SemaDecl.cpp revision 8499f3f5ff8d5f95ece8047780030a3daad1b6fa
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference:
84    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
85    return 0;
86
87  case LookupResult::Found:
88    IIDecl = Result.getAsDecl();
89    break;
90  }
91
92  if (IIDecl) {
93    QualType T;
94
95    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
96      // Check whether we can use this type
97      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
98
99      T = Context.getTypeDeclType(TD);
100    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
101      // Check whether we can use this interface.
102      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
103
104      T = Context.getObjCInterfaceType(IDecl);
105    } else
106      return 0;
107
108    if (SS)
109      T = getQualifiedNameType(*SS, T);
110
111    return T.getAsOpaquePtr();
112  }
113
114  return 0;
115}
116
117DeclContext *Sema::getContainingDC(DeclContext *DC) {
118  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
119    // A C++ out-of-line method will return to the file declaration context.
120    if (MD->isOutOfLineDefinition())
121      return MD->getLexicalDeclContext();
122
123    // A C++ inline method is parsed *after* the topmost class it was declared
124    // in is fully parsed (it's "complete").
125    // The parsing of a C++ inline method happens at the declaration context of
126    // the topmost (non-nested) class it is lexically declared in.
127    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
128    DC = MD->getParent();
129    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
130      DC = RD;
131
132    // Return the declaration context of the topmost class the inline method is
133    // declared in.
134    return DC;
135  }
136
137  if (isa<ObjCMethodDecl>(DC))
138    return Context.getTranslationUnitDecl();
139
140  return DC->getLexicalParent();
141}
142
143void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
144  assert(getContainingDC(DC) == CurContext &&
145      "The next DeclContext should be lexically contained in the current one.");
146  CurContext = DC;
147  S->setEntity(DC);
148}
149
150void Sema::PopDeclContext() {
151  assert(CurContext && "DeclContext imbalance!");
152
153  CurContext = getContainingDC(CurContext);
154}
155
156/// \brief Determine whether we allow overloading of the function
157/// PrevDecl with another declaration.
158///
159/// This routine determines whether overloading is possible, not
160/// whether some new function is actually an overload. It will return
161/// true in C++ (where we can always provide overloads) or, as an
162/// extension, in C when the previous function is already an
163/// overloaded function declaration or has the "overloadable"
164/// attribute.
165static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
166  if (Context.getLangOptions().CPlusPlus)
167    return true;
168
169  if (isa<OverloadedFunctionDecl>(PrevDecl))
170    return true;
171
172  return PrevDecl->getAttr<OverloadableAttr>() != 0;
173}
174
175/// Add this decl to the scope shadowed decl chains.
176void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
177  // Move up the scope chain until we find the nearest enclosing
178  // non-transparent context. The declaration will be introduced into this
179  // scope.
180  while (S->getEntity() &&
181         ((DeclContext *)S->getEntity())->isTransparentContext())
182    S = S->getParent();
183
184  S->AddDecl(DeclPtrTy::make(D));
185
186  // Add scoped declarations into their context, so that they can be
187  // found later. Declarations without a context won't be inserted
188  // into any context.
189  CurContext->addDecl(D);
190
191  // C++ [basic.scope]p4:
192  //   -- exactly one declaration shall declare a class name or
193  //   enumeration name that is not a typedef name and the other
194  //   declarations shall all refer to the same object or
195  //   enumerator, or all refer to functions and function templates;
196  //   in this case the class name or enumeration name is hidden.
197  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
198    // We are pushing the name of a tag (enum or class).
199    if (CurContext->getLookupContext()
200          == TD->getDeclContext()->getLookupContext()) {
201      // We're pushing the tag into the current context, which might
202      // require some reshuffling in the identifier resolver.
203      IdentifierResolver::iterator
204        I = IdResolver.begin(TD->getDeclName()),
205        IEnd = IdResolver.end();
206      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
207        NamedDecl *PrevDecl = *I;
208        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
209             PrevDecl = *I, ++I) {
210          if (TD->declarationReplaces(*I)) {
211            // This is a redeclaration. Remove it from the chain and
212            // break out, so that we'll add in the shadowed
213            // declaration.
214            S->RemoveDecl(DeclPtrTy::make(*I));
215            if (PrevDecl == *I) {
216              IdResolver.RemoveDecl(*I);
217              IdResolver.AddDecl(TD);
218              return;
219            } else {
220              IdResolver.RemoveDecl(*I);
221              break;
222            }
223          }
224        }
225
226        // There is already a declaration with the same name in the same
227        // scope, which is not a tag declaration. It must be found
228        // before we find the new declaration, so insert the new
229        // declaration at the end of the chain.
230        IdResolver.AddShadowedDecl(TD, PrevDecl);
231
232        return;
233      }
234    }
235  } else if (isa<FunctionDecl>(D) &&
236             AllowOverloadingOfFunction(D, Context)) {
237    // We are pushing the name of a function, which might be an
238    // overloaded name.
239    FunctionDecl *FD = cast<FunctionDecl>(D);
240    IdentifierResolver::iterator Redecl
241      = std::find_if(IdResolver.begin(FD->getDeclName()),
242                     IdResolver.end(),
243                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
244                                  FD));
245    if (Redecl != IdResolver.end() &&
246        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
247      // There is already a declaration of a function on our
248      // IdResolver chain. Replace it with this declaration.
249      S->RemoveDecl(DeclPtrTy::make(*Redecl));
250      IdResolver.RemoveDecl(*Redecl);
251    }
252  }
253
254  IdResolver.AddDecl(D);
255}
256
257void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
258  if (S->decl_empty()) return;
259  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
260	 "Scope shouldn't contain decls!");
261
262  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
263       I != E; ++I) {
264    Decl *TmpD = (*I).getAs<Decl>();
265    assert(TmpD && "This decl didn't get pushed??");
266
267    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
268    NamedDecl *D = cast<NamedDecl>(TmpD);
269
270    if (!D->getDeclName()) continue;
271
272    // Remove this name from our lexical scope.
273    IdResolver.RemoveDecl(D);
274  }
275}
276
277/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
278/// return 0 if one not found.
279ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
280  // The third "scope" argument is 0 since we aren't enabling lazy built-in
281  // creation from this context.
282  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
283
284  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
285}
286
287/// getNonFieldDeclScope - Retrieves the innermost scope, starting
288/// from S, where a non-field would be declared. This routine copes
289/// with the difference between C and C++ scoping rules in structs and
290/// unions. For example, the following code is well-formed in C but
291/// ill-formed in C++:
292/// @code
293/// struct S6 {
294///   enum { BAR } e;
295/// };
296///
297/// void test_S6() {
298///   struct S6 a;
299///   a.e = BAR;
300/// }
301/// @endcode
302/// For the declaration of BAR, this routine will return a different
303/// scope. The scope S will be the scope of the unnamed enumeration
304/// within S6. In C++, this routine will return the scope associated
305/// with S6, because the enumeration's scope is a transparent
306/// context but structures can contain non-field names. In C, this
307/// routine will return the translation unit scope, since the
308/// enumeration's scope is a transparent context and structures cannot
309/// contain non-field names.
310Scope *Sema::getNonFieldDeclScope(Scope *S) {
311  while (((S->getFlags() & Scope::DeclScope) == 0) ||
312         (S->getEntity() &&
313          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
314         (S->isClassScope() && !getLangOptions().CPlusPlus))
315    S = S->getParent();
316  return S;
317}
318
319void Sema::InitBuiltinVaListType() {
320  if (!Context.getBuiltinVaListType().isNull())
321    return;
322
323  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
324  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
325  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
326  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
327}
328
329/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
330/// file scope.  lazily create a decl for it. ForRedeclaration is true
331/// if we're creating this built-in in anticipation of redeclaring the
332/// built-in.
333NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
334                                     Scope *S, bool ForRedeclaration,
335                                     SourceLocation Loc) {
336  Builtin::ID BID = (Builtin::ID)bid;
337
338  if (Context.BuiltinInfo.hasVAListUse(BID))
339    InitBuiltinVaListType();
340
341  Builtin::Context::GetBuiltinTypeError Error;
342  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
343  switch (Error) {
344  case Builtin::Context::GE_None:
345    // Okay
346    break;
347
348  case Builtin::Context::GE_Missing_FILE:
349    if (ForRedeclaration)
350      Diag(Loc, diag::err_implicit_decl_requires_stdio)
351        << Context.BuiltinInfo.GetName(BID);
352    return 0;
353  }
354
355  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
356    Diag(Loc, diag::ext_implicit_lib_function_decl)
357      << Context.BuiltinInfo.GetName(BID)
358      << R;
359    if (Context.BuiltinInfo.getHeaderName(BID) &&
360        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
361          != diag::MAP_IGNORE)
362      Diag(Loc, diag::note_please_include_header)
363        << Context.BuiltinInfo.getHeaderName(BID)
364        << Context.BuiltinInfo.GetName(BID);
365  }
366
367  FunctionDecl *New = FunctionDecl::Create(Context,
368                                           Context.getTranslationUnitDecl(),
369                                           Loc, II, R,
370                                           FunctionDecl::Extern, false,
371                                           /*hasPrototype=*/true);
372  New->setImplicit();
373
374  // Create Decl objects for each parameter, adding them to the
375  // FunctionDecl.
376  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
377    llvm::SmallVector<ParmVarDecl*, 16> Params;
378    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
379      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
380                                           FT->getArgType(i), VarDecl::None, 0));
381    New->setParams(Context, &Params[0], Params.size());
382  }
383
384  AddKnownFunctionAttributes(New);
385
386  // TUScope is the translation-unit scope to insert this function into.
387  // FIXME: This is hideous. We need to teach PushOnScopeChains to
388  // relate Scopes to DeclContexts, and probably eliminate CurContext
389  // entirely, but we're not there yet.
390  DeclContext *SavedContext = CurContext;
391  CurContext = Context.getTranslationUnitDecl();
392  PushOnScopeChains(New, TUScope);
393  CurContext = SavedContext;
394  return New;
395}
396
397/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
398/// everything from the standard library is defined.
399NamespaceDecl *Sema::GetStdNamespace() {
400  if (!StdNamespace) {
401    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
402    DeclContext *Global = Context.getTranslationUnitDecl();
403    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
404    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
405  }
406  return StdNamespace;
407}
408
409/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
410/// same name and scope as a previous declaration 'Old'.  Figure out
411/// how to resolve this situation, merging decls or emitting
412/// diagnostics as appropriate. Returns true if there was an error,
413/// false otherwise.
414///
415bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
416  bool objc_types = false;
417  // Allow multiple definitions for ObjC built-in typedefs.
418  // FIXME: Verify the underlying types are equivalent!
419  if (getLangOptions().ObjC1) {
420    const IdentifierInfo *TypeID = New->getIdentifier();
421    switch (TypeID->getLength()) {
422    default: break;
423    case 2:
424      if (!TypeID->isStr("id"))
425        break;
426      Context.setObjCIdType(New);
427      objc_types = true;
428      break;
429    case 5:
430      if (!TypeID->isStr("Class"))
431        break;
432      Context.setObjCClassType(New);
433      objc_types = true;
434      return false;
435    case 3:
436      if (!TypeID->isStr("SEL"))
437        break;
438      Context.setObjCSelType(New);
439      objc_types = true;
440      return false;
441    case 8:
442      if (!TypeID->isStr("Protocol"))
443        break;
444      Context.setObjCProtoType(New->getUnderlyingType());
445      objc_types = true;
446      return false;
447    }
448    // Fall through - the typedef name was not a builtin type.
449  }
450  // Verify the old decl was also a type.
451  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
452  if (!Old) {
453    Diag(New->getLocation(), diag::err_redefinition_different_kind)
454      << New->getDeclName();
455    if (!objc_types)
456      Diag(OldD->getLocation(), diag::note_previous_definition);
457    return true;
458  }
459
460  // Determine the "old" type we'll use for checking and diagnostics.
461  QualType OldType;
462  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
463    OldType = OldTypedef->getUnderlyingType();
464  else
465    OldType = Context.getTypeDeclType(Old);
466
467  // If the typedef types are not identical, reject them in all languages and
468  // with any extensions enabled.
469
470  if (OldType != New->getUnderlyingType() &&
471      Context.getCanonicalType(OldType) !=
472      Context.getCanonicalType(New->getUnderlyingType())) {
473    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
474      << New->getUnderlyingType() << OldType;
475    if (!objc_types)
476      Diag(Old->getLocation(), diag::note_previous_definition);
477    return true;
478  }
479  if (objc_types) return false;
480  if (getLangOptions().Microsoft) return false;
481
482  // C++ [dcl.typedef]p2:
483  //   In a given non-class scope, a typedef specifier can be used to
484  //   redefine the name of any type declared in that scope to refer
485  //   to the type to which it already refers.
486  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
487    return false;
488
489  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
490  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
491  // *either* declaration is in a system header. The code below implements
492  // this adhoc compatibility rule. FIXME: The following code will not
493  // work properly when compiling ".i" files (containing preprocessed output).
494  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
495    SourceManager &SrcMgr = Context.getSourceManager();
496    if (SrcMgr.isInSystemHeader(Old->getLocation()))
497      return false;
498    if (SrcMgr.isInSystemHeader(New->getLocation()))
499      return false;
500  }
501
502  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
503  Diag(Old->getLocation(), diag::note_previous_definition);
504  return true;
505}
506
507/// DeclhasAttr - returns true if decl Declaration already has the target
508/// attribute.
509static bool DeclHasAttr(const Decl *decl, const Attr *target) {
510  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
511    if (attr->getKind() == target->getKind())
512      return true;
513
514  return false;
515}
516
517/// MergeAttributes - append attributes from the Old decl to the New one.
518static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
519  Attr *attr = const_cast<Attr*>(Old->getAttrs());
520
521  while (attr) {
522    Attr *tmp = attr;
523    attr = attr->getNext();
524
525    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
526      tmp->setInherited(true);
527      New->addAttr(tmp);
528    } else {
529      tmp->setNext(0);
530      tmp->Destroy(C);
531    }
532  }
533
534  Old->invalidateAttrs();
535}
536
537/// Used in MergeFunctionDecl to keep track of function parameters in
538/// C.
539struct GNUCompatibleParamWarning {
540  ParmVarDecl *OldParm;
541  ParmVarDecl *NewParm;
542  QualType PromotedType;
543};
544
545/// MergeFunctionDecl - We just parsed a function 'New' from
546/// declarator D which has the same name and scope as a previous
547/// declaration 'Old'.  Figure out how to resolve this situation,
548/// merging decls or emitting diagnostics as appropriate.
549///
550/// In C++, New and Old must be declarations that are not
551/// overloaded. Use IsOverload to determine whether New and Old are
552/// overloaded, and to select the Old declaration that New should be
553/// merged with.
554///
555/// Returns true if there was an error, false otherwise.
556bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
557  assert(!isa<OverloadedFunctionDecl>(OldD) &&
558         "Cannot merge with an overloaded function declaration");
559
560  // Verify the old decl was also a function.
561  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
562  if (!Old) {
563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
564      << New->getDeclName();
565    Diag(OldD->getLocation(), diag::note_previous_definition);
566    return true;
567  }
568
569  // Determine whether the previous declaration was a definition,
570  // implicit declaration, or a declaration.
571  diag::kind PrevDiag;
572  if (Old->isThisDeclarationADefinition())
573    PrevDiag = diag::note_previous_definition;
574  else if (Old->isImplicit())
575    PrevDiag = diag::note_previous_implicit_declaration;
576  else
577    PrevDiag = diag::note_previous_declaration;
578
579  QualType OldQType = Context.getCanonicalType(Old->getType());
580  QualType NewQType = Context.getCanonicalType(New->getType());
581
582  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
583      New->getStorageClass() == FunctionDecl::Static &&
584      Old->getStorageClass() != FunctionDecl::Static) {
585    Diag(New->getLocation(), diag::err_static_non_static)
586      << New;
587    Diag(Old->getLocation(), PrevDiag);
588    return true;
589  }
590
591  if (getLangOptions().CPlusPlus) {
592    // (C++98 13.1p2):
593    //   Certain function declarations cannot be overloaded:
594    //     -- Function declarations that differ only in the return type
595    //        cannot be overloaded.
596    QualType OldReturnType
597      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
598    QualType NewReturnType
599      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
600    if (OldReturnType != NewReturnType) {
601      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
602      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
603      return true;
604    }
605
606    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
607    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
608    if (OldMethod && NewMethod &&
609        OldMethod->getLexicalDeclContext() ==
610          NewMethod->getLexicalDeclContext()) {
611      //    -- Member function declarations with the same name and the
612      //       same parameter types cannot be overloaded if any of them
613      //       is a static member function declaration.
