SemaDecl.cpp revision 8260d5de5a366b0b4da0bed1bf6c85c5f215f423
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  LookupResult Result = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  Decl *IIDecl = 0;
45  switch (Result.getKind()) {
46  case LookupResult::NotFound:
47  case LookupResult::FoundOverloaded:
48  case LookupResult::AmbiguousBaseSubobjectTypes:
49  case LookupResult::AmbiguousBaseSubobjects:
50    // FIXME: In the event of an ambiguous lookup, we could visit all of
51    // the entities found to determine whether they are all types. This
52    // might provide better diagnostics.
53    return 0;
54
55  case LookupResult::Found:
56    IIDecl = Result.getAsDecl();
57    break;
58  }
59
60  if (isa<TypedefDecl>(IIDecl) ||
61      isa<ObjCInterfaceDecl>(IIDecl) ||
62      isa<TagDecl>(IIDecl) ||
63      isa<TemplateTypeParmDecl>(IIDecl))
64    return IIDecl;
65  return 0;
66}
67
68DeclContext *Sema::getContainingDC(DeclContext *DC) {
69  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
70    // A C++ out-of-line method will return to the file declaration context.
71    if (MD->isOutOfLineDefinition())
72      return MD->getLexicalDeclContext();
73
74    // A C++ inline method is parsed *after* the topmost class it was declared in
75    // is fully parsed (it's "complete").
76    // The parsing of a C++ inline method happens at the declaration context of
77    // the topmost (non-nested) class it is lexically declared in.
78    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
79    DC = MD->getParent();
80    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
81      DC = RD;
82
83    // Return the declaration context of the topmost class the inline method is
84    // declared in.
85    return DC;
86  }
87
88  if (isa<ObjCMethodDecl>(DC))
89    return Context.getTranslationUnitDecl();
90
91  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
92    return SD->getLexicalDeclContext();
93
94  return DC->getLexicalParent();
95}
96
97void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
98  assert(getContainingDC(DC) == CurContext &&
99      "The next DeclContext should be lexically contained in the current one.");
100  CurContext = DC;
101  S->setEntity(DC);
102}
103
104void Sema::PopDeclContext() {
105  assert(CurContext && "DeclContext imbalance!");
106
107  CurContext = getContainingDC(CurContext);
108}
109
110/// Add this decl to the scope shadowed decl chains.
111void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
112  // Move up the scope chain until we find the nearest enclosing
113  // non-transparent context. The declaration will be introduced into this
114  // scope.
115  while (S->getEntity() &&
116         ((DeclContext *)S->getEntity())->isTransparentContext())
117    S = S->getParent();
118
119  S->AddDecl(D);
120
121  // Add scoped declarations into their context, so that they can be
122  // found later. Declarations without a context won't be inserted
123  // into any context.
124  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
125    CurContext->addDecl(SD);
126
127  // C++ [basic.scope]p4:
128  //   -- exactly one declaration shall declare a class name or
129  //   enumeration name that is not a typedef name and the other
130  //   declarations shall all refer to the same object or
131  //   enumerator, or all refer to functions and function templates;
132  //   in this case the class name or enumeration name is hidden.
133  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
134    // We are pushing the name of a tag (enum or class).
135    if (CurContext->getLookupContext()
136          == TD->getDeclContext()->getLookupContext()) {
137      // We're pushing the tag into the current context, which might
138      // require some reshuffling in the identifier resolver.
139      IdentifierResolver::iterator
140        I = IdResolver.begin(TD->getDeclName(), CurContext,
141                             false/*LookInParentCtx*/),
142        IEnd = IdResolver.end();
143      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
144        NamedDecl *PrevDecl = *I;
145        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
146             PrevDecl = *I, ++I) {
147          if (TD->declarationReplaces(*I)) {
148            // This is a redeclaration. Remove it from the chain and
149            // break out, so that we'll add in the shadowed
150            // declaration.
151            S->RemoveDecl(*I);
152            if (PrevDecl == *I) {
153              IdResolver.RemoveDecl(*I);
154              IdResolver.AddDecl(TD);
155              return;
156            } else {
157              IdResolver.RemoveDecl(*I);
158              break;
159            }
160          }
161        }
162
163        // There is already a declaration with the same name in the same
164        // scope, which is not a tag declaration. It must be found
165        // before we find the new declaration, so insert the new
166        // declaration at the end of the chain.
167        IdResolver.AddShadowedDecl(TD, PrevDecl);
168
169        return;
170      }
171    }
172  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
173    // We are pushing the name of a function, which might be an
174    // overloaded name.
175    FunctionDecl *FD = cast<FunctionDecl>(D);
176    DeclContext *DC = FD->getDeclContext()->getLookupContext();
177    IdentifierResolver::iterator Redecl
178      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
179                                      false/*LookInParentCtx*/),
180                     IdResolver.end(),
181                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
182                                  FD));
183    if (Redecl != IdResolver.end()) {
184      // There is already a declaration of a function on our
185      // IdResolver chain. Replace it with this declaration.
186      S->RemoveDecl(*Redecl);
187      IdResolver.RemoveDecl(*Redecl);
188    }
189  }
190
191  IdResolver.AddDecl(D);
192}
193
194void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
195  if (S->decl_empty()) return;
196  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
197	 "Scope shouldn't contain decls!");
198
199  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
200       I != E; ++I) {
201    Decl *TmpD = static_cast<Decl*>(*I);
202    assert(TmpD && "This decl didn't get pushed??");
203
204    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
205    NamedDecl *D = cast<NamedDecl>(TmpD);
206
207    if (!D->getDeclName()) continue;
208
209    // Remove this name from our lexical scope.
210    IdResolver.RemoveDecl(D);
211  }
212}
213
214/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
215/// return 0 if one not found.
216ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
217  // The third "scope" argument is 0 since we aren't enabling lazy built-in
218  // creation from this context.
219  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
220
221  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
222}
223
224/// getNonFieldDeclScope - Retrieves the innermost scope, starting
225/// from S, where a non-field would be declared. This routine copes
226/// with the difference between C and C++ scoping rules in structs and
227/// unions. For example, the following code is well-formed in C but
228/// ill-formed in C++:
229/// @code
230/// struct S6 {
231///   enum { BAR } e;
232/// };
233///
234/// void test_S6() {
235///   struct S6 a;
236///   a.e = BAR;
237/// }
238/// @endcode
239/// For the declaration of BAR, this routine will return a different
240/// scope. The scope S will be the scope of the unnamed enumeration
241/// within S6. In C++, this routine will return the scope associated
242/// with S6, because the enumeration's scope is a transparent
243/// context but structures can contain non-field names. In C, this
244/// routine will return the translation unit scope, since the
245/// enumeration's scope is a transparent context and structures cannot
246/// contain non-field names.
247Scope *Sema::getNonFieldDeclScope(Scope *S) {
248  while (((S->getFlags() & Scope::DeclScope) == 0) ||
249         (S->getEntity() &&
250          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
251         (S->isClassScope() && !getLangOptions().CPlusPlus))
252    S = S->getParent();
253  return S;
254}
255
256/// LookupDecl - Look up the inner-most declaration in the specified
257/// namespace. NamespaceNameOnly - during lookup only namespace names
258/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
259/// 'When looking up a namespace-name in a using-directive or
260/// namespace-alias-definition, only namespace names are considered.'
261///
262/// Note: The use of this routine is deprecated. Please use
263/// LookupName, LookupQualifiedName, or LookupParsedName instead.
264Sema::LookupResult
265Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
266                 const DeclContext *LookupCtx,
267                 bool enableLazyBuiltinCreation,
268                 bool LookInParent,
269                 bool NamespaceNameOnly) {
270  LookupCriteria::NameKind Kind;
271  if (NSI == Decl::IDNS_Ordinary) {
272    if (NamespaceNameOnly)
273      Kind = LookupCriteria::Namespace;
274    else
275      Kind = LookupCriteria::Ordinary;
276  } else if (NSI == Decl::IDNS_Tag)
277    Kind = LookupCriteria::Tag;
278  else if (NSI == Decl::IDNS_Member)
279    Kind = LookupCriteria::Member;
280  else
281    assert(false && "Unable to grok LookupDecl NSI argument");
282
283  if (LookupCtx)
284    return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
285                               LookupCriteria(Kind, !LookInParent,
286                                              getLangOptions().CPlusPlus));
287
288  // Unqualified lookup
289  return LookupName(S, Name,
290                    LookupCriteria(Kind, !LookInParent,
291                                   getLangOptions().CPlusPlus));
292}
293
294void Sema::InitBuiltinVaListType() {
295  if (!Context.getBuiltinVaListType().isNull())
296    return;
297
298  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
299  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
300  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
301  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
302}
303
304/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
305/// lazily create a decl for it.
306ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
307                                      Scope *S) {
308  Builtin::ID BID = (Builtin::ID)bid;
309
310  if (Context.BuiltinInfo.hasVAListUse(BID))
311    InitBuiltinVaListType();
312
313  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
314  FunctionDecl *New = FunctionDecl::Create(Context,
315                                           Context.getTranslationUnitDecl(),
316                                           SourceLocation(), II, R,
317                                           FunctionDecl::Extern, false, 0);
318
319  // Create Decl objects for each parameter, adding them to the
320  // FunctionDecl.
321  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
322    llvm::SmallVector<ParmVarDecl*, 16> Params;
323    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
324      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
325                                           FT->getArgType(i), VarDecl::None, 0,
326                                           0));
327    New->setParams(Context, &Params[0], Params.size());
328  }
329
330
331
332  // TUScope is the translation-unit scope to insert this function into.
333  // FIXME: This is hideous. We need to teach PushOnScopeChains to
334  // relate Scopes to DeclContexts, and probably eliminate CurContext
335  // entirely, but we're not there yet.
336  DeclContext *SavedContext = CurContext;
337  CurContext = Context.getTranslationUnitDecl();
338  PushOnScopeChains(New, TUScope);
339  CurContext = SavedContext;
340  return New;
341}
342
343/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
344/// everything from the standard library is defined.
345NamespaceDecl *Sema::GetStdNamespace() {
346  if (!StdNamespace) {
347    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
348    DeclContext *Global = Context.getTranslationUnitDecl();
349    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Ordinary,
350                           0, Global, /*enableLazyBuiltinCreation=*/false);
351    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
352  }
353  return StdNamespace;
354}
355
356/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
357/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
358/// situation, merging decls or emitting diagnostics as appropriate.
359///
360TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
361  // Allow multiple definitions for ObjC built-in typedefs.
362  // FIXME: Verify the underlying types are equivalent!
363  if (getLangOptions().ObjC1) {
364    const IdentifierInfo *TypeID = New->getIdentifier();
365    switch (TypeID->getLength()) {
366    default: break;
367    case 2:
368      if (!TypeID->isStr("id"))
369        break;
370      Context.setObjCIdType(New);
371      return New;
372    case 5:
373      if (!TypeID->isStr("Class"))
374        break;
375      Context.setObjCClassType(New);
376      return New;
377    case 3:
378      if (!TypeID->isStr("SEL"))
379        break;
380      Context.setObjCSelType(New);
381      return New;
382    case 8:
383      if (!TypeID->isStr("Protocol"))
384        break;
385      Context.setObjCProtoType(New->getUnderlyingType());
386      return New;
387    }
388    // Fall through - the typedef name was not a builtin type.
389  }
390  // Verify the old decl was also a typedef.
391  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
392  if (!Old) {
393    Diag(New->getLocation(), diag::err_redefinition_different_kind)
394      << New->getDeclName();
395    Diag(OldD->getLocation(), diag::note_previous_definition);
396    return New;
397  }
398
399  // If the typedef types are not identical, reject them in all languages and
400  // with any extensions enabled.
401  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
402      Context.getCanonicalType(Old->getUnderlyingType()) !=
403      Context.getCanonicalType(New->getUnderlyingType())) {
404    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
405      << New->getUnderlyingType() << Old->getUnderlyingType();
406    Diag(Old->getLocation(), diag::note_previous_definition);
407    return New;
408  }
409
410  if (getLangOptions().Microsoft) return New;
411
412  // C++ [dcl.typedef]p2:
413  //   In a given non-class scope, a typedef specifier can be used to
414  //   redefine the name of any type declared in that scope to refer
415  //   to the type to which it already refers.
416  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
417    return New;
418
419  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
420  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
421  // *either* declaration is in a system header. The code below implements
422  // this adhoc compatibility rule. FIXME: The following code will not
423  // work properly when compiling ".i" files (containing preprocessed output).
424  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
425    SourceManager &SrcMgr = Context.getSourceManager();
426    if (SrcMgr.isInSystemHeader(Old->getLocation()))
427      return New;
428    if (SrcMgr.isInSystemHeader(New->getLocation()))
429      return New;
430  }
431
432  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
433  Diag(Old->getLocation(), diag::note_previous_definition);
434  return New;
435}
436
437/// DeclhasAttr - returns true if decl Declaration already has the target
438/// attribute.
439static bool DeclHasAttr(const Decl *decl, const Attr *target) {
440  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
441    if (attr->getKind() == target->getKind())
442      return true;
443
444  return false;
445}
446
447/// MergeAttributes - append attributes from the Old decl to the New one.
448static void MergeAttributes(Decl *New, Decl *Old) {
449  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
450
451  while (attr) {
452     tmp = attr;
453     attr = attr->getNext();
454
455    if (!DeclHasAttr(New, tmp)) {
456       tmp->setInherited(true);
457       New->addAttr(tmp);
458    } else {
459       tmp->setNext(0);
460       delete(tmp);
461    }
462  }
463
464  Old->invalidateAttrs();
465}
466
467/// MergeFunctionDecl - We just parsed a function 'New' from
468/// declarator D which has the same name and scope as a previous
469/// declaration 'Old'.  Figure out how to resolve this situation,
470/// merging decls or emitting diagnostics as appropriate.
471/// Redeclaration will be set true if this New is a redeclaration OldD.
472///
473/// In C++, New and Old must be declarations that are not
474/// overloaded. Use IsOverload to determine whether New and Old are
475/// overloaded, and to select the Old declaration that New should be
476/// merged with.
477FunctionDecl *
478Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
479  assert(!isa<OverloadedFunctionDecl>(OldD) &&
480         "Cannot merge with an overloaded function declaration");
481
482  Redeclaration = false;
483  // Verify the old decl was also a function.
484  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
485  if (!Old) {
486    Diag(New->getLocation(), diag::err_redefinition_different_kind)
487      << New->getDeclName();
488    Diag(OldD->getLocation(), diag::note_previous_definition);
489    return New;
490  }
491
492  // Determine whether the previous declaration was a definition,
493  // implicit declaration, or a declaration.
494  diag::kind PrevDiag;
495  if (Old->isThisDeclarationADefinition())
496    PrevDiag = diag::note_previous_definition;
497  else if (Old->isImplicit())
498    PrevDiag = diag::note_previous_implicit_declaration;
499  else
500    PrevDiag = diag::note_previous_declaration;
501
502  QualType OldQType = Context.getCanonicalType(Old->getType());
503  QualType NewQType = Context.getCanonicalType(New->getType());
504
505  if (getLangOptions().CPlusPlus) {
506    // (C++98 13.1p2):
507    //   Certain function declarations cannot be overloaded:
508    //     -- Function declarations that differ only in the return type
509    //        cannot be overloaded.
