SemaDecl.cpp revision 865dd8c8fe65d7743cfbc412316e59e6c149624d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        if (SS.isEmpty())
514          Diag(NameLoc, diag::err_undeclared_var_use_suggest)
515            << Name << Corrected
516            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
517        else
518          Diag(NameLoc, diag::err_no_member_suggest)
519            << Name << computeDeclContext(SS, false) << Corrected
520            << SS.getRange()
521            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
522
523        // Update the name, so that the caller has the new name.
524        Name = Corrected.getAsIdentifierInfo();
525
526        // Typo correction corrected to a keyword.
527        if (Result.empty())
528          return Corrected.getAsIdentifierInfo();
529
530        NamedDecl *FirstDecl = *Result.begin();
531        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
532          << FirstDecl->getDeclName();
533
534        // If we found an Objective-C instance variable, let
535        // LookupInObjCMethod build the appropriate expression to
536        // reference the ivar.
537        // FIXME: This is a gross hack.
538        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
539          Result.clear();
540          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
541          return move(E);
542        }
543
544        goto Corrected;
545      }
546    }
547
548    // We failed to correct; just fall through and let the parser deal with it.
549    Result.suppressDiagnostics();
550    return NameClassification::Unknown();
551
552  case LookupResult::NotFoundInCurrentInstantiation:
553    // We performed name lookup into the current instantiation, and there were
554    // dependent bases, so we treat this result the same way as any other
555    // dependent nested-name-specifier.
556
557    // C++ [temp.res]p2:
558    //   A name used in a template declaration or definition and that is
559    //   dependent on a template-parameter is assumed not to name a type
560    //   unless the applicable name lookup finds a type name or the name is
561    //   qualified by the keyword typename.
562    //
563    // FIXME: If the next token is '<', we might want to ask the parser to
564    // perform some heroics to see if we actually have a
565    // template-argument-list, which would indicate a missing 'template'
566    // keyword here.
567    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
568
569  case LookupResult::Found:
570  case LookupResult::FoundOverloaded:
571  case LookupResult::FoundUnresolvedValue:
572    break;
573
574  case LookupResult::Ambiguous:
575    if (getLangOptions().CPlusPlus && NextToken.is(tok::less)) {
576      // C++ [temp.local]p3:
577      //   A lookup that finds an injected-class-name (10.2) can result in an
578      //   ambiguity in certain cases (for example, if it is found in more than
579      //   one base class). If all of the injected-class-names that are found
580      //   refer to specializations of the same class template, and if the name
581      //   is followed by a template-argument-list, the reference refers to the
582      //   class template itself and not a specialization thereof, and is not
583      //   ambiguous.
584      //
585      // This filtering can make an ambiguous result into an unambiguous one,
586      // so try again after filtering out template names.
587      FilterAcceptableTemplateNames(Result);
588      if (!Result.isAmbiguous()) {
589        IsFilteredTemplateName = true;
590        break;
591      }
592    }
593
594    // Diagnose the ambiguity and return an error.
595    return NameClassification::Error();
596  }
597
598  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
599      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
600    // C++ [temp.names]p3:
601    //   After name lookup (3.4) finds that a name is a template-name or that
602    //   an operator-function-id or a literal- operator-id refers to a set of
603    //   overloaded functions any member of which is a function template if
604    //   this is followed by a <, the < is always taken as the delimiter of a
605    //   template-argument-list and never as the less-than operator.
606    if (!IsFilteredTemplateName)
607      FilterAcceptableTemplateNames(Result);
608
609    bool IsFunctionTemplate;
610    TemplateName Template;
611    if (Result.end() - Result.begin() > 1) {
612      IsFunctionTemplate = true;
613      Template = Context.getOverloadedTemplateName(Result.begin(),
614                                                   Result.end());
615    } else {
616      TemplateDecl *TD = cast<TemplateDecl>(Result.getFoundDecl());
617      IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
618
619      if (SS.isSet() && !SS.isInvalid())
620        Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
621                                                    /*TemplateKeyword=*/false,
622                                                    TD);
623      else
624        Template = TemplateName(TD);
625    }
626
627    if (IsFunctionTemplate) {
628      // Function templates always go through overload resolution, at which
629      // point we'll perform the various checks (e.g., accessibility) we need
630      // to based on which function we selected.
631      Result.suppressDiagnostics();
632
633      return NameClassification::FunctionTemplate(Template);
634    }
635
636    return NameClassification::TypeTemplate(Template);
637  }
638
639  NamedDecl *FirstDecl = *Result.begin();
640  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
641    DiagnoseUseOfDecl(Type, NameLoc);
642    QualType T = Context.getTypeDeclType(Type);
643    return ParsedType::make(T);
644  }
645
646  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
647  if (!Class) {
648    // FIXME: It's unfortunate that we don't have a Type node for handling this.
649    if (ObjCCompatibleAliasDecl *Alias
650                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
651      Class = Alias->getClassInterface();
652  }
653
654  if (Class) {
655    DiagnoseUseOfDecl(Class, NameLoc);
656
657    if (NextToken.is(tok::period)) {
658      // Interface. <something> is parsed as a property reference expression.
659      // Just return "unknown" as a fall-through for now.
660      Result.suppressDiagnostics();
661      return NameClassification::Unknown();
662    }
663
664    QualType T = Context.getObjCInterfaceType(Class);
665    return ParsedType::make(T);
666  }
667
668  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
669  return BuildDeclarationNameExpr(SS, Result, ADL);
670}
671
672// Determines the context to return to after temporarily entering a
673// context.  This depends in an unnecessarily complicated way on the
674// exact ordering of callbacks from the parser.
675DeclContext *Sema::getContainingDC(DeclContext *DC) {
676
677  // Functions defined inline within classes aren't parsed until we've
678  // finished parsing the top-level class, so the top-level class is
679  // the context we'll need to return to.
680  if (isa<FunctionDecl>(DC)) {
681    DC = DC->getLexicalParent();
682
683    // A function not defined within a class will always return to its
684    // lexical context.
685    if (!isa<CXXRecordDecl>(DC))
686      return DC;
687
688    // A C++ inline method/friend is parsed *after* the topmost class
689    // it was declared in is fully parsed ("complete");  the topmost
690    // class is the context we need to return to.
691    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
692      DC = RD;
693
694    // Return the declaration context of the topmost class the inline method is
695    // declared in.
696    return DC;
697  }
698
699  // ObjCMethodDecls are parsed (for some reason) outside the context
700  // of the class.
701  if (isa<ObjCMethodDecl>(DC))
702    return DC->getLexicalParent()->getLexicalParent();
703
704  return DC->getLexicalParent();
705}
706
707void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
708  assert(getContainingDC(DC) == CurContext &&
709      "The next DeclContext should be lexically contained in the current one.");
710  CurContext = DC;
711  S->setEntity(DC);
712}
713
714void Sema::PopDeclContext() {
715  assert(CurContext && "DeclContext imbalance!");
716
717  CurContext = getContainingDC(CurContext);
718  assert(CurContext && "Popped translation unit!");
719}
720
721/// EnterDeclaratorContext - Used when we must lookup names in the context
722/// of a declarator's nested name specifier.
723///
724void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
725  // C++0x [basic.lookup.unqual]p13:
726  //   A name used in the definition of a static data member of class
727  //   X (after the qualified-id of the static member) is looked up as
728  //   if the name was used in a member function of X.
729  // C++0x [basic.lookup.unqual]p14:
730  //   If a variable member of a namespace is defined outside of the
731  //   scope of its namespace then any name used in the definition of
732  //   the variable member (after the declarator-id) is looked up as
733  //   if the definition of the variable member occurred in its
734  //   namespace.
735  // Both of these imply that we should push a scope whose context
736  // is the semantic context of the declaration.  We can't use
737  // PushDeclContext here because that context is not necessarily
738  // lexically contained in the current context.  Fortunately,
739  // the containing scope should have the appropriate information.
740
741  assert(!S->getEntity() && "scope already has entity");
742
743#ifndef NDEBUG
744  Scope *Ancestor = S->getParent();
745  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
746  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
747#endif
748
749  CurContext = DC;
750  S->setEntity(DC);
751}
752
753void Sema::ExitDeclaratorContext(Scope *S) {
754  assert(S->getEntity() == CurContext && "Context imbalance!");
755
756  // Switch back to the lexical context.  The safety of this is
757  // enforced by an assert in EnterDeclaratorContext.
758  Scope *Ancestor = S->getParent();
759  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
760  CurContext = (DeclContext*) Ancestor->getEntity();
761
762  // We don't need to do anything with the scope, which is going to
763  // disappear.
764}
765
766/// \brief Determine whether we allow overloading of the function
767/// PrevDecl with another declaration.
768///
769/// This routine determines whether overloading is possible, not
770/// whether some new function is actually an overload. It will return
771/// true in C++ (where we can always provide overloads) or, as an
772/// extension, in C when the previous function is already an
773/// overloaded function declaration or has the "overloadable"
774/// attribute.
775static bool AllowOverloadingOfFunction(LookupResult &Previous,
776                                       ASTContext &Context) {
777  if (Context.getLangOptions().CPlusPlus)
778    return true;
779
780  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
781    return true;
782
783  return (Previous.getResultKind() == LookupResult::Found
784          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
785}
786
787/// Add this decl to the scope shadowed decl chains.
788void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
789  // Move up the scope chain until we find the nearest enclosing
790  // non-transparent context. The declaration will be introduced into this
791  // scope.
792  while (S->getEntity() &&
793         ((DeclContext *)S->getEntity())->isTransparentContext())
794    S = S->getParent();
795
796  // Add scoped declarations into their context, so that they can be
797  // found later. Declarations without a context won't be inserted
798  // into any context.
799  if (AddToContext)
800    CurContext->addDecl(D);
801
802  // Out-of-line definitions shouldn't be pushed into scope in C++.
803  // Out-of-line variable and function definitions shouldn't even in C.
804  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
805      D->isOutOfLine())
806    return;
807
808  // Template instantiations should also not be pushed into scope.
809  if (isa<FunctionDecl>(D) &&
810      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
811    return;
812
813  // If this replaces anything in the current scope,
814  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
815                               IEnd = IdResolver.end();
816  for (; I != IEnd; ++I) {
817    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
818      S->RemoveDecl(*I);
819      IdResolver.RemoveDecl(*I);
820
821      // Should only need to replace one decl.
822      break;
823    }
824  }
825
826  S->AddDecl(D);
827
828  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
829    // Implicitly-generated labels may end up getting generated in an order that
830    // isn't strictly lexical, which breaks name lookup. Be careful to insert
831    // the label at the appropriate place in the identifier chain.
832    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
833      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
834      if (IDC == CurContext) {
835        if (!S->isDeclScope(*I))
836          continue;
837      } else if (IDC->Encloses(CurContext))
838        break;
839    }
840
841    IdResolver.InsertDeclAfter(I, D);
842  } else {
843    IdResolver.AddDecl(D);
844  }
845}
846
847bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
848                         bool ExplicitInstantiationOrSpecialization) {
849  return IdResolver.isDeclInScope(D, Ctx, Context, S,
850                                  ExplicitInstantiationOrSpecialization);
851}
852
853Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
854  DeclContext *TargetDC = DC->getPrimaryContext();
855  do {
856    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
857      if (ScopeDC->getPrimaryContext() == TargetDC)
858        return S;
859  } while ((S = S->getParent()));
860
861  return 0;
862}
863
864static bool isOutOfScopePreviousDeclaration(NamedDecl *,
865                                            DeclContext*,
866                                            ASTContext&);
867
868/// Filters out lookup results that don't fall within the given scope
869/// as determined by isDeclInScope.
870static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
871                                 DeclContext *Ctx, Scope *S,
872                                 bool ConsiderLinkage,
873                                 bool ExplicitInstantiationOrSpecialization) {
874  LookupResult::Filter F = R.makeFilter();
875  while (F.hasNext()) {
876    NamedDecl *D = F.next();
877
878    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
879      continue;
880
881    if (ConsiderLinkage &&
882        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
883      continue;
884
885    F.erase();
886  }
887
888  F.done();
889}
890
891static bool isUsingDecl(NamedDecl *D) {
892  return isa<UsingShadowDecl>(D) ||
893         isa<UnresolvedUsingTypenameDecl>(D) ||
894         isa<UnresolvedUsingValueDecl>(D);
895}
896
897/// Removes using shadow declarations from the lookup results.
898static void RemoveUsingDecls(LookupResult &R) {
899  LookupResult::Filter F = R.makeFilter();
900  while (F.hasNext())
901    if (isUsingDecl(F.next()))
902      F.erase();
903
904  F.done();
905}
906
907/// \brief Check for this common pattern:
908/// @code
909/// class S {
910///   S(const S&); // DO NOT IMPLEMENT
911///   void operator=(const S&); // DO NOT IMPLEMENT
912/// };
913/// @endcode
914static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
915  // FIXME: Should check for private access too but access is set after we get
916  // the decl here.
917  if (D->isThisDeclarationADefinition())
918    return false;
919
920  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
921    return CD->isCopyConstructor();
922  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
923    return Method->isCopyAssignmentOperator();
924  return false;
925}
926
927bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
928  assert(D);
929
930  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
931    return false;
932
933  // Ignore class templates.
934  if (D->getDeclContext()->isDependentContext() ||
935      D->getLexicalDeclContext()->isDependentContext())
936    return false;
937
938  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
939    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
940      return false;
941
942    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
943      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
944        return false;
945    } else {
946      // 'static inline' functions are used in headers; don't warn.
947      if (FD->getStorageClass() == SC_Static &&
948          FD->isInlineSpecified())
949        return false;
950    }
951
952    if (FD->isThisDeclarationADefinition() &&
953        Context.DeclMustBeEmitted(FD))
954      return false;
955
956  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
957    if (!VD->isFileVarDecl() ||
958        VD->getType().isConstant(Context) ||
959        Context.DeclMustBeEmitted(VD))
960      return false;
961
962    if (VD->isStaticDataMember() &&
963        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966  } else {
967    return false;
968  }
969
970  // Only warn for unused decls internal to the translation unit.
971  if (D->getLinkage() == ExternalLinkage)
972    return false;
973
974  return true;
975}
976
977void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
978  if (!D)
979    return;
980
981  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
982    const FunctionDecl *First = FD->getFirstDeclaration();
983    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
984      return; // First should already be in the vector.
985  }
986
987  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
988    const VarDecl *First = VD->getFirstDeclaration();
989    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
990      return; // First should already be in the vector.
991  }
992
993   if (ShouldWarnIfUnusedFileScopedDecl(D))
994     UnusedFileScopedDecls.push_back(D);
995 }
996
997static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
998  if (D->isInvalidDecl())
999    return false;
1000
1001  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1002    return false;
1003
1004  if (isa<LabelDecl>(D))
1005    return true;
1006
1007  // White-list anything that isn't a local variable.
1008  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1009      !D->getDeclContext()->isFunctionOrMethod())
1010    return false;
1011
1012  // Types of valid local variables should be complete, so this should succeed.
1013  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1014
1015    // White-list anything with an __attribute__((unused)) type.
1016    QualType Ty = VD->getType();
1017
1018    // Only look at the outermost level of typedef.
1019    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1020      if (TT->getDecl()->hasAttr<UnusedAttr>())
1021        return false;
1022    }
1023
1024    // If we failed to complete the type for some reason, or if the type is
1025    // dependent, don't diagnose the variable.
1026    if (Ty->isIncompleteType() || Ty->isDependentType())
1027      return false;
1028
1029    if (const TagType *TT = Ty->getAs<TagType>()) {
1030      const TagDecl *Tag = TT->getDecl();
1031      if (Tag->hasAttr<UnusedAttr>())
1032        return false;
1033
1034      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1035        // FIXME: Checking for the presence of a user-declared constructor
1036        // isn't completely accurate; we'd prefer to check that the initializer
1037        // has no side effects.
1038        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1039          return false;
1040      }
1041    }
1042
1043    // TODO: __attribute__((unused)) templates?
1044  }
1045
1046  return true;
1047}
1048
1049/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1050/// unless they are marked attr(unused).
1051void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1052  if (!ShouldDiagnoseUnusedDecl(D))
1053    return;
1054
1055  unsigned DiagID;
1056  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1057    DiagID = diag::warn_unused_exception_param;
1058  else if (isa<LabelDecl>(D))
1059    DiagID = diag::warn_unused_label;
1060  else
1061    DiagID = diag::warn_unused_variable;
1062
1063  Diag(D->getLocation(), DiagID) << D->getDeclName();
1064}
1065
1066static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1067  // Verify that we have no forward references left.  If so, there was a goto
1068  // or address of a label taken, but no definition of it.  Label fwd
1069  // definitions are indicated with a null substmt.
1070  if (L->getStmt() == 0)
1071    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1072}
1073
1074void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1075  if (S->decl_empty()) return;
1076  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1077         "Scope shouldn't contain decls!");
1078
1079  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1080       I != E; ++I) {
1081    Decl *TmpD = (*I);
1082    assert(TmpD && "This decl didn't get pushed??");
1083
1084    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1085    NamedDecl *D = cast<NamedDecl>(TmpD);
1086
1087    if (!D->getDeclName()) continue;
1088
1089    // Diagnose unused variables in this scope.
1090    if (!S->hasErrorOccurred())
1091      DiagnoseUnusedDecl(D);
1092
1093    // If this was a forward reference to a label, verify it was defined.
1094    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1095      CheckPoppedLabel(LD, *this);
1096
1097    // Remove this name from our lexical scope.
1098    IdResolver.RemoveDecl(D);
1099  }
1100}
1101
1102/// \brief Look for an Objective-C class in the translation unit.
1103///
1104/// \param Id The name of the Objective-C class we're looking for. If
1105/// typo-correction fixes this name, the Id will be updated
1106/// to the fixed name.
1107///
1108/// \param IdLoc The location of the name in the translation unit.
1109///
1110/// \param TypoCorrection If true, this routine will attempt typo correction
1111/// if there is no class with the given name.
1112///
1113/// \returns The declaration of the named Objective-C class, or NULL if the
1114/// class could not be found.
1115ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1116                                              SourceLocation IdLoc,
1117                                              bool TypoCorrection) {
1118  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1119  // creation from this context.
1120  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1121
1122  if (!IDecl && TypoCorrection) {
1123    // Perform typo correction at the given location, but only if we
1124    // find an Objective-C class name.
1125    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1126    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1127        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1128      Diag(IdLoc, diag::err_undef_interface_suggest)
1129        << Id << IDecl->getDeclName()
1130        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1131      Diag(IDecl->getLocation(), diag::note_previous_decl)
1132        << IDecl->getDeclName();
1133
1134      Id = IDecl->getIdentifier();
1135    }
1136  }
1137
1138  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1139}
1140
1141/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1142/// from S, where a non-field would be declared. This routine copes
1143/// with the difference between C and C++ scoping rules in structs and
1144/// unions. For example, the following code is well-formed in C but
1145/// ill-formed in C++:
1146/// @code
1147/// struct S6 {
1148///   enum { BAR } e;
1149/// };
1150///
1151/// void test_S6() {
1152///   struct S6 a;
1153///   a.e = BAR;
1154/// }
1155/// @endcode
1156/// For the declaration of BAR, this routine will return a different
1157/// scope. The scope S will be the scope of the unnamed enumeration
1158/// within S6. In C++, this routine will return the scope associated
1159/// with S6, because the enumeration's scope is a transparent
1160/// context but structures can contain non-field names. In C, this
1161/// routine will return the translation unit scope, since the
1162/// enumeration's scope is a transparent context and structures cannot
1163/// contain non-field names.
1164Scope *Sema::getNonFieldDeclScope(Scope *S) {
1165  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1166         (S->getEntity() &&
1167          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1168         (S->isClassScope() && !getLangOptions().CPlusPlus))
1169    S = S->getParent();
1170  return S;
1171}
1172
1173/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1174/// file scope.  lazily create a decl for it. ForRedeclaration is true
1175/// if we're creating this built-in in anticipation of redeclaring the
1176/// built-in.
1177NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1178                                     Scope *S, bool ForRedeclaration,
1179                                     SourceLocation Loc) {
1180  Builtin::ID BID = (Builtin::ID)bid;
1181
1182  ASTContext::GetBuiltinTypeError Error;
1183  QualType R = Context.GetBuiltinType(BID, Error);
1184  switch (Error) {
1185  case ASTContext::GE_None:
1186    // Okay
1187    break;
1188
1189  case ASTContext::GE_Missing_stdio:
1190    if (ForRedeclaration)
1191      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1192        << Context.BuiltinInfo.GetName(BID);
1193    return 0;
1194
1195  case ASTContext::GE_Missing_setjmp:
1196    if (ForRedeclaration)
1197      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1198        << Context.BuiltinInfo.GetName(BID);
1199    return 0;
1200  }
1201
1202  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1203    Diag(Loc, diag::ext_implicit_lib_function_decl)
1204      << Context.BuiltinInfo.GetName(BID)
1205      << R;
1206    if (Context.BuiltinInfo.getHeaderName(BID) &&
1207        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1208          != Diagnostic::Ignored)
1209      Diag(Loc, diag::note_please_include_header)
1210        << Context.BuiltinInfo.getHeaderName(BID)
1211        << Context.BuiltinInfo.GetName(BID);
1212  }
1213
1214  FunctionDecl *New = FunctionDecl::Create(Context,
1215                                           Context.getTranslationUnitDecl(),
1216                                           Loc, Loc, II, R, /*TInfo=*/0,
1217                                           SC_Extern,
1218                                           SC_None, false,
1219                                           /*hasPrototype=*/true);
1220  New->setImplicit();
1221
1222  // Create Decl objects for each parameter, adding them to the
1223  // FunctionDecl.
1224  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1225    llvm::SmallVector<ParmVarDecl*, 16> Params;
1226    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
1227      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
1228                                           SourceLocation(), 0,
1229                                           FT->getArgType(i), /*TInfo=*/0,
1230                                           SC_None, SC_None, 0));
1231    New->setParams(Params.data(), Params.size());
1232  }
1233
1234  AddKnownFunctionAttributes(New);
1235
1236  // TUScope is the translation-unit scope to insert this function into.
1237  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1238  // relate Scopes to DeclContexts, and probably eliminate CurContext
1239  // entirely, but we're not there yet.
1240  DeclContext *SavedContext = CurContext;
1241  CurContext = Context.getTranslationUnitDecl();
1242  PushOnScopeChains(New, TUScope);
1243  CurContext = SavedContext;
1244  return New;
1245}
1246
1247/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1248/// same name and scope as a previous declaration 'Old'.  Figure out
1249/// how to resolve this situation, merging decls or emitting
1250/// diagnostics as appropriate. If there was an error, set New to be invalid.
1251///
1252void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1253  // If the new decl is known invalid already, don't bother doing any
1254  // merging checks.
1255  if (New->isInvalidDecl()) return;
1256
1257  // Allow multiple definitions for ObjC built-in typedefs.
1258  // FIXME: Verify the underlying types are equivalent!
1259  if (getLangOptions().ObjC1) {
1260    const IdentifierInfo *TypeID = New->getIdentifier();
1261    switch (TypeID->getLength()) {
1262    default: break;
1263    case 2:
1264      if (!TypeID->isStr("id"))
1265        break;
1266      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1267      // Install the built-in type for 'id', ignoring the current definition.
1268      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1269      return;
1270    case 5:
1271      if (!TypeID->isStr("Class"))
1272        break;
1273      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1274      // Install the built-in type for 'Class', ignoring the current definition.
1275      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1276      return;
1277    case 3:
1278      if (!TypeID->isStr("SEL"))
1279        break;
1280      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1281      // Install the built-in type for 'SEL', ignoring the current definition.
1282      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1283      return;
1284    case 8:
1285      if (!TypeID->isStr("Protocol"))
1286        break;
1287      Context.setObjCProtoType(New->getUnderlyingType());
1288      return;
1289    }
1290    // Fall through - the typedef name was not a builtin type.
1291  }
1292
1293  // Verify the old decl was also a type.
1294  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1295  if (!Old) {
1296    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1297      << New->getDeclName();
1298
1299    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1300    if (OldD->getLocation().isValid())
1301      Diag(OldD->getLocation(), diag::note_previous_definition);
1302
1303    return New->setInvalidDecl();
1304  }
1305
1306  // If the old declaration is invalid, just give up here.
1307  if (Old->isInvalidDecl())
1308    return New->setInvalidDecl();
1309
1310  // Determine the "old" type we'll use for checking and diagnostics.
1311  QualType OldType;
1312  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1313    OldType = OldTypedef->getUnderlyingType();
1314  else
1315    OldType = Context.getTypeDeclType(Old);
1316
1317  // If the typedef types are not identical, reject them in all languages and
1318  // with any extensions enabled.
1319
1320  if (OldType != New->getUnderlyingType() &&
1321      Context.getCanonicalType(OldType) !=
1322      Context.getCanonicalType(New->getUnderlyingType())) {
1323    int Kind = 0;
1324    if (isa<TypeAliasDecl>(Old))
1325      Kind = 1;
1326    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1327      << Kind << New->getUnderlyingType() << OldType;
1328    if (Old->getLocation().isValid())
1329      Diag(Old->getLocation(), diag::note_previous_definition);
1330    return New->setInvalidDecl();
1331  }
1332
1333  // The types match.  Link up the redeclaration chain if the old
1334  // declaration was a typedef.
1335  // FIXME: this is a potential source of wierdness if the type
1336  // spellings don't match exactly.
1337  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1338    New->setPreviousDeclaration(Typedef);
1339
1340  if (getLangOptions().Microsoft)
1341    return;
1342
1343  if (getLangOptions().CPlusPlus) {
1344    // C++ [dcl.typedef]p2:
1345    //   In a given non-class scope, a typedef specifier can be used to
1346    //   redefine the name of any type declared in that scope to refer
1347    //   to the type to which it already refers.
1348    if (!isa<CXXRecordDecl>(CurContext))
1349      return;
1350
1351    // C++0x [dcl.typedef]p4:
1352    //   In a given class scope, a typedef specifier can be used to redefine
1353    //   any class-name declared in that scope that is not also a typedef-name
1354    //   to refer to the type to which it already refers.
1355    //
1356    // This wording came in via DR424, which was a correction to the
1357    // wording in DR56, which accidentally banned code like:
1358    //
1359    //   struct S {
1360    //     typedef struct A { } A;
1361    //   };
1362    //
1363    // in the C++03 standard. We implement the C++0x semantics, which
1364    // allow the above but disallow
1365    //
1366    //   struct S {
1367    //     typedef int I;
1368    //     typedef int I;
1369    //   };
1370    //
1371    // since that was the intent of DR56.
1372    if (!isa<TypedefNameDecl>(Old))
1373      return;
1374
1375    Diag(New->getLocation(), diag::err_redefinition)
1376      << New->getDeclName();
1377    Diag(Old->getLocation(), diag::note_previous_definition);
1378    return New->setInvalidDecl();
1379  }
1380
1381  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1382  // is normally mapped to an error, but can be controlled with
1383  // -Wtypedef-redefinition.  If either the original or the redefinition is
1384  // in a system header, don't emit this for compatibility with GCC.
1385  if (getDiagnostics().getSuppressSystemWarnings() &&
1386      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1387       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1388    return;
1389
1390  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1391    << New->getDeclName();
1392  Diag(Old->getLocation(), diag::note_previous_definition);
1393  return;
1394}
1395
1396/// DeclhasAttr - returns true if decl Declaration already has the target
1397/// attribute.
1398static bool
1399DeclHasAttr(const Decl *D, const Attr *A) {
1400  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1401  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1402    if ((*i)->getKind() == A->getKind()) {
1403      // FIXME: Don't hardcode this check
1404      if (OA && isa<OwnershipAttr>(*i))
1405        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1406      return true;
1407    }
1408
1409  return false;
1410}
1411
1412/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1413static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1414                                ASTContext &C) {
1415  if (!oldDecl->hasAttrs())
1416    return;
1417
1418  bool foundAny = newDecl->hasAttrs();
1419
1420  // Ensure that any moving of objects within the allocated map is done before
1421  // we process them.
1422  if (!foundAny) newDecl->setAttrs(AttrVec());
1423
1424  for (specific_attr_iterator<InheritableAttr>
1425       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1426       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1427    if (!DeclHasAttr(newDecl, *i)) {
1428      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1429      newAttr->setInherited(true);
1430      newDecl->addAttr(newAttr);
1431      foundAny = true;
1432    }
1433  }
1434
1435  if (!foundAny) newDecl->dropAttrs();
1436}
1437
1438/// mergeParamDeclAttributes - Copy attributes from the old parameter
1439/// to the new one.
1440static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1441                                     const ParmVarDecl *oldDecl,
1442                                     ASTContext &C) {
1443  if (!oldDecl->hasAttrs())
1444    return;
1445
1446  bool foundAny = newDecl->hasAttrs();
1447
1448  // Ensure that any moving of objects within the allocated map is
1449  // done before we process them.
1450  if (!foundAny) newDecl->setAttrs(AttrVec());
1451
1452  for (specific_attr_iterator<InheritableParamAttr>
1453       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1454       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1455    if (!DeclHasAttr(newDecl, *i)) {
1456      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1457      newAttr->setInherited(true);
1458      newDecl->addAttr(newAttr);
1459      foundAny = true;
1460    }
1461  }
1462
1463  if (!foundAny) newDecl->dropAttrs();
1464}
1465
1466namespace {
1467
1468/// Used in MergeFunctionDecl to keep track of function parameters in
1469/// C.
1470struct GNUCompatibleParamWarning {
1471  ParmVarDecl *OldParm;
1472  ParmVarDecl *NewParm;
1473  QualType PromotedType;
1474};
1475
1476}
1477
1478/// getSpecialMember - get the special member enum for a method.
1479Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1480  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1481    if (Ctor->isCopyConstructor())
1482      return Sema::CXXCopyConstructor;
1483
1484    return Sema::CXXConstructor;
1485  }
1486
1487  if (isa<CXXDestructorDecl>(MD))
1488    return Sema::CXXDestructor;
1489
1490  assert(MD->isCopyAssignmentOperator() &&
1491         "Must have copy assignment operator");
1492  return Sema::CXXCopyAssignment;
1493}
1494
1495/// canRedefineFunction - checks if a function can be redefined. Currently,
1496/// only extern inline functions can be redefined, and even then only in
1497/// GNU89 mode.
1498static bool canRedefineFunction(const FunctionDecl *FD,
1499                                const LangOptions& LangOpts) {
1500  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1501          FD->isInlineSpecified() &&
1502          FD->getStorageClass() == SC_Extern);
1503}
1504
1505/// MergeFunctionDecl - We just parsed a function 'New' from
1506/// declarator D which has the same name and scope as a previous
1507/// declaration 'Old'.  Figure out how to resolve this situation,
1508/// merging decls or emitting diagnostics as appropriate.
1509///
1510/// In C++, New and Old must be declarations that are not
1511/// overloaded. Use IsOverload to determine whether New and Old are
1512/// overloaded, and to select the Old declaration that New should be
1513/// merged with.
1514///
1515/// Returns true if there was an error, false otherwise.
1516bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1517  // Verify the old decl was also a function.
1518  FunctionDecl *Old = 0;
1519  if (FunctionTemplateDecl *OldFunctionTemplate
1520        = dyn_cast<FunctionTemplateDecl>(OldD))
1521    Old = OldFunctionTemplate->getTemplatedDecl();
1522  else
1523    Old = dyn_cast<FunctionDecl>(OldD);
1524  if (!Old) {
1525    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1526      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1527      Diag(Shadow->getTargetDecl()->getLocation(),
1528           diag::note_using_decl_target);
1529      Diag(Shadow->getUsingDecl()->getLocation(),
1530           diag::note_using_decl) << 0;
1531      return true;
1532    }
1533
1534    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1535      << New->getDeclName();
1536    Diag(OldD->getLocation(), diag::note_previous_definition);
1537    return true;
1538  }
1539
1540  // Determine whether the previous declaration was a definition,
1541  // implicit declaration, or a declaration.
1542  diag::kind PrevDiag;
1543  if (Old->isThisDeclarationADefinition())
1544    PrevDiag = diag::note_previous_definition;
1545  else if (Old->isImplicit())
1546    PrevDiag = diag::note_previous_implicit_declaration;
1547  else
1548    PrevDiag = diag::note_previous_declaration;
1549
1550  QualType OldQType = Context.getCanonicalType(Old->getType());
1551  QualType NewQType = Context.getCanonicalType(New->getType());
1552
1553  // Don't complain about this if we're in GNU89 mode and the old function
1554  // is an extern inline function.
