398  VDecl->setInit(Init);
2399  return;
2400}
2401
2402void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2403  Decl *RealDecl = static_cast<Decl *>(dcl);
2404
2405  // If there is no declaration, there was an error parsing it. Just ignore it.
2406  if (RealDecl == 0)
2407    return;
2408
2409  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2410    QualType Type = Var->getType();
2411    // C++ [dcl.init.ref]p3:
2412    //   The initializer can be omitted for a reference only in a
2413    //   parameter declaration (8.3.5), in the declaration of a
2414    //   function return type, in the declaration of a class member
2415    //   within its class declaration (9.2), and where the extern
2416    //   specifier is explicitly used.
2417    if (Type->isReferenceType() &&
2418        Var->getStorageClass() != VarDecl::Extern &&
2419        Var->getStorageClass() != VarDecl::PrivateExtern) {
2420      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2421        << Var->getDeclName()
2422        << SourceRange(Var->getLocation(), Var->getLocation());
2423      Var->setInvalidDecl();
2424      return;
2425    }
2426
2427    // C++ [dcl.init]p9:
2428    //
2429    //   If no initializer is specified for an object, and the object
2430    //   is of (possibly cv-qualified) non-POD class type (or array
2431    //   thereof), the object shall be default-initialized; if the
2432    //   object is of const-qualified type, the underlying class type
2433    //   shall have a user-declared default constructor.
2434    if (getLangOptions().CPlusPlus) {
2435      QualType InitType = Type;
2436      if (const ArrayType *Array = Context.getAsArrayType(Type))
2437        InitType = Array->getElementType();
2438      if (Var->getStorageClass() != VarDecl::Extern &&
2439          Var->getStorageClass() != VarDecl::PrivateExtern &&
2440          InitType->isRecordType()) {
2441        const CXXConstructorDecl *Constructor
2442          = PerformInitializationByConstructor(InitType, 0, 0,
2443                                               Var->getLocation(),
2444                                               SourceRange(Var->getLocation(),
2445                                                           Var->getLocation()),
2446                                               Var->getDeclName(),
2447                                               IK_Default);
2448        if (!Constructor)
2449          Var->setInvalidDecl();
2450      }
2451    }
2452
2453#if 0
2454    // FIXME: Temporarily disabled because we are not properly parsing
2455    // linkage specifications on declarations, e.g.,
2456    //
2457    //   extern "C" const CGPoint CGPointerZero;
2458    //
2459    // C++ [dcl.init]p9:
2460    //
2461    //     If no initializer is specified for an object, and the
2462    //     object is of (possibly cv-qualified) non-POD class type (or
2463    //     array thereof), the object shall be default-initialized; if
2464    //     the object is of const-qualified type, the underlying class
2465    //     type shall have a user-declared default
2466    //     constructor. Otherwise, if no initializer is specified for
2467    //     an object, the object and its subobjects, if any, have an
2468    //     indeterminate initial value; if the object or any of its
2469    //     subobjects are of const-qualified type, the program is
2470    //     ill-formed.
2471    //
2472    // This isn't technically an error in C, so we don't diagnose it.
2473    //
2474    // FIXME: Actually perform the POD/user-defined default
2475    // constructor check.
2476    if (getLangOptions().CPlusPlus &&
2477        Context.getCanonicalType(Type).isConstQualified() &&
2478        Var->getStorageClass() != VarDecl::Extern)
2479      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2480        << Var->getName()
2481        << SourceRange(Var->getLocation(), Var->getLocation());
2482#endif
2483  }
2484}
2485
2486/// The declarators are chained together backwards, reverse the list.
2487Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2488  // Often we have single declarators, handle them quickly.
2489  Decl *GroupDecl = static_cast<Decl*>(group);
2490  if (GroupDecl == 0)
2491    return 0;
2492
2493  Decl *Group = dyn_cast<Decl>(GroupDecl);
2494  Decl *NewGroup = 0;
2495  if (Group->getNextDeclarator() == 0)
2496    NewGroup = Group;
2497  else { // reverse the list.
2498    while (Group) {
2499      Decl *Next = Group->getNextDeclarator();
2500      Group->setNextDeclarator(NewGroup);
2501      NewGroup = Group;
2502      Group = Next;
2503    }
2504  }
2505  // Perform semantic analysis that depends on having fully processed both
2506  // the declarator and initializer.
2507  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2508    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2509    if (!IDecl)
2510      continue;
2511    QualType T = IDecl->getType();
2512
2513    if (T->isVariableArrayType()) {
2514      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2515
2516      // FIXME: This won't give the correct result for
2517      // int a[10][n];
2518      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2519      if (IDecl->isFileVarDecl()) {
2520        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2521          SizeRange;
2522
2523        IDecl->setInvalidDecl();
2524      } else {
2525        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2526        // static storage duration, it shall not have a variable length array.
2527        if (IDecl->getStorageClass() == VarDecl::Static) {
2528          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2529            << SizeRange;
2530          IDecl->setInvalidDecl();
2531        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2532          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2533            << SizeRange;
2534          IDecl->setInvalidDecl();
2535        }
2536      }
2537    } else if (T->isVariablyModifiedType()) {
2538      if (IDecl->isFileVarDecl()) {
2539        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2540        IDecl->setInvalidDecl();
2541      } else {
2542        if (IDecl->getStorageClass() == VarDecl::Extern) {
2543          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2544          IDecl->setInvalidDecl();
2545        }
2546      }
2547    }
2548
2549    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2550    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2551    if (IDecl->isBlockVarDecl() &&
2552        IDecl->getStorageClass() != VarDecl::Extern) {
2553      if (!IDecl->isInvalidDecl() &&
2554          DiagnoseIncompleteType(IDecl->getLocation(), T,
2555                                 diag::err_typecheck_decl_incomplete_type))
2556        IDecl->setInvalidDecl();
2557    }
2558    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2559    // object that has file scope without an initializer, and without a
2560    // storage-class specifier or with the storage-class specifier "static",
2561    // constitutes a tentative definition. Note: A tentative definition with
2562    // external linkage is valid (C99 6.2.2p5).
2563    if (isTentativeDefinition(IDecl)) {
2564      if (T->isIncompleteArrayType()) {
2565        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2566        // array to be completed. Don't issue a diagnostic.
2567      } else if (!IDecl->isInvalidDecl() &&
2568                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2569                                        diag::err_typecheck_decl_incomplete_type))
2570        // C99 6.9.2p3: If the declaration of an identifier for an object is
2571        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2572        // declared type shall not be an incomplete type.