614      if (OldMethod->isStatic() || NewMethod->isStatic()) {
615        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
616        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
617        return true;
618      }
619
620      // C++ [class.mem]p1:
621      //   [...] A member shall not be declared twice in the
622      //   member-specification, except that a nested class or member
623      //   class template can be declared and then later defined.
624      unsigned NewDiag;
625      if (isa<CXXConstructorDecl>(OldMethod))
626        NewDiag = diag::err_constructor_redeclared;
627      else if (isa<CXXDestructorDecl>(NewMethod))
628        NewDiag = diag::err_destructor_redeclared;
629      else if (isa<CXXConversionDecl>(NewMethod))
630        NewDiag = diag::err_conv_function_redeclared;
631      else
632        NewDiag = diag::err_member_redeclared;
633
634      Diag(New->getLocation(), NewDiag);
635      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
636    }
637
638    // (C++98 8.3.5p3):
639    //   All declarations for a function shall agree exactly in both the
640    //   return type and the parameter-type-list.
641    if (OldQType == NewQType)
642      return MergeCompatibleFunctionDecls(New, Old);
643
644    // Fall through for conflicting redeclarations and redefinitions.
645  }
646
647  // C: Function types need to be compatible, not identical. This handles
648  // duplicate function decls like "void f(int); void f(enum X);" properly.
649  if (!getLangOptions().CPlusPlus &&
650      Context.typesAreCompatible(OldQType, NewQType)) {
651    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
652    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
653    const FunctionProtoType *OldProto = 0;
654    if (isa<FunctionNoProtoType>(NewFuncType) &&
655        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
656      // The old declaration provided a function prototype, but the
657      // new declaration does not. Merge in the prototype.
658      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
659                                                 OldProto->arg_type_end());
660      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
661                                         &ParamTypes[0], ParamTypes.size(),
662                                         OldProto->isVariadic(),
663                                         OldProto->getTypeQuals());
664      New->setType(NewQType);
665      New->setInheritedPrototype();
666
667      // Synthesize a parameter for each argument type.
668      llvm::SmallVector<ParmVarDecl*, 16> Params;
669      for (FunctionProtoType::arg_type_iterator
670             ParamType = OldProto->arg_type_begin(),
671             ParamEnd = OldProto->arg_type_end();
672           ParamType != ParamEnd; ++ParamType) {
673        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
674                                                 SourceLocation(), 0,
675                                                 *ParamType, VarDecl::None,
676                                                 0);
677        Param->setImplicit();
678        Params.push_back(Param);
679      }
680
681      New->setParams(Context, &Params[0], Params.size());
682    }
683
684    return MergeCompatibleFunctionDecls(New, Old);
685  }
686
687  // GNU C permits a K&R definition to follow a prototype declaration
688  // if the declared types of the parameters in the K&R definition
689  // match the types in the prototype declaration, even when the
690  // promoted types of the parameters from the K&R definition differ
691  // from the types in the prototype. GCC then keeps the types from
692  // the prototype.
693  if (!getLangOptions().CPlusPlus &&
694      !getLangOptions().NoExtensions &&
695      Old->hasPrototype() && !New->hasPrototype() &&
696      New->getType()->getAsFunctionProtoType() &&
697      Old->getNumParams() == New->getNumParams()) {
698    llvm::SmallVector<QualType, 16> ArgTypes;
699    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
700    const FunctionProtoType *OldProto
701      = Old->getType()->getAsFunctionProtoType();
702    const FunctionProtoType *NewProto
703      = New->getType()->getAsFunctionProtoType();
704
705    // Determine whether this is the GNU C extension.
706    bool GNUCompatible =
707      Context.typesAreCompatible(OldProto->getResultType(),
708                                 NewProto->getResultType()) &&
709      (OldProto->isVariadic() == NewProto->isVariadic());
710    for (unsigned Idx = 0, End = Old->getNumParams();
711         GNUCompatible && Idx != End; ++Idx) {
712      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
713      ParmVarDecl *NewParm = New->getParamDecl(Idx);
714      if (Context.typesAreCompatible(OldParm->getType(),
715                                     NewProto->getArgType(Idx))) {
716        ArgTypes.push_back(NewParm->getType());
717      } else if (Context.typesAreCompatible(OldParm->getType(),
718                                            NewParm->getType())) {
719        GNUCompatibleParamWarning Warn
720          = { OldParm, NewParm, NewProto->getArgType(Idx) };
721        Warnings.push_back(Warn);
722        ArgTypes.push_back(NewParm->getType());
723      } else
724        GNUCompatible = false;
725    }
726
727    if (GNUCompatible) {
728      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
729        Diag(Warnings[Warn].NewParm->getLocation(),
730             diag::ext_param_promoted_not_compatible_with_prototype)
731          << Warnings[Warn].PromotedType
732          << Warnings[Warn].OldParm->getType();
733        Diag(Warnings[Warn].OldParm->getLocation(),
734             diag::note_previous_declaration);
735      }
736
737      New->setType(Context.getFunctionType(NewProto->getResultType(),
738                                           &ArgTypes[0], ArgTypes.size(),
739                                           NewProto->isVariadic(),
740                                           NewProto->getTypeQuals()));
741      return MergeCompatibleFunctionDecls(New, Old);
742    }
743
744    // Fall through to diagnose conflicting types.
745  }
746
747  // A function that has already been declared has been redeclared or defined
748  // with a different type- show appropriate diagnostic
749  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
750    // The user has declared a builtin function with an incompatible
751    // signature.
752    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
753      // The function the user is redeclaring is a library-defined
754      // function like 'malloc' or 'printf'. Warn about the
755      // redeclaration, then pretend that we don't know about this
756      // library built-in.
757      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
758      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
759        << Old << Old->getType();
760      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
761      Old->setInvalidDecl();
762      return false;
763    }
764
765    PrevDiag = diag::note_previous_builtin_declaration;
766  }
767
768  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
769  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
770  return true;
771}
772
773/// \brief Completes the merge of two function declarations that are
774/// known to be compatible.
775///
776/// This routine handles the merging of attributes and other
777/// properties of function declarations form the old declaration to
778/// the new declaration, once we know that New is in fact a
779/// redeclaration of Old.
780///
781/// \returns false
782bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
783  // Merge the attributes
784  MergeAttributes(New, Old, Context);
785
786  // Merge the storage class.
787  New->setStorageClass(Old->getStorageClass());
788
789  // FIXME: need to implement inline semantics
790
791  // Merge "pure" flag.
792  if (Old->isPure())
793    New->setPure();
794
795  // Merge the "deleted" flag.
796  if (Old->isDeleted())
797    New->setDeleted();
798
799  if (getLangOptions().CPlusPlus)
800    return MergeCXXFunctionDecl(New, Old);
801
802  return false;
803}
804
805/// MergeVarDecl - We just parsed a variable 'New' which has the same name
806/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
807/// situation, merging decls or emitting diagnostics as appropriate.
808///
809/// Tentative definition rules (C99 6.9.2p2) are checked by
810/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
811/// definitions here, since the initializer hasn't been attached.
812///
813bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
814  // Verify the old decl was also a variable.
815  VarDecl *Old = dyn_cast<VarDecl>(OldD);
816  if (!Old) {
817    Diag(New->getLocation(), diag::err_redefinition_different_kind)
818      << New->getDeclName();
819    Diag(OldD->getLocation(), diag::note_previous_definition);
820    return true;
821  }
822
823  MergeAttributes(New, Old, Context);
824
825  // Merge the types
826  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
827  if (MergedT.isNull()) {
828    Diag(New->getLocation(), diag::err_redefinition_different_type)
829      << New->getDeclName();
830    Diag(Old->getLocation(), diag::note_previous_definition);
831    return true;
832  }
833  New->setType(MergedT);
834
835  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
836  if (New->getStorageClass() == VarDecl::Static &&
837      (Old->getStorageClass() == VarDecl::None ||
838       Old->getStorageClass() == VarDecl::Extern)) {
839    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
840    Diag(Old->getLocation(), diag::note_previous_definition);
841    return true;
842  }
843  // C99 6.2.2p4:
844  //   For an identifier declared with the storage-class specifier
845  //   extern in a scope in which a prior declaration of that
846  //   identifier is visible,23) if the prior declaration specifies
847  //   internal or external linkage, the linkage of the identifier at
848  //   the later declaration is the same as the linkage specified at
849  //   the prior declaration. If no prior declaration is visible, or
850  //   if the prior declaration specifies no linkage, then the
851  //   identifier has external linkage.
852  if (New->hasExternalStorage() && Old->hasLinkage())
853    /* Okay */;
854  else if (New->getStorageClass() != VarDecl::Static &&
855           Old->getStorageClass() == VarDecl::Static) {
856    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
857    Diag(Old->getLocation(), diag::note_previous_definition);
858    return true;
859  }
860  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
861  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl() &&
862      // Don't complain about out-of-line definitions of static members.
863      !(Old->getLexicalDeclContext()->isRecord() &&
864        !New->getLexicalDeclContext()->isRecord())) {
865    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
866    Diag(Old->getLocation(), diag::note_previous_definition);
867    return true;
868  }
869
870  // Keep a chain of previous declarations.
871  New->setPreviousDeclaration(Old);
872
873  return false;
874}
875
876/// CheckParmsForFunctionDef - Check that the parameters of the given
877/// function are appropriate for the definition of a function. This
878/// takes care of any checks that cannot be performed on the
879/// declaration itself, e.g., that the types of each of the function
880/// parameters are complete.
881bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
882  bool HasInvalidParm = false;
883  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
884    ParmVarDecl *Param = FD->getParamDecl(p);
885
886    // C99 6.7.5.3p4: the parameters in a parameter type list in a
887    // function declarator that is part of a function definition of
888    // that function shall not have incomplete type.
889    //
890    // This is also C++ [dcl.fct]p6.
891    if (!Param->isInvalidDecl() &&
892        RequireCompleteType(Param->getLocation(), Param->getType(),
893                               diag::err_typecheck_decl_incomplete_type)) {
894      Param->setInvalidDecl();
895      HasInvalidParm = true;
896    }
897
898    // C99 6.9.1p5: If the declarator includes a parameter type list, the
899    // declaration of each parameter shall include an identifier.
900    if (Param->getIdentifier() == 0 &&
901        !Param->isImplicit() &&
902        !getLangOptions().CPlusPlus)
903      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
904  }
905
906  return HasInvalidParm;
907}
908
909/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
910/// no declarator (e.g. "struct foo;") is parsed.
911Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
912  TagDecl *Tag = 0;
913  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
914      DS.getTypeSpecType() == DeclSpec::TST_struct ||
915      DS.getTypeSpecType() == DeclSpec::TST_union ||
916      DS.getTypeSpecType() == DeclSpec::TST_enum)
917    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
918
919  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
920    if (!Record->getDeclName() && Record->isDefinition() &&
921        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
922      if (getLangOptions().CPlusPlus ||
923          Record->getDeclContext()->isRecord())
924        return BuildAnonymousStructOrUnion(S, DS, Record);
925
926      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
927        << DS.getSourceRange();
928    }
929
930    // Microsoft allows unnamed struct/union fields. Don't complain
931    // about them.
932    // FIXME: Should we support Microsoft's extensions in this area?
933    if (Record->getDeclName() && getLangOptions().Microsoft)
934      return DeclPtrTy::make(Tag);
935  }
936
937  if (!DS.isMissingDeclaratorOk() &&
938      DS.getTypeSpecType() != DeclSpec::TST_error) {
939    // Warn about typedefs of enums without names, since this is an
940    // extension in both Microsoft an GNU.
941    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
942        Tag && isa<EnumDecl>(Tag)) {
943      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
944        << DS.getSourceRange();
945      return DeclPtrTy::make(Tag);
946    }
947
948    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
949      << DS.getSourceRange();
950    return DeclPtrTy();
951  }
952
953  return DeclPtrTy::make(Tag);
954}
955
956/// InjectAnonymousStructOrUnionMembers - Inject the members of the
957/// anonymous struct or union AnonRecord into the owning context Owner
958/// and scope S. This routine will be invoked just after we realize
959/// that an unnamed union or struct is actually an anonymous union or
960/// struct, e.g.,
961///
962/// @code
963/// union {
964///   int i;
965///   float f;
966/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
967///    // f into the surrounding scope.x
968/// @endcode
969///
970/// This routine is recursive, injecting the names of nested anonymous
971/// structs/unions into the owning context and scope as well.
972bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
973                                               RecordDecl *AnonRecord) {
974  bool Invalid = false;
975  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
976                               FEnd = AnonRecord->field_end();
977       F != FEnd; ++F) {
978    if ((*F)->getDeclName()) {
979      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
980                                                LookupOrdinaryName, true);
981      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
982        // C++ [class.union]p2:
983        //   The names of the members of an anonymous union shall be
984        //   distinct from the names of any other entity in the
985        //   scope in which the anonymous union is declared.
986        unsigned diagKind
987          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
988                                 : diag::err_anonymous_struct_member_redecl;
989        Diag((*F)->getLocation(), diagKind)
990          << (*F)->getDeclName();
991        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
992        Invalid = true;
993      } else {
994        // C++ [class.union]p2:
995        //   For the purpose of name lookup, after the anonymous union
996        //   definition, the members of the anonymous union are
997        //   considered to have been defined in the scope in which the
998        //   anonymous union is declared.
999        Owner->makeDeclVisibleInContext(*F);
1000        S->AddDecl(DeclPtrTy::make(*F));
1001        IdResolver.AddDecl(*F);
1002      }
1003    } else if (const RecordType *InnerRecordType
1004                 = (*F)->getType()->getAsRecordType()) {
1005      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1006      if (InnerRecord->isAnonymousStructOrUnion())
1007        Invalid = Invalid ||
1008          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1009    }
1010  }
1011
1012  return Invalid;
1013}
1014
1015/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1016/// anonymous structure or union. Anonymous unions are a C++ feature
1017/// (C++ [class.union]) and a GNU C extension; anonymous structures
1018/// are a GNU C and GNU C++ extension.
1019Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1020                                                  RecordDecl *Record) {
1021  DeclContext *Owner = Record->getDeclContext();
1022
1023  // Diagnose whether this anonymous struct/union is an extension.
1024  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1025    Diag(Record->getLocation(), diag::ext_anonymous_union);
1026  else if (!Record->isUnion())
1027    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1028
1029  // C and C++ require different kinds of checks for anonymous
1030  // structs/unions.
1031  bool Invalid = false;
1032  if (getLangOptions().CPlusPlus) {
1033    const char* PrevSpec = 0;
1034    // C++ [class.union]p3:
1035    //   Anonymous unions declared in a named namespace or in the
1036    //   global namespace shall be declared static.
1037    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1038        (isa<TranslationUnitDecl>(Owner) ||
1039         (isa<NamespaceDecl>(Owner) &&
1040          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1041      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1042      Invalid = true;
1043
1044      // Recover by adding 'static'.
1045      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1046    }
1047    // C++ [class.union]p3:
1048    //   A storage class is not allowed in a declaration of an
1049    //   anonymous union in a class scope.
1050    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1051             isa<RecordDecl>(Owner)) {
1052      Diag(DS.getStorageClassSpecLoc(),
1053           diag::err_anonymous_union_with_storage_spec);
1054      Invalid = true;
1055
1056      // Recover by removing the storage specifier.
1057      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1058                             PrevSpec);
1059    }
1060
1061    // C++ [class.union]p2:
1062    //   The member-specification of an anonymous union shall only
1063    //   define non-static data members. [Note: nested types and
1064    //   functions cannot be declared within an anonymous union. ]
1065    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1066                                 MemEnd = Record->decls_end();
1067         Mem != MemEnd; ++Mem) {
1068      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1069        // C++ [class.union]p3:
1070        //   An anonymous union shall not have private or protected
1071        //   members (clause 11).
1072        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1073          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1074            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1075          Invalid = true;
1076        }
1077      } else if ((*Mem)->isImplicit()) {
1078        // Any implicit members are fine.
1079      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1080        // This is a type that showed up in an
1081        // elaborated-type-specifier inside the anonymous struct or
1082        // union, but which actually declares a type outside of the
1083        // anonymous struct or union. It's okay.
1084      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1085        if (!MemRecord->isAnonymousStructOrUnion() &&
1086            MemRecord->getDeclName()) {
1087          // This is a nested type declaration.
1088          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1089            << (int)Record->isUnion();
1090          Invalid = true;
1091        }
1092      } else {
1093        // We have something that isn't a non-static data
1094        // member. Complain about it.
1095        unsigned DK = diag::err_anonymous_record_bad_member;
1096        if (isa<TypeDecl>(*Mem))
1097          DK = diag::err_anonymous_record_with_type;
1098        else if (isa<FunctionDecl>(*Mem))
1099          DK = diag::err_anonymous_record_with_function;
1100        else if (isa<VarDecl>(*Mem))
1101          DK = diag::err_anonymous_record_with_static;
1102        Diag((*Mem)->getLocation(), DK)
1103            << (int)Record->isUnion();
1104          Invalid = true;
1105      }
1106    }
1107  }
1108
1109  if (!Record->isUnion() && !Owner->isRecord()) {
1110    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1111      << (int)getLangOptions().CPlusPlus;
1112    Invalid = true;
1113  }
1114
1115  // Create a declaration for this anonymous struct/union.