1555  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1556      New->getStorageClass() == SC_Static &&
1557      Old->getStorageClass() != SC_Static &&
1558      !canRedefineFunction(Old, getLangOptions())) {
1559    if (getLangOptions().Microsoft) {
1560      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1561      Diag(Old->getLocation(), PrevDiag);
1562    } else {
1563      Diag(New->getLocation(), diag::err_static_non_static) << New;
1564      Diag(Old->getLocation(), PrevDiag);
1565      return true;
1566    }
1567  }
1568
1569  // If a function is first declared with a calling convention, but is
1570  // later declared or defined without one, the second decl assumes the
1571  // calling convention of the first.
1572  //
1573  // For the new decl, we have to look at the NON-canonical type to tell the
1574  // difference between a function that really doesn't have a calling
1575  // convention and one that is declared cdecl. That's because in
1576  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1577  // because it is the default calling convention.
1578  //
1579  // Note also that we DO NOT return at this point, because we still have
1580  // other tests to run.
1581  const FunctionType *OldType = cast<FunctionType>(OldQType);
1582  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1583  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1584  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1585  bool RequiresAdjustment = false;
1586  if (OldTypeInfo.getCC() != CC_Default &&
1587      NewTypeInfo.getCC() == CC_Default) {
1588    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1589    RequiresAdjustment = true;
1590  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1591                                     NewTypeInfo.getCC())) {
1592    // Calling conventions really aren't compatible, so complain.
1593    Diag(New->getLocation(), diag::err_cconv_change)
1594      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1595      << (OldTypeInfo.getCC() == CC_Default)
1596      << (OldTypeInfo.getCC() == CC_Default ? "" :
1597          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1598    Diag(Old->getLocation(), diag::note_previous_declaration);
1599    return true;
1600  }
1601
1602  // FIXME: diagnose the other way around?
1603  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1604    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1605    RequiresAdjustment = true;
1606  }
1607
1608  // Merge regparm attribute.
1609  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1610      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1611    if (NewTypeInfo.getHasRegParm()) {
1612      Diag(New->getLocation(), diag::err_regparm_mismatch)
1613        << NewType->getRegParmType()
1614        << OldType->getRegParmType();
1615      Diag(Old->getLocation(), diag::note_previous_declaration);
1616      return true;
1617    }
1618
1619    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1620    RequiresAdjustment = true;
1621  }
1622
1623  if (RequiresAdjustment) {
1624    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1625    New->setType(QualType(NewType, 0));
1626    NewQType = Context.getCanonicalType(New->getType());
1627  }
1628
1629  if (getLangOptions().CPlusPlus) {
1630    // (C++98 13.1p2):
1631    //   Certain function declarations cannot be overloaded:
1632    //     -- Function declarations that differ only in the return type
1633    //        cannot be overloaded.
1634    QualType OldReturnType = OldType->getResultType();
1635    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1636    QualType ResQT;
1637    if (OldReturnType != NewReturnType) {
1638      if (NewReturnType->isObjCObjectPointerType()
1639          && OldReturnType->isObjCObjectPointerType())
1640        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1641      if (ResQT.isNull()) {
1642        if (New->isCXXClassMember() && New->isOutOfLine())
1643          Diag(New->getLocation(),
1644               diag::err_member_def_does_not_match_ret_type) << New;
1645        else
1646          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1647        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1648        return true;
1649      }
1650      else
1651        NewQType = ResQT;
1652    }
1653
1654    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1655    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1656    if (OldMethod && NewMethod) {
1657      // Preserve triviality.
1658      NewMethod->setTrivial(OldMethod->isTrivial());
1659
1660      bool isFriend = NewMethod->getFriendObjectKind();
1661
1662      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1663        //    -- Member function declarations with the same name and the
1664        //       same parameter types cannot be overloaded if any of them
1665        //       is a static member function declaration.
1666        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1667          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1668          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1669          return true;
1670        }
1671
1672        // C++ [class.mem]p1:
1673        //   [...] A member shall not be declared twice in the
1674        //   member-specification, except that a nested class or member
1675        //   class template can be declared and then later defined.
1676        unsigned NewDiag;
1677        if (isa<CXXConstructorDecl>(OldMethod))
1678          NewDiag = diag::err_constructor_redeclared;
1679        else if (isa<CXXDestructorDecl>(NewMethod))
1680          NewDiag = diag::err_destructor_redeclared;
1681        else if (isa<CXXConversionDecl>(NewMethod))
1682          NewDiag = diag::err_conv_function_redeclared;
1683        else
1684          NewDiag = diag::err_member_redeclared;
1685
1686        Diag(New->getLocation(), NewDiag);
1687        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1688
1689      // Complain if this is an explicit declaration of a special
1690      // member that was initially declared implicitly.
1691      //
1692      // As an exception, it's okay to befriend such methods in order
1693      // to permit the implicit constructor/destructor/operator calls.
1694      } else if (OldMethod->isImplicit()) {
1695        if (isFriend) {
1696          NewMethod->setImplicit();
1697        } else {
1698          Diag(NewMethod->getLocation(),
1699               diag::err_definition_of_implicitly_declared_member)
1700            << New << getSpecialMember(OldMethod);
1701          return true;
1702        }
1703      }
1704    }
1705
1706    // (C++98 8.3.5p3):
1707    //   All declarations for a function shall agree exactly in both the
1708    //   return type and the parameter-type-list.
1709    // We also want to respect all the extended bits except noreturn.
1710
1711    // noreturn should now match unless the old type info didn't have it.
1712    QualType OldQTypeForComparison = OldQType;
1713    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1714      assert(OldQType == QualType(OldType, 0));
1715      const FunctionType *OldTypeForComparison
1716        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1717      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1718      assert(OldQTypeForComparison.isCanonical());
1719    }
1720
1721    if (OldQTypeForComparison == NewQType)
1722      return MergeCompatibleFunctionDecls(New, Old);
1723
1724    // Fall through for conflicting redeclarations and redefinitions.
1725  }
1726
1727  // C: Function types need to be compatible, not identical. This handles
1728  // duplicate function decls like "void f(int); void f(enum X);" properly.
1729  if (!getLangOptions().CPlusPlus &&
1730      Context.typesAreCompatible(OldQType, NewQType)) {
1731    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1732    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1733    const FunctionProtoType *OldProto = 0;
1734    if (isa<FunctionNoProtoType>(NewFuncType) &&
1735        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1736      // The old declaration provided a function prototype, but the
1737      // new declaration does not. Merge in the prototype.
1738      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1739      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1740                                                 OldProto->arg_type_end());
1741      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1742                                         ParamTypes.data(), ParamTypes.size(),
1743                                         OldProto->getExtProtoInfo());
1744      New->setType(NewQType);
1745      New->setHasInheritedPrototype();
1746
1747      // Synthesize a parameter for each argument type.
1748      llvm::SmallVector<ParmVarDecl*, 16> Params;
1749      for (FunctionProtoType::arg_type_iterator
1750             ParamType = OldProto->arg_type_begin(),
1751             ParamEnd = OldProto->arg_type_end();
1752           ParamType != ParamEnd; ++ParamType) {
1753        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1754                                                 SourceLocation(),
1755                                                 SourceLocation(), 0,
1756                                                 *ParamType, /*TInfo=*/0,
1757                                                 SC_None, SC_None,
1758                                                 0);
1759        Param->setImplicit();
1760        Params.push_back(Param);
1761      }
1762
1763      New->setParams(Params.data(), Params.size());
1764    }
1765
1766    return MergeCompatibleFunctionDecls(New, Old);
1767  }
1768
1769  // GNU C permits a K&R definition to follow a prototype declaration
1770  // if the declared types of the parameters in the K&R definition
1771  // match the types in the prototype declaration, even when the
1772  // promoted types of the parameters from the K&R definition differ
1773  // from the types in the prototype. GCC then keeps the types from
1774  // the prototype.
1775  //
1776  // If a variadic prototype is followed by a non-variadic K&R definition,
1777  // the K&R definition becomes variadic.  This is sort of an edge case, but
1778  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1779  // C99 6.9.1p8.
1780  if (!getLangOptions().CPlusPlus &&
1781      Old->hasPrototype() && !New->hasPrototype() &&
1782      New->getType()->getAs<FunctionProtoType>() &&
1783      Old->getNumParams() == New->getNumParams()) {
1784    llvm::SmallVector<QualType, 16> ArgTypes;
1785    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1786    const FunctionProtoType *OldProto
1787      = Old->getType()->getAs<FunctionProtoType>();
1788    const FunctionProtoType *NewProto
1789      = New->getType()->getAs<FunctionProtoType>();
1790
1791    // Determine whether this is the GNU C extension.
1792    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1793                                               NewProto->getResultType());
1794    bool LooseCompatible = !MergedReturn.isNull();
1795    for (unsigned Idx = 0, End = Old->getNumParams();
1796         LooseCompatible && Idx != End; ++Idx) {
1797      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1798      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1799      if (Context.typesAreCompatible(OldParm->getType(),
1800                                     NewProto->getArgType(Idx))) {
1801        ArgTypes.push_back(NewParm->getType());
1802      } else if (Context.typesAreCompatible(OldParm->getType(),
1803                                            NewParm->getType(),
1804                                            /*CompareUnqualified=*/true)) {
1805        GNUCompatibleParamWarning Warn
1806          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1807        Warnings.push_back(Warn);
1808        ArgTypes.push_back(NewParm->getType());
1809      } else
1810        LooseCompatible = false;
1811    }
1812
1813    if (LooseCompatible) {
1814      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1815        Diag(Warnings[Warn].NewParm->getLocation(),
1816             diag::ext_param_promoted_not_compatible_with_prototype)
1817          << Warnings[Warn].PromotedType
1818          << Warnings[Warn].OldParm->getType();
1819        if (Warnings[Warn].OldParm->getLocation().isValid())
1820          Diag(Warnings[Warn].OldParm->getLocation(),
1821               diag::note_previous_declaration);
1822      }
1823
1824      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1825                                           ArgTypes.size(),
1826                                           OldProto->getExtProtoInfo()));
1827      return MergeCompatibleFunctionDecls(New, Old);
1828    }
1829
1830    // Fall through to diagnose conflicting types.
1831  }
1832
1833  // A function that has already been declared has been redeclared or defined
1834  // with a different type- show appropriate diagnostic
1835  if (unsigned BuiltinID = Old->getBuiltinID()) {
1836    // The user has declared a builtin function with an incompatible
1837    // signature.
1838    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1839      // The function the user is redeclaring is a library-defined
1840      // function like 'malloc' or 'printf'. Warn about the
1841      // redeclaration, then pretend that we don't know about this
1842      // library built-in.
1843      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1844      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1845        << Old << Old->getType();
1846      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1847      Old->setInvalidDecl();
1848      return false;
1849    }
1850
1851    PrevDiag = diag::note_previous_builtin_declaration;
1852  }
1853
1854  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1855  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1856  return true;
1857}
1858
1859/// \brief Completes the merge of two function declarations that are
1860/// known to be compatible.
1861///
1862/// This routine handles the merging of attributes and other
1863/// properties of function declarations form the old declaration to
1864/// the new declaration, once we know that New is in fact a
1865/// redeclaration of Old.
1866///
1867/// \returns false
1868bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1869  // Merge the attributes
1870  mergeDeclAttributes(New, Old, Context);
1871
1872  // Merge the storage class.
1873  if (Old->getStorageClass() != SC_Extern &&
1874      Old->getStorageClass() != SC_None)
1875    New->setStorageClass(Old->getStorageClass());
1876
1877  // Merge "pure" flag.
1878  if (Old->isPure())
1879    New->setPure();
1880
1881  // Merge the "deleted" flag.
1882  if (Old->isDeleted())
1883    New->setDeleted();
1884
1885  // Merge attributes from the parameters.  These can mismatch with K&R
1886  // declarations.
1887  if (New->getNumParams() == Old->getNumParams())
1888    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1889      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1890                               Context);
1891
1892  if (getLangOptions().CPlusPlus)
1893    return MergeCXXFunctionDecl(New, Old);
1894
1895  return false;
1896}
1897
1898void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1899                                const ObjCMethodDecl *oldMethod) {
1900  // Merge the attributes.
1901  mergeDeclAttributes(newMethod, oldMethod, Context);
1902
1903  // Merge attributes from the parameters.
1904  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1905         ni = newMethod->param_begin(), ne = newMethod->param_end();
1906       ni != ne; ++ni, ++oi)
1907    mergeParamDeclAttributes(*ni, *oi, Context);
1908}
1909
1910/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1911/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1912/// emitting diagnostics as appropriate.
1913///
1914/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1915/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1916/// check them before the initializer is attached.
1917///
1918void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1919  if (New->isInvalidDecl() || Old->isInvalidDecl())
1920    return;
1921
1922  QualType MergedT;
1923  if (getLangOptions().CPlusPlus) {
1924    AutoType *AT = New->getType()->getContainedAutoType();
1925    if (AT && !AT->isDeduced()) {
1926      // We don't know what the new type is until the initializer is attached.
1927      return;
1928    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1929      // These could still be something that needs exception specs checked.
1930      return MergeVarDeclExceptionSpecs(New, Old);
1931    }
1932    // C++ [basic.link]p10:
1933    //   [...] the types specified by all declarations referring to a given
1934    //   object or function shall be identical, except that declarations for an
1935    //   array object can specify array types that differ by the presence or
1936    //   absence of a major array bound (8.3.4).
1937    else if (Old->getType()->isIncompleteArrayType() &&
1938             New->getType()->isArrayType()) {
1939      CanQual<ArrayType> OldArray
1940        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1941      CanQual<ArrayType> NewArray
1942        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1943      if (OldArray->getElementType() == NewArray->getElementType())
1944        MergedT = New->getType();
1945    } else if (Old->getType()->isArrayType() &&
1946             New->getType()->isIncompleteArrayType()) {
1947      CanQual<ArrayType> OldArray
1948        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1949      CanQual<ArrayType> NewArray
1950        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1951      if (OldArray->getElementType() == NewArray->getElementType())
1952        MergedT = Old->getType();
1953    } else if (New->getType()->isObjCObjectPointerType()
1954               && Old->getType()->isObjCObjectPointerType()) {
1955        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1956                                                        Old->getType());
1957    }
1958  } else {
1959    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1960  }
1961  if (MergedT.isNull()) {
1962    Diag(New->getLocation(), diag::err_redefinition_different_type)
1963      << New->getDeclName();
1964    Diag(Old->getLocation(), diag::note_previous_definition);
1965    return New->setInvalidDecl();
1966  }
1967  New->setType(MergedT);
1968}
1969
1970/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1971/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1972/// situation, merging decls or emitting diagnostics as appropriate.
1973///
1974/// Tentative definition rules (C99 6.9.2p2) are checked by
1975/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1976/// definitions here, since the initializer hasn't been attached.
1977///
1978void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1979  // If the new decl is already invalid, don't do any other checking.
1980  if (New->isInvalidDecl())
1981    return;
1982
1983  // Verify the old decl was also a variable.
1984  VarDecl *Old = 0;
1985  if (!Previous.isSingleResult() ||
1986      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1987    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1988      << New->getDeclName();
1989    Diag(Previous.getRepresentativeDecl()->getLocation(),
1990         diag::note_previous_definition);
1991    return New->setInvalidDecl();
1992  }
1993
1994  // C++ [class.mem]p1:
1995  //   A member shall not be declared twice in the member-specification [...]
1996  //
1997  // Here, we need only consider static data members.
1998  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1999    Diag(New->getLocation(), diag::err_duplicate_member)
2000      << New->getIdentifier();
2001    Diag(Old->getLocation(), diag::note_previous_declaration);
2002    New->setInvalidDecl();
2003  }
2004
2005  mergeDeclAttributes(New, Old, Context);
2006
2007  // Merge the types.
2008  MergeVarDeclTypes(New, Old);
2009  if (New->isInvalidDecl())
2010    return;
2011
2012  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2013  if (New->getStorageClass() == SC_Static &&
2014      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2015    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2016    Diag(Old->getLocation(), diag::note_previous_definition);
2017    return New->setInvalidDecl();
2018  }
2019  // C99 6.2.2p4:
2020  //   For an identifier declared with the storage-class specifier
2021  //   extern in a scope in which a prior declaration of that
2022  //   identifier is visible,23) if the prior declaration specifies
2023  //   internal or external linkage, the linkage of the identifier at
2024  //   the later declaration is the same as the linkage specified at
2025  //   the prior declaration. If no prior declaration is visible, or
2026  //   if the prior declaration specifies no linkage, then the
2027  //   identifier has external linkage.
2028  if (New->hasExternalStorage() && Old->hasLinkage())
2029    /* Okay */;
2030  else if (New->getStorageClass() != SC_Static &&
2031           Old->getStorageClass() == SC_Static) {
2032    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2033    Diag(Old->getLocation(), diag::note_previous_definition);
2034    return New->setInvalidDecl();
2035  }
2036
2037  // Check if extern is followed by non-extern and vice-versa.
2038  if (New->hasExternalStorage() &&
2039      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2040    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2041    Diag(Old->getLocation(), diag::note_previous_definition);
2042    return New->setInvalidDecl();
2043  }
2044  if (Old->hasExternalStorage() &&
2045      !New->hasLinkage() && New->isLocalVarDecl()) {
2046    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2047    Diag(Old->getLocation(), diag::note_previous_definition);
2048    return New->setInvalidDecl();
2049  }
2050
2051  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2052
2053  // FIXME: The test for external storage here seems wrong? We still
2054  // need to check for mismatches.
2055  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2056      // Don't complain about out-of-line definitions of static members.
2057      !(Old->getLexicalDeclContext()->isRecord() &&
2058        !New->getLexicalDeclContext()->isRecord())) {
2059    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2060    Diag(Old->getLocation(), diag::note_previous_definition);
2061    return New->setInvalidDecl();
2062  }
2063
2064  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2065    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2066    Diag(Old->getLocation(), diag::note_previous_definition);
2067  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2068    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2069    Diag(Old->getLocation(), diag::note_previous_definition);
2070  }
2071
2072  // C++ doesn't have tentative definitions, so go right ahead and check here.
2073  const VarDecl *Def;
2074  if (getLangOptions().CPlusPlus &&
2075      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2076      (Def = Old->getDefinition())) {
2077    Diag(New->getLocation(), diag::err_redefinition)
2078      << New->getDeclName();
2079    Diag(Def->getLocation(), diag::note_previous_definition);
2080    New->setInvalidDecl();
2081    return;
2082  }
2083  // c99 6.2.2 P4.
2084  // For an identifier declared with the storage-class specifier extern in a
2085  // scope in which a prior declaration of that identifier is visible, if
2086  // the prior declaration specifies internal or external linkage, the linkage
2087  // of the identifier at the later declaration is the same as the linkage
2088  // specified at the prior declaration.
2089  // FIXME. revisit this code.
2090  if (New->hasExternalStorage() &&
2091      Old->getLinkage() == InternalLinkage &&
2092      New->getDeclContext() == Old->getDeclContext())
2093    New->setStorageClass(Old->getStorageClass());
2094
2095  // Keep a chain of previous declarations.
2096  New->setPreviousDeclaration(Old);
2097
2098  // Inherit access appropriately.
2099  New->setAccess(Old->getAccess());
2100}
2101
2102/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2103/// no declarator (e.g. "struct foo;") is parsed.
2104Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2105                                       DeclSpec &DS) {
2106  Decl *TagD = 0;
2107  TagDecl *Tag = 0;
2108  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2109      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2110      DS.getTypeSpecType() == DeclSpec::TST_union ||
2111      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2112    TagD = DS.getRepAsDecl();
2113
2114    if (!TagD) // We probably had an error
2115      return 0;
2116
2117    // Note that the above type specs guarantee that the
2118    // type rep is a Decl, whereas in many of the others
2119    // it's a Type.
2120    Tag = dyn_cast<TagDecl>(TagD);
2121  }
2122
2123  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2124    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2125    // or incomplete types shall not be restrict-qualified."
2126    if (TypeQuals & DeclSpec::TQ_restrict)
2127      Diag(DS.getRestrictSpecLoc(),
2128           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2129           << DS.getSourceRange();
2130  }
2131
2132  if (DS.isFriendSpecified()) {
2133    // If we're dealing with a decl but not a TagDecl, assume that
2134    // whatever routines created it handled the friendship aspect.
2135    if (TagD && !Tag)
2136      return 0;
2137    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
2138  }
2139
2140  // Track whether we warned about the fact that there aren't any
2141  // declarators.
2142  bool emittedWarning = false;
2143
2144  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2145    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2146
2147    if (!Record->getDeclName() && Record->isDefinition() &&
2148        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2149      if (getLangOptions().CPlusPlus ||
2150          Record->getDeclContext()->isRecord())
2151        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2152
2153      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2154        << DS.getSourceRange();
2155      emittedWarning = true;
2156    }
2157  }
2158
2159  // Check for Microsoft C extension: anonymous struct.
2160  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2161      CurContext->isRecord() &&
2162      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2163    // Handle 2 kinds of anonymous struct:
2164    //   struct STRUCT;
2165    // and
2166    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2167    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2168    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2169        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2170         DS.getRepAsType().get()->isStructureType())) {
2171      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2172        << DS.getSourceRange();
2173      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2174    }
2175  }
2176
2177  if (getLangOptions().CPlusPlus &&
2178      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2179    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2180      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2181          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2182        Diag(Enum->getLocation(), diag::ext_no_declarators)
2183          << DS.getSourceRange();
2184        emittedWarning = true;
2185      }
2186
2187  // Skip all the checks below if we have a type error.
2188  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2189
2190  if (!DS.isMissingDeclaratorOk()) {
2191    // Warn about typedefs of enums without names, since this is an
2192    // extension in both Microsoft and GNU.
2193    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2194        Tag && isa<EnumDecl>(Tag)) {
2195      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2196        << DS.getSourceRange();
2197      return Tag;
2198    }
2199
2200    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2201      << DS.getSourceRange();
2202    emittedWarning = true;
2203  }
2204
2205  // We're going to complain about a bunch of spurious specifiers;
2206  // only do this if we're declaring a tag, because otherwise we
2207  // should be getting diag::ext_no_declarators.
2208  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2209    return TagD;
2210
2211  // Note that a linkage-specification sets a storage class, but
2212  // 'extern "C" struct foo;' is actually valid and not theoretically
2213  // useless.
2214  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2215    if (!DS.isExternInLinkageSpec())
2216      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2217        << DeclSpec::getSpecifierName(scs);
2218
2219  if (DS.isThreadSpecified())
2220    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2221  if (DS.getTypeQualifiers()) {
2222    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2223      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2224    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2225      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2226    // Restrict is covered above.
2227  }
2228  if (DS.isInlineSpecified())
2229    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2230  if (DS.isVirtualSpecified())
2231    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2232  if (DS.isExplicitSpecified())
2233    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2234
2235  // FIXME: Warn on useless attributes
2236
2237  return TagD;
2238}
2239
2240/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2241/// builds a statement for it and returns it so it is evaluated.
2242StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2243  StmtResult R;
2244  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2245    Expr *Exp = DS.getRepAsExpr();
2246    QualType Ty = Exp->getType();
2247    if (Ty->isPointerType()) {
2248      do
2249        Ty = Ty->getAs<PointerType>()->getPointeeType();
2250      while (Ty->isPointerType());
2251    }
2252    if (Ty->isVariableArrayType()) {
2253      R = ActOnExprStmt(MakeFullExpr(Exp));
2254    }
2255  }
2256  return R;
2257}
2258
2259/// We are trying to inject an anonymous member into the given scope;
2260/// check if there's an existing declaration that can't be overloaded.
2261///
2262/// \return true if this is a forbidden redeclaration
2263static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2264                                         Scope *S,
2265                                         DeclContext *Owner,
2266                                         DeclarationName Name,
2267                                         SourceLocation NameLoc,
2268                                         unsigned diagnostic) {
2269  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2270                 Sema::ForRedeclaration);
2271  if (!SemaRef.LookupName(R, S)) return false;
2272
2273  if (R.getAsSingle<TagDecl>())
2274    return false;
2275
2276  // Pick a representative declaration.
2277  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2278  assert(PrevDecl && "Expected a non-null Decl");
2279
2280  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2281    return false;
2282
2283  SemaRef.Diag(NameLoc, diagnostic) << Name;
2284  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2285
2286  return true;
2287}
2288
2289/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2290/// anonymous struct or union AnonRecord into the owning context Owner
2291/// and scope S. This routine will be invoked just after we realize
2292/// that an unnamed union or struct is actually an anonymous union or
2293/// struct, e.g.,
2294///
2295/// @code
2296/// union {
2297///   int i;
2298///   float f;
2299/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2300///    // f into the surrounding scope.x
2301/// @endcode
2302///
2303/// This routine is recursive, injecting the names of nested anonymous
2304/// structs/unions into the owning context and scope as well.
2305static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2306                                                DeclContext *Owner,
2307                                                RecordDecl *AnonRecord,
2308                                                AccessSpecifier AS,
2309                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2310                                                      bool MSAnonStruct) {
2311  unsigned diagKind
2312    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2313                            : diag::err_anonymous_struct_member_redecl;
2314
2315  bool Invalid = false;
2316
2317  // Look every FieldDecl and IndirectFieldDecl with a name.
2318  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2319                               DEnd = AnonRecord->decls_end();
2320       D != DEnd; ++D) {
2321    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2322        cast<NamedDecl>(*D)->getDeclName()) {
2323      ValueDecl *VD = cast<ValueDecl>(*D);
2324      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2325                                       VD->getLocation(), diagKind)) {
2326        // C++ [class.union]p2:
2327        //   The names of the members of an anonymous union shall be
2328        //   distinct from the names of any other entity in the
2329        //   scope in which the anonymous union is declared.
2330        Invalid = true;
2331      } else {
2332        // C++ [class.union]p2:
2333        //   For the purpose of name lookup, after the anonymous union
2334        //   definition, the members of the anonymous union are
2335        //   considered to have been defined in the scope in which the
2336        //   anonymous union is declared.
2337        unsigned OldChainingSize = Chaining.size();
2338        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2339          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2340               PE = IF->chain_end(); PI != PE; ++PI)
2341            Chaining.push_back(*PI);
2342        else
2343          Chaining.push_back(VD);
2344
2345        assert(Chaining.size() >= 2);
2346        NamedDecl **NamedChain =
2347          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2348        for (unsigned i = 0; i < Chaining.size(); i++)
2349          NamedChain[i] = Chaining[i];
2350
2351        IndirectFieldDecl* IndirectField =
2352          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2353                                    VD->getIdentifier(), VD->getType(),
2354                                    NamedChain, Chaining.size());
2355
2356        IndirectField->setAccess(AS);
2357        IndirectField->setImplicit();
2358        SemaRef.PushOnScopeChains(IndirectField, S);
2359
2360        // That includes picking up the appropriate access specifier.
2361        if (AS != AS_none) IndirectField->setAccess(AS);
2362
2363        Chaining.resize(OldChainingSize);
2364      }
2365    }
2366  }
2367
2368  return Invalid;
2369}
2370
2371/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2372/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2373/// illegal input values are mapped to SC_None.
2374static StorageClass
2375StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2376  switch (StorageClassSpec) {
2377  case DeclSpec::SCS_unspecified:    return SC_None;
2378  case DeclSpec::SCS_extern:         return SC_Extern;
2379  case DeclSpec::SCS_static:         return SC_Static;
2380  case DeclSpec::SCS_auto:           return SC_Auto;
2381  case DeclSpec::SCS_register:       return SC_Register;
2382  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2383    // Illegal SCSs map to None: error reporting is up to the caller.
2384  case DeclSpec::SCS_mutable:        // Fall through.
2385  case DeclSpec::SCS_typedef:        return SC_None;
2386  }
2387  llvm_unreachable("unknown storage class specifier");
2388}
2389
2390/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2391/// a StorageClass. Any error reporting is up to the caller:
2392/// illegal input values are mapped to SC_None.
2393static StorageClass
2394StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2395  switch (StorageClassSpec) {
2396  case DeclSpec::SCS_unspecified:    return SC_None;
2397  case DeclSpec::SCS_extern:         return SC_Extern;
2398  case DeclSpec::SCS_static:         return SC_Static;
2399  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2400    // Illegal SCSs map to None: error reporting is up to the caller.
2401  case DeclSpec::SCS_auto:           // Fall through.
2402  case DeclSpec::SCS_mutable:        // Fall through.
2403  case DeclSpec::SCS_register:       // Fall through.
2404  case DeclSpec::SCS_typedef:        return SC_None;
2405  }
2406  llvm_unreachable("unknown storage class specifier");
2407}
2408
2409/// BuildAnonymousStructOrUnion - Handle the declaration of an
2410/// anonymous structure or union. Anonymous unions are a C++ feature
2411/// (C++ [class.union]) and a GNU C extension; anonymous structures
2412/// are a GNU C and GNU C++ extension.
2413Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2414                                             AccessSpecifier AS,
2415                                             RecordDecl *Record) {
2416  DeclContext *Owner = Record->getDeclContext();
2417
2418  // Diagnose whether this anonymous struct/union is an extension.
2419  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2420    Diag(Record->getLocation(), diag::ext_anonymous_union);
2421  else if (!Record->isUnion())
2422    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2423
2424  // C and C++ require different kinds of checks for anonymous
2425  // structs/unions.
2426  bool Invalid = false;
2427  if (getLangOptions().CPlusPlus) {
2428    const char* PrevSpec = 0;
2429    unsigned DiagID;
2430    // C++ [class.union]p3:
2431    //   Anonymous unions declared in a named namespace or in the
2432    //   global namespace shall be declared static.
2433    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2434        (isa<TranslationUnitDecl>(Owner) ||
2435         (isa<NamespaceDecl>(Owner) &&
2436          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2437      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2438      Invalid = true;
2439
2440      // Recover by adding 'static'.
2441      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2442                             PrevSpec, DiagID, getLangOptions());
2443    }
2444    // C++ [class.union]p3:
2445    //   A storage class is not allowed in a declaration of an
2446    //   anonymous union in a class scope.
2447    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2448             isa<RecordDecl>(Owner)) {
2449      Diag(DS.getStorageClassSpecLoc(),
2450           diag::err_anonymous_union_with_storage_spec);
2451      Invalid = true;
2452
2453      // Recover by removing the storage specifier.
2454      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2455                             PrevSpec, DiagID, getLangOptions());
2456    }
2457
2458    // C++ [class.union]p2:
2459    //   The member-specification of an anonymous union shall only
2460    //   define non-static data members. [Note: nested types and
2461    //   functions cannot be declared within an anonymous union. ]
2462    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2463                                 MemEnd = Record->decls_end();
2464         Mem != MemEnd; ++Mem) {
2465      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2466        // C++ [class.union]p3:
2467        //   An anonymous union shall not have private or protected
2468        //   members (clause 11).
2469        assert(FD->getAccess() != AS_none);
2470        if (FD->getAccess() != AS_public) {
2471          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2472            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2473          Invalid = true;
2474        }
2475
2476        if (CheckNontrivialField(FD))
2477          Invalid = true;
2478      } else if ((*Mem)->isImplicit()) {
2479        // Any implicit members are fine.
2480      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2481        // This is a type that showed up in an
2482        // elaborated-type-specifier inside the anonymous struct or
2483        // union, but which actually declares a type outside of the
2484        // anonymous struct or union. It's okay.
2485      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2486        if (!MemRecord->isAnonymousStructOrUnion() &&
2487            MemRecord->getDeclName()) {
2488          // Visual C++ allows type definition in anonymous struct or union.
2489          if (getLangOptions().Microsoft)
2490            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2491              << (int)Record->isUnion();
2492          else {
2493            // This is a nested type declaration.
2494            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2495              << (int)Record->isUnion();
2496            Invalid = true;
2497          }
2498        }
2499      } else if (isa<AccessSpecDecl>(*Mem)) {
2500        // Any access specifier is fine.
2501      } else {
2502        // We have something that isn't a non-static data
2503        // member. Complain about it.
2504        unsigned DK = diag::err_anonymous_record_bad_member;
2505        if (isa<TypeDecl>(*Mem))
2506          DK = diag::err_anonymous_record_with_type;
2507        else if (isa<FunctionDecl>(*Mem))
2508          DK = diag::err_anonymous_record_with_function;
2509        else if (isa<VarDecl>(*Mem))
2510          DK = diag::err_anonymous_record_with_static;
2511
2512        // Visual C++ allows type definition in anonymous struct or union.
2513        if (getLangOptions().Microsoft &&
2514            DK == diag::err_anonymous_record_with_type)
2515          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2516            << (int)Record->isUnion();
2517        else {
2518          Diag((*Mem)->getLocation(), DK)
2519              << (int)Record->isUnion();
2520          Invalid = true;
2521        }
2522      }
2523    }
2524  }
2525
2526  if (!Record->isUnion() && !Owner->isRecord()) {
2527    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2528      << (int)getLangOptions().CPlusPlus;
2529    Invalid = true;
2530  }
2531
2532  // Mock up a declarator.