2573        IDecl->setInvalidDecl();
2574    }
2575    if (IDecl->isFileVarDecl())
2576      CheckForFileScopedRedefinitions(S, IDecl);
2577  }
2578  return NewGroup;
2579}
2580
2581/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2582/// to introduce parameters into function prototype scope.
2583Sema::DeclTy *
2584Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2585  const DeclSpec &DS = D.getDeclSpec();
2586
2587  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2588  VarDecl::StorageClass StorageClass = VarDecl::None;
2589  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2590    StorageClass = VarDecl::Register;
2591  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2592    Diag(DS.getStorageClassSpecLoc(),
2593         diag::err_invalid_storage_class_in_func_decl);
2594    D.getMutableDeclSpec().ClearStorageClassSpecs();
2595  }
2596  if (DS.isThreadSpecified()) {
2597    Diag(DS.getThreadSpecLoc(),
2598         diag::err_invalid_storage_class_in_func_decl);
2599    D.getMutableDeclSpec().ClearStorageClassSpecs();
2600  }
2601
2602  // Check that there are no default arguments inside the type of this
2603  // parameter (C++ only).
2604  if (getLangOptions().CPlusPlus)
2605    CheckExtraCXXDefaultArguments(D);
2606
2607  // In this context, we *do not* check D.getInvalidType(). If the declarator
2608  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2609  // though it will not reflect the user specified type.
2610  QualType parmDeclType = GetTypeForDeclarator(D, S);
2611
2612  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2613
2614  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2615  // Can this happen for params?  We already checked that they don't conflict
2616  // among each other.  Here they can only shadow globals, which is ok.
2617  IdentifierInfo *II = D.getIdentifier();
2618  if (II) {
2619    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2620      if (PrevDecl->isTemplateParameter()) {
2621        // Maybe we will complain about the shadowed template parameter.
2622        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2623        // Just pretend that we didn't see the previous declaration.
2624        PrevDecl = 0;
2625      } else if (S->isDeclScope(PrevDecl)) {
2626        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2627
2628        // Recover by removing the name
2629        II = 0;
2630        D.SetIdentifier(0, D.getIdentifierLoc());
2631      }
2632    }
2633  }
2634
2635  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2636  // Doing the promotion here has a win and a loss. The win is the type for
2637  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2638  // code generator). The loss is the orginal type isn't preserved. For example:
2639  //
2640  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2641  //    int blockvardecl[5];
2642  //    sizeof(parmvardecl);  // size == 4
2643  //    sizeof(blockvardecl); // size == 20
2644  // }
2645  //
2646  // For expressions, all implicit conversions are captured using the
2647  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2648  //
2649  // FIXME: If a source translation tool needs to see the original type, then
2650  // we need to consider storing both types (in ParmVarDecl)...
2651  //
2652  if (parmDeclType->isArrayType()) {
2653    // int x[restrict 4] ->  int *restrict
2654    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2655  } else if (parmDeclType->isFunctionType())
2656    parmDeclType = Context.getPointerType(parmDeclType);
2657
2658  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2659                                         D.getIdentifierLoc(), II,
2660                                         parmDeclType, StorageClass,
2661                                         0);
2662
2663  if (D.getInvalidType())
2664    New->setInvalidDecl();
2665
2666  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2667  if (D.getCXXScopeSpec().isSet()) {
2668    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2669      << D.getCXXScopeSpec().getRange();
2670    New->setInvalidDecl();
2671  }
2672
2673  // Add the parameter declaration into this scope.
2674  S->AddDecl(New);
2675  if (II)
2676    IdResolver.AddDecl(New);
2677
2678  ProcessDeclAttributes(New, D);
2679  return New;
2680
2681}
2682
2683void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2684  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2685         "Not a function declarator!");
2686  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2687
2688  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2689  // for a K&R function.
2690  if (!FTI.hasPrototype) {
2691    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2692      if (FTI.ArgInfo[i].Param == 0) {
2693        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2694          << FTI.ArgInfo[i].Ident;
2695        // Implicitly declare the argument as type 'int' for lack of a better
2696        // type.
2697        DeclSpec DS;
2698        const char* PrevSpec; // unused
2699        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2700                           PrevSpec);
2701        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2702        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2703        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2704      }
2705    }
2706  }
2707}
2708
2709Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2710  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2711  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2712         "Not a function declarator!");
2713  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2714
2715  if (FTI.hasPrototype) {
2716    // FIXME: Diagnose arguments without names in C.
2717  }
2718
2719  Scope *ParentScope = FnBodyScope->getParent();
2720
2721  return ActOnStartOfFunctionDef(FnBodyScope,
2722                                 ActOnDeclarator(ParentScope, D, 0,
2723                                                 /*IsFunctionDefinition=*/true));
2724}
2725
2726Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2727  Decl *decl = static_cast<Decl*>(D);
2728  FunctionDecl *FD = cast<FunctionDecl>(decl);
2729
2730  // See if this is a redefinition.
2731  const FunctionDecl *Definition;
2732  if (FD->getBody(Definition)) {
2733    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2734    Diag(Definition->getLocation(), diag::note_previous_definition);
2735  }
2736
2737  PushDeclContext(FnBodyScope, FD);
2738
2739  // Check the validity of our function parameters
2740  CheckParmsForFunctionDef(FD);
2741
2742  // Introduce our parameters into the function scope
2743  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2744    ParmVarDecl *Param = FD->getParamDecl(p);
2745    Param->setOwningFunction(FD);
2746
2747    // If this has an identifier, add it to the scope stack.
2748    if (Param->getIdentifier())
2749      PushOnScopeChains(Param, FnBodyScope);
2750  }
2751
2752  // Checking attributes of current function definition
2753  // dllimport attribute.
2754  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2755    // dllimport attribute cannot be applied to definition.
2756    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2757      Diag(FD->getLocation(),
2758           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2759        << "dllimport";
2760      FD->setInvalidDecl();
2761      return FD;
2762    } else {
2763      // If a symbol previously declared dllimport is later defined, the
2764      // attribute is ignored in subsequent references, and a warning is
2765      // emitted.
2766      Diag(FD->getLocation(),
2767           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2768        << FD->getNameAsCString() << "dllimport";
2769    }
2770  }
2771  return FD;
2772}
2773
2774Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2775  Decl *dcl = static_cast<Decl *>(D);
2776  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2777  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2778    FD->setBody(Body);
2779    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2780  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2781    MD->setBody((Stmt*)Body);
2782  } else {
2783    Body->Destroy(Context);
2784    return 0;
2785  }
2786  PopDeclContext();
2787  // Verify and clean out per-function state.
2788
2789  // Check goto/label use.