510    QualType OldReturnType
511      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
512    QualType NewReturnType
513      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
514    if (OldReturnType != NewReturnType) {
515      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
516      Diag(Old->getLocation(), PrevDiag);
517      Redeclaration = true;
518      return New;
519    }
520
521    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
522    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
523    if (OldMethod && NewMethod) {
524      //    -- Member function declarations with the same name and the
525      //       same parameter types cannot be overloaded if any of them
526      //       is a static member function declaration.
527      if (OldMethod->isStatic() || NewMethod->isStatic()) {
528        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
529        Diag(Old->getLocation(), PrevDiag);
530        return New;
531      }
532
533      // C++ [class.mem]p1:
534      //   [...] A member shall not be declared twice in the
535      //   member-specification, except that a nested class or member
536      //   class template can be declared and then later defined.
537      if (OldMethod->getLexicalDeclContext() ==
538            NewMethod->getLexicalDeclContext()) {
539        unsigned NewDiag;
540        if (isa<CXXConstructorDecl>(OldMethod))
541          NewDiag = diag::err_constructor_redeclared;
542        else if (isa<CXXDestructorDecl>(NewMethod))
543          NewDiag = diag::err_destructor_redeclared;
544        else if (isa<CXXConversionDecl>(NewMethod))
545          NewDiag = diag::err_conv_function_redeclared;
546        else
547          NewDiag = diag::err_member_redeclared;
548
549        Diag(New->getLocation(), NewDiag);
550        Diag(Old->getLocation(), PrevDiag);
551      }
552    }
553
554    // (C++98 8.3.5p3):
555    //   All declarations for a function shall agree exactly in both the
556    //   return type and the parameter-type-list.
557    if (OldQType == NewQType) {
558      // We have a redeclaration.
559      MergeAttributes(New, Old);
560      Redeclaration = true;
561      return MergeCXXFunctionDecl(New, Old);
562    }
563
564    // Fall through for conflicting redeclarations and redefinitions.
565  }
566
567  // C: Function types need to be compatible, not identical. This handles
568  // duplicate function decls like "void f(int); void f(enum X);" properly.
569  if (!getLangOptions().CPlusPlus &&
570      Context.typesAreCompatible(OldQType, NewQType)) {
571    MergeAttributes(New, Old);
572    Redeclaration = true;
573    return New;
574  }
575
576  // A function that has already been declared has been redeclared or defined
577  // with a different type- show appropriate diagnostic
578
579  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
580  // TODO: This is totally simplistic.  It should handle merging functions
581  // together etc, merging extern int X; int X; ...
582  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
583  Diag(Old->getLocation(), PrevDiag);
584  return New;
585}
586
587/// Predicate for C "tentative" external object definitions (C99 6.9.2).
588static bool isTentativeDefinition(VarDecl *VD) {
589  if (VD->isFileVarDecl())
590    return (!VD->getInit() &&
591            (VD->getStorageClass() == VarDecl::None ||
592             VD->getStorageClass() == VarDecl::Static));
593  return false;
594}
595
596/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
597/// when dealing with C "tentative" external object definitions (C99 6.9.2).
598void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
599  bool VDIsTentative = isTentativeDefinition(VD);
600  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
601
602  // FIXME: I don't think this will actually see all of the
603  // redefinitions. Can't we check this property on-the-fly?
604  for (IdentifierResolver::iterator
605       I = IdResolver.begin(VD->getIdentifier(),
606                            VD->getDeclContext(), false/*LookInParentCtx*/),
607       E = IdResolver.end(); I != E; ++I) {
608    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
609      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
610
611      // Handle the following case:
612      //   int a[10];
613      //   int a[];   - the code below makes sure we set the correct type.
614      //   int a[11]; - this is an error, size isn't 10.
615      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
616          OldDecl->getType()->isConstantArrayType())
617        VD->setType(OldDecl->getType());
618
619      // Check for "tentative" definitions. We can't accomplish this in
620      // MergeVarDecl since the initializer hasn't been attached.
621      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
622        continue;
623
624      // Handle __private_extern__ just like extern.
625      if (OldDecl->getStorageClass() != VarDecl::Extern &&
626          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
627          VD->getStorageClass() != VarDecl::Extern &&
628          VD->getStorageClass() != VarDecl::PrivateExtern) {
629        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
630        Diag(OldDecl->getLocation(), diag::note_previous_definition);
631      }
632    }
633  }
634}
635
636/// MergeVarDecl - We just parsed a variable 'New' which has the same name
637/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
638/// situation, merging decls or emitting diagnostics as appropriate.
639///
640/// Tentative definition rules (C99 6.9.2p2) are checked by
641/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
642/// definitions here, since the initializer hasn't been attached.
643///
644VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
645  // Verify the old decl was also a variable.
646  VarDecl *Old = dyn_cast<VarDecl>(OldD);
647  if (!Old) {
648    Diag(New->getLocation(), diag::err_redefinition_different_kind)
649      << New->getDeclName();
650    Diag(OldD->getLocation(), diag::note_previous_definition);
651    return New;
652  }
653
654  MergeAttributes(New, Old);
655
656  // Verify the types match.
657  QualType OldCType = Context.getCanonicalType(Old->getType());
658  QualType NewCType = Context.getCanonicalType(New->getType());
659  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
660    Diag(New->getLocation(), diag::err_redefinition_different_type)
661      << New->getDeclName();
662    Diag(Old->getLocation(), diag::note_previous_definition);
663    return New;
664  }
665  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
666  if (New->getStorageClass() == VarDecl::Static &&
667      (Old->getStorageClass() == VarDecl::None ||
668       Old->getStorageClass() == VarDecl::Extern)) {
669    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
670    Diag(Old->getLocation(), diag::note_previous_definition);
671    return New;
672  }
673  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
674  if (New->getStorageClass() != VarDecl::Static &&
675      Old->getStorageClass() == VarDecl::Static) {
676    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
677    Diag(Old->getLocation(), diag::note_previous_definition);
678    return New;
679  }
680  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
681  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
682    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
683    Diag(Old->getLocation(), diag::note_previous_definition);
684  }
685  return New;
686}
687
688/// CheckParmsForFunctionDef - Check that the parameters of the given
689/// function are appropriate for the definition of a function. This
690/// takes care of any checks that cannot be performed on the
691/// declaration itself, e.g., that the types of each of the function
692/// parameters are complete.
693bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
694  bool HasInvalidParm = false;
695  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
696    ParmVarDecl *Param = FD->getParamDecl(p);
697
698    // C99 6.7.5.3p4: the parameters in a parameter type list in a
699    // function declarator that is part of a function definition of
700    // that function shall not have incomplete type.
701    if (Param->getType()->isIncompleteType() &&
702        !Param->isInvalidDecl()) {
703      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
704        << Param->getType();
705      Param->setInvalidDecl();
706      HasInvalidParm = true;
707    }
708
709    // C99 6.9.1p5: If the declarator includes a parameter type list, the
710    // declaration of each parameter shall include an identifier.
711    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
712      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
713  }
714
715  return HasInvalidParm;
716}
717
718/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
719/// no declarator (e.g. "struct foo;") is parsed.
720Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
721  TagDecl *Tag
722    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
723  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
724    if (!Record->getDeclName() && Record->isDefinition() &&
725        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
726      return BuildAnonymousStructOrUnion(S, DS, Record);
727
728    // Microsoft allows unnamed struct/union fields. Don't complain
729    // about them.
730    // FIXME: Should we support Microsoft's extensions in this area?
731    if (Record->getDeclName() && getLangOptions().Microsoft)
732      return Tag;
733  }
734
735  // Permit typedefs without declarators as a Microsoft extension.
736  if (!DS.isMissingDeclaratorOk()) {
737    if (getLangOptions().Microsoft &&
738        DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
739      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
740        << DS.getSourceRange();
741      return Tag;
742    }
743
744    // FIXME: This diagnostic is emitted even when various previous
745    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
746    // DeclSpec has no means of communicating this information, and the
747    // responsible parser functions are quite far apart.
748    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
749      << DS.getSourceRange();
750    return 0;
751  }
752
753  return Tag;
754}
755
756/// InjectAnonymousStructOrUnionMembers - Inject the members of the
757/// anonymous struct or union AnonRecord into the owning context Owner
758/// and scope S. This routine will be invoked just after we realize
759/// that an unnamed union or struct is actually an anonymous union or
760/// struct, e.g.,
761///
762/// @code
763/// union {
764///   int i;
765///   float f;
766/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
767///    // f into the surrounding scope.x
768/// @endcode
769///
770/// This routine is recursive, injecting the names of nested anonymous
771/// structs/unions into the owning context and scope as well.
772bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
773                                               RecordDecl *AnonRecord) {
774  bool Invalid = false;
775  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
776                               FEnd = AnonRecord->field_end();
777       F != FEnd; ++F) {
778    if ((*F)->getDeclName()) {
779      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
780                                  S, Owner, false, false, false);
781      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
782        // C++ [class.union]p2:
783        //   The names of the members of an anonymous union shall be
784        //   distinct from the names of any other entity in the
785        //   scope in which the anonymous union is declared.
786        unsigned diagKind
787          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
788                                 : diag::err_anonymous_struct_member_redecl;
789        Diag((*F)->getLocation(), diagKind)
790          << (*F)->getDeclName();
791        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
792        Invalid = true;
793      } else {
794        // C++ [class.union]p2:
795        //   For the purpose of name lookup, after the anonymous union
796        //   definition, the members of the anonymous union are
797        //   considered to have been defined in the scope in which the
798        //   anonymous union is declared.
799        Owner->insert(*F);
800        S->AddDecl(*F);
801        IdResolver.AddDecl(*F);
802      }
803    } else if (const RecordType *InnerRecordType
804                 = (*F)->getType()->getAsRecordType()) {
805      RecordDecl *InnerRecord = InnerRecordType->getDecl();
806      if (InnerRecord->isAnonymousStructOrUnion())
807        Invalid = Invalid ||
808          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
809    }
810  }
811
812  return Invalid;
813}
814
815/// ActOnAnonymousStructOrUnion - Handle the declaration of an
816/// anonymous structure or union. Anonymous unions are a C++ feature
817/// (C++ [class.union]) and a GNU C extension; anonymous structures
818/// are a GNU C and GNU C++ extension.
819Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
820                                                RecordDecl *Record) {
821  DeclContext *Owner = Record->getDeclContext();
822
823  // Diagnose whether this anonymous struct/union is an extension.
824  if (Record->isUnion() && !getLangOptions().CPlusPlus)
825    Diag(Record->getLocation(), diag::ext_anonymous_union);
826  else if (!Record->isUnion())
827    Diag(Record->getLocation(), diag::ext_anonymous_struct);
828
829  // C and C++ require different kinds of checks for anonymous
830  // structs/unions.
831  bool Invalid = false;
832  if (getLangOptions().CPlusPlus) {
833    const char* PrevSpec = 0;
834    // C++ [class.union]p3:
835    //   Anonymous unions declared in a named namespace or in the
836    //   global namespace shall be declared static.
837    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
838        (isa<TranslationUnitDecl>(Owner) ||
839         (isa<NamespaceDecl>(Owner) &&
840          cast<NamespaceDecl>(Owner)->getDeclName()))) {
841      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
842      Invalid = true;
843
844      // Recover by adding 'static'.
845      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
846    }
847    // C++ [class.union]p3:
848    //   A storage class is not allowed in a declaration of an
849    //   anonymous union in a class scope.
850    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
851             isa<RecordDecl>(Owner)) {
852      Diag(DS.getStorageClassSpecLoc(),
853           diag::err_anonymous_union_with_storage_spec);
854      Invalid = true;
855
856      // Recover by removing the storage specifier.
857      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
858                             PrevSpec);
859    }
860
861    // C++ [class.union]p2:
862    //   The member-specification of an anonymous union shall only
863    //   define non-static data members. [Note: nested types and
864    //   functions cannot be declared within an anonymous union. ]
865    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
866                                 MemEnd = Record->decls_end();
867         Mem != MemEnd; ++Mem) {
868      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
869        // C++ [class.union]p3:
870        //   An anonymous union shall not have private or protected
871        //   members (clause 11).
872        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
873          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
874            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
875          Invalid = true;
876        }
877      } else if ((*Mem)->isImplicit()) {
878        // Any implicit members are fine.
879      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
880        if (!MemRecord->isAnonymousStructOrUnion() &&
881            MemRecord->getDeclName()) {
882          // This is a nested type declaration.
883          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
884            << (int)Record->isUnion();
885          Invalid = true;
886        }
887      } else {
888        // We have something that isn't a non-static data
889        // member. Complain about it.
890        unsigned DK = diag::err_anonymous_record_bad_member;
891        if (isa<TypeDecl>(*Mem))
892          DK = diag::err_anonymous_record_with_type;
893        else if (isa<FunctionDecl>(*Mem))
894          DK = diag::err_anonymous_record_with_function;
895        else if (isa<VarDecl>(*Mem))
896          DK = diag::err_anonymous_record_with_static;
897        Diag((*Mem)->getLocation(), DK)
898            << (int)Record->isUnion();
899          Invalid = true;
900      }
901    }
902  } else {
903    // FIXME: Check GNU C semantics
904    if (Record->isUnion() && !Owner->isRecord()) {
905      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
906        << (int)getLangOptions().CPlusPlus;
907      Invalid = true;
908    }
909  }
910
911  if (!Record->isUnion() && !Owner->isRecord()) {
912    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
913      << (int)getLangOptions().CPlusPlus;
914    Invalid = true;
915  }
916
917  // Create a declaration for this anonymous struct/union.
918  ScopedDecl *Anon = 0;
919  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
920    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
921                             /*IdentifierInfo=*/0,
922                             Context.getTypeDeclType(Record),
923                             /*BitWidth=*/0, /*Mutable=*/false,
924                             /*PrevDecl=*/0);
925    Anon->setAccess(AS_public);
926    if (getLangOptions().CPlusPlus)
927      FieldCollector->Add(cast<FieldDecl>(Anon));
928  } else {
929    VarDecl::StorageClass SC;
930    switch (DS.getStorageClassSpec()) {
931    default: assert(0 && "Unknown storage class!");
932    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
933    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
934    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
935    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
936    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
937    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
938    case DeclSpec::SCS_mutable:
939      // mutable can only appear on non-static class members, so it's always
940      // an error here
941      Diag(Record->getLocation(), diag::err_mutable_nonmember);
942      Invalid = true;
943      SC = VarDecl::None;
944      break;
945    }
946
947    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
948                           /*IdentifierInfo=*/0,
949                           Context.getTypeDeclType(Record),
950                           SC, /*FIXME:LastDeclarator=*/0,
951                           DS.getSourceRange().getBegin());
952  }
953  Anon->setImplicit();
954
955  // Add the anonymous struct/union object to the current
956  // context. We'll be referencing this object when we refer to one of
957  // its members.
958  Owner->addDecl(Anon);
959
960  // Inject the members of the anonymous struct/union into the owning
961  // context and into the identifier resolver chain for name lookup
962  // purposes.
963  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
964    Invalid = true;
965
966  // Mark this as an anonymous struct/union type. Note that we do not
967  // do this until after we have already checked and injected the
968  // members of this anonymous struct/union type, because otherwise
969  // the members could be injected twice: once by DeclContext when it
970  // builds its lookup table, and once by
971  // InjectAnonymousStructOrUnionMembers.
972  Record->setAnonymousStructOrUnion(true);
973
974  if (Invalid)
975    Anon->setInvalidDecl();
976
977  return Anon;
978}
979
980bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
981                                  bool DirectInit) {
982  // Get the type before calling CheckSingleAssignmentConstraints(), since
983  // it can promote the expression.