2533  Declarator Dc(DS, Declarator::TypeNameContext);
2534  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2535  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2536
2537  // Create a declaration for this anonymous struct/union.
2538  NamedDecl *Anon = 0;
2539  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2540    Anon = FieldDecl::Create(Context, OwningClass,
2541                             DS.getSourceRange().getBegin(),
2542                             Record->getLocation(),
2543                             /*IdentifierInfo=*/0,
2544                             Context.getTypeDeclType(Record),
2545                             TInfo,
2546                             /*BitWidth=*/0, /*Mutable=*/false);
2547    Anon->setAccess(AS);
2548    if (getLangOptions().CPlusPlus)
2549      FieldCollector->Add(cast<FieldDecl>(Anon));
2550  } else {
2551    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2552    assert(SCSpec != DeclSpec::SCS_typedef &&
2553           "Parser allowed 'typedef' as storage class VarDecl.");
2554    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2555    if (SCSpec == DeclSpec::SCS_mutable) {
2556      // mutable can only appear on non-static class members, so it's always
2557      // an error here
2558      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2559      Invalid = true;
2560      SC = SC_None;
2561    }
2562    SCSpec = DS.getStorageClassSpecAsWritten();
2563    VarDecl::StorageClass SCAsWritten
2564      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2565
2566    Anon = VarDecl::Create(Context, Owner,
2567                           DS.getSourceRange().getBegin(),
2568                           Record->getLocation(), /*IdentifierInfo=*/0,
2569                           Context.getTypeDeclType(Record),
2570                           TInfo, SC, SCAsWritten);
2571  }
2572  Anon->setImplicit();
2573
2574  // Add the anonymous struct/union object to the current
2575  // context. We'll be referencing this object when we refer to one of
2576  // its members.
2577  Owner->addDecl(Anon);
2578
2579  // Inject the members of the anonymous struct/union into the owning
2580  // context and into the identifier resolver chain for name lookup
2581  // purposes.
2582  llvm::SmallVector<NamedDecl*, 2> Chain;
2583  Chain.push_back(Anon);
2584
2585  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2586                                          Chain, false))
2587    Invalid = true;
2588
2589  // Mark this as an anonymous struct/union type. Note that we do not
2590  // do this until after we have already checked and injected the
2591  // members of this anonymous struct/union type, because otherwise
2592  // the members could be injected twice: once by DeclContext when it
2593  // builds its lookup table, and once by
2594  // InjectAnonymousStructOrUnionMembers.
2595  Record->setAnonymousStructOrUnion(true);
2596
2597  if (Invalid)
2598    Anon->setInvalidDecl();
2599
2600  return Anon;
2601}
2602
2603/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2604/// Microsoft C anonymous structure.
2605/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2606/// Example:
2607///
2608/// struct A { int a; };
2609/// struct B { struct A; int b; };
2610///
2611/// void foo() {
2612///   B var;
2613///   var.a = 3;
2614/// }
2615///
2616Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2617                                           RecordDecl *Record) {
2618
2619  // If there is no Record, get the record via the typedef.
2620  if (!Record)
2621    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2622
2623  // Mock up a declarator.
2624  Declarator Dc(DS, Declarator::TypeNameContext);
2625  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2626  assert(TInfo && "couldn't build declarator info for anonymous struct");
2627
2628  // Create a declaration for this anonymous struct.
2629  NamedDecl* Anon = FieldDecl::Create(Context,
2630                             cast<RecordDecl>(CurContext),
2631                             DS.getSourceRange().getBegin(),
2632                             DS.getSourceRange().getBegin(),
2633                             /*IdentifierInfo=*/0,
2634                             Context.getTypeDeclType(Record),
2635                             TInfo,
2636                             /*BitWidth=*/0, /*Mutable=*/false);
2637  Anon->setImplicit();
2638
2639  // Add the anonymous struct object to the current context.
2640  CurContext->addDecl(Anon);
2641
2642  // Inject the members of the anonymous struct into the current
2643  // context and into the identifier resolver chain for name lookup
2644  // purposes.
2645  llvm::SmallVector<NamedDecl*, 2> Chain;
2646  Chain.push_back(Anon);
2647
2648  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2649                                          Record->getDefinition(),
2650                                          AS_none, Chain, true))
2651    Anon->setInvalidDecl();
2652
2653  return Anon;
2654}
2655
2656/// GetNameForDeclarator - Determine the full declaration name for the
2657/// given Declarator.
2658DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2659  return GetNameFromUnqualifiedId(D.getName());
2660}
2661
2662/// \brief Retrieves the declaration name from a parsed unqualified-id.
2663DeclarationNameInfo
2664Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2665  DeclarationNameInfo NameInfo;
2666  NameInfo.setLoc(Name.StartLocation);
2667
2668  switch (Name.getKind()) {
2669
2670  case UnqualifiedId::IK_Identifier:
2671    NameInfo.setName(Name.Identifier);
2672    NameInfo.setLoc(Name.StartLocation);
2673    return NameInfo;
2674
2675  case UnqualifiedId::IK_OperatorFunctionId:
2676    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2677                                           Name.OperatorFunctionId.Operator));
2678    NameInfo.setLoc(Name.StartLocation);
2679    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2680      = Name.OperatorFunctionId.SymbolLocations[0];
2681    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2682      = Name.EndLocation.getRawEncoding();
2683    return NameInfo;
2684
2685  case UnqualifiedId::IK_LiteralOperatorId:
2686    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2687                                                           Name.Identifier));
2688    NameInfo.setLoc(Name.StartLocation);
2689    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2690    return NameInfo;
2691
2692  case UnqualifiedId::IK_ConversionFunctionId: {
2693    TypeSourceInfo *TInfo;
2694    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2695    if (Ty.isNull())
2696      return DeclarationNameInfo();
2697    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2698                                               Context.getCanonicalType(Ty)));
2699    NameInfo.setLoc(Name.StartLocation);
2700    NameInfo.setNamedTypeInfo(TInfo);
2701    return NameInfo;
2702  }
2703
2704  case UnqualifiedId::IK_ConstructorName: {
2705    TypeSourceInfo *TInfo;
2706    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2707    if (Ty.isNull())
2708      return DeclarationNameInfo();
2709    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2710                                              Context.getCanonicalType(Ty)));
2711    NameInfo.setLoc(Name.StartLocation);
2712    NameInfo.setNamedTypeInfo(TInfo);
2713    return NameInfo;
2714  }
2715
2716  case UnqualifiedId::IK_ConstructorTemplateId: {
2717    // In well-formed code, we can only have a constructor
2718    // template-id that refers to the current context, so go there
2719    // to find the actual type being constructed.
2720    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2721    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2722      return DeclarationNameInfo();
2723
2724    // Determine the type of the class being constructed.
2725    QualType CurClassType = Context.getTypeDeclType(CurClass);
2726
2727    // FIXME: Check two things: that the template-id names the same type as
2728    // CurClassType, and that the template-id does not occur when the name
2729    // was qualified.
2730
2731    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2732                                    Context.getCanonicalType(CurClassType)));
2733    NameInfo.setLoc(Name.StartLocation);
2734    // FIXME: should we retrieve TypeSourceInfo?
2735    NameInfo.setNamedTypeInfo(0);
2736    return NameInfo;
2737  }
2738
2739  case UnqualifiedId::IK_DestructorName: {
2740    TypeSourceInfo *TInfo;
2741    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2742    if (Ty.isNull())
2743      return DeclarationNameInfo();
2744    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2745                                              Context.getCanonicalType(Ty)));
2746    NameInfo.setLoc(Name.StartLocation);
2747    NameInfo.setNamedTypeInfo(TInfo);
2748    return NameInfo;
2749  }
2750
2751  case UnqualifiedId::IK_TemplateId: {
2752    TemplateName TName = Name.TemplateId->Template.get();
2753    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2754    return Context.getNameForTemplate(TName, TNameLoc);
2755  }
2756
2757  } // switch (Name.getKind())
2758
2759  assert(false && "Unknown name kind");
2760  return DeclarationNameInfo();
2761}
2762
2763/// isNearlyMatchingFunction - Determine whether the C++ functions
2764/// Declaration and Definition are "nearly" matching. This heuristic
2765/// is used to improve diagnostics in the case where an out-of-line
2766/// function definition doesn't match any declaration within
2767/// the class or namespace.
2768static bool isNearlyMatchingFunction(ASTContext &Context,
2769                                     FunctionDecl *Declaration,
2770                                     FunctionDecl *Definition) {
2771  if (Declaration->param_size() != Definition->param_size())
2772    return false;
2773  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2774    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2775    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2776
2777    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2778                                        DefParamTy.getNonReferenceType()))
2779      return false;
2780  }
2781
2782  return true;
2783}
2784
2785/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2786/// declarator needs to be rebuilt in the current instantiation.
2787/// Any bits of declarator which appear before the name are valid for
2788/// consideration here.  That's specifically the type in the decl spec
2789/// and the base type in any member-pointer chunks.
2790static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2791                                                    DeclarationName Name) {
2792  // The types we specifically need to rebuild are:
2793  //   - typenames, typeofs, and decltypes
2794  //   - types which will become injected class names
2795  // Of course, we also need to rebuild any type referencing such a
2796  // type.  It's safest to just say "dependent", but we call out a
2797  // few cases here.
2798
2799  DeclSpec &DS = D.getMutableDeclSpec();
2800  switch (DS.getTypeSpecType()) {
2801  case DeclSpec::TST_typename:
2802  case DeclSpec::TST_typeofType:
2803  case DeclSpec::TST_decltype: {
2804    // Grab the type from the parser.
2805    TypeSourceInfo *TSI = 0;
2806    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2807    if (T.isNull() || !T->isDependentType()) break;
2808
2809    // Make sure there's a type source info.  This isn't really much
2810    // of a waste; most dependent types should have type source info
2811    // attached already.
2812    if (!TSI)
2813      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2814
2815    // Rebuild the type in the current instantiation.
2816    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2817    if (!TSI) return true;
2818
2819    // Store the new type back in the decl spec.
2820    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2821    DS.UpdateTypeRep(LocType);
2822    break;
2823  }
2824
2825  case DeclSpec::TST_typeofExpr: {
2826    Expr *E = DS.getRepAsExpr();
2827    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2828    if (Result.isInvalid()) return true;
2829    DS.UpdateExprRep(Result.get());
2830    break;
2831  }
2832
2833  default:
2834    // Nothing to do for these decl specs.
2835    break;
2836  }
2837
2838  // It doesn't matter what order we do this in.
2839  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2840    DeclaratorChunk &Chunk = D.getTypeObject(I);
2841
2842    // The only type information in the declarator which can come
2843    // before the declaration name is the base type of a member
2844    // pointer.
2845    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2846      continue;
2847
2848    // Rebuild the scope specifier in-place.
2849    CXXScopeSpec &SS = Chunk.Mem.Scope();
2850    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2851      return true;
2852  }
2853
2854  return false;
2855}
2856
2857Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2858  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2859}
2860
2861/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2862///   If T is the name of a class, then each of the following shall have a
2863///   name different from T:
2864///     - every static data member of class T;
2865///     - every member function of class T
2866///     - every member of class T that is itself a type;
2867/// \returns true if the declaration name violates these rules.
2868bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2869                                   DeclarationNameInfo NameInfo) {
2870  DeclarationName Name = NameInfo.getName();
2871
2872  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2873    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2874      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2875      return true;
2876    }
2877
2878  return false;
2879}
2880
2881Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2882                             MultiTemplateParamsArg TemplateParamLists,
2883                             bool IsFunctionDefinition) {
2884  // TODO: consider using NameInfo for diagnostic.
2885  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2886  DeclarationName Name = NameInfo.getName();
2887
2888  // All of these full declarators require an identifier.  If it doesn't have
2889  // one, the ParsedFreeStandingDeclSpec action should be used.
2890  if (!Name) {
2891    if (!D.isInvalidType())  // Reject this if we think it is valid.
2892      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2893           diag::err_declarator_need_ident)
2894        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2895    return 0;
2896  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2897    return 0;
2898
2899  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2900  // we find one that is.
2901  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2902         (S->getFlags() & Scope::TemplateParamScope) != 0)
2903    S = S->getParent();
2904
2905  DeclContext *DC = CurContext;
2906  if (D.getCXXScopeSpec().isInvalid())
2907    D.setInvalidType();
2908  else if (D.getCXXScopeSpec().isSet()) {
2909    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2910                                        UPPC_DeclarationQualifier))
2911      return 0;
2912
2913    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2914    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2915    if (!DC) {
2916      // If we could not compute the declaration context, it's because the
2917      // declaration context is dependent but does not refer to a class,
2918      // class template, or class template partial specialization. Complain
2919      // and return early, to avoid the coming semantic disaster.
2920      Diag(D.getIdentifierLoc(),
2921           diag::err_template_qualified_declarator_no_match)
2922        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2923        << D.getCXXScopeSpec().getRange();
2924      return 0;
2925    }
2926
2927    bool IsDependentContext = DC->isDependentContext();
2928
2929    if (!IsDependentContext &&
2930        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2931      return 0;
2932
2933    if (isa<CXXRecordDecl>(DC)) {
2934      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2935        Diag(D.getIdentifierLoc(),
2936             diag::err_member_def_undefined_record)
2937          << Name << DC << D.getCXXScopeSpec().getRange();
2938        D.setInvalidType();
2939      } else if (isa<CXXRecordDecl>(CurContext) &&
2940                 !D.getDeclSpec().isFriendSpecified()) {
2941        // The user provided a superfluous scope specifier inside a class
2942        // definition:
2943        //
2944        // class X {
2945        //   void X::f();
2946        // };
2947        if (CurContext->Equals(DC))
2948          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2949            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2950        else
2951          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2952            << Name << D.getCXXScopeSpec().getRange();
2953
2954        // Pretend that this qualifier was not here.
2955        D.getCXXScopeSpec().clear();
2956      }
2957    }
2958
2959    // Check whether we need to rebuild the type of the given
2960    // declaration in the current instantiation.
2961    if (EnteringContext && IsDependentContext &&
2962        TemplateParamLists.size() != 0) {
2963      ContextRAII SavedContext(*this, DC);
2964      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2965        D.setInvalidType();
2966    }
2967  }
2968
2969  if (DiagnoseClassNameShadow(DC, NameInfo))
2970    // If this is a typedef, we'll end up spewing multiple diagnostics.
2971    // Just return early; it's safer.
2972    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2973      return 0;
2974
2975  NamedDecl *New;
2976
2977  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2978  QualType R = TInfo->getType();
2979
2980  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2981                                      UPPC_DeclarationType))
2982    D.setInvalidType();
2983
2984  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2985                        ForRedeclaration);
2986
2987  // See if this is a redefinition of a variable in the same scope.
2988  if (!D.getCXXScopeSpec().isSet()) {
2989    bool IsLinkageLookup = false;
2990
2991    // If the declaration we're planning to build will be a function
2992    // or object with linkage, then look for another declaration with
2993    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2994    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2995      /* Do nothing*/;
2996    else if (R->isFunctionType()) {
2997      if (CurContext->isFunctionOrMethod() ||
2998          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2999        IsLinkageLookup = true;
3000    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3001      IsLinkageLookup = true;
3002    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3003             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3004      IsLinkageLookup = true;
3005
3006    if (IsLinkageLookup)
3007      Previous.clear(LookupRedeclarationWithLinkage);
3008
3009    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3010  } else { // Something like "int foo::x;"
3011    LookupQualifiedName(Previous, DC);
3012
3013    // Don't consider using declarations as previous declarations for
3014    // out-of-line members.
3015    RemoveUsingDecls(Previous);
3016
3017    // C++ 7.3.1.2p2:
3018    // Members (including explicit specializations of templates) of a named
3019    // namespace can also be defined outside that namespace by explicit
3020    // qualification of the name being defined, provided that the entity being
3021    // defined was already declared in the namespace and the definition appears
3022    // after the point of declaration in a namespace that encloses the
3023    // declarations namespace.
3024    //
3025    // Note that we only check the context at this point. We don't yet
3026    // have enough information to make sure that PrevDecl is actually
3027    // the declaration we want to match. For example, given:
3028    //
3029    //   class X {
3030    //     void f();
3031    //     void f(float);
3032    //   };
3033    //
3034    //   void X::f(int) { } // ill-formed
3035    //
3036    // In this case, PrevDecl will point to the overload set
3037    // containing the two f's declared in X, but neither of them
3038    // matches.
3039
3040    // First check whether we named the global scope.
3041    if (isa<TranslationUnitDecl>(DC)) {
3042      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3043        << Name << D.getCXXScopeSpec().getRange();
3044    } else {
3045      DeclContext *Cur = CurContext;
3046      while (isa<LinkageSpecDecl>(Cur))
3047        Cur = Cur->getParent();
3048      if (!Cur->Encloses(DC)) {
3049        // The qualifying scope doesn't enclose the original declaration.
3050        // Emit diagnostic based on current scope.
3051        SourceLocation L = D.getIdentifierLoc();
3052        SourceRange R = D.getCXXScopeSpec().getRange();
3053        if (isa<FunctionDecl>(Cur))
3054          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3055        else
3056          Diag(L, diag::err_invalid_declarator_scope)
3057            << Name << cast<NamedDecl>(DC) << R;
3058        D.setInvalidType();
3059      }
3060    }
3061  }
3062
3063  if (Previous.isSingleResult() &&
3064      Previous.getFoundDecl()->isTemplateParameter()) {
3065    // Maybe we will complain about the shadowed template parameter.
3066    if (!D.isInvalidType())
3067      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3068                                          Previous.getFoundDecl()))
3069        D.setInvalidType();
3070
3071    // Just pretend that we didn't see the previous declaration.
3072    Previous.clear();
3073  }
3074
3075  // In C++, the previous declaration we find might be a tag type
3076  // (class or enum). In this case, the new declaration will hide the
3077  // tag type. Note that this does does not apply if we're declaring a
3078  // typedef (C++ [dcl.typedef]p4).
3079  if (Previous.isSingleTagDecl() &&
3080      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3081    Previous.clear();
3082
3083  bool Redeclaration = false;
3084  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3085    if (TemplateParamLists.size()) {
3086      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3087      return 0;
3088    }
3089
3090    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3091  } else if (R->isFunctionType()) {
3092    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3093                                  move(TemplateParamLists),
3094                                  IsFunctionDefinition, Redeclaration);
3095  } else {
3096    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3097                                  move(TemplateParamLists),
3098                                  Redeclaration);
3099  }
3100
3101  if (New == 0)
3102    return 0;
3103
3104  // If this has an identifier and is not an invalid redeclaration or
3105  // function template specialization, add it to the scope stack.
3106  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3107    PushOnScopeChains(New, S);
3108
3109  return New;
3110}
3111
3112/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3113/// types into constant array types in certain situations which would otherwise
3114/// be errors (for GCC compatibility).
3115static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3116                                                    ASTContext &Context,
3117                                                    bool &SizeIsNegative,
3118                                                    llvm::APSInt &Oversized) {
3119  // This method tries to turn a variable array into a constant
3120  // array even when the size isn't an ICE.  This is necessary
3121  // for compatibility with code that depends on gcc's buggy
3122  // constant expression folding, like struct {char x[(int)(char*)2];}
3123  SizeIsNegative = false;
3124  Oversized = 0;
3125
3126  if (T->isDependentType())
3127    return QualType();
3128
3129  QualifierCollector Qs;
3130  const Type *Ty = Qs.strip(T);
3131
3132  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3133    QualType Pointee = PTy->getPointeeType();
3134    QualType FixedType =
3135        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3136                                            Oversized);
3137    if (FixedType.isNull()) return FixedType;
3138    FixedType = Context.getPointerType(FixedType);
3139    return Qs.apply(Context, FixedType);
3140  }
3141  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3142    QualType Inner = PTy->getInnerType();
3143    QualType FixedType =
3144        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3145                                            Oversized);
3146    if (FixedType.isNull()) return FixedType;
3147    FixedType = Context.getParenType(FixedType);
3148    return Qs.apply(Context, FixedType);
3149  }
3150
3151  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3152  if (!VLATy)
3153    return QualType();
3154  // FIXME: We should probably handle this case
3155  if (VLATy->getElementType()->isVariablyModifiedType())
3156    return QualType();
3157
3158  Expr::EvalResult EvalResult;
3159  if (!VLATy->getSizeExpr() ||
3160      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3161      !EvalResult.Val.isInt())
3162    return QualType();
3163
3164  // Check whether the array size is negative.
3165  llvm::APSInt &Res = EvalResult.Val.getInt();
3166  if (Res.isSigned() && Res.isNegative()) {
3167    SizeIsNegative = true;
3168    return QualType();
3169  }
3170
3171  // Check whether the array is too large to be addressed.
3172  unsigned ActiveSizeBits
3173    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3174                                              Res);
3175  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3176    Oversized = Res;
3177    return QualType();
3178  }
3179
3180  return Context.getConstantArrayType(VLATy->getElementType(),
3181                                      Res, ArrayType::Normal, 0);
3182}
3183
3184/// \brief Register the given locally-scoped external C declaration so
3185/// that it can be found later for redeclarations
3186void
3187Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3188                                       const LookupResult &Previous,
3189                                       Scope *S) {
3190  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3191         "Decl is not a locally-scoped decl!");
3192  // Note that we have a locally-scoped external with this name.
3193  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3194
3195  if (!Previous.isSingleResult())
3196    return;
3197
3198  NamedDecl *PrevDecl = Previous.getFoundDecl();
3199
3200  // If there was a previous declaration of this variable, it may be
3201  // in our identifier chain. Update the identifier chain with the new
3202  // declaration.
3203  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3204    // The previous declaration was found on the identifer resolver
3205    // chain, so remove it from its scope.
3206    while (S && !S->isDeclScope(PrevDecl))
3207      S = S->getParent();
3208
3209    if (S)
3210      S->RemoveDecl(PrevDecl);
3211  }
3212}
3213
3214/// \brief Diagnose function specifiers on a declaration of an identifier that
3215/// does not identify a function.
3216void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3217  // FIXME: We should probably indicate the identifier in question to avoid
3218  // confusion for constructs like "inline int a(), b;"
3219  if (D.getDeclSpec().isInlineSpecified())
3220    Diag(D.getDeclSpec().getInlineSpecLoc(),
3221         diag::err_inline_non_function);
3222
3223  if (D.getDeclSpec().isVirtualSpecified())
3224    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3225         diag::err_virtual_non_function);
3226
3227  if (D.getDeclSpec().isExplicitSpecified())
3228    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3229         diag::err_explicit_non_function);
3230}
3231
3232NamedDecl*
3233Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3234                             QualType R,  TypeSourceInfo *TInfo,
3235                             LookupResult &Previous, bool &Redeclaration) {
3236  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3237  if (D.getCXXScopeSpec().isSet()) {
3238    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3239      << D.getCXXScopeSpec().getRange();
3240    D.setInvalidType();
3241    // Pretend we didn't see the scope specifier.
3242    DC = CurContext;
3243    Previous.clear();
3244  }
3245
3246  if (getLangOptions().CPlusPlus) {
3247    // Check that there are no default arguments (C++ only).
3248    CheckExtraCXXDefaultArguments(D);
3249  }
3250
3251  DiagnoseFunctionSpecifiers(D);
3252
3253  if (D.getDeclSpec().isThreadSpecified())
3254    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3255
3256  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3257    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3258      << D.getName().getSourceRange();
3259    return 0;
3260  }
3261
3262  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3263  if (!NewTD) return 0;
3264
3265  // Handle attributes prior to checking for duplicates in MergeVarDecl
3266  ProcessDeclAttributes(S, NewTD, D);
3267
3268  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3269}
3270
3271/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3272/// declares a typedef-name, either using the 'typedef' type specifier or via
3273/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3274NamedDecl*
3275Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3276                           LookupResult &Previous, bool &Redeclaration) {
3277  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3278  // then it shall have block scope.
3279  // Note that variably modified types must be fixed before merging the decl so
3280  // that redeclarations will match.
3281  QualType T = NewTD->getUnderlyingType();
3282  if (T->isVariablyModifiedType()) {
3283    getCurFunction()->setHasBranchProtectedScope();
3284
3285    if (S->getFnParent() == 0) {
3286      bool SizeIsNegative;
3287      llvm::APSInt Oversized;
3288      QualType FixedTy =
3289          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3290                                              Oversized);
3291      if (!FixedTy.isNull()) {
3292        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3293        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3294      } else {
3295        if (SizeIsNegative)
3296          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3297        else if (T->isVariableArrayType())
3298          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3299        else if (Oversized.getBoolValue())
3300          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3301        else
3302          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3303        NewTD->setInvalidDecl();
3304      }
3305    }
3306  }
3307
3308  // Merge the decl with the existing one if appropriate. If the decl is
3309  // in an outer scope, it isn't the same thing.
3310  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3311                       /*ExplicitInstantiationOrSpecialization=*/false);
3312  if (!Previous.empty()) {
3313    Redeclaration = true;
3314    MergeTypedefNameDecl(NewTD, Previous);
3315  }
3316
3317  // If this is the C FILE type, notify the AST context.
3318  if (IdentifierInfo *II = NewTD->getIdentifier())
3319    if (!NewTD->isInvalidDecl() &&
3320        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3321      if (II->isStr("FILE"))
3322        Context.setFILEDecl(NewTD);
3323      else if (II->isStr("jmp_buf"))
3324        Context.setjmp_bufDecl(NewTD);
3325      else if (II->isStr("sigjmp_buf"))
3326        Context.setsigjmp_bufDecl(NewTD);
3327      else if (II->isStr("__builtin_va_list"))
3328        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3329    }
3330
3331  return NewTD;
3332}
3333
3334/// \brief Determines whether the given declaration is an out-of-scope
3335/// previous declaration.
3336///
3337/// This routine should be invoked when name lookup has found a
3338/// previous declaration (PrevDecl) that is not in the scope where a
3339/// new declaration by the same name is being introduced. If the new
3340/// declaration occurs in a local scope, previous declarations with
3341/// linkage may still be considered previous declarations (C99
3342/// 6.2.2p4-5, C++ [basic.link]p6).
3343///
3344/// \param PrevDecl the previous declaration found by name
3345/// lookup
3346///
3347/// \param DC the context in which the new declaration is being
3348/// declared.
3349///
3350/// \returns true if PrevDecl is an out-of-scope previous declaration
3351/// for a new delcaration with the same name.
3352static bool
3353isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3354                                ASTContext &Context) {
3355  if (!PrevDecl)
3356    return false;
3357
3358  if (!PrevDecl->hasLinkage())
3359    return false;
3360
3361  if (Context.getLangOptions().CPlusPlus) {
3362    // C++ [basic.link]p6:
3363    //   If there is a visible declaration of an entity with linkage
3364    //   having the same name and type, ignoring entities declared
3365    //   outside the innermost enclosing namespace scope, the block
3366    //   scope declaration declares that same entity and receives the
3367    //   linkage of the previous declaration.
3368    DeclContext *OuterContext = DC->getRedeclContext();
3369    if (!OuterContext->isFunctionOrMethod())
3370      // This rule only applies to block-scope declarations.
3371      return false;
3372
3373    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3374    if (PrevOuterContext->isRecord())
3375      // We found a member function: ignore it.
3376      return false;
3377
3378    // Find the innermost enclosing namespace for the new and
3379    // previous declarations.
3380    OuterContext = OuterContext->getEnclosingNamespaceContext();
3381    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3382
3383    // The previous declaration is in a different namespace, so it
3384    // isn't the same function.
3385    if (!OuterContext->Equals(PrevOuterContext))
3386      return false;
3387  }
3388
3389  return true;
3390}
3391
3392static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3393  CXXScopeSpec &SS = D.getCXXScopeSpec();
3394  if (!SS.isSet()) return;
3395  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3396}
3397
3398NamedDecl*
3399Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3400                              QualType R, TypeSourceInfo *TInfo,
3401                              LookupResult &Previous,
3402                              MultiTemplateParamsArg TemplateParamLists,
3403                              bool &Redeclaration) {
3404  DeclarationName Name = GetNameForDeclarator(D).getName();
3405
3406  // Check that there are no default arguments (C++ only).
3407  if (getLangOptions().CPlusPlus)
3408    CheckExtraCXXDefaultArguments(D);
3409
3410  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3411  assert(SCSpec != DeclSpec::SCS_typedef &&
3412         "Parser allowed 'typedef' as storage class VarDecl.");
3413  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3414  if (SCSpec == DeclSpec::SCS_mutable) {
3415    // mutable can only appear on non-static class members, so it's always
3416    // an error here
3417    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3418    D.setInvalidType();
3419    SC = SC_None;
3420  }
3421  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3422  VarDecl::StorageClass SCAsWritten
3423    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3424
3425  IdentifierInfo *II = Name.getAsIdentifierInfo();
3426  if (!II) {
3427    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3428      << Name.getAsString();
3429    return 0;
3430  }
3431
3432  DiagnoseFunctionSpecifiers(D);
3433
3434  if (!DC->isRecord() && S->getFnParent() == 0) {
3435    // C99 6.9p2: The storage-class specifiers auto and register shall not
3436    // appear in the declaration specifiers in an external declaration.
3437    if (SC == SC_Auto || SC == SC_Register) {
3438
3439      // If this is a register variable with an asm label specified, then this
3440      // is a GNU extension.
3441      if (SC == SC_Register && D.getAsmLabel())
3442        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3443      else
3444        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3445      D.setInvalidType();
3446    }
3447  }
3448
3449  bool isExplicitSpecialization = false;
3450  VarDecl *NewVD;
3451  if (!getLangOptions().CPlusPlus) {
3452    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3453                            D.getIdentifierLoc(), II,
3454                            R, TInfo, SC, SCAsWritten);
3455
3456    if (D.isInvalidType())
3457      NewVD->setInvalidDecl();
3458  } else {
3459    if (DC->isRecord() && !CurContext->isRecord()) {
3460      // This is an out-of-line definition of a static data member.
3461      if (SC == SC_Static) {
3462        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3463             diag::err_static_out_of_line)
3464          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3465      } else if (SC == SC_None)
3466        SC = SC_Static;
3467    }
3468    if (SC == SC_Static) {
3469      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3470        if (RD->isLocalClass())
3471          Diag(D.getIdentifierLoc(),
3472               diag::err_static_data_member_not_allowed_in_local_class)
3473            << Name << RD->getDeclName();
3474
3475        // C++ [class.union]p1: If a union contains a static data member,
3476        // the program is ill-formed.
3477        //
3478        // We also disallow static data members in anonymous structs.
3479        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3480          Diag(D.getIdentifierLoc(),
3481               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3482            << Name << RD->isUnion();
3483      }
3484    }
3485
3486    // Match up the template parameter lists with the scope specifier, then
3487    // determine whether we have a template or a template specialization.
3488    isExplicitSpecialization = false;
3489    bool Invalid = false;
3490    if (TemplateParameterList *TemplateParams
3491        = MatchTemplateParametersToScopeSpecifier(
3492                                                  D.getDeclSpec().getSourceRange().getBegin(),
3493                                                  D.getCXXScopeSpec(),
3494                                                  TemplateParamLists.get(),
3495                                                  TemplateParamLists.size(),
3496                                                  /*never a friend*/ false,
3497                                                  isExplicitSpecialization,
3498                                                  Invalid)) {
3499      if (TemplateParams->size() > 0) {
3500        // There is no such thing as a variable template.
3501        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3502          << II
3503          << SourceRange(TemplateParams->getTemplateLoc(),
3504                         TemplateParams->getRAngleLoc());
3505        return 0;
3506      } else {
3507        // There is an extraneous 'template<>' for this variable. Complain
3508        // about it, but allow the declaration of the variable.
3509        Diag(TemplateParams->getTemplateLoc(),
3510             diag::err_template_variable_noparams)
3511          << II
3512          << SourceRange(TemplateParams->getTemplateLoc(),
3513                         TemplateParams->getRAngleLoc());
3514        isExplicitSpecialization = true;
3515      }
3516    }
3517
3518    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3519                            D.getIdentifierLoc(), II,
3520                            R, TInfo, SC, SCAsWritten);
3521
3522    // If this decl has an auto type in need of deduction, make a note of the
3523    // Decl so we can diagnose uses of it in its own initializer.
3524    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3525        R->getContainedAutoType())
3526      ParsingInitForAutoVars.insert(NewVD);
3527
3528    if (D.isInvalidType() || Invalid)
3529      NewVD->setInvalidDecl();
3530
3531    SetNestedNameSpecifier(NewVD, D);
3532
3533    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3534      NewVD->setTemplateParameterListsInfo(Context,
3535                                           TemplateParamLists.size(),
3536                                           TemplateParamLists.release());
3537    }
3538  }
3539
3540  if (D.getDeclSpec().isThreadSpecified()) {
3541    if (NewVD->hasLocalStorage())
3542      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3543    else if (!Context.Target.isTLSSupported())
3544      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3545    else
3546      NewVD->setThreadSpecified(true);
3547  }
3548
3549  // Set the lexical context. If the declarator has a C++ scope specifier, the
3550  // lexical context will be different from the semantic context.