2790  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2791       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2792    // Verify that we have no forward references left.  If so, there was a goto
2793    // or address of a label taken, but no definition of it.  Label fwd
2794    // definitions are indicated with a null substmt.
2795    if (I->second->getSubStmt() == 0) {
2796      LabelStmt *L = I->second;
2797      // Emit error.
2798      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2799
2800      // At this point, we have gotos that use the bogus label.  Stitch it into
2801      // the function body so that they aren't leaked and that the AST is well
2802      // formed.
2803      if (Body) {
2804#if 0
2805        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2806        // and the AST is malformed anyway.  We should just blow away 'L'.
2807        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2808        cast<CompoundStmt>(Body)->push_back(L);
2809#else
2810        L->Destroy(Context);
2811#endif
2812      } else {
2813        // The whole function wasn't parsed correctly, just delete this.
2814        L->Destroy(Context);
2815      }
2816    }
2817  }
2818  LabelMap.clear();
2819
2820  return D;
2821}
2822
2823/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2824/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2825NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2826                                          IdentifierInfo &II, Scope *S) {
2827  // Extension in C99.  Legal in C90, but warn about it.
2828  if (getLangOptions().C99)
2829    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2830  else
2831    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2832
2833  // FIXME: handle stuff like:
2834  // void foo() { extern float X(); }
2835  // void bar() { X(); }  <-- implicit decl for X in another scope.
2836
2837  // Set a Declarator for the implicit definition: int foo();
2838  const char *Dummy;
2839  DeclSpec DS;
2840  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2841  Error = Error; // Silence warning.
2842  assert(!Error && "Error setting up implicit decl!");
2843  Declarator D(DS, Declarator::BlockContext);
2844  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2845                SourceLocation());
2846  D.SetIdentifier(&II, Loc);
2847
2848  // Insert this function into translation-unit scope.
2849
2850  DeclContext *PrevDC = CurContext;
2851  CurContext = Context.getTranslationUnitDecl();
2852
2853  FunctionDecl *FD =
2854    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2855  FD->setImplicit();
2856
2857  CurContext = PrevDC;
2858
2859  AddKnownFunctionAttributes(FD);
2860
2861  return FD;
2862}
2863
2864/// \brief Adds any function attributes that we know a priori based on
2865/// the declaration of this function.
2866///
2867/// These attributes can apply both to implicitly-declared builtins
2868/// (like __builtin___printf_chk) or to library-declared functions
2869/// like NSLog or printf.
2870void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2871  if (FD->isInvalidDecl())
2872    return;
2873
2874  // If this is a built-in function, map its builtin attributes to
2875  // actual attributes.
2876  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2877    // Handle printf-formatting attributes.
2878    unsigned FormatIdx;
2879    bool HasVAListArg;
2880    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2881      if (!FD->getAttr<FormatAttr>())
2882        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2883    }
2884  }
2885
2886  IdentifierInfo *Name = FD->getIdentifier();
2887  if (!Name)
2888    return;
2889  if ((!getLangOptions().CPlusPlus &&
2890       FD->getDeclContext()->isTranslationUnit()) ||
2891      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2892       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2893       LinkageSpecDecl::lang_c)) {
2894    // Okay: this could be a libc/libm/Objective-C function we know
2895    // about.
2896  } else
2897    return;
2898
2899  unsigned KnownID;
2900  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2901    if (KnownFunctionIDs[KnownID] == Name)
2902      break;
2903
2904  switch (KnownID) {
2905  case id_NSLog:
2906  case id_NSLogv:
2907    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2908      // FIXME: We known better than our headers.
2909      const_cast<FormatAttr *>(Format)->setType("printf");
2910    } else
2911      FD->addAttr(new FormatAttr("printf", 1, 2));
2912    break;
2913
2914  case id_asprintf:
2915  case id_vasprintf:
2916    if (!FD->getAttr<FormatAttr>())
2917      FD->addAttr(new FormatAttr("printf", 2, 3));
2918    break;
2919
2920  default:
2921    // Unknown function or known function without any attributes to
2922    // add. Do nothing.
2923    break;
2924  }
2925}
2926
2927TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2928                                    Decl *LastDeclarator) {
2929  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2930  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2931
2932  // Scope manipulation handled by caller.
2933  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2934                                           D.getIdentifierLoc(),
2935                                           D.getIdentifier(),
2936                                           T);
2937  NewTD->setNextDeclarator(LastDeclarator);
2938  if (D.getInvalidType())
2939    NewTD->setInvalidDecl();
2940  return NewTD;
2941}
2942
2943/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2944/// former case, Name will be non-null.  In the later case, Name will be null.
2945/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2946/// reference/declaration/definition of a tag.
2947Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2948                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2949                             IdentifierInfo *Name, SourceLocation NameLoc,
2950                             AttributeList *Attr) {
2951  // If this is not a definition, it must have a name.
2952  assert((Name != 0 || TK == TK_Definition) &&
2953         "Nameless record must be a definition!");
2954
2955  TagDecl::TagKind Kind;
2956  switch (TagSpec) {
2957  default: assert(0 && "Unknown tag type!");
2958  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2959  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2960  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2961  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2962  }
2963
2964  DeclContext *SearchDC = CurContext;
2965  DeclContext *DC = CurContext;
2966  NamedDecl *PrevDecl = 0;
2967
2968  bool Invalid = false;
2969
2970  if (Name && SS.isNotEmpty()) {
2971    // We have a nested-name tag ('struct foo::bar').
2972
2973    // Check for invalid 'foo::'.
2974    if (SS.isInvalid()) {
2975      Name = 0;
2976      goto CreateNewDecl;
2977    }
2978
2979    DC = static_cast<DeclContext*>(SS.getScopeRep());
2980    SearchDC = DC;
2981    // Look-up name inside 'foo::'.
2982    PrevDecl = dyn_cast_or_null<TagDecl>(
2983                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2984
2985    // A tag 'foo::bar' must already exist.
2986    if (PrevDecl == 0) {
2987      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2988      Name = 0;
2989      goto CreateNewDecl;
2990    }
2991  } else if (Name) {
2992    // If this is a named struct, check to see if there was a previous forward
2993    // declaration or definition.
2994    // FIXME: We're looking into outer scopes here, even when we
2995    // shouldn't be. Doing so can result in ambiguities that we
2996    // shouldn't be diagnosing.
2997    LookupResult R = LookupName(S, Name, LookupTagName,
2998                                /*RedeclarationOnly=*/(TK != TK_Reference));
2999    if (R.isAmbiguous()) {
3000      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3001      // FIXME: This is not best way to recover from case like:
3002      //
3003      // struct S s;
3004      //
3005      // causes needless err_ovl_no_viable_function_in_init latter.
