SemaDecl.cpp revision 8092b6617920bae033ccc159221bebcdcb5e57d3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS))
75    return 0;
76
77  LookupResult Result
78    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
79
80  NamedDecl *IIDecl = 0;
81  switch (Result.getKind()) {
82  case LookupResult::NotFound:
83  case LookupResult::FoundOverloaded:
84    return 0;
85
86  case LookupResult::AmbiguousBaseSubobjectTypes:
87  case LookupResult::AmbiguousBaseSubobjects:
88  case LookupResult::AmbiguousReference: {
89    // Look to see if we have a type anywhere in the list of results.
90    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
91         Res != ResEnd; ++Res) {
92      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
93        if (!IIDecl ||
94            (*Res)->getLocation().getRawEncoding() <
95              IIDecl->getLocation().getRawEncoding())
96          IIDecl = *Res;
97      }
98    }
99
100    if (!IIDecl) {
101      // None of the entities we found is a type, so there is no way
102      // to even assume that the result is a type. In this case, don't
103      // complain about the ambiguity. The parser will either try to
104      // perform this lookup again (e.g., as an object name), which
105      // will produce the ambiguity, or will complain that it expected
106      // a type name.
107      Result.Destroy();
108      return 0;
109    }
110
111    // We found a type within the ambiguous lookup; diagnose the
112    // ambiguity and then return that type. This might be the right
113    // answer, or it might not be, but it suppresses any attempt to
114    // perform the name lookup again.
115    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
116    break;
117  }
118
119  case LookupResult::Found:
120    IIDecl = Result.getAsDecl();
121    break;
122  }
123
124  if (IIDecl) {
125    QualType T;
126
127    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
128      // Check whether we can use this type
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      if (getLangOptions().CPlusPlus) {
132        // C++ [temp.local]p2:
133        //   Within the scope of a class template specialization or
134        //   partial specialization, when the injected-class-name is
135        //   not followed by a <, it is equivalent to the
136        //   injected-class-name followed by the template-argument s
137        //   of the class template specialization or partial
138        //   specialization enclosed in <>.
139        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
140          if (RD->isInjectedClassName())
141            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
142              T = Template->getInjectedClassNameType(Context);
143      }
144
145      if (T.isNull())
146        T = Context.getTypeDeclType(TD);
147    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
148      // Check whether we can use this interface.
149      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151      T = Context.getObjCInterfaceType(IDecl);
152    } else
153      return 0;
154
155    if (SS)
156      T = getQualifiedNameType(*SS, T);
157
158    return T.getAsOpaquePtr();
159  }
160
161  return 0;
162}
163
164/// isTagName() - This method is called *for error recovery purposes only*
165/// to determine if the specified name is a valid tag name ("struct foo").  If
166/// so, this returns the TST for the tag corresponding to it (TST_enum,
167/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
168/// where the user forgot to specify the tag.
169DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
170  // Do a tag name lookup in this scope.
171  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
172  if (R.getKind() == LookupResult::Found)
173    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
174      switch (TD->getTagKind()) {
175      case TagDecl::TK_struct: return DeclSpec::TST_struct;
176      case TagDecl::TK_union:  return DeclSpec::TST_union;
177      case TagDecl::TK_class:  return DeclSpec::TST_class;
178      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
179      }
180    }
181
182  return DeclSpec::TST_unspecified;
183}
184
185
186
187DeclContext *Sema::getContainingDC(DeclContext *DC) {
188  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
189    // A C++ out-of-line method will return to the file declaration context.
190    if (MD->isOutOfLine())
191      return MD->getLexicalDeclContext();
192
193    // A C++ inline method is parsed *after* the topmost class it was declared
194    // in is fully parsed (it's "complete").
195    // The parsing of a C++ inline method happens at the declaration context of
196    // the topmost (non-nested) class it is lexically declared in.
197    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
198    DC = MD->getParent();
199    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
200      DC = RD;
201
202    // Return the declaration context of the topmost class the inline method is
203    // declared in.
204    return DC;
205  }
206
207  if (isa<ObjCMethodDecl>(DC))
208    return Context.getTranslationUnitDecl();
209
210  return DC->getLexicalParent();
211}
212
213void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
214  assert(getContainingDC(DC) == CurContext &&
215      "The next DeclContext should be lexically contained in the current one.");
216  CurContext = DC;
217  S->setEntity(DC);
218}
219
220void Sema::PopDeclContext() {
221  assert(CurContext && "DeclContext imbalance!");
222
223  CurContext = getContainingDC(CurContext);
224}
225
226/// EnterDeclaratorContext - Used when we must lookup names in the context
227/// of a declarator's nested name specifier.
228void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
229  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
230  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
231  CurContext = DC;
232  assert(CurContext && "No context?");
233  S->setEntity(CurContext);
234}
235
236void Sema::ExitDeclaratorContext(Scope *S) {
237  S->setEntity(PreDeclaratorDC);
238  PreDeclaratorDC = 0;
239
240  // Reset CurContext to the nearest enclosing context.
241  while (!S->getEntity() && S->getParent())
242    S = S->getParent();
243  CurContext = static_cast<DeclContext*>(S->getEntity());
244  assert(CurContext && "No context?");
245}
246
247/// \brief Determine whether we allow overloading of the function
248/// PrevDecl with another declaration.
249///
250/// This routine determines whether overloading is possible, not
251/// whether some new function is actually an overload. It will return
252/// true in C++ (where we can always provide overloads) or, as an
253/// extension, in C when the previous function is already an
254/// overloaded function declaration or has the "overloadable"
255/// attribute.
256static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
257  if (Context.getLangOptions().CPlusPlus)
258    return true;
259
260  if (isa<OverloadedFunctionDecl>(PrevDecl))
261    return true;
262
263  return PrevDecl->getAttr<OverloadableAttr>() != 0;
264}
265
266/// Add this decl to the scope shadowed decl chains.
267void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
268  // Move up the scope chain until we find the nearest enclosing
269  // non-transparent context. The declaration will be introduced into this
270  // scope.
271  while (S->getEntity() &&
272         ((DeclContext *)S->getEntity())->isTransparentContext())
273    S = S->getParent();
274
275  S->AddDecl(DeclPtrTy::make(D));
276
277  // Add scoped declarations into their context, so that they can be
278  // found later. Declarations without a context won't be inserted
279  // into any context.
280  CurContext->addDecl(D);
281
282  // C++ [basic.scope]p4:
283  //   -- exactly one declaration shall declare a class name or
284  //   enumeration name that is not a typedef name and the other
285  //   declarations shall all refer to the same object or
286  //   enumerator, or all refer to functions and function templates;
287  //   in this case the class name or enumeration name is hidden.
288  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
289    // We are pushing the name of a tag (enum or class).
290    if (CurContext->getLookupContext()
291          == TD->getDeclContext()->getLookupContext()) {
292      // We're pushing the tag into the current context, which might
293      // require some reshuffling in the identifier resolver.
294      IdentifierResolver::iterator
295        I = IdResolver.begin(TD->getDeclName()),
296        IEnd = IdResolver.end();
297      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
298        NamedDecl *PrevDecl = *I;
299        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
300             PrevDecl = *I, ++I) {
301          if (TD->declarationReplaces(*I)) {
302            // This is a redeclaration. Remove it from the chain and
303            // break out, so that we'll add in the shadowed
304            // declaration.
305            S->RemoveDecl(DeclPtrTy::make(*I));
306            if (PrevDecl == *I) {
307              IdResolver.RemoveDecl(*I);
308              IdResolver.AddDecl(TD);
309              return;
310            } else {
311              IdResolver.RemoveDecl(*I);
312              break;
313            }
314          }
315        }
316
317        // There is already a declaration with the same name in the same
318        // scope, which is not a tag declaration. It must be found
319        // before we find the new declaration, so insert the new
320        // declaration at the end of the chain.
321        IdResolver.AddShadowedDecl(TD, PrevDecl);
322
323        return;
324      }
325    }
326  } else if ((isa<FunctionDecl>(D) &&
327              AllowOverloadingOfFunction(D, Context)) ||
328             isa<FunctionTemplateDecl>(D)) {
329    // We are pushing the name of a function or function template,
330    // which might be an overloaded name.
331    IdentifierResolver::iterator Redecl
332      = std::find_if(IdResolver.begin(D->getDeclName()),
333                     IdResolver.end(),
334                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
335                                  D));
336    if (Redecl != IdResolver.end() &&
337        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
338      // There is already a declaration of a function on our
339      // IdResolver chain. Replace it with this declaration.
340      S->RemoveDecl(DeclPtrTy::make(*Redecl));
341      IdResolver.RemoveDecl(*Redecl);
342    }
343  } else if (isa<ObjCInterfaceDecl>(D)) {
344    // We're pushing an Objective-C interface into the current
345    // context. If there is already an alias declaration, remove it first.
346    for (IdentifierResolver::iterator
347           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
348         I != IEnd; ++I) {
349      if (isa<ObjCCompatibleAliasDecl>(*I)) {
350        S->RemoveDecl(DeclPtrTy::make(*I));
351        IdResolver.RemoveDecl(*I);
352        break;
353      }
354    }
355  }
356
357  IdResolver.AddDecl(D);
358}
359
360void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
361  if (S->decl_empty()) return;
362  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
363	 "Scope shouldn't contain decls!");
364
365  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
366       I != E; ++I) {
367    Decl *TmpD = (*I).getAs<Decl>();
368    assert(TmpD && "This decl didn't get pushed??");
369
370    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
371    NamedDecl *D = cast<NamedDecl>(TmpD);
372
373    if (!D->getDeclName()) continue;
374
375    // Remove this name from our lexical scope.
376    IdResolver.RemoveDecl(D);
377  }
378}
379
380/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
381/// return 0 if one not found.
382ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
383  // The third "scope" argument is 0 since we aren't enabling lazy built-in
384  // creation from this context.
385  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
386
387  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
388}
389
390/// getNonFieldDeclScope - Retrieves the innermost scope, starting
391/// from S, where a non-field would be declared. This routine copes
392/// with the difference between C and C++ scoping rules in structs and
393/// unions. For example, the following code is well-formed in C but
394/// ill-formed in C++:
395/// @code
396/// struct S6 {
397///   enum { BAR } e;
398/// };
399///
400/// void test_S6() {
401///   struct S6 a;
402///   a.e = BAR;
403/// }
404/// @endcode
405/// For the declaration of BAR, this routine will return a different
406/// scope. The scope S will be the scope of the unnamed enumeration
407/// within S6. In C++, this routine will return the scope associated
408/// with S6, because the enumeration's scope is a transparent
409/// context but structures can contain non-field names. In C, this
410/// routine will return the translation unit scope, since the
411/// enumeration's scope is a transparent context and structures cannot
412/// contain non-field names.
413Scope *Sema::getNonFieldDeclScope(Scope *S) {
414  while (((S->getFlags() & Scope::DeclScope) == 0) ||
415         (S->getEntity() &&
416          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
417         (S->isClassScope() && !getLangOptions().CPlusPlus))
418    S = S->getParent();
419  return S;
420}
421
422void Sema::InitBuiltinVaListType() {
423  if (!Context.getBuiltinVaListType().isNull())
424    return;
425
426  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
427  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
428  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
429  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
430}
431
432/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
433/// file scope.  lazily create a decl for it. ForRedeclaration is true
434/// if we're creating this built-in in anticipation of redeclaring the
435/// built-in.
436NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
437                                     Scope *S, bool ForRedeclaration,
438                                     SourceLocation Loc) {
439  Builtin::ID BID = (Builtin::ID)bid;
440
441  if (Context.BuiltinInfo.hasVAListUse(BID))
442    InitBuiltinVaListType();
443
444  ASTContext::GetBuiltinTypeError Error;
445  QualType R = Context.GetBuiltinType(BID, Error);
446  switch (Error) {
447  case ASTContext::GE_None:
448    // Okay
449    break;
450
451  case ASTContext::GE_Missing_FILE:
452    if (ForRedeclaration)
453      Diag(Loc, diag::err_implicit_decl_requires_stdio)
454        << Context.BuiltinInfo.GetName(BID);
455    return 0;
456  }
457
458  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
459    Diag(Loc, diag::ext_implicit_lib_function_decl)
460      << Context.BuiltinInfo.GetName(BID)
461      << R;
462    if (Context.BuiltinInfo.getHeaderName(BID) &&
463        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
464          != Diagnostic::Ignored)
465      Diag(Loc, diag::note_please_include_header)
466        << Context.BuiltinInfo.getHeaderName(BID)
467        << Context.BuiltinInfo.GetName(BID);
468  }
469
470  FunctionDecl *New = FunctionDecl::Create(Context,
471                                           Context.getTranslationUnitDecl(),
472                                           Loc, II, R,
473                                           FunctionDecl::Extern, false,
474                                           /*hasPrototype=*/true);
475  New->setImplicit();
476
477  // Create Decl objects for each parameter, adding them to the
478  // FunctionDecl.
479  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
480    llvm::SmallVector<ParmVarDecl*, 16> Params;
481    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
482      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
483                                           FT->getArgType(i), VarDecl::None, 0));
484    New->setParams(Context, Params.data(), Params.size());
485  }
486
487  AddKnownFunctionAttributes(New);
488
489  // TUScope is the translation-unit scope to insert this function into.
490  // FIXME: This is hideous. We need to teach PushOnScopeChains to
491  // relate Scopes to DeclContexts, and probably eliminate CurContext
492  // entirely, but we're not there yet.
493  DeclContext *SavedContext = CurContext;
494  CurContext = Context.getTranslationUnitDecl();
495  PushOnScopeChains(New, TUScope);
496  CurContext = SavedContext;
497  return New;
498}
499
500/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
501/// everything from the standard library is defined.
502NamespaceDecl *Sema::GetStdNamespace() {
503  if (!StdNamespace) {
504    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
505    DeclContext *Global = Context.getTranslationUnitDecl();
506    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
507    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
508  }
509  return StdNamespace;
510}
511
512/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
513/// same name and scope as a previous declaration 'Old'.  Figure out
514/// how to resolve this situation, merging decls or emitting
515/// diagnostics as appropriate. If there was an error, set New to be invalid.
516///
517void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
518  // If either decl is known invalid already, set the new one to be invalid and
519  // don't bother doing any merging checks.
520  if (New->isInvalidDecl() || OldD->isInvalidDecl())
521    return New->setInvalidDecl();
522
523  // Allow multiple definitions for ObjC built-in typedefs.
524  // FIXME: Verify the underlying types are equivalent!
525  if (getLangOptions().ObjC1) {
526    const IdentifierInfo *TypeID = New->getIdentifier();
527    switch (TypeID->getLength()) {
528    default: break;
529    case 2:
530      if (!TypeID->isStr("id"))
531        break;
532      // Install the built-in type for 'id', ignoring the current definition.
533      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
534      return;
535    case 5:
536      if (!TypeID->isStr("Class"))
537        break;
538      // Install the built-in type for 'Class', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
540      return;
541    case 3:
542      if (!TypeID->isStr("SEL"))
543        break;
544      Context.setObjCSelType(Context.getTypeDeclType(New));
545      return;
546    case 8:
547      if (!TypeID->isStr("Protocol"))
548        break;
549      Context.setObjCProtoType(New->getUnderlyingType());
550      return;
551    }
552    // Fall through - the typedef name was not a builtin type.
553  }
554  // Verify the old decl was also a type.
555  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
556  if (!Old) {
557    Diag(New->getLocation(), diag::err_redefinition_different_kind)
558      << New->getDeclName();
559    if (OldD->getLocation().isValid())
560      Diag(OldD->getLocation(), diag::note_previous_definition);
561    return New->setInvalidDecl();
562  }
563
564  // Determine the "old" type we'll use for checking and diagnostics.
565  QualType OldType;
566  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
567    OldType = OldTypedef->getUnderlyingType();
568  else
569    OldType = Context.getTypeDeclType(Old);
570
571  // If the typedef types are not identical, reject them in all languages and
572  // with any extensions enabled.
573
574  if (OldType != New->getUnderlyingType() &&
575      Context.getCanonicalType(OldType) !=
576      Context.getCanonicalType(New->getUnderlyingType())) {
577    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
578      << New->getUnderlyingType() << OldType;
579    if (Old->getLocation().isValid())
580      Diag(Old->getLocation(), diag::note_previous_definition);
581    return New->setInvalidDecl();
582  }
583
584  if (getLangOptions().Microsoft)
585    return;
586
587  // C++ [dcl.typedef]p2:
588  //   In a given non-class scope, a typedef specifier can be used to
589  //   redefine the name of any type declared in that scope to refer
590  //   to the type to which it already refers.
591  if (getLangOptions().CPlusPlus) {
592    if (!isa<CXXRecordDecl>(CurContext))
593      return;
594    Diag(New->getLocation(), diag::err_redefinition)
595      << New->getDeclName();
596    Diag(Old->getLocation(), diag::note_previous_definition);
597    return New->setInvalidDecl();
598  }
599
600  // If we have a redefinition of a typedef in C, emit a warning.  This warning
601  // is normally mapped to an error, but can be controlled with
602  // -Wtypedef-redefinition.  If either the original or the redefinition is
603  // in a system header, don't emit this for compatibility with GCC.
604  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
605      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
606       Context.getSourceManager().isInSystemHeader(New->getLocation())))
607    return;
608
609  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
610    << New->getDeclName();
611  Diag(Old->getLocation(), diag::note_previous_definition);
612  return;
613}
614
615/// DeclhasAttr - returns true if decl Declaration already has the target
616/// attribute.
617static bool
618DeclHasAttr(const Decl *decl, const Attr *target) {
619  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
620    if (attr->getKind() == target->getKind())
621      return true;
622
623  return false;
624}
625
626/// MergeAttributes - append attributes from the Old decl to the New one.
627static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
628  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
629    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
630      Attr *NewAttr = attr->clone(C);
631      NewAttr->setInherited(true);
632      New->addAttr(NewAttr);
633    }
634  }
635}
636
637/// Used in MergeFunctionDecl to keep track of function parameters in
638/// C.
639struct GNUCompatibleParamWarning {
640  ParmVarDecl *OldParm;
641  ParmVarDecl *NewParm;
642  QualType PromotedType;
643};
644
645/// MergeFunctionDecl - We just parsed a function 'New' from
646/// declarator D which has the same name and scope as a previous
647/// declaration 'Old'.  Figure out how to resolve this situation,
648/// merging decls or emitting diagnostics as appropriate.
649///
650/// In C++, New and Old must be declarations that are not
651/// overloaded. Use IsOverload to determine whether New and Old are
652/// overloaded, and to select the Old declaration that New should be
653/// merged with.
654///
655/// Returns true if there was an error, false otherwise.
656bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
657  assert(!isa<OverloadedFunctionDecl>(OldD) &&
658         "Cannot merge with an overloaded function declaration");
659
660  // Verify the old decl was also a function.
661  FunctionDecl *Old = 0;
662  if (FunctionTemplateDecl *OldFunctionTemplate
663        = dyn_cast<FunctionTemplateDecl>(OldD))
664    Old = OldFunctionTemplate->getTemplatedDecl();
665  else
666    Old = dyn_cast<FunctionDecl>(OldD);
667  if (!Old) {
668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
669      << New->getDeclName();
670    Diag(OldD->getLocation(), diag::note_previous_definition);
671    return true;
672  }
673
674  // Determine whether the previous declaration was a definition,
675  // implicit declaration, or a declaration.
676  diag::kind PrevDiag;
677  if (Old->isThisDeclarationADefinition())
678    PrevDiag = diag::note_previous_definition;
679  else if (Old->isImplicit())
680    PrevDiag = diag::note_previous_implicit_declaration;
681  else
682    PrevDiag = diag::note_previous_declaration;
683
684  QualType OldQType = Context.getCanonicalType(Old->getType());
685  QualType NewQType = Context.getCanonicalType(New->getType());
686
687  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
688      New->getStorageClass() == FunctionDecl::Static &&
689      Old->getStorageClass() != FunctionDecl::Static) {
690    Diag(New->getLocation(), diag::err_static_non_static)
691      << New;
692    Diag(Old->getLocation(), PrevDiag);
693    return true;
694  }
695
696  if (getLangOptions().CPlusPlus) {
697    // (C++98 13.1p2):
698    //   Certain function declarations cannot be overloaded:
699    //     -- Function declarations that differ only in the return type
700    //        cannot be overloaded.