1116  NamedDecl *Anon = 0;
1117  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1118    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1119                             /*IdentifierInfo=*/0,
1120                             Context.getTypeDeclType(Record),
1121                             /*BitWidth=*/0, /*Mutable=*/false);
1122    Anon->setAccess(AS_public);
1123    if (getLangOptions().CPlusPlus)
1124      FieldCollector->Add(cast<FieldDecl>(Anon));
1125  } else {
1126    VarDecl::StorageClass SC;
1127    switch (DS.getStorageClassSpec()) {
1128    default: assert(0 && "Unknown storage class!");
1129    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1130    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1131    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1132    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1133    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1134    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1135    case DeclSpec::SCS_mutable:
1136      // mutable can only appear on non-static class members, so it's always
1137      // an error here
1138      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1139      Invalid = true;
1140      SC = VarDecl::None;
1141      break;
1142    }
1143
1144    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1145                           /*IdentifierInfo=*/0,
1146                           Context.getTypeDeclType(Record),
1147                           SC, DS.getSourceRange().getBegin());
1148  }
1149  Anon->setImplicit();
1150
1151  // Add the anonymous struct/union object to the current
1152  // context. We'll be referencing this object when we refer to one of
1153  // its members.
1154  Owner->addDecl(Anon);
1155
1156  // Inject the members of the anonymous struct/union into the owning
1157  // context and into the identifier resolver chain for name lookup
1158  // purposes.
1159  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1160    Invalid = true;
1161
1162  // Mark this as an anonymous struct/union type. Note that we do not
1163  // do this until after we have already checked and injected the
1164  // members of this anonymous struct/union type, because otherwise
1165  // the members could be injected twice: once by DeclContext when it
1166  // builds its lookup table, and once by
1167  // InjectAnonymousStructOrUnionMembers.
1168  Record->setAnonymousStructOrUnion(true);
1169
1170  if (Invalid)
1171    Anon->setInvalidDecl();
1172
1173  return DeclPtrTy::make(Anon);
1174}
1175
1176
1177/// GetNameForDeclarator - Determine the full declaration name for the
1178/// given Declarator.
1179DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1180  switch (D.getKind()) {
1181  case Declarator::DK_Abstract:
1182    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1183    return DeclarationName();
1184
1185  case Declarator::DK_Normal:
1186    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1187    return DeclarationName(D.getIdentifier());
1188
1189  case Declarator::DK_Constructor: {
1190    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1191    Ty = Context.getCanonicalType(Ty);
1192    return Context.DeclarationNames.getCXXConstructorName(Ty);
1193  }
1194
1195  case Declarator::DK_Destructor: {
1196    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1197    Ty = Context.getCanonicalType(Ty);
1198    return Context.DeclarationNames.getCXXDestructorName(Ty);
1199  }
1200
1201  case Declarator::DK_Conversion: {
1202    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1203    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1204    Ty = Context.getCanonicalType(Ty);
1205    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1206  }
1207
1208  case Declarator::DK_Operator:
1209    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1210    return Context.DeclarationNames.getCXXOperatorName(
1211                                                D.getOverloadedOperator());
1212  }
1213
1214  assert(false && "Unknown name kind");
1215  return DeclarationName();
1216}
1217
1218/// isNearlyMatchingFunction - Determine whether the C++ functions
1219/// Declaration and Definition are "nearly" matching. This heuristic
1220/// is used to improve diagnostics in the case where an out-of-line
1221/// function definition doesn't match any declaration within
1222/// the class or namespace.
1223static bool isNearlyMatchingFunction(ASTContext &Context,
1224                                     FunctionDecl *Declaration,
1225                                     FunctionDecl *Definition) {
1226  if (Declaration->param_size() != Definition->param_size())
1227    return false;
1228  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1229    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1230    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1231
1232    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1233    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1234    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1235      return false;
1236  }
1237
1238  return true;
1239}
1240
1241Sema::DeclPtrTy
1242Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1243  DeclarationName Name = GetNameForDeclarator(D);
1244
1245  // All of these full declarators require an identifier.  If it doesn't have
1246  // one, the ParsedFreeStandingDeclSpec action should be used.
1247  if (!Name) {
1248    if (!D.getInvalidType())  // Reject this if we think it is valid.
1249      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1250           diag::err_declarator_need_ident)
1251        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1252    return DeclPtrTy();
1253  }
1254
1255  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1256  // we find one that is.
1257  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1258         (S->getFlags() & Scope::TemplateParamScope) != 0)
1259    S = S->getParent();
1260
1261  DeclContext *DC;
1262  NamedDecl *PrevDecl;
1263  NamedDecl *New;
1264  bool InvalidDecl = false;
1265
1266  QualType R = GetTypeForDeclarator(D, S);
1267  if (R.isNull()) {
1268    InvalidDecl = true;
1269    R = Context.IntTy;
1270  }
1271
1272  // See if this is a redefinition of a variable in the same scope.
1273  if (D.getCXXScopeSpec().isInvalid()) {
1274    DC = CurContext;
1275    PrevDecl = 0;
1276    InvalidDecl = true;
1277  } else if (!D.getCXXScopeSpec().isSet()) {
1278    LookupNameKind NameKind = LookupOrdinaryName;
1279
1280    // If the declaration we're planning to build will be a function
1281    // or object with linkage, then look for another declaration with
1282    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1283    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1284      /* Do nothing*/;
1285    else if (R->isFunctionType()) {
1286      if (CurContext->isFunctionOrMethod())
1287        NameKind = LookupRedeclarationWithLinkage;
1288    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1289      NameKind = LookupRedeclarationWithLinkage;
1290
1291    DC = CurContext;
1292    PrevDecl = LookupName(S, Name, NameKind, true,
1293                          D.getDeclSpec().getStorageClassSpec() !=
1294                            DeclSpec::SCS_static,
1295                          D.getIdentifierLoc());
1296  } else { // Something like "int foo::x;"
1297    DC = computeDeclContext(D.getCXXScopeSpec());
1298    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1299    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1300
1301    // C++ 7.3.1.2p2:
1302    // Members (including explicit specializations of templates) of a named
1303    // namespace can also be defined outside that namespace by explicit
1304    // qualification of the name being defined, provided that the entity being
1305    // defined was already declared in the namespace and the definition appears
1306    // after the point of declaration in a namespace that encloses the
1307    // declarations namespace.
1308    //
1309    // Note that we only check the context at this point. We don't yet
1310    // have enough information to make sure that PrevDecl is actually
1311    // the declaration we want to match. For example, given:
1312    //
1313    //   class X {
1314    //     void f();
1315    //     void f(float);
1316    //   };
1317    //
1318    //   void X::f(int) { } // ill-formed
1319    //
1320    // In this case, PrevDecl will point to the overload set
1321    // containing the two f's declared in X, but neither of them
1322    // matches.
1323
1324    // First check whether we named the global scope.
1325    if (isa<TranslationUnitDecl>(DC)) {
1326      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1327        << Name << D.getCXXScopeSpec().getRange();
1328    } else if (!CurContext->Encloses(DC)) {
1329      // The qualifying scope doesn't enclose the original declaration.
1330      // Emit diagnostic based on current scope.
1331      SourceLocation L = D.getIdentifierLoc();
1332      SourceRange R = D.getCXXScopeSpec().getRange();
1333      if (isa<FunctionDecl>(CurContext))
1334        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1335      else
1336        Diag(L, diag::err_invalid_declarator_scope)
1337          << Name << cast<NamedDecl>(DC) << R;
1338      InvalidDecl = true;
1339    }
1340  }
1341
1342  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1343    // Maybe we will complain about the shadowed template parameter.
1344    InvalidDecl = InvalidDecl
1345      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1346    // Just pretend that we didn't see the previous declaration.
1347    PrevDecl = 0;
1348  }
1349
1350  // In C++, the previous declaration we find might be a tag type
1351  // (class or enum). In this case, the new declaration will hide the
1352  // tag type. Note that this does does not apply if we're declaring a
1353  // typedef (C++ [dcl.typedef]p4).
1354  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1355      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1356    PrevDecl = 0;
1357
1358  bool Redeclaration = false;
1359  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1360    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1361                                 InvalidDecl, Redeclaration);
1362  } else if (R->isFunctionType()) {
1363    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1364                                  IsFunctionDefinition, InvalidDecl,
1365                                  Redeclaration);
1366  } else {
1367    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1368                                  InvalidDecl, Redeclaration);
1369  }
1370
1371  if (New == 0)
1372    return DeclPtrTy();
1373
1374  // If this has an identifier and is not an invalid redeclaration,
1375  // add it to the scope stack.
1376  if (Name && !(Redeclaration && InvalidDecl))
1377    PushOnScopeChains(New, S);
1378  // If any semantic error occurred, mark the decl as invalid.
1379  if (D.getInvalidType() || InvalidDecl)
1380    New->setInvalidDecl();
1381
1382  return DeclPtrTy::make(New);
1383}
1384
1385/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1386/// types into constant array types in certain situations which would otherwise
1387/// be errors (for GCC compatibility).
1388static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1389                                                    ASTContext &Context,
1390                                                    bool &SizeIsNegative) {
1391  // This method tries to turn a variable array into a constant
1392  // array even when the size isn't an ICE.  This is necessary
1393  // for compatibility with code that depends on gcc's buggy
1394  // constant expression folding, like struct {char x[(int)(char*)2];}
1395  SizeIsNegative = false;
1396
1397  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1398    QualType Pointee = PTy->getPointeeType();
1399    QualType FixedType =
1400        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1401    if (FixedType.isNull()) return FixedType;
1402    FixedType = Context.getPointerType(FixedType);
1403    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1404    return FixedType;
1405  }
1406
1407  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1408  if (!VLATy)
1409    return QualType();
1410  // FIXME: We should probably handle this case
1411  if (VLATy->getElementType()->isVariablyModifiedType())
1412    return QualType();
1413
1414  Expr::EvalResult EvalResult;
1415  if (!VLATy->getSizeExpr() ||
1416      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1417      !EvalResult.Val.isInt())
1418    return QualType();
1419
1420  llvm::APSInt &Res = EvalResult.Val.getInt();
1421  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1422    return Context.getConstantArrayType(VLATy->getElementType(),
1423                                        Res, ArrayType::Normal, 0);
1424
1425  SizeIsNegative = true;
1426  return QualType();
1427}
1428
1429/// \brief Register the given locally-scoped external C declaration so
1430/// that it can be found later for redeclarations
1431void
1432Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1433                                       Scope *S) {
1434  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1435         "Decl is not a locally-scoped decl!");
1436  // Note that we have a locally-scoped external with this name.
1437  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1438
1439  if (!PrevDecl)
1440    return;
1441
1442  // If there was a previous declaration of this variable, it may be
1443  // in our identifier chain. Update the identifier chain with the new
1444  // declaration.
1445  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1446    // The previous declaration was found on the identifer resolver
1447    // chain, so remove it from its scope.
1448    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1449      S = S->getParent();
1450
1451    if (S)
1452      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1453  }
1454}
1455
1456NamedDecl*
1457Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1458                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1459                             bool &Redeclaration) {
1460  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1461  if (D.getCXXScopeSpec().isSet()) {
1462    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1463      << D.getCXXScopeSpec().getRange();
1464    InvalidDecl = true;
1465    // Pretend we didn't see the scope specifier.
1466    DC = 0;
1467  }
1468
1469  if (getLangOptions().CPlusPlus) {
1470    // Check that there are no default arguments (C++ only).
1471    CheckExtraCXXDefaultArguments(D);
1472
1473    if (D.getDeclSpec().isVirtualSpecified())
1474      Diag(D.getDeclSpec().getVirtualSpecLoc(),
1475           diag::err_virtual_non_function);
1476  }
1477
1478  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1479  if (!NewTD) return 0;
1480
1481  // Handle attributes prior to checking for duplicates in MergeVarDecl
1482  ProcessDeclAttributes(NewTD, D);
1483  // Merge the decl with the existing one if appropriate. If the decl is
1484  // in an outer scope, it isn't the same thing.
1485  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1486    Redeclaration = true;
1487    if (MergeTypeDefDecl(NewTD, PrevDecl))
1488      InvalidDecl = true;
1489  }
1490
1491  if (S->getFnParent() == 0) {
1492    QualType T = NewTD->getUnderlyingType();
1493    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1494    // then it shall have block scope.
1495    if (T->isVariablyModifiedType()) {
1496      bool SizeIsNegative;
1497      QualType FixedTy =
1498          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1499      if (!FixedTy.isNull()) {
1500        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1501        NewTD->setUnderlyingType(FixedTy);
1502      } else {
1503        if (SizeIsNegative)
1504          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1505        else if (T->isVariableArrayType())
1506          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1507        else
1508          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1509        InvalidDecl = true;
1510      }
1511    }
1512  }
1513  return NewTD;
1514}
1515
1516/// \brief Determines whether the given declaration is an out-of-scope
1517/// previous declaration.
1518///
1519/// This routine should be invoked when name lookup has found a
1520/// previous declaration (PrevDecl) that is not in the scope where a
1521/// new declaration by the same name is being introduced. If the new
1522/// declaration occurs in a local scope, previous declarations with
1523/// linkage may still be considered previous declarations (C99
1524/// 6.2.2p4-5, C++ [basic.link]p6).
1525///
1526/// \param PrevDecl the previous declaration found by name
1527/// lookup
1528///
1529/// \param DC the context in which the new declaration is being
1530/// declared.
1531///
1532/// \returns true if PrevDecl is an out-of-scope previous declaration
1533/// for a new delcaration with the same name.
1534static bool
1535isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1536                                ASTContext &Context) {
1537  if (!PrevDecl)
1538    return 0;
1539
1540  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1541  // case we need to check each of the overloaded functions.
1542  if (!PrevDecl->hasLinkage())
1543    return false;
1544
1545  if (Context.getLangOptions().CPlusPlus) {
1546    // C++ [basic.link]p6:
1547    //   If there is a visible declaration of an entity with linkage
1548    //   having the same name and type, ignoring entities declared
1549    //   outside the innermost enclosing namespace scope, the block
1550    //   scope declaration declares that same entity and receives the
1551    //   linkage of the previous declaration.
1552    DeclContext *OuterContext = DC->getLookupContext();
1553    if (!OuterContext->isFunctionOrMethod())
1554      // This rule only applies to block-scope declarations.
1555      return false;
1556    else {
1557      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1558      if (PrevOuterContext->isRecord())
1559        // We found a member function: ignore it.
1560        return false;
1561      else {
1562        // Find the innermost enclosing namespace for the new and
1563        // previous declarations.
1564        while (!OuterContext->isFileContext())
1565          OuterContext = OuterContext->getParent();
1566        while (!PrevOuterContext->isFileContext())
1567          PrevOuterContext = PrevOuterContext->getParent();
1568
1569        // The previous declaration is in a different namespace, so it
1570        // isn't the same function.
1571        if (OuterContext->getPrimaryContext() !=
1572            PrevOuterContext->getPrimaryContext())
1573          return false;
1574      }
1575    }
1576  }
1577
1578  return true;
1579}
1580
1581NamedDecl*
1582Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1583                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1584                              bool &Redeclaration) {
1585  DeclarationName Name = GetNameForDeclarator(D);
1586
1587  // Check that there are no default arguments (C++ only).
1588  if (getLangOptions().CPlusPlus)
1589    CheckExtraCXXDefaultArguments(D);
1590
1591  VarDecl *NewVD;
1592  VarDecl::StorageClass SC;
1593  switch (D.getDeclSpec().getStorageClassSpec()) {
1594  default: assert(0 && "Unknown storage class!");
1595  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1596  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1597  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1598  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1599  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1600  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1601  case DeclSpec::SCS_mutable:
1602    // mutable can only appear on non-static class members, so it's always
1603    // an error here
1604    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1605    InvalidDecl = true;
1606    SC = VarDecl::None;
1607    break;
1608  }
1609
1610  IdentifierInfo *II = Name.getAsIdentifierInfo();
1611  if (!II) {
1612    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1613      << Name.getAsString();
1614    return 0;
1615  }
1616
1617  if (D.getDeclSpec().isVirtualSpecified())
1618    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1619         diag::err_virtual_non_function);
1620
1621  bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1622  if (!DC->isRecord() && S->getFnParent() == 0) {
1623    // C99 6.9p2: The storage-class specifiers auto and register shall not
1624    // appear in the declaration specifiers in an external declaration.