984  QualType InitType = Init->getType();
985
986  if (getLangOptions().CPlusPlus) {
987    // FIXME: I dislike this error message. A lot.
988    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
989      return Diag(Init->getSourceRange().getBegin(),
990                  diag::err_typecheck_convert_incompatible)
991        << DeclType << Init->getType() << "initializing"
992        << Init->getSourceRange();
993
994    return false;
995  }
996
997  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
998  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
999                                  InitType, Init, "initializing");
1000}
1001
1002bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1003  const ArrayType *AT = Context.getAsArrayType(DeclT);
1004
1005  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1006    // C99 6.7.8p14. We have an array of character type with unknown size
1007    // being initialized to a string literal.
1008    llvm::APSInt ConstVal(32);
1009    ConstVal = strLiteral->getByteLength() + 1;
1010    // Return a new array type (C99 6.7.8p22).
1011    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1012                                         ArrayType::Normal, 0);
1013  } else {
1014    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1015    // C99 6.7.8p14. We have an array of character type with known size.
1016    // FIXME: Avoid truncation for 64-bit length strings.
1017    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1018      Diag(strLiteral->getSourceRange().getBegin(),
1019           diag::warn_initializer_string_for_char_array_too_long)
1020        << strLiteral->getSourceRange();
1021  }
1022  // Set type from "char *" to "constant array of char".
1023  strLiteral->setType(DeclT);
1024  // For now, we always return false (meaning success).
1025  return false;
1026}
1027
1028StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1029  const ArrayType *AT = Context.getAsArrayType(DeclType);
1030  if (AT && AT->getElementType()->isCharType()) {
1031    return dyn_cast<StringLiteral>(Init);
1032  }
1033  return 0;
1034}
1035
1036bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1037                                 SourceLocation InitLoc,
1038                                 DeclarationName InitEntity,
1039                                 bool DirectInit) {
1040  if (DeclType->isDependentType() || Init->isTypeDependent())
1041    return false;
1042
1043  // C++ [dcl.init.ref]p1:
1044  //   A variable declared to be a T&, that is "reference to type T"
1045  //   (8.3.2), shall be initialized by an object, or function, of
1046  //   type T or by an object that can be converted into a T.
1047  if (DeclType->isReferenceType())
1048    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1049
1050  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1051  // of unknown size ("[]") or an object type that is not a variable array type.
1052  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1053    return Diag(InitLoc,  diag::err_variable_object_no_init)
1054      << VAT->getSizeExpr()->getSourceRange();
1055
1056  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1057  if (!InitList) {
1058    // FIXME: Handle wide strings
1059    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1060      return CheckStringLiteralInit(strLiteral, DeclType);
1061
1062    // C++ [dcl.init]p14:
1063    //   -- If the destination type is a (possibly cv-qualified) class
1064    //      type:
1065    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1066      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1067      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1068
1069      //   -- If the initialization is direct-initialization, or if it is
1070      //      copy-initialization where the cv-unqualified version of the
1071      //      source type is the same class as, or a derived class of, the
1072      //      class of the destination, constructors are considered.
1073      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1074          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1075        CXXConstructorDecl *Constructor
1076          = PerformInitializationByConstructor(DeclType, &Init, 1,
1077                                               InitLoc, Init->getSourceRange(),
1078                                               InitEntity,
1079                                               DirectInit? IK_Direct : IK_Copy);
1080        return Constructor == 0;
1081      }
1082
1083      //   -- Otherwise (i.e., for the remaining copy-initialization
1084      //      cases), user-defined conversion sequences that can
1085      //      convert from the source type to the destination type or
1086      //      (when a conversion function is used) to a derived class
1087      //      thereof are enumerated as described in 13.3.1.4, and the
1088      //      best one is chosen through overload resolution
1089      //      (13.3). If the conversion cannot be done or is
1090      //      ambiguous, the initialization is ill-formed. The
1091      //      function selected is called with the initializer
1092      //      expression as its argument; if the function is a
1093      //      constructor, the call initializes a temporary of the
1094      //      destination type.
1095      // FIXME: We're pretending to do copy elision here; return to
1096      // this when we have ASTs for such things.
1097      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1098        return false;
1099
1100      if (InitEntity)
1101        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1102          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1103          << Init->getType() << Init->getSourceRange();
1104      else
1105        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1106          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1107          << Init->getType() << Init->getSourceRange();
1108    }
1109
1110    // C99 6.7.8p16.
1111    if (DeclType->isArrayType())
1112      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1113        << Init->getSourceRange();
1114
1115    return CheckSingleInitializer(Init, DeclType, DirectInit);
1116  } else if (getLangOptions().CPlusPlus) {
1117    // C++ [dcl.init]p14:
1118    //   [...] If the class is an aggregate (8.5.1), and the initializer
1119    //   is a brace-enclosed list, see 8.5.1.
1120    //
1121    // Note: 8.5.1 is handled below; here, we diagnose the case where
1122    // we have an initializer list and a destination type that is not
1123    // an aggregate.
1124    // FIXME: In C++0x, this is yet another form of initialization.
1125    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1126      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1127      if (!ClassDecl->isAggregate())
1128        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1129           << DeclType << Init->getSourceRange();
1130    }
1131  }
1132
1133  InitListChecker CheckInitList(this, InitList, DeclType);
1134  return CheckInitList.HadError();
1135}
1136
1137/// GetNameForDeclarator - Determine the full declaration name for the
1138/// given Declarator.
1139DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1140  switch (D.getKind()) {
1141  case Declarator::DK_Abstract:
1142    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1143    return DeclarationName();
1144
1145  case Declarator::DK_Normal:
1146    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1147    return DeclarationName(D.getIdentifier());
1148
1149  case Declarator::DK_Constructor: {
1150    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1151    Ty = Context.getCanonicalType(Ty);
1152    return Context.DeclarationNames.getCXXConstructorName(Ty);
1153  }
1154
1155  case Declarator::DK_Destructor: {
1156    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1157    Ty = Context.getCanonicalType(Ty);
1158    return Context.DeclarationNames.getCXXDestructorName(Ty);
1159  }
1160
1161  case Declarator::DK_Conversion: {
1162    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1163    Ty = Context.getCanonicalType(Ty);
1164    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1165  }
1166
1167  case Declarator::DK_Operator:
1168    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1169    return Context.DeclarationNames.getCXXOperatorName(
1170                                                D.getOverloadedOperator());
1171  }
1172
1173  assert(false && "Unknown name kind");
1174  return DeclarationName();
1175}
1176
1177/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1178/// functions Declaration and Definition are "nearly" matching. This
1179/// heuristic is used to improve diagnostics in the case where an
1180/// out-of-line member function definition doesn't match any
1181/// declaration within the class.
1182static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1183                                           FunctionDecl *Declaration,
1184                                           FunctionDecl *Definition) {
1185  if (Declaration->param_size() != Definition->param_size())
1186    return false;
1187  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1188    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1189    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1190
1191    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1192    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1193    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1194      return false;
1195  }
1196
1197  return true;
1198}
1199
1200Sema::DeclTy *
1201Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1202                      bool IsFunctionDefinition) {
1203  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
1204  DeclarationName Name = GetNameForDeclarator(D);
1205
1206  // All of these full declarators require an identifier.  If it doesn't have
1207  // one, the ParsedFreeStandingDeclSpec action should be used.
1208  if (!Name) {
1209    if (!D.getInvalidType())  // Reject this if we think it is valid.
1210      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1211           diag::err_declarator_need_ident)
1212        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1213    return 0;
1214  }
1215
1216  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1217  // we find one that is.
1218  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1219        (S->getFlags() & Scope::TemplateParamScope) != 0)
1220    S = S->getParent();
1221
1222  DeclContext *DC;
1223  Decl *PrevDecl;
1224  ScopedDecl *New;
1225  bool InvalidDecl = false;
1226
1227  // See if this is a redefinition of a variable in the same scope.
1228  if (!D.getCXXScopeSpec().isSet()) {
1229    DC = CurContext;
1230    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1231  } else { // Something like "int foo::x;"
1232    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1233    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1234
1235    // C++ 7.3.1.2p2:
1236    // Members (including explicit specializations of templates) of a named
1237    // namespace can also be defined outside that namespace by explicit
1238    // qualification of the name being defined, provided that the entity being
1239    // defined was already declared in the namespace and the definition appears
1240    // after the point of declaration in a namespace that encloses the
1241    // declarations namespace.
1242    //
1243    // Note that we only check the context at this point. We don't yet
1244    // have enough information to make sure that PrevDecl is actually
1245    // the declaration we want to match. For example, given:
1246    //
1247    //   class X {
1248    //     void f();
1249    //     void f(float);
1250    //   };
1251    //
1252    //   void X::f(int) { } // ill-formed
1253    //
1254    // In this case, PrevDecl will point to the overload set
1255    // containing the two f's declared in X, but neither of them
1256    // matches.
1257    if (!CurContext->Encloses(DC)) {
1258      // The qualifying scope doesn't enclose the original declaration.
1259      // Emit diagnostic based on current scope.
1260      SourceLocation L = D.getIdentifierLoc();
1261      SourceRange R = D.getCXXScopeSpec().getRange();
1262      if (isa<FunctionDecl>(CurContext)) {
1263        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1264      } else {
1265        Diag(L, diag::err_invalid_declarator_scope)
1266          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1267      }
1268      InvalidDecl = true;
1269    }
1270  }
1271
1272  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1273    // Maybe we will complain about the shadowed template parameter.
1274    InvalidDecl = InvalidDecl
1275      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1276    // Just pretend that we didn't see the previous declaration.
1277    PrevDecl = 0;
1278  }
1279
1280  // In C++, the previous declaration we find might be a tag type
1281  // (class or enum). In this case, the new declaration will hide the
1282  // tag type.
1283  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1284    PrevDecl = 0;
1285
1286  QualType R = GetTypeForDeclarator(D, S);
1287  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1288
1289  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1290    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1291    if (D.getCXXScopeSpec().isSet()) {
1292      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1293        << D.getCXXScopeSpec().getRange();
1294      InvalidDecl = true;
1295      // Pretend we didn't see the scope specifier.
1296      DC = 0;
1297    }
1298
1299    // Check that there are no default arguments (C++ only).
1300    if (getLangOptions().CPlusPlus)
1301      CheckExtraCXXDefaultArguments(D);
1302
1303    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1304    if (!NewTD) return 0;
1305
1306    // Handle attributes prior to checking for duplicates in MergeVarDecl
1307    ProcessDeclAttributes(NewTD, D);
1308    // Merge the decl with the existing one if appropriate. If the decl is
1309    // in an outer scope, it isn't the same thing.
1310    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1311      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1312      if (NewTD == 0) return 0;
1313    }
1314    New = NewTD;
1315    if (S->getFnParent() == 0) {
1316      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1317      // then it shall have block scope.
1318      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1319        if (NewTD->getUnderlyingType()->isVariableArrayType())
1320          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1321        else
1322          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1323
1324        InvalidDecl = true;
1325      }
1326    }
1327  } else if (R.getTypePtr()->isFunctionType()) {
1328    FunctionDecl::StorageClass SC = FunctionDecl::None;
1329    switch (D.getDeclSpec().getStorageClassSpec()) {
1330      default: assert(0 && "Unknown storage class!");
1331      case DeclSpec::SCS_auto:
1332      case DeclSpec::SCS_register:
1333      case DeclSpec::SCS_mutable:
1334        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1335        InvalidDecl = true;
1336        break;
1337      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1338      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1339      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1340      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1341    }
1342
1343    bool isInline = D.getDeclSpec().isInlineSpecified();
1344    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1345    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1346
1347    FunctionDecl *NewFD;
1348    if (D.getKind() == Declarator::DK_Constructor) {
1349      // This is a C++ constructor declaration.
1350      assert(DC->isRecord() &&
1351             "Constructors can only be declared in a member context");
1352
1353      InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1354
1355      // Create the new declaration
1356      NewFD = CXXConstructorDecl::Create(Context,
1357                                         cast<CXXRecordDecl>(DC),
1358                                         D.getIdentifierLoc(), Name, R,
1359                                         isExplicit, isInline,
1360                                         /*isImplicitlyDeclared=*/false);
1361
1362      if (InvalidDecl)
1363        NewFD->setInvalidDecl();
1364    } else if (D.getKind() == Declarator::DK_Destructor) {
1365      // This is a C++ destructor declaration.
1366      if (DC->isRecord()) {
1367        InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1368
1369        NewFD = CXXDestructorDecl::Create(Context,
1370                                          cast<CXXRecordDecl>(DC),
1371                                          D.getIdentifierLoc(), Name, R,
1372                                          isInline,
1373                                          /*isImplicitlyDeclared=*/false);
1374
1375        if (InvalidDecl)
1376          NewFD->setInvalidDecl();
1377      } else {
1378        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1379
1380        // Create a FunctionDecl to satisfy the function definition parsing
1381        // code path.
1382        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1383                                     Name, R, SC, isInline, LastDeclarator,
1384                                     // FIXME: Move to DeclGroup...
1385                                   D.getDeclSpec().getSourceRange().getBegin());
1386        InvalidDecl = true;
1387        NewFD->setInvalidDecl();
1388      }
1389    } else if (D.getKind() == Declarator::DK_Conversion) {
1390      if (!DC->isRecord()) {
1391        Diag(D.getIdentifierLoc(),
1392             diag::err_conv_function_not_member);
1393        return 0;
1394      } else {
1395        InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1396
1397        NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1398                                          D.getIdentifierLoc(), Name, R,
1399                                          isInline, isExplicit);
1400
1401        if (InvalidDecl)
1402          NewFD->setInvalidDecl();
1403      }
1404    } else if (DC->isRecord()) {
1405      // This is a C++ method declaration.
1406      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1407                                    D.getIdentifierLoc(), Name, R,
1408                                    (SC == FunctionDecl::Static), isInline,
1409                                    LastDeclarator);
1410    } else {
1411      NewFD = FunctionDecl::Create(Context, DC,
1412                                   D.getIdentifierLoc(),
1413                                   Name, R, SC, isInline, LastDeclarator,
1414                                   // FIXME: Move to DeclGroup...
1415                                   D.getDeclSpec().getSourceRange().getBegin());
1416    }
1417
1418    // Set the lexical context. If the declarator has a C++
1419    // scope specifier, the lexical context will be different
1420    // from the semantic context.
1421    NewFD->setLexicalDeclContext(CurContext);
1422
1423    // Handle GNU asm-label extension (encoded as an attribute).
1424    if (Expr *E = (Expr*) D.getAsmLabel()) {
1425      // The parser guarantees this is a string.
1426      StringLiteral *SE = cast<StringLiteral>(E);
1427      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1428                                                  SE->getByteLength())));
1429    }
1430
1431    // Copy the parameter declarations from the declarator D to
1432    // the function declaration NewFD, if they are available.
1433    if (D.getNumTypeObjects() > 0) {
1434      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1435
1436      // Create Decl objects for each parameter, adding them to the
1437      // FunctionDecl.
1438      llvm::SmallVector<ParmVarDecl*, 16> Params;
1439
1440      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1441      // function that takes no arguments, not a function that takes a
1442      // single void argument.
1443      // We let through "const void" here because Sema::GetTypeForDeclarator
1444      // already checks for that case.
1445      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1446          FTI.ArgInfo[0].Param &&
1447          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1448        // empty arg list, don't push any params.