3006      Name = 0;
3007      PrevDecl = 0;
3008      Invalid = true;
3009    }
3010    else
3011      PrevDecl = R;
3012
3013    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3014      // FIXME: This makes sure that we ignore the contexts associated
3015      // with C structs, unions, and enums when looking for a matching
3016      // tag declaration or definition. See the similar lookup tweak
3017      // in Sema::LookupName; is there a better way to deal with this?
3018      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3019        SearchDC = SearchDC->getParent();
3020    }
3021  }
3022
3023  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3024    // Maybe we will complain about the shadowed template parameter.
3025    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3026    // Just pretend that we didn't see the previous declaration.
3027    PrevDecl = 0;
3028  }
3029
3030  if (PrevDecl) {
3031    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3032      // If this is a use of a previous tag, or if the tag is already declared
3033      // in the same scope (so that the definition/declaration completes or
3034      // rementions the tag), reuse the decl.
3035      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3036        // Make sure that this wasn't declared as an enum and now used as a
3037        // struct or something similar.
3038        if (PrevTagDecl->getTagKind() != Kind) {
3039          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3040          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3041          // Recover by making this an anonymous redefinition.
3042          Name = 0;
3043          PrevDecl = 0;
3044          Invalid = true;
3045        } else {
3046          // If this is a use, just return the declaration we found.
3047
3048          // FIXME: In the future, return a variant or some other clue
3049          // for the consumer of this Decl to know it doesn't own it.
3050          // For our current ASTs this shouldn't be a problem, but will
3051          // need to be changed with DeclGroups.
3052          if (TK == TK_Reference)
3053            return PrevDecl;
3054
3055          // Diagnose attempts to redefine a tag.
3056          if (TK == TK_Definition) {
3057            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3058              Diag(NameLoc, diag::err_redefinition) << Name;
3059              Diag(Def->getLocation(), diag::note_previous_definition);
3060              // If this is a redefinition, recover by making this
3061              // struct be anonymous, which will make any later
3062              // references get the previous definition.
3063              Name = 0;
3064              PrevDecl = 0;
3065              Invalid = true;
3066            } else {
3067              // If the type is currently being defined, complain
3068              // about a nested redefinition.
3069              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3070              if (Tag->isBeingDefined()) {
3071                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3072                Diag(PrevTagDecl->getLocation(),
3073                     diag::note_previous_definition);
3074                Name = 0;
3075                PrevDecl = 0;
3076                Invalid = true;
3077              }
3078            }
3079
3080            // Okay, this is definition of a previously declared or referenced
3081            // tag PrevDecl. We're going to create a new Decl for it.
3082          }
3083        }
3084        // If we get here we have (another) forward declaration or we
3085        // have a definition.  Just create a new decl.
3086      } else {
3087        // If we get here, this is a definition of a new tag type in a nested
3088        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3089        // new decl/type.  We set PrevDecl to NULL so that the entities
3090        // have distinct types.
3091        PrevDecl = 0;
3092      }
3093      // If we get here, we're going to create a new Decl. If PrevDecl
3094      // is non-NULL, it's a definition of the tag declared by
3095      // PrevDecl. If it's NULL, we have a new definition.
3096    } else {
3097      // PrevDecl is a namespace, template, or anything else
3098      // that lives in the IDNS_Tag identifier namespace.
3099      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3100        // The tag name clashes with a namespace name, issue an error and
3101        // recover by making this tag be anonymous.
3102        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3103        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3104        Name = 0;
3105        PrevDecl = 0;
3106        Invalid = true;
3107      } else {
3108        // The existing declaration isn't relevant to us; we're in a
3109        // new scope, so clear out the previous declaration.
3110        PrevDecl = 0;
3111      }
3112    }
3113  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3114             (Kind != TagDecl::TK_enum))  {
3115    // C++ [basic.scope.pdecl]p5:
3116    //   -- for an elaborated-type-specifier of the form
3117    //
3118    //          class-key identifier
3119    //
3120    //      if the elaborated-type-specifier is used in the
3121    //      decl-specifier-seq or parameter-declaration-clause of a
3122    //      function defined in namespace scope, the identifier is
3123    //      declared as a class-name in the namespace that contains
3124    //      the declaration; otherwise, except as a friend
3125    //      declaration, the identifier is declared in the smallest
3126    //      non-class, non-function-prototype scope that contains the
3127    //      declaration.
3128    //
3129    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3130    // C structs and unions.
3131
3132    // Find the context where we'll be declaring the tag.
3133    // FIXME: We would like to maintain the current DeclContext as the
3134    // lexical context,
3135    while (SearchDC->isRecord())
3136      SearchDC = SearchDC->getParent();
3137
3138    // Find the scope where we'll be declaring the tag.
3139    while (S->isClassScope() ||
3140           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3141           ((S->getFlags() & Scope::DeclScope) == 0) ||
3142           (S->getEntity() &&
3143            ((DeclContext *)S->getEntity())->isTransparentContext()))
3144      S = S->getParent();
3145  }
3146
3147CreateNewDecl:
3148
3149  // If there is an identifier, use the location of the identifier as the
3150  // location of the decl, otherwise use the location of the struct/union
3151  // keyword.
3152  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3153
3154  // Otherwise, create a new declaration. If there is a previous
3155  // declaration of the same entity, the two will be linked via
3156  // PrevDecl.
3157  TagDecl *New;
3158
3159  if (Kind == TagDecl::TK_enum) {
3160    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3161    // enum X { A, B, C } D;    D should chain to X.
3162    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3163                           cast_or_null<EnumDecl>(PrevDecl));
3164    // If this is an undefined enum, warn.
3165    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3166  } else {
3167    // struct/union/class
3168
3169    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3170    // struct X { int A; } D;    D should chain to X.
3171    if (getLangOptions().CPlusPlus)
3172      // FIXME: Look for a way to use RecordDecl for simple structs.
3173      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3174                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3175    else
3176      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3177                               cast_or_null<RecordDecl>(PrevDecl));
3178  }
3179
3180  if (Kind != TagDecl::TK_enum) {
3181    // Handle #pragma pack: if the #pragma pack stack has non-default
3182    // alignment, make up a packed attribute for this decl. These
3183    // attributes are checked when the ASTContext lays out the
3184    // structure.
3185    //
3186    // It is important for implementing the correct semantics that this
3187    // happen here (in act on tag decl). The #pragma pack stack is
3188    // maintained as a result of parser callbacks which can occur at
3189    // many points during the parsing of a struct declaration (because
3190    // the #pragma tokens are effectively skipped over during the
3191    // parsing of the struct).