1625    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1626      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1627      InvalidDecl = true;
1628    }
1629  }
1630  if (DC->isRecord() && !CurContext->isRecord()) {
1631    // This is an out-of-line definition of a static data member.
1632    if (SC == VarDecl::Static) {
1633      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1634           diag::err_static_out_of_line)
1635        << CodeModificationHint::CreateRemoval(
1636                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1637    } else if (SC == VarDecl::None)
1638      SC = VarDecl::Static;
1639  }
1640
1641  // The variable can not
1642  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1643                          II, R, SC,
1644                          // FIXME: Move to DeclGroup...
1645                          D.getDeclSpec().getSourceRange().getBegin());
1646  NewVD->setThreadSpecified(ThreadSpecified);
1647
1648  // Set the lexical context. If the declarator has a C++ scope specifier, the
1649  // lexical context will be different from the semantic context.
1650  NewVD->setLexicalDeclContext(CurContext);
1651
1652  // Handle attributes prior to checking for duplicates in MergeVarDecl
1653  ProcessDeclAttributes(NewVD, D);
1654
1655  // Handle GNU asm-label extension (encoded as an attribute).
1656  if (Expr *E = (Expr*) D.getAsmLabel()) {
1657    // The parser guarantees this is a string.
1658    StringLiteral *SE = cast<StringLiteral>(E);
1659    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1660                                                        SE->getByteLength())));
1661  }
1662
1663  // If name lookup finds a previous declaration that is not in the
1664  // same scope as the new declaration, this may still be an
1665  // acceptable redeclaration.
1666  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1667      !(NewVD->hasLinkage() &&
1668        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1669    PrevDecl = 0;
1670
1671  // Merge the decl with the existing one if appropriate.
1672  if (PrevDecl) {
1673    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1674      // The user tried to define a non-static data member
1675      // out-of-line (C++ [dcl.meaning]p1).
1676      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1677        << D.getCXXScopeSpec().getRange();
1678      PrevDecl = 0;
1679      InvalidDecl = true;
1680    }
1681  } else if (D.getCXXScopeSpec().isSet()) {
1682    // No previous declaration in the qualifying scope.
1683    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1684      << Name << D.getCXXScopeSpec().getRange();
1685    InvalidDecl = true;
1686  }
1687
1688  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1689    InvalidDecl = true;
1690
1691  // If this is a locally-scoped extern C variable, update the map of
1692  // such variables.
1693  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1694      !InvalidDecl)
1695    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1696
1697  return NewVD;
1698}
1699
1700/// \brief Perform semantic checking on a newly-created variable
1701/// declaration.
1702///
1703/// This routine performs all of the type-checking required for a
1704/// variable declaration once it has been build. It is used both to
1705/// check variables after they have been parsed and their declarators
1706/// have been translated into a declaration, and to check
1707///
1708/// \returns true if an error was encountered, false otherwise.
1709bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1710                                    bool &Redeclaration) {
1711  bool Invalid = false;
1712
1713  QualType T = NewVD->getType();
1714
1715  if (T->isObjCInterfaceType()) {
1716    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1717    Invalid = true;
1718  }
1719
1720  // The variable can not have an abstract class type.
1721  if (RequireNonAbstractType(NewVD->getLocation(), T,
1722                             diag::err_abstract_type_in_decl,
1723                             AbstractVariableType))
1724    Invalid = true;
1725
1726  // Emit an error if an address space was applied to decl with local storage.
1727  // This includes arrays of objects with address space qualifiers, but not
1728  // automatic variables that point to other address spaces.
1729  // ISO/IEC TR 18037 S5.1.2
1730  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1731    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1732    Invalid = true;
1733  }
1734
1735  if (NewVD->hasLocalStorage() && T.isObjCGCWeak())
1736    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1737
1738  bool isIllegalVLA = T->isVariableArrayType() && NewVD->hasGlobalStorage();
1739  bool isIllegalVM = T->isVariablyModifiedType() && NewVD->hasLinkage();
1740  if (isIllegalVLA || isIllegalVM) {
1741    bool SizeIsNegative;
1742    QualType FixedTy =
1743        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1744    if (!FixedTy.isNull()) {
1745      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1746      NewVD->setType(FixedTy);
1747    } else if (T->isVariableArrayType()) {
1748      Invalid = true;
1749
1750      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1751      // FIXME: This won't give the correct result for
1752      // int a[10][n];
1753      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1754
1755      if (NewVD->isFileVarDecl())
1756        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1757          << SizeRange;
1758      else if (NewVD->getStorageClass() == VarDecl::Static)
1759        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1760          << SizeRange;
1761      else
1762        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1763            << SizeRange;
1764    } else {
1765      Invalid = true;
1766
1767      if (NewVD->isFileVarDecl())
1768        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1769      else
1770        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1771    }
1772  }
1773
1774  if (!PrevDecl && NewVD->isExternC(Context)) {
1775    // Since we did not find anything by this name and we're declaring
1776    // an extern "C" variable, look for a non-visible extern "C"
1777    // declaration with the same name.
1778    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1779      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1780    if (Pos != LocallyScopedExternalDecls.end())
1781      PrevDecl = Pos->second;
1782  }
1783
1784  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1785    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1786      << T;
1787    Invalid = true;
1788  }
1789
1790  if (PrevDecl) {
1791    Redeclaration = true;
1792    if (MergeVarDecl(NewVD, PrevDecl))
1793      Invalid = true;
1794  }
1795
1796  return NewVD->isInvalidDecl() || Invalid;
1797}
1798
1799NamedDecl*
1800Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1801                              QualType R, NamedDecl* PrevDecl,
1802                              bool IsFunctionDefinition,
1803                              bool& InvalidDecl, bool &Redeclaration) {
1804  assert(R.getTypePtr()->isFunctionType());
1805
1806  DeclarationName Name = GetNameForDeclarator(D);
1807  FunctionDecl::StorageClass SC = FunctionDecl::None;
1808  switch (D.getDeclSpec().getStorageClassSpec()) {
1809  default: assert(0 && "Unknown storage class!");
1810  case DeclSpec::SCS_auto:
1811  case DeclSpec::SCS_register:
1812  case DeclSpec::SCS_mutable:
1813    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1814         diag::err_typecheck_sclass_func);
1815    InvalidDecl = true;
1816    break;
1817  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1818  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1819  case DeclSpec::SCS_static: {
1820    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1821      // C99 6.7.1p5:
1822      //   The declaration of an identifier for a function that has
1823      //   block scope shall have no explicit storage-class specifier
1824      //   other than extern
1825      // See also (C++ [dcl.stc]p4).
1826      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1827           diag::err_static_block_func);
1828      SC = FunctionDecl::None;
1829    } else
1830      SC = FunctionDecl::Static;
1831    break;
1832  }
1833  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1834  }
1835
1836  bool isInline = D.getDeclSpec().isInlineSpecified();
1837  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1838  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1839
1840  // Check that the return type is not an abstract class type.
1841  // For record types, this is done by the AbstractClassUsageDiagnoser once
1842  // the class has been completely parsed.
1843  if (!DC->isRecord() &&
1844      RequireNonAbstractType(D.getIdentifierLoc(),
1845                             R->getAsFunctionType()->getResultType(),
1846                             diag::err_abstract_type_in_decl,
1847                             AbstractReturnType))
1848        InvalidDecl = true;
1849
1850  bool isVirtualOkay = false;
1851  FunctionDecl *NewFD;
1852  if (D.getKind() == Declarator::DK_Constructor) {
1853    // This is a C++ constructor declaration.
1854    assert(DC->isRecord() &&
1855           "Constructors can only be declared in a member context");
1856
1857    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1858
1859    // Create the new declaration
1860    NewFD = CXXConstructorDecl::Create(Context,
1861                                       cast<CXXRecordDecl>(DC),
1862                                       D.getIdentifierLoc(), Name, R,
1863                                       isExplicit, isInline,
1864                                       /*isImplicitlyDeclared=*/false);
1865
1866    if (InvalidDecl)
1867      NewFD->setInvalidDecl();
1868  } else if (D.getKind() == Declarator::DK_Destructor) {
1869    // This is a C++ destructor declaration.
1870    if (DC->isRecord()) {
1871      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1872
1873      NewFD = CXXDestructorDecl::Create(Context,
1874                                        cast<CXXRecordDecl>(DC),
1875                                        D.getIdentifierLoc(), Name, R,
1876                                        isInline,
1877                                        /*isImplicitlyDeclared=*/false);
1878
1879      if (InvalidDecl)
1880        NewFD->setInvalidDecl();
1881
1882      isVirtualOkay = true;
1883    } else {
1884      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1885
1886      // Create a FunctionDecl to satisfy the function definition parsing
1887      // code path.
1888      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1889                                   Name, R, SC, isInline,
1890                                   /*hasPrototype=*/true,
1891                                   // FIXME: Move to DeclGroup...
1892                                   D.getDeclSpec().getSourceRange().getBegin());
1893      InvalidDecl = true;
1894      NewFD->setInvalidDecl();
1895    }
1896  } else if (D.getKind() == Declarator::DK_Conversion) {
1897    if (!DC->isRecord()) {
1898      Diag(D.getIdentifierLoc(),
1899           diag::err_conv_function_not_member);
1900      return 0;
1901    } else {
1902      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1903
1904      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1905                                        D.getIdentifierLoc(), Name, R,
1906                                        isInline, isExplicit);
1907
1908      if (InvalidDecl)
1909        NewFD->setInvalidDecl();
1910
1911      isVirtualOkay = true;
1912    }
1913  } else if (DC->isRecord()) {
1914    // This is a C++ method declaration.
1915    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1916                                  D.getIdentifierLoc(), Name, R,
1917                                  (SC == FunctionDecl::Static), isInline);
1918
1919    isVirtualOkay = (SC != FunctionDecl::Static);
1920  } else {
1921    // Determine whether the function was written with a
1922    // prototype. This true when:
1923    //   - we're in C++ (where every function has a prototype),
1924    //   - there is a prototype in the declarator, or
1925    //   - the type R of the function is some kind of typedef or other reference
1926    //     to a type name (which eventually refers to a function type).
1927    bool HasPrototype =
1928       getLangOptions().CPlusPlus ||
1929       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
1930       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
1931
1932    NewFD = FunctionDecl::Create(Context, DC,
1933                                 D.getIdentifierLoc(),
1934                                 Name, R, SC, isInline, HasPrototype,
1935                                 // FIXME: Move to DeclGroup...
1936                                 D.getDeclSpec().getSourceRange().getBegin());
1937  }
1938
1939  // Set the lexical context. If the declarator has a C++
1940  // scope specifier, the lexical context will be different
1941  // from the semantic context.
1942  NewFD->setLexicalDeclContext(CurContext);
1943
1944  // C++ [dcl.fct.spec]p5:
1945  //   The virtual specifier shall only be used in declarations of
1946  //   nonstatic class member functions that appear within a
1947  //   member-specification of a class declaration; see 10.3.
1948  //
1949  // FIXME: Checking the 'virtual' specifier is not sufficient. A
1950  // function is also virtual if it overrides an already virtual
1951  // function. This is important to do here because it's part of the
1952  // declaration.
1953  if (isVirtual && !InvalidDecl) {
1954    if (!isVirtualOkay) {
1955       Diag(D.getDeclSpec().getVirtualSpecLoc(),
1956           diag::err_virtual_non_function);
1957    } else if (!CurContext->isRecord()) {
1958      // 'virtual' was specified outside of the class.
1959      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
1960        << CodeModificationHint::CreateRemoval(
1961                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
1962    } else {
1963      // Okay: Add virtual to the method.
1964      cast<CXXMethodDecl>(NewFD)->setVirtual();
1965      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
1966      CurClass->setAggregate(false);
1967      CurClass->setPOD(false);
1968      CurClass->setPolymorphic(true);
1969    }
1970  }
1971
1972  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
1973      !CurContext->isRecord()) {
1974    // C++ [class.static]p1:
1975    //   A data or function member of a class may be declared static
1976    //   in a class definition, in which case it is a static member of
1977    //   the class.
1978
1979    // Complain about the 'static' specifier if it's on an out-of-line
1980    // member function definition.
1981    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1982         diag::err_static_out_of_line)
1983      << CodeModificationHint::CreateRemoval(
1984                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1985  }
1986
1987  // Handle GNU asm-label extension (encoded as an attribute).
1988  if (Expr *E = (Expr*) D.getAsmLabel()) {
1989    // The parser guarantees this is a string.
1990    StringLiteral *SE = cast<StringLiteral>(E);
1991    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1992                                                        SE->getByteLength())));
1993  }
1994
1995  // Copy the parameter declarations from the declarator D to
1996  // the function declaration NewFD, if they are available.
1997  if (D.getNumTypeObjects() > 0) {
1998    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1999
2000    // Create Decl objects for each parameter, adding them to the
2001    // FunctionDecl.
2002    llvm::SmallVector<ParmVarDecl*, 16> Params;
2003
2004    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2005    // function that takes no arguments, not a function that takes a
2006    // single void argument.
2007    // We let through "const void" here because Sema::GetTypeForDeclarator
2008    // already checks for that case.
2009    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2010        FTI.ArgInfo[0].Param &&
2011        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2012      // empty arg list, don't push any params.
2013      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2014
2015      // In C++, the empty parameter-type-list must be spelled "void"; a
2016      // typedef of void is not permitted.
2017      if (getLangOptions().CPlusPlus &&
2018          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2019        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
2020      }
2021    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2022      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2023        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2024    }
2025
2026    NewFD->setParams(Context, &Params[0], Params.size());
2027  } else if (R->getAsTypedefType()) {
2028    // When we're declaring a function with a typedef, as in the
2029    // following example, we'll need to synthesize (unnamed)
2030    // parameters for use in the declaration.
2031    //
2032    // @code
2033    // typedef void fn(int);
2034    // fn f;
2035    // @endcode
2036    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2037    if (!FT) {
2038      // This is a typedef of a function with no prototype, so we
2039      // don't need to do anything.
2040    } else if ((FT->getNumArgs() == 0) ||
2041               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2042                FT->getArgType(0)->isVoidType())) {
2043      // This is a zero-argument function. We don't need to do anything.
2044    } else {
2045      // Synthesize a parameter for each argument type.
2046      llvm::SmallVector<ParmVarDecl*, 16> Params;
2047      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2048           ArgType != FT->arg_type_end(); ++ArgType) {
2049        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2050                                                 SourceLocation(), 0,
2051                                                 *ArgType, VarDecl::None,
2052                                                 0);
2053        Param->setImplicit();
2054        Params.push_back(Param);
2055      }
2056
2057      NewFD->setParams(Context, &Params[0], Params.size());
2058    }
2059  }
2060
2061  // If name lookup finds a previous declaration that is not in the
2062  // same scope as the new declaration, this may still be an
2063  // acceptable redeclaration.
2064  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2065      !(NewFD->hasLinkage() &&
2066        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2067    PrevDecl = 0;
2068
2069  // Perform semantic checking on the function declaration.
2070  bool OverloadableAttrRequired = false; // FIXME: HACK!
2071  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2072                               /*FIXME:*/OverloadableAttrRequired))
2073    InvalidDecl = true;
2074
2075  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2076    // An out-of-line member function declaration must also be a
2077    // definition (C++ [dcl.meaning]p1).
2078    if (!IsFunctionDefinition) {
2079      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2080        << D.getCXXScopeSpec().getRange();
2081      InvalidDecl = true;
2082    } else if (!Redeclaration) {
2083      // The user tried to provide an out-of-line definition for a
2084      // function that is a member of a class or namespace, but there
2085      // was no such member function declared (C++ [class.mfct]p2,
2086      // C++ [namespace.memdef]p2). For example:
2087      //
2088      // class X {
2089      //   void f() const;
2090      // };
2091      //
2092      // void X::f() { } // ill-formed
2093      //
2094      // Complain about this problem, and attempt to suggest close
2095      // matches (e.g., those that differ only in cv-qualifiers and
2096      // whether the parameter types are references).
2097      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2098        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2099      InvalidDecl = true;
2100
2101      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2102                                              true);
2103      assert(!Prev.isAmbiguous() &&
2104             "Cannot have an ambiguity in previous-declaration lookup");
2105      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2106           Func != FuncEnd; ++Func) {
2107        if (isa<FunctionDecl>(*Func) &&
2108            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2109          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2110      }
2111
2112      PrevDecl = 0;
2113    }
2114  }
2115
2116  // Handle attributes. We need to have merged decls when handling attributes
2117  // (for example to check for conflicts, etc).
2118  // FIXME: This needs to happen before we merge declarations. Then,
2119  // let attribute merging cope with attribute conflicts.
2120  ProcessDeclAttributes(NewFD, D);
2121  AddKnownFunctionAttributes(NewFD);
2122
2123  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2124    // If a function name is overloadable in C, then every function
2125    // with that name must be marked "overloadable".