1449        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1450
1451        // In C++, the empty parameter-type-list must be spelled "void"; a
1452        // typedef of void is not permitted.
1453        if (getLangOptions().CPlusPlus &&
1454            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1455          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1456        }
1457      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1458        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1459          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1460      }
1461
1462      NewFD->setParams(Context, &Params[0], Params.size());
1463    } else if (R->getAsTypedefType()) {
1464      // When we're declaring a function with a typedef, as in the
1465      // following example, we'll need to synthesize (unnamed)
1466      // parameters for use in the declaration.
1467      //
1468      // @code
1469      // typedef void fn(int);
1470      // fn f;
1471      // @endcode
1472      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1473      if (!FT) {
1474        // This is a typedef of a function with no prototype, so we
1475        // don't need to do anything.
1476      } else if ((FT->getNumArgs() == 0) ||
1477          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1478           FT->getArgType(0)->isVoidType())) {
1479        // This is a zero-argument function. We don't need to do anything.
1480      } else {
1481        // Synthesize a parameter for each argument type.
1482        llvm::SmallVector<ParmVarDecl*, 16> Params;
1483        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1484             ArgType != FT->arg_type_end(); ++ArgType) {
1485          Params.push_back(ParmVarDecl::Create(Context, DC,
1486                                               SourceLocation(), 0,
1487                                               *ArgType, VarDecl::None,
1488                                               0, 0));
1489        }
1490
1491        NewFD->setParams(Context, &Params[0], Params.size());
1492      }
1493    }
1494
1495    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1496      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1497    else if (isa<CXXDestructorDecl>(NewFD)) {
1498      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1499      Record->setUserDeclaredDestructor(true);
1500      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1501      // user-defined destructor.
1502      Record->setPOD(false);
1503    } else if (CXXConversionDecl *Conversion =
1504               dyn_cast<CXXConversionDecl>(NewFD))
1505      ActOnConversionDeclarator(Conversion);
1506
1507    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1508    if (NewFD->isOverloadedOperator() &&
1509        CheckOverloadedOperatorDeclaration(NewFD))
1510      NewFD->setInvalidDecl();
1511
1512    // Merge the decl with the existing one if appropriate. Since C functions
1513    // are in a flat namespace, make sure we consider decls in outer scopes.
1514    if (PrevDecl &&
1515        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1516      bool Redeclaration = false;
1517
1518      // If C++, determine whether NewFD is an overload of PrevDecl or
1519      // a declaration that requires merging. If it's an overload,
1520      // there's no more work to do here; we'll just add the new
1521      // function to the scope.
1522      OverloadedFunctionDecl::function_iterator MatchedDecl;
1523      if (!getLangOptions().CPlusPlus ||
1524          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1525        Decl *OldDecl = PrevDecl;
1526
1527        // If PrevDecl was an overloaded function, extract the
1528        // FunctionDecl that matched.
1529        if (isa<OverloadedFunctionDecl>(PrevDecl))
1530          OldDecl = *MatchedDecl;
1531
1532        // NewFD and PrevDecl represent declarations that need to be
1533        // merged.
1534        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1535
1536        if (NewFD == 0) return 0;
1537        if (Redeclaration) {
1538          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1539
1540          // An out-of-line member function declaration must also be a
1541          // definition (C++ [dcl.meaning]p1).
1542          if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1543              !InvalidDecl) {
1544            Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1545              << D.getCXXScopeSpec().getRange();
1546            NewFD->setInvalidDecl();
1547          }
1548        }
1549      }
1550
1551      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1552        // The user tried to provide an out-of-line definition for a
1553        // member function, but there was no such member function
1554        // declared (C++ [class.mfct]p2). For example:
1555        //
1556        // class X {
1557        //   void f() const;
1558        // };
1559        //
1560        // void X::f() { } // ill-formed
1561        //
1562        // Complain about this problem, and attempt to suggest close
1563        // matches (e.g., those that differ only in cv-qualifiers and
1564        // whether the parameter types are references).
1565        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1566          << cast<CXXRecordDecl>(DC)->getDeclName()
1567          << D.getCXXScopeSpec().getRange();
1568        InvalidDecl = true;
1569
1570        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1571        if (!PrevDecl) {
1572          // Nothing to suggest.
1573        } else if (OverloadedFunctionDecl *Ovl
1574                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1575          for (OverloadedFunctionDecl::function_iterator
1576                 Func = Ovl->function_begin(),
1577                 FuncEnd = Ovl->function_end();
1578               Func != FuncEnd; ++Func) {
1579            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1580              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1581
1582          }
1583        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1584          // Suggest this no matter how mismatched it is; it's the only
1585          // thing we have.
1586          unsigned diag;
1587          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1588            diag = diag::note_member_def_close_match;
1589          else if (Method->getBody())
1590            diag = diag::note_previous_definition;
1591          else
1592            diag = diag::note_previous_declaration;
1593          Diag(Method->getLocation(), diag);
1594        }
1595
1596        PrevDecl = 0;
1597      }
1598    }
1599    // Handle attributes. We need to have merged decls when handling attributes
1600    // (for example to check for conflicts, etc).
1601    ProcessDeclAttributes(NewFD, D);
1602    New = NewFD;
1603
1604    if (getLangOptions().CPlusPlus) {
1605      // In C++, check default arguments now that we have merged decls.
1606      CheckCXXDefaultArguments(NewFD);
1607
1608      // An out-of-line member function declaration must also be a
1609      // definition (C++ [dcl.meaning]p1).
1610      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1611        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1612          << D.getCXXScopeSpec().getRange();
1613        InvalidDecl = true;
1614      }
1615    }
1616  } else {
1617    // Check that there are no default arguments (C++ only).
1618    if (getLangOptions().CPlusPlus)
1619      CheckExtraCXXDefaultArguments(D);
1620
1621    if (R.getTypePtr()->isObjCInterfaceType()) {
1622      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1623        << D.getIdentifier();
1624      InvalidDecl = true;
1625    }
1626
1627    VarDecl *NewVD;
1628    VarDecl::StorageClass SC;
1629    switch (D.getDeclSpec().getStorageClassSpec()) {
1630    default: assert(0 && "Unknown storage class!");
1631    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1632    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1633    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1634    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1635    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1636    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1637    case DeclSpec::SCS_mutable:
1638      // mutable can only appear on non-static class members, so it's always
1639      // an error here
1640      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1641      InvalidDecl = true;
1642      SC = VarDecl::None;
1643      break;
1644    }
1645
1646    IdentifierInfo *II = Name.getAsIdentifierInfo();
1647    if (!II) {
1648      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1649       << Name.getAsString();
1650      return 0;
1651    }
1652
1653    if (DC->isRecord()) {
1654      // This is a static data member for a C++ class.
1655      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1656                                      D.getIdentifierLoc(), II,
1657                                      R, LastDeclarator);
1658    } else {
1659      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1660      if (S->getFnParent() == 0) {
1661        // C99 6.9p2: The storage-class specifiers auto and register shall not
1662        // appear in the declaration specifiers in an external declaration.
1663        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1664          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1665          InvalidDecl = true;
1666        }
1667      }
1668      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1669                              II, R, SC, LastDeclarator,
1670                              // FIXME: Move to DeclGroup...
1671                              D.getDeclSpec().getSourceRange().getBegin());
1672      NewVD->setThreadSpecified(ThreadSpecified);
1673    }
1674    // Handle attributes prior to checking for duplicates in MergeVarDecl
1675    ProcessDeclAttributes(NewVD, D);
1676
1677    // Handle GNU asm-label extension (encoded as an attribute).
1678    if (Expr *E = (Expr*) D.getAsmLabel()) {
1679      // The parser guarantees this is a string.
1680      StringLiteral *SE = cast<StringLiteral>(E);
1681      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1682                                                  SE->getByteLength())));
1683    }
1684
1685    // Emit an error if an address space was applied to decl with local storage.
1686    // This includes arrays of objects with address space qualifiers, but not
1687    // automatic variables that point to other address spaces.
1688    // ISO/IEC TR 18037 S5.1.2
1689    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1690      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1691      InvalidDecl = true;
1692    }
1693    // Merge the decl with the existing one if appropriate. If the decl is
1694    // in an outer scope, it isn't the same thing.
1695    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1696      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1697        // The user tried to define a non-static data member
1698        // out-of-line (C++ [dcl.meaning]p1).
1699        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1700          << D.getCXXScopeSpec().getRange();
1701        NewVD->Destroy(Context);
1702        return 0;
1703      }
1704
1705      NewVD = MergeVarDecl(NewVD, PrevDecl);
1706      if (NewVD == 0) return 0;
1707
1708      if (D.getCXXScopeSpec().isSet()) {
1709        // No previous declaration in the qualifying scope.
1710        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1711          << Name << D.getCXXScopeSpec().getRange();
1712        InvalidDecl = true;
1713      }
1714    }
1715    New = NewVD;
1716  }
1717
1718  // Set the lexical context. If the declarator has a C++ scope specifier, the
1719  // lexical context will be different from the semantic context.
1720  New->setLexicalDeclContext(CurContext);
1721
1722  // If this has an identifier, add it to the scope stack.
1723  if (Name)
1724    PushOnScopeChains(New, S);
1725  // If any semantic error occurred, mark the decl as invalid.
1726  if (D.getInvalidType() || InvalidDecl)
1727    New->setInvalidDecl();
1728
1729  return New;
1730}
1731
1732void Sema::InitializerElementNotConstant(const Expr *Init) {
1733  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1734    << Init->getSourceRange();
1735}
1736
1737bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1738  switch (Init->getStmtClass()) {
1739  default:
1740    InitializerElementNotConstant(Init);
1741    return true;
1742  case Expr::ParenExprClass: {
1743    const ParenExpr* PE = cast<ParenExpr>(Init);
1744    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1745  }
1746  case Expr::CompoundLiteralExprClass:
1747    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1748  case Expr::DeclRefExprClass:
1749  case Expr::QualifiedDeclRefExprClass: {
1750    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1751    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1752      if (VD->hasGlobalStorage())
1753        return false;
1754      InitializerElementNotConstant(Init);
1755      return true;
1756    }
1757    if (isa<FunctionDecl>(D))
1758      return false;
1759    InitializerElementNotConstant(Init);
1760    return true;
1761  }
1762  case Expr::MemberExprClass: {
1763    const MemberExpr *M = cast<MemberExpr>(Init);
1764    if (M->isArrow())
1765      return CheckAddressConstantExpression(M->getBase());
1766    return CheckAddressConstantExpressionLValue(M->getBase());
1767  }
1768  case Expr::ArraySubscriptExprClass: {
1769    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1770    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1771    return CheckAddressConstantExpression(ASE->getBase()) ||
1772           CheckArithmeticConstantExpression(ASE->getIdx());
1773  }
1774  case Expr::StringLiteralClass:
1775  case Expr::PredefinedExprClass:
1776    return false;
1777  case Expr::UnaryOperatorClass: {
1778    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1779
1780    // C99 6.6p9
1781    if (Exp->getOpcode() == UnaryOperator::Deref)
1782      return CheckAddressConstantExpression(Exp->getSubExpr());
1783
1784    InitializerElementNotConstant(Init);
1785    return true;
1786  }
1787  }
1788}
1789
1790bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1791  switch (Init->getStmtClass()) {
1792  default:
1793    InitializerElementNotConstant(Init);
1794    return true;
1795  case Expr::ParenExprClass:
1796    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1797  case Expr::StringLiteralClass:
1798  case Expr::ObjCStringLiteralClass:
1799    return false;
1800  case Expr::CallExprClass:
1801  case Expr::CXXOperatorCallExprClass:
1802    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1803    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1804           Builtin::BI__builtin___CFStringMakeConstantString)
1805      return false;
1806
1807    InitializerElementNotConstant(Init);
1808    return true;
1809
1810  case Expr::UnaryOperatorClass: {
1811    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1812
1813    // C99 6.6p9
1814    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1815      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1816
1817    if (Exp->getOpcode() == UnaryOperator::Extension)
1818      return CheckAddressConstantExpression(Exp->getSubExpr());
1819
1820    InitializerElementNotConstant(Init);
1821    return true;
1822  }
1823  case Expr::BinaryOperatorClass: {
1824    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1825    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1826
1827    Expr *PExp = Exp->getLHS();
1828    Expr *IExp = Exp->getRHS();
1829    if (IExp->getType()->isPointerType())
1830      std::swap(PExp, IExp);
1831
1832    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1833    return CheckAddressConstantExpression(PExp) ||
1834           CheckArithmeticConstantExpression(IExp);
1835  }
1836  case Expr::ImplicitCastExprClass:
1837  case Expr::CStyleCastExprClass: {
1838    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1839    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1840      // Check for implicit promotion
1841      if (SubExpr->getType()->isFunctionType() ||
1842          SubExpr->getType()->isArrayType())
1843        return CheckAddressConstantExpressionLValue(SubExpr);
1844    }
1845
1846    // Check for pointer->pointer cast
1847    if (SubExpr->getType()->isPointerType())
1848      return CheckAddressConstantExpression(SubExpr);
1849
1850    if (SubExpr->getType()->isIntegralType()) {
1851      // Check for the special-case of a pointer->int->pointer cast;
1852      // this isn't standard, but some code requires it. See
1853      // PR2720 for an example.
1854      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1855        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1856          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1857          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1858          if (IntWidth >= PointerWidth) {
1859            return CheckAddressConstantExpression(SubCast->getSubExpr());
1860          }
1861        }
1862      }
1863    }
1864    if (SubExpr->getType()->isArithmeticType()) {
1865      return CheckArithmeticConstantExpression(SubExpr);
1866    }
1867
1868    InitializerElementNotConstant(Init);
1869    return true;
1870  }
1871  case Expr::ConditionalOperatorClass: {
1872    // FIXME: Should we pedwarn here?