3551  NewVD->setLexicalDeclContext(CurContext);
3552
3553  // Handle attributes prior to checking for duplicates in MergeVarDecl
3554  ProcessDeclAttributes(S, NewVD, D);
3555
3556  // Handle GNU asm-label extension (encoded as an attribute).
3557  if (Expr *E = (Expr*)D.getAsmLabel()) {
3558    // The parser guarantees this is a string.
3559    StringLiteral *SE = cast<StringLiteral>(E);
3560    llvm::StringRef Label = SE->getString();
3561    if (S->getFnParent() != 0) {
3562      switch (SC) {
3563      case SC_None:
3564      case SC_Auto:
3565        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3566        break;
3567      case SC_Register:
3568        if (!Context.Target.isValidGCCRegisterName(Label))
3569          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3570        break;
3571      case SC_Static:
3572      case SC_Extern:
3573      case SC_PrivateExtern:
3574        break;
3575      }
3576    }
3577
3578    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3579                                                Context, Label));
3580  }
3581
3582  // Diagnose shadowed variables before filtering for scope.
3583  if (!D.getCXXScopeSpec().isSet())
3584    CheckShadow(S, NewVD, Previous);
3585
3586  // Don't consider existing declarations that are in a different
3587  // scope and are out-of-semantic-context declarations (if the new
3588  // declaration has linkage).
3589  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3590                       isExplicitSpecialization);
3591
3592  if (!getLangOptions().CPlusPlus)
3593    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3594  else {
3595    // Merge the decl with the existing one if appropriate.
3596    if (!Previous.empty()) {
3597      if (Previous.isSingleResult() &&
3598          isa<FieldDecl>(Previous.getFoundDecl()) &&
3599          D.getCXXScopeSpec().isSet()) {
3600        // The user tried to define a non-static data member
3601        // out-of-line (C++ [dcl.meaning]p1).
3602        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3603          << D.getCXXScopeSpec().getRange();
3604        Previous.clear();
3605        NewVD->setInvalidDecl();
3606      }
3607    } else if (D.getCXXScopeSpec().isSet()) {
3608      // No previous declaration in the qualifying scope.
3609      Diag(D.getIdentifierLoc(), diag::err_no_member)
3610        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3611        << D.getCXXScopeSpec().getRange();
3612      NewVD->setInvalidDecl();
3613    }
3614
3615    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3616
3617    // This is an explicit specialization of a static data member. Check it.
3618    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3619        CheckMemberSpecialization(NewVD, Previous))
3620      NewVD->setInvalidDecl();
3621  }
3622
3623  // attributes declared post-definition are currently ignored
3624  // FIXME: This should be handled in attribute merging, not
3625  // here.
3626  if (Previous.isSingleResult()) {
3627    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3628    if (Def && (Def = Def->getDefinition()) &&
3629        Def != NewVD && D.hasAttributes()) {
3630      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3631      Diag(Def->getLocation(), diag::note_previous_definition);
3632    }
3633  }
3634
3635  // If this is a locally-scoped extern C variable, update the map of
3636  // such variables.
3637  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3638      !NewVD->isInvalidDecl())
3639    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3640
3641  // If there's a #pragma GCC visibility in scope, and this isn't a class
3642  // member, set the visibility of this variable.
3643  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3644    AddPushedVisibilityAttribute(NewVD);
3645
3646  MarkUnusedFileScopedDecl(NewVD);
3647
3648  return NewVD;
3649}
3650
3651/// \brief Diagnose variable or built-in function shadowing.  Implements
3652/// -Wshadow.
3653///
3654/// This method is called whenever a VarDecl is added to a "useful"
3655/// scope.
3656///
3657/// \param S the scope in which the shadowing name is being declared
3658/// \param R the lookup of the name
3659///
3660void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3661  // Return if warning is ignored.
3662  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3663        Diagnostic::Ignored)
3664    return;
3665
3666  // Don't diagnose declarations at file scope.
3667  if (D->hasGlobalStorage())
3668    return;
3669
3670  DeclContext *NewDC = D->getDeclContext();
3671
3672  // Only diagnose if we're shadowing an unambiguous field or variable.
3673  if (R.getResultKind() != LookupResult::Found)
3674    return;
3675
3676  NamedDecl* ShadowedDecl = R.getFoundDecl();
3677  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3678    return;
3679
3680  // Fields are not shadowed by variables in C++ static methods.
3681  if (isa<FieldDecl>(ShadowedDecl))
3682    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3683      if (MD->isStatic())
3684        return;
3685
3686  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3687    if (shadowedVar->isExternC()) {
3688      // For shadowing external vars, make sure that we point to the global
3689      // declaration, not a locally scoped extern declaration.
3690      for (VarDecl::redecl_iterator
3691             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3692           I != E; ++I)
3693        if (I->isFileVarDecl()) {
3694          ShadowedDecl = *I;
3695          break;
3696        }
3697    }
3698
3699  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3700
3701  // Only warn about certain kinds of shadowing for class members.
3702  if (NewDC && NewDC->isRecord()) {
3703    // In particular, don't warn about shadowing non-class members.
3704    if (!OldDC->isRecord())
3705      return;
3706
3707    // TODO: should we warn about static data members shadowing
3708    // static data members from base classes?
3709
3710    // TODO: don't diagnose for inaccessible shadowed members.
3711    // This is hard to do perfectly because we might friend the
3712    // shadowing context, but that's just a false negative.
3713  }
3714
3715  // Determine what kind of declaration we're shadowing.
3716  unsigned Kind;
3717  if (isa<RecordDecl>(OldDC)) {
3718    if (isa<FieldDecl>(ShadowedDecl))
3719      Kind = 3; // field
3720    else
3721      Kind = 2; // static data member
3722  } else if (OldDC->isFileContext())
3723    Kind = 1; // global
3724  else
3725    Kind = 0; // local
3726
3727  DeclarationName Name = R.getLookupName();
3728
3729  // Emit warning and note.
3730  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3731  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3732}
3733
3734/// \brief Check -Wshadow without the advantage of a previous lookup.
3735void Sema::CheckShadow(Scope *S, VarDecl *D) {
3736  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3737        Diagnostic::Ignored)
3738    return;
3739
3740  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3741                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3742  LookupName(R, S);
3743  CheckShadow(S, D, R);
3744}
3745
3746/// \brief Perform semantic checking on a newly-created variable
3747/// declaration.
3748///
3749/// This routine performs all of the type-checking required for a
3750/// variable declaration once it has been built. It is used both to
3751/// check variables after they have been parsed and their declarators
3752/// have been translated into a declaration, and to check variables
3753/// that have been instantiated from a template.
3754///
3755/// Sets NewVD->isInvalidDecl() if an error was encountered.
3756void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3757                                    LookupResult &Previous,
3758                                    bool &Redeclaration) {
3759  // If the decl is already known invalid, don't check it.
3760  if (NewVD->isInvalidDecl())
3761    return;
3762
3763  QualType T = NewVD->getType();
3764
3765  if (T->isObjCObjectType()) {
3766    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3767    return NewVD->setInvalidDecl();
3768  }
3769
3770  // Emit an error if an address space was applied to decl with local storage.
3771  // This includes arrays of objects with address space qualifiers, but not
3772  // automatic variables that point to other address spaces.
3773  // ISO/IEC TR 18037 S5.1.2
3774  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3775    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3776    return NewVD->setInvalidDecl();
3777  }
3778
3779  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3780      && !NewVD->hasAttr<BlocksAttr>())
3781    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3782
3783  bool isVM = T->isVariablyModifiedType();
3784  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3785      NewVD->hasAttr<BlocksAttr>())
3786    getCurFunction()->setHasBranchProtectedScope();
3787
3788  if ((isVM && NewVD->hasLinkage()) ||
3789      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3790    bool SizeIsNegative;
3791    llvm::APSInt Oversized;
3792    QualType FixedTy =
3793        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3794                                            Oversized);
3795
3796    if (FixedTy.isNull() && T->isVariableArrayType()) {
3797      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3798      // FIXME: This won't give the correct result for
3799      // int a[10][n];
3800      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3801
3802      if (NewVD->isFileVarDecl())
3803        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3804        << SizeRange;
3805      else if (NewVD->getStorageClass() == SC_Static)
3806        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3807        << SizeRange;
3808      else
3809        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3810        << SizeRange;
3811      return NewVD->setInvalidDecl();
3812    }
3813
3814    if (FixedTy.isNull()) {
3815      if (NewVD->isFileVarDecl())
3816        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3817      else
3818        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3819      return NewVD->setInvalidDecl();
3820    }
3821
3822    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3823    NewVD->setType(FixedTy);
3824  }
3825
3826  if (Previous.empty() && NewVD->isExternC()) {
3827    // Since we did not find anything by this name and we're declaring
3828    // an extern "C" variable, look for a non-visible extern "C"
3829    // declaration with the same name.
3830    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3831      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3832    if (Pos != LocallyScopedExternalDecls.end())
3833      Previous.addDecl(Pos->second);
3834  }
3835
3836  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3837    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3838      << T;
3839    return NewVD->setInvalidDecl();
3840  }
3841
3842  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3843    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3844    return NewVD->setInvalidDecl();
3845  }
3846
3847  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3848    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3849    return NewVD->setInvalidDecl();
3850  }
3851
3852  // Function pointers and references cannot have qualified function type, only
3853  // function pointer-to-members can do that.
3854  QualType Pointee;
3855  unsigned PtrOrRef = 0;
3856  if (const PointerType *Ptr = T->getAs<PointerType>())
3857    Pointee = Ptr->getPointeeType();
3858  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3859    Pointee = Ref->getPointeeType();
3860    PtrOrRef = 1;
3861  }
3862  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3863      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3864    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3865        << PtrOrRef;
3866    return NewVD->setInvalidDecl();
3867  }
3868
3869  if (!Previous.empty()) {
3870    Redeclaration = true;
3871    MergeVarDecl(NewVD, Previous);
3872  }
3873}
3874
3875/// \brief Data used with FindOverriddenMethod
3876struct FindOverriddenMethodData {
3877  Sema *S;
3878  CXXMethodDecl *Method;
3879};
3880
3881/// \brief Member lookup function that determines whether a given C++
3882/// method overrides a method in a base class, to be used with
3883/// CXXRecordDecl::lookupInBases().
3884static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3885                                 CXXBasePath &Path,
3886                                 void *UserData) {
3887  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3888
3889  FindOverriddenMethodData *Data
3890    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3891
3892  DeclarationName Name = Data->Method->getDeclName();
3893
3894  // FIXME: Do we care about other names here too?
3895  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3896    // We really want to find the base class destructor here.
3897    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3898    CanQualType CT = Data->S->Context.getCanonicalType(T);
3899
3900    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3901  }
3902
3903  for (Path.Decls = BaseRecord->lookup(Name);
3904       Path.Decls.first != Path.Decls.second;
3905       ++Path.Decls.first) {
3906    NamedDecl *D = *Path.Decls.first;
3907    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3908      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3909        return true;
3910    }
3911  }
3912
3913  return false;
3914}
3915
3916/// AddOverriddenMethods - See if a method overrides any in the base classes,
3917/// and if so, check that it's a valid override and remember it.
3918bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3919  // Look for virtual methods in base classes that this method might override.
3920  CXXBasePaths Paths;
3921  FindOverriddenMethodData Data;
3922  Data.Method = MD;
3923  Data.S = this;
3924  bool AddedAny = false;
3925  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3926    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3927         E = Paths.found_decls_end(); I != E; ++I) {
3928      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3929        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3930            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3931            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3932          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3933          AddedAny = true;
3934        }
3935      }
3936    }
3937  }
3938
3939  return AddedAny;
3940}
3941
3942static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3943  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3944                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3945  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3946  assert(!Prev.isAmbiguous() &&
3947         "Cannot have an ambiguity in previous-declaration lookup");
3948  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3949       Func != FuncEnd; ++Func) {
3950    if (isa<FunctionDecl>(*Func) &&
3951        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3952      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3953  }
3954}
3955
3956NamedDecl*
3957Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3958                              QualType R, TypeSourceInfo *TInfo,
3959                              LookupResult &Previous,
3960                              MultiTemplateParamsArg TemplateParamLists,
3961                              bool IsFunctionDefinition, bool &Redeclaration) {
3962  assert(R.getTypePtr()->isFunctionType());
3963
3964  // TODO: consider using NameInfo for diagnostic.
3965  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3966  DeclarationName Name = NameInfo.getName();
3967  FunctionDecl::StorageClass SC = SC_None;
3968  switch (D.getDeclSpec().getStorageClassSpec()) {
3969  default: assert(0 && "Unknown storage class!");
3970  case DeclSpec::SCS_auto:
3971  case DeclSpec::SCS_register:
3972  case DeclSpec::SCS_mutable:
3973    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3974         diag::err_typecheck_sclass_func);
3975    D.setInvalidType();
3976    break;
3977  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3978  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3979  case DeclSpec::SCS_static: {
3980    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3981      // C99 6.7.1p5:
3982      //   The declaration of an identifier for a function that has
3983      //   block scope shall have no explicit storage-class specifier
3984      //   other than extern
3985      // See also (C++ [dcl.stc]p4).
3986      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3987           diag::err_static_block_func);
3988      SC = SC_None;
3989    } else
3990      SC = SC_Static;
3991    break;
3992  }
3993  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3994  }
3995
3996  if (D.getDeclSpec().isThreadSpecified())
3997    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3998
3999  // Do not allow returning a objc interface by-value.
4000  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4001    Diag(D.getIdentifierLoc(),
4002         diag::err_object_cannot_be_passed_returned_by_value) << 0
4003    << R->getAs<FunctionType>()->getResultType();
4004    D.setInvalidType();
4005  }
4006
4007  FunctionDecl *NewFD;
4008  bool isInline = D.getDeclSpec().isInlineSpecified();
4009  bool isFriend = false;
4010  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4011  FunctionDecl::StorageClass SCAsWritten
4012    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4013  FunctionTemplateDecl *FunctionTemplate = 0;
4014  bool isExplicitSpecialization = false;
4015  bool isFunctionTemplateSpecialization = false;
4016
4017  if (!getLangOptions().CPlusPlus) {
4018    // Determine whether the function was written with a
4019    // prototype. This true when:
4020    //   - there is a prototype in the declarator, or
4021    //   - the type R of the function is some kind of typedef or other reference
4022    //     to a type name (which eventually refers to a function type).
4023    bool HasPrototype =
4024    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4025    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4026
4027    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4028                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4029                                 HasPrototype);
4030    if (D.isInvalidType())
4031      NewFD->setInvalidDecl();
4032
4033    // Set the lexical context.
4034    NewFD->setLexicalDeclContext(CurContext);
4035    // Filter out previous declarations that don't match the scope.
4036    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4037                         /*ExplicitInstantiationOrSpecialization=*/false);
4038  } else {
4039    isFriend = D.getDeclSpec().isFriendSpecified();
4040    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4041    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4042    bool isVirtualOkay = false;
4043
4044    // Check that the return type is not an abstract class type.
4045    // For record types, this is done by the AbstractClassUsageDiagnoser once
4046    // the class has been completely parsed.
4047    if (!DC->isRecord() &&
4048      RequireNonAbstractType(D.getIdentifierLoc(),
4049                             R->getAs<FunctionType>()->getResultType(),
4050                             diag::err_abstract_type_in_decl,
4051                             AbstractReturnType))
4052      D.setInvalidType();
4053
4054    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4055      // This is a C++ constructor declaration.
4056      assert(DC->isRecord() &&
4057             "Constructors can only be declared in a member context");
4058
4059      R = CheckConstructorDeclarator(D, R, SC);
4060
4061      // Create the new declaration
4062      NewFD = CXXConstructorDecl::Create(Context,
4063                                         cast<CXXRecordDecl>(DC),
4064                                         D.getSourceRange().getBegin(),
4065                                         NameInfo, R, TInfo,
4066                                         isExplicit, isInline,
4067                                         /*isImplicitlyDeclared=*/false);
4068    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4069      // This is a C++ destructor declaration.
4070      if (DC->isRecord()) {
4071        R = CheckDestructorDeclarator(D, R, SC);
4072
4073        NewFD = CXXDestructorDecl::Create(Context,
4074                                          cast<CXXRecordDecl>(DC),
4075                                          D.getSourceRange().getBegin(),
4076                                          NameInfo, R, TInfo,
4077                                          isInline,
4078                                          /*isImplicitlyDeclared=*/false);
4079        isVirtualOkay = true;
4080      } else {
4081        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4082
4083        // Create a FunctionDecl to satisfy the function definition parsing
4084        // code path.
4085        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4086                                     D.getIdentifierLoc(), Name, R, TInfo,
4087                                     SC, SCAsWritten, isInline,
4088                                     /*hasPrototype=*/true);
4089        D.setInvalidType();
4090      }
4091    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4092      if (!DC->isRecord()) {
4093        Diag(D.getIdentifierLoc(),
4094             diag::err_conv_function_not_member);
4095        return 0;
4096      }
4097
4098      CheckConversionDeclarator(D, R, SC);
4099      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4100                                        D.getSourceRange().getBegin(),
4101                                        NameInfo, R, TInfo,
4102                                        isInline, isExplicit,
4103                                        SourceLocation());
4104
4105      isVirtualOkay = true;
4106    } else if (DC->isRecord()) {
4107      // If the of the function is the same as the name of the record, then this
4108      // must be an invalid constructor that has a return type.
4109      // (The parser checks for a return type and makes the declarator a
4110      // constructor if it has no return type).
4111      // must have an invalid constructor that has a return type
4112      if (Name.getAsIdentifierInfo() &&
4113          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4114        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4115          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4116          << SourceRange(D.getIdentifierLoc());
4117        return 0;
4118      }
4119
4120      bool isStatic = SC == SC_Static;
4121
4122      // [class.free]p1:
4123      // Any allocation function for a class T is a static member
4124      // (even if not explicitly declared static).
4125      if (Name.getCXXOverloadedOperator() == OO_New ||
4126          Name.getCXXOverloadedOperator() == OO_Array_New)
4127        isStatic = true;
4128
4129      // [class.free]p6 Any deallocation function for a class X is a static member
4130      // (even if not explicitly declared static).
4131      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4132          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4133        isStatic = true;
4134
4135      // This is a C++ method declaration.
4136      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
4137                                    D.getSourceRange().getBegin(),
4138                                    NameInfo, R, TInfo,
4139                                    isStatic, SCAsWritten, isInline,
4140                                    SourceLocation());
4141
4142      isVirtualOkay = !isStatic;
4143    } else {
4144      // Determine whether the function was written with a
4145      // prototype. This true when:
4146      //   - we're in C++ (where every function has a prototype),
4147      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4148                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4149                                   true/*HasPrototype*/);
4150    }
4151
4152    if (isFriend && !isInline && IsFunctionDefinition) {
4153      // C++ [class.friend]p5
4154      //   A function can be defined in a friend declaration of a
4155      //   class . . . . Such a function is implicitly inline.
4156      NewFD->setImplicitlyInline();
4157    }
4158
4159    SetNestedNameSpecifier(NewFD, D);
4160    isExplicitSpecialization = false;
4161    isFunctionTemplateSpecialization = false;
4162    if (D.isInvalidType())
4163      NewFD->setInvalidDecl();
4164
4165    // Set the lexical context. If the declarator has a C++
4166    // scope specifier, or is the object of a friend declaration, the
4167    // lexical context will be different from the semantic context.
4168    NewFD->setLexicalDeclContext(CurContext);
4169
4170    // Match up the template parameter lists with the scope specifier, then
4171    // determine whether we have a template or a template specialization.
4172    bool Invalid = false;
4173    if (TemplateParameterList *TemplateParams
4174          = MatchTemplateParametersToScopeSpecifier(
4175                                  D.getDeclSpec().getSourceRange().getBegin(),
4176                                  D.getCXXScopeSpec(),
4177                                  TemplateParamLists.get(),
4178                                  TemplateParamLists.size(),
4179                                  isFriend,
4180                                  isExplicitSpecialization,
4181                                  Invalid)) {
4182      if (TemplateParams->size() > 0) {
4183        // This is a function template
4184
4185        // Check that we can declare a template here.
4186        if (CheckTemplateDeclScope(S, TemplateParams))
4187          return 0;
4188
4189        // A destructor cannot be a template.
4190        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4191          Diag(NewFD->getLocation(), diag::err_destructor_template);
4192          return 0;
4193        }
4194
4195        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4196                                                        NewFD->getLocation(),
4197                                                        Name, TemplateParams,
4198                                                        NewFD);
4199        FunctionTemplate->setLexicalDeclContext(CurContext);
4200        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4201
4202        // For source fidelity, store the other template param lists.
4203        if (TemplateParamLists.size() > 1) {
4204          NewFD->setTemplateParameterListsInfo(Context,
4205                                               TemplateParamLists.size() - 1,
4206                                               TemplateParamLists.release());
4207        }
4208      } else {
4209        // This is a function template specialization.
4210        isFunctionTemplateSpecialization = true;
4211        // For source fidelity, store all the template param lists.
4212        NewFD->setTemplateParameterListsInfo(Context,
4213                                             TemplateParamLists.size(),
4214                                             TemplateParamLists.release());
4215
4216        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4217        if (isFriend) {
4218          // We want to remove the "template<>", found here.
4219          SourceRange RemoveRange = TemplateParams->getSourceRange();
4220
4221          // If we remove the template<> and the name is not a
4222          // template-id, we're actually silently creating a problem:
4223          // the friend declaration will refer to an untemplated decl,
4224          // and clearly the user wants a template specialization.  So
4225          // we need to insert '<>' after the name.
4226          SourceLocation InsertLoc;
4227          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4228            InsertLoc = D.getName().getSourceRange().getEnd();
4229            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4230          }
4231
4232          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4233            << Name << RemoveRange
4234            << FixItHint::CreateRemoval(RemoveRange)
4235            << FixItHint::CreateInsertion(InsertLoc, "<>");
4236        }
4237      }
4238    }
4239    else {
4240      // All template param lists were matched against the scope specifier:
4241      // this is NOT (an explicit specialization of) a template.
4242      if (TemplateParamLists.size() > 0)
4243        // For source fidelity, store all the template param lists.
4244        NewFD->setTemplateParameterListsInfo(Context,
4245                                             TemplateParamLists.size(),
4246                                             TemplateParamLists.release());
4247    }
4248
4249    if (Invalid) {
4250      NewFD->setInvalidDecl();
4251      if (FunctionTemplate)
4252        FunctionTemplate->setInvalidDecl();
4253    }
4254
4255    // C++ [dcl.fct.spec]p5:
4256    //   The virtual specifier shall only be used in declarations of
4257    //   nonstatic class member functions that appear within a
4258    //   member-specification of a class declaration; see 10.3.
4259    //
4260    if (isVirtual && !NewFD->isInvalidDecl()) {
4261      if (!isVirtualOkay) {
4262        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4263             diag::err_virtual_non_function);
4264      } else if (!CurContext->isRecord()) {
4265        // 'virtual' was specified outside of the class.
4266        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4267             diag::err_virtual_out_of_class)
4268          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4269      } else if (NewFD->getDescribedFunctionTemplate()) {
4270        // C++ [temp.mem]p3:
4271        //  A member function template shall not be virtual.
4272        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4273             diag::err_virtual_member_function_template)
4274          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4275      } else {
4276        // Okay: Add virtual to the method.
4277        NewFD->setVirtualAsWritten(true);
4278      }
4279    }
4280
4281    // C++ [dcl.fct.spec]p3:
4282    //  The inline specifier shall not appear on a block scope function declaration.
4283    if (isInline && !NewFD->isInvalidDecl()) {
4284      if (CurContext->isFunctionOrMethod()) {
4285        // 'inline' is not allowed on block scope function declaration.
4286        Diag(D.getDeclSpec().getInlineSpecLoc(),
4287             diag::err_inline_declaration_block_scope) << Name
4288          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4289      }
4290    }
4291
4292    // C++ [dcl.fct.spec]p6:
4293    //  The explicit specifier shall be used only in the declaration of a
4294    //  constructor or conversion function within its class definition; see 12.3.1
4295    //  and 12.3.2.
4296    if (isExplicit && !NewFD->isInvalidDecl()) {
4297      if (!CurContext->isRecord()) {
4298        // 'explicit' was specified outside of the class.
4299        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4300             diag::err_explicit_out_of_class)
4301          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4302      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4303                 !isa<CXXConversionDecl>(NewFD)) {
4304        // 'explicit' was specified on a function that wasn't a constructor
4305        // or conversion function.
4306        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4307             diag::err_explicit_non_ctor_or_conv_function)
4308          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4309      }
4310    }
4311
4312    // Filter out previous declarations that don't match the scope.
4313    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4314                         isExplicitSpecialization ||
4315                         isFunctionTemplateSpecialization);
4316
4317    if (isFriend) {
4318      // For now, claim that the objects have no previous declaration.
4319      if (FunctionTemplate) {
4320        FunctionTemplate->setObjectOfFriendDecl(false);
4321        FunctionTemplate->setAccess(AS_public);
4322      }
4323      NewFD->setObjectOfFriendDecl(false);
4324      NewFD->setAccess(AS_public);
4325    }
4326
4327    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4328      // A method is implicitly inline if it's defined in its class
4329      // definition.
4330      NewFD->setImplicitlyInline();
4331    }
4332
4333    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4334        !CurContext->isRecord()) {
4335      // C++ [class.static]p1:
4336      //   A data or function member of a class may be declared static
4337      //   in a class definition, in which case it is a static member of
4338      //   the class.
4339
4340      // Complain about the 'static' specifier if it's on an out-of-line
4341      // member function definition.
4342      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4343           diag::err_static_out_of_line)
4344        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4345    }
4346  }
4347
4348  // Handle GNU asm-label extension (encoded as an attribute).
4349  if (Expr *E = (Expr*) D.getAsmLabel()) {
4350    // The parser guarantees this is a string.
4351    StringLiteral *SE = cast<StringLiteral>(E);
4352    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4353                                                SE->getString()));
4354  }
4355
4356  // Copy the parameter declarations from the declarator D to the function
4357  // declaration NewFD, if they are available.  First scavenge them into Params.
4358  llvm::SmallVector<ParmVarDecl*, 16> Params;
4359  if (D.isFunctionDeclarator()) {
4360    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4361
4362    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4363    // function that takes no arguments, not a function that takes a
4364    // single void argument.
4365    // We let through "const void" here because Sema::GetTypeForDeclarator
4366    // already checks for that case.
4367    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4368        FTI.ArgInfo[0].Param &&
4369        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4370      // Empty arg list, don't push any params.
4371      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4372
4373      // In C++, the empty parameter-type-list must be spelled "void"; a
4374      // typedef of void is not permitted.
4375      if (getLangOptions().CPlusPlus &&
4376          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4377        bool IsTypeAlias = false;
4378        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4379          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4380        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4381          << IsTypeAlias;
4382      }
4383    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4384      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4385        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4386        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4387        Param->setDeclContext(NewFD);
4388        Params.push_back(Param);
4389
4390        if (Param->isInvalidDecl())
4391          NewFD->setInvalidDecl();
4392      }
4393    }
4394
4395  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4396    // When we're declaring a function with a typedef, typeof, etc as in the
4397    // following example, we'll need to synthesize (unnamed)
4398    // parameters for use in the declaration.
4399    //
4400    // @code
4401    // typedef void fn(int);
4402    // fn f;
4403    // @endcode
4404
4405    // Synthesize a parameter for each argument type.
4406    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4407         AE = FT->arg_type_end(); AI != AE; ++AI) {
4408      ParmVarDecl *Param =
4409        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4410      Params.push_back(Param);
4411    }
4412  } else {
4413    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4414           "Should not need args for typedef of non-prototype fn");
4415  }
4416  // Finally, we know we have the right number of parameters, install them.
4417  NewFD->setParams(Params.data(), Params.size());
4418
4419  // Process the non-inheritable attributes on this declaration.
4420  ProcessDeclAttributes(S, NewFD, D,
4421                        /*NonInheritable=*/true, /*Inheritable=*/false);
4422
4423  if (!getLangOptions().CPlusPlus) {
4424    // Perform semantic checking on the function declaration.
4425    bool isExplctSpecialization=false;
4426    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4427                             Redeclaration);
4428    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4429            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4430           "previous declaration set still overloaded");
4431  } else {
4432    // If the declarator is a template-id, translate the parser's template
4433    // argument list into our AST format.
4434    bool HasExplicitTemplateArgs = false;
4435    TemplateArgumentListInfo TemplateArgs;
4436    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4437      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4438      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4439      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4440      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4441                                         TemplateId->getTemplateArgs(),
4442                                         TemplateId->NumArgs);
4443      translateTemplateArguments(TemplateArgsPtr,
4444                                 TemplateArgs);
4445      TemplateArgsPtr.release();
4446
4447      HasExplicitTemplateArgs = true;
4448
4449      if (FunctionTemplate) {
4450        // Function template with explicit template arguments.
4451        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4452          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4453
4454        HasExplicitTemplateArgs = false;
4455      } else if (!isFunctionTemplateSpecialization &&
4456                 !D.getDeclSpec().isFriendSpecified()) {
4457        // We have encountered something that the user meant to be a
4458        // specialization (because it has explicitly-specified template
4459        // arguments) but that was not introduced with a "template<>" (or had
4460        // too few of them).
4461        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4462          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4463          << FixItHint::CreateInsertion(
4464                                        D.getDeclSpec().getSourceRange().getBegin(),
4465                                                  "template<> ");
4466        isFunctionTemplateSpecialization = true;
4467      } else {
4468        // "friend void foo<>(int);" is an implicit specialization decl.
4469        isFunctionTemplateSpecialization = true;
4470      }
4471    } else if (isFriend && isFunctionTemplateSpecialization) {
4472      // This combination is only possible in a recovery case;  the user
4473      // wrote something like:
4474      //   template <> friend void foo(int);
4475      // which we're recovering from as if the user had written:
4476      //   friend void foo<>(int);
4477      // Go ahead and fake up a template id.
4478      HasExplicitTemplateArgs = true;
4479        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4480      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4481    }
4482
4483    // If it's a friend (and only if it's a friend), it's possible
4484    // that either the specialized function type or the specialized
4485    // template is dependent, and therefore matching will fail.  In
4486    // this case, don't check the specialization yet.
4487    if (isFunctionTemplateSpecialization && isFriend &&
4488        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4489      assert(HasExplicitTemplateArgs &&
4490             "friend function specialization without template args");
4491      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4492                                                       Previous))
4493        NewFD->setInvalidDecl();
4494    } else if (isFunctionTemplateSpecialization) {
4495      if (CurContext->isDependentContext() && CurContext->isRecord()
4496          && !isFriend) {
4497        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4498          << NewFD->getDeclName();
4499        NewFD->setInvalidDecl();
4500        return 0;
4501      } else if (CheckFunctionTemplateSpecialization(NewFD,
4502                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4503                                                     Previous))
4504        NewFD->setInvalidDecl();
4505    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4506      if (CheckMemberSpecialization(NewFD, Previous))
4507          NewFD->setInvalidDecl();
4508    }
4509
4510    // Perform semantic checking on the function declaration.
4511    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4512                             Redeclaration);
4513
4514    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4515            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4516           "previous declaration set still overloaded");
4517
4518    NamedDecl *PrincipalDecl = (FunctionTemplate
4519                                ? cast<NamedDecl>(FunctionTemplate)
4520                                : NewFD);
4521
4522    if (isFriend && Redeclaration) {
4523      AccessSpecifier Access = AS_public;
4524      if (!NewFD->isInvalidDecl())
4525        Access = NewFD->getPreviousDeclaration()->getAccess();
4526
4527      NewFD->setAccess(Access);
4528      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4529
4530      PrincipalDecl->setObjectOfFriendDecl(true);
4531    }
4532
4533    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4534        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4535      PrincipalDecl->setNonMemberOperator();
4536
4537    // If we have a function template, check the template parameter
4538    // list. This will check and merge default template arguments.
4539    if (FunctionTemplate) {
4540      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4541      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4542                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4543                            D.getDeclSpec().isFriendSpecified()
4544                              ? (IsFunctionDefinition
4545                                   ? TPC_FriendFunctionTemplateDefinition
4546                                   : TPC_FriendFunctionTemplate)
4547                              : (D.getCXXScopeSpec().isSet() &&
4548                                 DC && DC->isRecord() &&
4549                                 DC->isDependentContext())
4550                                  ? TPC_ClassTemplateMember
4551                                  : TPC_FunctionTemplate);
4552    }
4553
4554    if (NewFD->isInvalidDecl()) {
4555      // Ignore all the rest of this.