2126    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2127      << Redeclaration << NewFD;
2128    if (PrevDecl)
2129      Diag(PrevDecl->getLocation(),
2130           diag::note_attribute_overloadable_prev_overload);
2131    NewFD->addAttr(::new (Context) OverloadableAttr());
2132  }
2133
2134  // If this is a locally-scoped extern C function, update the
2135  // map of such names.
2136  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2137      && !InvalidDecl)
2138    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2139
2140  return NewFD;
2141}
2142
2143/// \brief Perform semantic checking of a new function declaration.
2144///
2145/// Performs semantic analysis of the new function declaration
2146/// NewFD. This routine performs all semantic checking that does not
2147/// require the actual declarator involved in the declaration, and is
2148/// used both for the declaration of functions as they are parsed
2149/// (called via ActOnDeclarator) and for the declaration of functions
2150/// that have been instantiated via C++ template instantiation (called
2151/// via InstantiateDecl).
2152///
2153/// \returns true if there was an error, false otherwise.
2154bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2155                                    bool &Redeclaration,
2156                                    bool &OverloadableAttrRequired) {
2157  bool InvalidDecl = false;
2158
2159  // Semantic checking for this function declaration (in isolation).
2160  if (getLangOptions().CPlusPlus) {
2161    // C++-specific checks.
2162    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2163      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2164    else if (isa<CXXDestructorDecl>(NewFD)) {
2165      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2166      Record->setUserDeclaredDestructor(true);
2167      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2168      // user-defined destructor.
2169      Record->setPOD(false);
2170    } else if (CXXConversionDecl *Conversion
2171               = dyn_cast<CXXConversionDecl>(NewFD))
2172      ActOnConversionDeclarator(Conversion);
2173
2174    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2175    if (NewFD->isOverloadedOperator() &&
2176        CheckOverloadedOperatorDeclaration(NewFD))
2177      InvalidDecl = true;
2178  }
2179
2180  // Check for a previous declaration of this name.
2181  if (!PrevDecl && NewFD->isExternC(Context)) {
2182    // Since we did not find anything by this name and we're declaring
2183    // an extern "C" function, look for a non-visible extern "C"
2184    // declaration with the same name.
2185    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2186      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2187    if (Pos != LocallyScopedExternalDecls.end())
2188      PrevDecl = Pos->second;
2189  }
2190
2191  // Merge or overload the declaration with an existing declaration of
2192  // the same name, if appropriate.
2193  if (PrevDecl) {
2194    // Determine whether NewFD is an overload of PrevDecl or
2195    // a declaration that requires merging. If it's an overload,
2196    // there's no more work to do here; we'll just add the new
2197    // function to the scope.
2198    OverloadedFunctionDecl::function_iterator MatchedDecl;
2199
2200    if (!getLangOptions().CPlusPlus &&
2201        AllowOverloadingOfFunction(PrevDecl, Context)) {
2202      OverloadableAttrRequired = true;
2203
2204      // Functions marked "overloadable" must have a prototype (that
2205      // we can't get through declaration merging).
2206      if (!NewFD->getType()->getAsFunctionProtoType()) {
2207        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2208          << NewFD;
2209        InvalidDecl = true;
2210        Redeclaration = true;
2211
2212        // Turn this into a variadic function with no parameters.
2213        QualType R = Context.getFunctionType(
2214                       NewFD->getType()->getAsFunctionType()->getResultType(),
2215                       0, 0, true, 0);
2216        NewFD->setType(R);
2217      }
2218    }
2219
2220    if (PrevDecl &&
2221        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2222         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2223      Redeclaration = true;
2224      Decl *OldDecl = PrevDecl;
2225
2226      // If PrevDecl was an overloaded function, extract the
2227      // FunctionDecl that matched.
2228      if (isa<OverloadedFunctionDecl>(PrevDecl))
2229        OldDecl = *MatchedDecl;
2230
2231      // NewFD and OldDecl represent declarations that need to be
2232      // merged.
2233      if (MergeFunctionDecl(NewFD, OldDecl))
2234        InvalidDecl = true;
2235
2236      if (!InvalidDecl)
2237        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2238    }
2239  }
2240
2241  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2242    // In C++, check default arguments now that we have merged decls. Unless
2243    // the lexical context is the class, because in this case this is done
2244    // during delayed parsing anyway.
2245    CheckCXXDefaultArguments(NewFD);
2246  }
2247
2248  return InvalidDecl || NewFD->isInvalidDecl();
2249}
2250
2251bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2252  // FIXME: Need strict checking.  In C89, we need to check for
2253  // any assignment, increment, decrement, function-calls, or
2254  // commas outside of a sizeof.  In C99, it's the same list,
2255  // except that the aforementioned are allowed in unevaluated
2256  // expressions.  Everything else falls under the
2257  // "may accept other forms of constant expressions" exception.
2258  // (We never end up here for C++, so the constant expression
2259  // rules there don't matter.)
2260  if (Init->isConstantInitializer(Context))
2261    return false;
2262  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2263    << Init->getSourceRange();
2264  return true;
2265}
2266
2267void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2268  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2269}
2270
2271/// AddInitializerToDecl - Adds the initializer Init to the
2272/// declaration dcl. If DirectInit is true, this is C++ direct
2273/// initialization rather than copy initialization.
2274void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2275  Decl *RealDecl = dcl.getAs<Decl>();
2276  // If there is no declaration, there was an error parsing it.  Just ignore
2277  // the initializer.
2278  if (RealDecl == 0)
2279    return;
2280
2281  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2282    // With declarators parsed the way they are, the parser cannot
2283    // distinguish between a normal initializer and a pure-specifier.
2284    // Thus this grotesque test.
2285    IntegerLiteral *IL;
2286    Expr *Init = static_cast<Expr *>(init.get());
2287    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2288        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2289      if (Method->isVirtual()) {
2290        Method->setPure();
2291
2292        // A class is abstract if at least one function is pure virtual.
2293        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2294      } else if (!Method->isInvalidDecl()) {
2295        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2296          << Method->getDeclName() << Init->getSourceRange();
2297        Method->setInvalidDecl();
2298      }
2299    } else {
2300      Diag(Method->getLocation(), diag::err_member_function_initialization)
2301        << Method->getDeclName() << Init->getSourceRange();
2302      Method->setInvalidDecl();
2303    }
2304    return;
2305  }
2306
2307  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2308  if (!VDecl) {
2309    if (getLangOptions().CPlusPlus &&
2310        RealDecl->getLexicalDeclContext()->isRecord() &&
2311        isa<NamedDecl>(RealDecl))
2312      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2313        << cast<NamedDecl>(RealDecl)->getDeclName();
2314    else
2315      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2316    RealDecl->setInvalidDecl();
2317    return;
2318  }
2319
2320  const VarDecl *Def = 0;
2321  if (VDecl->getDefinition(Def)) {
2322    Diag(VDecl->getLocation(), diag::err_redefinition)
2323      << VDecl->getDeclName();
2324    Diag(Def->getLocation(), diag::note_previous_definition);
2325    VDecl->setInvalidDecl();
2326    return;
2327  }
2328
2329  // Take ownership of the expression, now that we're sure we have somewhere
2330  // to put it.
2331  Expr *Init = static_cast<Expr *>(init.release());
2332  assert(Init && "missing initializer");
2333
2334  // Get the decls type and save a reference for later, since
2335  // CheckInitializerTypes may change it.
2336  QualType DclT = VDecl->getType(), SavT = DclT;
2337  if (VDecl->isBlockVarDecl()) {
2338    VarDecl::StorageClass SC = VDecl->getStorageClass();
2339    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2340      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2341      VDecl->setInvalidDecl();
2342    } else if (!VDecl->isInvalidDecl()) {
2343      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2344                                VDecl->getDeclName(), DirectInit))
2345        VDecl->setInvalidDecl();
2346
2347      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2348      // Don't check invalid declarations to avoid emitting useless diagnostics.
2349      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2350        if (SC == VarDecl::Static) // C99 6.7.8p4.
2351          CheckForConstantInitializer(Init, DclT);
2352      }
2353    }
2354  } else if (VDecl->isStaticDataMember() &&
2355             VDecl->getLexicalDeclContext()->isRecord()) {
2356    // This is an in-class initialization for a static data member, e.g.,
2357    //
2358    // struct S {
2359    //   static const int value = 17;
2360    // };
2361
2362    // Attach the initializer
2363    VDecl->setInit(Init);
2364
2365    // C++ [class.mem]p4:
2366    //   A member-declarator can contain a constant-initializer only
2367    //   if it declares a static member (9.4) of const integral or
2368    //   const enumeration type, see 9.4.2.
2369    QualType T = VDecl->getType();
2370    if (!T->isDependentType() &&
2371        (!Context.getCanonicalType(T).isConstQualified() ||
2372         !T->isIntegralType())) {
2373      Diag(VDecl->getLocation(), diag::err_member_initialization)
2374        << VDecl->getDeclName() << Init->getSourceRange();
2375      VDecl->setInvalidDecl();
2376    } else {
2377      // C++ [class.static.data]p4:
2378      //   If a static data member is of const integral or const
2379      //   enumeration type, its declaration in the class definition
2380      //   can specify a constant-initializer which shall be an
2381      //   integral constant expression (5.19).
2382      if (!Init->isTypeDependent() &&
2383          !Init->getType()->isIntegralType()) {
2384        // We have a non-dependent, non-integral or enumeration type.
2385        Diag(Init->getSourceRange().getBegin(),
2386             diag::err_in_class_initializer_non_integral_type)
2387          << Init->getType() << Init->getSourceRange();
2388        VDecl->setInvalidDecl();
2389      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2390        // Check whether the expression is a constant expression.
2391        llvm::APSInt Value;
2392        SourceLocation Loc;
2393        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2394          Diag(Loc, diag::err_in_class_initializer_non_constant)
2395            << Init->getSourceRange();
2396          VDecl->setInvalidDecl();
2397        } else if (!VDecl->getType()->isDependentType())
2398          ImpCastExprToType(Init, VDecl->getType());
2399      }
2400    }
2401  } else if (VDecl->isFileVarDecl()) {
2402    if (VDecl->getStorageClass() == VarDecl::Extern)
2403      Diag(VDecl->getLocation(), diag::warn_extern_init);
2404    if (!VDecl->isInvalidDecl())
2405      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2406                                VDecl->getDeclName(), DirectInit))
2407        VDecl->setInvalidDecl();
2408
2409    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2410    // Don't check invalid declarations to avoid emitting useless diagnostics.
2411    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2412      // C99 6.7.8p4. All file scoped initializers need to be constant.
2413      CheckForConstantInitializer(Init, DclT);
2414    }
2415  }
2416  // If the type changed, it means we had an incomplete type that was
2417  // completed by the initializer. For example:
2418  //   int ary[] = { 1, 3, 5 };
2419  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2420  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2421    VDecl->setType(DclT);
2422    Init->setType(DclT);
2423  }
2424
2425  // Attach the initializer to the decl.
2426  VDecl->setInit(Init);
2427  return;
2428}
2429
2430void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2431  Decl *RealDecl = dcl.getAs<Decl>();
2432
2433  // If there is no declaration, there was an error parsing it. Just ignore it.
2434  if (RealDecl == 0)
2435    return;
2436
2437  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2438    QualType Type = Var->getType();
2439    // C++ [dcl.init.ref]p3:
2440    //   The initializer can be omitted for a reference only in a
2441    //   parameter declaration (8.3.5), in the declaration of a
2442    //   function return type, in the declaration of a class member
2443    //   within its class declaration (9.2), and where the extern
2444    //   specifier is explicitly used.
2445    if (Type->isReferenceType() &&
2446        Var->getStorageClass() != VarDecl::Extern &&
2447        Var->getStorageClass() != VarDecl::PrivateExtern) {
2448      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2449        << Var->getDeclName()
2450        << SourceRange(Var->getLocation(), Var->getLocation());
2451      Var->setInvalidDecl();
2452      return;
2453    }
2454
2455    // C++ [dcl.init]p9:
2456    //
2457    //   If no initializer is specified for an object, and the object
2458    //   is of (possibly cv-qualified) non-POD class type (or array
2459    //   thereof), the object shall be default-initialized; if the
2460    //   object is of const-qualified type, the underlying class type
2461    //   shall have a user-declared default constructor.
2462    if (getLangOptions().CPlusPlus) {
2463      QualType InitType = Type;
2464      if (const ArrayType *Array = Context.getAsArrayType(Type))
2465        InitType = Array->getElementType();
2466      if (Var->getStorageClass() != VarDecl::Extern &&
2467          Var->getStorageClass() != VarDecl::PrivateExtern &&
2468          InitType->isRecordType()) {
2469        const CXXConstructorDecl *Constructor = 0;
2470        if (!RequireCompleteType(Var->getLocation(), InitType,
2471                                    diag::err_invalid_incomplete_type_use))
2472          Constructor
2473            = PerformInitializationByConstructor(InitType, 0, 0,
2474                                                 Var->getLocation(),
2475                                               SourceRange(Var->getLocation(),
2476                                                           Var->getLocation()),
2477                                                 Var->getDeclName(),
2478                                                 IK_Default);
2479        if (!Constructor)
2480          Var->setInvalidDecl();
2481      }
2482    }
2483
2484#if 0
2485    // FIXME: Temporarily disabled because we are not properly parsing
2486    // linkage specifications on declarations, e.g.,
2487    //
2488    //   extern "C" const CGPoint CGPointerZero;
2489    //
2490    // C++ [dcl.init]p9:
2491    //
2492    //     If no initializer is specified for an object, and the
2493    //     object is of (possibly cv-qualified) non-POD class type (or
2494    //     array thereof), the object shall be default-initialized; if
2495    //     the object is of const-qualified type, the underlying class
2496    //     type shall have a user-declared default
2497    //     constructor. Otherwise, if no initializer is specified for
2498    //     an object, the object and its subobjects, if any, have an
2499    //     indeterminate initial value; if the object or any of its
2500    //     subobjects are of const-qualified type, the program is
2501    //     ill-formed.
2502    //
2503    // This isn't technically an error in C, so we don't diagnose it.
2504    //
2505    // FIXME: Actually perform the POD/user-defined default
2506    // constructor check.
2507    if (getLangOptions().CPlusPlus &&
2508        Context.getCanonicalType(Type).isConstQualified() &&
2509        Var->getStorageClass() != VarDecl::Extern)
2510      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2511        << Var->getName()
2512        << SourceRange(Var->getLocation(), Var->getLocation());
2513#endif
2514  }
2515}
2516
2517Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2518                                                   unsigned NumDecls) {
2519  llvm::SmallVector<Decl*, 8> Decls;
2520
2521  for (unsigned i = 0; i != NumDecls; ++i)
2522    if (Decl *D = Group[i].getAs<Decl>())
2523      Decls.push_back(D);
2524
2525  // Perform semantic analysis that depends on having fully processed both
2526  // the declarator and initializer.
2527  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2528    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2529    if (!IDecl)
2530      continue;
2531    QualType T = IDecl->getType();
2532
2533    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2534    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2535    if (IDecl->isBlockVarDecl() &&
2536        IDecl->getStorageClass() != VarDecl::Extern) {
2537      if (!IDecl->isInvalidDecl() &&
2538          RequireCompleteType(IDecl->getLocation(), T,
2539                              diag::err_typecheck_decl_incomplete_type))
2540        IDecl->setInvalidDecl();
2541    }
2542    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2543    // object that has file scope without an initializer, and without a
2544    // storage-class specifier or with the storage-class specifier "static",
2545    // constitutes a tentative definition. Note: A tentative definition with
2546    // external linkage is valid (C99 6.2.2p5).
2547    if (IDecl->isTentativeDefinition(Context)) {
2548      QualType CheckType = T;
2549      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2550
2551      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2552      if (ArrayT) {
2553        CheckType = ArrayT->getElementType();
2554        DiagID = diag::err_illegal_decl_array_incomplete_type;
2555      }
2556
2557      if (IDecl->isInvalidDecl()) {
2558        // Do nothing with invalid declarations
2559      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2560                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2561        // C99 6.9.2p3: If the declaration of an identifier for an object is
2562        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2563        // declared type shall not be an incomplete type.
2564        IDecl->setInvalidDecl();
2565      }
2566    }
2567  }
2568  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2569                                                   &Decls[0], NumDecls));
2570}
2571
2572
2573/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2574/// to introduce parameters into function prototype scope.