1873    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1874    if (!Exp->getCond()->getType()->isArithmeticType()) {
1875      InitializerElementNotConstant(Init);
1876      return true;
1877    }
1878    if (CheckArithmeticConstantExpression(Exp->getCond()))
1879      return true;
1880    if (Exp->getLHS() &&
1881        CheckAddressConstantExpression(Exp->getLHS()))
1882      return true;
1883    return CheckAddressConstantExpression(Exp->getRHS());
1884  }
1885  case Expr::AddrLabelExprClass:
1886    return false;
1887  }
1888}
1889
1890static const Expr* FindExpressionBaseAddress(const Expr* E);
1891
1892static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1893  switch (E->getStmtClass()) {
1894  default:
1895    return E;
1896  case Expr::ParenExprClass: {
1897    const ParenExpr* PE = cast<ParenExpr>(E);
1898    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1899  }
1900  case Expr::MemberExprClass: {
1901    const MemberExpr *M = cast<MemberExpr>(E);
1902    if (M->isArrow())
1903      return FindExpressionBaseAddress(M->getBase());
1904    return FindExpressionBaseAddressLValue(M->getBase());
1905  }
1906  case Expr::ArraySubscriptExprClass: {
1907    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1908    return FindExpressionBaseAddress(ASE->getBase());
1909  }
1910  case Expr::UnaryOperatorClass: {
1911    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1912
1913    if (Exp->getOpcode() == UnaryOperator::Deref)
1914      return FindExpressionBaseAddress(Exp->getSubExpr());
1915
1916    return E;
1917  }
1918  }
1919}
1920
1921static const Expr* FindExpressionBaseAddress(const Expr* E) {
1922  switch (E->getStmtClass()) {
1923  default:
1924    return E;
1925  case Expr::ParenExprClass: {
1926    const ParenExpr* PE = cast<ParenExpr>(E);
1927    return FindExpressionBaseAddress(PE->getSubExpr());
1928  }
1929  case Expr::UnaryOperatorClass: {
1930    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1931
1932    // C99 6.6p9
1933    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1934      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1935
1936    if (Exp->getOpcode() == UnaryOperator::Extension)
1937      return FindExpressionBaseAddress(Exp->getSubExpr());
1938
1939    return E;
1940  }
1941  case Expr::BinaryOperatorClass: {
1942    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1943
1944    Expr *PExp = Exp->getLHS();
1945    Expr *IExp = Exp->getRHS();
1946    if (IExp->getType()->isPointerType())
1947      std::swap(PExp, IExp);
1948
1949    return FindExpressionBaseAddress(PExp);
1950  }
1951  case Expr::ImplicitCastExprClass: {
1952    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1953
1954    // Check for implicit promotion
1955    if (SubExpr->getType()->isFunctionType() ||
1956        SubExpr->getType()->isArrayType())
1957      return FindExpressionBaseAddressLValue(SubExpr);
1958
1959    // Check for pointer->pointer cast
1960    if (SubExpr->getType()->isPointerType())
1961      return FindExpressionBaseAddress(SubExpr);
1962
1963    // We assume that we have an arithmetic expression here;
1964    // if we don't, we'll figure it out later
1965    return 0;
1966  }
1967  case Expr::CStyleCastExprClass: {
1968    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1969
1970    // Check for pointer->pointer cast
1971    if (SubExpr->getType()->isPointerType())
1972      return FindExpressionBaseAddress(SubExpr);
1973
1974    // We assume that we have an arithmetic expression here;
1975    // if we don't, we'll figure it out later
1976    return 0;
1977  }
1978  }
1979}
1980
1981bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1982  switch (Init->getStmtClass()) {
1983  default:
1984    InitializerElementNotConstant(Init);
1985    return true;
1986  case Expr::ParenExprClass: {
1987    const ParenExpr* PE = cast<ParenExpr>(Init);
1988    return CheckArithmeticConstantExpression(PE->getSubExpr());
1989  }
1990  case Expr::FloatingLiteralClass:
1991  case Expr::IntegerLiteralClass:
1992  case Expr::CharacterLiteralClass:
1993  case Expr::ImaginaryLiteralClass:
1994  case Expr::TypesCompatibleExprClass:
1995  case Expr::CXXBoolLiteralExprClass:
1996    return false;
1997  case Expr::CallExprClass:
1998  case Expr::CXXOperatorCallExprClass: {
1999    const CallExpr *CE = cast<CallExpr>(Init);
2000
2001    // Allow any constant foldable calls to builtins.
2002    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2003      return false;
2004
2005    InitializerElementNotConstant(Init);
2006    return true;
2007  }
2008  case Expr::DeclRefExprClass:
2009  case Expr::QualifiedDeclRefExprClass: {
2010    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2011    if (isa<EnumConstantDecl>(D))
2012      return false;
2013    InitializerElementNotConstant(Init);
2014    return true;
2015  }
2016  case Expr::CompoundLiteralExprClass:
2017    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2018    // but vectors are allowed to be magic.
2019    if (Init->getType()->isVectorType())
2020      return false;
2021    InitializerElementNotConstant(Init);
2022    return true;
2023  case Expr::UnaryOperatorClass: {
2024    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2025
2026    switch (Exp->getOpcode()) {
2027    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2028    // See C99 6.6p3.
2029    default:
2030      InitializerElementNotConstant(Init);
2031      return true;
2032    case UnaryOperator::OffsetOf:
2033      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2034        return false;
2035      InitializerElementNotConstant(Init);
2036      return true;
2037    case UnaryOperator::Extension:
2038    case UnaryOperator::LNot:
2039    case UnaryOperator::Plus:
2040    case UnaryOperator::Minus:
2041    case UnaryOperator::Not:
2042      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2043    }
2044  }
2045  case Expr::SizeOfAlignOfExprClass: {
2046    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2047    // Special check for void types, which are allowed as an extension
2048    if (Exp->getTypeOfArgument()->isVoidType())
2049      return false;
2050    // alignof always evaluates to a constant.
2051    // FIXME: is sizeof(int[3.0]) a constant expression?
2052    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2053      InitializerElementNotConstant(Init);
2054      return true;
2055    }
2056    return false;
2057  }
2058  case Expr::BinaryOperatorClass: {
2059    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2060
2061    if (Exp->getLHS()->getType()->isArithmeticType() &&
2062        Exp->getRHS()->getType()->isArithmeticType()) {
2063      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2064             CheckArithmeticConstantExpression(Exp->getRHS());
2065    }
2066
2067    if (Exp->getLHS()->getType()->isPointerType() &&
2068        Exp->getRHS()->getType()->isPointerType()) {
2069      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2070      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2071
2072      // Only allow a null (constant integer) base; we could
2073      // allow some additional cases if necessary, but this
2074      // is sufficient to cover offsetof-like constructs.
2075      if (!LHSBase && !RHSBase) {
2076        return CheckAddressConstantExpression(Exp->getLHS()) ||
2077               CheckAddressConstantExpression(Exp->getRHS());
2078      }
2079    }
2080
2081    InitializerElementNotConstant(Init);
2082    return true;
2083  }
2084  case Expr::ImplicitCastExprClass:
2085  case Expr::CStyleCastExprClass: {
2086    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2087    if (SubExpr->getType()->isArithmeticType())
2088      return CheckArithmeticConstantExpression(SubExpr);
2089
2090    if (SubExpr->getType()->isPointerType()) {
2091      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2092      // If the pointer has a null base, this is an offsetof-like construct
2093      if (!Base)
2094        return CheckAddressConstantExpression(SubExpr);
2095    }
2096
2097    InitializerElementNotConstant(Init);
2098    return true;
2099  }
2100  case Expr::ConditionalOperatorClass: {
2101    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2102
2103    // If GNU extensions are disabled, we require all operands to be arithmetic
2104    // constant expressions.
2105    if (getLangOptions().NoExtensions) {
2106      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2107          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2108             CheckArithmeticConstantExpression(Exp->getRHS());
2109    }
2110
2111    // Otherwise, we have to emulate some of the behavior of fold here.
2112    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2113    // because it can constant fold things away.  To retain compatibility with
2114    // GCC code, we see if we can fold the condition to a constant (which we
2115    // should always be able to do in theory).  If so, we only require the
2116    // specified arm of the conditional to be a constant.  This is a horrible
2117    // hack, but is require by real world code that uses __builtin_constant_p.
2118    Expr::EvalResult EvalResult;
2119    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2120        EvalResult.HasSideEffects) {
2121      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2122      // won't be able to either.  Use it to emit the diagnostic though.
2123      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2124      assert(Res && "Evaluate couldn't evaluate this constant?");
2125      return Res;
2126    }
2127
2128    // Verify that the side following the condition is also a constant.
2129    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2130    if (EvalResult.Val.getInt() == 0)
2131      std::swap(TrueSide, FalseSide);
2132
2133    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2134      return true;
2135
2136    // Okay, the evaluated side evaluates to a constant, so we accept this.
2137    // Check to see if the other side is obviously not a constant.  If so,
2138    // emit a warning that this is a GNU extension.
2139    if (FalseSide && !FalseSide->isEvaluatable(Context))
2140      Diag(Init->getExprLoc(),
2141           diag::ext_typecheck_expression_not_constant_but_accepted)
2142        << FalseSide->getSourceRange();
2143    return false;
2144  }
2145  }
2146}
2147
2148bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2149  Expr::EvalResult Result;
2150
2151  Init = Init->IgnoreParens();
2152
2153  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
2154    return false;
2155
2156  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2157  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2158    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2159
2160  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2161    return CheckForConstantInitializer(e->getInitializer(), DclT);
2162
2163  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2164    unsigned numInits = Exp->getNumInits();
2165    for (unsigned i = 0; i < numInits; i++) {
2166      // FIXME: Need to get the type of the declaration for C++,
2167      // because it could be a reference?
2168      if (CheckForConstantInitializer(Exp->getInit(i),
2169                                      Exp->getInit(i)->getType()))
2170        return true;
2171    }
2172    return false;
2173  }
2174
2175  // FIXME: We can probably remove some of this code below, now that
2176  // Expr::Evaluate is doing the heavy lifting for scalars.
2177
2178  if (Init->isNullPointerConstant(Context))
2179    return false;
2180  if (Init->getType()->isArithmeticType()) {
2181    QualType InitTy = Context.getCanonicalType(Init->getType())
2182                             .getUnqualifiedType();
2183    if (InitTy == Context.BoolTy) {
2184      // Special handling for pointers implicitly cast to bool;
2185      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2186      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2187        Expr* SubE = ICE->getSubExpr();
2188        if (SubE->getType()->isPointerType() ||
2189            SubE->getType()->isArrayType() ||
2190            SubE->getType()->isFunctionType()) {
2191          return CheckAddressConstantExpression(Init);
2192        }
2193      }
2194    } else if (InitTy->isIntegralType()) {
2195      Expr* SubE = 0;
2196      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2197        SubE = CE->getSubExpr();
2198      // Special check for pointer cast to int; we allow as an extension
2199      // an address constant cast to an integer if the integer
2200      // is of an appropriate width (this sort of code is apparently used
2201      // in some places).
2202      // FIXME: Add pedwarn?
2203      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2204      if (SubE && (SubE->getType()->isPointerType() ||
2205                   SubE->getType()->isArrayType() ||
2206                   SubE->getType()->isFunctionType())) {
2207        unsigned IntWidth = Context.getTypeSize(Init->getType());
2208        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2209        if (IntWidth >= PointerWidth)
2210          return CheckAddressConstantExpression(Init);
2211      }
2212    }
2213
2214    return CheckArithmeticConstantExpression(Init);
2215  }
2216
2217  if (Init->getType()->isPointerType())
2218    return CheckAddressConstantExpression(Init);
2219
2220  // An array type at the top level that isn't an init-list must
2221  // be a string literal
2222  if (Init->getType()->isArrayType())
2223    return false;
2224
2225  if (Init->getType()->isFunctionType())
2226    return false;
2227
2228  // Allow block exprs at top level.
2229  if (Init->getType()->isBlockPointerType())
2230    return false;
2231
2232  // GCC cast to union extension
2233  // note: the validity of the cast expr is checked by CheckCastTypes()
2234  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2235    QualType T = C->getType();
2236    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2237  }
2238
2239  InitializerElementNotConstant(Init);
2240  return true;
2241}
2242
2243void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2244  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2245}
2246
2247/// AddInitializerToDecl - Adds the initializer Init to the
2248/// declaration dcl. If DirectInit is true, this is C++ direct
2249/// initialization rather than copy initialization.
2250void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2251  Decl *RealDecl = static_cast<Decl *>(dcl);
2252  Expr *Init = static_cast<Expr *>(init.release());
2253  assert(Init && "missing initializer");
2254
2255  // If there is no declaration, there was an error parsing it.  Just ignore
2256  // the initializer.
2257  if (RealDecl == 0) {
2258    delete Init;
2259    return;
2260  }
2261
2262  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2263  if (!VDecl) {
2264    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2265         diag::err_illegal_initializer);
2266    RealDecl->setInvalidDecl();
2267    return;
2268  }
2269  // Get the decls type and save a reference for later, since
2270  // CheckInitializerTypes may change it.
2271  QualType DclT = VDecl->getType(), SavT = DclT;
2272  if (VDecl->isBlockVarDecl()) {
2273    VarDecl::StorageClass SC = VDecl->getStorageClass();
2274    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2275      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2276      VDecl->setInvalidDecl();
2277    } else if (!VDecl->isInvalidDecl()) {
2278      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2279                                VDecl->getDeclName(), DirectInit))
2280        VDecl->setInvalidDecl();
2281
2282      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2283      if (!getLangOptions().CPlusPlus) {
2284        if (SC == VarDecl::Static) // C99 6.7.8p4.
2285          CheckForConstantInitializer(Init, DclT);
2286      }
2287    }
2288  } else if (VDecl->isFileVarDecl()) {
2289    if (VDecl->getStorageClass() == VarDecl::Extern)
2290      Diag(VDecl->getLocation(), diag::warn_extern_init);
2291    if (!VDecl->isInvalidDecl())
2292      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2293                                VDecl->getDeclName(), DirectInit))
2294        VDecl->setInvalidDecl();
2295
2296    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2297    if (!getLangOptions().CPlusPlus) {
2298      // C99 6.7.8p4. All file scoped initializers need to be constant.
2299      CheckForConstantInitializer(Init, DclT);
2300    }
2301  }
2302  // If the type changed, it means we had an incomplete type that was
2303  // completed by the initializer. For example:
2304  //   int ary[] = { 1, 3, 5 };
2305  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2306  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2307    VDecl->setType(DclT);
2308    Init->setType(DclT);
2309  }
2310
2311  // Attach the initializer to the decl.
2312  VDecl->setInit(Init);
2313  return;
2314}
2315
2316void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2317  Decl *RealDecl = static_cast<Decl *>(dcl);
2318
2319  // If there is no declaration, there was an error parsing it. Just ignore it.
2320  if (RealDecl == 0)
2321    return;
2322
2323  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2324    QualType Type = Var->getType();
2325    // C++ [dcl.init.ref]p3:
2326    //   The initializer can be omitted for a reference only in a
2327    //   parameter declaration (8.3.5), in the declaration of a
2328    //   function return type, in the declaration of a class member
2329    //   within its class declaration (9.2), and where the extern
2330    //   specifier is explicitly used.
2331    if (Type->isReferenceType() &&
2332        Var->getStorageClass() != VarDecl::Extern &&
2333        Var->getStorageClass() != VarDecl::PrivateExtern) {
2334      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2335        << Var->getDeclName()
2336        << SourceRange(Var->getLocation(), Var->getLocation());
2337      Var->setInvalidDecl();
2338      return;
2339    }
2340
2341    // C++ [dcl.init]p9:
2342    //
2343    //   If no initializer is specified for an object, and the object
2344    //   is of (possibly cv-qualified) non-POD class type (or array
2345    //   thereof), the object shall be default-initialized; if the
2346    //   object is of const-qualified type, the underlying class type
2347    //   shall have a user-declared default constructor.
2348    if (getLangOptions().CPlusPlus) {
2349      QualType InitType = Type;
2350      if (const ArrayType *Array = Context.getAsArrayType(Type))
2351        InitType = Array->getElementType();
2352      if (Var->getStorageClass() != VarDecl::Extern &&
2353          Var->getStorageClass() != VarDecl::PrivateExtern &&
2354          InitType->isRecordType()) {
2355        const CXXConstructorDecl *Constructor
2356          = PerformInitializationByConstructor(InitType, 0, 0,
2357                                               Var->getLocation(),
2358                                               SourceRange(Var->getLocation(),
2359                                                           Var->getLocation()),
2360                                               Var->getDeclName(),
2361                                               IK_Default);
2362        if (!Constructor)
2363          Var->setInvalidDecl();
2364      }
2365    }
2366
2367#if 0
2368    // FIXME: Temporarily disabled because we are not properly parsing
2369    // linkage specifications on declarations, e.g.,
2370    //
2371    //   extern "C" const CGPoint CGPointerZero;
2372    //
2373    // C++ [dcl.init]p9:
2374    //
2375    //     If no initializer is specified for an object, and the
2376    //     object is of (possibly cv-qualified) non-POD class type (or
2377    //     array thereof), the object shall be default-initialized; if
2378    //     the object is of const-qualified type, the underlying class
2379    //     type shall have a user-declared default
2380    //     constructor. Otherwise, if no initializer is specified for
2381    //     an object, the object and its subobjects, if any, have an
2382    //     indeterminate initial value; if the object or any of its
2383    //     subobjects are of const-qualified type, the program is
2384    //     ill-formed.