3192    if (unsigned Alignment = PackContext.getAlignment())
3193      New->addAttr(new PackedAttr(Alignment * 8));
3194  }
3195
3196  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3197    // C++ [dcl.typedef]p3:
3198    //   [...] Similarly, in a given scope, a class or enumeration
3199    //   shall not be declared with the same name as a typedef-name
3200    //   that is declared in that scope and refers to a type other
3201    //   than the class or enumeration itself.
3202    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3203    TypedefDecl *PrevTypedef = 0;
3204    if (Lookup.getKind() == LookupResult::Found)
3205      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3206
3207    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3208        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3209          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3210      Diag(Loc, diag::err_tag_definition_of_typedef)
3211        << Context.getTypeDeclType(New)
3212        << PrevTypedef->getUnderlyingType();
3213      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3214      Invalid = true;
3215    }
3216  }
3217
3218  if (Invalid)
3219    New->setInvalidDecl();
3220
3221  if (Attr)
3222    ProcessDeclAttributeList(New, Attr);
3223
3224  // If we're declaring or defining a tag in function prototype scope
3225  // in C, note that this type can only be used within the function.
3226  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3227    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3228
3229  // Set the lexical context. If the tag has a C++ scope specifier, the
3230  // lexical context will be different from the semantic context.
3231  New->setLexicalDeclContext(CurContext);
3232
3233  if (TK == TK_Definition)
3234    New->startDefinition();
3235
3236  // If this has an identifier, add it to the scope stack.
3237  if (Name) {
3238    S = getNonFieldDeclScope(S);
3239    PushOnScopeChains(New, S);
3240  } else {
3241    CurContext->addDecl(New);
3242  }
3243
3244  return New;
3245}
3246
3247void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3248  AdjustDeclIfTemplate(TagD);
3249  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3250
3251  // Enter the tag context.
3252  PushDeclContext(S, Tag);
3253
3254  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3255    FieldCollector->StartClass();
3256
3257    if (Record->getIdentifier()) {
3258      // C++ [class]p2:
3259      //   [...] The class-name is also inserted into the scope of the
3260      //   class itself; this is known as the injected-class-name. For
3261      //   purposes of access checking, the injected-class-name is treated
3262      //   as if it were a public member name.
3263      RecordDecl *InjectedClassName
3264        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3265                                CurContext, Record->getLocation(),
3266                                Record->getIdentifier(), Record);
3267      InjectedClassName->setImplicit();
3268      PushOnScopeChains(InjectedClassName, S);
3269    }
3270  }
3271}
3272
3273void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3274  AdjustDeclIfTemplate(TagD);
3275  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3276
3277  if (isa<CXXRecordDecl>(Tag))
3278    FieldCollector->FinishClass();
3279
3280  // Exit this scope of this tag's definition.
3281  PopDeclContext();
3282
3283  // Notify the consumer that we've defined a tag.
3284  Consumer.HandleTagDeclDefinition(Tag);
3285}
3286
3287/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3288/// types into constant array types in certain situations which would otherwise
3289/// be errors (for GCC compatibility).
3290static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3291                                                    ASTContext &Context) {
3292  // This method tries to turn a variable array into a constant
3293  // array even when the size isn't an ICE.  This is necessary
3294  // for compatibility with code that depends on gcc's buggy
3295  // constant expression folding, like struct {char x[(int)(char*)2];}
3296  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3297  if (!VLATy) return QualType();
3298
3299  Expr::EvalResult EvalResult;
3300  if (!VLATy->getSizeExpr() ||
3301      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3302    return QualType();
3303
3304  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3305  llvm::APSInt &Res = EvalResult.Val.getInt();
3306  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3307    return Context.getConstantArrayType(VLATy->getElementType(),
3308                                        Res, ArrayType::Normal, 0);
3309  return QualType();
3310}
3311
3312bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3313                          QualType FieldTy, const Expr *BitWidth) {
3314  // FIXME: 6.7.2.1p4 - verify the field type.
3315
3316  llvm::APSInt Value;
3317  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3318    return true;
3319
3320  // Zero-width bitfield is ok for anonymous field.
3321  if (Value == 0 && FieldName)
3322    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3323
3324  if (Value.isNegative())
3325    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3326
3327  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3328  // FIXME: We won't need the 0 size once we check that the field type is valid.
3329  if (TypeSize && Value.getZExtValue() > TypeSize)
3330    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3331       << FieldName << (unsigned)TypeSize;
3332
3333  return false;
3334}
3335
3336/// ActOnField - Each field of a struct/union/class is passed into this in order
3337/// to create a FieldDecl object for it.
3338Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3339                               SourceLocation DeclStart,
3340                               Declarator &D, ExprTy *BitfieldWidth) {
3341  IdentifierInfo *II = D.getIdentifier();
3342  Expr *BitWidth = (Expr*)BitfieldWidth;
3343  SourceLocation Loc = DeclStart;
3344  RecordDecl *Record = (RecordDecl *)TagD;
3345  if (II) Loc = D.getIdentifierLoc();
3346
3347  // FIXME: Unnamed fields can be handled in various different ways, for
3348  // example, unnamed unions inject all members into the struct namespace!
3349
3350  QualType T = GetTypeForDeclarator(D, S);
3351  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3352  bool InvalidDecl = false;
3353
3354  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3355  // than a variably modified type.
3356  if (T->isVariablyModifiedType()) {
3357    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3358    if (!FixedTy.isNull()) {
3359      Diag(Loc, diag::warn_illegal_constant_array_size);
3360      T = FixedTy;
3361    } else {
3362      Diag(Loc, diag::err_typecheck_field_variable_size);
3363      T = Context.IntTy;
3364      InvalidDecl = true;
3365    }
3366  }
3367
3368  if (BitWidth) {
3369    if (VerifyBitField(Loc, II, T, BitWidth))
3370      InvalidDecl = true;
3371  } else {
3372    // Not a bitfield.
3373
3374    // validate II.
3375
3376  }
3377
3378  // FIXME: Chain fielddecls together.