2575Sema::DeclPtrTy
2576Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2577  const DeclSpec &DS = D.getDeclSpec();
2578
2579  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2580  VarDecl::StorageClass StorageClass = VarDecl::None;
2581  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2582    StorageClass = VarDecl::Register;
2583  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2584    Diag(DS.getStorageClassSpecLoc(),
2585         diag::err_invalid_storage_class_in_func_decl);
2586    D.getMutableDeclSpec().ClearStorageClassSpecs();
2587  }
2588  if (DS.isThreadSpecified()) {
2589    Diag(DS.getThreadSpecLoc(),
2590         diag::err_invalid_storage_class_in_func_decl);
2591    D.getMutableDeclSpec().ClearStorageClassSpecs();
2592  }
2593
2594  // Check that there are no default arguments inside the type of this
2595  // parameter (C++ only).
2596  if (getLangOptions().CPlusPlus)
2597    CheckExtraCXXDefaultArguments(D);
2598
2599  // In this context, we *do not* check D.getInvalidType(). If the declarator
2600  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2601  // though it will not reflect the user specified type.
2602  QualType parmDeclType = GetTypeForDeclarator(D, S);
2603
2604  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2605
2606  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2607  // Can this happen for params?  We already checked that they don't conflict
2608  // among each other.  Here they can only shadow globals, which is ok.
2609  IdentifierInfo *II = D.getIdentifier();
2610  if (II) {
2611    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2612      if (PrevDecl->isTemplateParameter()) {
2613        // Maybe we will complain about the shadowed template parameter.
2614        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2615        // Just pretend that we didn't see the previous declaration.
2616        PrevDecl = 0;
2617      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2618        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2619
2620        // Recover by removing the name
2621        II = 0;
2622        D.SetIdentifier(0, D.getIdentifierLoc());
2623      }
2624    }
2625  }
2626
2627  // Parameters can not be abstract class types.
2628  // For record types, this is done by the AbstractClassUsageDiagnoser once
2629  // the class has been completely parsed.
2630  if (!CurContext->isRecord() &&
2631      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2632                             diag::err_abstract_type_in_decl,
2633                             AbstractParamType))
2634    D.setInvalidType(true);
2635
2636  QualType T = adjustParameterType(parmDeclType);
2637
2638  ParmVarDecl *New;
2639  if (T == parmDeclType) // parameter type did not need adjustment
2640    New = ParmVarDecl::Create(Context, CurContext,
2641                              D.getIdentifierLoc(), II,
2642                              parmDeclType, StorageClass,
2643                              0);
2644  else // keep track of both the adjusted and unadjusted types
2645    New = OriginalParmVarDecl::Create(Context, CurContext,
2646                                      D.getIdentifierLoc(), II, T,
2647                                      parmDeclType, StorageClass, 0);
2648
2649  if (D.getInvalidType())
2650    New->setInvalidDecl();
2651
2652  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2653  if (D.getCXXScopeSpec().isSet()) {
2654    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2655      << D.getCXXScopeSpec().getRange();
2656    New->setInvalidDecl();
2657  }
2658  // Parameter declarators cannot be interface types. All ObjC objects are
2659  // passed by reference.
2660  if (T->isObjCInterfaceType()) {
2661    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2662         << "passed";
2663    New->setInvalidDecl();
2664  }
2665
2666  // Add the parameter declaration into this scope.
2667  S->AddDecl(DeclPtrTy::make(New));
2668  if (II)
2669    IdResolver.AddDecl(New);
2670
2671  ProcessDeclAttributes(New, D);
2672  return DeclPtrTy::make(New);
2673}
2674
2675void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2676  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2677         "Not a function declarator!");
2678  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2679
2680  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2681  // for a K&R function.
2682  if (!FTI.hasPrototype) {
2683    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2684      if (FTI.ArgInfo[i].Param == 0) {
2685        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2686          << FTI.ArgInfo[i].Ident;
2687        // Implicitly declare the argument as type 'int' for lack of a better
2688        // type.
2689        DeclSpec DS;
2690        const char* PrevSpec; // unused
2691        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2692                           PrevSpec);
2693        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2694        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2695        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2696      }
2697    }
2698  }
2699}
2700
2701Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2702                                              Declarator &D) {
2703  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2704  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2705         "Not a function declarator!");
2706  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2707
2708  if (FTI.hasPrototype) {
2709    // FIXME: Diagnose arguments without names in C.
2710  }
2711
2712  Scope *ParentScope = FnBodyScope->getParent();
2713
2714  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2715  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2716}
2717
2718Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2719  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2720
2721  // See if this is a redefinition.
2722  const FunctionDecl *Definition;
2723  if (FD->getBody(Definition)) {
2724    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2725    Diag(Definition->getLocation(), diag::note_previous_definition);
2726  }
2727
2728  // Builtin functions cannot be defined.
2729  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2730    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2731      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2732      FD->setInvalidDecl();
2733    }
2734  }
2735
2736  // The return type of a function definition must be complete
2737  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2738  QualType ResultType = FD->getResultType();
2739  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2740      RequireCompleteType(FD->getLocation(), ResultType,
2741                          diag::err_func_def_incomplete_result))
2742    FD->setInvalidDecl();
2743
2744  // GNU warning -Wmissing-prototypes:
2745  //   Warn if a global function is defined without a previous
2746  //   prototype declaration. This warning is issued even if the
2747  //   definition itself provides a prototype. The aim is to detect
2748  //   global functions that fail to be declared in header files.
2749  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD)) {
2750    bool MissingPrototype = true;
2751    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2752         Prev; Prev = Prev->getPreviousDeclaration()) {
2753      // Ignore any declarations that occur in function or method
2754      // scope, because they aren't visible from the header.
2755      if (Prev->getDeclContext()->isFunctionOrMethod())
2756        continue;
2757
2758      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2759      break;
2760    }
2761
2762    if (MissingPrototype)
2763      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2764  }
2765
2766  PushDeclContext(FnBodyScope, FD);
2767
2768  // Check the validity of our function parameters
2769  CheckParmsForFunctionDef(FD);
2770
2771  // Introduce our parameters into the function scope
2772  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2773    ParmVarDecl *Param = FD->getParamDecl(p);
2774    Param->setOwningFunction(FD);
2775
2776    // If this has an identifier, add it to the scope stack.
2777    if (Param->getIdentifier())
2778      PushOnScopeChains(Param, FnBodyScope);
2779  }
2780
2781  // Checking attributes of current function definition
2782  // dllimport attribute.
2783  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2784    // dllimport attribute cannot be applied to definition.
2785    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2786      Diag(FD->getLocation(),
2787           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2788        << "dllimport";
2789      FD->setInvalidDecl();
2790      return DeclPtrTy::make(FD);
2791    } else {
2792      // If a symbol previously declared dllimport is later defined, the
2793      // attribute is ignored in subsequent references, and a warning is
2794      // emitted.
2795      Diag(FD->getLocation(),
2796           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2797        << FD->getNameAsCString() << "dllimport";
2798    }
2799  }
2800  return DeclPtrTy::make(FD);
2801}
2802
2803static bool StatementCreatesScope(Stmt* S) {
2804  bool result = false;
2805  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2806    for (DeclStmt::decl_iterator i = DS->decl_begin();
2807         i != DS->decl_end(); ++i) {
2808      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2809        result |= D->getType()->isVariablyModifiedType();
2810        result |= !!D->getAttr<CleanupAttr>();
2811      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2812        result |= D->getUnderlyingType()->isVariablyModifiedType();
2813      }
2814    }
2815  }
2816
2817  return result;
2818}
2819
2820void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2821                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2822                                    std::vector<void*>& ScopeStack,
2823                                    Stmt* CurStmt,
2824                                    Stmt* ParentCompoundStmt) {
2825  for (Stmt::child_iterator i = CurStmt->child_begin();
2826       i != CurStmt->child_end(); ++i) {
2827    if (!*i) continue;
2828    if (StatementCreatesScope(*i))  {
2829      ScopeStack.push_back(*i);
2830      PopScopeMap[*i] = ParentCompoundStmt;
2831    } else if (isa<LabelStmt>(CurStmt)) {
2832      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2833    }
2834    if (isa<DeclStmt>(*i)) continue;
2835    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2836    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2837                             *i, CurCompound);
2838  }
2839
2840  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2841    ScopeStack.pop_back();
2842  }
2843}
2844
2845void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2846                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2847                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2848                                   std::vector<void*>& ScopeStack,
2849                                   Stmt* CurStmt) {
2850  for (Stmt::child_iterator i = CurStmt->child_begin();
2851       i != CurStmt->child_end(); ++i) {
2852    if (!*i) continue;
2853    if (StatementCreatesScope(*i))  {
2854      ScopeStack.push_back(*i);
2855    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2856      void* LScope = LabelScopeMap[GS->getLabel()];
2857      if (LScope) {
2858        bool foundScopeInStack = false;
2859        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2860          if (LScope == ScopeStack[i-1]) {
2861            foundScopeInStack = true;
2862            break;
2863          }
2864        }
2865        if (!foundScopeInStack) {
2866          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2867        }
2868      }
2869    }
2870    if (isa<DeclStmt>(*i)) continue;
2871    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2872                            ScopeStack, *i);
2873  }
2874
2875  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2876    ScopeStack.pop_back();
2877  }
2878}
2879
2880Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
2881  Decl *dcl = D.getAs<Decl>();
2882  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2883  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2884    FD->setBody(cast<CompoundStmt>(Body));
2885    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2886  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2887    assert(MD == getCurMethodDecl() && "Method parsing confused");
2888    MD->setBody(cast<CompoundStmt>(Body));
2889  } else {
2890    Body->Destroy(Context);
2891    return DeclPtrTy();
2892  }
2893  PopDeclContext();
2894  // Verify and clean out per-function state.
2895
2896  bool HaveLabels = !LabelMap.empty();
2897  // Check goto/label use.
2898  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2899       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2900    // Verify that we have no forward references left.  If so, there was a goto
2901    // or address of a label taken, but no definition of it.  Label fwd
2902    // definitions are indicated with a null substmt.
2903    if (I->second->getSubStmt() == 0) {
2904      LabelStmt *L = I->second;
2905      // Emit error.
2906      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2907
2908      // At this point, we have gotos that use the bogus label.  Stitch it into
2909      // the function body so that they aren't leaked and that the AST is well
2910      // formed.
2911      if (Body) {
2912#if 0
2913        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2914        // and the AST is malformed anyway.  We should just blow away 'L'.
2915        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2916        cast<CompoundStmt>(Body)->push_back(L);
2917#else
2918        L->Destroy(Context);
2919#endif
2920      } else {
2921        // The whole function wasn't parsed correctly, just delete this.
2922        L->Destroy(Context);
2923      }
2924    }
2925  }
2926  LabelMap.clear();
2927
2928  if (!Body) return D;
2929
2930  if (HaveLabels) {
2931    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2932    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2933    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2934    std::vector<void*> ScopeStack;
2935    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2936    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2937  }
2938
2939  return D;
2940}
2941
2942/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2943/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2944NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2945                                          IdentifierInfo &II, Scope *S) {
2946  // Before we produce a declaration for an implicitly defined
2947  // function, see whether there was a locally-scoped declaration of
2948  // this name as a function or variable. If so, use that
2949  // (non-visible) declaration, and complain about it.
2950  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2951    = LocallyScopedExternalDecls.find(&II);
2952  if (Pos != LocallyScopedExternalDecls.end()) {
2953    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2954    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2955    return Pos->second;
2956  }
2957
2958  // Extension in C99.  Legal in C90, but warn about it.
2959  if (getLangOptions().C99)
2960    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2961  else
2962    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2963
2964  // FIXME: handle stuff like:
2965  // void foo() { extern float X(); }
2966  // void bar() { X(); }  <-- implicit decl for X in another scope.
2967
2968  // Set a Declarator for the implicit definition: int foo();
2969  const char *Dummy;
2970  DeclSpec DS;
2971  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2972  Error = Error; // Silence warning.
2973  assert(!Error && "Error setting up implicit decl!");
2974  Declarator D(DS, Declarator::BlockContext);
2975  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2976                                             0, 0, 0, Loc, D),
2977                SourceLocation());
2978  D.SetIdentifier(&II, Loc);
2979
2980  // Insert this function into translation-unit scope.
2981
2982  DeclContext *PrevDC = CurContext;
2983  CurContext = Context.getTranslationUnitDecl();
2984
2985  FunctionDecl *FD =
2986 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
2987  FD->setImplicit();
2988
2989  CurContext = PrevDC;
2990
2991  AddKnownFunctionAttributes(FD);
2992
2993  return FD;
2994}
2995
2996/// \brief Adds any function attributes that we know a priori based on
2997/// the declaration of this function.
2998///
2999/// These attributes can apply both to implicitly-declared builtins
3000/// (like __builtin___printf_chk) or to library-declared functions
3001/// like NSLog or printf.
3002void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3003  if (FD->isInvalidDecl())
3004    return;
3005
3006  // If this is a built-in function, map its builtin attributes to
3007  // actual attributes.
3008  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3009    // Handle printf-formatting attributes.
3010    unsigned FormatIdx;
3011    bool HasVAListArg;
3012    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3013      if (!FD->getAttr<FormatAttr>())
3014        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3015                                               FormatIdx + 2));
3016    }
3017
3018    // Mark const if we don't care about errno and that is the only
3019    // thing preventing the function from being const. This allows
3020    // IRgen to use LLVM intrinsics for such functions.
3021    if (!getLangOptions().MathErrno &&
3022        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3023      if (!FD->getAttr<ConstAttr>())
3024        FD->addAttr(::new (Context) ConstAttr());
3025    }
3026  }
3027
3028  IdentifierInfo *Name = FD->getIdentifier();
3029  if (!Name)
3030    return;
3031  if ((!getLangOptions().CPlusPlus &&
3032       FD->getDeclContext()->isTranslationUnit()) ||
3033      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3034       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3035       LinkageSpecDecl::lang_c)) {
3036    // Okay: this could be a libc/libm/Objective-C function we know
3037    // about.
3038  } else
3039    return;
3040
3041  unsigned KnownID;
3042  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
3043    if (KnownFunctionIDs[KnownID] == Name)
3044      break;
3045
3046  switch (KnownID) {
3047  case id_NSLog:
3048  case id_NSLogv:
3049    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3050      // FIXME: We known better than our headers.
3051      const_cast<FormatAttr *>(Format)->setType("printf");
3052    } else
3053      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3054    break;
3055
3056  case id_asprintf:
3057  case id_vasprintf:
3058    if (!FD->getAttr<FormatAttr>())
3059      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3060    break;
3061
3062  default:
3063    // Unknown function or known function without any attributes to
3064    // add. Do nothing.
3065    break;
3066  }
3067}
3068
3069TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3070  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3071  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3072
3073  // Scope manipulation handled by caller.
3074  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3075                                           D.getIdentifierLoc(),
3076                                           D.getIdentifier(),
3077                                           T);
3078
3079  if (TagType *TT = dyn_cast<TagType>(T)) {
3080    TagDecl *TD = TT->getDecl();
3081
3082    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3083    // keep track of the TypedefDecl.
3084    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3085      TD->setTypedefForAnonDecl(NewTD);
3086  }
3087
3088  if (D.getInvalidType())
3089    NewTD->setInvalidDecl();
3090  return NewTD;
3091}
3092
3093/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3094/// former case, Name will be non-null.  In the later case, Name will be null.
3095/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3096/// reference/declaration/definition of a tag.
3097Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3098                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3099                               IdentifierInfo *Name, SourceLocation NameLoc,
3100                               AttributeList *Attr, AccessSpecifier AS) {
3101  // If this is not a definition, it must have a name.
3102  assert((Name != 0 || TK == TK_Definition) &&
3103         "Nameless record must be a definition!");
3104
3105  TagDecl::TagKind Kind;
3106  switch (TagSpec) {
3107  default: assert(0 && "Unknown tag type!");
3108  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3109  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3110  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3111  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3112  }
3113
3114  DeclContext *SearchDC = CurContext;
3115  DeclContext *DC = CurContext;
3116  NamedDecl *PrevDecl = 0;
3117
3118  bool Invalid = false;
3119
3120  if (Name && SS.isNotEmpty()) {
3121    // We have a nested-name tag ('struct foo::bar').
3122
3123    // Check for invalid 'foo::'.
3124    if (SS.isInvalid()) {
3125      Name = 0;
3126      goto CreateNewDecl;
3127    }
3128
3129    // FIXME: RequireCompleteDeclContext(SS)?
3130    DC = computeDeclContext(SS);
3131    SearchDC = DC;
3132    // Look-up name inside 'foo::'.
3133    PrevDecl = dyn_cast_or_null<TagDecl>(
3134                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3135
3136    // A tag 'foo::bar' must already exist.
3137    if (PrevDecl == 0) {
3138      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3139      Name = 0;
3140      goto CreateNewDecl;
3141    }
3142  } else if (Name) {
3143    // If this is a named struct, check to see if there was a previous forward
3144    // declaration or definition.
3145    // FIXME: We're looking into outer scopes here, even when we
3146    // shouldn't be. Doing so can result in ambiguities that we
3147    // shouldn't be diagnosing.