2385    //
2386    // This isn't technically an error in C, so we don't diagnose it.
2387    //
2388    // FIXME: Actually perform the POD/user-defined default
2389    // constructor check.
2390    if (getLangOptions().CPlusPlus &&
2391        Context.getCanonicalType(Type).isConstQualified() &&
2392        Var->getStorageClass() != VarDecl::Extern)
2393      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2394        << Var->getName()
2395        << SourceRange(Var->getLocation(), Var->getLocation());
2396#endif
2397  }
2398}
2399
2400/// The declarators are chained together backwards, reverse the list.
2401Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2402  // Often we have single declarators, handle them quickly.
2403  Decl *GroupDecl = static_cast<Decl*>(group);
2404  if (GroupDecl == 0)
2405    return 0;
2406
2407  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2408  ScopedDecl *NewGroup = 0;
2409  if (Group->getNextDeclarator() == 0)
2410    NewGroup = Group;
2411  else { // reverse the list.
2412    while (Group) {
2413      ScopedDecl *Next = Group->getNextDeclarator();
2414      Group->setNextDeclarator(NewGroup);
2415      NewGroup = Group;
2416      Group = Next;
2417    }
2418  }
2419  // Perform semantic analysis that depends on having fully processed both
2420  // the declarator and initializer.
2421  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2422    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2423    if (!IDecl)
2424      continue;
2425    QualType T = IDecl->getType();
2426
2427    if (T->isVariableArrayType()) {
2428      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2429
2430      // FIXME: This won't give the correct result for
2431      // int a[10][n];
2432      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2433      if (IDecl->isFileVarDecl()) {
2434        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2435          SizeRange;
2436
2437        IDecl->setInvalidDecl();
2438      } else {
2439        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2440        // static storage duration, it shall not have a variable length array.
2441        if (IDecl->getStorageClass() == VarDecl::Static) {
2442          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2443            << SizeRange;
2444          IDecl->setInvalidDecl();
2445        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2446          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2447            << SizeRange;
2448          IDecl->setInvalidDecl();
2449        }
2450      }
2451    } else if (T->isVariablyModifiedType()) {
2452      if (IDecl->isFileVarDecl()) {
2453        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2454        IDecl->setInvalidDecl();
2455      } else {
2456        if (IDecl->getStorageClass() == VarDecl::Extern) {
2457          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2458          IDecl->setInvalidDecl();
2459        }
2460      }
2461    }
2462
2463    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2464    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2465    if (IDecl->isBlockVarDecl() &&
2466        IDecl->getStorageClass() != VarDecl::Extern) {
2467      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2468        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2469        IDecl->setInvalidDecl();
2470      }
2471    }
2472    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2473    // object that has file scope without an initializer, and without a
2474    // storage-class specifier or with the storage-class specifier "static",
2475    // constitutes a tentative definition. Note: A tentative definition with
2476    // external linkage is valid (C99 6.2.2p5).
2477    if (isTentativeDefinition(IDecl)) {
2478      if (T->isIncompleteArrayType()) {
2479        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2480        // array to be completed. Don't issue a diagnostic.
2481      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2482        // C99 6.9.2p3: If the declaration of an identifier for an object is
2483        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2484        // declared type shall not be an incomplete type.
2485        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2486        IDecl->setInvalidDecl();
2487      }
2488    }
2489    if (IDecl->isFileVarDecl())
2490      CheckForFileScopedRedefinitions(S, IDecl);
2491  }
2492  return NewGroup;
2493}
2494
2495/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2496/// to introduce parameters into function prototype scope.
2497Sema::DeclTy *
2498Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2499  const DeclSpec &DS = D.getDeclSpec();
2500
2501  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2502  VarDecl::StorageClass StorageClass = VarDecl::None;
2503  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2504    StorageClass = VarDecl::Register;
2505  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2506    Diag(DS.getStorageClassSpecLoc(),
2507         diag::err_invalid_storage_class_in_func_decl);
2508    D.getMutableDeclSpec().ClearStorageClassSpecs();
2509  }
2510  if (DS.isThreadSpecified()) {
2511    Diag(DS.getThreadSpecLoc(),
2512         diag::err_invalid_storage_class_in_func_decl);
2513    D.getMutableDeclSpec().ClearStorageClassSpecs();
2514  }
2515
2516  // Check that there are no default arguments inside the type of this
2517  // parameter (C++ only).
2518  if (getLangOptions().CPlusPlus)
2519    CheckExtraCXXDefaultArguments(D);
2520
2521  // In this context, we *do not* check D.getInvalidType(). If the declarator
2522  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2523  // though it will not reflect the user specified type.
2524  QualType parmDeclType = GetTypeForDeclarator(D, S);
2525
2526  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2527
2528  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2529  // Can this happen for params?  We already checked that they don't conflict
2530  // among each other.  Here they can only shadow globals, which is ok.
2531  IdentifierInfo *II = D.getIdentifier();
2532  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2533    if (PrevDecl->isTemplateParameter()) {
2534      // Maybe we will complain about the shadowed template parameter.
2535      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2536      // Just pretend that we didn't see the previous declaration.
2537      PrevDecl = 0;
2538    } else if (S->isDeclScope(PrevDecl)) {
2539      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2540
2541      // Recover by removing the name
2542      II = 0;
2543      D.SetIdentifier(0, D.getIdentifierLoc());
2544    }
2545  }
2546
2547  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2548  // Doing the promotion here has a win and a loss. The win is the type for
2549  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2550  // code generator). The loss is the orginal type isn't preserved. For example:
2551  //
2552  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2553  //    int blockvardecl[5];
2554  //    sizeof(parmvardecl);  // size == 4
2555  //    sizeof(blockvardecl); // size == 20
2556  // }
2557  //
2558  // For expressions, all implicit conversions are captured using the
2559  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2560  //
2561  // FIXME: If a source translation tool needs to see the original type, then
2562  // we need to consider storing both types (in ParmVarDecl)...
2563  //
2564  if (parmDeclType->isArrayType()) {
2565    // int x[restrict 4] ->  int *restrict
2566    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2567  } else if (parmDeclType->isFunctionType())
2568    parmDeclType = Context.getPointerType(parmDeclType);
2569
2570  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2571                                         D.getIdentifierLoc(), II,
2572                                         parmDeclType, StorageClass,
2573                                         0, 0);
2574
2575  if (D.getInvalidType())
2576    New->setInvalidDecl();
2577
2578  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2579  if (D.getCXXScopeSpec().isSet()) {
2580    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2581      << D.getCXXScopeSpec().getRange();
2582    New->setInvalidDecl();
2583  }
2584
2585  // Add the parameter declaration into this scope.
2586  S->AddDecl(New);
2587  if (II)
2588    IdResolver.AddDecl(New);
2589
2590  ProcessDeclAttributes(New, D);
2591  return New;
2592
2593}
2594
2595Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2596  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2597  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2598         "Not a function declarator!");
2599  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2600
2601  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2602  // for a K&R function.
2603  if (!FTI.hasPrototype) {
2604    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2605      if (FTI.ArgInfo[i].Param == 0) {
2606        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2607          << FTI.ArgInfo[i].Ident;
2608        // Implicitly declare the argument as type 'int' for lack of a better
2609        // type.
2610        DeclSpec DS;
2611        const char* PrevSpec; // unused
2612        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2613                           PrevSpec);
2614        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2615        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2616        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2617      }
2618    }
2619  } else {
2620    // FIXME: Diagnose arguments without names in C.
2621  }
2622
2623  Scope *ParentScope = FnBodyScope->getParent();
2624
2625  return ActOnStartOfFunctionDef(FnBodyScope,
2626                                 ActOnDeclarator(ParentScope, D, 0,
2627                                                 /*IsFunctionDefinition=*/true));
2628}
2629
2630Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2631  Decl *decl = static_cast<Decl*>(D);
2632  FunctionDecl *FD = cast<FunctionDecl>(decl);
2633
2634  // See if this is a redefinition.
2635  const FunctionDecl *Definition;
2636  if (FD->getBody(Definition)) {
2637    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2638    Diag(Definition->getLocation(), diag::note_previous_definition);
2639  }
2640
2641  PushDeclContext(FnBodyScope, FD);
2642
2643  // Check the validity of our function parameters
2644  CheckParmsForFunctionDef(FD);
2645
2646  // Introduce our parameters into the function scope
2647  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2648    ParmVarDecl *Param = FD->getParamDecl(p);
2649    Param->setOwningFunction(FD);
2650
2651    // If this has an identifier, add it to the scope stack.
2652    if (Param->getIdentifier())
2653      PushOnScopeChains(Param, FnBodyScope);
2654  }
2655
2656  // Checking attributes of current function definition
2657  // dllimport attribute.
2658  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2659    // dllimport attribute cannot be applied to definition.
2660    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2661      Diag(FD->getLocation(),
2662           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2663        << "dllimport";
2664      FD->setInvalidDecl();
2665      return FD;
2666    } else {
2667      // If a symbol previously declared dllimport is later defined, the
2668      // attribute is ignored in subsequent references, and a warning is
2669      // emitted.
2670      Diag(FD->getLocation(),
2671           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2672        << FD->getNameAsCString() << "dllimport";
2673    }
2674  }
2675  return FD;
2676}
2677
2678Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2679  Decl *dcl = static_cast<Decl *>(D);
2680  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2681  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2682    FD->setBody(Body);
2683    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2684  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2685    MD->setBody((Stmt*)Body);
2686  } else
2687    return 0;
2688  PopDeclContext();
2689  // Verify and clean out per-function state.
2690
2691  // Check goto/label use.
2692  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2693       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2694    // Verify that we have no forward references left.  If so, there was a goto
2695    // or address of a label taken, but no definition of it.  Label fwd
2696    // definitions are indicated with a null substmt.
2697    if (I->second->getSubStmt() == 0) {
2698      LabelStmt *L = I->second;
2699      // Emit error.
2700      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2701
2702      // At this point, we have gotos that use the bogus label.  Stitch it into
2703      // the function body so that they aren't leaked and that the AST is well
2704      // formed.
2705      if (Body) {
2706        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2707        cast<CompoundStmt>(Body)->push_back(L);
2708      } else {
2709        // The whole function wasn't parsed correctly, just delete this.
2710        delete L;
2711      }
2712    }
2713  }
2714  LabelMap.clear();
2715
2716  return D;
2717}
2718
2719/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2720/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2721ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2722                                           IdentifierInfo &II, Scope *S) {
2723  // Extension in C99.  Legal in C90, but warn about it.
2724  if (getLangOptions().C99)
2725    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2726  else
2727    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2728
2729  // FIXME: handle stuff like:
2730  // void foo() { extern float X(); }
2731  // void bar() { X(); }  <-- implicit decl for X in another scope.
2732
2733  // Set a Declarator for the implicit definition: int foo();
2734  const char *Dummy;
2735  DeclSpec DS;
2736  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2737  Error = Error; // Silence warning.
2738  assert(!Error && "Error setting up implicit decl!");
2739  Declarator D(DS, Declarator::BlockContext);
2740  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2741  D.SetIdentifier(&II, Loc);
2742
2743  // Insert this function into translation-unit scope.
2744
2745  DeclContext *PrevDC = CurContext;
2746  CurContext = Context.getTranslationUnitDecl();
2747
2748  FunctionDecl *FD =
2749    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2750  FD->setImplicit();
2751
2752  CurContext = PrevDC;
2753
2754  return FD;
2755}
2756
2757
2758TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2759                                    ScopedDecl *LastDeclarator) {
2760  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2761  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2762
2763  // Scope manipulation handled by caller.
2764  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2765                                           D.getIdentifierLoc(),
2766                                           D.getIdentifier(),
2767                                           T, LastDeclarator);
2768  if (D.getInvalidType())
2769    NewTD->setInvalidDecl();
2770  return NewTD;
2771}
2772
2773/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2774/// former case, Name will be non-null.  In the later case, Name will be null.
2775/// TagType indicates what kind of tag this is. TK indicates whether this is a
2776/// reference/declaration/definition of a tag.
2777Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2778                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2779                             IdentifierInfo *Name, SourceLocation NameLoc,
2780                             AttributeList *Attr,
2781                             MultiTemplateParamsArg TemplateParameterLists) {
2782  // If this is not a definition, it must have a name.
2783  assert((Name != 0 || TK == TK_Definition) &&
2784         "Nameless record must be a definition!");
2785
2786  TagDecl::TagKind Kind;
2787  switch (TagType) {
2788  default: assert(0 && "Unknown tag type!");
2789  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2790  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2791  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2792  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2793  }
2794
2795  DeclContext *SearchDC = CurContext;
2796  DeclContext *DC = CurContext;
2797  DeclContext *LexicalContext = CurContext;
2798  ScopedDecl *PrevDecl = 0;
2799
2800  if (Name && SS.isNotEmpty()) {
2801    // We have a nested-name tag ('struct foo::bar').
2802
2803    // Check for invalid 'foo::'.
2804    if (SS.isInvalid()) {
2805      Name = 0;
2806      goto CreateNewDecl;
2807    }
2808
2809    DC = static_cast<DeclContext*>(SS.getScopeRep());
2810    // Look-up name inside 'foo::'.
2811    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC)
2812                                           .getAsDecl());
2813
2814    // A tag 'foo::bar' must already exist.
2815    if (PrevDecl == 0) {
2816      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2817      Name = 0;
2818      goto CreateNewDecl;
2819    }
2820  } else {
2821    // If this is a named struct, check to see if there was a previous forward
2822    // declaration or definition.
2823    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2824    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S)
2825                                              .getAsDecl());
2826
2827    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2828      // FIXME: This makes sure that we ignore the contexts associated
2829      // with C structs, unions, and enums when looking for a matching
2830      // tag declaration or definition. See the similar lookup tweak
2831      // in Sema::LookupDecl; is there a better way to deal with this?
2832      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2833        SearchDC = SearchDC->getParent();
2834    }
2835  }
2836
2837  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2838    // Maybe we will complain about the shadowed template parameter.
2839    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2840    // Just pretend that we didn't see the previous declaration.
2841    PrevDecl = 0;
2842  }
2843
2844  if (PrevDecl) {
2845    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2846            "unexpected Decl type");
2847    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2848      // If this is a use of a previous tag, or if the tag is already declared
2849      // in the same scope (so that the definition/declaration completes or
2850      // rementions the tag), reuse the decl.
2851      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2852        // Make sure that this wasn't declared as an enum and now used as a
2853        // struct or something similar.
2854        if (PrevTagDecl->getTagKind() != Kind) {
2855          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2856          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2857          // Recover by making this an anonymous redefinition.
2858          Name = 0;
2859          PrevDecl = 0;
2860        } else {
2861          // If this is a use, just return the declaration we found.
2862
2863          // FIXME: In the future, return a variant or some other clue
2864          // for the consumer of this Decl to know it doesn't own it.
2865          // For our current ASTs this shouldn't be a problem, but will
2866          // need to be changed with DeclGroups.