701    QualType OldReturnType
702      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
703    QualType NewReturnType
704      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
705    if (OldReturnType != NewReturnType) {
706      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
707      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
708      return true;
709    }
710
711    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
712    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
713    if (OldMethod && NewMethod &&
714        NewMethod->getLexicalDeclContext()->isRecord()) {
715      //    -- Member function declarations with the same name and the
716      //       same parameter types cannot be overloaded if any of them
717      //       is a static member function declaration.
718      if (OldMethod->isStatic() || NewMethod->isStatic()) {
719        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
720        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
721        return true;
722      }
723
724      // C++ [class.mem]p1:
725      //   [...] A member shall not be declared twice in the
726      //   member-specification, except that a nested class or member
727      //   class template can be declared and then later defined.
728      unsigned NewDiag;
729      if (isa<CXXConstructorDecl>(OldMethod))
730        NewDiag = diag::err_constructor_redeclared;
731      else if (isa<CXXDestructorDecl>(NewMethod))
732        NewDiag = diag::err_destructor_redeclared;
733      else if (isa<CXXConversionDecl>(NewMethod))
734        NewDiag = diag::err_conv_function_redeclared;
735      else
736        NewDiag = diag::err_member_redeclared;
737
738      Diag(New->getLocation(), NewDiag);
739      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
740    }
741
742    // (C++98 8.3.5p3):
743    //   All declarations for a function shall agree exactly in both the
744    //   return type and the parameter-type-list.
745    if (OldQType == NewQType)
746      return MergeCompatibleFunctionDecls(New, Old);
747
748    // Fall through for conflicting redeclarations and redefinitions.
749  }
750
751  // C: Function types need to be compatible, not identical. This handles
752  // duplicate function decls like "void f(int); void f(enum X);" properly.
753  if (!getLangOptions().CPlusPlus &&
754      Context.typesAreCompatible(OldQType, NewQType)) {
755    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
756    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
757    const FunctionProtoType *OldProto = 0;
758    if (isa<FunctionNoProtoType>(NewFuncType) &&
759        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
760      // The old declaration provided a function prototype, but the
761      // new declaration does not. Merge in the prototype.
762      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
763      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
764                                                 OldProto->arg_type_end());
765      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
766                                         ParamTypes.data(), ParamTypes.size(),
767                                         OldProto->isVariadic(),
768                                         OldProto->getTypeQuals());
769      New->setType(NewQType);
770      New->setHasInheritedPrototype();
771
772      // Synthesize a parameter for each argument type.
773      llvm::SmallVector<ParmVarDecl*, 16> Params;
774      for (FunctionProtoType::arg_type_iterator
775             ParamType = OldProto->arg_type_begin(),
776             ParamEnd = OldProto->arg_type_end();
777           ParamType != ParamEnd; ++ParamType) {
778        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
779                                                 SourceLocation(), 0,
780                                                 *ParamType, VarDecl::None,
781                                                 0);
782        Param->setImplicit();
783        Params.push_back(Param);
784      }
785
786      New->setParams(Context, Params.data(), Params.size());
787    }
788
789    return MergeCompatibleFunctionDecls(New, Old);
790  }
791
792  // GNU C permits a K&R definition to follow a prototype declaration
793  // if the declared types of the parameters in the K&R definition
794  // match the types in the prototype declaration, even when the
795  // promoted types of the parameters from the K&R definition differ
796  // from the types in the prototype. GCC then keeps the types from
797  // the prototype.
798  //
799  // If a variadic prototype is followed by a non-variadic K&R definition,
800  // the K&R definition becomes variadic.  This is sort of an edge case, but
801  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
802  // C99 6.9.1p8.
803  if (!getLangOptions().CPlusPlus &&
804      Old->hasPrototype() && !New->hasPrototype() &&
805      New->getType()->getAsFunctionProtoType() &&
806      Old->getNumParams() == New->getNumParams()) {
807    llvm::SmallVector<QualType, 16> ArgTypes;
808    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
809    const FunctionProtoType *OldProto
810      = Old->getType()->getAsFunctionProtoType();
811    const FunctionProtoType *NewProto
812      = New->getType()->getAsFunctionProtoType();
813
814    // Determine whether this is the GNU C extension.
815    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
816                                               NewProto->getResultType());
817    bool LooseCompatible = !MergedReturn.isNull();
818    for (unsigned Idx = 0, End = Old->getNumParams();
819         LooseCompatible && Idx != End; ++Idx) {
820      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
821      ParmVarDecl *NewParm = New->getParamDecl(Idx);
822      if (Context.typesAreCompatible(OldParm->getType(),
823                                     NewProto->getArgType(Idx))) {
824        ArgTypes.push_back(NewParm->getType());
825      } else if (Context.typesAreCompatible(OldParm->getType(),
826                                            NewParm->getType())) {
827        GNUCompatibleParamWarning Warn
828          = { OldParm, NewParm, NewProto->getArgType(Idx) };
829        Warnings.push_back(Warn);
830        ArgTypes.push_back(NewParm->getType());
831      } else
832        LooseCompatible = false;
833    }
834
835    if (LooseCompatible) {
836      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
837        Diag(Warnings[Warn].NewParm->getLocation(),
838             diag::ext_param_promoted_not_compatible_with_prototype)
839          << Warnings[Warn].PromotedType
840          << Warnings[Warn].OldParm->getType();
841        Diag(Warnings[Warn].OldParm->getLocation(),
842             diag::note_previous_declaration);
843      }
844
845      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
846                                           ArgTypes.size(),
847                                           OldProto->isVariadic(), 0));
848      return MergeCompatibleFunctionDecls(New, Old);
849    }
850
851    // Fall through to diagnose conflicting types.
852  }
853
854  // A function that has already been declared has been redeclared or defined
855  // with a different type- show appropriate diagnostic
856  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
857    // The user has declared a builtin function with an incompatible
858    // signature.
859    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
860      // The function the user is redeclaring is a library-defined
861      // function like 'malloc' or 'printf'. Warn about the
862      // redeclaration, then pretend that we don't know about this
863      // library built-in.
864      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
865      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
866        << Old << Old->getType();
867      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
868      Old->setInvalidDecl();
869      return false;
870    }
871
872    PrevDiag = diag::note_previous_builtin_declaration;
873  }
874
875  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
876  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
877  return true;
878}
879
880/// \brief Completes the merge of two function declarations that are
881/// known to be compatible.
882///
883/// This routine handles the merging of attributes and other
884/// properties of function declarations form the old declaration to
885/// the new declaration, once we know that New is in fact a
886/// redeclaration of Old.
887///
888/// \returns false
889bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
890  // Merge the attributes
891  MergeAttributes(New, Old, Context);
892
893  // Merge the storage class.
894  if (Old->getStorageClass() != FunctionDecl::Extern)
895    New->setStorageClass(Old->getStorageClass());
896
897  // Merge "inline"
898  if (Old->isInline())
899    New->setInline(true);
900
901  // If this function declaration by itself qualifies as a C99 inline
902  // definition (C99 6.7.4p6), but the previous definition did not,
903  // then the function is not a C99 inline definition.
904  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
905    New->setC99InlineDefinition(false);
906  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
907    // Mark all preceding definitions as not being C99 inline definitions.
908    for (const FunctionDecl *Prev = Old; Prev;
909         Prev = Prev->getPreviousDeclaration())
910      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
911  }
912
913  // Merge "pure" flag.
914  if (Old->isPure())
915    New->setPure();
916
917  // Merge the "deleted" flag.
918  if (Old->isDeleted())
919    New->setDeleted();
920
921  if (getLangOptions().CPlusPlus)
922    return MergeCXXFunctionDecl(New, Old);
923
924  return false;
925}
926
927/// MergeVarDecl - We just parsed a variable 'New' which has the same name
928/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
929/// situation, merging decls or emitting diagnostics as appropriate.
930///
931/// Tentative definition rules (C99 6.9.2p2) are checked by
932/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
933/// definitions here, since the initializer hasn't been attached.
934///
935void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
936  // If either decl is invalid, make sure the new one is marked invalid and
937  // don't do any other checking.
938  if (New->isInvalidDecl() || OldD->isInvalidDecl())
939    return New->setInvalidDecl();
940
941  // Verify the old decl was also a variable.
942  VarDecl *Old = dyn_cast<VarDecl>(OldD);
943  if (!Old) {
944    Diag(New->getLocation(), diag::err_redefinition_different_kind)
945      << New->getDeclName();
946    Diag(OldD->getLocation(), diag::note_previous_definition);
947    return New->setInvalidDecl();
948  }
949
950  MergeAttributes(New, Old, Context);
951
952  // Merge the types
953  QualType MergedT;
954  if (getLangOptions().CPlusPlus) {
955    if (Context.hasSameType(New->getType(), Old->getType()))
956      MergedT = New->getType();
957  } else {
958    MergedT = Context.mergeTypes(New->getType(), Old->getType());
959  }
960  if (MergedT.isNull()) {
961    Diag(New->getLocation(), diag::err_redefinition_different_type)
962      << New->getDeclName();
963    Diag(Old->getLocation(), diag::note_previous_definition);
964    return New->setInvalidDecl();
965  }
966  New->setType(MergedT);
967
968  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
969  if (New->getStorageClass() == VarDecl::Static &&
970      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
971    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
972    Diag(Old->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975  // C99 6.2.2p4:
976  //   For an identifier declared with the storage-class specifier
977  //   extern in a scope in which a prior declaration of that
978  //   identifier is visible,23) if the prior declaration specifies
979  //   internal or external linkage, the linkage of the identifier at
980  //   the later declaration is the same as the linkage specified at
981  //   the prior declaration. If no prior declaration is visible, or
982  //   if the prior declaration specifies no linkage, then the
983  //   identifier has external linkage.
984  if (New->hasExternalStorage() && Old->hasLinkage())
985    /* Okay */;
986  else if (New->getStorageClass() != VarDecl::Static &&
987           Old->getStorageClass() == VarDecl::Static) {
988    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
989    Diag(Old->getLocation(), diag::note_previous_definition);
990    return New->setInvalidDecl();
991  }
992
993  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
994
995  // FIXME: The test for external storage here seems wrong? We still
996  // need to check for mismatches.
997  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
998      // Don't complain about out-of-line definitions of static members.
999      !(Old->getLexicalDeclContext()->isRecord() &&
1000        !New->getLexicalDeclContext()->isRecord())) {
1001    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1002    Diag(Old->getLocation(), diag::note_previous_definition);
1003    return New->setInvalidDecl();
1004  }
1005
1006  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1007    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1010    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1011    Diag(Old->getLocation(), diag::note_previous_definition);
1012  }
1013
1014  // Keep a chain of previous declarations.
1015  New->setPreviousDeclaration(Old);
1016}
1017
1018/// CheckFallThrough - Check that we don't fall off the end of a
1019/// Statement that should return a value.
1020///
1021/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1022/// MaybeFallThrough iff we might or might not fall off the end and
1023/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1024/// that functions not marked noreturn will return.
1025Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1026  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1027
1028  // FIXME: They should never return 0, fix that, delete this code.
1029  if (cfg == 0)
1030    return NeverFallThrough;
1031  // The CFG leaves in dead things, and we don't want to dead code paths to
1032  // confuse us, so we mark all live things first.
1033  std::queue<CFGBlock*> workq;
1034  llvm::BitVector live(cfg->getNumBlockIDs());
1035  // Prep work queue
1036  workq.push(&cfg->getEntry());
1037  // Solve
1038  while (!workq.empty()) {
1039    CFGBlock *item = workq.front();
1040    workq.pop();
1041    live.set(item->getBlockID());
1042    for (CFGBlock::succ_iterator I=item->succ_begin(),
1043           E=item->succ_end();
1044         I != E;
1045         ++I) {
1046      if ((*I) && !live[(*I)->getBlockID()]) {
1047        live.set((*I)->getBlockID());
1048        workq.push(*I);
1049      }
1050    }
1051  }
1052
1053  // Now we know what is live, we check the live precessors of the exit block
1054  // and look for fall through paths, being careful to ignore normal returns,
1055  // and exceptional paths.
1056  bool HasLiveReturn = false;
1057  bool HasFakeEdge = false;
1058  bool HasPlainEdge = false;
1059  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1060         E = cfg->getExit().pred_end();
1061       I != E;
1062       ++I) {
1063    CFGBlock& B = **I;
1064    if (!live[B.getBlockID()])
1065      continue;
1066    if (B.size() == 0) {
1067      // A labeled empty statement, or the entry block...
1068      HasPlainEdge = true;
1069      continue;
1070    }
1071    Stmt *S = B[B.size()-1];
1072    if (isa<ReturnStmt>(S)) {
1073      HasLiveReturn = true;
1074      continue;
1075    }
1076    if (isa<ObjCAtThrowStmt>(S)) {
1077      HasFakeEdge = true;
1078      continue;
1079    }
1080    if (isa<CXXThrowExpr>(S)) {
1081      HasFakeEdge = true;
1082      continue;
1083    }
1084    bool NoReturnEdge = false;
1085    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1086      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1087      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1088        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1089          if (FD->hasAttr<NoReturnAttr>()) {
1090            NoReturnEdge = true;
1091            HasFakeEdge = true;
1092          }
1093        }
1094      }
1095    }
1096    // FIXME: Add noreturn message sends.
1097    if (NoReturnEdge == false)
1098      HasPlainEdge = true;
1099  }
1100  if (!HasPlainEdge)
1101    return NeverFallThrough;
1102  if (HasFakeEdge || HasLiveReturn)
1103    return MaybeFallThrough;
1104  // This says AlwaysFallThrough for calls to functions that are not marked
1105  // noreturn, that don't return.  If people would like this warning to be more
1106  // accurate, such functions should be marked as noreturn.
1107  return AlwaysFallThrough;
1108}
1109
1110/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1111/// function that should return a value.  Check that we don't fall off the end
1112/// of a noreturn function.  We assume that functions not marked noreturn will
1113/// return.
1114void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1115  // FIXME: Would be nice if we had a better way to control cascading errors,
1116  // but for now, avoid them.  The problem is that when Parse sees:
1117  //   int foo() { return a; }
1118  // The return is eaten and the Sema code sees just:
1119  //   int foo() { }
1120  // which this code would then warn about.
1121  if (getDiagnostics().hasErrorOccurred())
1122    return;
1123  bool ReturnsVoid = false;
1124  bool HasNoReturn = false;
1125  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1126    if (FD->getResultType()->isVoidType())
1127      ReturnsVoid = true;
1128    if (FD->hasAttr<NoReturnAttr>())
1129      HasNoReturn = true;
1130  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1131    if (MD->getResultType()->isVoidType())
1132      ReturnsVoid = true;
1133    if (MD->hasAttr<NoReturnAttr>())
1134      HasNoReturn = true;
1135  }
1136
1137  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1138       == Diagnostic::Ignored || ReturnsVoid)
1139      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1140          == Diagnostic::Ignored || !HasNoReturn))
1141    return;
1142  // FIXME: Funtion try block
1143  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1144    switch (CheckFallThrough(Body)) {
1145    case MaybeFallThrough:
1146      if (HasNoReturn)
1147        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1148      else if (!ReturnsVoid)
1149        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1150      break;
1151    case AlwaysFallThrough:
1152      if (HasNoReturn)
1153        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1154      else if (!ReturnsVoid)
1155        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1156      break;
1157    case NeverFallThrough:
1158      break;
1159    }
1160  }
1161}
1162
1163/// CheckParmsForFunctionDef - Check that the parameters of the given
1164/// function are appropriate for the definition of a function. This
1165/// takes care of any checks that cannot be performed on the
1166/// declaration itself, e.g., that the types of each of the function
1167/// parameters are complete.
1168bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1169  bool HasInvalidParm = false;
1170  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1171    ParmVarDecl *Param = FD->getParamDecl(p);
1172
1173    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1174    // function declarator that is part of a function definition of
1175    // that function shall not have incomplete type.
1176    //
1177    // This is also C++ [dcl.fct]p6.
1178    if (!Param->isInvalidDecl() &&
1179        RequireCompleteType(Param->getLocation(), Param->getType(),
1180                               diag::err_typecheck_decl_incomplete_type)) {
1181      Param->setInvalidDecl();
1182      HasInvalidParm = true;
1183    }
1184
1185    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1186    // declaration of each parameter shall include an identifier.
1187    if (Param->getIdentifier() == 0 &&
1188        !Param->isImplicit() &&
1189        !getLangOptions().CPlusPlus)
1190      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1191  }
1192
1193  return HasInvalidParm;
1194}
1195
1196/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1197/// no declarator (e.g. "struct foo;") is parsed.
1198Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1199  // FIXME: Error on auto/register at file scope
1200  // FIXME: Error on inline/virtual/explicit
1201  // FIXME: Error on invalid restrict
1202  // FIXME: Warn on useless __thread
1203  // FIXME: Warn on useless const/volatile
1204  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1205  // FIXME: Warn on useless attributes
1206  TagDecl *Tag = 0;
1207  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1208      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1209      DS.getTypeSpecType() == DeclSpec::TST_union ||
1210      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1211    if (!DS.getTypeRep()) // We probably had an error
1212      return DeclPtrTy();
1213
1214    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1215  }
1216
1217  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1218    if (!Record->getDeclName() && Record->isDefinition() &&
1219        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1220      if (getLangOptions().CPlusPlus ||
1221          Record->getDeclContext()->isRecord())
1222        return BuildAnonymousStructOrUnion(S, DS, Record);
1223
1224      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1225        << DS.getSourceRange();
1226    }
1227
1228    // Microsoft allows unnamed struct/union fields. Don't complain
1229    // about them.
1230    // FIXME: Should we support Microsoft's extensions in this area?
1231    if (Record->getDeclName() && getLangOptions().Microsoft)
1232      return DeclPtrTy::make(Tag);
1233  }
1234
1235  if (!DS.isMissingDeclaratorOk() &&
1236      DS.getTypeSpecType() != DeclSpec::TST_error) {
1237    // Warn about typedefs of enums without names, since this is an
1238    // extension in both Microsoft an GNU.
1239    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1240        Tag && isa<EnumDecl>(Tag)) {
1241      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1242        << DS.getSourceRange();
1243      return DeclPtrTy::make(Tag);
1244    }
1245
1246    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1247      << DS.getSourceRange();
1248    return DeclPtrTy();
1249  }
1250
1251  return DeclPtrTy::make(Tag);
1252}
1253
1254/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1255/// anonymous struct or union AnonRecord into the owning context Owner
1256/// and scope S. This routine will be invoked just after we realize
1257/// that an unnamed union or struct is actually an anonymous union or
1258/// struct, e.g.,
1259///
1260/// @code
1261/// union {
1262///   int i;
1263///   float f;
1264/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1265///    // f into the surrounding scope.x
1266/// @endcode
1267///
1268/// This routine is recursive, injecting the names of nested anonymous
1269/// structs/unions into the owning context and scope as well.
1270bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1271                                               RecordDecl *AnonRecord) {
1272  bool Invalid = false;
1273  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1274                               FEnd = AnonRecord->field_end();
1275       F != FEnd; ++F) {
1276    if ((*F)->getDeclName()) {
1277      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1278                                                LookupOrdinaryName, true);
1279      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1280        // C++ [class.union]p2:
1281        //   The names of the members of an anonymous union shall be
1282        //   distinct from the names of any other entity in the
1283        //   scope in which the anonymous union is declared.
1284        unsigned diagKind
1285          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1286                                 : diag::err_anonymous_struct_member_redecl;
1287        Diag((*F)->getLocation(), diagKind)
1288          << (*F)->getDeclName();
1289        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1290        Invalid = true;
1291      } else {
1292        // C++ [class.union]p2:
1293        //   For the purpose of name lookup, after the anonymous union
1294        //   definition, the members of the anonymous union are
1295        //   considered to have been defined in the scope in which the
1296        //   anonymous union is declared.
1297        Owner->makeDeclVisibleInContext(*F);
1298        S->AddDecl(DeclPtrTy::make(*F));
1299        IdResolver.AddDecl(*F);
1300      }
1301    } else if (const RecordType *InnerRecordType
1302                 = (*F)->getType()->getAsRecordType()) {
1303      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1304      if (InnerRecord->isAnonymousStructOrUnion())
1305        Invalid = Invalid ||
1306          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1307    }
1308  }
1309
1310  return Invalid;
1311}
1312
1313/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1314/// anonymous structure or union. Anonymous unions are a C++ feature
1315/// (C++ [class.union]) and a GNU C extension; anonymous structures
1316/// are a GNU C and GNU C++ extension.
1317Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1318                                                  RecordDecl *Record) {
1319  DeclContext *Owner = Record->getDeclContext();
1320
1321  // Diagnose whether this anonymous struct/union is an extension.