4556    } else if (!Redeclaration) {
4557      // Fake up an access specifier if it's supposed to be a class member.
4558      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4559        NewFD->setAccess(AS_public);
4560
4561      // Qualified decls generally require a previous declaration.
4562      if (D.getCXXScopeSpec().isSet()) {
4563        // ...with the major exception of templated-scope or
4564        // dependent-scope friend declarations.
4565
4566        // TODO: we currently also suppress this check in dependent
4567        // contexts because (1) the parameter depth will be off when
4568        // matching friend templates and (2) we might actually be
4569        // selecting a friend based on a dependent factor.  But there
4570        // are situations where these conditions don't apply and we
4571        // can actually do this check immediately.
4572        if (isFriend &&
4573            (TemplateParamLists.size() ||
4574             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4575             CurContext->isDependentContext())) {
4576              // ignore these
4577            } else {
4578              // The user tried to provide an out-of-line definition for a
4579              // function that is a member of a class or namespace, but there
4580              // was no such member function declared (C++ [class.mfct]p2,
4581              // C++ [namespace.memdef]p2). For example:
4582              //
4583              // class X {
4584              //   void f() const;
4585              // };
4586              //
4587              // void X::f() { } // ill-formed
4588              //
4589              // Complain about this problem, and attempt to suggest close
4590              // matches (e.g., those that differ only in cv-qualifiers and
4591              // whether the parameter types are references).
4592              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4593              << Name << DC << D.getCXXScopeSpec().getRange();
4594              NewFD->setInvalidDecl();
4595
4596              DiagnoseInvalidRedeclaration(*this, NewFD);
4597            }
4598
4599        // Unqualified local friend declarations are required to resolve
4600        // to something.
4601        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4602          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4603          NewFD->setInvalidDecl();
4604          DiagnoseInvalidRedeclaration(*this, NewFD);
4605        }
4606
4607    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4608               !isFriend && !isFunctionTemplateSpecialization &&
4609               !isExplicitSpecialization) {
4610      // An out-of-line member function declaration must also be a
4611      // definition (C++ [dcl.meaning]p1).
4612      // Note that this is not the case for explicit specializations of
4613      // function templates or member functions of class templates, per
4614      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4615      // for compatibility with old SWIG code which likes to generate them.
4616      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4617        << D.getCXXScopeSpec().getRange();
4618    }
4619  }
4620
4621
4622  // Handle attributes. We need to have merged decls when handling attributes
4623  // (for example to check for conflicts, etc).
4624  // FIXME: This needs to happen before we merge declarations. Then,
4625  // let attribute merging cope with attribute conflicts.
4626  ProcessDeclAttributes(S, NewFD, D,
4627                        /*NonInheritable=*/false, /*Inheritable=*/true);
4628
4629  // attributes declared post-definition are currently ignored
4630  // FIXME: This should happen during attribute merging
4631  if (Redeclaration && Previous.isSingleResult()) {
4632    const FunctionDecl *Def;
4633    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4634    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4635      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4636      Diag(Def->getLocation(), diag::note_previous_definition);
4637    }
4638  }
4639
4640  AddKnownFunctionAttributes(NewFD);
4641
4642  if (NewFD->hasAttr<OverloadableAttr>() &&
4643      !NewFD->getType()->getAs<FunctionProtoType>()) {
4644    Diag(NewFD->getLocation(),
4645         diag::err_attribute_overloadable_no_prototype)
4646      << NewFD;
4647
4648    // Turn this into a variadic function with no parameters.
4649    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4650    FunctionProtoType::ExtProtoInfo EPI;
4651    EPI.Variadic = true;
4652    EPI.ExtInfo = FT->getExtInfo();
4653
4654    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4655    NewFD->setType(R);
4656  }
4657
4658  // If there's a #pragma GCC visibility in scope, and this isn't a class
4659  // member, set the visibility of this function.
4660  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4661    AddPushedVisibilityAttribute(NewFD);
4662
4663  // If this is a locally-scoped extern C function, update the
4664  // map of such names.
4665  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4666      && !NewFD->isInvalidDecl())
4667    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4668
4669  // Set this FunctionDecl's range up to the right paren.
4670  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4671
4672  if (getLangOptions().CPlusPlus) {
4673    if (FunctionTemplate) {
4674      if (NewFD->isInvalidDecl())
4675        FunctionTemplate->setInvalidDecl();
4676      return FunctionTemplate;
4677    }
4678  }
4679
4680  MarkUnusedFileScopedDecl(NewFD);
4681
4682  if (getLangOptions().CUDA)
4683    if (IdentifierInfo *II = NewFD->getIdentifier())
4684      if (!NewFD->isInvalidDecl() &&
4685          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4686        if (II->isStr("cudaConfigureCall")) {
4687          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4688            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4689
4690          Context.setcudaConfigureCallDecl(NewFD);
4691        }
4692      }
4693
4694  return NewFD;
4695}
4696
4697/// \brief Perform semantic checking of a new function declaration.
4698///
4699/// Performs semantic analysis of the new function declaration
4700/// NewFD. This routine performs all semantic checking that does not
4701/// require the actual declarator involved in the declaration, and is
4702/// used both for the declaration of functions as they are parsed
4703/// (called via ActOnDeclarator) and for the declaration of functions
4704/// that have been instantiated via C++ template instantiation (called
4705/// via InstantiateDecl).
4706///
4707/// \param IsExplicitSpecialiation whether this new function declaration is
4708/// an explicit specialization of the previous declaration.
4709///
4710/// This sets NewFD->isInvalidDecl() to true if there was an error.
4711void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4712                                    LookupResult &Previous,
4713                                    bool IsExplicitSpecialization,
4714                                    bool &Redeclaration) {
4715  // If NewFD is already known erroneous, don't do any of this checking.
4716  if (NewFD->isInvalidDecl()) {
4717    // If this is a class member, mark the class invalid immediately.
4718    // This avoids some consistency errors later.
4719    if (isa<CXXMethodDecl>(NewFD))
4720      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4721
4722    return;
4723  }
4724
4725  if (NewFD->getResultType()->isVariablyModifiedType()) {
4726    // Functions returning a variably modified type violate C99 6.7.5.2p2
4727    // because all functions have linkage.
4728    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4729    return NewFD->setInvalidDecl();
4730  }
4731
4732  if (NewFD->isMain())
4733    CheckMain(NewFD);
4734
4735  // Check for a previous declaration of this name.
4736  if (Previous.empty() && NewFD->isExternC()) {
4737    // Since we did not find anything by this name and we're declaring
4738    // an extern "C" function, look for a non-visible extern "C"
4739    // declaration with the same name.
4740    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4741      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4742    if (Pos != LocallyScopedExternalDecls.end())
4743      Previous.addDecl(Pos->second);
4744  }
4745
4746  // Merge or overload the declaration with an existing declaration of
4747  // the same name, if appropriate.
4748  if (!Previous.empty()) {
4749    // Determine whether NewFD is an overload of PrevDecl or
4750    // a declaration that requires merging. If it's an overload,
4751    // there's no more work to do here; we'll just add the new
4752    // function to the scope.
4753
4754    NamedDecl *OldDecl = 0;
4755    if (!AllowOverloadingOfFunction(Previous, Context)) {
4756      Redeclaration = true;
4757      OldDecl = Previous.getFoundDecl();
4758    } else {
4759      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4760                            /*NewIsUsingDecl*/ false)) {
4761      case Ovl_Match:
4762        Redeclaration = true;
4763        break;
4764
4765      case Ovl_NonFunction:
4766        Redeclaration = true;
4767        break;
4768
4769      case Ovl_Overload:
4770        Redeclaration = false;
4771        break;
4772      }
4773
4774      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4775        // If a function name is overloadable in C, then every function
4776        // with that name must be marked "overloadable".
4777        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4778          << Redeclaration << NewFD;
4779        NamedDecl *OverloadedDecl = 0;
4780        if (Redeclaration)
4781          OverloadedDecl = OldDecl;
4782        else if (!Previous.empty())
4783          OverloadedDecl = Previous.getRepresentativeDecl();
4784        if (OverloadedDecl)
4785          Diag(OverloadedDecl->getLocation(),
4786               diag::note_attribute_overloadable_prev_overload);
4787        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4788                                                        Context));
4789      }
4790    }
4791
4792    if (Redeclaration) {
4793      // NewFD and OldDecl represent declarations that need to be
4794      // merged.
4795      if (MergeFunctionDecl(NewFD, OldDecl))
4796        return NewFD->setInvalidDecl();
4797
4798      Previous.clear();
4799      Previous.addDecl(OldDecl);
4800
4801      if (FunctionTemplateDecl *OldTemplateDecl
4802                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4803        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4804        FunctionTemplateDecl *NewTemplateDecl
4805          = NewFD->getDescribedFunctionTemplate();
4806        assert(NewTemplateDecl && "Template/non-template mismatch");
4807        if (CXXMethodDecl *Method
4808              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4809          Method->setAccess(OldTemplateDecl->getAccess());
4810          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4811        }
4812
4813        // If this is an explicit specialization of a member that is a function
4814        // template, mark it as a member specialization.
4815        if (IsExplicitSpecialization &&
4816            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4817          NewTemplateDecl->setMemberSpecialization();
4818          assert(OldTemplateDecl->isMemberSpecialization());
4819        }
4820      } else {
4821        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4822          NewFD->setAccess(OldDecl->getAccess());
4823        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4824      }
4825    }
4826  }
4827
4828  // Semantic checking for this function declaration (in isolation).
4829  if (getLangOptions().CPlusPlus) {
4830    // C++-specific checks.
4831    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4832      CheckConstructor(Constructor);
4833    } else if (CXXDestructorDecl *Destructor =
4834                dyn_cast<CXXDestructorDecl>(NewFD)) {
4835      CXXRecordDecl *Record = Destructor->getParent();
4836      QualType ClassType = Context.getTypeDeclType(Record);
4837
4838      // FIXME: Shouldn't we be able to perform this check even when the class
4839      // type is dependent? Both gcc and edg can handle that.
4840      if (!ClassType->isDependentType()) {
4841        DeclarationName Name
4842          = Context.DeclarationNames.getCXXDestructorName(
4843                                        Context.getCanonicalType(ClassType));
4844        if (NewFD->getDeclName() != Name) {
4845          Diag(NewFD->getLocation(), diag::err_destructor_name);
4846          return NewFD->setInvalidDecl();
4847        }
4848      }
4849    } else if (CXXConversionDecl *Conversion
4850               = dyn_cast<CXXConversionDecl>(NewFD)) {
4851      ActOnConversionDeclarator(Conversion);
4852    }
4853
4854    // Find any virtual functions that this function overrides.
4855    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4856      if (!Method->isFunctionTemplateSpecialization() &&
4857          !Method->getDescribedFunctionTemplate()) {
4858        if (AddOverriddenMethods(Method->getParent(), Method)) {
4859          // If the function was marked as "static", we have a problem.
4860          if (NewFD->getStorageClass() == SC_Static) {
4861            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4862              << NewFD->getDeclName();
4863            for (CXXMethodDecl::method_iterator
4864                      Overridden = Method->begin_overridden_methods(),
4865                   OverriddenEnd = Method->end_overridden_methods();
4866                 Overridden != OverriddenEnd;
4867                 ++Overridden) {
4868              Diag((*Overridden)->getLocation(),
4869                   diag::note_overridden_virtual_function);
4870            }
4871          }
4872        }
4873      }
4874    }
4875
4876    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4877    if (NewFD->isOverloadedOperator() &&
4878        CheckOverloadedOperatorDeclaration(NewFD))
4879      return NewFD->setInvalidDecl();
4880
4881    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4882    if (NewFD->getLiteralIdentifier() &&
4883        CheckLiteralOperatorDeclaration(NewFD))
4884      return NewFD->setInvalidDecl();
4885
4886    // In C++, check default arguments now that we have merged decls. Unless
4887    // the lexical context is the class, because in this case this is done
4888    // during delayed parsing anyway.
4889    if (!CurContext->isRecord())
4890      CheckCXXDefaultArguments(NewFD);
4891
4892    // If this function declares a builtin function, check the type of this
4893    // declaration against the expected type for the builtin.
4894    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4895      ASTContext::GetBuiltinTypeError Error;
4896      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4897      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4898        // The type of this function differs from the type of the builtin,
4899        // so forget about the builtin entirely.
4900        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4901      }
4902    }
4903  }
4904}
4905
4906void Sema::CheckMain(FunctionDecl* FD) {
4907  // C++ [basic.start.main]p3:  A program that declares main to be inline
4908  //   or static is ill-formed.
4909  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4910  //   shall not appear in a declaration of main.
4911  // static main is not an error under C99, but we should warn about it.
4912  bool isInline = FD->isInlineSpecified();
4913  bool isStatic = FD->getStorageClass() == SC_Static;
4914  if (isInline || isStatic) {
4915    unsigned diagID = diag::warn_unusual_main_decl;
4916    if (isInline || getLangOptions().CPlusPlus)
4917      diagID = diag::err_unusual_main_decl;
4918
4919    int which = isStatic + (isInline << 1) - 1;
4920    Diag(FD->getLocation(), diagID) << which;
4921  }
4922
4923  QualType T = FD->getType();
4924  assert(T->isFunctionType() && "function decl is not of function type");
4925  const FunctionType* FT = T->getAs<FunctionType>();
4926
4927  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4928    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4929    FD->setInvalidDecl(true);
4930  }
4931
4932  // Treat protoless main() as nullary.
4933  if (isa<FunctionNoProtoType>(FT)) return;
4934
4935  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4936  unsigned nparams = FTP->getNumArgs();
4937  assert(FD->getNumParams() == nparams);
4938
4939  bool HasExtraParameters = (nparams > 3);
4940
4941  // Darwin passes an undocumented fourth argument of type char**.  If
4942  // other platforms start sprouting these, the logic below will start
4943  // getting shifty.
4944  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4945    HasExtraParameters = false;
4946
4947  if (HasExtraParameters) {
4948    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4949    FD->setInvalidDecl(true);
4950    nparams = 3;
4951  }
4952
4953  // FIXME: a lot of the following diagnostics would be improved
4954  // if we had some location information about types.
4955
4956  QualType CharPP =
4957    Context.getPointerType(Context.getPointerType(Context.CharTy));
4958  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4959
4960  for (unsigned i = 0; i < nparams; ++i) {
4961    QualType AT = FTP->getArgType(i);
4962
4963    bool mismatch = true;
4964
4965    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4966      mismatch = false;
4967    else if (Expected[i] == CharPP) {
4968      // As an extension, the following forms are okay:
4969      //   char const **
4970      //   char const * const *
4971      //   char * const *
4972
4973      QualifierCollector qs;
4974      const PointerType* PT;
4975      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4976          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4977          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4978        qs.removeConst();
4979        mismatch = !qs.empty();
4980      }
4981    }
4982
4983    if (mismatch) {
4984      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4985      // TODO: suggest replacing given type with expected type
4986      FD->setInvalidDecl(true);
4987    }
4988  }
4989
4990  if (nparams == 1 && !FD->isInvalidDecl()) {
4991    Diag(FD->getLocation(), diag::warn_main_one_arg);
4992  }
4993
4994  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4995    Diag(FD->getLocation(), diag::err_main_template_decl);
4996    FD->setInvalidDecl();
4997  }
4998}
4999
5000bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5001  // FIXME: Need strict checking.  In C89, we need to check for
5002  // any assignment, increment, decrement, function-calls, or
5003  // commas outside of a sizeof.  In C99, it's the same list,
5004  // except that the aforementioned are allowed in unevaluated
5005  // expressions.  Everything else falls under the
5006  // "may accept other forms of constant expressions" exception.
5007  // (We never end up here for C++, so the constant expression
5008  // rules there don't matter.)
5009  if (Init->isConstantInitializer(Context, false))
5010    return false;
5011  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5012    << Init->getSourceRange();
5013  return true;
5014}
5015
5016namespace {
5017  // Visits an initialization expression to see if OrigDecl is evaluated in
5018  // its own initialization and throws a warning if it does.
5019  class SelfReferenceChecker
5020      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5021    Sema &S;
5022    Decl *OrigDecl;
5023
5024  public:
5025    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5026
5027    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5028                                                    S(S), OrigDecl(OrigDecl) { }
5029
5030    void VisitExpr(Expr *E) {
5031      if (isa<ObjCMessageExpr>(*E)) return;
5032      Inherited::VisitExpr(E);
5033    }
5034
5035    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5036      CheckForSelfReference(E);
5037      Inherited::VisitImplicitCastExpr(E);
5038    }
5039
5040    void CheckForSelfReference(ImplicitCastExpr *E) {
5041      if (E->getCastKind() != CK_LValueToRValue) return;
5042      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5043      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5044      if (!DRE) return;
5045      Decl* ReferenceDecl = DRE->getDecl();
5046      if (OrigDecl != ReferenceDecl) return;
5047      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5048                          Sema::NotForRedeclaration);
5049      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5050        << Result.getLookupName() << OrigDecl->getLocation()
5051        << SubExpr->getSourceRange();
5052    }
5053  };
5054}
5055
5056/// AddInitializerToDecl - Adds the initializer Init to the
5057/// declaration dcl. If DirectInit is true, this is C++ direct
5058/// initialization rather than copy initialization.
5059void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5060                                bool DirectInit, bool TypeMayContainAuto) {
5061  // If there is no declaration, there was an error parsing it.  Just ignore
5062  // the initializer.
5063  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5064    return;
5065
5066  // Check for self-references within variable initializers.
5067  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5068    // Variables declared within a function/method body are handled
5069    // by a dataflow analysis.
5070    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5071      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5072  }
5073  else {
5074    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5075  }
5076
5077  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5078    // With declarators parsed the way they are, the parser cannot
5079    // distinguish between a normal initializer and a pure-specifier.
5080    // Thus this grotesque test.
5081    IntegerLiteral *IL;
5082    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5083        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5084      CheckPureMethod(Method, Init->getSourceRange());
5085    else {
5086      Diag(Method->getLocation(), diag::err_member_function_initialization)
5087        << Method->getDeclName() << Init->getSourceRange();
5088      Method->setInvalidDecl();
5089    }
5090    return;
5091  }
5092
5093  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5094  if (!VDecl) {
5095    if (getLangOptions().CPlusPlus &&
5096        RealDecl->getLexicalDeclContext()->isRecord() &&
5097        isa<NamedDecl>(RealDecl))
5098      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5099    else
5100      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5101    RealDecl->setInvalidDecl();
5102    return;
5103  }
5104
5105  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5106  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5107    TypeSourceInfo *DeducedType = 0;
5108    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5109      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5110        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5111        << Init->getSourceRange();
5112    if (!DeducedType) {
5113      RealDecl->setInvalidDecl();
5114      return;
5115    }
5116    VDecl->setTypeSourceInfo(DeducedType);
5117    VDecl->setType(DeducedType->getType());
5118
5119    // If this is a redeclaration, check that the type we just deduced matches
5120    // the previously declared type.
5121    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5122      MergeVarDeclTypes(VDecl, Old);
5123  }
5124
5125
5126  // A definition must end up with a complete type, which means it must be
5127  // complete with the restriction that an array type might be completed by the
5128  // initializer; note that later code assumes this restriction.
5129  QualType BaseDeclType = VDecl->getType();
5130  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5131    BaseDeclType = Array->getElementType();
5132  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5133                          diag::err_typecheck_decl_incomplete_type)) {
5134    RealDecl->setInvalidDecl();
5135    return;
5136  }
5137
5138  // The variable can not have an abstract class type.
5139  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5140                             diag::err_abstract_type_in_decl,
5141                             AbstractVariableType))
5142    VDecl->setInvalidDecl();
5143
5144  const VarDecl *Def;
5145  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5146    Diag(VDecl->getLocation(), diag::err_redefinition)
5147      << VDecl->getDeclName();
5148    Diag(Def->getLocation(), diag::note_previous_definition);
5149    VDecl->setInvalidDecl();
5150    return;
5151  }
5152
5153  const VarDecl* PrevInit = 0;
5154  if (getLangOptions().CPlusPlus) {
5155    // C++ [class.static.data]p4
5156    //   If a static data member is of const integral or const
5157    //   enumeration type, its declaration in the class definition can
5158    //   specify a constant-initializer which shall be an integral
5159    //   constant expression (5.19). In that case, the member can appear
5160    //   in integral constant expressions. The member shall still be
5161    //   defined in a namespace scope if it is used in the program and the
5162    //   namespace scope definition shall not contain an initializer.
5163    //
5164    // We already performed a redefinition check above, but for static
5165    // data members we also need to check whether there was an in-class
5166    // declaration with an initializer.
5167    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5168      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5169      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5170      return;
5171    }
5172
5173    if (VDecl->hasLocalStorage())
5174      getCurFunction()->setHasBranchProtectedScope();
5175
5176    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5177      VDecl->setInvalidDecl();
5178      return;
5179    }
5180  }
5181
5182  // Capture the variable that is being initialized and the style of
5183  // initialization.
5184  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5185
5186  // FIXME: Poor source location information.
5187  InitializationKind Kind
5188    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5189                                                   Init->getLocStart(),
5190                                                   Init->getLocEnd())
5191                : InitializationKind::CreateCopy(VDecl->getLocation(),
5192                                                 Init->getLocStart());
5193
5194  // Get the decls type and save a reference for later, since
5195  // CheckInitializerTypes may change it.
5196  QualType DclT = VDecl->getType(), SavT = DclT;
5197  if (VDecl->isLocalVarDecl()) {
5198    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5199      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5200      VDecl->setInvalidDecl();
5201    } else if (!VDecl->isInvalidDecl()) {
5202      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5203      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5204                                                MultiExprArg(*this, &Init, 1),
5205                                                &DclT);
5206      if (Result.isInvalid()) {
5207        VDecl->setInvalidDecl();
5208        return;
5209      }
5210
5211      Init = Result.takeAs<Expr>();
5212
5213      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5214      // Don't check invalid declarations to avoid emitting useless diagnostics.
5215      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5216        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5217          CheckForConstantInitializer(Init, DclT);
5218      }
5219    }
5220  } else if (VDecl->isStaticDataMember() &&
5221             VDecl->getLexicalDeclContext()->isRecord()) {
5222    // This is an in-class initialization for a static data member, e.g.,
5223    //
5224    // struct S {
5225    //   static const int value = 17;
5226    // };
5227
5228    // Try to perform the initialization regardless.
5229    if (!VDecl->isInvalidDecl()) {
5230      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5231      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5232                                          MultiExprArg(*this, &Init, 1),
5233                                          &DclT);
5234      if (Result.isInvalid()) {
5235        VDecl->setInvalidDecl();
5236        return;
5237      }
5238
5239      Init = Result.takeAs<Expr>();
5240    }
5241
5242    // C++ [class.mem]p4:
5243    //   A member-declarator can contain a constant-initializer only
5244    //   if it declares a static member (9.4) of const integral or
5245    //   const enumeration type, see 9.4.2.
5246    QualType T = VDecl->getType();
5247
5248    // Do nothing on dependent types.
5249    if (T->isDependentType()) {
5250
5251    // Require constness.
5252    } else if (!T.isConstQualified()) {
5253      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5254        << Init->getSourceRange();
5255      VDecl->setInvalidDecl();
5256
5257    // We allow integer constant expressions in all cases.
5258    } else if (T->isIntegralOrEnumerationType()) {
5259      if (!Init->isValueDependent()) {
5260        // Check whether the expression is a constant expression.
5261        llvm::APSInt Value;
5262        SourceLocation Loc;
5263        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5264          Diag(Loc, diag::err_in_class_initializer_non_constant)
5265            << Init->getSourceRange();
5266          VDecl->setInvalidDecl();
5267        }
5268      }
5269
5270    // We allow floating-point constants as an extension in C++03, and
5271    // C++0x has far more complicated rules that we don't really
5272    // implement fully.
5273    } else {
5274      bool Allowed = false;
5275      if (getLangOptions().CPlusPlus0x) {
5276        Allowed = T->isLiteralType();
5277      } else if (T->isFloatingType()) { // also permits complex, which is ok
5278        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5279          << T << Init->getSourceRange();
5280        Allowed = true;
5281      }
5282
5283      if (!Allowed) {
5284        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5285          << T << Init->getSourceRange();
5286        VDecl->setInvalidDecl();
5287
5288      // TODO: there are probably expressions that pass here that shouldn't.
5289      } else if (!Init->isValueDependent() &&
5290                 !Init->isConstantInitializer(Context, false)) {
5291        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5292          << Init->getSourceRange();
5293        VDecl->setInvalidDecl();
5294      }
5295    }
5296  } else if (VDecl->isFileVarDecl()) {
5297    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5298        (!getLangOptions().CPlusPlus ||
5299         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5300      Diag(VDecl->getLocation(), diag::warn_extern_init);
5301    if (!VDecl->isInvalidDecl()) {
5302      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5303      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5304                                                MultiExprArg(*this, &Init, 1),
5305                                                &DclT);
5306      if (Result.isInvalid()) {
5307        VDecl->setInvalidDecl();
5308        return;
5309      }
5310
5311      Init = Result.takeAs<Expr>();
5312    }
5313
5314    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5315    // Don't check invalid declarations to avoid emitting useless diagnostics.
5316    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5317      // C99 6.7.8p4. All file scoped initializers need to be constant.
5318      CheckForConstantInitializer(Init, DclT);
5319    }
5320  }
5321  // If the type changed, it means we had an incomplete type that was
5322  // completed by the initializer. For example:
5323  //   int ary[] = { 1, 3, 5 };
5324  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5325  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5326    VDecl->setType(DclT);
5327    Init->setType(DclT);
5328  }
5329
5330
5331  // If this variable is a local declaration with record type, make sure it
5332  // doesn't have a flexible member initialization.  We only support this as a
5333  // global/static definition.
5334  if (VDecl->hasLocalStorage())
5335    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5336      if (RT->getDecl()->hasFlexibleArrayMember()) {
5337        // Check whether the initializer tries to initialize the flexible
5338        // array member itself to anything other than an empty initializer list.
5339        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5340          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5341                                         RT->getDecl()->field_end()) - 1;
5342          if (Index < ILE->getNumInits() &&
5343              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5344                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5345            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5346            VDecl->setInvalidDecl();
5347          }
5348        }
5349      }
5350
5351  // Check any implicit conversions within the expression.
5352  CheckImplicitConversions(Init, VDecl->getLocation());
5353
5354  Init = MaybeCreateExprWithCleanups(Init);
5355  // Attach the initializer to the decl.
5356  VDecl->setInit(Init);
5357
5358  CheckCompleteVariableDeclaration(VDecl);
5359}
5360
5361/// ActOnInitializerError - Given that there was an error parsing an
5362/// initializer for the given declaration, try to return to some form
5363/// of sanity.
5364void Sema::ActOnInitializerError(Decl *D) {
5365  // Our main concern here is re-establishing invariants like "a
5366  // variable's type is either dependent or complete".
5367  if (!D || D->isInvalidDecl()) return;
5368
5369  VarDecl *VD = dyn_cast<VarDecl>(D);
5370  if (!VD) return;
5371
5372  // Auto types are meaningless if we can't make sense of the initializer.
5373  if (ParsingInitForAutoVars.count(D)) {
5374    D->setInvalidDecl();
5375    return;
5376  }
5377
5378  QualType Ty = VD->getType();
5379  if (Ty->isDependentType()) return;
5380
5381  // Require a complete type.
5382  if (RequireCompleteType(VD->getLocation(),
5383                          Context.getBaseElementType(Ty),
5384                          diag::err_typecheck_decl_incomplete_type)) {
5385    VD->setInvalidDecl();
5386    return;
5387  }
5388
5389  // Require an abstract type.
5390  if (RequireNonAbstractType(VD->getLocation(), Ty,
5391                             diag::err_abstract_type_in_decl,
5392                             AbstractVariableType)) {
5393    VD->setInvalidDecl();
5394    return;
5395  }
5396
5397  // Don't bother complaining about constructors or destructors,
5398  // though.
5399}
5400
5401void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5402                                  bool TypeMayContainAuto) {
5403  // If there is no declaration, there was an error parsing it. Just ignore it.
5404  if (RealDecl == 0)
5405    return;
5406
5407  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5408    QualType Type = Var->getType();
5409
5410    // C++0x [dcl.spec.auto]p3
5411    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5412      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5413        << Var->getDeclName() << Type;
5414      Var->setInvalidDecl();
5415      return;
5416    }
5417
5418    switch (Var->isThisDeclarationADefinition()) {
5419    case VarDecl::Definition:
5420      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5421        break;
5422
5423      // We have an out-of-line definition of a static data member
5424      // that has an in-class initializer, so we type-check this like
5425      // a declaration.
5426      //
5427      // Fall through
5428
5429    case VarDecl::DeclarationOnly:
5430      // It's only a declaration.
5431
5432      // Block scope. C99 6.7p7: If an identifier for an object is
5433      // declared with no linkage (C99 6.2.2p6), the type for the
5434      // object shall be complete.
5435      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5436          !Var->getLinkage() && !Var->isInvalidDecl() &&
5437          RequireCompleteType(Var->getLocation(), Type,
5438                              diag::err_typecheck_decl_incomplete_type))
5439        Var->setInvalidDecl();
5440
5441      // Make sure that the type is not abstract.
5442      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5443          RequireNonAbstractType(Var->getLocation(), Type,
5444                                 diag::err_abstract_type_in_decl,
5445                                 AbstractVariableType))
5446        Var->setInvalidDecl();
5447      return;
5448
5449    case VarDecl::TentativeDefinition:
5450      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5451      // object that has file scope without an initializer, and without a
5452      // storage-class specifier or with the storage-class specifier "static",
5453      // constitutes a tentative definition. Note: A tentative definition with
5454      // external linkage is valid (C99 6.2.2p5).
5455      if (!Var->isInvalidDecl()) {
5456        if (const IncompleteArrayType *ArrayT
5457                                    = Context.getAsIncompleteArrayType(Type)) {
5458          if (RequireCompleteType(Var->getLocation(),
5459                                  ArrayT->getElementType(),
5460                                  diag::err_illegal_decl_array_incomplete_type))
5461            Var->setInvalidDecl();
5462        } else if (Var->getStorageClass() == SC_Static) {
5463          // C99 6.9.2p3: If the declaration of an identifier for an object is
5464          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5465          // declared type shall not be an incomplete type.
5466          // NOTE: code such as the following
5467          //     static struct s;
5468          //     struct s { int a; };
5469          // is accepted by gcc. Hence here we issue a warning instead of
5470          // an error and we do not invalidate the static declaration.
5471          // NOTE: to avoid multiple warnings, only check the first declaration.
5472          if (Var->getPreviousDeclaration() == 0)
5473            RequireCompleteType(Var->getLocation(), Type,
5474                                diag::ext_typecheck_decl_incomplete_type);
5475        }
5476      }
5477
5478      // Record the tentative definition; we're done.
5479      if (!Var->isInvalidDecl())
5480        TentativeDefinitions.push_back(Var);
5481      return;
5482    }
5483
5484    // Provide a specific diagnostic for uninitialized variable
5485    // definitions with incomplete array type.
5486    if (Type->isIncompleteArrayType()) {
5487      Diag(Var->getLocation(),
5488           diag::err_typecheck_incomplete_array_needs_initializer);
5489      Var->setInvalidDecl();
5490      return;
5491    }
5492
5493    // Provide a specific diagnostic for uninitialized variable
5494    // definitions with reference type.
5495    if (Type->isReferenceType()) {
5496      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5497        << Var->getDeclName()
5498        << SourceRange(Var->getLocation(), Var->getLocation());
5499      Var->setInvalidDecl();
5500      return;
5501    }
5502
5503    // Do not attempt to type-check the default initializer for a
5504    // variable with dependent type.
5505    if (Type->isDependentType())
5506      return;
5507
5508    if (Var->isInvalidDecl())
5509      return;
5510
5511    if (RequireCompleteType(Var->getLocation(),
5512                            Context.getBaseElementType(Type),
5513                            diag::err_typecheck_decl_incomplete_type)) {
5514      Var->setInvalidDecl();
5515      return;
5516    }
5517
5518    // The variable can not have an abstract class type.