2867          if (TK == TK_Reference)
2868            return PrevDecl;
2869
2870          // Diagnose attempts to redefine a tag.
2871          if (TK == TK_Definition) {
2872            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2873              Diag(NameLoc, diag::err_redefinition) << Name;
2874              Diag(Def->getLocation(), diag::note_previous_definition);
2875              // If this is a redefinition, recover by making this struct be
2876              // anonymous, which will make any later references get the previous
2877              // definition.
2878              Name = 0;
2879              PrevDecl = 0;
2880            }
2881            // Okay, this is definition of a previously declared or referenced
2882            // tag PrevDecl. We're going to create a new Decl for it.
2883          }
2884        }
2885        // If we get here we have (another) forward declaration or we
2886        // have a definition.  Just create a new decl.
2887      } else {
2888        // If we get here, this is a definition of a new tag type in a nested
2889        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2890        // new decl/type.  We set PrevDecl to NULL so that the entities
2891        // have distinct types.
2892        PrevDecl = 0;
2893      }
2894      // If we get here, we're going to create a new Decl. If PrevDecl
2895      // is non-NULL, it's a definition of the tag declared by
2896      // PrevDecl. If it's NULL, we have a new definition.
2897    } else {
2898      // PrevDecl is a namespace.
2899      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2900        // The tag name clashes with a namespace name, issue an error and
2901        // recover by making this tag be anonymous.
2902        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2903        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2904        Name = 0;
2905        PrevDecl = 0;
2906      } else {
2907        // The existing declaration isn't relevant to us; we're in a
2908        // new scope, so clear out the previous declaration.
2909        PrevDecl = 0;
2910      }
2911    }
2912  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2913             (Kind != TagDecl::TK_enum))  {
2914    // C++ [basic.scope.pdecl]p5:
2915    //   -- for an elaborated-type-specifier of the form
2916    //
2917    //          class-key identifier
2918    //
2919    //      if the elaborated-type-specifier is used in the
2920    //      decl-specifier-seq or parameter-declaration-clause of a
2921    //      function defined in namespace scope, the identifier is
2922    //      declared as a class-name in the namespace that contains
2923    //      the declaration; otherwise, except as a friend
2924    //      declaration, the identifier is declared in the smallest
2925    //      non-class, non-function-prototype scope that contains the
2926    //      declaration.
2927    //
2928    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2929    // C structs and unions.
2930
2931    // Find the context where we'll be declaring the tag.
2932    // FIXME: We would like to maintain the current DeclContext as the
2933    // lexical context,
2934    while (DC->isRecord())
2935      DC = DC->getParent();
2936    LexicalContext = DC;
2937
2938    // Find the scope where we'll be declaring the tag.
2939    while (S->isClassScope() ||
2940           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
2941           ((S->getFlags() & Scope::DeclScope) == 0) ||
2942           (S->getEntity() &&
2943            ((DeclContext *)S->getEntity())->isTransparentContext()))
2944      S = S->getParent();
2945  }
2946
2947CreateNewDecl:
2948
2949  // If there is an identifier, use the location of the identifier as the
2950  // location of the decl, otherwise use the location of the struct/union
2951  // keyword.
2952  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2953
2954  // Otherwise, create a new declaration. If there is a previous
2955  // declaration of the same entity, the two will be linked via
2956  // PrevDecl.
2957  TagDecl *New;
2958
2959  if (Kind == TagDecl::TK_enum) {
2960    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2961    // enum X { A, B, C } D;    D should chain to X.
2962    New = EnumDecl::Create(Context, DC, Loc, Name,
2963                           cast_or_null<EnumDecl>(PrevDecl));
2964    // If this is an undefined enum, warn.
2965    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2966  } else {
2967    // struct/union/class
2968
2969    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2970    // struct X { int A; } D;    D should chain to X.
2971    if (getLangOptions().CPlusPlus)
2972      // FIXME: Look for a way to use RecordDecl for simple structs.
2973      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2974                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2975    else
2976      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2977                               cast_or_null<RecordDecl>(PrevDecl));
2978  }
2979
2980  if (Kind != TagDecl::TK_enum) {
2981    // Handle #pragma pack: if the #pragma pack stack has non-default
2982    // alignment, make up a packed attribute for this decl. These
2983    // attributes are checked when the ASTContext lays out the
2984    // structure.
2985    //
2986    // It is important for implementing the correct semantics that this
2987    // happen here (in act on tag decl). The #pragma pack stack is
2988    // maintained as a result of parser callbacks which can occur at
2989    // many points during the parsing of a struct declaration (because
2990    // the #pragma tokens are effectively skipped over during the
2991    // parsing of the struct).
2992    if (unsigned Alignment = PackContext.getAlignment())
2993      New->addAttr(new PackedAttr(Alignment * 8));
2994  }
2995
2996  if (Attr)
2997    ProcessDeclAttributeList(New, Attr);
2998
2999  // If we're declaring or defining
3000  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3001    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3002
3003  // Set the lexical context. If the tag has a C++ scope specifier, the
3004  // lexical context will be different from the semantic context.
3005  New->setLexicalDeclContext(LexicalContext);
3006
3007  // If this has an identifier, add it to the scope stack.
3008  if (Name) {
3009    S = getNonFieldDeclScope(S);
3010
3011    // Add it to the decl chain.
3012    if (LexicalContext != CurContext) {
3013      // FIXME: PushOnScopeChains should not rely on CurContext!
3014      DeclContext *OldContext = CurContext;
3015      CurContext = LexicalContext;
3016      PushOnScopeChains(New, S);
3017      CurContext = OldContext;
3018    } else
3019      PushOnScopeChains(New, S);
3020  } else {
3021    LexicalContext->addDecl(New);
3022  }
3023
3024  return New;
3025}
3026
3027void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3028  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3029
3030  // Enter the tag context.
3031  PushDeclContext(S, Tag);
3032
3033  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3034    FieldCollector->StartClass();
3035
3036    if (Record->getIdentifier()) {
3037      // C++ [class]p2:
3038      //   [...] The class-name is also inserted into the scope of the
3039      //   class itself; this is known as the injected-class-name. For
3040      //   purposes of access checking, the injected-class-name is treated
3041      //   as if it were a public member name.
3042      RecordDecl *InjectedClassName
3043        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3044                                CurContext, Record->getLocation(),
3045                                Record->getIdentifier(), Record);
3046      InjectedClassName->setImplicit();
3047      PushOnScopeChains(InjectedClassName, S);
3048    }
3049  }
3050}
3051
3052void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3053  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3054
3055  if (isa<CXXRecordDecl>(Tag))
3056    FieldCollector->FinishClass();
3057
3058  // Exit this scope of this tag's definition.
3059  PopDeclContext();
3060
3061  // Notify the consumer that we've defined a tag.
3062  Consumer.HandleTagDeclDefinition(Tag);
3063}
3064
3065/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3066/// types into constant array types in certain situations which would otherwise
3067/// be errors (for GCC compatibility).
3068static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3069                                                    ASTContext &Context) {
3070  // This method tries to turn a variable array into a constant
3071  // array even when the size isn't an ICE.  This is necessary
3072  // for compatibility with code that depends on gcc's buggy
3073  // constant expression folding, like struct {char x[(int)(char*)2];}
3074  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3075  if (!VLATy) return QualType();
3076
3077  Expr::EvalResult EvalResult;
3078  if (!VLATy->getSizeExpr() ||
3079      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3080    return QualType();
3081
3082  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3083  llvm::APSInt &Res = EvalResult.Val.getInt();
3084  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3085    return Context.getConstantArrayType(VLATy->getElementType(),
3086                                        Res, ArrayType::Normal, 0);
3087  return QualType();
3088}
3089
3090bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3091                          QualType FieldTy, const Expr *BitWidth) {
3092  // FIXME: 6.7.2.1p4 - verify the field type.
3093
3094  llvm::APSInt Value;
3095  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3096    return true;
3097
3098  // Zero-width bitfield is ok for anonymous field.
3099  if (Value == 0 && FieldName)
3100    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3101
3102  if (Value.isNegative())
3103    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3104
3105  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3106  // FIXME: We won't need the 0 size once we check that the field type is valid.
3107  if (TypeSize && Value.getZExtValue() > TypeSize)
3108    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3109       << FieldName << (unsigned)TypeSize;
3110
3111  return false;
3112}
3113
3114/// ActOnField - Each field of a struct/union/class is passed into this in order
3115/// to create a FieldDecl object for it.
3116Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3117                               SourceLocation DeclStart,
3118                               Declarator &D, ExprTy *BitfieldWidth) {
3119  IdentifierInfo *II = D.getIdentifier();
3120  Expr *BitWidth = (Expr*)BitfieldWidth;
3121  SourceLocation Loc = DeclStart;
3122  RecordDecl *Record = (RecordDecl *)TagD;
3123  if (II) Loc = D.getIdentifierLoc();
3124
3125  // FIXME: Unnamed fields can be handled in various different ways, for
3126  // example, unnamed unions inject all members into the struct namespace!
3127
3128  QualType T = GetTypeForDeclarator(D, S);
3129  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3130  bool InvalidDecl = false;
3131
3132  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3133  // than a variably modified type.
3134  if (T->isVariablyModifiedType()) {
3135    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3136    if (!FixedTy.isNull()) {
3137      Diag(Loc, diag::warn_illegal_constant_array_size);
3138      T = FixedTy;
3139    } else {
3140      Diag(Loc, diag::err_typecheck_field_variable_size);
3141      T = Context.IntTy;
3142      InvalidDecl = true;
3143    }
3144  }
3145
3146  if (BitWidth) {
3147    if (VerifyBitField(Loc, II, T, BitWidth))
3148      InvalidDecl = true;
3149  } else {
3150    // Not a bitfield.
3151
3152    // validate II.
3153
3154  }
3155
3156  // FIXME: Chain fielddecls together.
3157  FieldDecl *NewFD;
3158
3159  NewFD = FieldDecl::Create(Context, Record,
3160                            Loc, II, T, BitWidth,
3161                            D.getDeclSpec().getStorageClassSpec() ==
3162                              DeclSpec::SCS_mutable,
3163                            /*PrevDecl=*/0);
3164
3165  if (II) {
3166    Decl *PrevDecl
3167      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3168    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3169        && !isa<TagDecl>(PrevDecl)) {
3170      Diag(Loc, diag::err_duplicate_member) << II;
3171      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3172      NewFD->setInvalidDecl();
3173      Record->setInvalidDecl();
3174    }
3175  }
3176
3177  if (getLangOptions().CPlusPlus) {
3178    CheckExtraCXXDefaultArguments(D);
3179    if (!T->isPODType())
3180      cast<CXXRecordDecl>(Record)->setPOD(false);
3181  }
3182
3183  ProcessDeclAttributes(NewFD, D);
3184
3185  if (D.getInvalidType() || InvalidDecl)
3186    NewFD->setInvalidDecl();
3187
3188  if (II) {
3189    PushOnScopeChains(NewFD, S);
3190  } else
3191    Record->addDecl(NewFD);
3192
3193  return NewFD;
3194}
3195
3196/// TranslateIvarVisibility - Translate visibility from a token ID to an
3197///  AST enum value.
3198static ObjCIvarDecl::AccessControl
3199TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3200  switch (ivarVisibility) {
3201  default: assert(0 && "Unknown visitibility kind");
3202  case tok::objc_private: return ObjCIvarDecl::Private;
3203  case tok::objc_public: return ObjCIvarDecl::Public;
3204  case tok::objc_protected: return ObjCIvarDecl::Protected;
3205  case tok::objc_package: return ObjCIvarDecl::Package;
3206  }
3207}
3208
3209/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3210/// in order to create an IvarDecl object for it.
3211Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3212                              SourceLocation DeclStart,
3213                              Declarator &D, ExprTy *BitfieldWidth,
3214                              tok::ObjCKeywordKind Visibility) {
3215
3216  IdentifierInfo *II = D.getIdentifier();
3217  Expr *BitWidth = (Expr*)BitfieldWidth;
3218  SourceLocation Loc = DeclStart;
3219  if (II) Loc = D.getIdentifierLoc();
3220
3221  // FIXME: Unnamed fields can be handled in various different ways, for
3222  // example, unnamed unions inject all members into the struct namespace!
3223
3224  QualType T = GetTypeForDeclarator(D, S);
3225  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3226  bool InvalidDecl = false;
3227
3228  if (BitWidth) {
3229    // TODO: Validate.
3230    //printf("WARNING: BITFIELDS IGNORED!\n");
3231
3232    // 6.7.2.1p3
3233    // 6.7.2.1p4
3234
3235  } else {
3236    // Not a bitfield.
3237
3238    // validate II.
3239
3240  }
3241
3242  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3243  // than a variably modified type.
3244  if (T->isVariablyModifiedType()) {
3245    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3246    InvalidDecl = true;
3247  }
3248
3249  // Get the visibility (access control) for this ivar.
3250  ObjCIvarDecl::AccessControl ac =
3251    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3252                                        : ObjCIvarDecl::None;
3253
3254  // Construct the decl.
3255  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3256                                             (Expr *)BitfieldWidth);
3257
3258  if (II) {
3259    Decl *PrevDecl
3260      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false, false);
3261    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3262        && !isa<TagDecl>(PrevDecl)) {
3263      Diag(Loc, diag::err_duplicate_member) << II;
3264      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3265      NewID->setInvalidDecl();
3266    }
3267  }
3268
3269  // Process attributes attached to the ivar.
3270  ProcessDeclAttributes(NewID, D);
3271
3272  if (D.getInvalidType() || InvalidDecl)
3273    NewID->setInvalidDecl();
3274
3275  if (II) {
3276    // FIXME: When interfaces are DeclContexts, we'll need to add
3277    // these to the interface.
3278    S->AddDecl(NewID);
3279    IdResolver.AddDecl(NewID);
3280  }
3281
3282  return NewID;
3283}
3284
3285void Sema::ActOnFields(Scope* S,
3286                       SourceLocation RecLoc, DeclTy *RecDecl,
3287                       DeclTy **Fields, unsigned NumFields,
3288                       SourceLocation LBrac, SourceLocation RBrac,
3289                       AttributeList *Attr) {
3290  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3291  assert(EnclosingDecl && "missing record or interface decl");
3292  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3293
3294  if (Record) {
3295    QualType RecordType = Context.getTypeDeclType(Record);
3296    if (RecordType->getAsRecordType()->getDecl()->isDefinition()) {
3297      RecordDecl *Def = RecordType->getAsRecordType()->getDecl();
3298      // Diagnose code like:
3299      //     struct S { struct S {} X; };
3300      // We discover this when we complete the outer S.  Reject and ignore the
3301      // outer S.
3302      Diag(Def->getLocation(), diag::err_nested_redefinition)
3303        << Def->getDeclName();
3304      Diag(RecLoc, diag::note_previous_definition);
3305      Record->setInvalidDecl();
3306      return;
3307    }
3308  }
3309
3310  // Verify that all the fields are okay.
3311  unsigned NumNamedMembers = 0;
3312  llvm::SmallVector<FieldDecl*, 32> RecFields;
3313
3314  for (unsigned i = 0; i != NumFields; ++i) {
3315    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3316    assert(FD && "missing field decl");
3317
3318    // Get the type for the field.
3319    Type *FDTy = FD->getType().getTypePtr();
3320
3321    if (!FD->isAnonymousStructOrUnion()) {
3322      // Remember all fields written by the user.
3323      RecFields.push_back(FD);
3324    }
3325
3326    // C99 6.7.2.1p2 - A field may not be a function type.