3148    LookupResult R = LookupName(S, Name, LookupTagName,
3149                                /*RedeclarationOnly=*/(TK != TK_Reference));
3150    if (R.isAmbiguous()) {
3151      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3152      // FIXME: This is not best way to recover from case like:
3153      //
3154      // struct S s;
3155      //
3156      // causes needless err_ovl_no_viable_function_in_init latter.
3157      Name = 0;
3158      PrevDecl = 0;
3159      Invalid = true;
3160    }
3161    else
3162      PrevDecl = R;
3163
3164    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3165      // FIXME: This makes sure that we ignore the contexts associated
3166      // with C structs, unions, and enums when looking for a matching
3167      // tag declaration or definition. See the similar lookup tweak
3168      // in Sema::LookupName; is there a better way to deal with this?
3169      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3170        SearchDC = SearchDC->getParent();
3171    }
3172  }
3173
3174  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3175    // Maybe we will complain about the shadowed template parameter.
3176    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3177    // Just pretend that we didn't see the previous declaration.
3178    PrevDecl = 0;
3179  }
3180
3181  if (PrevDecl) {
3182    // Check whether the previous declaration is usable.
3183    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3184
3185    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3186      // If this is a use of a previous tag, or if the tag is already declared
3187      // in the same scope (so that the definition/declaration completes or
3188      // rementions the tag), reuse the decl.
3189      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3190        // Make sure that this wasn't declared as an enum and now used as a
3191        // struct or something similar.
3192        if (PrevTagDecl->getTagKind() != Kind) {
3193          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3194          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3195          // Recover by making this an anonymous redefinition.
3196          Name = 0;
3197          PrevDecl = 0;
3198          Invalid = true;
3199        } else {
3200          // If this is a use, just return the declaration we found.
3201
3202          // FIXME: In the future, return a variant or some other clue
3203          // for the consumer of this Decl to know it doesn't own it.
3204          // For our current ASTs this shouldn't be a problem, but will
3205          // need to be changed with DeclGroups.
3206          if (TK == TK_Reference)
3207            return DeclPtrTy::make(PrevDecl);
3208
3209          // Diagnose attempts to redefine a tag.
3210          if (TK == TK_Definition) {
3211            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3212              Diag(NameLoc, diag::err_redefinition) << Name;
3213              Diag(Def->getLocation(), diag::note_previous_definition);
3214              // If this is a redefinition, recover by making this
3215              // struct be anonymous, which will make any later
3216              // references get the previous definition.
3217              Name = 0;
3218              PrevDecl = 0;
3219              Invalid = true;
3220            } else {
3221              // If the type is currently being defined, complain
3222              // about a nested redefinition.
3223              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3224              if (Tag->isBeingDefined()) {
3225                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3226                Diag(PrevTagDecl->getLocation(),
3227                     diag::note_previous_definition);
3228                Name = 0;
3229                PrevDecl = 0;
3230                Invalid = true;
3231              }
3232            }
3233
3234            // Okay, this is definition of a previously declared or referenced
3235            // tag PrevDecl. We're going to create a new Decl for it.
3236          }
3237        }
3238        // If we get here we have (another) forward declaration or we
3239        // have a definition.  Just create a new decl.
3240      } else {
3241        // If we get here, this is a definition of a new tag type in a nested
3242        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3243        // new decl/type.  We set PrevDecl to NULL so that the entities
3244        // have distinct types.
3245        PrevDecl = 0;
3246      }
3247      // If we get here, we're going to create a new Decl. If PrevDecl
3248      // is non-NULL, it's a definition of the tag declared by
3249      // PrevDecl. If it's NULL, we have a new definition.
3250    } else {
3251      // PrevDecl is a namespace, template, or anything else
3252      // that lives in the IDNS_Tag identifier namespace.
3253      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3254        // The tag name clashes with a namespace name, issue an error and
3255        // recover by making this tag be anonymous.
3256        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3257        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3258        Name = 0;
3259        PrevDecl = 0;
3260        Invalid = true;
3261      } else {
3262        // The existing declaration isn't relevant to us; we're in a
3263        // new scope, so clear out the previous declaration.
3264        PrevDecl = 0;
3265      }
3266    }
3267  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3268             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3269    // C.scope.pdecl]p5:
3270    //   -- for an elaborated-type-specifier of the form
3271    //
3272    //          class-key identifier
3273    //
3274    //      if the elaborated-type-specifier is used in the
3275    //      decl-specifier-seq or parameter-declaration-clause of a
3276    //      function defined in namespace scope, the identifier is
3277    //      declared as a class-name in the namespace that contains
3278    //      the declaration; otherwise, except as a friend
3279    //      declaration, the identifier is declared in the smallest
3280    //      non-class, non-function-prototype scope that contains the
3281    //      declaration.
3282    //
3283    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3284    // C structs and unions.
3285    //
3286    // GNU C also supports this behavior as part of its incomplete
3287    // enum types extension, while GNU C++ does not.
3288    //
3289    // Find the context where we'll be declaring the tag.
3290    // FIXME: We would like to maintain the current DeclContext as the
3291    // lexical context,
3292    while (SearchDC->isRecord())
3293      SearchDC = SearchDC->getParent();
3294
3295    // Find the scope where we'll be declaring the tag.
3296    while (S->isClassScope() ||
3297           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3298           ((S->getFlags() & Scope::DeclScope) == 0) ||
3299           (S->getEntity() &&
3300            ((DeclContext *)S->getEntity())->isTransparentContext()))
3301      S = S->getParent();
3302  }
3303
3304CreateNewDecl:
3305
3306  // If there is an identifier, use the location of the identifier as the
3307  // location of the decl, otherwise use the location of the struct/union
3308  // keyword.
3309  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3310
3311  // Otherwise, create a new declaration. If there is a previous
3312  // declaration of the same entity, the two will be linked via
3313  // PrevDecl.
3314  TagDecl *New;
3315
3316  if (Kind == TagDecl::TK_enum) {
3317    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3318    // enum X { A, B, C } D;    D should chain to X.
3319    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3320                           cast_or_null<EnumDecl>(PrevDecl));
3321    // If this is an undefined enum, warn.
3322    if (TK != TK_Definition && !Invalid)  {
3323      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3324                                              : diag::ext_forward_ref_enum;
3325      Diag(Loc, DK);
3326    }
3327  } else {
3328    // struct/union/class
3329
3330    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3331    // struct X { int A; } D;    D should chain to X.
3332    if (getLangOptions().CPlusPlus)
3333      // FIXME: Look for a way to use RecordDecl for simple structs.
3334      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3335                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3336    else
3337      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3338                               cast_or_null<RecordDecl>(PrevDecl));
3339  }
3340
3341  if (Kind != TagDecl::TK_enum) {
3342    // Handle #pragma pack: if the #pragma pack stack has non-default
3343    // alignment, make up a packed attribute for this decl. These
3344    // attributes are checked when the ASTContext lays out the
3345    // structure.
3346    //
3347    // It is important for implementing the correct semantics that this
3348    // happen here (in act on tag decl). The #pragma pack stack is
3349    // maintained as a result of parser callbacks which can occur at
3350    // many points during the parsing of a struct declaration (because
3351    // the #pragma tokens are effectively skipped over during the
3352    // parsing of the struct).
3353    if (unsigned Alignment = getPragmaPackAlignment())
3354      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3355  }
3356
3357  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3358    // C++ [dcl.typedef]p3:
3359    //   [...] Similarly, in a given scope, a class or enumeration
3360    //   shall not be declared with the same name as a typedef-name
3361    //   that is declared in that scope and refers to a type other
3362    //   than the class or enumeration itself.
3363    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3364    TypedefDecl *PrevTypedef = 0;
3365    if (Lookup.getKind() == LookupResult::Found)
3366      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3367
3368    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3369        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3370          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3371      Diag(Loc, diag::err_tag_definition_of_typedef)
3372        << Context.getTypeDeclType(New)
3373        << PrevTypedef->getUnderlyingType();
3374      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3375      Invalid = true;
3376    }
3377  }
3378
3379  if (Invalid)
3380    New->setInvalidDecl();
3381
3382  if (Attr)
3383    ProcessDeclAttributeList(New, Attr);
3384
3385  // If we're declaring or defining a tag in function prototype scope
3386  // in C, note that this type can only be used within the function.
3387  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3388    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3389
3390  // Set the lexical context. If the tag has a C++ scope specifier, the
3391  // lexical context will be different from the semantic context.
3392  New->setLexicalDeclContext(CurContext);
3393
3394  // Set the access specifier.
3395  SetMemberAccessSpecifier(New, PrevDecl, AS);
3396
3397  if (TK == TK_Definition)
3398    New->startDefinition();
3399
3400  // If this has an identifier, add it to the scope stack.
3401  if (Name) {
3402    S = getNonFieldDeclScope(S);
3403    PushOnScopeChains(New, S);
3404  } else {
3405    CurContext->addDecl(New);
3406  }
3407
3408  return DeclPtrTy::make(New);
3409}
3410
3411void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3412  AdjustDeclIfTemplate(TagD);
3413  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3414
3415  // Enter the tag context.
3416  PushDeclContext(S, Tag);
3417
3418  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3419    FieldCollector->StartClass();
3420
3421    if (Record->getIdentifier()) {
3422      // C++ [class]p2:
3423      //   [...] The class-name is also inserted into the scope of the
3424      //   class itself; this is known as the injected-class-name. For
3425      //   purposes of access checking, the injected-class-name is treated
3426      //   as if it were a public member name.
3427      CXXRecordDecl *InjectedClassName
3428        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3429                                CurContext, Record->getLocation(),
3430                                Record->getIdentifier(), Record);
3431      InjectedClassName->setImplicit();
3432      InjectedClassName->setAccess(AS_public);
3433      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3434        InjectedClassName->setDescribedClassTemplate(Template);
3435      PushOnScopeChains(InjectedClassName, S);
3436      assert(InjectedClassName->isInjectedClassName() &&
3437             "Broken injected-class-name");
3438    }
3439  }
3440}
3441
3442void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3443  AdjustDeclIfTemplate(TagD);
3444  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3445
3446  if (isa<CXXRecordDecl>(Tag))
3447    FieldCollector->FinishClass();
3448
3449  // Exit this scope of this tag's definition.
3450  PopDeclContext();
3451
3452  // Notify the consumer that we've defined a tag.
3453  Consumer.HandleTagDeclDefinition(Tag);
3454}
3455
3456bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3457                          QualType FieldTy, const Expr *BitWidth) {
3458  // C99 6.7.2.1p4 - verify the field type.
3459  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3460  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3461    // Handle incomplete types with specific error.
3462    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3463      return true;
3464    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3465      << FieldName << FieldTy << BitWidth->getSourceRange();
3466  }
3467
3468  // If the bit-width is type- or value-dependent, don't try to check
3469  // it now.
3470  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3471    return false;
3472
3473  llvm::APSInt Value;
3474  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3475    return true;
3476
3477  // Zero-width bitfield is ok for anonymous field.
3478  if (Value == 0 && FieldName)
3479    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3480
3481  if (Value.isSigned() && Value.isNegative())
3482    return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3483             << FieldName << Value.toString(10);
3484
3485  if (!FieldTy->isDependentType()) {
3486    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3487    // FIXME: We won't need the 0 size once we check that the field type is valid.
3488    if (TypeSize && Value.getZExtValue() > TypeSize)
3489      return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3490        << FieldName << (unsigned)TypeSize;
3491  }
3492
3493  return false;
3494}
3495
3496/// ActOnField - Each field of a struct/union/class is passed into this in order
3497/// to create a FieldDecl object for it.
3498Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3499                                 SourceLocation DeclStart,
3500                                 Declarator &D, ExprTy *BitfieldWidth) {
3501  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3502                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3503                               AS_public);
3504  return DeclPtrTy::make(Res);
3505}
3506
3507/// HandleField - Analyze a field of a C struct or a C++ data member.
3508///
3509FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3510                             SourceLocation DeclStart,
3511                             Declarator &D, Expr *BitWidth,
3512                             AccessSpecifier AS) {
3513  IdentifierInfo *II = D.getIdentifier();
3514  SourceLocation Loc = DeclStart;
3515  if (II) Loc = D.getIdentifierLoc();
3516
3517  QualType T = GetTypeForDeclarator(D, S);
3518
3519  if (getLangOptions().CPlusPlus) {
3520    CheckExtraCXXDefaultArguments(D);
3521
3522    if (D.getDeclSpec().isVirtualSpecified())
3523      Diag(D.getDeclSpec().getVirtualSpecLoc(),
3524           diag::err_virtual_non_function);
3525  }
3526
3527  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3528  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3529    PrevDecl = 0;
3530
3531  FieldDecl *NewFD
3532    = CheckFieldDecl(II, T, Record, Loc,
3533               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3534                     BitWidth, AS, PrevDecl, &D);
3535  if (NewFD->isInvalidDecl() && PrevDecl) {
3536    // Don't introduce NewFD into scope; there's already something
3537    // with the same name in the same scope.
3538  } else if (II) {
3539    PushOnScopeChains(NewFD, S);
3540  } else
3541    Record->addDecl(NewFD);
3542
3543  return NewFD;
3544}
3545
3546/// \brief Build a new FieldDecl and check its well-formedness.
3547///
3548/// This routine builds a new FieldDecl given the fields name, type,
3549/// record, etc. \p PrevDecl should refer to any previous declaration
3550/// with the same name and in the same scope as the field to be
3551/// created.
3552///
3553/// \returns a new FieldDecl.
3554///
3555/// \todo The Declarator argument is a hack. It will be removed once
3556FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3557                                RecordDecl *Record, SourceLocation Loc,
3558                                bool Mutable, Expr *BitWidth,
3559                                AccessSpecifier AS, NamedDecl *PrevDecl,
3560                                Declarator *D) {
3561  IdentifierInfo *II = Name.getAsIdentifierInfo();
3562  bool InvalidDecl = false;
3563
3564  // If we receive a broken type, recover by assuming 'int' and
3565  // marking this declaration as invalid.
3566  if (T.isNull()) {
3567    InvalidDecl = true;
3568    T = Context.IntTy;
3569  }
3570
3571  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3572  // than a variably modified type.
3573  if (T->isVariablyModifiedType()) {
3574    bool SizeIsNegative;
3575    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3576                                                           SizeIsNegative);
3577    if (!FixedTy.isNull()) {
3578      Diag(Loc, diag::warn_illegal_constant_array_size);
3579      T = FixedTy;
3580    } else {
3581      if (SizeIsNegative)
3582        Diag(Loc, diag::err_typecheck_negative_array_size);
3583      else
3584        Diag(Loc, diag::err_typecheck_field_variable_size);
3585      T = Context.IntTy;
3586      InvalidDecl = true;
3587    }
3588  }
3589
3590  // Fields can not have abstract class types
3591  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3592                             AbstractFieldType))
3593    InvalidDecl = true;
3594
3595  // If this is declared as a bit-field, check the bit-field.
3596  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3597    InvalidDecl = true;
3598    DeleteExpr(BitWidth);
3599    BitWidth = 0;
3600  }
3601
3602  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3603                                       Mutable);
3604
3605  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3606    Diag(Loc, diag::err_duplicate_member) << II;
3607    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3608    NewFD->setInvalidDecl();
3609    Record->setInvalidDecl();
3610  }
3611
3612  if (getLangOptions().CPlusPlus && !T->isPODType())
3613    cast<CXXRecordDecl>(Record)->setPOD(false);
3614
3615  // FIXME: We need to pass in the attributes given an AST
3616  // representation, not a parser representation.
3617  if (D)
3618    ProcessDeclAttributes(NewFD, *D);
3619
3620  if (T.isObjCGCWeak())
3621    Diag(Loc, diag::warn_attribute_weak_on_field);
3622
3623  if (InvalidDecl)
3624    NewFD->setInvalidDecl();
3625
3626  NewFD->setAccess(AS);
3627
3628  // C++ [dcl.init.aggr]p1:
3629  //   An aggregate is an array or a class (clause 9) with [...] no
3630  //   private or protected non-static data members (clause 11).
3631  // A POD must be an aggregate.
3632  if (getLangOptions().CPlusPlus &&
3633      (AS == AS_private || AS == AS_protected)) {
3634    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3635    CXXRecord->setAggregate(false);
3636    CXXRecord->setPOD(false);
3637  }
3638
3639  return NewFD;
3640}
3641
3642/// TranslateIvarVisibility - Translate visibility from a token ID to an
3643///  AST enum value.
3644static ObjCIvarDecl::AccessControl
3645TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3646  switch (ivarVisibility) {
3647  default: assert(0 && "Unknown visitibility kind");
3648  case tok::objc_private: return ObjCIvarDecl::Private;
3649  case tok::objc_public: return ObjCIvarDecl::Public;
3650  case tok::objc_protected: return ObjCIvarDecl::Protected;
3651  case tok::objc_package: return ObjCIvarDecl::Package;
3652  }
3653}
3654
3655/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3656/// in order to create an IvarDecl object for it.