1322  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1323    Diag(Record->getLocation(), diag::ext_anonymous_union);
1324  else if (!Record->isUnion())
1325    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1326
1327  // C and C++ require different kinds of checks for anonymous
1328  // structs/unions.
1329  bool Invalid = false;
1330  if (getLangOptions().CPlusPlus) {
1331    const char* PrevSpec = 0;
1332    // C++ [class.union]p3:
1333    //   Anonymous unions declared in a named namespace or in the
1334    //   global namespace shall be declared static.
1335    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1336        (isa<TranslationUnitDecl>(Owner) ||
1337         (isa<NamespaceDecl>(Owner) &&
1338          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1339      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1340      Invalid = true;
1341
1342      // Recover by adding 'static'.
1343      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1344    }
1345    // C++ [class.union]p3:
1346    //   A storage class is not allowed in a declaration of an
1347    //   anonymous union in a class scope.
1348    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1349             isa<RecordDecl>(Owner)) {
1350      Diag(DS.getStorageClassSpecLoc(),
1351           diag::err_anonymous_union_with_storage_spec);
1352      Invalid = true;
1353
1354      // Recover by removing the storage specifier.
1355      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1356                             PrevSpec);
1357    }
1358
1359    // C++ [class.union]p2:
1360    //   The member-specification of an anonymous union shall only
1361    //   define non-static data members. [Note: nested types and
1362    //   functions cannot be declared within an anonymous union. ]
1363    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1364                                 MemEnd = Record->decls_end();
1365         Mem != MemEnd; ++Mem) {
1366      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1367        // C++ [class.union]p3:
1368        //   An anonymous union shall not have private or protected
1369        //   members (clause 11).
1370        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1371          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1372            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1373          Invalid = true;
1374        }
1375      } else if ((*Mem)->isImplicit()) {
1376        // Any implicit members are fine.
1377      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1378        // This is a type that showed up in an
1379        // elaborated-type-specifier inside the anonymous struct or
1380        // union, but which actually declares a type outside of the
1381        // anonymous struct or union. It's okay.
1382      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1383        if (!MemRecord->isAnonymousStructOrUnion() &&
1384            MemRecord->getDeclName()) {
1385          // This is a nested type declaration.
1386          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1387            << (int)Record->isUnion();
1388          Invalid = true;
1389        }
1390      } else {
1391        // We have something that isn't a non-static data
1392        // member. Complain about it.
1393        unsigned DK = diag::err_anonymous_record_bad_member;
1394        if (isa<TypeDecl>(*Mem))
1395          DK = diag::err_anonymous_record_with_type;
1396        else if (isa<FunctionDecl>(*Mem))
1397          DK = diag::err_anonymous_record_with_function;
1398        else if (isa<VarDecl>(*Mem))
1399          DK = diag::err_anonymous_record_with_static;
1400        Diag((*Mem)->getLocation(), DK)
1401            << (int)Record->isUnion();
1402          Invalid = true;
1403      }
1404    }
1405  }
1406
1407  if (!Record->isUnion() && !Owner->isRecord()) {
1408    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1409      << (int)getLangOptions().CPlusPlus;
1410    Invalid = true;
1411  }
1412
1413  // Create a declaration for this anonymous struct/union.
1414  NamedDecl *Anon = 0;
1415  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1416    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1417                             /*IdentifierInfo=*/0,
1418                             Context.getTypeDeclType(Record),
1419                             /*BitWidth=*/0, /*Mutable=*/false,
1420                             DS.getSourceRange().getBegin());
1421    Anon->setAccess(AS_public);
1422    if (getLangOptions().CPlusPlus)
1423      FieldCollector->Add(cast<FieldDecl>(Anon));
1424  } else {
1425    VarDecl::StorageClass SC;
1426    switch (DS.getStorageClassSpec()) {
1427    default: assert(0 && "Unknown storage class!");
1428    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1429    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1430    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1431    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1432    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1433    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1434    case DeclSpec::SCS_mutable:
1435      // mutable can only appear on non-static class members, so it's always
1436      // an error here
1437      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1438      Invalid = true;
1439      SC = VarDecl::None;
1440      break;
1441    }
1442
1443    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1444                           /*IdentifierInfo=*/0,
1445                           Context.getTypeDeclType(Record),
1446                           SC, DS.getSourceRange().getBegin());
1447  }
1448  Anon->setImplicit();
1449
1450  // Add the anonymous struct/union object to the current
1451  // context. We'll be referencing this object when we refer to one of
1452  // its members.
1453  Owner->addDecl(Anon);
1454
1455  // Inject the members of the anonymous struct/union into the owning
1456  // context and into the identifier resolver chain for name lookup
1457  // purposes.
1458  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1459    Invalid = true;
1460
1461  // Mark this as an anonymous struct/union type. Note that we do not
1462  // do this until after we have already checked and injected the
1463  // members of this anonymous struct/union type, because otherwise
1464  // the members could be injected twice: once by DeclContext when it
1465  // builds its lookup table, and once by
1466  // InjectAnonymousStructOrUnionMembers.
1467  Record->setAnonymousStructOrUnion(true);
1468
1469  if (Invalid)
1470    Anon->setInvalidDecl();
1471
1472  return DeclPtrTy::make(Anon);
1473}
1474
1475
1476/// GetNameForDeclarator - Determine the full declaration name for the
1477/// given Declarator.
1478DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1479  switch (D.getKind()) {
1480  case Declarator::DK_Abstract:
1481    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1482    return DeclarationName();
1483
1484  case Declarator::DK_Normal:
1485    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1486    return DeclarationName(D.getIdentifier());
1487
1488  case Declarator::DK_Constructor: {
1489    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1490    Ty = Context.getCanonicalType(Ty);
1491    return Context.DeclarationNames.getCXXConstructorName(Ty);
1492  }
1493
1494  case Declarator::DK_Destructor: {
1495    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1496    Ty = Context.getCanonicalType(Ty);
1497    return Context.DeclarationNames.getCXXDestructorName(Ty);
1498  }
1499
1500  case Declarator::DK_Conversion: {
1501    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1502    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1503    Ty = Context.getCanonicalType(Ty);
1504    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1505  }
1506
1507  case Declarator::DK_Operator:
1508    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1509    return Context.DeclarationNames.getCXXOperatorName(
1510                                                D.getOverloadedOperator());
1511  }
1512
1513  assert(false && "Unknown name kind");
1514  return DeclarationName();
1515}
1516
1517/// isNearlyMatchingFunction - Determine whether the C++ functions
1518/// Declaration and Definition are "nearly" matching. This heuristic
1519/// is used to improve diagnostics in the case where an out-of-line
1520/// function definition doesn't match any declaration within
1521/// the class or namespace.
1522static bool isNearlyMatchingFunction(ASTContext &Context,
1523                                     FunctionDecl *Declaration,
1524                                     FunctionDecl *Definition) {
1525  if (Declaration->param_size() != Definition->param_size())
1526    return false;
1527  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1528    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1529    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1530
1531    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1532    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1533    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1534      return false;
1535  }
1536
1537  return true;
1538}
1539
1540Sema::DeclPtrTy
1541Sema::HandleDeclarator(Scope *S, Declarator &D,
1542                       MultiTemplateParamsArg TemplateParamLists,
1543                       bool IsFunctionDefinition) {
1544  DeclarationName Name = GetNameForDeclarator(D);
1545
1546  // All of these full declarators require an identifier.  If it doesn't have
1547  // one, the ParsedFreeStandingDeclSpec action should be used.
1548  if (!Name) {
1549    if (!D.isInvalidType())  // Reject this if we think it is valid.
1550      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1551           diag::err_declarator_need_ident)
1552        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1553    return DeclPtrTy();
1554  }
1555
1556  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1557  // we find one that is.
1558  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1559         (S->getFlags() & Scope::TemplateParamScope) != 0)
1560    S = S->getParent();
1561
1562  DeclContext *DC;
1563  NamedDecl *PrevDecl;
1564  NamedDecl *New;
1565
1566  QualType R = GetTypeForDeclarator(D, S);
1567
1568  // See if this is a redefinition of a variable in the same scope.
1569  if (D.getCXXScopeSpec().isInvalid()) {
1570    DC = CurContext;
1571    PrevDecl = 0;
1572    D.setInvalidType();
1573  } else if (!D.getCXXScopeSpec().isSet()) {
1574    LookupNameKind NameKind = LookupOrdinaryName;
1575
1576    // If the declaration we're planning to build will be a function
1577    // or object with linkage, then look for another declaration with
1578    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1579    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1580      /* Do nothing*/;
1581    else if (R->isFunctionType()) {
1582      if (CurContext->isFunctionOrMethod() ||
1583          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1584        NameKind = LookupRedeclarationWithLinkage;
1585    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1586      NameKind = LookupRedeclarationWithLinkage;
1587    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1588             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1589      NameKind = LookupRedeclarationWithLinkage;
1590
1591    DC = CurContext;
1592    PrevDecl = LookupName(S, Name, NameKind, true,
1593                          NameKind == LookupRedeclarationWithLinkage,
1594                          D.getIdentifierLoc());
1595  } else { // Something like "int foo::x;"
1596    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1597    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1598    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1599
1600    // C++ 7.3.1.2p2:
1601    // Members (including explicit specializations of templates) of a named
1602    // namespace can also be defined outside that namespace by explicit
1603    // qualification of the name being defined, provided that the entity being
1604    // defined was already declared in the namespace and the definition appears
1605    // after the point of declaration in a namespace that encloses the
1606    // declarations namespace.
1607    //
1608    // Note that we only check the context at this point. We don't yet
1609    // have enough information to make sure that PrevDecl is actually
1610    // the declaration we want to match. For example, given:
1611    //
1612    //   class X {
1613    //     void f();
1614    //     void f(float);
1615    //   };
1616    //
1617    //   void X::f(int) { } // ill-formed
1618    //
1619    // In this case, PrevDecl will point to the overload set
1620    // containing the two f's declared in X, but neither of them
1621    // matches.
1622
1623    // First check whether we named the global scope.
1624    if (isa<TranslationUnitDecl>(DC)) {
1625      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1626        << Name << D.getCXXScopeSpec().getRange();
1627    } else if (!CurContext->Encloses(DC)) {
1628      // The qualifying scope doesn't enclose the original declaration.
1629      // Emit diagnostic based on current scope.
1630      SourceLocation L = D.getIdentifierLoc();
1631      SourceRange R = D.getCXXScopeSpec().getRange();
1632      if (isa<FunctionDecl>(CurContext))
1633        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1634      else
1635        Diag(L, diag::err_invalid_declarator_scope)
1636          << Name << cast<NamedDecl>(DC) << R;
1637      D.setInvalidType();
1638    }
1639  }
1640
1641  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1642    // Maybe we will complain about the shadowed template parameter.
1643    if (!D.isInvalidType())
1644      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1645        D.setInvalidType();
1646
1647    // Just pretend that we didn't see the previous declaration.
1648    PrevDecl = 0;
1649  }
1650
1651  // In C++, the previous declaration we find might be a tag type
1652  // (class or enum). In this case, the new declaration will hide the
1653  // tag type. Note that this does does not apply if we're declaring a
1654  // typedef (C++ [dcl.typedef]p4).
1655  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1656      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1657    PrevDecl = 0;
1658
1659  bool Redeclaration = false;
1660  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1661    if (TemplateParamLists.size()) {
1662      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1663      return DeclPtrTy();
1664    }
1665
1666    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1667  } else if (R->isFunctionType()) {
1668    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1669                                  move(TemplateParamLists),
1670                                  IsFunctionDefinition, Redeclaration);
1671  } else {
1672    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1673                                  move(TemplateParamLists),
1674                                  Redeclaration);
1675  }
1676
1677  if (New == 0)
1678    return DeclPtrTy();
1679
1680  // If this has an identifier and is not an invalid redeclaration,
1681  // add it to the scope stack.
1682  if (Name && !(Redeclaration && New->isInvalidDecl()))
1683    PushOnScopeChains(New, S);
1684
1685  return DeclPtrTy::make(New);
1686}
1687
1688/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1689/// types into constant array types in certain situations which would otherwise
1690/// be errors (for GCC compatibility).
1691static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1692                                                    ASTContext &Context,
1693                                                    bool &SizeIsNegative) {
1694  // This method tries to turn a variable array into a constant
1695  // array even when the size isn't an ICE.  This is necessary
1696  // for compatibility with code that depends on gcc's buggy
1697  // constant expression folding, like struct {char x[(int)(char*)2];}
1698  SizeIsNegative = false;
1699
1700  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1701    QualType Pointee = PTy->getPointeeType();
1702    QualType FixedType =
1703        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1704    if (FixedType.isNull()) return FixedType;
1705    FixedType = Context.getPointerType(FixedType);
1706    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1707    return FixedType;
1708  }
1709
1710  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1711  if (!VLATy)
1712    return QualType();
1713  // FIXME: We should probably handle this case
1714  if (VLATy->getElementType()->isVariablyModifiedType())
1715    return QualType();
1716
1717  Expr::EvalResult EvalResult;
1718  if (!VLATy->getSizeExpr() ||
1719      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1720      !EvalResult.Val.isInt())
1721    return QualType();
1722
1723  llvm::APSInt &Res = EvalResult.Val.getInt();
1724  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1725    Expr* ArySizeExpr = VLATy->getSizeExpr();
1726    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1727    // so as to transfer ownership to the ConstantArrayWithExpr.
1728    // Alternatively, we could "clone" it (how?).
1729    // Since we don't know how to do things above, we just use the
1730    // very same Expr*.
1731    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1732                                                Res, ArySizeExpr,
1733                                                ArrayType::Normal, 0,
1734                                                VLATy->getBracketsRange());
1735  }
1736
1737  SizeIsNegative = true;
1738  return QualType();
1739}
1740
1741/// \brief Register the given locally-scoped external C declaration so
1742/// that it can be found later for redeclarations
1743void
1744Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1745                                       Scope *S) {
1746  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1747         "Decl is not a locally-scoped decl!");
1748  // Note that we have a locally-scoped external with this name.
1749  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1750
1751  if (!PrevDecl)
1752    return;
1753
1754  // If there was a previous declaration of this variable, it may be
1755  // in our identifier chain. Update the identifier chain with the new
1756  // declaration.
1757  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1758    // The previous declaration was found on the identifer resolver
1759    // chain, so remove it from its scope.
1760    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1761      S = S->getParent();
1762
1763    if (S)
1764      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1765  }
1766}
1767
1768/// \brief Diagnose function specifiers on a declaration of an identifier that
1769/// does not identify a function.
1770void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1771  // FIXME: We should probably indicate the identifier in question to avoid
1772  // confusion for constructs like "inline int a(), b;"
1773  if (D.getDeclSpec().isInlineSpecified())
1774    Diag(D.getDeclSpec().getInlineSpecLoc(),
1775         diag::err_inline_non_function);
1776
1777  if (D.getDeclSpec().isVirtualSpecified())
1778    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1779         diag::err_virtual_non_function);
1780
1781  if (D.getDeclSpec().isExplicitSpecified())
1782    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1783         diag::err_explicit_non_function);
1784}
1785
1786NamedDecl*
1787Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1788                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1789  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1790  if (D.getCXXScopeSpec().isSet()) {
1791    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1792      << D.getCXXScopeSpec().getRange();
1793    D.setInvalidType();
1794    // Pretend we didn't see the scope specifier.
1795    DC = 0;
1796  }
1797
1798  if (getLangOptions().CPlusPlus) {
1799    // Check that there are no default arguments (C++ only).
1800    CheckExtraCXXDefaultArguments(D);
1801  }
1802
1803  DiagnoseFunctionSpecifiers(D);
1804
1805  if (D.getDeclSpec().isThreadSpecified())
1806    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1807
1808  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1809  if (!NewTD) return 0;
1810
1811  if (D.isInvalidType())
1812    NewTD->setInvalidDecl();
1813
1814  // Handle attributes prior to checking for duplicates in MergeVarDecl
1815  ProcessDeclAttributes(S, NewTD, D);
1816  // Merge the decl with the existing one if appropriate. If the decl is
1817  // in an outer scope, it isn't the same thing.
1818  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1819    Redeclaration = true;
1820    MergeTypeDefDecl(NewTD, PrevDecl);
1821  }
1822
1823  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1824  // then it shall have block scope.
1825  QualType T = NewTD->getUnderlyingType();
1826  if (T->isVariablyModifiedType()) {
1827    CurFunctionNeedsScopeChecking = true;
1828
1829    if (S->getFnParent() == 0) {
1830      bool SizeIsNegative;
1831      QualType FixedTy =
1832          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1833      if (!FixedTy.isNull()) {
1834        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1835        NewTD->setUnderlyingType(FixedTy);
1836      } else {
1837        if (SizeIsNegative)
1838          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1839        else if (T->isVariableArrayType())
1840          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1841        else
1842          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1843        NewTD->setInvalidDecl();
1844      }
1845    }
1846  }
1847
1848  // If this is the C FILE type, notify the AST context.
1849  if (IdentifierInfo *II = NewTD->getIdentifier())
1850    if (!NewTD->isInvalidDecl() &&
1851        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1852        II->isStr("FILE"))
1853      Context.setFILEDecl(NewTD);
1854
1855  return NewTD;
1856}
1857
1858/// \brief Determines whether the given declaration is an out-of-scope
1859/// previous declaration.
1860///
1861/// This routine should be invoked when name lookup has found a
1862/// previous declaration (PrevDecl) that is not in the scope where a
1863/// new declaration by the same name is being introduced. If the new
1864/// declaration occurs in a local scope, previous declarations with
1865/// linkage may still be considered previous declarations (C99
1866/// 6.2.2p4-5, C++ [basic.link]p6).
1867///
1868/// \param PrevDecl the previous declaration found by name
1869/// lookup
1870///
1871/// \param DC the context in which the new declaration is being
1872/// declared.
1873///
1874/// \returns true if PrevDecl is an out-of-scope previous declaration
1875/// for a new delcaration with the same name.
1876static bool
1877isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1878                                ASTContext &Context) {
1879  if (!PrevDecl)
1880    return 0;
1881
1882  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1883  // case we need to check each of the overloaded functions.
1884  if (!PrevDecl->hasLinkage())
1885    return false;
1886
1887  if (Context.getLangOptions().CPlusPlus) {
1888    // C++ [basic.link]p6:
1889    //   If there is a visible declaration of an entity with linkage
1890    //   having the same name and type, ignoring entities declared
1891    //   outside the innermost enclosing namespace scope, the block
1892    //   scope declaration declares that same entity and receives the
1893    //   linkage of the previous declaration.
1894    DeclContext *OuterContext = DC->getLookupContext();
1895    if (!OuterContext->isFunctionOrMethod())
1896      // This rule only applies to block-scope declarations.
1897      return false;
1898    else {
1899      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1900      if (PrevOuterContext->isRecord())
1901        // We found a member function: ignore it.
1902        return false;
1903      else {
1904        // Find the innermost enclosing namespace for the new and
1905        // previous declarations.
1906        while (!OuterContext->isFileContext())
1907          OuterContext = OuterContext->getParent();
1908        while (!PrevOuterContext->isFileContext())
1909          PrevOuterContext = PrevOuterContext->getParent();
1910
1911        // The previous declaration is in a different namespace, so it
1912        // isn't the same function.
1913        if (OuterContext->getPrimaryContext() !=
1914            PrevOuterContext->getPrimaryContext())
1915          return false;
1916      }
1917    }
1918  }
1919
1920  return true;
1921}
1922
1923NamedDecl*
1924Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1925                              QualType R,NamedDecl* PrevDecl,
1926                              MultiTemplateParamsArg TemplateParamLists,
1927                              bool &Redeclaration) {
1928  DeclarationName Name = GetNameForDeclarator(D);
1929
1930  // Check that there are no default arguments (C++ only).
1931  if (getLangOptions().CPlusPlus)
1932    CheckExtraCXXDefaultArguments(D);
1933
1934  VarDecl *NewVD;
1935  VarDecl::StorageClass SC;
1936  switch (D.getDeclSpec().getStorageClassSpec()) {
1937  default: assert(0 && "Unknown storage class!");
1938  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1939  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1940  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1941  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1942  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1943  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1944  case DeclSpec::SCS_mutable:
1945    // mutable can only appear on non-static class members, so it's always
1946    // an error here
1947    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1948    D.setInvalidType();
1949    SC = VarDecl::None;
1950    break;
1951  }
1952
1953  IdentifierInfo *II = Name.getAsIdentifierInfo();
1954  if (!II) {
1955    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1956      << Name.getAsString();
1957    return 0;
1958  }
1959
1960  DiagnoseFunctionSpecifiers(D);
1961
1962  if (!DC->isRecord() && S->getFnParent() == 0) {
1963    // C99 6.9p2: The storage-class specifiers auto and register shall not
1964    // appear in the declaration specifiers in an external declaration.