3327    if (FDTy->isFunctionType()) {
3328      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3329        << FD->getDeclName();
3330      FD->setInvalidDecl();
3331      EnclosingDecl->setInvalidDecl();
3332      continue;
3333    }
3334    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3335    if (FDTy->isIncompleteType()) {
3336      if (!Record) {  // Incomplete ivar type is always an error.
3337        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3338        FD->setInvalidDecl();
3339        EnclosingDecl->setInvalidDecl();
3340        continue;
3341      }
3342      if (i != NumFields-1 ||                   // ... that the last member ...
3343          !Record->isStruct() ||  // ... of a structure ...
3344          !FDTy->isArrayType()) {         //... may have incomplete array type.
3345        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3346        FD->setInvalidDecl();
3347        EnclosingDecl->setInvalidDecl();
3348        continue;
3349      }
3350      if (NumNamedMembers < 1) {  //... must have more than named member ...
3351        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3352          << FD->getDeclName();
3353        FD->setInvalidDecl();
3354        EnclosingDecl->setInvalidDecl();
3355        continue;
3356      }
3357      // Okay, we have a legal flexible array member at the end of the struct.
3358      if (Record)
3359        Record->setHasFlexibleArrayMember(true);
3360    }
3361    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3362    /// field of another structure or the element of an array.
3363    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3364      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3365        // If this is a member of a union, then entire union becomes "flexible".
3366        if (Record && Record->isUnion()) {
3367          Record->setHasFlexibleArrayMember(true);
3368        } else {
3369          // If this is a struct/class and this is not the last element, reject
3370          // it.  Note that GCC supports variable sized arrays in the middle of
3371          // structures.
3372          if (i != NumFields-1) {
3373            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3374              << FD->getDeclName();
3375            FD->setInvalidDecl();
3376            EnclosingDecl->setInvalidDecl();
3377            continue;
3378          }
3379          // We support flexible arrays at the end of structs in other structs
3380          // as an extension.
3381          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3382            << FD->getDeclName();
3383          if (Record)
3384            Record->setHasFlexibleArrayMember(true);
3385        }
3386      }
3387    }
3388    /// A field cannot be an Objective-c object
3389    if (FDTy->isObjCInterfaceType()) {
3390      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3391        << FD->getDeclName();
3392      FD->setInvalidDecl();
3393      EnclosingDecl->setInvalidDecl();
3394      continue;
3395    }
3396    // Keep track of the number of named members.
3397    if (FD->getIdentifier())
3398      ++NumNamedMembers;
3399  }
3400
3401  // Okay, we successfully defined 'Record'.
3402  if (Record) {
3403    Record->completeDefinition(Context);
3404  } else {
3405    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3406    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3407      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3408      // Must enforce the rule that ivars in the base classes may not be
3409      // duplicates.
3410      if (ID->getSuperClass()) {
3411        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3412             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3413          ObjCIvarDecl* Ivar = (*IVI);
3414          IdentifierInfo *II = Ivar->getIdentifier();
3415          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3416          if (prevIvar) {
3417            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3418            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3419          }
3420        }
3421      }
3422    }
3423    else if (ObjCImplementationDecl *IMPDecl =
3424               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3425      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3426      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3427      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3428    }
3429  }
3430
3431  if (Attr)
3432    ProcessDeclAttributeList(Record, Attr);
3433}
3434
3435Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3436                                      DeclTy *lastEnumConst,
3437                                      SourceLocation IdLoc, IdentifierInfo *Id,
3438                                      SourceLocation EqualLoc, ExprTy *val) {
3439  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3440  EnumConstantDecl *LastEnumConst =
3441    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3442  Expr *Val = static_cast<Expr*>(val);
3443
3444  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3445  // we find one that is.
3446  S = getNonFieldDeclScope(S);
3447
3448  // Verify that there isn't already something declared with this name in this
3449  // scope.
3450  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3451  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3452    // Maybe we will complain about the shadowed template parameter.
3453    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3454    // Just pretend that we didn't see the previous declaration.
3455    PrevDecl = 0;
3456  }
3457
3458  if (PrevDecl) {
3459    // When in C++, we may get a TagDecl with the same name; in this case the
3460    // enum constant will 'hide' the tag.
3461    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3462           "Received TagDecl when not in C++!");
3463    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3464      if (isa<EnumConstantDecl>(PrevDecl))
3465        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3466      else
3467        Diag(IdLoc, diag::err_redefinition) << Id;
3468      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3469      delete Val;
3470      return 0;
3471    }
3472  }
3473
3474  llvm::APSInt EnumVal(32);
3475  QualType EltTy;
3476  if (Val) {
3477    // Make sure to promote the operand type to int.
3478    UsualUnaryConversions(Val);
3479
3480    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3481    SourceLocation ExpLoc;
3482    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3483      delete Val;
3484      Val = 0;  // Just forget about it.
3485    } else {
3486      EltTy = Val->getType();
3487    }
3488  }
3489
3490  if (!Val) {
3491    if (LastEnumConst) {
3492      // Assign the last value + 1.
3493      EnumVal = LastEnumConst->getInitVal();
3494      ++EnumVal;
3495
3496      // Check for overflow on increment.
3497      if (EnumVal < LastEnumConst->getInitVal())
3498        Diag(IdLoc, diag::warn_enum_value_overflow);
3499
3500      EltTy = LastEnumConst->getType();
3501    } else {
3502      // First value, set to zero.
3503      EltTy = Context.IntTy;
3504      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3505    }
3506  }
3507
3508  EnumConstantDecl *New =
3509    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3510                             Val, EnumVal,
3511                             LastEnumConst);
3512
3513  // Register this decl in the current scope stack.
3514  PushOnScopeChains(New, S);
3515
3516  return New;
3517}
3518
3519// FIXME: For consistency with ActOnFields(), we should have the parser
3520// pass in the source location for the left/right braces.
3521void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3522                         DeclTy **Elements, unsigned NumElements) {
3523  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3524  QualType EnumType = Context.getTypeDeclType(Enum);
3525
3526  if (EnumType->getAsEnumType()->getDecl()->isDefinition()) {
3527    EnumDecl *Def = EnumType->getAsEnumType()->getDecl();
3528    // Diagnose code like:
3529    //   enum e0 {
3530    //     E0 = sizeof(enum e0 { E1 })
3531    //   };
3532    Diag(Def->getLocation(), diag::err_nested_redefinition)
3533      << Enum->getDeclName();
3534    Diag(Enum->getLocation(), diag::note_previous_definition);
3535    Enum->setInvalidDecl();
3536    return;
3537  }
3538
3539  // TODO: If the result value doesn't fit in an int, it must be a long or long
3540  // long value.  ISO C does not support this, but GCC does as an extension,
3541  // emit a warning.
3542  unsigned IntWidth = Context.Target.getIntWidth();
3543
3544  // Verify that all the values are okay, compute the size of the values, and
3545  // reverse the list.
3546  unsigned NumNegativeBits = 0;
3547  unsigned NumPositiveBits = 0;
3548
3549  // Keep track of whether all elements have type int.
3550  bool AllElementsInt = true;
3551
3552  for (unsigned i = 0; i != NumElements; ++i) {
3553    EnumConstantDecl *ECD =
3554      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3555    if (!ECD) continue;  // Already issued a diagnostic.
3556
3557    // If the enum value doesn't fit in an int, emit an extension warning.
3558    const llvm::APSInt &InitVal = ECD->getInitVal();
3559    assert(InitVal.getBitWidth() >= IntWidth &&
3560           "Should have promoted value to int");
3561    if (InitVal.getBitWidth() > IntWidth) {
3562      llvm::APSInt V(InitVal);
3563      V.trunc(IntWidth);
3564      V.extend(InitVal.getBitWidth());
3565      if (V != InitVal)
3566        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3567          << InitVal.toString(10);
3568    }
3569
3570    // Keep track of the size of positive and negative values.
3571    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3572      NumPositiveBits = std::max(NumPositiveBits,
3573                                 (unsigned)InitVal.getActiveBits());
3574    else
3575      NumNegativeBits = std::max(NumNegativeBits,
3576                                 (unsigned)InitVal.getMinSignedBits());
3577
3578    // Keep track of whether every enum element has type int (very commmon).
3579    if (AllElementsInt)
3580      AllElementsInt = ECD->getType() == Context.IntTy;
3581  }
3582
3583  // Figure out the type that should be used for this enum.
3584  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3585  QualType BestType;
3586  unsigned BestWidth;
3587
3588  if (NumNegativeBits) {
3589    // If there is a negative value, figure out the smallest integer type (of
3590    // int/long/longlong) that fits.
3591    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3592      BestType = Context.IntTy;
3593      BestWidth = IntWidth;
3594    } else {
3595      BestWidth = Context.Target.getLongWidth();
3596
3597      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3598        BestType = Context.LongTy;
3599      else {
3600        BestWidth = Context.Target.getLongLongWidth();
3601
3602        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3603          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3604        BestType = Context.LongLongTy;
3605      }
3606    }
3607  } else {
3608    // If there is no negative value, figure out which of uint, ulong, ulonglong
3609    // fits.
3610    if (NumPositiveBits <= IntWidth) {
3611      BestType = Context.UnsignedIntTy;
3612      BestWidth = IntWidth;
3613    } else if (NumPositiveBits <=
3614               (BestWidth = Context.Target.getLongWidth())) {
3615      BestType = Context.UnsignedLongTy;
3616    } else {
3617      BestWidth = Context.Target.getLongLongWidth();
3618      assert(NumPositiveBits <= BestWidth &&
3619             "How could an initializer get larger than ULL?");
3620      BestType = Context.UnsignedLongLongTy;
3621    }
3622  }
3623
3624  // Loop over all of the enumerator constants, changing their types to match
3625  // the type of the enum if needed.
3626  for (unsigned i = 0; i != NumElements; ++i) {
3627    EnumConstantDecl *ECD =
3628      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3629    if (!ECD) continue;  // Already issued a diagnostic.
3630
3631    // Standard C says the enumerators have int type, but we allow, as an
3632    // extension, the enumerators to be larger than int size.  If each
3633    // enumerator value fits in an int, type it as an int, otherwise type it the
3634    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3635    // that X has type 'int', not 'unsigned'.
3636    if (ECD->getType() == Context.IntTy) {
3637      // Make sure the init value is signed.
3638      llvm::APSInt IV = ECD->getInitVal();
3639      IV.setIsSigned(true);
3640      ECD->setInitVal(IV);
3641
3642      if (getLangOptions().CPlusPlus)
3643        // C++ [dcl.enum]p4: Following the closing brace of an
3644        // enum-specifier, each enumerator has the type of its
3645        // enumeration.
3646        ECD->setType(EnumType);
3647      continue;  // Already int type.
3648    }
3649
3650    // Determine whether the value fits into an int.
3651    llvm::APSInt InitVal = ECD->getInitVal();
3652    bool FitsInInt;
3653    if (InitVal.isUnsigned() || !InitVal.isNegative())
3654      FitsInInt = InitVal.getActiveBits() < IntWidth;
3655    else
3656      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3657
3658    // If it fits into an integer type, force it.  Otherwise force it to match
3659    // the enum decl type.
3660    QualType NewTy;
3661    unsigned NewWidth;
3662    bool NewSign;
3663    if (FitsInInt) {
3664      NewTy = Context.IntTy;
3665      NewWidth = IntWidth;
3666      NewSign = true;
3667    } else if (ECD->getType() == BestType) {
3668      // Already the right type!
3669      if (getLangOptions().CPlusPlus)
3670        // C++ [dcl.enum]p4: Following the closing brace of an
3671        // enum-specifier, each enumerator has the type of its
3672        // enumeration.
3673        ECD->setType(EnumType);
3674      continue;
3675    } else {
3676      NewTy = BestType;
3677      NewWidth = BestWidth;
3678      NewSign = BestType->isSignedIntegerType();
3679    }
3680
3681    // Adjust the APSInt value.
3682    InitVal.extOrTrunc(NewWidth);
3683    InitVal.setIsSigned(NewSign);
3684    ECD->setInitVal(InitVal);
3685
3686    // Adjust the Expr initializer and type.
3687    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3688                                          /*isLvalue=*/false));
3689    if (getLangOptions().CPlusPlus)
3690      // C++ [dcl.enum]p4: Following the closing brace of an
3691      // enum-specifier, each enumerator has the type of its
3692      // enumeration.
3693      ECD->setType(EnumType);
3694    else
3695      ECD->setType(NewTy);
3696  }
3697
3698  Enum->completeDefinition(Context, BestType);
3699}
3700
3701Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3702                                          ExprArg expr) {
3703  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3704
3705  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3706}
3707
3708
3709void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3710                           ExprTy *alignment, SourceLocation PragmaLoc,
3711                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3712  Expr *Alignment = static_cast<Expr *>(alignment);
3713
3714  // If specified then alignment must be a "small" power of two.
3715  unsigned AlignmentVal = 0;
3716  if (Alignment) {
3717    llvm::APSInt Val;
3718    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3719        !Val.isPowerOf2() ||
3720        Val.getZExtValue() > 16) {
3721      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3722      delete Alignment;
3723      return; // Ignore
3724    }
3725
3726    AlignmentVal = (unsigned) Val.getZExtValue();
3727  }
3728
3729  switch (Kind) {
3730  case Action::PPK_Default: // pack([n])
3731    PackContext.setAlignment(AlignmentVal);
3732    break;
3733
3734  case Action::PPK_Show: // pack(show)
3735    // Show the current alignment, making sure to show the right value
3736    // for the default.
3737    AlignmentVal = PackContext.getAlignment();
3738    // FIXME: This should come from the target.
3739    if (AlignmentVal == 0)
3740      AlignmentVal = 8;
3741    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3742    break;
3743
3744  case Action::PPK_Push: // pack(push [, id] [, [n])
3745    PackContext.push(Name);
3746    // Set the new alignment if specified.
3747    if (Alignment)
3748      PackContext.setAlignment(AlignmentVal);
3749    break;
3750
3751  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3752    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3753    // "#pragma pack(pop, identifier, n) is undefined"
3754    if (Alignment && Name)
3755      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3756
3757    // Do the pop.
3758    if (!PackContext.pop(Name)) {
3759      // If a name was specified then failure indicates the name
3760      // wasn't found. Otherwise failure indicates the stack was
3761      // empty.
3762      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3763        << (Name ? "no record matching name" : "stack empty");
3764
3765      // FIXME: Warn about popping named records as MSVC does.
3766    } else {
3767      // Pop succeeded, set the new alignment if specified.
3768      if (Alignment)
3769        PackContext.setAlignment(AlignmentVal);
3770    }
3771    break;
3772
3773  default:
3774    assert(0 && "Invalid #pragma pack kind.");
3775  }
3776}
3777
3778bool PragmaPackStack::pop(IdentifierInfo *Name) {
3779  if (Stack.empty())
3780    return false;
3781
3782  // If name is empty just pop top.
3783  if (!Name) {
3784    Alignment = Stack.back().first;
3785    Stack.pop_back();
3786    return true;
3787  }
3788
3789  // Otherwise, find the named record.
3790  for (unsigned i = Stack.size(); i != 0; ) {
3791    --i;
3792    if (Stack[i].second == Name) {
3793      // Found it, pop up to and including this record.
3794      Alignment = Stack[i].first;
3795      Stack.erase(Stack.begin() + i, Stack.end());
3796      return true;
3797    }
3798  }
3799
3800  return false;
3801}
3802