3657Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3658                                SourceLocation DeclStart,
3659                                Declarator &D, ExprTy *BitfieldWidth,
3660                                tok::ObjCKeywordKind Visibility) {
3661
3662  IdentifierInfo *II = D.getIdentifier();
3663  Expr *BitWidth = (Expr*)BitfieldWidth;
3664  SourceLocation Loc = DeclStart;
3665  if (II) Loc = D.getIdentifierLoc();
3666
3667  // FIXME: Unnamed fields can be handled in various different ways, for
3668  // example, unnamed unions inject all members into the struct namespace!
3669
3670  QualType T = GetTypeForDeclarator(D, S);
3671  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3672  bool InvalidDecl = false;
3673
3674  if (BitWidth) {
3675    // 6.7.2.1p3, 6.7.2.1p4
3676    if (VerifyBitField(Loc, II, T, BitWidth)) {
3677      InvalidDecl = true;
3678      DeleteExpr(BitWidth);
3679      BitWidth = 0;
3680    }
3681  } else {
3682    // Not a bitfield.
3683
3684    // validate II.
3685
3686  }
3687
3688  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3689  // than a variably modified type.
3690  if (T->isVariablyModifiedType()) {
3691    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3692    InvalidDecl = true;
3693  }
3694
3695  // Get the visibility (access control) for this ivar.
3696  ObjCIvarDecl::AccessControl ac =
3697    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3698                                        : ObjCIvarDecl::None;
3699
3700  // Construct the decl.
3701  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3702                                             (Expr *)BitfieldWidth);
3703
3704  if (II) {
3705    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3706    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3707        && !isa<TagDecl>(PrevDecl)) {
3708      Diag(Loc, diag::err_duplicate_member) << II;
3709      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3710      NewID->setInvalidDecl();
3711    }
3712  }
3713
3714  // Process attributes attached to the ivar.
3715  ProcessDeclAttributes(NewID, D);
3716
3717  if (D.getInvalidType() || InvalidDecl)
3718    NewID->setInvalidDecl();
3719
3720  if (II) {
3721    // FIXME: When interfaces are DeclContexts, we'll need to add
3722    // these to the interface.
3723    S->AddDecl(DeclPtrTy::make(NewID));
3724    IdResolver.AddDecl(NewID);
3725  }
3726
3727  return DeclPtrTy::make(NewID);
3728}
3729
3730void Sema::ActOnFields(Scope* S,
3731                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3732                       DeclPtrTy *Fields, unsigned NumFields,
3733                       SourceLocation LBrac, SourceLocation RBrac,
3734                       AttributeList *Attr) {
3735  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3736  assert(EnclosingDecl && "missing record or interface decl");
3737
3738  // If the decl this is being inserted into is invalid, then it may be a
3739  // redeclaration or some other bogus case.  Don't try to add fields to it.
3740  if (EnclosingDecl->isInvalidDecl()) {
3741    // FIXME: Deallocate fields?
3742    return;
3743  }
3744
3745
3746  // Verify that all the fields are okay.
3747  unsigned NumNamedMembers = 0;
3748  llvm::SmallVector<FieldDecl*, 32> RecFields;
3749
3750  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3751  for (unsigned i = 0; i != NumFields; ++i) {
3752    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3753
3754    // Get the type for the field.
3755    Type *FDTy = FD->getType().getTypePtr();
3756
3757    if (!FD->isAnonymousStructOrUnion()) {
3758      // Remember all fields written by the user.
3759      RecFields.push_back(FD);
3760    }
3761
3762    // If the field is already invalid for some reason, don't emit more
3763    // diagnostics about it.
3764    if (FD->isInvalidDecl())
3765      continue;
3766
3767    // C99 6.7.2.1p2:
3768    //   A structure or union shall not contain a member with
3769    //   incomplete or function type (hence, a structure shall not
3770    //   contain an instance of itself, but may contain a pointer to
3771    //   an instance of itself), except that the last member of a
3772    //   structure with more than one named member may have incomplete
3773    //   array type; such a structure (and any union containing,
3774    //   possibly recursively, a member that is such a structure)
3775    //   shall not be a member of a structure or an element of an
3776    //   array.
3777    if (FDTy->isFunctionType()) {
3778      // Field declared as a function.
3779      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3780        << FD->getDeclName();
3781      FD->setInvalidDecl();
3782      EnclosingDecl->setInvalidDecl();
3783      continue;
3784    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3785               Record && Record->isStruct()) {
3786      // Flexible array member.
3787      if (NumNamedMembers < 1) {
3788        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3789          << FD->getDeclName();
3790        FD->setInvalidDecl();
3791        EnclosingDecl->setInvalidDecl();
3792        continue;
3793      }
3794      // Okay, we have a legal flexible array member at the end of the struct.
3795      if (Record)
3796        Record->setHasFlexibleArrayMember(true);
3797    } else if (!FDTy->isDependentType() &&
3798               RequireCompleteType(FD->getLocation(), FD->getType(),
3799                                   diag::err_field_incomplete)) {
3800      // Incomplete type
3801      FD->setInvalidDecl();
3802      EnclosingDecl->setInvalidDecl();
3803      continue;
3804    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3805      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3806        // If this is a member of a union, then entire union becomes "flexible".
3807        if (Record && Record->isUnion()) {
3808          Record->setHasFlexibleArrayMember(true);
3809        } else {
3810          // If this is a struct/class and this is not the last element, reject
3811          // it.  Note that GCC supports variable sized arrays in the middle of
3812          // structures.
3813          if (i != NumFields-1)
3814            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3815              << FD->getDeclName();
3816          else {
3817            // We support flexible arrays at the end of structs in
3818            // other structs as an extension.
3819            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3820              << FD->getDeclName();
3821            if (Record)
3822              Record->setHasFlexibleArrayMember(true);
3823          }
3824        }
3825      }
3826    } else if (FDTy->isObjCInterfaceType()) {
3827      /// A field cannot be an Objective-c object
3828      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3829      FD->setInvalidDecl();
3830      EnclosingDecl->setInvalidDecl();
3831      continue;
3832    }
3833    // Keep track of the number of named members.
3834    if (FD->getIdentifier())
3835      ++NumNamedMembers;
3836  }
3837
3838  // Okay, we successfully defined 'Record'.
3839  if (Record) {
3840    Record->completeDefinition(Context);
3841  } else {
3842    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3843    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3844      ID->setIVarList(ClsFields, RecFields.size(), Context);
3845      ID->setLocEnd(RBrac);
3846
3847      // Must enforce the rule that ivars in the base classes may not be
3848      // duplicates.
3849      if (ID->getSuperClass()) {
3850        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3851             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3852          ObjCIvarDecl* Ivar = (*IVI);
3853          IdentifierInfo *II = Ivar->getIdentifier();
3854          ObjCIvarDecl* prevIvar =
3855            ID->getSuperClass()->lookupInstanceVariable(II);
3856          if (prevIvar) {
3857            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3858            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3859          }
3860        }
3861      }
3862    } else if (ObjCImplementationDecl *IMPDecl =
3863                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3864      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3865      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3866      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3867    }
3868  }
3869
3870  if (Attr)
3871    ProcessDeclAttributeList(Record, Attr);
3872}
3873
3874EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
3875                                          EnumConstantDecl *LastEnumConst,
3876                                          SourceLocation IdLoc,
3877                                          IdentifierInfo *Id,
3878                                          ExprArg val) {
3879  Expr *Val = (Expr *)val.get();
3880
3881  llvm::APSInt EnumVal(32);
3882  QualType EltTy;
3883  if (Val && !Val->isTypeDependent()) {
3884    // Make sure to promote the operand type to int.
3885    UsualUnaryConversions(Val);
3886    if (Val != val.get()) {
3887      val.release();
3888      val = Val;
3889    }
3890
3891    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3892    SourceLocation ExpLoc;
3893    if (!Val->isValueDependent() &&
3894        VerifyIntegerConstantExpression(Val, &EnumVal)) {
3895      Val = 0;
3896    } else {
3897      EltTy = Val->getType();
3898    }
3899  }
3900
3901  if (!Val) {
3902    if (LastEnumConst) {
3903      // Assign the last value + 1.
3904      EnumVal = LastEnumConst->getInitVal();
3905      ++EnumVal;
3906
3907      // Check for overflow on increment.
3908      if (EnumVal < LastEnumConst->getInitVal())
3909        Diag(IdLoc, diag::warn_enum_value_overflow);
3910
3911      EltTy = LastEnumConst->getType();
3912    } else {
3913      // First value, set to zero.
3914      EltTy = Context.IntTy;
3915      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3916    }
3917  }
3918
3919  val.release();
3920  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
3921                                  Val, EnumVal);
3922}
3923
3924
3925Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
3926                                        DeclPtrTy lastEnumConst,
3927                                        SourceLocation IdLoc,
3928                                        IdentifierInfo *Id,
3929                                        SourceLocation EqualLoc, ExprTy *val) {
3930  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
3931  EnumConstantDecl *LastEnumConst =
3932    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
3933  Expr *Val = static_cast<Expr*>(val);
3934
3935  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3936  // we find one that is.
3937  S = getNonFieldDeclScope(S);
3938
3939  // Verify that there isn't already something declared with this name in this
3940  // scope.
3941  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3942  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3943    // Maybe we will complain about the shadowed template parameter.
3944    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3945    // Just pretend that we didn't see the previous declaration.
3946    PrevDecl = 0;
3947  }
3948
3949  if (PrevDecl) {
3950    // When in C++, we may get a TagDecl with the same name; in this case the
3951    // enum constant will 'hide' the tag.
3952    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3953           "Received TagDecl when not in C++!");
3954    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3955      if (isa<EnumConstantDecl>(PrevDecl))
3956        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3957      else
3958        Diag(IdLoc, diag::err_redefinition) << Id;
3959      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3960      if (Val) Val->Destroy(Context);
3961      return DeclPtrTy();
3962    }
3963  }
3964
3965  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
3966                                            IdLoc, Id, Owned(Val));
3967
3968  // Register this decl in the current scope stack.
3969  if (New)
3970    PushOnScopeChains(New, S);
3971
3972  return DeclPtrTy::make(New);
3973}
3974
3975// FIXME: For consistency with ActOnFields(), we should have the parser
3976// pass in the source location for the left/right braces.
3977void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
3978                         DeclPtrTy *Elements, unsigned NumElements) {
3979  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
3980  QualType EnumType = Context.getTypeDeclType(Enum);
3981
3982  // TODO: If the result value doesn't fit in an int, it must be a long or long
3983  // long value.  ISO C does not support this, but GCC does as an extension,
3984  // emit a warning.
3985  unsigned IntWidth = Context.Target.getIntWidth();
3986
3987  // Verify that all the values are okay, compute the size of the values, and
3988  // reverse the list.
3989  unsigned NumNegativeBits = 0;
3990  unsigned NumPositiveBits = 0;
3991
3992  // Keep track of whether all elements have type int.
3993  bool AllElementsInt = true;
3994
3995  for (unsigned i = 0; i != NumElements; ++i) {
3996    EnumConstantDecl *ECD =
3997      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
3998    if (!ECD) continue;  // Already issued a diagnostic.
3999
4000    // If the enum value doesn't fit in an int, emit an extension warning.
4001    const llvm::APSInt &InitVal = ECD->getInitVal();
4002    assert(InitVal.getBitWidth() >= IntWidth &&
4003           "Should have promoted value to int");
4004    if (InitVal.getBitWidth() > IntWidth) {
4005      llvm::APSInt V(InitVal);
4006      V.trunc(IntWidth);
4007      V.extend(InitVal.getBitWidth());
4008      if (V != InitVal)
4009        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4010          << InitVal.toString(10);
4011    }
4012
4013    // Keep track of the size of positive and negative values.
4014    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4015      NumPositiveBits = std::max(NumPositiveBits,
4016                                 (unsigned)InitVal.getActiveBits());
4017    else
4018      NumNegativeBits = std::max(NumNegativeBits,
4019                                 (unsigned)InitVal.getMinSignedBits());
4020
4021    // Keep track of whether every enum element has type int (very commmon).
4022    if (AllElementsInt)
4023      AllElementsInt = ECD->getType() == Context.IntTy;
4024  }
4025
4026  // Figure out the type that should be used for this enum.
4027  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4028  QualType BestType;
4029  unsigned BestWidth;
4030
4031  if (NumNegativeBits) {
4032    // If there is a negative value, figure out the smallest integer type (of
4033    // int/long/longlong) that fits.
4034    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4035      BestType = Context.IntTy;
4036      BestWidth = IntWidth;
4037    } else {
4038      BestWidth = Context.Target.getLongWidth();
4039
4040      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4041        BestType = Context.LongTy;
4042      else {
4043        BestWidth = Context.Target.getLongLongWidth();
4044
4045        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4046          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4047        BestType = Context.LongLongTy;
4048      }
4049    }
4050  } else {
4051    // If there is no negative value, figure out which of uint, ulong, ulonglong
4052    // fits.
4053    if (NumPositiveBits <= IntWidth) {
4054      BestType = Context.UnsignedIntTy;
4055      BestWidth = IntWidth;
4056    } else if (NumPositiveBits <=
4057               (BestWidth = Context.Target.getLongWidth())) {
4058      BestType = Context.UnsignedLongTy;
4059    } else {
4060      BestWidth = Context.Target.getLongLongWidth();
4061      assert(NumPositiveBits <= BestWidth &&
4062             "How could an initializer get larger than ULL?");
4063      BestType = Context.UnsignedLongLongTy;
4064    }
4065  }
4066
4067  // Loop over all of the enumerator constants, changing their types to match
4068  // the type of the enum if needed.
4069  for (unsigned i = 0; i != NumElements; ++i) {
4070    EnumConstantDecl *ECD =
4071      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4072    if (!ECD) continue;  // Already issued a diagnostic.
4073
4074    // Standard C says the enumerators have int type, but we allow, as an
4075    // extension, the enumerators to be larger than int size.  If each
4076    // enumerator value fits in an int, type it as an int, otherwise type it the
4077    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4078    // that X has type 'int', not 'unsigned'.
4079    if (ECD->getType() == Context.IntTy) {
4080      // Make sure the init value is signed.
4081      llvm::APSInt IV = ECD->getInitVal();
4082      IV.setIsSigned(true);
4083      ECD->setInitVal(IV);
4084
4085      if (getLangOptions().CPlusPlus)
4086        // C++ [dcl.enum]p4: Following the closing brace of an
4087        // enum-specifier, each enumerator has the type of its
4088        // enumeration.
4089        ECD->setType(EnumType);
4090      continue;  // Already int type.
4091    }
4092
4093    // Determine whether the value fits into an int.
4094    llvm::APSInt InitVal = ECD->getInitVal();
4095    bool FitsInInt;
4096    if (InitVal.isUnsigned() || !InitVal.isNegative())
4097      FitsInInt = InitVal.getActiveBits() < IntWidth;
4098    else
4099      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4100
4101    // If it fits into an integer type, force it.  Otherwise force it to match
4102    // the enum decl type.
4103    QualType NewTy;
4104    unsigned NewWidth;
4105    bool NewSign;
4106    if (FitsInInt) {
4107      NewTy = Context.IntTy;
4108      NewWidth = IntWidth;
4109      NewSign = true;
4110    } else if (ECD->getType() == BestType) {
4111      // Already the right type!
4112      if (getLangOptions().CPlusPlus)
4113        // C++ [dcl.enum]p4: Following the closing brace of an
4114        // enum-specifier, each enumerator has the type of its
4115        // enumeration.
4116        ECD->setType(EnumType);
4117      continue;
4118    } else {
4119      NewTy = BestType;
4120      NewWidth = BestWidth;
4121      NewSign = BestType->isSignedIntegerType();
4122    }
4123
4124    // Adjust the APSInt value.
4125    InitVal.extOrTrunc(NewWidth);
4126    InitVal.setIsSigned(NewSign);
4127    ECD->setInitVal(InitVal);
4128
4129    // Adjust the Expr initializer and type.
4130    if (ECD->getInitExpr())
4131      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4132                                                      /*isLvalue=*/false));
4133    if (getLangOptions().CPlusPlus)
4134      // C++ [dcl.enum]p4: Following the closing brace of an
4135      // enum-specifier, each enumerator has the type of its
4136      // enumeration.
4137      ECD->setType(EnumType);
4138    else
4139      ECD->setType(NewTy);
4140  }
4141
4142  Enum->completeDefinition(Context, BestType);
4143}
4144
4145Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4146                                            ExprArg expr) {
4147  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4148
4149  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4150                                                  Loc, AsmString));
4151}
4152
4153