1965    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1966
1967      // If this is a register variable with an asm label specified, then this
1968      // is a GNU extension.
1969      if (SC == VarDecl::Register && D.getAsmLabel())
1970        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1971      else
1972        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1973      D.setInvalidType();
1974    }
1975  }
1976  if (DC->isRecord() && !CurContext->isRecord()) {
1977    // This is an out-of-line definition of a static data member.
1978    if (SC == VarDecl::Static) {
1979      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1980           diag::err_static_out_of_line)
1981        << CodeModificationHint::CreateRemoval(
1982                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1983    } else if (SC == VarDecl::None)
1984      SC = VarDecl::Static;
1985  }
1986  if (SC == VarDecl::Static) {
1987    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1988      if (RD->isLocalClass())
1989        Diag(D.getIdentifierLoc(),
1990             diag::err_static_data_member_not_allowed_in_local_class)
1991          << Name << RD->getDeclName();
1992    }
1993  }
1994
1995  // Check that we can declare a template here.
1996  if (TemplateParamLists.size() &&
1997      CheckTemplateDeclScope(S, TemplateParamLists))
1998    return 0;
1999
2000  // Match up the template parameter lists with the scope specifier, then
2001  // determine whether we have a template or a template specialization.
2002  if (TemplateParameterList *TemplateParams
2003      = MatchTemplateParametersToScopeSpecifier(
2004                                  D.getDeclSpec().getSourceRange().getBegin(),
2005                                                D.getCXXScopeSpec(),
2006                        (TemplateParameterList**)TemplateParamLists.get(),
2007                                                 TemplateParamLists.size())) {
2008    if (TemplateParams->size() > 0) {
2009      // There is no such thing as a variable template.
2010      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2011        << II
2012        << SourceRange(TemplateParams->getTemplateLoc(),
2013                       TemplateParams->getRAngleLoc());
2014      return 0;
2015    } else {
2016      // There is an extraneous 'template<>' for this variable. Complain
2017      // about it, but allow the declaration of the variable.
2018      Diag(TemplateParams->getTemplateLoc(),
2019           diag::err_template_variable_noparams)
2020        << II
2021        << SourceRange(TemplateParams->getTemplateLoc(),
2022                       TemplateParams->getRAngleLoc());
2023    }
2024  }
2025
2026  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2027                          II, R, SC,
2028                          // FIXME: Move to DeclGroup...
2029                          D.getDeclSpec().getSourceRange().getBegin());
2030
2031  if (D.isInvalidType())
2032    NewVD->setInvalidDecl();
2033
2034  if (D.getDeclSpec().isThreadSpecified()) {
2035    if (NewVD->hasLocalStorage())
2036      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2037    else if (!Context.Target.isTLSSupported())
2038      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2039    else
2040      NewVD->setThreadSpecified(true);
2041  }
2042
2043  // Set the lexical context. If the declarator has a C++ scope specifier, the
2044  // lexical context will be different from the semantic context.
2045  NewVD->setLexicalDeclContext(CurContext);
2046
2047  // Handle attributes prior to checking for duplicates in MergeVarDecl
2048  ProcessDeclAttributes(S, NewVD, D);
2049
2050  // Handle GNU asm-label extension (encoded as an attribute).
2051  if (Expr *E = (Expr*) D.getAsmLabel()) {
2052    // The parser guarantees this is a string.
2053    StringLiteral *SE = cast<StringLiteral>(E);
2054    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2055                                                        SE->getByteLength())));
2056  }
2057
2058  // If name lookup finds a previous declaration that is not in the
2059  // same scope as the new declaration, this may still be an
2060  // acceptable redeclaration.
2061  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2062      !(NewVD->hasLinkage() &&
2063        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2064    PrevDecl = 0;
2065
2066  // Merge the decl with the existing one if appropriate.
2067  if (PrevDecl) {
2068    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2069      // The user tried to define a non-static data member
2070      // out-of-line (C++ [dcl.meaning]p1).
2071      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2072        << D.getCXXScopeSpec().getRange();
2073      PrevDecl = 0;
2074      NewVD->setInvalidDecl();
2075    }
2076  } else if (D.getCXXScopeSpec().isSet()) {
2077    // No previous declaration in the qualifying scope.
2078    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2079      << Name << D.getCXXScopeSpec().getRange();
2080    NewVD->setInvalidDecl();
2081  }
2082
2083  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2084
2085  // If this is a locally-scoped extern C variable, update the map of
2086  // such variables.
2087  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2088      !NewVD->isInvalidDecl())
2089    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2090
2091  return NewVD;
2092}
2093
2094/// \brief Perform semantic checking on a newly-created variable
2095/// declaration.
2096///
2097/// This routine performs all of the type-checking required for a
2098/// variable declaration once it has been built. It is used both to
2099/// check variables after they have been parsed and their declarators
2100/// have been translated into a declaration, and to check variables
2101/// that have been instantiated from a template.
2102///
2103/// Sets NewVD->isInvalidDecl() if an error was encountered.
2104void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2105                                    bool &Redeclaration) {
2106  // If the decl is already known invalid, don't check it.
2107  if (NewVD->isInvalidDecl())
2108    return;
2109
2110  QualType T = NewVD->getType();
2111
2112  if (T->isObjCInterfaceType()) {
2113    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2114    return NewVD->setInvalidDecl();
2115  }
2116
2117  // The variable can not have an abstract class type.
2118  if (RequireNonAbstractType(NewVD->getLocation(), T,
2119                             diag::err_abstract_type_in_decl,
2120                             AbstractVariableType))
2121    return NewVD->setInvalidDecl();
2122
2123  // Emit an error if an address space was applied to decl with local storage.
2124  // This includes arrays of objects with address space qualifiers, but not
2125  // automatic variables that point to other address spaces.
2126  // ISO/IEC TR 18037 S5.1.2
2127  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2128    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2129    return NewVD->setInvalidDecl();
2130  }
2131
2132  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2133      && !NewVD->hasAttr<BlocksAttr>())
2134    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2135
2136  bool isVM = T->isVariablyModifiedType();
2137  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2138      NewVD->hasAttr<BlocksAttr>())
2139    CurFunctionNeedsScopeChecking = true;
2140
2141  if ((isVM && NewVD->hasLinkage()) ||
2142      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2143    bool SizeIsNegative;
2144    QualType FixedTy =
2145        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2146
2147    if (FixedTy.isNull() && T->isVariableArrayType()) {
2148      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2149      // FIXME: This won't give the correct result for
2150      // int a[10][n];
2151      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2152
2153      if (NewVD->isFileVarDecl())
2154        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2155        << SizeRange;
2156      else if (NewVD->getStorageClass() == VarDecl::Static)
2157        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2158        << SizeRange;
2159      else
2160        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2161        << SizeRange;
2162      return NewVD->setInvalidDecl();
2163    }
2164
2165    if (FixedTy.isNull()) {
2166      if (NewVD->isFileVarDecl())
2167        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2168      else
2169        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2170      return NewVD->setInvalidDecl();
2171    }
2172
2173    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2174    NewVD->setType(FixedTy);
2175  }
2176
2177  if (!PrevDecl && NewVD->isExternC(Context)) {
2178    // Since we did not find anything by this name and we're declaring
2179    // an extern "C" variable, look for a non-visible extern "C"
2180    // declaration with the same name.
2181    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2182      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2183    if (Pos != LocallyScopedExternalDecls.end())
2184      PrevDecl = Pos->second;
2185  }
2186
2187  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2188    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2189      << T;
2190    return NewVD->setInvalidDecl();
2191  }
2192
2193  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2194    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2195    return NewVD->setInvalidDecl();
2196  }
2197
2198  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2199    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2200    return NewVD->setInvalidDecl();
2201  }
2202
2203  if (PrevDecl) {
2204    Redeclaration = true;
2205    MergeVarDecl(NewVD, PrevDecl);
2206  }
2207}
2208
2209NamedDecl*
2210Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2211                              QualType R, NamedDecl* PrevDecl,
2212                              MultiTemplateParamsArg TemplateParamLists,
2213                              bool IsFunctionDefinition, bool &Redeclaration) {
2214  assert(R.getTypePtr()->isFunctionType());
2215
2216  DeclarationName Name = GetNameForDeclarator(D);
2217  FunctionDecl::StorageClass SC = FunctionDecl::None;
2218  switch (D.getDeclSpec().getStorageClassSpec()) {
2219  default: assert(0 && "Unknown storage class!");
2220  case DeclSpec::SCS_auto:
2221  case DeclSpec::SCS_register:
2222  case DeclSpec::SCS_mutable:
2223    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2224         diag::err_typecheck_sclass_func);
2225    D.setInvalidType();
2226    break;
2227  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2228  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2229  case DeclSpec::SCS_static: {
2230    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2231      // C99 6.7.1p5:
2232      //   The declaration of an identifier for a function that has
2233      //   block scope shall have no explicit storage-class specifier
2234      //   other than extern
2235      // See also (C++ [dcl.stc]p4).
2236      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2237           diag::err_static_block_func);
2238      SC = FunctionDecl::None;
2239    } else
2240      SC = FunctionDecl::Static;
2241    break;
2242  }
2243  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2244  }
2245
2246  if (D.getDeclSpec().isThreadSpecified())
2247    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2248
2249  bool isInline = D.getDeclSpec().isInlineSpecified();
2250  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2251  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2252
2253  // Check that the return type is not an abstract class type.
2254  // For record types, this is done by the AbstractClassUsageDiagnoser once
2255  // the class has been completely parsed.
2256  if (!DC->isRecord() &&
2257      RequireNonAbstractType(D.getIdentifierLoc(),
2258                             R->getAsFunctionType()->getResultType(),
2259                             diag::err_abstract_type_in_decl,
2260                             AbstractReturnType))
2261    D.setInvalidType();
2262
2263  // Do not allow returning a objc interface by-value.
2264  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2265    Diag(D.getIdentifierLoc(),
2266         diag::err_object_cannot_be_passed_returned_by_value) << 0
2267      << R->getAsFunctionType()->getResultType();
2268    D.setInvalidType();
2269  }
2270
2271  // Check that we can declare a template here.
2272  if (TemplateParamLists.size() &&
2273      CheckTemplateDeclScope(S, TemplateParamLists))
2274    return 0;
2275
2276  bool isVirtualOkay = false;
2277  FunctionDecl *NewFD;
2278  if (D.getKind() == Declarator::DK_Constructor) {
2279    // This is a C++ constructor declaration.
2280    assert(DC->isRecord() &&
2281           "Constructors can only be declared in a member context");
2282
2283    R = CheckConstructorDeclarator(D, R, SC);
2284
2285    // Create the new declaration
2286    NewFD = CXXConstructorDecl::Create(Context,
2287                                       cast<CXXRecordDecl>(DC),
2288                                       D.getIdentifierLoc(), Name, R,
2289                                       isExplicit, isInline,
2290                                       /*isImplicitlyDeclared=*/false);
2291  } else if (D.getKind() == Declarator::DK_Destructor) {
2292    // This is a C++ destructor declaration.
2293    if (DC->isRecord()) {
2294      R = CheckDestructorDeclarator(D, SC);
2295
2296      NewFD = CXXDestructorDecl::Create(Context,
2297                                        cast<CXXRecordDecl>(DC),
2298                                        D.getIdentifierLoc(), Name, R,
2299                                        isInline,
2300                                        /*isImplicitlyDeclared=*/false);
2301
2302      isVirtualOkay = true;
2303    } else {
2304      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2305
2306      // Create a FunctionDecl to satisfy the function definition parsing
2307      // code path.
2308      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2309                                   Name, R, SC, isInline,
2310                                   /*hasPrototype=*/true,
2311                                   // FIXME: Move to DeclGroup...
2312                                   D.getDeclSpec().getSourceRange().getBegin());
2313      D.setInvalidType();
2314    }
2315  } else if (D.getKind() == Declarator::DK_Conversion) {
2316    if (!DC->isRecord()) {
2317      Diag(D.getIdentifierLoc(),
2318           diag::err_conv_function_not_member);
2319      return 0;
2320    }
2321
2322    CheckConversionDeclarator(D, R, SC);
2323    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2324                                      D.getIdentifierLoc(), Name, R,
2325                                      isInline, isExplicit);
2326
2327    isVirtualOkay = true;
2328  } else if (DC->isRecord()) {
2329    // If the of the function is the same as the name of the record, then this
2330    // must be an invalid constructor that has a return type.
2331    // (The parser checks for a return type and makes the declarator a
2332    // constructor if it has no return type).
2333    // must have an invalid constructor that has a return type
2334    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2335      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2336        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2337        << SourceRange(D.getIdentifierLoc());
2338      return 0;
2339    }
2340
2341    // This is a C++ method declaration.
2342    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2343                                  D.getIdentifierLoc(), Name, R,
2344                                  (SC == FunctionDecl::Static), isInline);
2345
2346    isVirtualOkay = (SC != FunctionDecl::Static);
2347  } else {
2348    // Determine whether the function was written with a
2349    // prototype. This true when:
2350    //   - we're in C++ (where every function has a prototype),
2351    //   - there is a prototype in the declarator, or
2352    //   - the type R of the function is some kind of typedef or other reference
2353    //     to a type name (which eventually refers to a function type).
2354    bool HasPrototype =
2355       getLangOptions().CPlusPlus ||
2356       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2357       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2358
2359    NewFD = FunctionDecl::Create(Context, DC,
2360                                 D.getIdentifierLoc(),
2361                                 Name, R, SC, isInline, HasPrototype,
2362                                 // FIXME: Move to DeclGroup...
2363                                 D.getDeclSpec().getSourceRange().getBegin());
2364  }
2365
2366  if (D.isInvalidType())
2367    NewFD->setInvalidDecl();
2368
2369  // Set the lexical context. If the declarator has a C++
2370  // scope specifier, the lexical context will be different
2371  // from the semantic context.
2372  NewFD->setLexicalDeclContext(CurContext);
2373
2374  // Match up the template parameter lists with the scope specifier, then
2375  // determine whether we have a template or a template specialization.
2376  FunctionTemplateDecl *FunctionTemplate = 0;
2377  if (TemplateParameterList *TemplateParams
2378        = MatchTemplateParametersToScopeSpecifier(
2379                                  D.getDeclSpec().getSourceRange().getBegin(),
2380                                  D.getCXXScopeSpec(),
2381                           (TemplateParameterList**)TemplateParamLists.get(),
2382                                                  TemplateParamLists.size())) {
2383    if (TemplateParams->size() > 0) {
2384      // This is a function template
2385      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2386                                                      NewFD->getLocation(),
2387                                                      Name, TemplateParams,
2388                                                      NewFD);
2389      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2390    } else {
2391      // FIXME: Handle function template specializations
2392    }
2393
2394    // FIXME: Free this memory properly.
2395    TemplateParamLists.release();
2396  }
2397
2398  // C++ [dcl.fct.spec]p5:
2399  //   The virtual specifier shall only be used in declarations of
2400  //   nonstatic class member functions that appear within a
2401  //   member-specification of a class declaration; see 10.3.
2402  //
2403  if (isVirtual && !NewFD->isInvalidDecl()) {
2404    if (!isVirtualOkay) {
2405       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2406           diag::err_virtual_non_function);
2407    } else if (!CurContext->isRecord()) {
2408      // 'virtual' was specified outside of the class.
2409      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2410        << CodeModificationHint::CreateRemoval(
2411                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2412    } else {
2413      // Okay: Add virtual to the method.
2414      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2415      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2416      CurClass->setAggregate(false);
2417      CurClass->setPOD(false);
2418      CurClass->setPolymorphic(true);
2419      CurClass->setHasTrivialConstructor(false);
2420      CurClass->setHasTrivialCopyConstructor(false);
2421      CurClass->setHasTrivialCopyAssignment(false);
2422    }
2423  }
2424
2425  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2426    // Look for virtual methods in base classes that this method might override.
2427
2428    BasePaths Paths;
2429    if (LookupInBases(cast<CXXRecordDecl>(DC),
2430                      MemberLookupCriteria(NewMD), Paths)) {
2431      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2432           E = Paths.found_decls_end(); I != E; ++I) {
2433        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2434          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2435              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2436            NewMD->addOverriddenMethod(OldMD);
2437        }
2438      }
2439    }
2440  }
2441
2442  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2443      !CurContext->isRecord()) {
2444    // C++ [class.static]p1:
2445    //   A data or function member of a class may be declared static
2446    //   in a class definition, in which case it is a static member of
2447    //   the class.
2448
2449    // Complain about the 'static' specifier if it's on an out-of-line
2450    // member function definition.
2451    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2452         diag::err_static_out_of_line)
2453      << CodeModificationHint::CreateRemoval(
2454                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2455  }
2456
2457  // Handle GNU asm-label extension (encoded as an attribute).
2458  if (Expr *E = (Expr*) D.getAsmLabel()) {
2459    // The parser guarantees this is a string.
2460    StringLiteral *SE = cast<StringLiteral>(E);
2461    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2462                                                        SE->getByteLength())));
2463  }
2464
2465  // Copy the parameter declarations from the declarator D to the function
2466  // declaration NewFD, if they are available.  First scavenge them into Params.
2467  llvm::SmallVector<ParmVarDecl*, 16> Params;
2468  if (D.getNumTypeObjects() > 0) {
2469    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2470
2471    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2472    // function that takes no arguments, not a function that takes a
2473    // single void argument.
2474    // We let through "const void" here because Sema::GetTypeForDeclarator
2475    // already checks for that case.
2476    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2477        FTI.ArgInfo[0].Param &&
2478        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2479      // Empty arg list, don't push any params.
2480      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2481
2482      // In C++, the empty parameter-type-list must be spelled "void"; a
2483      // typedef of void is not permitted.
2484      if (getLangOptions().CPlusPlus &&
2485          Param->getType().getUnqualifiedType() != Context.VoidTy)
2486        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2487      // FIXME: Leaks decl?
2488    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2489      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2490        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2491        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2492        Param->setDeclContext(NewFD);
2493        Params.push_back(Param);
2494      }
2495    }
2496
2497  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2498    // When we're declaring a function with a typedef, typeof, etc as in the
2499    // following example, we'll need to synthesize (unnamed)
2500    // parameters for use in the declaration.
2501    //
2502    // @code
2503    // typedef void fn(int);
2504    // fn f;
2505    // @endcode
2506
2507    // Synthesize a parameter for each argument type.
2508    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2509         AE = FT->arg_type_end(); AI != AE; ++AI) {
2510      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2511                                               SourceLocation(), 0,
2512                                               *AI, VarDecl::None, 0);
2513      Param->setImplicit();
2514      Params.push_back(Param);
2515    }
2516  } else {
2517    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2518           "Should not need args for typedef of non-prototype fn");
2519  }
2520  // Finally, we know we have the right number of parameters, install them.
2521  NewFD->setParams(Context, Params.data(), Params.size());
2522
2523  // If name lookup finds a previous declaration that is not in the
2524  // same scope as the new declaration, this may still be an
2525  // acceptable redeclaration.
2526  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2527      !(NewFD->hasLinkage() &&
2528        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2529    PrevDecl = 0;
2530
2531  // Perform semantic checking on the function declaration.
2532  bool OverloadableAttrRequired = false; // FIXME: HACK!
2533  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2534                           /*FIXME:*/OverloadableAttrRequired);
2535
2536  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2537    // An out-of-line member function declaration must also be a
2538    // definition (C++ [dcl.meaning]p1).
2539    if (!IsFunctionDefinition) {
2540      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2541        << D.getCXXScopeSpec().getRange();
2542      NewFD->setInvalidDecl();
2543    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2544      // The user tried to provide an out-of-line definition for a
2545      // function that is a member of a class or namespace, but there
2546      // was no such member function declared (C++ [class.mfct]p2,
2547      // C++ [namespace.memdef]p2). For example:
2548      //
2549      // class X {
2550      //   void f() const;
2551      // };
2552      //
2553      // void X::f() { } // ill-formed
2554      //
2555      // Complain about this problem, and attempt to suggest close
2556      // matches (e.g., those that differ only in cv-qualifiers and
2557      // whether the parameter types are references).