5519    if (RequireNonAbstractType(Var->getLocation(), Type,
5520                               diag::err_abstract_type_in_decl,
5521                               AbstractVariableType)) {
5522      Var->setInvalidDecl();
5523      return;
5524    }
5525
5526    const RecordType *Record
5527      = Context.getBaseElementType(Type)->getAs<RecordType>();
5528    if (Record && getLangOptions().CPlusPlus &&
5529        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5530      // C++03 [dcl.init]p9:
5531      //   If no initializer is specified for an object, and the
5532      //   object is of (possibly cv-qualified) non-POD class type (or
5533      //   array thereof), the object shall be default-initialized; if
5534      //   the object is of const-qualified type, the underlying class
5535      //   type shall have a user-declared default
5536      //   constructor. Otherwise, if no initializer is specified for
5537      //   a non- static object, the object and its subobjects, if
5538      //   any, have an indeterminate initial value); if the object
5539      //   or any of its subobjects are of const-qualified type, the
5540      //   program is ill-formed.
5541    } else {
5542      // Check for jumps past the implicit initializer.  C++0x
5543      // clarifies that this applies to a "variable with automatic
5544      // storage duration", not a "local variable".
5545      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5546        getCurFunction()->setHasBranchProtectedScope();
5547
5548      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5549      InitializationKind Kind
5550        = InitializationKind::CreateDefault(Var->getLocation());
5551
5552      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5553      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5554                                        MultiExprArg(*this, 0, 0));
5555      if (Init.isInvalid())
5556        Var->setInvalidDecl();
5557      else if (Init.get())
5558        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5559    }
5560
5561    CheckCompleteVariableDeclaration(Var);
5562  }
5563}
5564
5565void Sema::ActOnCXXForRangeDecl(Decl *D) {
5566  VarDecl *VD = dyn_cast<VarDecl>(D);
5567  if (!VD) {
5568    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5569    D->setInvalidDecl();
5570    return;
5571  }
5572
5573  VD->setCXXForRangeDecl(true);
5574
5575  // for-range-declaration cannot be given a storage class specifier.
5576  int Error = -1;
5577  switch (VD->getStorageClassAsWritten()) {
5578  case SC_None:
5579    break;
5580  case SC_Extern:
5581    Error = 0;
5582    break;
5583  case SC_Static:
5584    Error = 1;
5585    break;
5586  case SC_PrivateExtern:
5587    Error = 2;
5588    break;
5589  case SC_Auto:
5590    Error = 3;
5591    break;
5592  case SC_Register:
5593    Error = 4;
5594    break;
5595  }
5596  // FIXME: constexpr isn't allowed here.
5597  //if (DS.isConstexprSpecified())
5598  //  Error = 5;
5599  if (Error != -1) {
5600    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5601      << VD->getDeclName() << Error;
5602    D->setInvalidDecl();
5603  }
5604}
5605
5606void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5607  if (var->isInvalidDecl()) return;
5608
5609  // All the following checks are C++ only.
5610  if (!getLangOptions().CPlusPlus) return;
5611
5612  QualType baseType = Context.getBaseElementType(var->getType());
5613  if (baseType->isDependentType()) return;
5614
5615  // __block variables might require us to capture a copy-initializer.
5616  if (var->hasAttr<BlocksAttr>()) {
5617    // It's currently invalid to ever have a __block variable with an
5618    // array type; should we diagnose that here?
5619
5620    // Regardless, we don't want to ignore array nesting when
5621    // constructing this copy.
5622    QualType type = var->getType();
5623
5624    if (type->isStructureOrClassType()) {
5625      SourceLocation poi = var->getLocation();
5626      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5627      ExprResult result =
5628        PerformCopyInitialization(
5629                        InitializedEntity::InitializeBlock(poi, type, false),
5630                                  poi, Owned(varRef));
5631      if (!result.isInvalid()) {
5632        result = MaybeCreateExprWithCleanups(result);
5633        Expr *init = result.takeAs<Expr>();
5634        Context.setBlockVarCopyInits(var, init);
5635      }
5636    }
5637  }
5638
5639  // Check for global constructors.
5640  if (!var->getDeclContext()->isDependentContext() &&
5641      var->hasGlobalStorage() &&
5642      !var->isStaticLocal() &&
5643      var->getInit() &&
5644      !var->getInit()->isConstantInitializer(Context,
5645                                             baseType->isReferenceType()))
5646    Diag(var->getLocation(), diag::warn_global_constructor)
5647      << var->getInit()->getSourceRange();
5648
5649  // Require the destructor.
5650  if (const RecordType *recordType = baseType->getAs<RecordType>())
5651    FinalizeVarWithDestructor(var, recordType);
5652}
5653
5654/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5655/// any semantic actions necessary after any initializer has been attached.
5656void
5657Sema::FinalizeDeclaration(Decl *ThisDecl) {
5658  // Note that we are no longer parsing the initializer for this declaration.
5659  ParsingInitForAutoVars.erase(ThisDecl);
5660}
5661
5662Sema::DeclGroupPtrTy
5663Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5664                              Decl **Group, unsigned NumDecls) {
5665  llvm::SmallVector<Decl*, 8> Decls;
5666
5667  if (DS.isTypeSpecOwned())
5668    Decls.push_back(DS.getRepAsDecl());
5669
5670  for (unsigned i = 0; i != NumDecls; ++i)
5671    if (Decl *D = Group[i])
5672      Decls.push_back(D);
5673
5674  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5675                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5676}
5677
5678/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5679/// group, performing any necessary semantic checking.
5680Sema::DeclGroupPtrTy
5681Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5682                           bool TypeMayContainAuto) {
5683  // C++0x [dcl.spec.auto]p7:
5684  //   If the type deduced for the template parameter U is not the same in each
5685  //   deduction, the program is ill-formed.
5686  // FIXME: When initializer-list support is added, a distinction is needed
5687  // between the deduced type U and the deduced type which 'auto' stands for.
5688  //   auto a = 0, b = { 1, 2, 3 };
5689  // is legal because the deduced type U is 'int' in both cases.
5690  if (TypeMayContainAuto && NumDecls > 1) {
5691    QualType Deduced;
5692    CanQualType DeducedCanon;
5693    VarDecl *DeducedDecl = 0;
5694    for (unsigned i = 0; i != NumDecls; ++i) {
5695      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5696        AutoType *AT = D->getType()->getContainedAutoType();
5697        // Don't reissue diagnostics when instantiating a template.
5698        if (AT && D->isInvalidDecl())
5699          break;
5700        if (AT && AT->isDeduced()) {
5701          QualType U = AT->getDeducedType();
5702          CanQualType UCanon = Context.getCanonicalType(U);
5703          if (Deduced.isNull()) {
5704            Deduced = U;
5705            DeducedCanon = UCanon;
5706            DeducedDecl = D;
5707          } else if (DeducedCanon != UCanon) {
5708            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5709                 diag::err_auto_different_deductions)
5710              << Deduced << DeducedDecl->getDeclName()
5711              << U << D->getDeclName()
5712              << DeducedDecl->getInit()->getSourceRange()
5713              << D->getInit()->getSourceRange();
5714            D->setInvalidDecl();
5715            break;
5716          }
5717        }
5718      }
5719    }
5720  }
5721
5722  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5723}
5724
5725
5726/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5727/// to introduce parameters into function prototype scope.
5728Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5729  const DeclSpec &DS = D.getDeclSpec();
5730
5731  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5732  VarDecl::StorageClass StorageClass = SC_None;
5733  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5734  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5735    StorageClass = SC_Register;
5736    StorageClassAsWritten = SC_Register;
5737  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5738    Diag(DS.getStorageClassSpecLoc(),
5739         diag::err_invalid_storage_class_in_func_decl);
5740    D.getMutableDeclSpec().ClearStorageClassSpecs();
5741  }
5742
5743  if (D.getDeclSpec().isThreadSpecified())
5744    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5745
5746  DiagnoseFunctionSpecifiers(D);
5747
5748  TagDecl *OwnedDecl = 0;
5749  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5750  QualType parmDeclType = TInfo->getType();
5751
5752  if (getLangOptions().CPlusPlus) {
5753    // Check that there are no default arguments inside the type of this
5754    // parameter.
5755    CheckExtraCXXDefaultArguments(D);
5756
5757    if (OwnedDecl && OwnedDecl->isDefinition()) {
5758      // C++ [dcl.fct]p6:
5759      //   Types shall not be defined in return or parameter types.
5760      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5761        << Context.getTypeDeclType(OwnedDecl);
5762    }
5763
5764    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5765    if (D.getCXXScopeSpec().isSet()) {
5766      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5767        << D.getCXXScopeSpec().getRange();
5768      D.getCXXScopeSpec().clear();
5769    }
5770  }
5771
5772  // Ensure we have a valid name
5773  IdentifierInfo *II = 0;
5774  if (D.hasName()) {
5775    II = D.getIdentifier();
5776    if (!II) {
5777      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5778        << GetNameForDeclarator(D).getName().getAsString();
5779      D.setInvalidType(true);
5780    }
5781  }
5782
5783  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5784  if (II) {
5785    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5786                   ForRedeclaration);
5787    LookupName(R, S);
5788    if (R.isSingleResult()) {
5789      NamedDecl *PrevDecl = R.getFoundDecl();
5790      if (PrevDecl->isTemplateParameter()) {
5791        // Maybe we will complain about the shadowed template parameter.
5792        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5793        // Just pretend that we didn't see the previous declaration.
5794        PrevDecl = 0;
5795      } else if (S->isDeclScope(PrevDecl)) {
5796        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5797        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5798
5799        // Recover by removing the name
5800        II = 0;
5801        D.SetIdentifier(0, D.getIdentifierLoc());
5802        D.setInvalidType(true);
5803      }
5804    }
5805  }
5806
5807  // Temporarily put parameter variables in the translation unit, not
5808  // the enclosing context.  This prevents them from accidentally
5809  // looking like class members in C++.
5810  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5811                                    D.getSourceRange().getBegin(),
5812                                    D.getIdentifierLoc(), II,
5813                                    parmDeclType, TInfo,
5814                                    StorageClass, StorageClassAsWritten);
5815
5816  if (D.isInvalidType())
5817    New->setInvalidDecl();
5818
5819  // Add the parameter declaration into this scope.
5820  S->AddDecl(New);
5821  if (II)
5822    IdResolver.AddDecl(New);
5823
5824  ProcessDeclAttributes(S, New, D);
5825
5826  if (New->hasAttr<BlocksAttr>()) {
5827    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5828  }
5829  return New;
5830}
5831
5832/// \brief Synthesizes a variable for a parameter arising from a
5833/// typedef.
5834ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5835                                              SourceLocation Loc,
5836                                              QualType T) {
5837  /* FIXME: setting StartLoc == Loc.
5838     Would it be worth to modify callers so as to provide proper source
5839     location for the unnamed parameters, embedding the parameter's type? */
5840  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5841                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5842                                           SC_None, SC_None, 0);
5843  Param->setImplicit();
5844  return Param;
5845}
5846
5847void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5848                                    ParmVarDecl * const *ParamEnd) {
5849  // Don't diagnose unused-parameter errors in template instantiations; we
5850  // will already have done so in the template itself.
5851  if (!ActiveTemplateInstantiations.empty())
5852    return;
5853
5854  for (; Param != ParamEnd; ++Param) {
5855    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5856        !(*Param)->hasAttr<UnusedAttr>()) {
5857      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5858        << (*Param)->getDeclName();
5859    }
5860  }
5861}
5862
5863void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5864                                                  ParmVarDecl * const *ParamEnd,
5865                                                  QualType ReturnTy,
5866                                                  NamedDecl *D) {
5867  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5868    return;
5869
5870  // Warn if the return value is pass-by-value and larger than the specified
5871  // threshold.
5872  if (ReturnTy->isPODType()) {
5873    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5874    if (Size > LangOpts.NumLargeByValueCopy)
5875      Diag(D->getLocation(), diag::warn_return_value_size)
5876          << D->getDeclName() << Size;
5877  }
5878
5879  // Warn if any parameter is pass-by-value and larger than the specified
5880  // threshold.
5881  for (; Param != ParamEnd; ++Param) {
5882    QualType T = (*Param)->getType();
5883    if (!T->isPODType())
5884      continue;
5885    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5886    if (Size > LangOpts.NumLargeByValueCopy)
5887      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5888          << (*Param)->getDeclName() << Size;
5889  }
5890}
5891
5892ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5893                                  SourceLocation NameLoc, IdentifierInfo *Name,
5894                                  QualType T, TypeSourceInfo *TSInfo,
5895                                  VarDecl::StorageClass StorageClass,
5896                                  VarDecl::StorageClass StorageClassAsWritten) {
5897  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5898                                         adjustParameterType(T), TSInfo,
5899                                         StorageClass, StorageClassAsWritten,
5900                                         0);
5901
5902  // Parameters can not be abstract class types.
5903  // For record types, this is done by the AbstractClassUsageDiagnoser once
5904  // the class has been completely parsed.
5905  if (!CurContext->isRecord() &&
5906      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5907                             AbstractParamType))
5908    New->setInvalidDecl();
5909
5910  // Parameter declarators cannot be interface types. All ObjC objects are
5911  // passed by reference.
5912  if (T->isObjCObjectType()) {
5913    Diag(NameLoc,
5914         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5915    New->setInvalidDecl();
5916  }
5917
5918  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5919  // duration shall not be qualified by an address-space qualifier."
5920  // Since all parameters have automatic store duration, they can not have
5921  // an address space.
5922  if (T.getAddressSpace() != 0) {
5923    Diag(NameLoc, diag::err_arg_with_address_space);
5924    New->setInvalidDecl();
5925  }
5926
5927  return New;
5928}
5929
5930void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5931                                           SourceLocation LocAfterDecls) {
5932  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5933
5934  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5935  // for a K&R function.
5936  if (!FTI.hasPrototype) {
5937    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5938      --i;
5939      if (FTI.ArgInfo[i].Param == 0) {
5940        llvm::SmallString<256> Code;
5941        llvm::raw_svector_ostream(Code) << "  int "
5942                                        << FTI.ArgInfo[i].Ident->getName()
5943                                        << ";\n";
5944        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5945          << FTI.ArgInfo[i].Ident
5946          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5947
5948        // Implicitly declare the argument as type 'int' for lack of a better
5949        // type.
5950        AttributeFactory attrs;
5951        DeclSpec DS(attrs);
5952        const char* PrevSpec; // unused
5953        unsigned DiagID; // unused
5954        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5955                           PrevSpec, DiagID);
5956        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5957        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5958        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5959      }
5960    }
5961  }
5962}
5963
5964Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5965                                         Declarator &D) {
5966  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5967  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5968  Scope *ParentScope = FnBodyScope->getParent();
5969
5970  Decl *DP = HandleDeclarator(ParentScope, D,
5971                              MultiTemplateParamsArg(*this),
5972                              /*IsFunctionDefinition=*/true);
5973  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5974}
5975
5976static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5977  // Don't warn about invalid declarations.
5978  if (FD->isInvalidDecl())
5979    return false;
5980
5981  // Or declarations that aren't global.
5982  if (!FD->isGlobal())
5983    return false;
5984
5985  // Don't warn about C++ member functions.
5986  if (isa<CXXMethodDecl>(FD))
5987    return false;
5988
5989  // Don't warn about 'main'.
5990  if (FD->isMain())
5991    return false;
5992
5993  // Don't warn about inline functions.
5994  if (FD->isInlined())
5995    return false;
5996
5997  // Don't warn about function templates.
5998  if (FD->getDescribedFunctionTemplate())
5999    return false;
6000
6001  // Don't warn about function template specializations.
6002  if (FD->isFunctionTemplateSpecialization())
6003    return false;
6004
6005  bool MissingPrototype = true;
6006  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6007       Prev; Prev = Prev->getPreviousDeclaration()) {
6008    // Ignore any declarations that occur in function or method
6009    // scope, because they aren't visible from the header.
6010    if (Prev->getDeclContext()->isFunctionOrMethod())
6011      continue;
6012
6013    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6014    break;
6015  }
6016
6017  return MissingPrototype;
6018}
6019
6020void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6021  // Don't complain if we're in GNU89 mode and the previous definition
6022  // was an extern inline function.
6023  const FunctionDecl *Definition;
6024  if (FD->hasBody(Definition) &&
6025      !canRedefineFunction(Definition, getLangOptions())) {
6026    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6027        Definition->getStorageClass() == SC_Extern)
6028      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6029        << FD->getDeclName() << getLangOptions().CPlusPlus;
6030    else
6031      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6032    Diag(Definition->getLocation(), diag::note_previous_definition);
6033  }
6034}
6035
6036Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6037  // Clear the last template instantiation error context.
6038  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6039
6040  if (!D)
6041    return D;
6042  FunctionDecl *FD = 0;
6043
6044  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6045    FD = FunTmpl->getTemplatedDecl();
6046  else
6047    FD = cast<FunctionDecl>(D);
6048
6049  // Enter a new function scope
6050  PushFunctionScope();
6051
6052  // See if this is a redefinition.
6053  if (!FD->isLateTemplateParsed())
6054    CheckForFunctionRedefinition(FD);
6055
6056  // Builtin functions cannot be defined.
6057  if (unsigned BuiltinID = FD->getBuiltinID()) {
6058    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6059      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6060      FD->setInvalidDecl();
6061    }
6062  }
6063
6064  // The return type of a function definition must be complete
6065  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6066  QualType ResultType = FD->getResultType();
6067  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6068      !FD->isInvalidDecl() &&
6069      RequireCompleteType(FD->getLocation(), ResultType,
6070                          diag::err_func_def_incomplete_result))
6071    FD->setInvalidDecl();
6072
6073  // GNU warning -Wmissing-prototypes:
6074  //   Warn if a global function is defined without a previous
6075  //   prototype declaration. This warning is issued even if the
6076  //   definition itself provides a prototype. The aim is to detect
6077  //   global functions that fail to be declared in header files.
6078  if (ShouldWarnAboutMissingPrototype(FD))
6079    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6080
6081  if (FnBodyScope)
6082    PushDeclContext(FnBodyScope, FD);
6083
6084  // Check the validity of our function parameters
6085  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6086                           /*CheckParameterNames=*/true);
6087
6088  // Introduce our parameters into the function scope
6089  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6090    ParmVarDecl *Param = FD->getParamDecl(p);
6091    Param->setOwningFunction(FD);
6092
6093    // If this has an identifier, add it to the scope stack.
6094    if (Param->getIdentifier() && FnBodyScope) {
6095      CheckShadow(FnBodyScope, Param);
6096
6097      PushOnScopeChains(Param, FnBodyScope);
6098    }
6099  }
6100
6101  // Checking attributes of current function definition
6102  // dllimport attribute.
6103  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6104  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6105    // dllimport attribute cannot be directly applied to definition.
6106    // Microsoft accepts dllimport for functions defined within class scope.
6107    if (!DA->isInherited() &&
6108        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6109      Diag(FD->getLocation(),
6110           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6111        << "dllimport";
6112      FD->setInvalidDecl();
6113      return FD;
6114    }
6115
6116    // Visual C++ appears to not think this is an issue, so only issue
6117    // a warning when Microsoft extensions are disabled.
6118    if (!LangOpts.Microsoft) {
6119      // If a symbol previously declared dllimport is later defined, the
6120      // attribute is ignored in subsequent references, and a warning is
6121      // emitted.
6122      Diag(FD->getLocation(),
6123           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6124        << FD->getName() << "dllimport";
6125    }
6126  }
6127  return FD;
6128}
6129
6130/// \brief Given the set of return statements within a function body,
6131/// compute the variables that are subject to the named return value
6132/// optimization.
6133///
6134/// Each of the variables that is subject to the named return value
6135/// optimization will be marked as NRVO variables in the AST, and any
6136/// return statement that has a marked NRVO variable as its NRVO candidate can
6137/// use the named return value optimization.
6138///
6139/// This function applies a very simplistic algorithm for NRVO: if every return
6140/// statement in the function has the same NRVO candidate, that candidate is
6141/// the NRVO variable.
6142///
6143/// FIXME: Employ a smarter algorithm that accounts for multiple return
6144/// statements and the lifetimes of the NRVO candidates. We should be able to
6145/// find a maximal set of NRVO variables.
6146static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6147  ReturnStmt **Returns = Scope->Returns.data();
6148
6149  const VarDecl *NRVOCandidate = 0;
6150  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6151    if (!Returns[I]->getNRVOCandidate())
6152      return;
6153
6154    if (!NRVOCandidate)
6155      NRVOCandidate = Returns[I]->getNRVOCandidate();
6156    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6157      return;
6158  }
6159
6160  if (NRVOCandidate)
6161    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6162}
6163
6164Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6165  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6166}
6167
6168Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6169                                    bool IsInstantiation) {
6170  FunctionDecl *FD = 0;
6171  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6172  if (FunTmpl)
6173    FD = FunTmpl->getTemplatedDecl();
6174  else
6175    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6176
6177  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6178  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6179
6180  if (FD) {
6181    FD->setBody(Body);
6182    if (FD->isMain()) {
6183      // C and C++ allow for main to automagically return 0.
6184      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6185      FD->setHasImplicitReturnZero(true);
6186      WP.disableCheckFallThrough();
6187    }
6188
6189    if (!FD->isInvalidDecl()) {
6190      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6191      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6192                                             FD->getResultType(), FD);
6193
6194      // If this is a constructor, we need a vtable.
6195      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6196        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6197
6198      ComputeNRVO(Body, getCurFunction());
6199    }
6200
6201    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6202  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6203    assert(MD == getCurMethodDecl() && "Method parsing confused");
6204    MD->setBody(Body);
6205    if (Body)
6206      MD->setEndLoc(Body->getLocEnd());
6207    if (!MD->isInvalidDecl()) {
6208      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6209      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6210                                             MD->getResultType(), MD);
6211    }
6212  } else {
6213    return 0;
6214  }
6215
6216  // Verify and clean out per-function state.
6217  if (Body) {
6218    // C++ constructors that have function-try-blocks can't have return
6219    // statements in the handlers of that block. (C++ [except.handle]p14)
6220    // Verify this.
6221    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6222      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6223
6224    // Verify that that gotos and switch cases don't jump into scopes illegally.
6225    // Verify that that gotos and switch cases don't jump into scopes illegally.
6226    if (getCurFunction()->NeedsScopeChecking() &&
6227        !dcl->isInvalidDecl() &&
6228        !hasAnyErrorsInThisFunction())
6229      DiagnoseInvalidJumps(Body);
6230
6231    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6232      if (!Destructor->getParent()->isDependentType())
6233        CheckDestructor(Destructor);
6234
6235      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6236                                             Destructor->getParent());
6237    }
6238
6239    // If any errors have occurred, clear out any temporaries that may have
6240    // been leftover. This ensures that these temporaries won't be picked up for
6241    // deletion in some later function.
6242    if (PP.getDiagnostics().hasErrorOccurred() ||
6243        PP.getDiagnostics().getSuppressAllDiagnostics())
6244      ExprTemporaries.clear();
6245    else if (!isa<FunctionTemplateDecl>(dcl)) {
6246      // Since the body is valid, issue any analysis-based warnings that are
6247      // enabled.
6248      ActivePolicy = &WP;
6249    }
6250
6251    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6252  }
6253
6254  if (!IsInstantiation)
6255    PopDeclContext();
6256
6257  PopFunctionOrBlockScope(ActivePolicy, dcl);
6258
6259  // If any errors have occurred, clear out any temporaries that may have
6260  // been leftover. This ensures that these temporaries won't be picked up for
6261  // deletion in some later function.
6262  if (getDiagnostics().hasErrorOccurred())
6263    ExprTemporaries.clear();
6264
6265  return dcl;
6266}
6267
6268/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6269/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6270NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6271                                          IdentifierInfo &II, Scope *S) {
6272  // Before we produce a declaration for an implicitly defined
6273  // function, see whether there was a locally-scoped declaration of
6274  // this name as a function or variable. If so, use that
6275  // (non-visible) declaration, and complain about it.
6276  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6277    = LocallyScopedExternalDecls.find(&II);
6278  if (Pos != LocallyScopedExternalDecls.end()) {
6279    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6280    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6281    return Pos->second;
6282  }
6283
6284  // Extension in C99.  Legal in C90, but warn about it.
6285  if (II.getName().startswith("__builtin_"))
6286    Diag(Loc, diag::warn_builtin_unknown) << &II;
6287  else if (getLangOptions().C99)
6288    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6289  else
6290    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6291
6292  // Set a Declarator for the implicit definition: int foo();
6293  const char *Dummy;
6294  AttributeFactory attrFactory;
6295  DeclSpec DS(attrFactory);
6296  unsigned DiagID;
6297  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6298  (void)Error; // Silence warning.
6299  assert(!Error && "Error setting up implicit decl!");
6300  Declarator D(DS, Declarator::BlockContext);
6301  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6302                                             0, 0, true, SourceLocation(),
6303                                             EST_None, SourceLocation(),
6304                                             0, 0, 0, 0, Loc, Loc, D),
6305                DS.getAttributes(),
6306                SourceLocation());
6307  D.SetIdentifier(&II, Loc);
6308
6309  // Insert this function into translation-unit scope.
6310
6311  DeclContext *PrevDC = CurContext;
6312  CurContext = Context.getTranslationUnitDecl();
6313
6314  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6315  FD->setImplicit();
6316
6317  CurContext = PrevDC;
6318
6319  AddKnownFunctionAttributes(FD);
6320
6321  return FD;
6322}
6323
6324/// \brief Adds any function attributes that we know a priori based on
6325/// the declaration of this function.
6326///
6327/// These attributes can apply both to implicitly-declared builtins
6328/// (like __builtin___printf_chk) or to library-declared functions
6329/// like NSLog or printf.
6330void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6331  if (FD->isInvalidDecl())
6332    return;
6333
6334  // If this is a built-in function, map its builtin attributes to
6335  // actual attributes.
6336  if (unsigned BuiltinID = FD->getBuiltinID()) {
6337    // Handle printf-formatting attributes.
6338    unsigned FormatIdx;
6339    bool HasVAListArg;
6340    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6341      if (!FD->getAttr<FormatAttr>())
6342        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6343                                                "printf", FormatIdx+1,
6344                                               HasVAListArg ? 0 : FormatIdx+2));
6345    }
6346    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6347                                             HasVAListArg)) {
6348     if (!FD->getAttr<FormatAttr>())
6349       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6350                                              "scanf", FormatIdx+1,
6351                                              HasVAListArg ? 0 : FormatIdx+2));
6352    }
6353
6354    // Mark const if we don't care about errno and that is the only
6355    // thing preventing the function from being const. This allows
6356    // IRgen to use LLVM intrinsics for such functions.
6357    if (!getLangOptions().MathErrno &&
6358        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6359      if (!FD->getAttr<ConstAttr>())
6360        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6361    }
6362
6363    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6364      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6365    if (Context.BuiltinInfo.isConst(BuiltinID))
6366      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6367  }
6368
6369  IdentifierInfo *Name = FD->getIdentifier();
6370  if (!Name)
6371    return;
6372  if ((!getLangOptions().CPlusPlus &&
6373       FD->getDeclContext()->isTranslationUnit()) ||
6374      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6375       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6376       LinkageSpecDecl::lang_c)) {
6377    // Okay: this could be a libc/libm/Objective-C function we know
6378    // about.
6379  } else
6380    return;
6381
6382  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6383    // FIXME: NSLog and NSLogv should be target specific
6384    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6385      // FIXME: We known better than our headers.
6386      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6387    } else
6388      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6389                                             "printf", 1,
6390                                             Name->isStr("NSLogv") ? 0 : 2));
6391  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6392    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6393    // target-specific builtins, perhaps?
6394    if (!FD->getAttr<FormatAttr>())
6395      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6396                                             "printf", 2,
6397                                             Name->isStr("vasprintf") ? 0 : 3));
6398  }
6399}
6400
6401TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6402                                    TypeSourceInfo *TInfo) {
6403  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6404  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6405
6406  if (!TInfo) {
6407    assert(D.isInvalidType() && "no declarator info for valid type");
6408    TInfo = Context.getTrivialTypeSourceInfo(T);
6409  }
6410
6411  // Scope manipulation handled by caller.
6412  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6413                                           D.getSourceRange().getBegin(),
6414                                           D.getIdentifierLoc(),
6415                                           D.getIdentifier(),
6416                                           TInfo);
6417
6418  // Bail out immediately if we have an invalid declaration.
6419  if (D.isInvalidType()) {
6420    NewTD->setInvalidDecl();
6421    return NewTD;
6422  }
6423
6424  // C++ [dcl.typedef]p8:
6425  //   If the typedef declaration defines an unnamed class (or
6426  //   enum), the first typedef-name declared by the declaration
6427  //   to be that class type (or enum type) is used to denote the
6428  //   class type (or enum type) for linkage purposes only.
6429  // We need to check whether the type was declared in the declaration.
6430  switch (D.getDeclSpec().getTypeSpecType()) {
6431  case TST_enum:
6432  case TST_struct:
6433  case TST_union:
6434  case TST_class: {
6435    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6436
6437    // Do nothing if the tag is not anonymous or already has an
6438    // associated typedef (from an earlier typedef in this decl group).
6439    if (tagFromDeclSpec->getIdentifier()) break;
6440    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6441
6442    // A well-formed anonymous tag must always be a TUK_Definition.
6443    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6444
6445    // The type must match the tag exactly;  no qualifiers allowed.
6446    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6447      break;
6448
6449    // Otherwise, set this is the anon-decl typedef for the tag.
6450    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6451    break;
6452  }
6453
6454  default:
6455    break;
6456  }
6457
6458  return NewTD;
6459}
6460
6461
6462/// \brief Determine whether a tag with a given kind is acceptable
6463/// as a redeclaration of the given tag declaration.
6464///
6465/// \returns true if the new tag kind is acceptable, false otherwise.
6466bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6467                                        TagTypeKind NewTag,
6468                                        SourceLocation NewTagLoc,
6469                                        const IdentifierInfo &Name) {
6470  // C++ [dcl.type.elab]p3:
6471  //   The class-key or enum keyword present in the
6472  //   elaborated-type-specifier shall agree in kind with the
6473  //   declaration to which the name in the elaborated-type-specifier
6474  //   refers. This rule also applies to the form of
6475  //   elaborated-type-specifier that declares a class-name or
6476  //   friend class since it can be construed as referring to the
6477  //   definition of the class. Thus, in any
6478  //   elaborated-type-specifier, the enum keyword shall be used to
6479  //   refer to an enumeration (7.2), the union class-key shall be
6480  //   used to refer to a union (clause 9), and either the class or
6481  //   struct class-key shall be used to refer to a class (clause 9)
6482  //   declared using the class or struct class-key.
6483  TagTypeKind OldTag = Previous->getTagKind();
6484  if (OldTag == NewTag)
6485    return true;
6486
6487  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6488      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6489    // Warn about the struct/class tag mismatch.
6490    bool isTemplate = false;
6491    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6492      isTemplate = Record->getDescribedClassTemplate();
6493
6494    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6495      << (NewTag == TTK_Class)
6496      << isTemplate << &Name
6497      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6498                              OldTag == TTK_Class? "class" : "struct");
6499    Diag(Previous->getLocation(), diag::note_previous_use);
6500    return true;
6501  }
6502  return false;
6503}
6504
6505/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6506/// former case, Name will be non-null.  In the later case, Name will be null.
6507/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6508/// reference/declaration/definition of a tag.
6509Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6510                     SourceLocation KWLoc, CXXScopeSpec &SS,
6511                     IdentifierInfo *Name, SourceLocation NameLoc,
6512                     AttributeList *Attr, AccessSpecifier AS,
6513                     MultiTemplateParamsArg TemplateParameterLists,
6514                     bool &OwnedDecl, bool &IsDependent,
6515                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6516                     TypeResult UnderlyingType) {
6517  // If this is not a definition, it must have a name.
6518  assert((Name != 0 || TUK == TUK_Definition) &&
6519         "Nameless record must be a definition!");
6520  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6521
6522  OwnedDecl = false;
6523  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6524
6525  // FIXME: Check explicit specializations more carefully.
6526  bool isExplicitSpecialization = false;
6527  bool Invalid = false;
6528
6529  // We only need to do this matching if we have template parameters
6530  // or a scope specifier, which also conveniently avoids this work
6531  // for non-C++ cases.
6532  if (TemplateParameterLists.size() > 0 ||
6533      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6534    if (TemplateParameterList *TemplateParams
6535          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6536                                                TemplateParameterLists.get(),
6537                                                TemplateParameterLists.size(),
6538                                                    TUK == TUK_Friend,
6539                                                    isExplicitSpecialization,
6540                                                    Invalid)) {
6541      if (TemplateParams->size() > 0) {
6542        // This is a declaration or definition of a class template (which may
6543        // be a member of another template).
6544
6545        if (Invalid)
6546          return 0;
6547
6548        OwnedDecl = false;
6549        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6550                                               SS, Name, NameLoc, Attr,
6551                                               TemplateParams, AS,
6552                                           TemplateParameterLists.size() - 1,
6553                 (TemplateParameterList**) TemplateParameterLists.release());
6554        return Result.get();
6555      } else {
6556        // The "template<>" header is extraneous.