3379  FieldDecl *NewFD;
3380
3381  NewFD = FieldDecl::Create(Context, Record,
3382                            Loc, II, T, BitWidth,
3383                            D.getDeclSpec().getStorageClassSpec() ==
3384                              DeclSpec::SCS_mutable);
3385
3386  if (II) {
3387    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3388    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3389        && !isa<TagDecl>(PrevDecl)) {
3390      Diag(Loc, diag::err_duplicate_member) << II;
3391      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3392      NewFD->setInvalidDecl();
3393      Record->setInvalidDecl();
3394    }
3395  }
3396
3397  if (getLangOptions().CPlusPlus) {
3398    CheckExtraCXXDefaultArguments(D);
3399    if (!T->isPODType())
3400      cast<CXXRecordDecl>(Record)->setPOD(false);
3401  }
3402
3403  ProcessDeclAttributes(NewFD, D);
3404
3405  if (D.getInvalidType() || InvalidDecl)
3406    NewFD->setInvalidDecl();
3407
3408  if (II) {
3409    PushOnScopeChains(NewFD, S);
3410  } else
3411    Record->addDecl(NewFD);
3412
3413  return NewFD;
3414}
3415
3416/// TranslateIvarVisibility - Translate visibility from a token ID to an
3417///  AST enum value.
3418static ObjCIvarDecl::AccessControl
3419TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3420  switch (ivarVisibility) {
3421  default: assert(0 && "Unknown visitibility kind");
3422  case tok::objc_private: return ObjCIvarDecl::Private;
3423  case tok::objc_public: return ObjCIvarDecl::Public;
3424  case tok::objc_protected: return ObjCIvarDecl::Protected;
3425  case tok::objc_package: return ObjCIvarDecl::Package;
3426  }
3427}
3428
3429/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3430/// in order to create an IvarDecl object for it.
3431Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3432                              SourceLocation DeclStart,
3433                              Declarator &D, ExprTy *BitfieldWidth,
3434                              tok::ObjCKeywordKind Visibility) {
3435
3436  IdentifierInfo *II = D.getIdentifier();
3437  Expr *BitWidth = (Expr*)BitfieldWidth;
3438  SourceLocation Loc = DeclStart;
3439  if (II) Loc = D.getIdentifierLoc();
3440
3441  // FIXME: Unnamed fields can be handled in various different ways, for
3442  // example, unnamed unions inject all members into the struct namespace!
3443
3444  QualType T = GetTypeForDeclarator(D, S);
3445  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3446  bool InvalidDecl = false;
3447
3448  if (BitWidth) {
3449    // TODO: Validate.
3450    //printf("WARNING: BITFIELDS IGNORED!\n");
3451
3452    // 6.7.2.1p3
3453    // 6.7.2.1p4
3454
3455  } else {
3456    // Not a bitfield.
3457
3458    // validate II.
3459
3460  }
3461
3462  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3463  // than a variably modified type.
3464  if (T->isVariablyModifiedType()) {
3465    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3466    InvalidDecl = true;
3467  }
3468
3469  // Get the visibility (access control) for this ivar.
3470  ObjCIvarDecl::AccessControl ac =
3471    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3472                                        : ObjCIvarDecl::None;
3473
3474  // Construct the decl.
3475  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3476                                             (Expr *)BitfieldWidth);
3477
3478  if (II) {
3479    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3480    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3481        && !isa<TagDecl>(PrevDecl)) {
3482      Diag(Loc, diag::err_duplicate_member) << II;
3483      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3484      NewID->setInvalidDecl();
3485    }
3486  }
3487
3488  // Process attributes attached to the ivar.
3489  ProcessDeclAttributes(NewID, D);
3490
3491  if (D.getInvalidType() || InvalidDecl)
3492    NewID->setInvalidDecl();
3493
3494  if (II) {
3495    // FIXME: When interfaces are DeclContexts, we'll need to add
3496    // these to the interface.
3497    S->AddDecl(NewID);
3498    IdResolver.AddDecl(NewID);
3499  }
3500
3501  return NewID;
3502}
3503
3504void Sema::ActOnFields(Scope* S,
3505                       SourceLocation RecLoc, DeclTy *RecDecl,
3506                       DeclTy **Fields, unsigned NumFields,
3507                       SourceLocation LBrac, SourceLocation RBrac,
3508                       AttributeList *Attr) {
3509  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3510  assert(EnclosingDecl && "missing record or interface decl");
3511  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3512
3513  // Verify that all the fields are okay.
3514  unsigned NumNamedMembers = 0;
3515  llvm::SmallVector<FieldDecl*, 32> RecFields;
3516
3517  for (unsigned i = 0; i != NumFields; ++i) {
3518    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3519    assert(FD && "missing field decl");
3520
3521    // Get the type for the field.
3522    Type *FDTy = FD->getType().getTypePtr();
3523
3524    if (!FD->isAnonymousStructOrUnion()) {
3525      // Remember all fields written by the user.
3526      RecFields.push_back(FD);
3527    }
3528
3529    // C99 6.7.2.1p2 - A field may not be a function type.
3530    if (FDTy->isFunctionType()) {
3531      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3532        << FD->getDeclName();
3533      FD->setInvalidDecl();
3534      EnclosingDecl->setInvalidDecl();
3535      continue;
3536    }
3537    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3538    if (FDTy->isIncompleteType()) {
3539      if (!Record) {  // Incomplete ivar type is always an error.
3540        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3541                               diag::err_field_incomplete);
3542        FD->setInvalidDecl();
3543        EnclosingDecl->setInvalidDecl();
3544        continue;
3545      }
3546      if (i != NumFields-1 ||                   // ... that the last member ...
3547          !Record->isStruct() ||  // ... of a structure ...
3548          !FDTy->isArrayType()) {         //... may have incomplete array type.
3549        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3550                               diag::err_field_incomplete);
3551        FD->setInvalidDecl();
3552        EnclosingDecl->setInvalidDecl();
3553        continue;
3554      }
3555      if (NumNamedMembers < 1) {  //... must have more than named member ...
3556        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3557          << FD->getDeclName();
3558        FD->setInvalidDecl();
3559        EnclosingDecl->setInvalidDecl();
3560        continue;
3561      }
3562      // Okay, we have a legal flexible array member at the end of the struct.
3563      if (Record)
3564        Record->setHasFlexibleArrayMember(true);
3565    }
3566    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3567    /// field of another structure or the element of an array.
3568    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3569      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3570        // If this is a member of a union, then entire union becomes "flexible".
3571        if (Record && Record->isUnion()) {
3572          Record->setHasFlexibleArrayMember(true);
3573        } else {
3574          // If this is a struct/class and this is not the last element, reject
3575          // it.  Note that GCC supports variable sized arrays in the middle of
3576          // structures.
3577          if (i != NumFields-1) {
3578            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3579              << FD->getDeclName();
3580            FD->setInvalidDecl();
3581            EnclosingDecl->setInvalidDecl();
3582            continue;
3583          }
3584          // We support flexible arrays at the end of structs in other structs
3585          // as an extension.