2558      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2559        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2560      NewFD->setInvalidDecl();
2561
2562      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2563                                              true);
2564      assert(!Prev.isAmbiguous() &&
2565             "Cannot have an ambiguity in previous-declaration lookup");
2566      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2567           Func != FuncEnd; ++Func) {
2568        if (isa<FunctionDecl>(*Func) &&
2569            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2570          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2571      }
2572
2573      PrevDecl = 0;
2574    }
2575  }
2576
2577  // Handle attributes. We need to have merged decls when handling attributes
2578  // (for example to check for conflicts, etc).
2579  // FIXME: This needs to happen before we merge declarations. Then,
2580  // let attribute merging cope with attribute conflicts.
2581  ProcessDeclAttributes(S, NewFD, D);
2582  AddKnownFunctionAttributes(NewFD);
2583
2584  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2585    // If a function name is overloadable in C, then every function
2586    // with that name must be marked "overloadable".
2587    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2588      << Redeclaration << NewFD;
2589    if (PrevDecl)
2590      Diag(PrevDecl->getLocation(),
2591           diag::note_attribute_overloadable_prev_overload);
2592    NewFD->addAttr(::new (Context) OverloadableAttr());
2593  }
2594
2595  // If this is a locally-scoped extern C function, update the
2596  // map of such names.
2597  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2598      && !NewFD->isInvalidDecl())
2599    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2600
2601  // Set this FunctionDecl's range up to the right paren.
2602  NewFD->setLocEnd(D.getSourceRange().getEnd());
2603
2604  if (FunctionTemplate && NewFD->isInvalidDecl())
2605    FunctionTemplate->setInvalidDecl();
2606
2607  if (FunctionTemplate)
2608    return FunctionTemplate;
2609
2610  return NewFD;
2611}
2612
2613/// \brief Perform semantic checking of a new function declaration.
2614///
2615/// Performs semantic analysis of the new function declaration
2616/// NewFD. This routine performs all semantic checking that does not
2617/// require the actual declarator involved in the declaration, and is
2618/// used both for the declaration of functions as they are parsed
2619/// (called via ActOnDeclarator) and for the declaration of functions
2620/// that have been instantiated via C++ template instantiation (called
2621/// via InstantiateDecl).
2622///
2623/// This sets NewFD->isInvalidDecl() to true if there was an error.
2624void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2625                                    bool &Redeclaration,
2626                                    bool &OverloadableAttrRequired) {
2627  // If NewFD is already known erroneous, don't do any of this checking.
2628  if (NewFD->isInvalidDecl())
2629    return;
2630
2631  if (NewFD->getResultType()->isVariablyModifiedType()) {
2632    // Functions returning a variably modified type violate C99 6.7.5.2p2
2633    // because all functions have linkage.
2634    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2635    return NewFD->setInvalidDecl();
2636  }
2637
2638  if (NewFD->isMain()) CheckMain(NewFD);
2639
2640  // Semantic checking for this function declaration (in isolation).
2641  if (getLangOptions().CPlusPlus) {
2642    // C++-specific checks.
2643    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2644      CheckConstructor(Constructor);
2645    } else if (isa<CXXDestructorDecl>(NewFD)) {
2646      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2647      QualType ClassType = Context.getTypeDeclType(Record);
2648      if (!ClassType->isDependentType()) {
2649        ClassType = Context.getCanonicalType(ClassType);
2650        DeclarationName Name
2651          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2652        if (NewFD->getDeclName() != Name) {
2653          Diag(NewFD->getLocation(), diag::err_destructor_name);
2654          return NewFD->setInvalidDecl();
2655        }
2656      }
2657      Record->setUserDeclaredDestructor(true);
2658      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2659      // user-defined destructor.
2660      Record->setPOD(false);
2661
2662      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2663      // declared destructor.
2664      // FIXME: C++0x: don't do this for "= default" destructors
2665      Record->setHasTrivialDestructor(false);
2666    } else if (CXXConversionDecl *Conversion
2667               = dyn_cast<CXXConversionDecl>(NewFD))
2668      ActOnConversionDeclarator(Conversion);
2669
2670    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2671    if (NewFD->isOverloadedOperator() &&
2672        CheckOverloadedOperatorDeclaration(NewFD))
2673      return NewFD->setInvalidDecl();
2674  }
2675
2676  // C99 6.7.4p6:
2677  //   [... ] For a function with external linkage, the following
2678  //   restrictions apply: [...] If all of the file scope declarations
2679  //   for a function in a translation unit include the inline
2680  //   function specifier without extern, then the definition in that
2681  //   translation unit is an inline definition. An inline definition
2682  //   does not provide an external definition for the function, and
2683  //   does not forbid an external definition in another translation
2684  //   unit.
2685  //
2686  // Here we determine whether this function, in isolation, would be a
2687  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2688  // previous declarations.
2689  if (NewFD->isInline() && getLangOptions().C99 &&
2690      NewFD->getStorageClass() == FunctionDecl::None &&
2691      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2692    NewFD->setC99InlineDefinition(true);
2693
2694  // Check for a previous declaration of this name.
2695  if (!PrevDecl && NewFD->isExternC(Context)) {
2696    // Since we did not find anything by this name and we're declaring
2697    // an extern "C" function, look for a non-visible extern "C"
2698    // declaration with the same name.
2699    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2700      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2701    if (Pos != LocallyScopedExternalDecls.end())
2702      PrevDecl = Pos->second;
2703  }
2704
2705  // Merge or overload the declaration with an existing declaration of
2706  // the same name, if appropriate.
2707  if (PrevDecl) {
2708    // Determine whether NewFD is an overload of PrevDecl or
2709    // a declaration that requires merging. If it's an overload,
2710    // there's no more work to do here; we'll just add the new
2711    // function to the scope.
2712    OverloadedFunctionDecl::function_iterator MatchedDecl;
2713
2714    if (!getLangOptions().CPlusPlus &&
2715        AllowOverloadingOfFunction(PrevDecl, Context)) {
2716      OverloadableAttrRequired = true;
2717
2718      // Functions marked "overloadable" must have a prototype (that
2719      // we can't get through declaration merging).
2720      if (!NewFD->getType()->getAsFunctionProtoType()) {
2721        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2722          << NewFD;
2723        Redeclaration = true;
2724
2725        // Turn this into a variadic function with no parameters.
2726        QualType R = Context.getFunctionType(
2727                       NewFD->getType()->getAsFunctionType()->getResultType(),
2728                       0, 0, true, 0);
2729        NewFD->setType(R);
2730        return NewFD->setInvalidDecl();
2731      }
2732    }
2733
2734    if (PrevDecl &&
2735        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2736         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2737        !isa<UsingDecl>(PrevDecl)) {
2738      Redeclaration = true;
2739      Decl *OldDecl = PrevDecl;
2740
2741      // If PrevDecl was an overloaded function, extract the
2742      // FunctionDecl that matched.
2743      if (isa<OverloadedFunctionDecl>(PrevDecl))
2744        OldDecl = *MatchedDecl;
2745
2746      // NewFD and OldDecl represent declarations that need to be
2747      // merged.
2748      if (MergeFunctionDecl(NewFD, OldDecl))
2749        return NewFD->setInvalidDecl();
2750
2751      if (FunctionTemplateDecl *OldTemplateDecl
2752            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2753        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2754      else {
2755        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2756          NewFD->setAccess(OldDecl->getAccess());
2757        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2758      }
2759    }
2760  }
2761
2762  // In C++, check default arguments now that we have merged decls. Unless
2763  // the lexical context is the class, because in this case this is done
2764  // during delayed parsing anyway.
2765  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2766    CheckCXXDefaultArguments(NewFD);
2767}
2768
2769void Sema::CheckMain(FunctionDecl* FD) {
2770  // FIXME: implement.
2771}
2772
2773bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2774  // FIXME: Need strict checking.  In C89, we need to check for
2775  // any assignment, increment, decrement, function-calls, or
2776  // commas outside of a sizeof.  In C99, it's the same list,
2777  // except that the aforementioned are allowed in unevaluated
2778  // expressions.  Everything else falls under the
2779  // "may accept other forms of constant expressions" exception.
2780  // (We never end up here for C++, so the constant expression
2781  // rules there don't matter.)
2782  if (Init->isConstantInitializer(Context))
2783    return false;
2784  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2785    << Init->getSourceRange();
2786  return true;
2787}
2788
2789void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2790  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2791}
2792
2793/// AddInitializerToDecl - Adds the initializer Init to the
2794/// declaration dcl. If DirectInit is true, this is C++ direct
2795/// initialization rather than copy initialization.
2796void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2797  Decl *RealDecl = dcl.getAs<Decl>();
2798  // If there is no declaration, there was an error parsing it.  Just ignore
2799  // the initializer.
2800  if (RealDecl == 0)
2801    return;
2802
2803  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2804    // With declarators parsed the way they are, the parser cannot
2805    // distinguish between a normal initializer and a pure-specifier.
2806    // Thus this grotesque test.
2807    IntegerLiteral *IL;
2808    Expr *Init = static_cast<Expr *>(init.get());
2809    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2810        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2811      if (Method->isVirtualAsWritten()) {
2812        Method->setPure();
2813
2814        // A class is abstract if at least one function is pure virtual.
2815        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2816      } else if (!Method->isInvalidDecl()) {
2817        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2818          << Method->getDeclName() << Init->getSourceRange();
2819        Method->setInvalidDecl();
2820      }
2821    } else {
2822      Diag(Method->getLocation(), diag::err_member_function_initialization)
2823        << Method->getDeclName() << Init->getSourceRange();
2824      Method->setInvalidDecl();
2825    }
2826    return;
2827  }
2828
2829  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2830  if (!VDecl) {
2831    if (getLangOptions().CPlusPlus &&
2832        RealDecl->getLexicalDeclContext()->isRecord() &&
2833        isa<NamedDecl>(RealDecl))
2834      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2835        << cast<NamedDecl>(RealDecl)->getDeclName();
2836    else
2837      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2838    RealDecl->setInvalidDecl();
2839    return;
2840  }
2841
2842  if (!VDecl->getType()->isArrayType() &&
2843      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2844                          diag::err_typecheck_decl_incomplete_type)) {
2845    RealDecl->setInvalidDecl();
2846    return;
2847  }
2848
2849  const VarDecl *Def = 0;
2850  if (VDecl->getDefinition(Def)) {
2851    Diag(VDecl->getLocation(), diag::err_redefinition)
2852      << VDecl->getDeclName();
2853    Diag(Def->getLocation(), diag::note_previous_definition);
2854    VDecl->setInvalidDecl();
2855    return;
2856  }
2857
2858  // Take ownership of the expression, now that we're sure we have somewhere
2859  // to put it.
2860  Expr *Init = init.takeAs<Expr>();
2861  assert(Init && "missing initializer");
2862
2863  // Get the decls type and save a reference for later, since
2864  // CheckInitializerTypes may change it.
2865  QualType DclT = VDecl->getType(), SavT = DclT;
2866  if (VDecl->isBlockVarDecl()) {
2867    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2868      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2869      VDecl->setInvalidDecl();
2870    } else if (!VDecl->isInvalidDecl()) {
2871      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2872                                VDecl->getDeclName(), DirectInit))
2873        VDecl->setInvalidDecl();
2874
2875      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2876      // Don't check invalid declarations to avoid emitting useless diagnostics.
2877      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2878        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2879          CheckForConstantInitializer(Init, DclT);
2880      }
2881    }
2882  } else if (VDecl->isStaticDataMember() &&
2883             VDecl->getLexicalDeclContext()->isRecord()) {
2884    // This is an in-class initialization for a static data member, e.g.,
2885    //
2886    // struct S {
2887    //   static const int value = 17;
2888    // };
2889
2890    // Attach the initializer
2891    VDecl->setInit(Context, Init);
2892
2893    // C++ [class.mem]p4:
2894    //   A member-declarator can contain a constant-initializer only
2895    //   if it declares a static member (9.4) of const integral or
2896    //   const enumeration type, see 9.4.2.
2897    QualType T = VDecl->getType();
2898    if (!T->isDependentType() &&
2899        (!Context.getCanonicalType(T).isConstQualified() ||
2900         !T->isIntegralType())) {
2901      Diag(VDecl->getLocation(), diag::err_member_initialization)
2902        << VDecl->getDeclName() << Init->getSourceRange();
2903      VDecl->setInvalidDecl();
2904    } else {
2905      // C++ [class.static.data]p4:
2906      //   If a static data member is of const integral or const
2907      //   enumeration type, its declaration in the class definition
2908      //   can specify a constant-initializer which shall be an
2909      //   integral constant expression (5.19).
2910      if (!Init->isTypeDependent() &&
2911          !Init->getType()->isIntegralType()) {
2912        // We have a non-dependent, non-integral or enumeration type.
2913        Diag(Init->getSourceRange().getBegin(),
2914             diag::err_in_class_initializer_non_integral_type)
2915          << Init->getType() << Init->getSourceRange();
2916        VDecl->setInvalidDecl();
2917      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2918        // Check whether the expression is a constant expression.
2919        llvm::APSInt Value;
2920        SourceLocation Loc;
2921        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2922          Diag(Loc, diag::err_in_class_initializer_non_constant)
2923            << Init->getSourceRange();
2924          VDecl->setInvalidDecl();
2925        } else if (!VDecl->getType()->isDependentType())
2926          ImpCastExprToType(Init, VDecl->getType());
2927      }
2928    }
2929  } else if (VDecl->isFileVarDecl()) {
2930    if (VDecl->getStorageClass() == VarDecl::Extern)
2931      Diag(VDecl->getLocation(), diag::warn_extern_init);
2932    if (!VDecl->isInvalidDecl())
2933      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2934                                VDecl->getDeclName(), DirectInit))
2935        VDecl->setInvalidDecl();
2936
2937    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2938    // Don't check invalid declarations to avoid emitting useless diagnostics.
2939    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2940      // C99 6.7.8p4. All file scoped initializers need to be constant.
2941      CheckForConstantInitializer(Init, DclT);
2942    }
2943  }
2944  // If the type changed, it means we had an incomplete type that was
2945  // completed by the initializer. For example:
2946  //   int ary[] = { 1, 3, 5 };
2947  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2948  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2949    VDecl->setType(DclT);
2950    Init->setType(DclT);
2951  }
2952
2953  // Attach the initializer to the decl.
2954  VDecl->setInit(Context, Init);
2955
2956  // If the previous declaration of VDecl was a tentative definition,
2957  // remove it from the set of tentative definitions.
2958  if (VDecl->getPreviousDeclaration() &&
2959      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2960    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2961      = TentativeDefinitions.find(VDecl->getDeclName());
2962    assert(Pos != TentativeDefinitions.end() &&
2963           "Unrecorded tentative definition?");
2964    TentativeDefinitions.erase(Pos);
2965  }
2966
2967  return;
2968}
2969
2970void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2971                                  bool TypeContainsUndeducedAuto) {
2972  Decl *RealDecl = dcl.getAs<Decl>();
2973
2974  // If there is no declaration, there was an error parsing it. Just ignore it.
2975  if (RealDecl == 0)
2976    return;
2977
2978  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2979    QualType Type = Var->getType();
2980
2981    // Record tentative definitions.
2982    if (Var->isTentativeDefinition(Context))
2983      TentativeDefinitions[Var->getDeclName()] = Var;
2984
2985    // C++ [dcl.init.ref]p3:
2986    //   The initializer can be omitted for a reference only in a
2987    //   parameter declaration (8.3.5), in the declaration of a
2988    //   function return type, in the declaration of a class member
2989    //   within its class declaration (9.2), and where the extern
2990    //   specifier is explicitly used.
2991    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2992      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2993        << Var->getDeclName()
2994        << SourceRange(Var->getLocation(), Var->getLocation());
2995      Var->setInvalidDecl();
2996      return;
2997    }
2998
2999    // C++0x [dcl.spec.auto]p3
3000    if (TypeContainsUndeducedAuto) {
3001      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3002        << Var->getDeclName() << Type;
3003      Var->setInvalidDecl();
3004      return;
3005    }
3006
3007    // C++ [dcl.init]p9:
3008    //
3009    //   If no initializer is specified for an object, and the object
3010    //   is of (possibly cv-qualified) non-POD class type (or array
3011    //   thereof), the object shall be default-initialized; if the
3012    //   object is of const-qualified type, the underlying class type
3013    //   shall have a user-declared default constructor.
3014    if (getLangOptions().CPlusPlus) {
3015      QualType InitType = Type;
3016      if (const ArrayType *Array = Context.getAsArrayType(Type))
3017        InitType = Array->getElementType();
3018      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3019          InitType->isRecordType() && !InitType->isDependentType()) {
3020        CXXRecordDecl *RD =
3021          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
3022        CXXConstructorDecl *Constructor = 0;
3023        if (!RequireCompleteType(Var->getLocation(), InitType,
3024                                    diag::err_invalid_incomplete_type_use))
3025          Constructor
3026            = PerformInitializationByConstructor(InitType, 0, 0,
3027                                                 Var->getLocation(),
3028                                               SourceRange(Var->getLocation(),
3029                                                           Var->getLocation()),
3030                                                 Var->getDeclName(),
3031                                                 IK_Default);
3032        if (!Constructor)
3033          Var->setInvalidDecl();
3034        else {
3035          if (!RD->hasTrivialConstructor())
3036            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3037          // FIXME. Must do all that is needed to destroy the object
3038          // on scope exit. For now, just mark the destructor as used.
3039          MarkDestructorReferenced(Var->getLocation(), InitType);
3040        }
3041      }
3042    }
3043
3044#if 0
3045    // FIXME: Temporarily disabled because we are not properly parsing
3046    // linkage specifications on declarations, e.g.,
3047    //
3048    //   extern "C" const CGPoint CGPointerZero;
3049    //
3050    // C++ [dcl.init]p9:
3051    //
3052    //     If no initializer is specified for an object, and the
3053    //     object is of (possibly cv-qualified) non-POD class type (or
3054    //     array thereof), the object shall be default-initialized; if
3055    //     the object is of const-qualified type, the underlying class
3056    //     type shall have a user-declared default
3057    //     constructor. Otherwise, if no initializer is specified for
3058    //     an object, the object and its subobjects, if any, have an
3059    //     indeterminate initial value; if the object or any of its
3060    //     subobjects are of const-qualified type, the program is
3061    //     ill-formed.
3062    //
3063    // This isn't technically an error in C, so we don't diagnose it.
3064    //
3065    // FIXME: Actually perform the POD/user-defined default
3066    // constructor check.
3067    if (getLangOptions().CPlusPlus &&
3068        Context.getCanonicalType(Type).isConstQualified() &&
3069        !Var->hasExternalStorage())
3070      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3071        << Var->getName()
3072        << SourceRange(Var->getLocation(), Var->getLocation());
3073#endif
3074  }
3075}
3076
3077Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3078                                                   DeclPtrTy *Group,
3079                                                   unsigned NumDecls) {
3080  llvm::SmallVector<Decl*, 8> Decls;
3081
3082  if (DS.isTypeSpecOwned())
3083    Decls.push_back((Decl*)DS.getTypeRep());
3084
3085  for (unsigned i = 0; i != NumDecls; ++i)
3086    if (Decl *D = Group[i].getAs<Decl>())
3087      Decls.push_back(D);
3088
3089  // Perform semantic analysis that depends on having fully processed both
3090  // the declarator and initializer.
3091  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3092    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3093    if (!IDecl)
3094      continue;
3095    QualType T = IDecl->getType();
3096
3097    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3098    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3099    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3100      if (!IDecl->isInvalidDecl() &&
3101          RequireCompleteType(IDecl->getLocation(), T,
3102                              diag::err_typecheck_decl_incomplete_type))
3103        IDecl->setInvalidDecl();
3104    }
3105    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3106    // object that has file scope without an initializer, and without a
3107    // storage-class specifier or with the storage-class specifier "static",
3108    // constitutes a tentative definition. Note: A tentative definition with
3109    // external linkage is valid (C99 6.2.2p5).
3110    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3111      if (const IncompleteArrayType *ArrayT
3112          = Context.getAsIncompleteArrayType(T)) {
3113        if (RequireCompleteType(IDecl->getLocation(),
3114                                ArrayT->getElementType(),
3115                                diag::err_illegal_decl_array_incomplete_type))
3116          IDecl->setInvalidDecl();
3117      }
3118      else if (IDecl->getStorageClass() == VarDecl::Static) {
3119        // C99 6.9.2p3: If the declaration of an identifier for an object is
3120        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3121        // declared type shall not be an incomplete type.
3122        // NOTE: code such as the following
3123        //     static struct s;
3124        //     struct s { int a; };
3125        // is accepted by gcc. Hence here we issue a warning instead of
3126        // an error and we do not invalidate the static declaration.