6557        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6558          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6559        isExplicitSpecialization = true;
6560      }
6561    }
6562  }
6563
6564  // Figure out the underlying type if this a enum declaration. We need to do
6565  // this early, because it's needed to detect if this is an incompatible
6566  // redeclaration.
6567  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6568
6569  if (Kind == TTK_Enum) {
6570    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6571      // No underlying type explicitly specified, or we failed to parse the
6572      // type, default to int.
6573      EnumUnderlying = Context.IntTy.getTypePtr();
6574    else if (UnderlyingType.get()) {
6575      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6576      // integral type; any cv-qualification is ignored.
6577      TypeSourceInfo *TI = 0;
6578      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6579      EnumUnderlying = TI;
6580
6581      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6582
6583      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6584        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6585          << T;
6586        // Recover by falling back to int.
6587        EnumUnderlying = Context.IntTy.getTypePtr();
6588      }
6589
6590      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6591                                          UPPC_FixedUnderlyingType))
6592        EnumUnderlying = Context.IntTy.getTypePtr();
6593
6594    } else if (getLangOptions().Microsoft)
6595      // Microsoft enums are always of int type.
6596      EnumUnderlying = Context.IntTy.getTypePtr();
6597  }
6598
6599  DeclContext *SearchDC = CurContext;
6600  DeclContext *DC = CurContext;
6601  bool isStdBadAlloc = false;
6602
6603  RedeclarationKind Redecl = ForRedeclaration;
6604  if (TUK == TUK_Friend || TUK == TUK_Reference)
6605    Redecl = NotForRedeclaration;
6606
6607  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6608
6609  if (Name && SS.isNotEmpty()) {
6610    // We have a nested-name tag ('struct foo::bar').
6611
6612    // Check for invalid 'foo::'.
6613    if (SS.isInvalid()) {
6614      Name = 0;
6615      goto CreateNewDecl;
6616    }
6617
6618    // If this is a friend or a reference to a class in a dependent
6619    // context, don't try to make a decl for it.
6620    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6621      DC = computeDeclContext(SS, false);
6622      if (!DC) {
6623        IsDependent = true;
6624        return 0;
6625      }
6626    } else {
6627      DC = computeDeclContext(SS, true);
6628      if (!DC) {
6629        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6630          << SS.getRange();
6631        return 0;
6632      }
6633    }
6634
6635    if (RequireCompleteDeclContext(SS, DC))
6636      return 0;
6637
6638    SearchDC = DC;
6639    // Look-up name inside 'foo::'.
6640    LookupQualifiedName(Previous, DC);
6641
6642    if (Previous.isAmbiguous())
6643      return 0;
6644
6645    if (Previous.empty()) {
6646      // Name lookup did not find anything. However, if the
6647      // nested-name-specifier refers to the current instantiation,
6648      // and that current instantiation has any dependent base
6649      // classes, we might find something at instantiation time: treat
6650      // this as a dependent elaborated-type-specifier.
6651      // But this only makes any sense for reference-like lookups.
6652      if (Previous.wasNotFoundInCurrentInstantiation() &&
6653          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6654        IsDependent = true;
6655        return 0;
6656      }
6657
6658      // A tag 'foo::bar' must already exist.
6659      Diag(NameLoc, diag::err_not_tag_in_scope)
6660        << Kind << Name << DC << SS.getRange();
6661      Name = 0;
6662      Invalid = true;
6663      goto CreateNewDecl;
6664    }
6665  } else if (Name) {
6666    // If this is a named struct, check to see if there was a previous forward
6667    // declaration or definition.
6668    // FIXME: We're looking into outer scopes here, even when we
6669    // shouldn't be. Doing so can result in ambiguities that we
6670    // shouldn't be diagnosing.
6671    LookupName(Previous, S);
6672
6673    // Note:  there used to be some attempt at recovery here.
6674    if (Previous.isAmbiguous())
6675      return 0;
6676
6677    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6678      // FIXME: This makes sure that we ignore the contexts associated
6679      // with C structs, unions, and enums when looking for a matching
6680      // tag declaration or definition. See the similar lookup tweak
6681      // in Sema::LookupName; is there a better way to deal with this?
6682      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6683        SearchDC = SearchDC->getParent();
6684    }
6685  } else if (S->isFunctionPrototypeScope()) {
6686    // If this is an enum declaration in function prototype scope, set its
6687    // initial context to the translation unit.
6688    SearchDC = Context.getTranslationUnitDecl();
6689  }
6690
6691  if (Previous.isSingleResult() &&
6692      Previous.getFoundDecl()->isTemplateParameter()) {
6693    // Maybe we will complain about the shadowed template parameter.
6694    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6695    // Just pretend that we didn't see the previous declaration.
6696    Previous.clear();
6697  }
6698
6699  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6700      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6701    // This is a declaration of or a reference to "std::bad_alloc".
6702    isStdBadAlloc = true;
6703
6704    if (Previous.empty() && StdBadAlloc) {
6705      // std::bad_alloc has been implicitly declared (but made invisible to
6706      // name lookup). Fill in this implicit declaration as the previous
6707      // declaration, so that the declarations get chained appropriately.
6708      Previous.addDecl(getStdBadAlloc());
6709    }
6710  }
6711
6712  // If we didn't find a previous declaration, and this is a reference
6713  // (or friend reference), move to the correct scope.  In C++, we
6714  // also need to do a redeclaration lookup there, just in case
6715  // there's a shadow friend decl.
6716  if (Name && Previous.empty() &&
6717      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6718    if (Invalid) goto CreateNewDecl;
6719    assert(SS.isEmpty());
6720
6721    if (TUK == TUK_Reference) {
6722      // C++ [basic.scope.pdecl]p5:
6723      //   -- for an elaborated-type-specifier of the form
6724      //
6725      //          class-key identifier
6726      //
6727      //      if the elaborated-type-specifier is used in the
6728      //      decl-specifier-seq or parameter-declaration-clause of a
6729      //      function defined in namespace scope, the identifier is
6730      //      declared as a class-name in the namespace that contains
6731      //      the declaration; otherwise, except as a friend
6732      //      declaration, the identifier is declared in the smallest
6733      //      non-class, non-function-prototype scope that contains the
6734      //      declaration.
6735      //
6736      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6737      // C structs and unions.
6738      //
6739      // It is an error in C++ to declare (rather than define) an enum
6740      // type, including via an elaborated type specifier.  We'll
6741      // diagnose that later; for now, declare the enum in the same
6742      // scope as we would have picked for any other tag type.
6743      //
6744      // GNU C also supports this behavior as part of its incomplete
6745      // enum types extension, while GNU C++ does not.
6746      //
6747      // Find the context where we'll be declaring the tag.
6748      // FIXME: We would like to maintain the current DeclContext as the
6749      // lexical context,
6750      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6751        SearchDC = SearchDC->getParent();
6752
6753      // Find the scope where we'll be declaring the tag.
6754      while (S->isClassScope() ||
6755             (getLangOptions().CPlusPlus &&
6756              S->isFunctionPrototypeScope()) ||
6757             ((S->getFlags() & Scope::DeclScope) == 0) ||
6758             (S->getEntity() &&
6759              ((DeclContext *)S->getEntity())->isTransparentContext()))
6760        S = S->getParent();
6761    } else {
6762      assert(TUK == TUK_Friend);
6763      // C++ [namespace.memdef]p3:
6764      //   If a friend declaration in a non-local class first declares a
6765      //   class or function, the friend class or function is a member of
6766      //   the innermost enclosing namespace.
6767      SearchDC = SearchDC->getEnclosingNamespaceContext();
6768    }
6769
6770    // In C++, we need to do a redeclaration lookup to properly
6771    // diagnose some problems.
6772    if (getLangOptions().CPlusPlus) {
6773      Previous.setRedeclarationKind(ForRedeclaration);
6774      LookupQualifiedName(Previous, SearchDC);
6775    }
6776  }
6777
6778  if (!Previous.empty()) {
6779    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6780
6781    // It's okay to have a tag decl in the same scope as a typedef
6782    // which hides a tag decl in the same scope.  Finding this
6783    // insanity with a redeclaration lookup can only actually happen
6784    // in C++.
6785    //
6786    // This is also okay for elaborated-type-specifiers, which is
6787    // technically forbidden by the current standard but which is
6788    // okay according to the likely resolution of an open issue;
6789    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6790    if (getLangOptions().CPlusPlus) {
6791      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6792        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6793          TagDecl *Tag = TT->getDecl();
6794          if (Tag->getDeclName() == Name &&
6795              Tag->getDeclContext()->getRedeclContext()
6796                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6797            PrevDecl = Tag;
6798            Previous.clear();
6799            Previous.addDecl(Tag);
6800            Previous.resolveKind();
6801          }
6802        }
6803      }
6804    }
6805
6806    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6807      // If this is a use of a previous tag, or if the tag is already declared
6808      // in the same scope (so that the definition/declaration completes or
6809      // rementions the tag), reuse the decl.
6810      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6811          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6812        // Make sure that this wasn't declared as an enum and now used as a
6813        // struct or something similar.
6814        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6815          bool SafeToContinue
6816            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6817               Kind != TTK_Enum);
6818          if (SafeToContinue)
6819            Diag(KWLoc, diag::err_use_with_wrong_tag)
6820              << Name
6821              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6822                                              PrevTagDecl->getKindName());
6823          else
6824            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6825          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6826
6827          if (SafeToContinue)
6828            Kind = PrevTagDecl->getTagKind();
6829          else {
6830            // Recover by making this an anonymous redefinition.
6831            Name = 0;
6832            Previous.clear();
6833            Invalid = true;
6834          }
6835        }
6836
6837        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6838          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6839
6840          // All conflicts with previous declarations are recovered by
6841          // returning the previous declaration.
6842          if (ScopedEnum != PrevEnum->isScoped()) {
6843            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6844              << PrevEnum->isScoped();
6845            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6846            return PrevTagDecl;
6847          }
6848          else if (EnumUnderlying && PrevEnum->isFixed()) {
6849            QualType T;
6850            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6851                T = TI->getType();
6852            else
6853                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6854
6855            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6856              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6857                   diag::err_enum_redeclare_type_mismatch)
6858                << T
6859                << PrevEnum->getIntegerType();
6860              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6861              return PrevTagDecl;
6862            }
6863          }
6864          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6865            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6866              << PrevEnum->isFixed();
6867            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6868            return PrevTagDecl;
6869          }
6870        }
6871
6872        if (!Invalid) {
6873          // If this is a use, just return the declaration we found.
6874
6875          // FIXME: In the future, return a variant or some other clue
6876          // for the consumer of this Decl to know it doesn't own it.
6877          // For our current ASTs this shouldn't be a problem, but will
6878          // need to be changed with DeclGroups.
6879          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6880              TUK == TUK_Friend)
6881            return PrevTagDecl;
6882
6883          // Diagnose attempts to redefine a tag.
6884          if (TUK == TUK_Definition) {
6885            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6886              // If we're defining a specialization and the previous definition
6887              // is from an implicit instantiation, don't emit an error
6888              // here; we'll catch this in the general case below.
6889              if (!isExplicitSpecialization ||
6890                  !isa<CXXRecordDecl>(Def) ||
6891                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6892                                               == TSK_ExplicitSpecialization) {
6893                Diag(NameLoc, diag::err_redefinition) << Name;
6894                Diag(Def->getLocation(), diag::note_previous_definition);
6895                // If this is a redefinition, recover by making this
6896                // struct be anonymous, which will make any later
6897                // references get the previous definition.
6898                Name = 0;
6899                Previous.clear();
6900                Invalid = true;
6901              }
6902            } else {
6903              // If the type is currently being defined, complain
6904              // about a nested redefinition.
6905              const TagType *Tag
6906                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6907              if (Tag->isBeingDefined()) {
6908                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6909                Diag(PrevTagDecl->getLocation(),
6910                     diag::note_previous_definition);
6911                Name = 0;
6912                Previous.clear();
6913                Invalid = true;
6914              }
6915            }
6916
6917            // Okay, this is definition of a previously declared or referenced
6918            // tag PrevDecl. We're going to create a new Decl for it.
6919          }
6920        }
6921        // If we get here we have (another) forward declaration or we
6922        // have a definition.  Just create a new decl.
6923
6924      } else {
6925        // If we get here, this is a definition of a new tag type in a nested
6926        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6927        // new decl/type.  We set PrevDecl to NULL so that the entities
6928        // have distinct types.
6929        Previous.clear();
6930      }
6931      // If we get here, we're going to create a new Decl. If PrevDecl
6932      // is non-NULL, it's a definition of the tag declared by
6933      // PrevDecl. If it's NULL, we have a new definition.
6934
6935
6936    // Otherwise, PrevDecl is not a tag, but was found with tag
6937    // lookup.  This is only actually possible in C++, where a few
6938    // things like templates still live in the tag namespace.
6939    } else {
6940      assert(getLangOptions().CPlusPlus);
6941
6942      // Use a better diagnostic if an elaborated-type-specifier
6943      // found the wrong kind of type on the first
6944      // (non-redeclaration) lookup.
6945      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6946          !Previous.isForRedeclaration()) {
6947        unsigned Kind = 0;
6948        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6949        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6950        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6951        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6952        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6953        Invalid = true;
6954
6955      // Otherwise, only diagnose if the declaration is in scope.
6956      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6957                                isExplicitSpecialization)) {
6958        // do nothing
6959
6960      // Diagnose implicit declarations introduced by elaborated types.
6961      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6962        unsigned Kind = 0;
6963        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6964        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6965        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6966        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6967        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6968        Invalid = true;
6969
6970      // Otherwise it's a declaration.  Call out a particularly common
6971      // case here.
6972      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6973        unsigned Kind = 0;
6974        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
6975        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6976          << Name << Kind << TND->getUnderlyingType();
6977        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6978        Invalid = true;
6979
6980      // Otherwise, diagnose.
6981      } else {
6982        // The tag name clashes with something else in the target scope,
6983        // issue an error and recover by making this tag be anonymous.
6984        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6985        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6986        Name = 0;
6987        Invalid = true;
6988      }
6989
6990      // The existing declaration isn't relevant to us; we're in a
6991      // new scope, so clear out the previous declaration.
6992      Previous.clear();
6993    }
6994  }
6995
6996CreateNewDecl:
6997
6998  TagDecl *PrevDecl = 0;
6999  if (Previous.isSingleResult())
7000    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7001
7002  // If there is an identifier, use the location of the identifier as the
7003  // location of the decl, otherwise use the location of the struct/union
7004  // keyword.
7005  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7006
7007  // Otherwise, create a new declaration. If there is a previous
7008  // declaration of the same entity, the two will be linked via
7009  // PrevDecl.
7010  TagDecl *New;
7011
7012  bool IsForwardReference = false;
7013  if (Kind == TTK_Enum) {
7014    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7015    // enum X { A, B, C } D;    D should chain to X.
7016    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7017                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7018                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7019    // If this is an undefined enum, warn.
7020    if (TUK != TUK_Definition && !Invalid) {
7021      TagDecl *Def;
7022      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7023        // C++0x: 7.2p2: opaque-enum-declaration.
7024        // Conflicts are diagnosed above. Do nothing.
7025      }
7026      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7027        Diag(Loc, diag::ext_forward_ref_enum_def)
7028          << New;
7029        Diag(Def->getLocation(), diag::note_previous_definition);
7030      } else {
7031        unsigned DiagID = diag::ext_forward_ref_enum;
7032        if (getLangOptions().Microsoft)
7033          DiagID = diag::ext_ms_forward_ref_enum;
7034        else if (getLangOptions().CPlusPlus)
7035          DiagID = diag::err_forward_ref_enum;
7036        Diag(Loc, DiagID);
7037
7038        // If this is a forward-declared reference to an enumeration, make a
7039        // note of it; we won't actually be introducing the declaration into
7040        // the declaration context.
7041        if (TUK == TUK_Reference)
7042          IsForwardReference = true;
7043      }
7044    }
7045
7046    if (EnumUnderlying) {
7047      EnumDecl *ED = cast<EnumDecl>(New);
7048      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7049        ED->setIntegerTypeSourceInfo(TI);
7050      else
7051        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7052      ED->setPromotionType(ED->getIntegerType());
7053    }
7054
7055  } else {
7056    // struct/union/class
7057
7058    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7059    // struct X { int A; } D;    D should chain to X.
7060    if (getLangOptions().CPlusPlus) {
7061      // FIXME: Look for a way to use RecordDecl for simple structs.
7062      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7063                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7064
7065      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7066        StdBadAlloc = cast<CXXRecordDecl>(New);
7067    } else
7068      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7069                               cast_or_null<RecordDecl>(PrevDecl));
7070  }
7071
7072  // Maybe add qualifier info.
7073  if (SS.isNotEmpty()) {
7074    if (SS.isSet()) {
7075      New->setQualifierInfo(SS.getWithLocInContext(Context));
7076      if (TemplateParameterLists.size() > 0) {
7077        New->setTemplateParameterListsInfo(Context,
7078                                           TemplateParameterLists.size(),
7079                    (TemplateParameterList**) TemplateParameterLists.release());
7080      }
7081    }
7082    else
7083      Invalid = true;
7084  }
7085
7086  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7087    // Add alignment attributes if necessary; these attributes are checked when
7088    // the ASTContext lays out the structure.
7089    //
7090    // It is important for implementing the correct semantics that this
7091    // happen here (in act on tag decl). The #pragma pack stack is
7092    // maintained as a result of parser callbacks which can occur at
7093    // many points during the parsing of a struct declaration (because
7094    // the #pragma tokens are effectively skipped over during the
7095    // parsing of the struct).
7096    AddAlignmentAttributesForRecord(RD);
7097  }
7098
7099  // If this is a specialization of a member class (of a class template),
7100  // check the specialization.
7101  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7102    Invalid = true;
7103
7104  if (Invalid)
7105    New->setInvalidDecl();
7106
7107  if (Attr)
7108    ProcessDeclAttributeList(S, New, Attr);
7109
7110  // If we're declaring or defining a tag in function prototype scope
7111  // in C, note that this type can only be used within the function.
7112  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7113    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7114
7115  // Set the lexical context. If the tag has a C++ scope specifier, the
7116  // lexical context will be different from the semantic context.
7117  New->setLexicalDeclContext(CurContext);
7118
7119  // Mark this as a friend decl if applicable.
7120  if (TUK == TUK_Friend)
7121    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7122
7123  // Set the access specifier.
7124  if (!Invalid && SearchDC->isRecord())
7125    SetMemberAccessSpecifier(New, PrevDecl, AS);
7126
7127  if (TUK == TUK_Definition)
7128    New->startDefinition();
7129
7130  // If this has an identifier, add it to the scope stack.
7131  if (TUK == TUK_Friend) {
7132    // We might be replacing an existing declaration in the lookup tables;
7133    // if so, borrow its access specifier.
7134    if (PrevDecl)
7135      New->setAccess(PrevDecl->getAccess());
7136
7137    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7138    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7139    if (Name) // can be null along some error paths
7140      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7141        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7142  } else if (Name) {
7143    S = getNonFieldDeclScope(S);
7144    PushOnScopeChains(New, S, !IsForwardReference);
7145    if (IsForwardReference)
7146      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7147
7148  } else {
7149    CurContext->addDecl(New);
7150  }
7151
7152  // If this is the C FILE type, notify the AST context.
7153  if (IdentifierInfo *II = New->getIdentifier())
7154    if (!New->isInvalidDecl() &&
7155        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7156        II->isStr("FILE"))
7157      Context.setFILEDecl(New);
7158
7159  OwnedDecl = true;
7160  return New;
7161}
7162
7163void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7164  AdjustDeclIfTemplate(TagD);
7165  TagDecl *Tag = cast<TagDecl>(TagD);
7166
7167  // Enter the tag context.
7168  PushDeclContext(S, Tag);
7169}
7170
7171void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7172                                           SourceLocation FinalLoc,
7173                                           SourceLocation LBraceLoc) {
7174  AdjustDeclIfTemplate(TagD);
7175  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7176
7177  FieldCollector->StartClass();
7178
7179  if (!Record->getIdentifier())
7180    return;
7181
7182  if (FinalLoc.isValid())
7183    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7184
7185  // C++ [class]p2:
7186  //   [...] The class-name is also inserted into the scope of the
7187  //   class itself; this is known as the injected-class-name. For
7188  //   purposes of access checking, the injected-class-name is treated
7189  //   as if it were a public member name.
7190  CXXRecordDecl *InjectedClassName
7191    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7192                            Record->getLocStart(), Record->getLocation(),
7193                            Record->getIdentifier(),
7194                            /*PrevDecl=*/0,
7195                            /*DelayTypeCreation=*/true);
7196  Context.getTypeDeclType(InjectedClassName, Record);
7197  InjectedClassName->setImplicit();
7198  InjectedClassName->setAccess(AS_public);
7199  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7200      InjectedClassName->setDescribedClassTemplate(Template);
7201  PushOnScopeChains(InjectedClassName, S);
7202  assert(InjectedClassName->isInjectedClassName() &&
7203         "Broken injected-class-name");
7204}
7205
7206void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7207                                    SourceLocation RBraceLoc) {
7208  AdjustDeclIfTemplate(TagD);
7209  TagDecl *Tag = cast<TagDecl>(TagD);
7210  Tag->setRBraceLoc(RBraceLoc);
7211
7212  if (isa<CXXRecordDecl>(Tag))
7213    FieldCollector->FinishClass();
7214
7215  // Exit this scope of this tag's definition.
7216  PopDeclContext();
7217
7218  // Notify the consumer that we've defined a tag.
7219  Consumer.HandleTagDeclDefinition(Tag);
7220}
7221
7222void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7223  AdjustDeclIfTemplate(TagD);
7224  TagDecl *Tag = cast<TagDecl>(TagD);
7225  Tag->setInvalidDecl();
7226
7227  // We're undoing ActOnTagStartDefinition here, not
7228  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7229  // the FieldCollector.
7230
7231  PopDeclContext();
7232}
7233
7234// Note that FieldName may be null for anonymous bitfields.
7235bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7236                          QualType FieldTy, const Expr *BitWidth,
7237                          bool *ZeroWidth) {
7238  // Default to true; that shouldn't confuse checks for emptiness
7239  if (ZeroWidth)
7240    *ZeroWidth = true;
7241
7242  // C99 6.7.2.1p4 - verify the field type.
7243  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7244  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7245    // Handle incomplete types with specific error.
7246    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7247      return true;
7248    if (FieldName)
7249      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7250        << FieldName << FieldTy << BitWidth->getSourceRange();
7251    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7252      << FieldTy << BitWidth->getSourceRange();
7253  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7254                                             UPPC_BitFieldWidth))
7255    return true;
7256
7257  // If the bit-width is type- or value-dependent, don't try to check
7258  // it now.
7259  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7260    return false;
7261
7262  llvm::APSInt Value;
7263  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7264    return true;
7265
7266  if (Value != 0 && ZeroWidth)
7267    *ZeroWidth = false;
7268
7269  // Zero-width bitfield is ok for anonymous field.
7270  if (Value == 0 && FieldName)
7271    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7272
7273  if (Value.isSigned() && Value.isNegative()) {
7274    if (FieldName)
7275      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7276               << FieldName << Value.toString(10);
7277    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7278      << Value.toString(10);
7279  }
7280
7281  if (!FieldTy->isDependentType()) {
7282    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7283    if (Value.getZExtValue() > TypeSize) {
7284      if (!getLangOptions().CPlusPlus) {
7285        if (FieldName)
7286          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7287            << FieldName << (unsigned)Value.getZExtValue()
7288            << (unsigned)TypeSize;
7289
7290        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7291          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7292      }
7293
7294      if (FieldName)
7295        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7296          << FieldName << (unsigned)Value.getZExtValue()
7297          << (unsigned)TypeSize;
7298      else
7299        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7300          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7301    }
7302  }
7303
7304  return false;
7305}
7306
7307/// ActOnField - Each field of a struct/union/class is passed into this in order
7308/// to create a FieldDecl object for it.
7309Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7310                                 SourceLocation DeclStart,
7311                                 Declarator &D, ExprTy *BitfieldWidth) {
7312  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7313                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7314                               AS_public);
7315  return Res;
7316}
7317
7318/// HandleField - Analyze a field of a C struct or a C++ data member.
7319///
7320FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7321                             SourceLocation DeclStart,
7322                             Declarator &D, Expr *BitWidth,
7323                             AccessSpecifier AS) {
7324  IdentifierInfo *II = D.getIdentifier();
7325  SourceLocation Loc = DeclStart;
7326  if (II) Loc = D.getIdentifierLoc();
7327
7328  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7329  QualType T = TInfo->getType();
7330  if (getLangOptions().CPlusPlus) {
7331    CheckExtraCXXDefaultArguments(D);
7332
7333    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7334                                        UPPC_DataMemberType)) {
7335      D.setInvalidType();
7336      T = Context.IntTy;
7337      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7338    }
7339  }
7340
7341  DiagnoseFunctionSpecifiers(D);
7342
7343  if (D.getDeclSpec().isThreadSpecified())
7344    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7345
7346  // Check to see if this name was declared as a member previously
7347  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7348  LookupName(Previous, S);
7349  assert((Previous.empty() || Previous.isOverloadedResult() ||
7350          Previous.isSingleResult())
7351    && "Lookup of member name should be either overloaded, single or null");
7352
7353  // If the name is overloaded then get any declaration else get the single result
7354  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7355    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7356
7357  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7358    // Maybe we will complain about the shadowed template parameter.
7359    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7360    // Just pretend that we didn't see the previous declaration.
7361    PrevDecl = 0;
7362  }
7363
7364  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7365    PrevDecl = 0;
7366
7367  bool Mutable
7368    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7369  SourceLocation TSSL = D.getSourceRange().getBegin();
7370  FieldDecl *NewFD
7371    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7372                     AS, PrevDecl, &D);
7373
7374  if (NewFD->isInvalidDecl())
7375    Record->setInvalidDecl();
7376
7377  if (NewFD->isInvalidDecl() && PrevDecl) {
7378    // Don't introduce NewFD into scope; there's already something
7379    // with the same name in the same scope.
7380  } else if (II) {
7381    PushOnScopeChains(NewFD, S);
7382  } else
7383    Record->addDecl(NewFD);
7384
7385  return NewFD;
7386}
7387
7388/// \brief Build a new FieldDecl and check its well-formedness.
7389///
7390/// This routine builds a new FieldDecl given the fields name, type,
7391/// record, etc. \p PrevDecl should refer to any previous declaration
7392/// with the same name and in the same scope as the field to be
7393/// created.
7394///
7395/// \returns a new FieldDecl.
7396///
7397/// \todo The Declarator argument is a hack. It will be removed once
7398FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7399                                TypeSourceInfo *TInfo,
7400                                RecordDecl *Record, SourceLocation Loc,
7401                                bool Mutable, Expr *BitWidth,
7402                                SourceLocation TSSL,
7403                                AccessSpecifier AS, NamedDecl *PrevDecl,
7404                                Declarator *D) {
7405  IdentifierInfo *II = Name.getAsIdentifierInfo();
7406  bool InvalidDecl = false;
7407  if (D) InvalidDecl = D->isInvalidType();
7408
7409  // If we receive a broken type, recover by assuming 'int' and
7410  // marking this declaration as invalid.
7411  if (T.isNull()) {
7412    InvalidDecl = true;
7413    T = Context.IntTy;
7414  }
7415
7416  QualType EltTy = Context.getBaseElementType(T);
7417  if (!EltTy->isDependentType() &&
7418      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7419    // Fields of incomplete type force their record to be invalid.
7420    Record->setInvalidDecl();
7421    InvalidDecl = true;
7422  }
7423
7424  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7425  // than a variably modified type.
7426  if (!InvalidDecl && T->isVariablyModifiedType()) {
7427    bool SizeIsNegative;
7428    llvm::APSInt Oversized;
7429    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7430                                                           SizeIsNegative,
7431                                                           Oversized);
7432    if (!FixedTy.isNull()) {
7433      Diag(Loc, diag::warn_illegal_constant_array_size);
7434      T = FixedTy;
7435    } else {
7436      if (SizeIsNegative)
7437        Diag(Loc, diag::err_typecheck_negative_array_size);
7438      else if (Oversized.getBoolValue())
7439        Diag(Loc, diag::err_array_too_large)
7440          << Oversized.toString(10);
7441      else
7442        Diag(Loc, diag::err_typecheck_field_variable_size);
7443      InvalidDecl = true;
7444    }
7445  }
7446
7447  // Fields can not have abstract class types
7448  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7449                                             diag::err_abstract_type_in_decl,
7450                                             AbstractFieldType))
7451    InvalidDecl = true;
7452
7453  bool ZeroWidth = false;
7454  // If this is declared as a bit-field, check the bit-field.
7455  if (!InvalidDecl && BitWidth &&
7456      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7457    InvalidDecl = true;
7458    BitWidth = 0;
7459    ZeroWidth = false;
7460  }
7461
7462  // Check that 'mutable' is consistent with the type of the declaration.
7463  if (!InvalidDecl && Mutable) {
7464    unsigned DiagID = 0;
7465    if (T->isReferenceType())
7466      DiagID = diag::err_mutable_reference;
7467    else if (T.isConstQualified())
7468      DiagID = diag::err_mutable_const;
7469
7470    if (DiagID) {
7471      SourceLocation ErrLoc = Loc;
7472      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7473        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7474      Diag(ErrLoc, DiagID);
7475      Mutable = false;
7476      InvalidDecl = true;
7477    }
7478  }
7479
7480  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7481                                       BitWidth, Mutable);
7482  if (InvalidDecl)
7483    NewFD->setInvalidDecl();
7484
7485  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7486    Diag(Loc, diag::err_duplicate_member) << II;
7487    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7488    NewFD->setInvalidDecl();
7489  }
7490
7491  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7492    if (Record->isUnion()) {
7493      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7494        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7495        if (RDecl->getDefinition()) {
7496          // C++ [class.union]p1: An object of a class with a non-trivial
7497          // constructor, a non-trivial copy constructor, a non-trivial
7498          // destructor, or a non-trivial copy assignment operator
7499          // cannot be a member of a union, nor can an array of such
7500          // objects.
7501          // TODO: C++0x alters this restriction significantly.
7502          if (CheckNontrivialField(NewFD))
7503            NewFD->setInvalidDecl();
7504        }
7505      }
7506
7507      // C++ [class.union]p1: If a union contains a member of reference type,
7508      // the program is ill-formed.
7509      if (EltTy->isReferenceType()) {
7510        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7511          << NewFD->getDeclName() << EltTy;
7512        NewFD->setInvalidDecl();
7513      }
7514    }
7515  }
7516
7517  // FIXME: We need to pass in the attributes given an AST
7518  // representation, not a parser representation.
7519  if (D)
7520    // FIXME: What to pass instead of TUScope?
7521    ProcessDeclAttributes(TUScope, NewFD, *D);
7522
7523  if (T.isObjCGCWeak())
7524    Diag(Loc, diag::warn_attribute_weak_on_field);
7525
7526  NewFD->setAccess(AS);
7527  return NewFD;
7528}
7529
7530bool Sema::CheckNontrivialField(FieldDecl *FD) {
7531  assert(FD);
7532  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7533
7534  if (FD->isInvalidDecl())
7535    return true;
7536
7537  QualType EltTy = Context.getBaseElementType(FD->getType());
7538  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7539    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7540    if (RDecl->getDefinition()) {
7541      // We check for copy constructors before constructors
7542      // because otherwise we'll never get complaints about
7543      // copy constructors.
7544
7545      CXXSpecialMember member = CXXInvalid;
7546      if (!RDecl->hasTrivialCopyConstructor())
7547        member = CXXCopyConstructor;
7548      else if (!RDecl->hasTrivialConstructor())
7549        member = CXXConstructor;
7550      else if (!RDecl->hasTrivialCopyAssignment())
7551        member = CXXCopyAssignment;
7552      else if (!RDecl->hasTrivialDestructor())
7553        member = CXXDestructor;
7554
7555      if (member != CXXInvalid) {
7556        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7557              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7558        DiagnoseNontrivial(RT, member);
7559        return true;
7560      }
7561    }
7562  }
7563
7564  return false;
7565}
7566
7567/// DiagnoseNontrivial - Given that a class has a non-trivial
7568/// special member, figure out why.
7569void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7570  QualType QT(T, 0U);
7571  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7572
7573  // Check whether the member was user-declared.