3586          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3587            << FD->getDeclName();
3588          if (Record)
3589            Record->setHasFlexibleArrayMember(true);
3590        }
3591      }
3592    }
3593    /// A field cannot be an Objective-c object
3594    if (FDTy->isObjCInterfaceType()) {
3595      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3596        << FD->getDeclName();
3597      FD->setInvalidDecl();
3598      EnclosingDecl->setInvalidDecl();
3599      continue;
3600    }
3601    // Keep track of the number of named members.
3602    if (FD->getIdentifier())
3603      ++NumNamedMembers;
3604  }
3605
3606  // Okay, we successfully defined 'Record'.
3607  if (Record) {
3608    Record->completeDefinition(Context);
3609  } else {
3610    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3611    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3612      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3613      // Must enforce the rule that ivars in the base classes may not be
3614      // duplicates.
3615      if (ID->getSuperClass()) {
3616        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3617             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3618          ObjCIvarDecl* Ivar = (*IVI);
3619          IdentifierInfo *II = Ivar->getIdentifier();
3620          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3621          if (prevIvar) {
3622            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3623            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3624          }
3625        }
3626      }
3627    }
3628    else if (ObjCImplementationDecl *IMPDecl =
3629               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3630      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3631      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3632      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3633    }
3634  }
3635
3636  if (Attr)
3637    ProcessDeclAttributeList(Record, Attr);
3638}
3639
3640Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3641                                      DeclTy *lastEnumConst,
3642                                      SourceLocation IdLoc, IdentifierInfo *Id,
3643                                      SourceLocation EqualLoc, ExprTy *val) {
3644  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3645  EnumConstantDecl *LastEnumConst =
3646    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3647  Expr *Val = static_cast<Expr*>(val);
3648
3649  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3650  // we find one that is.
3651  S = getNonFieldDeclScope(S);
3652
3653  // Verify that there isn't already something declared with this name in this
3654  // scope.
3655  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3656  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3657    // Maybe we will complain about the shadowed template parameter.
3658    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3659    // Just pretend that we didn't see the previous declaration.
3660    PrevDecl = 0;
3661  }
3662
3663  if (PrevDecl) {
3664    // When in C++, we may get a TagDecl with the same name; in this case the
3665    // enum constant will 'hide' the tag.
3666    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3667           "Received TagDecl when not in C++!");
3668    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3669      if (isa<EnumConstantDecl>(PrevDecl))
3670        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3671      else
3672        Diag(IdLoc, diag::err_redefinition) << Id;
3673      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3674      Val->Destroy(Context);
3675      return 0;
3676    }
3677  }
3678
3679  llvm::APSInt EnumVal(32);
3680  QualType EltTy;
3681  if (Val) {
3682    // Make sure to promote the operand type to int.
3683    UsualUnaryConversions(Val);
3684
3685    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3686    SourceLocation ExpLoc;
3687    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3688      Val->Destroy(Context);
3689      Val = 0;  // Just forget about it.
3690    } else {
3691      EltTy = Val->getType();
3692    }
3693  }
3694
3695  if (!Val) {
3696    if (LastEnumConst) {
3697      // Assign the last value + 1.
3698      EnumVal = LastEnumConst->getInitVal();
3699      ++EnumVal;
3700
3701      // Check for overflow on increment.
3702      if (EnumVal < LastEnumConst->getInitVal())
3703        Diag(IdLoc, diag::warn_enum_value_overflow);
3704
3705      EltTy = LastEnumConst->getType();
3706    } else {
3707      // First value, set to zero.
3708      EltTy = Context.IntTy;
3709      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3710    }
3711  }
3712
3713  EnumConstantDecl *New =
3714    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3715                             Val, EnumVal);
3716
3717  // Register this decl in the current scope stack.
3718  PushOnScopeChains(New, S);
3719
3720  return New;
3721}
3722
3723// FIXME: For consistency with ActOnFields(), we should have the parser
3724// pass in the source location for the left/right braces.
3725void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3726                         DeclTy **Elements, unsigned NumElements) {
3727  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3728  QualType EnumType = Context.getTypeDeclType(Enum);
3729
3730  // TODO: If the result value doesn't fit in an int, it must be a long or long
3731  // long value.  ISO C does not support this, but GCC does as an extension,
3732  // emit a warning.
3733  unsigned IntWidth = Context.Target.getIntWidth();
3734
3735  // Verify that all the values are okay, compute the size of the values, and
3736  // reverse the list.
3737  unsigned NumNegativeBits = 0;
3738  unsigned NumPositiveBits = 0;
3739
3740  // Keep track of whether all elements have type int.
3741  bool AllElementsInt = true;
3742
3743  for (unsigned i = 0; i != NumElements; ++i) {
3744    EnumConstantDecl *ECD =
3745      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3746    if (!ECD) continue;  // Already issued a diagnostic.
3747
3748    // If the enum value doesn't fit in an int, emit an extension warning.
3749    const llvm::APSInt &InitVal = ECD->getInitVal();
3750    assert(InitVal.getBitWidth() >= IntWidth &&
3751           "Should have promoted value to int");
3752    if (InitVal.getBitWidth() > IntWidth) {
3753      llvm::APSInt V(InitVal);
3754      V.trunc(IntWidth);
3755      V.extend(InitVal.getBitWidth());
3756      if (V != InitVal)
3757        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3758          << InitVal.toString(10);
3759    }
3760
3761    // Keep track of the size of positive and negative values.
3762    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3763      NumPositiveBits = std::max(NumPositiveBits,
3764                                 (unsigned)InitVal.getActiveBits());
3765    else
3766      NumNegativeBits = std::max(NumNegativeBits,
3767                                 (unsigned)InitVal.getMinSignedBits());
3768
3769    // Keep track of whether every enum element has type int (very commmon).
3770    if (AllElementsInt)
3771      AllElementsInt = ECD->getType() == Context.IntTy;
3772  }
3773
3774  // Figure out the type that should be used for this enum.
3775  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3776  QualType BestType;
3777  unsigned BestWidth;
3778
3779  if (NumNegativeBits) {
3780    // If there is a negative value, figure out the smallest integer type (of
3781    // int/long/longlong) that fits.
3782    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3783      BestType = Context.IntTy;
3784      BestWidth = IntWidth;
3785    } else {
3786      BestWidth = Context.Target.getLongWidth();
3787
3788      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3789        BestType = Context.LongTy;
3790      else {
3791        BestWidth = Context.Target.getLongLongWidth();
3792
3793        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3794          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3795        BestType = Context.LongLongTy;
3796      }
3797    }
3798  } else {
3799    // If there is no negative value, figure out which of uint, ulong, ulonglong
3800    // fits.