3127        // NOTE: to avoid multiple warnings, only check the first declaration.
3128        if (IDecl->getPreviousDeclaration() == 0)
3129          RequireCompleteType(IDecl->getLocation(), T,
3130                              diag::ext_typecheck_decl_incomplete_type);
3131      }
3132    }
3133  }
3134  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3135                                                   Decls.data(), Decls.size()));
3136}
3137
3138
3139/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3140/// to introduce parameters into function prototype scope.
3141Sema::DeclPtrTy
3142Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3143  const DeclSpec &DS = D.getDeclSpec();
3144
3145  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3146  VarDecl::StorageClass StorageClass = VarDecl::None;
3147  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3148    StorageClass = VarDecl::Register;
3149  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3150    Diag(DS.getStorageClassSpecLoc(),
3151         diag::err_invalid_storage_class_in_func_decl);
3152    D.getMutableDeclSpec().ClearStorageClassSpecs();
3153  }
3154
3155  if (D.getDeclSpec().isThreadSpecified())
3156    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3157
3158  DiagnoseFunctionSpecifiers(D);
3159
3160  // Check that there are no default arguments inside the type of this
3161  // parameter (C++ only).
3162  if (getLangOptions().CPlusPlus)
3163    CheckExtraCXXDefaultArguments(D);
3164
3165  TagDecl *OwnedDecl = 0;
3166  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3167
3168  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3169    // C++ [dcl.fct]p6:
3170    //   Types shall not be defined in return or parameter types.
3171    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3172      << Context.getTypeDeclType(OwnedDecl);
3173  }
3174
3175  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3176  // Can this happen for params?  We already checked that they don't conflict
3177  // among each other.  Here they can only shadow globals, which is ok.
3178  IdentifierInfo *II = D.getIdentifier();
3179  if (II) {
3180    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3181      if (PrevDecl->isTemplateParameter()) {
3182        // Maybe we will complain about the shadowed template parameter.
3183        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3184        // Just pretend that we didn't see the previous declaration.
3185        PrevDecl = 0;
3186      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3187        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3188
3189        // Recover by removing the name
3190        II = 0;
3191        D.SetIdentifier(0, D.getIdentifierLoc());
3192      }
3193    }
3194  }
3195
3196  // Parameters can not be abstract class types.
3197  // For record types, this is done by the AbstractClassUsageDiagnoser once
3198  // the class has been completely parsed.
3199  if (!CurContext->isRecord() &&
3200      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3201                             diag::err_abstract_type_in_decl,
3202                             AbstractParamType))
3203    D.setInvalidType(true);
3204
3205  QualType T = adjustParameterType(parmDeclType);
3206
3207  ParmVarDecl *New;
3208  if (T == parmDeclType) // parameter type did not need adjustment
3209    New = ParmVarDecl::Create(Context, CurContext,
3210                              D.getIdentifierLoc(), II,
3211                              parmDeclType, StorageClass,
3212                              0);
3213  else // keep track of both the adjusted and unadjusted types
3214    New = OriginalParmVarDecl::Create(Context, CurContext,
3215                                      D.getIdentifierLoc(), II, T,
3216                                      parmDeclType, StorageClass, 0);
3217
3218  if (D.isInvalidType())
3219    New->setInvalidDecl();
3220
3221  // Parameter declarators cannot be interface types. All ObjC objects are
3222  // passed by reference.
3223  if (T->isObjCInterfaceType()) {
3224    Diag(D.getIdentifierLoc(),
3225         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3226    New->setInvalidDecl();
3227  }
3228
3229  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3230  if (D.getCXXScopeSpec().isSet()) {
3231    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3232      << D.getCXXScopeSpec().getRange();
3233    New->setInvalidDecl();
3234  }
3235
3236  // Add the parameter declaration into this scope.
3237  S->AddDecl(DeclPtrTy::make(New));
3238  if (II)
3239    IdResolver.AddDecl(New);
3240
3241  ProcessDeclAttributes(S, New, D);
3242
3243  if (New->hasAttr<BlocksAttr>()) {
3244    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3245  }
3246  return DeclPtrTy::make(New);
3247}
3248
3249void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3250                                           SourceLocation LocAfterDecls) {
3251  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3252         "Not a function declarator!");
3253  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3254
3255  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3256  // for a K&R function.
3257  if (!FTI.hasPrototype) {
3258    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3259      --i;
3260      if (FTI.ArgInfo[i].Param == 0) {
3261        std::string Code = "  int ";
3262        Code += FTI.ArgInfo[i].Ident->getName();
3263        Code += ";\n";
3264        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3265          << FTI.ArgInfo[i].Ident
3266          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3267
3268        // Implicitly declare the argument as type 'int' for lack of a better
3269        // type.
3270        DeclSpec DS;
3271        const char* PrevSpec; // unused
3272        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3273                           PrevSpec);
3274        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3275        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3276        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3277      }
3278    }
3279  }
3280}
3281
3282Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3283                                              Declarator &D) {
3284  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3285  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3286         "Not a function declarator!");
3287  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3288
3289  if (FTI.hasPrototype) {
3290    // FIXME: Diagnose arguments without names in C.
3291  }
3292
3293  Scope *ParentScope = FnBodyScope->getParent();
3294
3295  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3296                                  MultiTemplateParamsArg(*this),
3297                                  /*IsFunctionDefinition=*/true);
3298  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3299}
3300
3301Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3302  if (!D)
3303    return D;
3304  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3305
3306  CurFunctionNeedsScopeChecking = false;
3307
3308  // See if this is a redefinition.
3309  const FunctionDecl *Definition;
3310  if (FD->getBody(Definition)) {
3311    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3312    Diag(Definition->getLocation(), diag::note_previous_definition);
3313  }
3314
3315  // Builtin functions cannot be defined.
3316  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3317    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3318      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3319      FD->setInvalidDecl();
3320    }
3321  }
3322
3323  // The return type of a function definition must be complete
3324  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3325  QualType ResultType = FD->getResultType();
3326  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3327      !FD->isInvalidDecl() &&
3328      RequireCompleteType(FD->getLocation(), ResultType,
3329                          diag::err_func_def_incomplete_result))
3330    FD->setInvalidDecl();
3331
3332  // GNU warning -Wmissing-prototypes:
3333  //   Warn if a global function is defined without a previous
3334  //   prototype declaration. This warning is issued even if the
3335  //   definition itself provides a prototype. The aim is to detect
3336  //   global functions that fail to be declared in header files.
3337  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3338      !FD->isMain()) {
3339    bool MissingPrototype = true;
3340    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3341         Prev; Prev = Prev->getPreviousDeclaration()) {
3342      // Ignore any declarations that occur in function or method
3343      // scope, because they aren't visible from the header.
3344      if (Prev->getDeclContext()->isFunctionOrMethod())
3345        continue;
3346
3347      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3348      break;
3349    }
3350
3351    if (MissingPrototype)
3352      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3353  }
3354
3355  if (FnBodyScope)
3356    PushDeclContext(FnBodyScope, FD);
3357
3358  // Check the validity of our function parameters
3359  CheckParmsForFunctionDef(FD);
3360
3361  // Introduce our parameters into the function scope
3362  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3363    ParmVarDecl *Param = FD->getParamDecl(p);
3364    Param->setOwningFunction(FD);
3365
3366    // If this has an identifier, add it to the scope stack.
3367    if (Param->getIdentifier() && FnBodyScope)
3368      PushOnScopeChains(Param, FnBodyScope);
3369  }
3370
3371  // Checking attributes of current function definition
3372  // dllimport attribute.
3373  if (FD->getAttr<DLLImportAttr>() &&
3374      (!FD->getAttr<DLLExportAttr>())) {
3375    // dllimport attribute cannot be applied to definition.
3376    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3377      Diag(FD->getLocation(),
3378           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3379        << "dllimport";
3380      FD->setInvalidDecl();
3381      return DeclPtrTy::make(FD);
3382    } else {
3383      // If a symbol previously declared dllimport is later defined, the
3384      // attribute is ignored in subsequent references, and a warning is
3385      // emitted.
3386      Diag(FD->getLocation(),
3387           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3388        << FD->getNameAsCString() << "dllimport";
3389    }
3390  }
3391  return DeclPtrTy::make(FD);
3392}
3393
3394Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3395  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3396}
3397
3398Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3399                                              bool IsInstantiation) {
3400  Decl *dcl = D.getAs<Decl>();
3401  Stmt *Body = BodyArg.takeAs<Stmt>();
3402  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3403    FD->setBody(Body);
3404    if (!FD->isMain())
3405      // C and C++ allow for main to automagically return 0.
3406      CheckFallThroughForFunctionDef(FD, Body);
3407
3408    if (!FD->isInvalidDecl())
3409      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3410
3411    // C++ [basic.def.odr]p2:
3412    //   [...] A virtual member function is used if it is not pure. [...]
3413    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3414      if (Method->isVirtual() && !Method->isPure())
3415        MarkDeclarationReferenced(Method->getLocation(), Method);
3416
3417    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3418  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3419    assert(MD == getCurMethodDecl() && "Method parsing confused");
3420    MD->setBody(Body);
3421    CheckFallThroughForFunctionDef(MD, Body);
3422    MD->setEndLoc(Body->getLocEnd());
3423
3424    if (!MD->isInvalidDecl())
3425      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3426  } else {
3427    Body->Destroy(Context);
3428    return DeclPtrTy();
3429  }
3430  if (!IsInstantiation)
3431    PopDeclContext();
3432
3433  // Verify and clean out per-function state.
3434
3435  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3436
3437  // Check goto/label use.
3438  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3439       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3440    LabelStmt *L = I->second;
3441
3442    // Verify that we have no forward references left.  If so, there was a goto
3443    // or address of a label taken, but no definition of it.  Label fwd
3444    // definitions are indicated with a null substmt.
3445    if (L->getSubStmt() != 0)
3446      continue;
3447
3448    // Emit error.
3449    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3450
3451    // At this point, we have gotos that use the bogus label.  Stitch it into
3452    // the function body so that they aren't leaked and that the AST is well
3453    // formed.
3454    if (Body == 0) {
3455      // The whole function wasn't parsed correctly, just delete this.
3456      L->Destroy(Context);
3457      continue;
3458    }
3459
3460    // Otherwise, the body is valid: we want to stitch the label decl into the
3461    // function somewhere so that it is properly owned and so that the goto
3462    // has a valid target.  Do this by creating a new compound stmt with the
3463    // label in it.
3464
3465    // Give the label a sub-statement.
3466    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3467
3468    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3469                               cast<CXXTryStmt>(Body)->getTryBlock() :
3470                               cast<CompoundStmt>(Body);
3471    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3472    Elements.push_back(L);
3473    Compound->setStmts(Context, &Elements[0], Elements.size());
3474  }
3475  FunctionLabelMap.clear();
3476
3477  if (!Body) return D;
3478
3479  // Verify that that gotos and switch cases don't jump into scopes illegally.
3480  if (CurFunctionNeedsScopeChecking)
3481    DiagnoseInvalidJumps(Body);
3482
3483  // C++ constructors that have function-try-blocks can't have return
3484  // statements in the handlers of that block. (C++ [except.handle]p14)
3485  // Verify this.
3486  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3487    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3488
3489  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3490    Destructor->computeBaseOrMembersToDestroy(Context);
3491  return D;
3492}
3493
3494/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3495/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3496NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3497                                          IdentifierInfo &II, Scope *S) {
3498  // Before we produce a declaration for an implicitly defined
3499  // function, see whether there was a locally-scoped declaration of
3500  // this name as a function or variable. If so, use that
3501  // (non-visible) declaration, and complain about it.
3502  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3503    = LocallyScopedExternalDecls.find(&II);
3504  if (Pos != LocallyScopedExternalDecls.end()) {
3505    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3506    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3507    return Pos->second;
3508  }
3509
3510  // Extension in C99.  Legal in C90, but warn about it.
3511  if (getLangOptions().C99)
3512    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3513  else
3514    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3515
3516  // FIXME: handle stuff like:
3517  // void foo() { extern float X(); }
3518  // void bar() { X(); }  <-- implicit decl for X in another scope.
3519
3520  // Set a Declarator for the implicit definition: int foo();
3521  const char *Dummy;
3522  DeclSpec DS;
3523  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3524  Error = Error; // Silence warning.
3525  assert(!Error && "Error setting up implicit decl!");
3526  Declarator D(DS, Declarator::BlockContext);
3527  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3528                                             0, 0, false, SourceLocation(),
3529                                             false, 0,0,0, Loc, D),
3530                SourceLocation());
3531  D.SetIdentifier(&II, Loc);
3532
3533  // Insert this function into translation-unit scope.
3534
3535  DeclContext *PrevDC = CurContext;
3536  CurContext = Context.getTranslationUnitDecl();
3537
3538  FunctionDecl *FD =
3539 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3540  FD->setImplicit();
3541
3542  CurContext = PrevDC;
3543
3544  AddKnownFunctionAttributes(FD);
3545
3546  return FD;
3547}
3548
3549/// \brief Adds any function attributes that we know a priori based on
3550/// the declaration of this function.
3551///
3552/// These attributes can apply both to implicitly-declared builtins
3553/// (like __builtin___printf_chk) or to library-declared functions
3554/// like NSLog or printf.
3555void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3556  if (FD->isInvalidDecl())
3557    return;
3558
3559  // If this is a built-in function, map its builtin attributes to
3560  // actual attributes.
3561  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3562    // Handle printf-formatting attributes.
3563    unsigned FormatIdx;
3564    bool HasVAListArg;
3565    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3566      if (!FD->getAttr<FormatAttr>())
3567        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3568                                             HasVAListArg ? 0 : FormatIdx + 2));
3569    }
3570
3571    // Mark const if we don't care about errno and that is the only
3572    // thing preventing the function from being const. This allows
3573    // IRgen to use LLVM intrinsics for such functions.
3574    if (!getLangOptions().MathErrno &&
3575        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3576      if (!FD->getAttr<ConstAttr>())
3577        FD->addAttr(::new (Context) ConstAttr());
3578    }
3579  }
3580
3581  IdentifierInfo *Name = FD->getIdentifier();
3582  if (!Name)
3583    return;
3584  if ((!getLangOptions().CPlusPlus &&
3585       FD->getDeclContext()->isTranslationUnit()) ||
3586      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3587       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3588       LinkageSpecDecl::lang_c)) {
3589    // Okay: this could be a libc/libm/Objective-C function we know
3590    // about.
3591  } else
3592    return;
3593
3594  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3595    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3596      // FIXME: We known better than our headers.
3597      const_cast<FormatAttr *>(Format)->setType("printf");
3598    } else
3599      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3600                                             Name->isStr("NSLogv") ? 0 : 2));
3601  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3602    if (!FD->getAttr<FormatAttr>())
3603      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3604                                             Name->isStr("vasprintf") ? 0 : 3));
3605  }
3606}
3607
3608TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3609  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3610  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3611
3612  // Scope manipulation handled by caller.
3613  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3614                                           D.getIdentifierLoc(),
3615                                           D.getIdentifier(),
3616                                           T);
3617
3618  if (TagType *TT = dyn_cast<TagType>(T)) {
3619    TagDecl *TD = TT->getDecl();
3620
3621    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3622    // keep track of the TypedefDecl.
3623    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3624      TD->setTypedefForAnonDecl(NewTD);
3625  }
3626
3627  if (D.isInvalidType())
3628    NewTD->setInvalidDecl();
3629  return NewTD;
3630}
3631
3632
3633/// \brief Determine whether a tag with a given kind is acceptable
3634/// as a redeclaration of the given tag declaration.
3635///
3636/// \returns true if the new tag kind is acceptable, false otherwise.
3637bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3638                                        TagDecl::TagKind NewTag,
3639                                        SourceLocation NewTagLoc,
3640                                        const IdentifierInfo &Name) {
3641  // C++ [dcl.type.elab]p3:
3642  //   The class-key or enum keyword present in the
3643  //   elaborated-type-specifier shall agree in kind with the
3644  //   declaration to which the name in theelaborated-type-specifier
3645  //   refers. This rule also applies to the form of
3646  //   elaborated-type-specifier that declares a class-name or
3647  //   friend class since it can be construed as referring to the
3648  //   definition of the class. Thus, in any
3649  //   elaborated-type-specifier, the enum keyword shall be used to
3650  //   refer to an enumeration (7.2), the union class-keyshall be
3651  //   used to refer to a union (clause 9), and either the class or
3652  //   struct class-key shall be used to refer to a class (clause 9)
3653  //   declared using the class or struct class-key.
3654  TagDecl::TagKind OldTag = Previous->getTagKind();
3655  if (OldTag == NewTag)
3656    return true;
3657
3658  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3659      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3660    // Warn about the struct/class tag mismatch.
3661    bool isTemplate = false;
3662    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3663      isTemplate = Record->getDescribedClassTemplate();
3664
3665    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3666      << (NewTag == TagDecl::TK_class)
3667      << isTemplate << &Name
3668      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3669                              OldTag == TagDecl::TK_class? "class" : "struct");
3670    Diag(Previous->getLocation(), diag::note_previous_use);
3671    return true;
3672  }
3673  return false;
3674}
3675
3676/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3677/// former case, Name will be non-null.  In the later case, Name will be null.
3678/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3679/// reference/declaration/definition of a tag.
3680Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3681                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3682                               IdentifierInfo *Name, SourceLocation NameLoc,
3683                               AttributeList *Attr, AccessSpecifier AS,
3684                               MultiTemplateParamsArg TemplateParameterLists,
3685                               bool &OwnedDecl) {
3686  // If this is not a definition, it must have a name.
3687  assert((Name != 0 || TK == TK_Definition) &&
3688         "Nameless record must be a definition!");
3689
3690  OwnedDecl = false;
3691  TagDecl::TagKind Kind;
3692  switch (TagSpec) {
3693  default: assert(0 && "Unknown tag type!");
3694  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3695  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3696  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3697  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3698  }
3699
3700  if (TK != TK_Reference) {
3701    if (TemplateParameterList *TemplateParams
3702          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3703                        (TemplateParameterList**)TemplateParameterLists.get(),
3704                                              TemplateParameterLists.size())) {
3705      if (TemplateParams->size() > 0) {
3706        // This is a declaration or definition of a class template (which may
3707        // be a member of another template).
3708        OwnedDecl = false;
3709        DeclResult Result = CheckClassTemplate(S, TagSpec, TK, KWLoc,
3710                                               SS, Name, NameLoc, Attr,
3711                                               move(TemplateParameterLists),
3712                                               AS);
3713        return Result.get();
3714      } else {
3715        // FIXME: diagnose the extraneous 'template<>', once we recover
3716        // slightly better in ParseTemplate.cpp from bogus template
3717        // parameters.
3718      }
3719    }
3720  }
3721
3722  DeclContext *SearchDC = CurContext;
3723  DeclContext *DC = CurContext;
3724  NamedDecl *PrevDecl = 0;
3725
3726  bool Invalid = false;
3727
3728  if (Name && SS.isNotEmpty()) {
3729    // We have a nested-name tag ('struct foo::bar').
3730
3731    // Check for invalid 'foo::'.
3732    if (SS.isInvalid()) {
3733      Name = 0;
3734      goto CreateNewDecl;
3735    }
3736
3737    if (RequireCompleteDeclContext(SS))
3738      return DeclPtrTy::make((Decl *)0);
3739
3740    DC = computeDeclContext(SS, true);
3741    SearchDC = DC;
3742    // Look-up name inside 'foo::'.
3743    PrevDecl
3744      = dyn_cast_or_null<TagDecl>(
3745               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3746
3747    // A tag 'foo::bar' must already exist.
3748    if (PrevDecl == 0) {
3749      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3750      Name = 0;
3751      Invalid = true;
3752      goto CreateNewDecl;
3753    }
3754  } else if (Name) {
3755    // If this is a named struct, check to see if there was a previous forward
3756    // declaration or definition.
3757    // FIXME: We're looking into outer scopes here, even when we
3758    // shouldn't be. Doing so can result in ambiguities that we
3759    // shouldn't be diagnosing.
3760    LookupResult R = LookupName(S, Name, LookupTagName,
3761                                /*RedeclarationOnly=*/(TK != TK_Reference));
3762    if (R.isAmbiguous()) {
3763      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3764      // FIXME: This is not best way to recover from case like:
3765      //
3766      // struct S s;
3767      //
3768      // causes needless "incomplete type" error later.
3769      Name = 0;
3770      PrevDecl = 0;
3771      Invalid = true;
3772    }
3773    else
3774      PrevDecl = R;
3775
3776    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3777      // FIXME: This makes sure that we ignore the contexts associated
3778      // with C structs, unions, and enums when looking for a matching
3779      // tag declaration or definition. See the similar lookup tweak
3780      // in Sema::LookupName; is there a better way to deal with this?
3781      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3782        SearchDC = SearchDC->getParent();
3783    }
3784  }
3785
3786  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3787    // Maybe we will complain about the shadowed template parameter.
3788    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3789    // Just pretend that we didn't see the previous declaration.
3790    PrevDecl = 0;
3791  }
3792
3793  if (PrevDecl) {
3794    // Check whether the previous declaration is usable.
3795    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3796
3797    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3798      // If this is a use of a previous tag, or if the tag is already declared
3799      // in the same scope (so that the definition/declaration completes or
3800      // rementions the tag), reuse the decl.
3801      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3802        // Make sure that this wasn't declared as an enum and now used as a
3803        // struct or something similar.
3804        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3805          bool SafeToContinue
3806            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3807               Kind != TagDecl::TK_enum);
3808          if (SafeToContinue)
3809            Diag(KWLoc, diag::err_use_with_wrong_tag)
3810              << Name
3811              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3812                                                  PrevTagDecl->getKindName());
3813          else
3814            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3815          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3816
3817          if (SafeToContinue)
3818            Kind = PrevTagDecl->getTagKind();
3819          else {
3820            // Recover by making this an anonymous redefinition.
3821            Name = 0;
3822            PrevDecl = 0;
3823            Invalid = true;
3824          }
3825        }
3826
3827        if (!Invalid) {
3828          // If this is a use, just return the declaration we found.
3829
3830          // FIXME: In the future, return a variant or some other clue
3831          // for the consumer of this Decl to know it doesn't own it.
3832          // For our current ASTs this shouldn't be a problem, but will
3833          // need to be changed with DeclGroups.
3834          if (TK == TK_Reference)
3835            return DeclPtrTy::make(PrevDecl);
3836
3837          // Diagnose attempts to redefine a tag.
3838          if (TK == TK_Definition) {
3839            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3840              Diag(NameLoc, diag::err_redefinition) << Name;
3841              Diag(Def->getLocation(), diag::note_previous_definition);
3842              // If this is a redefinition, recover by making this
3843              // struct be anonymous, which will make any later
3844              // references get the previous definition.
3845              Name = 0;
3846              PrevDecl = 0;
3847              Invalid = true;
3848            } else {
3849              // If the type is currently being defined, complain
3850              // about a nested redefinition.
3851              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3852              if (Tag->isBeingDefined()) {
3853                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3854                Diag(PrevTagDecl->getLocation(),
3855                     diag::note_previous_definition);
3856                Name = 0;
3857                PrevDecl = 0;
3858                Invalid = true;
3859              }
3860            }
3861
3862            // Okay, this is definition of a previously declared or referenced
3863            // tag PrevDecl. We're going to create a new Decl for it.
3864          }
3865        }
3866        // If we get here we have (another) forward declaration or we
3867        // have a definition.  Just create a new decl.
3868      } else {
3869        // If we get here, this is a definition of a new tag type in a nested
3870        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3871        // new decl/type.  We set PrevDecl to NULL so that the entities
3872        // have distinct types.
3873        PrevDecl = 0;
3874      }
3875      // If we get here, we're going to create a new Decl. If PrevDecl
3876      // is non-NULL, it's a definition of the tag declared by
3877      // PrevDecl. If it's NULL, we have a new definition.
3878    } else {
3879      // PrevDecl is a namespace, template, or anything else
3880      // that lives in the IDNS_Tag identifier namespace.
3881      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3882        // The tag name clashes with a namespace name, issue an error and
3883        // recover by making this tag be anonymous.
3884        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3885        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3886        Name = 0;
3887        PrevDecl = 0;
3888        Invalid = true;
3889      } else {
3890        // The existing declaration isn't relevant to us; we're in a
3891        // new scope, so clear out the previous declaration.
3892        PrevDecl = 0;
3893      }
3894    }
3895  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3896             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3897    // C++ [basic.scope.pdecl]p5:
3898    //   -- for an elaborated-type-specifier of the form
3899    //
3900    //          class-key identifier
3901    //
3902    //      if the elaborated-type-specifier is used in the
3903    //      decl-specifier-seq or parameter-declaration-clause of a
3904    //      function defined in namespace scope, the identifier is
3905    //      declared as a class-name in the namespace that contains
3906    //      the declaration; otherwise, except as a friend
3907    //      declaration, the identifier is declared in the smallest
3908    //      non-class, non-function-prototype scope that contains the
3909    //      declaration.
3910    //
3911    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3912    // C structs and unions.
3913    //
3914    // GNU C also supports this behavior as part of its incomplete
3915    // enum types extension, while GNU C++ does not.
3916    //
3917    // Find the context where we'll be declaring the tag.
3918    // FIXME: We would like to maintain the current DeclContext as the
3919    // lexical context,
3920    while (SearchDC->isRecord())
3921      SearchDC = SearchDC->getParent();
3922
3923    // Find the scope where we'll be declaring the tag.
3924    while (S->isClassScope() ||
3925           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3926           ((S->getFlags() & Scope::DeclScope) == 0) ||
3927           (S->getEntity() &&
3928            ((DeclContext *)S->getEntity())->isTransparentContext()))
3929      S = S->getParent();
3930  }
3931
3932CreateNewDecl:
3933
3934  // If there is an identifier, use the location of the identifier as the
3935  // location of the decl, otherwise use the location of the struct/union
3936  // keyword.
3937  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3938
3939  // Otherwise, create a new declaration. If there is a previous
3940  // declaration of the same entity, the two will be linked via
3941  // PrevDecl.
3942  TagDecl *New;
3943
3944  if (Kind == TagDecl::TK_enum) {
3945    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3946    // enum X { A, B, C } D;    D should chain to X.
3947    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
3948                           cast_or_null<EnumDecl>(PrevDecl));
3949    // If this is an undefined enum, warn.
3950    if (TK != TK_Definition && !Invalid)  {
3951      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3952                                              : diag::ext_forward_ref_enum;
3953      Diag(Loc, DK);
3954    }
3955  } else {
3956    // struct/union/class
3957
3958    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3959    // struct X { int A; } D;    D should chain to X.
3960    if (getLangOptions().CPlusPlus)
3961      // FIXME: Look for a way to use RecordDecl for simple structs.
3962      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3963                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3964    else
3965      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3966                               cast_or_null<RecordDecl>(PrevDecl));
3967  }
3968
3969  if (Kind != TagDecl::TK_enum) {
3970    // Handle #pragma pack: if the #pragma pack stack has non-default
3971    // alignment, make up a packed attribute for this decl. These
3972    // attributes are checked when the ASTContext lays out the
3973    // structure.
3974    //
3975    // It is important for implementing the correct semantics that this
3976    // happen here (in act on tag decl). The #pragma pack stack is
3977    // maintained as a result of parser callbacks which can occur at
3978    // many points during the parsing of a struct declaration (because
3979    // the #pragma tokens are effectively skipped over during the
3980    // parsing of the struct).
3981    if (unsigned Alignment = getPragmaPackAlignment())
3982      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3983  }
3984
3985  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3986    // C++ [dcl.typedef]p3:
3987    //   [...] Similarly, in a given scope, a class or enumeration
3988    //   shall not be declared with the same name as a typedef-name
3989    //   that is declared in that scope and refers to a type other
3990    //   than the class or enumeration itself.
3991    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3992    TypedefDecl *PrevTypedef = 0;
3993    if (Lookup.getKind() == LookupResult::Found)
3994      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3995
3996    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3997        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3998          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3999      Diag(Loc, diag::err_tag_definition_of_typedef)
4000        << Context.getTypeDeclType(New)
4001        << PrevTypedef->getUnderlyingType();
4002      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4003      Invalid = true;
4004    }
4005  }
4006
4007  if (Invalid)
4008    New->setInvalidDecl();
4009
4010  if (Attr)
4011    ProcessDeclAttributeList(S, New, Attr);
4012
4013  // If we're declaring or defining a tag in function prototype scope
4014  // in C, note that this type can only be used within the function.
4015  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4016    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4017
4018  // Set the lexical context. If the tag has a C++ scope specifier, the
4019  // lexical context will be different from the semantic context.
4020  New->setLexicalDeclContext(CurContext);
4021
4022  // Set the access specifier.
4023  if (!Invalid)
4024    SetMemberAccessSpecifier(New, PrevDecl, AS);
4025
4026  if (TK == TK_Definition)
4027    New->startDefinition();
4028
4029  // If this has an identifier, add it to the scope stack.
4030  if (Name) {
4031    S = getNonFieldDeclScope(S);
4032    PushOnScopeChains(New, S);
4033  } else {
4034    CurContext->addDecl(New);
4035  }
4036
4037  // If this is the C FILE type, notify the AST context.
4038  if (IdentifierInfo *II = New->getIdentifier())
4039    if (!New->isInvalidDecl() &&
4040        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4041        II->isStr("FILE"))
4042      Context.setFILEDecl(New);
4043
4044  OwnedDecl = true;
4045  return DeclPtrTy::make(New);
4046}
4047
4048void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4049  AdjustDeclIfTemplate(TagD);
4050  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4051
4052  // Enter the tag context.
4053  PushDeclContext(S, Tag);
4054
4055  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4056    FieldCollector->StartClass();
4057
4058    if (Record->getIdentifier()) {
4059      // C++ [class]p2:
4060      //   [...] The class-name is also inserted into the scope of the
4061      //   class itself; this is known as the injected-class-name. For
4062      //   purposes of access checking, the injected-class-name is treated
4063      //   as if it were a public member name.
4064      CXXRecordDecl *InjectedClassName
4065        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4066                                CurContext, Record->getLocation(),
4067                                Record->getIdentifier(),
4068                                Record->getTagKeywordLoc(),
4069                                Record);
4070      InjectedClassName->setImplicit();
4071      InjectedClassName->setAccess(AS_public);
4072      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4073        InjectedClassName->setDescribedClassTemplate(Template);
4074      PushOnScopeChains(InjectedClassName, S);
4075      assert(InjectedClassName->isInjectedClassName() &&
4076             "Broken injected-class-name");
4077    }
4078  }
4079}
4080
4081void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4082                                    SourceLocation RBraceLoc) {
4083  AdjustDeclIfTemplate(TagD);
4084  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4085  Tag->setRBraceLoc(RBraceLoc);
4086
4087  if (isa<CXXRecordDecl>(Tag))
4088    FieldCollector->FinishClass();
4089
4090  // Exit this scope of this tag's definition.
4091  PopDeclContext();
4092
4093  // Notify the consumer that we've defined a tag.
4094  Consumer.HandleTagDeclDefinition(Tag);
4095}
4096
4097// Note that FieldName may be null for anonymous bitfields.
4098bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4099                          QualType FieldTy, const Expr *BitWidth) {
4100
4101  // C99 6.7.2.1p4 - verify the field type.
4102  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4103  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4104    // Handle incomplete types with specific error.
4105    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4106      return true;
4107    if (FieldName)
4108      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4109        << FieldName << FieldTy << BitWidth->getSourceRange();
4110    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4111      << FieldTy << BitWidth->getSourceRange();
4112  }
4113
4114  // If the bit-width is type- or value-dependent, don't try to check
4115  // it now.
4116  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4117    return false;
4118
4119  llvm::APSInt Value;
4120  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4121    return true;
4122
4123  // Zero-width bitfield is ok for anonymous field.
4124  if (Value == 0 && FieldName)
4125    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4126
4127  if (Value.isSigned() && Value.isNegative()) {
4128    if (FieldName)
4129      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4130               << FieldName << Value.toString(10);
4131    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4132      << Value.toString(10);
4133  }
4134
4135  if (!FieldTy->isDependentType()) {
4136    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4137    if (Value.getZExtValue() > TypeSize) {
4138      if (FieldName)
4139        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4140          << FieldName << (unsigned)TypeSize;
4141      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4142        << (unsigned)TypeSize;
4143    }
4144  }
4145
4146  return false;
4147}
4148
4149/// ActOnField - Each field of a struct/union/class is passed into this in order
4150/// to create a FieldDecl object for it.
4151Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4152                                 SourceLocation DeclStart,
4153                                 Declarator &D, ExprTy *BitfieldWidth) {
4154  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4155                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4156                               AS_public);
4157  return DeclPtrTy::make(Res);
4158}
4159
4160/// HandleField - Analyze a field of a C struct or a C++ data member.
4161///
4162FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4163                             SourceLocation DeclStart,
4164                             Declarator &D, Expr *BitWidth,
4165                             AccessSpecifier AS) {
4166  IdentifierInfo *II = D.getIdentifier();
4167  SourceLocation Loc = DeclStart;
4168  if (II) Loc = D.getIdentifierLoc();
4169
4170  QualType T = GetTypeForDeclarator(D, S);
4171  if (getLangOptions().CPlusPlus)
4172    CheckExtraCXXDefaultArguments(D);
4173
4174  DiagnoseFunctionSpecifiers(D);
4175
4176  if (D.getDeclSpec().isThreadSpecified())
4177    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4178
4179  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4180
4181  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4182    // Maybe we will complain about the shadowed template parameter.
4183    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4184    // Just pretend that we didn't see the previous declaration.
4185    PrevDecl = 0;
4186  }
4187
4188  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4189    PrevDecl = 0;
4190
4191  bool Mutable
4192    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4193  SourceLocation TSSL = D.getSourceRange().getBegin();
4194  FieldDecl *NewFD
4195    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4196                     AS, PrevDecl, &D);
4197  if (NewFD->isInvalidDecl() && PrevDecl) {
4198    // Don't introduce NewFD into scope; there's already something
4199    // with the same name in the same scope.
4200  } else if (II) {
4201    PushOnScopeChains(NewFD, S);
4202  } else
4203    Record->addDecl(NewFD);
4204
4205  return NewFD;
4206}
4207
4208/// \brief Build a new FieldDecl and check its well-formedness.
4209///
4210/// This routine builds a new FieldDecl given the fields name, type,
4211/// record, etc. \p PrevDecl should refer to any previous declaration
4212/// with the same name and in the same scope as the field to be
4213/// created.
4214///
4215/// \returns a new FieldDecl.
4216///
4217/// \todo The Declarator argument is a hack. It will be removed once
4218FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4219                                RecordDecl *Record, SourceLocation Loc,
4220                                bool Mutable, Expr *BitWidth,
4221                                SourceLocation TSSL,
4222                                AccessSpecifier AS, NamedDecl *PrevDecl,
4223                                Declarator *D) {
4224  IdentifierInfo *II = Name.getAsIdentifierInfo();
4225  bool InvalidDecl = false;
4226  if (D) InvalidDecl = D->isInvalidType();
4227
4228  // If we receive a broken type, recover by assuming 'int' and
4229  // marking this declaration as invalid.
4230  if (T.isNull()) {
4231    InvalidDecl = true;
4232    T = Context.IntTy;
4233  }
4234
4235  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4236  // than a variably modified type.
4237  if (T->isVariablyModifiedType()) {
4238    bool SizeIsNegative;
4239    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4240                                                           SizeIsNegative);
4241    if (!FixedTy.isNull()) {
4242      Diag(Loc, diag::warn_illegal_constant_array_size);
4243      T = FixedTy;
4244    } else {
4245      if (SizeIsNegative)
4246        Diag(Loc, diag::err_typecheck_negative_array_size);
4247      else
4248        Diag(Loc, diag::err_typecheck_field_variable_size);
4249      InvalidDecl = true;
4250    }
4251  }
4252
4253  // Fields can not have abstract class types
4254  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4255                             AbstractFieldType))
4256    InvalidDecl = true;
4257
4258  // If this is declared as a bit-field, check the bit-field.
4259  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4260    InvalidDecl = true;
4261    DeleteExpr(BitWidth);
4262    BitWidth = 0;
4263  }
4264
4265  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4266                                       Mutable, TSSL);
4267  if (InvalidDecl)
4268    NewFD->setInvalidDecl();
4269
4270  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4271    Diag(Loc, diag::err_duplicate_member) << II;
4272    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4273    NewFD->setInvalidDecl();
4274  }
4275
4276  if (getLangOptions().CPlusPlus) {
4277    QualType EltTy = Context.getBaseElementType(T);
4278
4279    if (const RecordType *RT = EltTy->getAsRecordType()) {
4280      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4281
4282      if (!RDecl->hasTrivialConstructor())
4283        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4284      if (!RDecl->hasTrivialCopyConstructor())
4285        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4286      if (!RDecl->hasTrivialCopyAssignment())
4287        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4288      if (!RDecl->hasTrivialDestructor())
4289        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4290
4291      // C++ 9.5p1: An object of a class with a non-trivial
4292      // constructor, a non-trivial copy constructor, a non-trivial
4293      // destructor, or a non-trivial copy assignment operator
4294      // cannot be a member of a union, nor can an array of such
4295      // objects.
4296      // TODO: C++0x alters this restriction significantly.
4297      if (Record->isUnion()) {
4298        // We check for copy constructors before constructors
4299        // because otherwise we'll never get complaints about
4300        // copy constructors.
4301
4302        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4303
4304        CXXSpecialMember member;
4305        if (!RDecl->hasTrivialCopyConstructor())
4306          member = CXXCopyConstructor;
4307        else if (!RDecl->hasTrivialConstructor())
4308          member = CXXDefaultConstructor;
4309        else if (!RDecl->hasTrivialCopyAssignment())
4310          member = CXXCopyAssignment;
4311        else if (!RDecl->hasTrivialDestructor())
4312          member = CXXDestructor;
4313        else
4314          member = invalid;
4315
4316        if (member != invalid) {
4317          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4318          DiagnoseNontrivial(RT, member);
4319          NewFD->setInvalidDecl();
4320        }
4321      }
4322    }
4323  }
4324
4325  if (getLangOptions().CPlusPlus && !T->isPODType())
4326    cast<CXXRecordDecl>(Record)->setPOD(false);
4327
4328  // FIXME: We need to pass in the attributes given an AST
4329  // representation, not a parser representation.
4330  if (D)
4331    // FIXME: What to pass instead of TUScope?
4332    ProcessDeclAttributes(TUScope, NewFD, *D);
4333
4334  if (T.isObjCGCWeak())
4335    Diag(Loc, diag::warn_attribute_weak_on_field);
4336
4337  NewFD->setAccess(AS);
4338
4339  // C++ [dcl.init.aggr]p1:
4340  //   An aggregate is an array or a class (clause 9) with [...] no
4341  //   private or protected non-static data members (clause 11).
4342  // A POD must be an aggregate.
4343  if (getLangOptions().CPlusPlus &&
4344      (AS == AS_private || AS == AS_protected)) {
4345    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4346    CXXRecord->setAggregate(false);
4347    CXXRecord->setPOD(false);
4348  }
4349
4350  return NewFD;
4351}
4352
4353/// DiagnoseNontrivial - Given that a class has a non-trivial
4354/// special member, figure out why.
4355void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4356  QualType QT(T, 0U);
4357  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4358
4359  // Check whether the member was user-declared.
4360  switch (member) {
4361  case CXXDefaultConstructor:
4362    if (RD->hasUserDeclaredConstructor()) {
4363      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4364      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4365        if (!ci->isImplicitlyDefined(Context)) {
4366          SourceLocation CtorLoc = ci->getLocation();
4367          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4368          return;
4369        }
4370
4371      assert(0 && "found no user-declared constructors");
4372      return;
4373    }
4374    break;
4375
4376  case CXXCopyConstructor:
4377    if (RD->hasUserDeclaredCopyConstructor()) {
4378      SourceLocation CtorLoc =
4379        RD->getCopyConstructor(Context, 0)->getLocation();
4380      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4381      return;
4382    }
4383    break;
4384
4385  case CXXCopyAssignment:
4386    if (RD->hasUserDeclaredCopyAssignment()) {
4387      // FIXME: this should use the location of the copy
4388      // assignment, not the type.
4389      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4390      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4391      return;
4392    }
4393    break;
4394
4395  case CXXDestructor:
4396    if (RD->hasUserDeclaredDestructor()) {
4397      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4398      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4399      return;
4400    }
4401    break;
4402  }
4403
4404  typedef CXXRecordDecl::base_class_iterator base_iter;
4405
4406  // Virtual bases and members inhibit trivial copying/construction,
4407  // but not trivial destruction.
4408  if (member != CXXDestructor) {
4409    // Check for virtual bases.  vbases includes indirect virtual bases,
4410    // so we just iterate through the direct bases.