3801    if (NumPositiveBits <= IntWidth) {
3802      BestType = Context.UnsignedIntTy;
3803      BestWidth = IntWidth;
3804    } else if (NumPositiveBits <=
3805               (BestWidth = Context.Target.getLongWidth())) {
3806      BestType = Context.UnsignedLongTy;
3807    } else {
3808      BestWidth = Context.Target.getLongLongWidth();
3809      assert(NumPositiveBits <= BestWidth &&
3810             "How could an initializer get larger than ULL?");
3811      BestType = Context.UnsignedLongLongTy;
3812    }
3813  }
3814
3815  // Loop over all of the enumerator constants, changing their types to match
3816  // the type of the enum if needed.
3817  for (unsigned i = 0; i != NumElements; ++i) {
3818    EnumConstantDecl *ECD =
3819      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3820    if (!ECD) continue;  // Already issued a diagnostic.
3821
3822    // Standard C says the enumerators have int type, but we allow, as an
3823    // extension, the enumerators to be larger than int size.  If each
3824    // enumerator value fits in an int, type it as an int, otherwise type it the
3825    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3826    // that X has type 'int', not 'unsigned'.
3827    if (ECD->getType() == Context.IntTy) {
3828      // Make sure the init value is signed.
3829      llvm::APSInt IV = ECD->getInitVal();
3830      IV.setIsSigned(true);
3831      ECD->setInitVal(IV);
3832
3833      if (getLangOptions().CPlusPlus)
3834        // C++ [dcl.enum]p4: Following the closing brace of an
3835        // enum-specifier, each enumerator has the type of its
3836        // enumeration.
3837        ECD->setType(EnumType);
3838      continue;  // Already int type.
3839    }
3840
3841    // Determine whether the value fits into an int.
3842    llvm::APSInt InitVal = ECD->getInitVal();
3843    bool FitsInInt;
3844    if (InitVal.isUnsigned() || !InitVal.isNegative())
3845      FitsInInt = InitVal.getActiveBits() < IntWidth;
3846    else
3847      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3848
3849    // If it fits into an integer type, force it.  Otherwise force it to match
3850    // the enum decl type.
3851    QualType NewTy;
3852    unsigned NewWidth;
3853    bool NewSign;
3854    if (FitsInInt) {
3855      NewTy = Context.IntTy;
3856      NewWidth = IntWidth;
3857      NewSign = true;
3858    } else if (ECD->getType() == BestType) {
3859      // Already the right type!
3860      if (getLangOptions().CPlusPlus)
3861        // C++ [dcl.enum]p4: Following the closing brace of an
3862        // enum-specifier, each enumerator has the type of its
3863        // enumeration.
3864        ECD->setType(EnumType);
3865      continue;
3866    } else {
3867      NewTy = BestType;
3868      NewWidth = BestWidth;
3869      NewSign = BestType->isSignedIntegerType();
3870    }
3871
3872    // Adjust the APSInt value.
3873    InitVal.extOrTrunc(NewWidth);
3874    InitVal.setIsSigned(NewSign);
3875    ECD->setInitVal(InitVal);
3876
3877    // Adjust the Expr initializer and type.
3878    if (ECD->getInitExpr())
3879      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3880                                                      /*isLvalue=*/false));
3881    if (getLangOptions().CPlusPlus)
3882      // C++ [dcl.enum]p4: Following the closing brace of an
3883      // enum-specifier, each enumerator has the type of its
3884      // enumeration.
3885      ECD->setType(EnumType);
3886    else
3887      ECD->setType(NewTy);
3888  }
3889
3890  Enum->completeDefinition(Context, BestType);
3891}
3892
3893Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3894                                          ExprArg expr) {
3895  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3896
3897  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3898}
3899
3900
3901void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3902                           ExprTy *alignment, SourceLocation PragmaLoc,
3903                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3904  Expr *Alignment = static_cast<Expr *>(alignment);
3905
3906  // If specified then alignment must be a "small" power of two.
3907  unsigned AlignmentVal = 0;
3908  if (Alignment) {
3909    llvm::APSInt Val;
3910    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3911        !Val.isPowerOf2() ||
3912        Val.getZExtValue() > 16) {
3913      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3914      Alignment->Destroy(Context);
3915      return; // Ignore
3916    }
3917
3918    AlignmentVal = (unsigned) Val.getZExtValue();
3919  }
3920
3921  switch (Kind) {
3922  case Action::PPK_Default: // pack([n])
3923    PackContext.setAlignment(AlignmentVal);
3924    break;
3925
3926  case Action::PPK_Show: // pack(show)
3927    // Show the current alignment, making sure to show the right value
3928    // for the default.
3929    AlignmentVal = PackContext.getAlignment();
3930    // FIXME: This should come from the target.
3931    if (AlignmentVal == 0)
3932      AlignmentVal = 8;
3933    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3934    break;
3935
3936  case Action::PPK_Push: // pack(push [, id] [, [n])
3937    PackContext.push(Name);
3938    // Set the new alignment if specified.
3939    if (Alignment)
3940      PackContext.setAlignment(AlignmentVal);
3941    break;
3942
3943  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3944    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3945    // "#pragma pack(pop, identifier, n) is undefined"
3946    if (Alignment && Name)
3947      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3948
3949    // Do the pop.
3950    if (!PackContext.pop(Name)) {
3951      // If a name was specified then failure indicates the name
3952      // wasn't found. Otherwise failure indicates the stack was
3953      // empty.
3954      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3955        << (Name ? "no record matching name" : "stack empty");
3956
3957      // FIXME: Warn about popping named records as MSVC does.
3958    } else {
3959      // Pop succeeded, set the new alignment if specified.
3960      if (Alignment)
3961        PackContext.setAlignment(AlignmentVal);
3962    }
3963    break;
3964
3965  default:
3966    assert(0 && "Invalid #pragma pack kind.");
3967  }
3968}
3969
3970bool PragmaPackStack::pop(IdentifierInfo *Name) {
3971  if (Stack.empty())
3972    return false;
3973
3974  // If name is empty just pop top.
3975  if (!Name) {
3976    Alignment = Stack.back().first;
3977    Stack.pop_back();
3978    return true;
3979  }
3980
3981  // Otherwise, find the named record.
3982  for (unsigned i = Stack.size(); i != 0; ) {
3983    --i;
3984    if (Stack[i].second == Name) {
3985      // Found it, pop up to and including this record.
3986      Alignment = Stack[i].first;
3987      Stack.erase(Stack.begin() + i, Stack.end());
3988      return true;
3989    }
3990  }
3991
3992  return false;
3993}
3994