4411    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4412      if (bi->isVirtual()) {
4413        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4414        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4415        return;
4416      }
4417
4418    // Check for virtual methods.
4419    typedef CXXRecordDecl::method_iterator meth_iter;
4420    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4421         ++mi) {
4422      if (mi->isVirtual()) {
4423        SourceLocation MLoc = mi->getSourceRange().getBegin();
4424        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4425        return;
4426      }
4427    }
4428  }
4429
4430  bool (CXXRecordDecl::*hasTrivial)() const;
4431  switch (member) {
4432  case CXXDefaultConstructor:
4433    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4434  case CXXCopyConstructor:
4435    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4436  case CXXCopyAssignment:
4437    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4438  case CXXDestructor:
4439    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4440  default:
4441    assert(0 && "unexpected special member"); return;
4442  }
4443
4444  // Check for nontrivial bases (and recurse).
4445  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4446    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4447    assert(BaseRT);
4448    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4449    if (!(BaseRecTy->*hasTrivial)()) {
4450      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4451      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4452      DiagnoseNontrivial(BaseRT, member);
4453      return;
4454    }
4455  }
4456
4457  // Check for nontrivial members (and recurse).
4458  typedef RecordDecl::field_iterator field_iter;
4459  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4460       ++fi) {
4461    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4462    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4463      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4464
4465      if (!(EltRD->*hasTrivial)()) {
4466        SourceLocation FLoc = (*fi)->getLocation();
4467        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4468        DiagnoseNontrivial(EltRT, member);
4469        return;
4470      }
4471    }
4472  }
4473
4474  assert(0 && "found no explanation for non-trivial member");
4475}
4476
4477/// TranslateIvarVisibility - Translate visibility from a token ID to an
4478///  AST enum value.
4479static ObjCIvarDecl::AccessControl
4480TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4481  switch (ivarVisibility) {
4482  default: assert(0 && "Unknown visitibility kind");
4483  case tok::objc_private: return ObjCIvarDecl::Private;
4484  case tok::objc_public: return ObjCIvarDecl::Public;
4485  case tok::objc_protected: return ObjCIvarDecl::Protected;
4486  case tok::objc_package: return ObjCIvarDecl::Package;
4487  }
4488}
4489
4490/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4491/// in order to create an IvarDecl object for it.
4492Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4493                                SourceLocation DeclStart,
4494                                DeclPtrTy IntfDecl,
4495                                Declarator &D, ExprTy *BitfieldWidth,
4496                                tok::ObjCKeywordKind Visibility) {
4497
4498  IdentifierInfo *II = D.getIdentifier();
4499  Expr *BitWidth = (Expr*)BitfieldWidth;
4500  SourceLocation Loc = DeclStart;
4501  if (II) Loc = D.getIdentifierLoc();
4502
4503  // FIXME: Unnamed fields can be handled in various different ways, for
4504  // example, unnamed unions inject all members into the struct namespace!
4505
4506  QualType T = GetTypeForDeclarator(D, S);
4507
4508  if (BitWidth) {
4509    // 6.7.2.1p3, 6.7.2.1p4
4510    if (VerifyBitField(Loc, II, T, BitWidth)) {
4511      D.setInvalidType();
4512      DeleteExpr(BitWidth);
4513      BitWidth = 0;
4514    }
4515  } else {
4516    // Not a bitfield.
4517
4518    // validate II.
4519
4520  }
4521
4522  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4523  // than a variably modified type.
4524  if (T->isVariablyModifiedType()) {
4525    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4526    D.setInvalidType();
4527  }
4528
4529  // Get the visibility (access control) for this ivar.
4530  ObjCIvarDecl::AccessControl ac =
4531    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4532                                        : ObjCIvarDecl::None;
4533  // Must set ivar's DeclContext to its enclosing interface.
4534  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4535  DeclContext *EnclosingContext;
4536  if (ObjCImplementationDecl *IMPDecl =
4537      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4538    // Case of ivar declared in an implementation. Context is that of its class.
4539    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4540    assert(IDecl && "No class- ActOnIvar");
4541    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4542  }
4543  else
4544    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4545  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4546
4547  // Construct the decl.
4548  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4549                                             EnclosingContext, Loc, II, T,ac,
4550                                             (Expr *)BitfieldWidth);
4551
4552  if (II) {
4553    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4554    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4555        && !isa<TagDecl>(PrevDecl)) {
4556      Diag(Loc, diag::err_duplicate_member) << II;
4557      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4558      NewID->setInvalidDecl();
4559    }
4560  }
4561
4562  // Process attributes attached to the ivar.
4563  ProcessDeclAttributes(S, NewID, D);
4564
4565  if (D.isInvalidType())
4566    NewID->setInvalidDecl();
4567
4568  if (II) {
4569    // FIXME: When interfaces are DeclContexts, we'll need to add
4570    // these to the interface.
4571    S->AddDecl(DeclPtrTy::make(NewID));
4572    IdResolver.AddDecl(NewID);
4573  }
4574
4575  return DeclPtrTy::make(NewID);
4576}
4577
4578void Sema::ActOnFields(Scope* S,
4579                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4580                       DeclPtrTy *Fields, unsigned NumFields,
4581                       SourceLocation LBrac, SourceLocation RBrac,
4582                       AttributeList *Attr) {
4583  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4584  assert(EnclosingDecl && "missing record or interface decl");
4585
4586  // If the decl this is being inserted into is invalid, then it may be a
4587  // redeclaration or some other bogus case.  Don't try to add fields to it.
4588  if (EnclosingDecl->isInvalidDecl()) {
4589    // FIXME: Deallocate fields?
4590    return;
4591  }
4592
4593
4594  // Verify that all the fields are okay.
4595  unsigned NumNamedMembers = 0;
4596  llvm::SmallVector<FieldDecl*, 32> RecFields;
4597
4598  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4599  for (unsigned i = 0; i != NumFields; ++i) {
4600    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4601
4602    // Get the type for the field.
4603    Type *FDTy = FD->getType().getTypePtr();
4604
4605    if (!FD->isAnonymousStructOrUnion()) {
4606      // Remember all fields written by the user.
4607      RecFields.push_back(FD);
4608    }
4609
4610    // If the field is already invalid for some reason, don't emit more
4611    // diagnostics about it.
4612    if (FD->isInvalidDecl())
4613      continue;
4614
4615    // C99 6.7.2.1p2:
4616    //   A structure or union shall not contain a member with
4617    //   incomplete or function type (hence, a structure shall not
4618    //   contain an instance of itself, but may contain a pointer to
4619    //   an instance of itself), except that the last member of a
4620    //   structure with more than one named member may have incomplete
4621    //   array type; such a structure (and any union containing,
4622    //   possibly recursively, a member that is such a structure)
4623    //   shall not be a member of a structure or an element of an
4624    //   array.
4625    if (FDTy->isFunctionType()) {
4626      // Field declared as a function.
4627      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4628        << FD->getDeclName();
4629      FD->setInvalidDecl();
4630      EnclosingDecl->setInvalidDecl();
4631      continue;
4632    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4633               Record && Record->isStruct()) {
4634      // Flexible array member.
4635      if (NumNamedMembers < 1) {
4636        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4637          << FD->getDeclName();
4638        FD->setInvalidDecl();
4639        EnclosingDecl->setInvalidDecl();
4640        continue;
4641      }
4642      // Okay, we have a legal flexible array member at the end of the struct.
4643      if (Record)
4644        Record->setHasFlexibleArrayMember(true);
4645    } else if (!FDTy->isDependentType() &&
4646               RequireCompleteType(FD->getLocation(), FD->getType(),
4647                                   diag::err_field_incomplete)) {
4648      // Incomplete type
4649      FD->setInvalidDecl();
4650      EnclosingDecl->setInvalidDecl();
4651      continue;
4652    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4653      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4654        // If this is a member of a union, then entire union becomes "flexible".
4655        if (Record && Record->isUnion()) {
4656          Record->setHasFlexibleArrayMember(true);
4657        } else {
4658          // If this is a struct/class and this is not the last element, reject
4659          // it.  Note that GCC supports variable sized arrays in the middle of
4660          // structures.
4661          if (i != NumFields-1)
4662            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4663              << FD->getDeclName() << FD->getType();
4664          else {
4665            // We support flexible arrays at the end of structs in
4666            // other structs as an extension.
4667            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4668              << FD->getDeclName();
4669            if (Record)
4670              Record->setHasFlexibleArrayMember(true);
4671          }
4672        }
4673      }
4674      if (Record && FDTTy->getDecl()->hasObjectMember())
4675        Record->setHasObjectMember(true);
4676    } else if (FDTy->isObjCInterfaceType()) {
4677      /// A field cannot be an Objective-c object
4678      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4679      FD->setInvalidDecl();
4680      EnclosingDecl->setInvalidDecl();
4681      continue;
4682    }
4683    else if (getLangOptions().ObjC1 &&
4684             getLangOptions().getGCMode() != LangOptions::NonGC &&
4685             Record &&
4686             (FD->getType()->isObjCObjectPointerType() ||
4687              FD->getType().isObjCGCStrong()))
4688      Record->setHasObjectMember(true);
4689    // Keep track of the number of named members.
4690    if (FD->getIdentifier())
4691      ++NumNamedMembers;
4692  }
4693
4694  // Okay, we successfully defined 'Record'.
4695  if (Record) {
4696    Record->completeDefinition(Context);
4697  } else {
4698    ObjCIvarDecl **ClsFields =
4699      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4700    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4701      ID->setIVarList(ClsFields, RecFields.size(), Context);
4702      ID->setLocEnd(RBrac);
4703      // Add ivar's to class's DeclContext.
4704      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4705        ClsFields[i]->setLexicalDeclContext(ID);
4706        ID->addDecl(ClsFields[i]);
4707      }
4708      // Must enforce the rule that ivars in the base classes may not be
4709      // duplicates.
4710      if (ID->getSuperClass()) {
4711        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4712             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4713          ObjCIvarDecl* Ivar = (*IVI);
4714
4715          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4716            ObjCIvarDecl* prevIvar =
4717              ID->getSuperClass()->lookupInstanceVariable(II);
4718            if (prevIvar) {
4719              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4720              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4721            }
4722          }
4723        }
4724      }
4725    } else if (ObjCImplementationDecl *IMPDecl =
4726                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4727      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4728      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4729        // Ivar declared in @implementation never belongs to the implementation.
4730        // Only it is in implementation's lexical context.
4731        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4732      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4733    }
4734  }
4735
4736  if (Attr)
4737    ProcessDeclAttributeList(S, Record, Attr);
4738}
4739
4740EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4741                                          EnumConstantDecl *LastEnumConst,
4742                                          SourceLocation IdLoc,
4743                                          IdentifierInfo *Id,
4744                                          ExprArg val) {
4745  Expr *Val = (Expr *)val.get();
4746
4747  llvm::APSInt EnumVal(32);
4748  QualType EltTy;
4749  if (Val && !Val->isTypeDependent()) {
4750    // Make sure to promote the operand type to int.
4751    UsualUnaryConversions(Val);
4752    if (Val != val.get()) {
4753      val.release();
4754      val = Val;
4755    }
4756
4757    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4758    SourceLocation ExpLoc;
4759    if (!Val->isValueDependent() &&
4760        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4761      Val = 0;
4762    } else {
4763      EltTy = Val->getType();
4764    }
4765  }
4766
4767  if (!Val) {
4768    if (LastEnumConst) {
4769      // Assign the last value + 1.
4770      EnumVal = LastEnumConst->getInitVal();
4771      ++EnumVal;
4772
4773      // Check for overflow on increment.
4774      if (EnumVal < LastEnumConst->getInitVal())
4775        Diag(IdLoc, diag::warn_enum_value_overflow);
4776
4777      EltTy = LastEnumConst->getType();
4778    } else {
4779      // First value, set to zero.
4780      EltTy = Context.IntTy;
4781      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4782    }
4783  }
4784
4785  val.release();
4786  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4787                                  Val, EnumVal);
4788}
4789
4790
4791Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4792                                        DeclPtrTy lastEnumConst,
4793                                        SourceLocation IdLoc,
4794                                        IdentifierInfo *Id,
4795                                        SourceLocation EqualLoc, ExprTy *val) {
4796  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4797  EnumConstantDecl *LastEnumConst =
4798    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4799  Expr *Val = static_cast<Expr*>(val);
4800
4801  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4802  // we find one that is.
4803  S = getNonFieldDeclScope(S);
4804
4805  // Verify that there isn't already something declared with this name in this
4806  // scope.
4807  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4808  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4809    // Maybe we will complain about the shadowed template parameter.
4810    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4811    // Just pretend that we didn't see the previous declaration.
4812    PrevDecl = 0;
4813  }
4814
4815  if (PrevDecl) {
4816    // When in C++, we may get a TagDecl with the same name; in this case the
4817    // enum constant will 'hide' the tag.
4818    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4819           "Received TagDecl when not in C++!");
4820    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4821      if (isa<EnumConstantDecl>(PrevDecl))
4822        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4823      else
4824        Diag(IdLoc, diag::err_redefinition) << Id;
4825      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4826      if (Val) Val->Destroy(Context);
4827      return DeclPtrTy();
4828    }
4829  }
4830
4831  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4832                                            IdLoc, Id, Owned(Val));
4833
4834  // Register this decl in the current scope stack.
4835  if (New)
4836    PushOnScopeChains(New, S);
4837
4838  return DeclPtrTy::make(New);
4839}
4840
4841void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4842                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4843                         DeclPtrTy *Elements, unsigned NumElements) {
4844  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4845  QualType EnumType = Context.getTypeDeclType(Enum);
4846
4847  // TODO: If the result value doesn't fit in an int, it must be a long or long
4848  // long value.  ISO C does not support this, but GCC does as an extension,
4849  // emit a warning.
4850  unsigned IntWidth = Context.Target.getIntWidth();
4851
4852  // Verify that all the values are okay, compute the size of the values, and
4853  // reverse the list.
4854  unsigned NumNegativeBits = 0;
4855  unsigned NumPositiveBits = 0;
4856
4857  // Keep track of whether all elements have type int.
4858  bool AllElementsInt = true;
4859
4860  for (unsigned i = 0; i != NumElements; ++i) {
4861    EnumConstantDecl *ECD =
4862      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4863    if (!ECD) continue;  // Already issued a diagnostic.
4864
4865    // If the enum value doesn't fit in an int, emit an extension warning.
4866    const llvm::APSInt &InitVal = ECD->getInitVal();
4867    assert(InitVal.getBitWidth() >= IntWidth &&
4868           "Should have promoted value to int");
4869    if (InitVal.getBitWidth() > IntWidth) {
4870      llvm::APSInt V(InitVal);
4871      V.trunc(IntWidth);
4872      V.extend(InitVal.getBitWidth());
4873      if (V != InitVal)
4874        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4875          << InitVal.toString(10);
4876    }
4877
4878    // Keep track of the size of positive and negative values.
4879    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4880      NumPositiveBits = std::max(NumPositiveBits,
4881                                 (unsigned)InitVal.getActiveBits());
4882    else
4883      NumNegativeBits = std::max(NumNegativeBits,
4884                                 (unsigned)InitVal.getMinSignedBits());
4885
4886    // Keep track of whether every enum element has type int (very commmon).
4887    if (AllElementsInt)
4888      AllElementsInt = ECD->getType() == Context.IntTy;
4889  }
4890
4891  // Figure out the type that should be used for this enum.
4892  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4893  QualType BestType;
4894  unsigned BestWidth;
4895
4896  if (NumNegativeBits) {
4897    // If there is a negative value, figure out the smallest integer type (of
4898    // int/long/longlong) that fits.
4899    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4900      BestType = Context.IntTy;
4901      BestWidth = IntWidth;
4902    } else {
4903      BestWidth = Context.Target.getLongWidth();
4904
4905      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4906        BestType = Context.LongTy;
4907      else {
4908        BestWidth = Context.Target.getLongLongWidth();
4909
4910        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4911          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4912        BestType = Context.LongLongTy;
4913      }
4914    }
4915  } else {
4916    // If there is no negative value, figure out which of uint, ulong, ulonglong
4917    // fits.
4918    if (NumPositiveBits <= IntWidth) {
4919      BestType = Context.UnsignedIntTy;
4920      BestWidth = IntWidth;
4921    } else if (NumPositiveBits <=
4922               (BestWidth = Context.Target.getLongWidth())) {
4923      BestType = Context.UnsignedLongTy;
4924    } else {
4925      BestWidth = Context.Target.getLongLongWidth();
4926      assert(NumPositiveBits <= BestWidth &&
4927             "How could an initializer get larger than ULL?");
4928      BestType = Context.UnsignedLongLongTy;
4929    }
4930  }
4931
4932  // Loop over all of the enumerator constants, changing their types to match
4933  // the type of the enum if needed.
4934  for (unsigned i = 0; i != NumElements; ++i) {
4935    EnumConstantDecl *ECD =
4936      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4937    if (!ECD) continue;  // Already issued a diagnostic.
4938
4939    // Standard C says the enumerators have int type, but we allow, as an
4940    // extension, the enumerators to be larger than int size.  If each
4941    // enumerator value fits in an int, type it as an int, otherwise type it the
4942    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4943    // that X has type 'int', not 'unsigned'.
4944    if (ECD->getType() == Context.IntTy) {
4945      // Make sure the init value is signed.
4946      llvm::APSInt IV = ECD->getInitVal();
4947      IV.setIsSigned(true);
4948      ECD->setInitVal(IV);
4949
4950      if (getLangOptions().CPlusPlus)
4951        // C++ [dcl.enum]p4: Following the closing brace of an
4952        // enum-specifier, each enumerator has the type of its
4953        // enumeration.
4954        ECD->setType(EnumType);
4955      continue;  // Already int type.
4956    }
4957
4958    // Determine whether the value fits into an int.
4959    llvm::APSInt InitVal = ECD->getInitVal();
4960    bool FitsInInt;
4961    if (InitVal.isUnsigned() || !InitVal.isNegative())
4962      FitsInInt = InitVal.getActiveBits() < IntWidth;
4963    else
4964      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4965
4966    // If it fits into an integer type, force it.  Otherwise force it to match
4967    // the enum decl type.
4968    QualType NewTy;
4969    unsigned NewWidth;
4970    bool NewSign;
4971    if (FitsInInt) {
4972      NewTy = Context.IntTy;
4973      NewWidth = IntWidth;
4974      NewSign = true;
4975    } else if (ECD->getType() == BestType) {
4976      // Already the right type!
4977      if (getLangOptions().CPlusPlus)
4978        // C++ [dcl.enum]p4: Following the closing brace of an
4979        // enum-specifier, each enumerator has the type of its
4980        // enumeration.
4981        ECD->setType(EnumType);
4982      continue;
4983    } else {
4984      NewTy = BestType;
4985      NewWidth = BestWidth;
4986      NewSign = BestType->isSignedIntegerType();
4987    }
4988
4989    // Adjust the APSInt value.
4990    InitVal.extOrTrunc(NewWidth);
4991    InitVal.setIsSigned(NewSign);
4992    ECD->setInitVal(InitVal);
4993
4994    // Adjust the Expr initializer and type.
4995    if (ECD->getInitExpr())
4996      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4997                                                      /*isLvalue=*/false));
4998    if (getLangOptions().CPlusPlus)
4999      // C++ [dcl.enum]p4: Following the closing brace of an
5000      // enum-specifier, each enumerator has the type of its
5001      // enumeration.
5002      ECD->setType(EnumType);
5003    else
5004      ECD->setType(NewTy);
5005  }
5006
5007  Enum->completeDefinition(Context, BestType);
5008}
5009
5010Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5011                                            ExprArg expr) {
5012  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5013
5014  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5015                                                   Loc, AsmString);
5016  CurContext->addDecl(New);
5017  return DeclPtrTy::make(New);
5018}
5019
5020void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5021                             SourceLocation PragmaLoc,
5022                             SourceLocation NameLoc) {
5023  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5024
5025  // FIXME: This implementation is an ugly hack!
5026  if (PrevDecl) {
5027    PrevDecl->addAttr(::new (Context) WeakAttr());
5028    return;
5029  }
5030  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5031  return;
5032}
5033
5034void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5035                                IdentifierInfo* AliasName,
5036                                SourceLocation PragmaLoc,
5037                                SourceLocation NameLoc,
5038                                SourceLocation AliasNameLoc) {
5039  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5040
5041  // FIXME: This implementation is an ugly hack!
5042  if (PrevDecl) {
5043    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
5044    PrevDecl->addAttr(::new (Context) WeakAttr());
5045    return;
5046  }
5047  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5048  return;
5049}
5050