7574  switch (member) {
7575  case CXXInvalid:
7576    break;
7577
7578  case CXXConstructor:
7579    if (RD->hasUserDeclaredConstructor()) {
7580      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7581      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7582        const FunctionDecl *body = 0;
7583        ci->hasBody(body);
7584        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7585          SourceLocation CtorLoc = ci->getLocation();
7586          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7587          return;
7588        }
7589      }
7590
7591      assert(0 && "found no user-declared constructors");
7592      return;
7593    }
7594    break;
7595
7596  case CXXCopyConstructor:
7597    if (RD->hasUserDeclaredCopyConstructor()) {
7598      SourceLocation CtorLoc =
7599        RD->getCopyConstructor(Context, 0)->getLocation();
7600      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7601      return;
7602    }
7603    break;
7604
7605  case CXXCopyAssignment:
7606    if (RD->hasUserDeclaredCopyAssignment()) {
7607      // FIXME: this should use the location of the copy
7608      // assignment, not the type.
7609      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7610      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7611      return;
7612    }
7613    break;
7614
7615  case CXXDestructor:
7616    if (RD->hasUserDeclaredDestructor()) {
7617      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7618      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7619      return;
7620    }
7621    break;
7622  }
7623
7624  typedef CXXRecordDecl::base_class_iterator base_iter;
7625
7626  // Virtual bases and members inhibit trivial copying/construction,
7627  // but not trivial destruction.
7628  if (member != CXXDestructor) {
7629    // Check for virtual bases.  vbases includes indirect virtual bases,
7630    // so we just iterate through the direct bases.
7631    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7632      if (bi->isVirtual()) {
7633        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7634        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7635        return;
7636      }
7637
7638    // Check for virtual methods.
7639    typedef CXXRecordDecl::method_iterator meth_iter;
7640    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7641         ++mi) {
7642      if (mi->isVirtual()) {
7643        SourceLocation MLoc = mi->getSourceRange().getBegin();
7644        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7645        return;
7646      }
7647    }
7648  }
7649
7650  bool (CXXRecordDecl::*hasTrivial)() const;
7651  switch (member) {
7652  case CXXConstructor:
7653    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7654  case CXXCopyConstructor:
7655    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7656  case CXXCopyAssignment:
7657    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7658  case CXXDestructor:
7659    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7660  default:
7661    assert(0 && "unexpected special member"); return;
7662  }
7663
7664  // Check for nontrivial bases (and recurse).
7665  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7666    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7667    assert(BaseRT && "Don't know how to handle dependent bases");
7668    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7669    if (!(BaseRecTy->*hasTrivial)()) {
7670      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7671      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7672      DiagnoseNontrivial(BaseRT, member);
7673      return;
7674    }
7675  }
7676
7677  // Check for nontrivial members (and recurse).
7678  typedef RecordDecl::field_iterator field_iter;
7679  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7680       ++fi) {
7681    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7682    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7683      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7684
7685      if (!(EltRD->*hasTrivial)()) {
7686        SourceLocation FLoc = (*fi)->getLocation();
7687        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7688        DiagnoseNontrivial(EltRT, member);
7689        return;
7690      }
7691    }
7692  }
7693
7694  assert(0 && "found no explanation for non-trivial member");
7695}
7696
7697/// TranslateIvarVisibility - Translate visibility from a token ID to an
7698///  AST enum value.
7699static ObjCIvarDecl::AccessControl
7700TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7701  switch (ivarVisibility) {
7702  default: assert(0 && "Unknown visitibility kind");
7703  case tok::objc_private: return ObjCIvarDecl::Private;
7704  case tok::objc_public: return ObjCIvarDecl::Public;
7705  case tok::objc_protected: return ObjCIvarDecl::Protected;
7706  case tok::objc_package: return ObjCIvarDecl::Package;
7707  }
7708}
7709
7710/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7711/// in order to create an IvarDecl object for it.
7712Decl *Sema::ActOnIvar(Scope *S,
7713                                SourceLocation DeclStart,
7714                                Decl *IntfDecl,
7715                                Declarator &D, ExprTy *BitfieldWidth,
7716                                tok::ObjCKeywordKind Visibility) {
7717
7718  IdentifierInfo *II = D.getIdentifier();
7719  Expr *BitWidth = (Expr*)BitfieldWidth;
7720  SourceLocation Loc = DeclStart;
7721  if (II) Loc = D.getIdentifierLoc();
7722
7723  // FIXME: Unnamed fields can be handled in various different ways, for
7724  // example, unnamed unions inject all members into the struct namespace!
7725
7726  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7727  QualType T = TInfo->getType();
7728
7729  if (BitWidth) {
7730    // 6.7.2.1p3, 6.7.2.1p4
7731    if (VerifyBitField(Loc, II, T, BitWidth)) {
7732      D.setInvalidType();
7733      BitWidth = 0;
7734    }
7735  } else {
7736    // Not a bitfield.
7737
7738    // validate II.
7739
7740  }
7741  if (T->isReferenceType()) {
7742    Diag(Loc, diag::err_ivar_reference_type);
7743    D.setInvalidType();
7744  }
7745  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7746  // than a variably modified type.
7747  else if (T->isVariablyModifiedType()) {
7748    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7749    D.setInvalidType();
7750  }
7751
7752  // Get the visibility (access control) for this ivar.
7753  ObjCIvarDecl::AccessControl ac =
7754    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7755                                        : ObjCIvarDecl::None;
7756  // Must set ivar's DeclContext to its enclosing interface.
7757  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7758  ObjCContainerDecl *EnclosingContext;
7759  if (ObjCImplementationDecl *IMPDecl =
7760      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7761    if (!LangOpts.ObjCNonFragileABI2) {
7762    // Case of ivar declared in an implementation. Context is that of its class.
7763      EnclosingContext = IMPDecl->getClassInterface();
7764      assert(EnclosingContext && "Implementation has no class interface!");
7765    }
7766    else
7767      EnclosingContext = EnclosingDecl;
7768  } else {
7769    if (ObjCCategoryDecl *CDecl =
7770        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7771      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7772        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7773        return 0;
7774      }
7775    }
7776    EnclosingContext = EnclosingDecl;
7777  }
7778
7779  // Construct the decl.
7780  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7781                                             DeclStart, Loc, II, T,
7782                                             TInfo, ac, (Expr *)BitfieldWidth);
7783
7784  if (II) {
7785    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7786                                           ForRedeclaration);
7787    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7788        && !isa<TagDecl>(PrevDecl)) {
7789      Diag(Loc, diag::err_duplicate_member) << II;
7790      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7791      NewID->setInvalidDecl();
7792    }
7793  }
7794
7795  // Process attributes attached to the ivar.
7796  ProcessDeclAttributes(S, NewID, D);
7797
7798  if (D.isInvalidType())
7799    NewID->setInvalidDecl();
7800
7801  if (II) {
7802    // FIXME: When interfaces are DeclContexts, we'll need to add
7803    // these to the interface.
7804    S->AddDecl(NewID);
7805    IdResolver.AddDecl(NewID);
7806  }
7807
7808  return NewID;
7809}
7810
7811/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7812/// class and class extensions. For every class @interface and class
7813/// extension @interface, if the last ivar is a bitfield of any type,
7814/// then add an implicit `char :0` ivar to the end of that interface.
7815void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7816                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7817  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7818    return;
7819
7820  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7821  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7822
7823  if (!Ivar->isBitField())
7824    return;
7825  uint64_t BitFieldSize =
7826    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7827  if (BitFieldSize == 0)
7828    return;
7829  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7830  if (!ID) {
7831    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7832      if (!CD->IsClassExtension())
7833        return;
7834    }
7835    // No need to add this to end of @implementation.
7836    else
7837      return;
7838  }
7839  // All conditions are met. Add a new bitfield to the tail end of ivars.
7840  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7841  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7842
7843  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7844                              DeclLoc, DeclLoc, 0,
7845                              Context.CharTy,
7846                              Context.CreateTypeSourceInfo(Context.CharTy),
7847                              ObjCIvarDecl::Private, BW,
7848                              true);
7849  AllIvarDecls.push_back(Ivar);
7850}
7851
7852void Sema::ActOnFields(Scope* S,
7853                       SourceLocation RecLoc, Decl *EnclosingDecl,
7854                       Decl **Fields, unsigned NumFields,
7855                       SourceLocation LBrac, SourceLocation RBrac,
7856                       AttributeList *Attr) {
7857  assert(EnclosingDecl && "missing record or interface decl");
7858
7859  // If the decl this is being inserted into is invalid, then it may be a
7860  // redeclaration or some other bogus case.  Don't try to add fields to it.
7861  if (EnclosingDecl->isInvalidDecl()) {
7862    // FIXME: Deallocate fields?
7863    return;
7864  }
7865
7866
7867  // Verify that all the fields are okay.
7868  unsigned NumNamedMembers = 0;
7869  llvm::SmallVector<FieldDecl*, 32> RecFields;
7870
7871  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7872  for (unsigned i = 0; i != NumFields; ++i) {
7873    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7874
7875    // Get the type for the field.
7876    const Type *FDTy = FD->getType().getTypePtr();
7877
7878    if (!FD->isAnonymousStructOrUnion()) {
7879      // Remember all fields written by the user.
7880      RecFields.push_back(FD);
7881    }
7882
7883    // If the field is already invalid for some reason, don't emit more
7884    // diagnostics about it.
7885    if (FD->isInvalidDecl()) {
7886      EnclosingDecl->setInvalidDecl();
7887      continue;
7888    }
7889
7890    // C99 6.7.2.1p2:
7891    //   A structure or union shall not contain a member with
7892    //   incomplete or function type (hence, a structure shall not
7893    //   contain an instance of itself, but may contain a pointer to
7894    //   an instance of itself), except that the last member of a
7895    //   structure with more than one named member may have incomplete
7896    //   array type; such a structure (and any union containing,
7897    //   possibly recursively, a member that is such a structure)
7898    //   shall not be a member of a structure or an element of an
7899    //   array.
7900    if (FDTy->isFunctionType()) {
7901      // Field declared as a function.
7902      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7903        << FD->getDeclName();
7904      FD->setInvalidDecl();
7905      EnclosingDecl->setInvalidDecl();
7906      continue;
7907    } else if (FDTy->isIncompleteArrayType() && Record &&
7908               ((i == NumFields - 1 && !Record->isUnion()) ||
7909                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7910                 (i == NumFields - 1 || Record->isUnion())))) {
7911      // Flexible array member.
7912      // Microsoft and g++ is more permissive regarding flexible array.
7913      // It will accept flexible array in union and also
7914      // as the sole element of a struct/class.
7915      if (getLangOptions().Microsoft) {
7916        if (Record->isUnion())
7917          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7918            << FD->getDeclName();
7919        else if (NumFields == 1)
7920          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7921            << FD->getDeclName() << Record->getTagKind();
7922      } else if (getLangOptions().CPlusPlus) {
7923        if (Record->isUnion())
7924          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7925            << FD->getDeclName();
7926        else if (NumFields == 1)
7927          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7928            << FD->getDeclName() << Record->getTagKind();
7929      } else if (NumNamedMembers < 1) {
7930        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7931          << FD->getDeclName();
7932        FD->setInvalidDecl();
7933        EnclosingDecl->setInvalidDecl();
7934        continue;
7935      }
7936      if (!FD->getType()->isDependentType() &&
7937          !Context.getBaseElementType(FD->getType())->isPODType()) {
7938        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7939          << FD->getDeclName() << FD->getType();
7940        FD->setInvalidDecl();
7941        EnclosingDecl->setInvalidDecl();
7942        continue;
7943      }
7944      // Okay, we have a legal flexible array member at the end of the struct.
7945      if (Record)
7946        Record->setHasFlexibleArrayMember(true);
7947    } else if (!FDTy->isDependentType() &&
7948               RequireCompleteType(FD->getLocation(), FD->getType(),
7949                                   diag::err_field_incomplete)) {
7950      // Incomplete type
7951      FD->setInvalidDecl();
7952      EnclosingDecl->setInvalidDecl();
7953      continue;
7954    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7955      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7956        // If this is a member of a union, then entire union becomes "flexible".
7957        if (Record && Record->isUnion()) {
7958          Record->setHasFlexibleArrayMember(true);
7959        } else {
7960          // If this is a struct/class and this is not the last element, reject
7961          // it.  Note that GCC supports variable sized arrays in the middle of
7962          // structures.
7963          if (i != NumFields-1)
7964            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7965              << FD->getDeclName() << FD->getType();
7966          else {
7967            // We support flexible arrays at the end of structs in
7968            // other structs as an extension.
7969            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7970              << FD->getDeclName();
7971            if (Record)
7972              Record->setHasFlexibleArrayMember(true);
7973          }
7974        }
7975      }
7976      if (Record && FDTTy->getDecl()->hasObjectMember())
7977        Record->setHasObjectMember(true);
7978    } else if (FDTy->isObjCObjectType()) {
7979      /// A field cannot be an Objective-c object
7980      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7981      FD->setInvalidDecl();
7982      EnclosingDecl->setInvalidDecl();
7983      continue;
7984    } else if (getLangOptions().ObjC1 &&
7985               getLangOptions().getGCMode() != LangOptions::NonGC &&
7986               Record &&
7987               (FD->getType()->isObjCObjectPointerType() ||
7988                FD->getType().isObjCGCStrong()))
7989      Record->setHasObjectMember(true);
7990    else if (Context.getAsArrayType(FD->getType())) {
7991      QualType BaseType = Context.getBaseElementType(FD->getType());
7992      if (Record && BaseType->isRecordType() &&
7993          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7994        Record->setHasObjectMember(true);
7995    }
7996    // Keep track of the number of named members.
7997    if (FD->getIdentifier())
7998      ++NumNamedMembers;
7999  }
8000
8001  // Okay, we successfully defined 'Record'.
8002  if (Record) {
8003    bool Completed = false;
8004    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8005      if (!CXXRecord->isInvalidDecl()) {
8006        // Set access bits correctly on the directly-declared conversions.
8007        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8008        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8009             I != E; ++I)
8010          Convs->setAccess(I, (*I)->getAccess());
8011
8012        if (!CXXRecord->isDependentType()) {
8013          // Add any implicitly-declared members to this class.
8014          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8015
8016          // If we have virtual base classes, we may end up finding multiple
8017          // final overriders for a given virtual function. Check for this
8018          // problem now.
8019          if (CXXRecord->getNumVBases()) {
8020            CXXFinalOverriderMap FinalOverriders;
8021            CXXRecord->getFinalOverriders(FinalOverriders);
8022
8023            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8024                                             MEnd = FinalOverriders.end();
8025                 M != MEnd; ++M) {
8026              for (OverridingMethods::iterator SO = M->second.begin(),
8027                                            SOEnd = M->second.end();
8028                   SO != SOEnd; ++SO) {
8029                assert(SO->second.size() > 0 &&
8030                       "Virtual function without overridding functions?");
8031                if (SO->second.size() == 1)
8032                  continue;
8033
8034                // C++ [class.virtual]p2:
8035                //   In a derived class, if a virtual member function of a base
8036                //   class subobject has more than one final overrider the
8037                //   program is ill-formed.
8038                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8039                  << (NamedDecl *)M->first << Record;
8040                Diag(M->first->getLocation(),
8041                     diag::note_overridden_virtual_function);
8042                for (OverridingMethods::overriding_iterator
8043                          OM = SO->second.begin(),
8044                       OMEnd = SO->second.end();
8045                     OM != OMEnd; ++OM)
8046                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8047                    << (NamedDecl *)M->first << OM->Method->getParent();
8048
8049                Record->setInvalidDecl();
8050              }
8051            }
8052            CXXRecord->completeDefinition(&FinalOverriders);
8053            Completed = true;
8054          }
8055        }
8056      }
8057    }
8058
8059    if (!Completed)
8060      Record->completeDefinition();
8061  } else {
8062    ObjCIvarDecl **ClsFields =
8063      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8064    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8065      ID->setLocEnd(RBrac);
8066      // Add ivar's to class's DeclContext.
8067      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8068        ClsFields[i]->setLexicalDeclContext(ID);
8069        ID->addDecl(ClsFields[i]);
8070      }
8071      // Must enforce the rule that ivars in the base classes may not be
8072      // duplicates.
8073      if (ID->getSuperClass())
8074        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8075    } else if (ObjCImplementationDecl *IMPDecl =
8076                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8077      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8078      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8079        // Ivar declared in @implementation never belongs to the implementation.
8080        // Only it is in implementation's lexical context.
8081        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8082      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8083    } else if (ObjCCategoryDecl *CDecl =
8084                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8085      // case of ivars in class extension; all other cases have been
8086      // reported as errors elsewhere.
8087      // FIXME. Class extension does not have a LocEnd field.
8088      // CDecl->setLocEnd(RBrac);
8089      // Add ivar's to class extension's DeclContext.
8090      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8091        ClsFields[i]->setLexicalDeclContext(CDecl);
8092        CDecl->addDecl(ClsFields[i]);
8093      }
8094    }
8095  }
8096
8097  if (Attr)
8098    ProcessDeclAttributeList(S, Record, Attr);
8099
8100  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8101  // set the visibility of this record.
8102  if (Record && !Record->getDeclContext()->isRecord())
8103    AddPushedVisibilityAttribute(Record);
8104}
8105
8106/// \brief Determine whether the given integral value is representable within
8107/// the given type T.
8108static bool isRepresentableIntegerValue(ASTContext &Context,
8109                                        llvm::APSInt &Value,
8110                                        QualType T) {
8111  assert(T->isIntegralType(Context) && "Integral type required!");
8112  unsigned BitWidth = Context.getIntWidth(T);
8113
8114  if (Value.isUnsigned() || Value.isNonNegative()) {
8115    if (T->isSignedIntegerType())
8116      --BitWidth;
8117    return Value.getActiveBits() <= BitWidth;
8118  }
8119  return Value.getMinSignedBits() <= BitWidth;
8120}
8121
8122// \brief Given an integral type, return the next larger integral type
8123// (or a NULL type of no such type exists).
8124static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8125  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8126  // enum checking below.
8127  assert(T->isIntegralType(Context) && "Integral type required!");
8128  const unsigned NumTypes = 4;
8129  QualType SignedIntegralTypes[NumTypes] = {
8130    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8131  };
8132  QualType UnsignedIntegralTypes[NumTypes] = {
8133    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8134    Context.UnsignedLongLongTy
8135  };
8136
8137  unsigned BitWidth = Context.getTypeSize(T);
8138  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8139                                            : UnsignedIntegralTypes;
8140  for (unsigned I = 0; I != NumTypes; ++I)
8141    if (Context.getTypeSize(Types[I]) > BitWidth)
8142      return Types[I];
8143
8144  return QualType();
8145}
8146
8147EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8148                                          EnumConstantDecl *LastEnumConst,
8149                                          SourceLocation IdLoc,
8150                                          IdentifierInfo *Id,
8151                                          Expr *Val) {
8152  unsigned IntWidth = Context.Target.getIntWidth();
8153  llvm::APSInt EnumVal(IntWidth);
8154  QualType EltTy;
8155
8156  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8157    Val = 0;
8158
8159  if (Val) {
8160    if (Enum->isDependentType() || Val->isTypeDependent())
8161      EltTy = Context.DependentTy;
8162    else {
8163      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8164      SourceLocation ExpLoc;
8165      if (!Val->isValueDependent() &&
8166          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8167        Val = 0;
8168      } else {
8169        if (!getLangOptions().CPlusPlus) {
8170          // C99 6.7.2.2p2:
8171          //   The expression that defines the value of an enumeration constant
8172          //   shall be an integer constant expression that has a value
8173          //   representable as an int.
8174
8175          // Complain if the value is not representable in an int.
8176          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8177            Diag(IdLoc, diag::ext_enum_value_not_int)
8178              << EnumVal.toString(10) << Val->getSourceRange()
8179              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8180          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8181            // Force the type of the expression to 'int'.
8182            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8183          }
8184        }
8185
8186        if (Enum->isFixed()) {
8187          EltTy = Enum->getIntegerType();
8188
8189          // C++0x [dcl.enum]p5:
8190          //   ... if the initializing value of an enumerator cannot be
8191          //   represented by the underlying type, the program is ill-formed.
8192          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8193            if (getLangOptions().Microsoft) {
8194              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8195              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8196            } else
8197              Diag(IdLoc, diag::err_enumerator_too_large)
8198                << EltTy;
8199          } else
8200            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8201        }
8202        else {
8203          // C++0x [dcl.enum]p5:
8204          //   If the underlying type is not fixed, the type of each enumerator
8205          //   is the type of its initializing value:
8206          //     - If an initializer is specified for an enumerator, the
8207          //       initializing value has the same type as the expression.
8208          EltTy = Val->getType();
8209        }
8210      }
8211    }
8212  }
8213
8214  if (!Val) {
8215    if (Enum->isDependentType())
8216      EltTy = Context.DependentTy;
8217    else if (!LastEnumConst) {
8218      // C++0x [dcl.enum]p5:
8219      //   If the underlying type is not fixed, the type of each enumerator
8220      //   is the type of its initializing value:
8221      //     - If no initializer is specified for the first enumerator, the
8222      //       initializing value has an unspecified integral type.
8223      //
8224      // GCC uses 'int' for its unspecified integral type, as does
8225      // C99 6.7.2.2p3.
8226      if (Enum->isFixed()) {
8227        EltTy = Enum->getIntegerType();
8228      }
8229      else {
8230        EltTy = Context.IntTy;
8231      }
8232    } else {
8233      // Assign the last value + 1.
8234      EnumVal = LastEnumConst->getInitVal();
8235      ++EnumVal;
8236      EltTy = LastEnumConst->getType();
8237
8238      // Check for overflow on increment.
8239      if (EnumVal < LastEnumConst->getInitVal()) {
8240        // C++0x [dcl.enum]p5:
8241        //   If the underlying type is not fixed, the type of each enumerator
8242        //   is the type of its initializing value:
8243        //
8244        //     - Otherwise the type of the initializing value is the same as
8245        //       the type of the initializing value of the preceding enumerator
8246        //       unless the incremented value is not representable in that type,
8247        //       in which case the type is an unspecified integral type
8248        //       sufficient to contain the incremented value. If no such type
8249        //       exists, the program is ill-formed.
8250        QualType T = getNextLargerIntegralType(Context, EltTy);
8251        if (T.isNull() || Enum->isFixed()) {
8252          // There is no integral type larger enough to represent this
8253          // value. Complain, then allow the value to wrap around.
8254          EnumVal = LastEnumConst->getInitVal();
8255          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8256          ++EnumVal;
8257          if (Enum->isFixed())
8258            // When the underlying type is fixed, this is ill-formed.
8259            Diag(IdLoc, diag::err_enumerator_wrapped)
8260              << EnumVal.toString(10)
8261              << EltTy;
8262          else
8263            Diag(IdLoc, diag::warn_enumerator_too_large)
8264              << EnumVal.toString(10);
8265        } else {
8266          EltTy = T;
8267        }
8268
8269        // Retrieve the last enumerator's value, extent that type to the
8270        // type that is supposed to be large enough to represent the incremented
8271        // value, then increment.
8272        EnumVal = LastEnumConst->getInitVal();
8273        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8274        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8275        ++EnumVal;
8276
8277        // If we're not in C++, diagnose the overflow of enumerator values,
8278        // which in C99 means that the enumerator value is not representable in
8279        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8280        // permits enumerator values that are representable in some larger
8281        // integral type.
8282        if (!getLangOptions().CPlusPlus && !T.isNull())
8283          Diag(IdLoc, diag::warn_enum_value_overflow);
8284      } else if (!getLangOptions().CPlusPlus &&
8285                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8286        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8287        Diag(IdLoc, diag::ext_enum_value_not_int)
8288          << EnumVal.toString(10) << 1;
8289      }
8290    }
8291  }
8292
8293  if (!EltTy->isDependentType()) {
8294    // Make the enumerator value match the signedness and size of the
8295    // enumerator's type.
8296    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8297    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8298  }
8299
8300  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8301                                  Val, EnumVal);
8302}
8303
8304
8305Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8306                              SourceLocation IdLoc, IdentifierInfo *Id,
8307                              AttributeList *Attr,
8308                              SourceLocation EqualLoc, ExprTy *val) {
8309  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8310  EnumConstantDecl *LastEnumConst =
8311    cast_or_null<EnumConstantDecl>(lastEnumConst);
8312  Expr *Val = static_cast<Expr*>(val);
8313
8314  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8315  // we find one that is.
8316  S = getNonFieldDeclScope(S);
8317
8318  // Verify that there isn't already something declared with this name in this
8319  // scope.
8320  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8321                                         ForRedeclaration);
8322  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8323    // Maybe we will complain about the shadowed template parameter.
8324    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8325    // Just pretend that we didn't see the previous declaration.
8326    PrevDecl = 0;
8327  }
8328
8329  if (PrevDecl) {
8330    // When in C++, we may get a TagDecl with the same name; in this case the
8331    // enum constant will 'hide' the tag.
8332    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8333           "Received TagDecl when not in C++!");
8334    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8335      if (isa<EnumConstantDecl>(PrevDecl))
8336        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8337      else
8338        Diag(IdLoc, diag::err_redefinition) << Id;
8339      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8340      return 0;
8341    }
8342  }
8343
8344  // C++ [class.mem]p13:
8345  //   If T is the name of a class, then each of the following shall have a
8346  //   name different from T:
8347  //     - every enumerator of every member of class T that is an enumerated
8348  //       type
8349  if (CXXRecordDecl *Record
8350                      = dyn_cast<CXXRecordDecl>(
8351                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8352    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8353      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8354
8355  EnumConstantDecl *New =
8356    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8357
8358  if (New) {
8359    // Process attributes.
8360    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8361
8362    // Register this decl in the current scope stack.
8363    New->setAccess(TheEnumDecl->getAccess());
8364    PushOnScopeChains(New, S);
8365  }
8366
8367  return New;
8368}
8369
8370void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8371                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8372                         Decl **Elements, unsigned NumElements,
8373                         Scope *S, AttributeList *Attr) {
8374  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8375  QualType EnumType = Context.getTypeDeclType(Enum);
8376
8377  if (Attr)
8378    ProcessDeclAttributeList(S, Enum, Attr);
8379
8380  if (Enum->isDependentType()) {
8381    for (unsigned i = 0; i != NumElements; ++i) {
8382      EnumConstantDecl *ECD =
8383        cast_or_null<EnumConstantDecl>(Elements[i]);
8384      if (!ECD) continue;
8385
8386      ECD->setType(EnumType);
8387    }
8388
8389    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8390    return;
8391  }
8392
8393  // TODO: If the result value doesn't fit in an int, it must be a long or long
8394  // long value.  ISO C does not support this, but GCC does as an extension,
8395  // emit a warning.
8396  unsigned IntWidth = Context.Target.getIntWidth();
8397  unsigned CharWidth = Context.Target.getCharWidth();
8398  unsigned ShortWidth = Context.Target.getShortWidth();
8399
8400  // Verify that all the values are okay, compute the size of the values, and
8401  // reverse the list.
8402  unsigned NumNegativeBits = 0;
8403  unsigned NumPositiveBits = 0;
8404
8405  // Keep track of whether all elements have type int.
8406  bool AllElementsInt = true;
8407
8408  for (unsigned i = 0; i != NumElements; ++i) {
8409    EnumConstantDecl *ECD =
8410      cast_or_null<EnumConstantDecl>(Elements[i]);
8411    if (!ECD) continue;  // Already issued a diagnostic.
8412
8413    const llvm::APSInt &InitVal = ECD->getInitVal();
8414
8415    // Keep track of the size of positive and negative values.
8416    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8417      NumPositiveBits = std::max(NumPositiveBits,
8418                                 (unsigned)InitVal.getActiveBits());
8419    else
8420      NumNegativeBits = std::max(NumNegativeBits,
8421                                 (unsigned)InitVal.getMinSignedBits());
8422
8423    // Keep track of whether every enum element has type int (very commmon).
8424    if (AllElementsInt)
8425      AllElementsInt = ECD->getType() == Context.IntTy;
8426  }
8427
8428  // Figure out the type that should be used for this enum.
8429  QualType BestType;
8430  unsigned BestWidth;
8431
8432  // C++0x N3000 [conv.prom]p3:
8433  //   An rvalue of an unscoped enumeration type whose underlying
8434  //   type is not fixed can be converted to an rvalue of the first
8435  //   of the following types that can represent all the values of
8436  //   the enumeration: int, unsigned int, long int, unsigned long
8437  //   int, long long int, or unsigned long long int.
8438  // C99 6.4.4.3p2:
8439  //   An identifier declared as an enumeration constant has type int.
8440  // The C99 rule is modified by a gcc extension
8441  QualType BestPromotionType;
8442
8443  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8444  // -fshort-enums is the equivalent to specifying the packed attribute on all
8445  // enum definitions.
8446  if (LangOpts.ShortEnums)
8447    Packed = true;
8448
8449  if (Enum->isFixed()) {
8450    BestType = BestPromotionType = Enum->getIntegerType();
8451    // We don't need to set BestWidth, because BestType is going to be the type
8452    // of the enumerators, but we do anyway because otherwise some compilers
8453    // warn that it might be used uninitialized.
8454    BestWidth = CharWidth;
8455  }
8456  else if (NumNegativeBits) {
8457    // If there is a negative value, figure out the smallest integer type (of
8458    // int/long/longlong) that fits.
8459    // If it's packed, check also if it fits a char or a short.
8460    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8461      BestType = Context.SignedCharTy;
8462      BestWidth = CharWidth;
8463    } else if (Packed && NumNegativeBits <= ShortWidth &&
8464               NumPositiveBits < ShortWidth) {
8465      BestType = Context.ShortTy;
8466      BestWidth = ShortWidth;
8467    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8468      BestType = Context.IntTy;
8469      BestWidth = IntWidth;
8470    } else {
8471      BestWidth = Context.Target.getLongWidth();
8472
8473      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8474        BestType = Context.LongTy;
8475      } else {
8476        BestWidth = Context.Target.getLongLongWidth();
8477
8478        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8479          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8480        BestType = Context.LongLongTy;
8481      }
8482    }
8483    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8484  } else {
8485    // If there is no negative value, figure out the smallest type that fits
8486    // all of the enumerator values.
8487    // If it's packed, check also if it fits a char or a short.
8488    if (Packed && NumPositiveBits <= CharWidth) {
8489      BestType = Context.UnsignedCharTy;
8490      BestPromotionType = Context.IntTy;
8491      BestWidth = CharWidth;
8492    } else if (Packed && NumPositiveBits <= ShortWidth) {
8493      BestType = Context.UnsignedShortTy;
8494      BestPromotionType = Context.IntTy;
8495      BestWidth = ShortWidth;
8496    } else if (NumPositiveBits <= IntWidth) {
8497      BestType = Context.UnsignedIntTy;
8498      BestWidth = IntWidth;
8499      BestPromotionType
8500        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8501                           ? Context.UnsignedIntTy : Context.IntTy;
8502    } else if (NumPositiveBits <=
8503               (BestWidth = Context.Target.getLongWidth())) {
8504      BestType = Context.UnsignedLongTy;
8505      BestPromotionType
8506        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8507                           ? Context.UnsignedLongTy : Context.LongTy;
8508    } else {
8509      BestWidth = Context.Target.getLongLongWidth();
8510      assert(NumPositiveBits <= BestWidth &&
8511             "How could an initializer get larger than ULL?");
8512      BestType = Context.UnsignedLongLongTy;
8513      BestPromotionType
8514        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8515                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8516    }
8517  }
8518
8519  // Loop over all of the enumerator constants, changing their types to match
8520  // the type of the enum if needed.
8521  for (unsigned i = 0; i != NumElements; ++i) {
8522    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8523    if (!ECD) continue;  // Already issued a diagnostic.
8524
8525    // Standard C says the enumerators have int type, but we allow, as an
8526    // extension, the enumerators to be larger than int size.  If each
8527    // enumerator value fits in an int, type it as an int, otherwise type it the
8528    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8529    // that X has type 'int', not 'unsigned'.
8530
8531    // Determine whether the value fits into an int.
8532    llvm::APSInt InitVal = ECD->getInitVal();
8533
8534    // If it fits into an integer type, force it.  Otherwise force it to match
8535    // the enum decl type.
8536    QualType NewTy;
8537    unsigned NewWidth;
8538    bool NewSign;
8539    if (!getLangOptions().CPlusPlus &&
8540        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8541      NewTy = Context.IntTy;
8542      NewWidth = IntWidth;
8543      NewSign = true;
8544    } else if (ECD->getType() == BestType) {
8545      // Already the right type!
8546      if (getLangOptions().CPlusPlus)
8547        // C++ [dcl.enum]p4: Following the closing brace of an
8548        // enum-specifier, each enumerator has the type of its
8549        // enumeration.
8550        ECD->setType(EnumType);
8551      continue;
8552    } else {
8553      NewTy = BestType;
8554      NewWidth = BestWidth;
8555      NewSign = BestType->isSignedIntegerType();
8556    }
8557
8558    // Adjust the APSInt value.
8559    InitVal = InitVal.extOrTrunc(NewWidth);
8560    InitVal.setIsSigned(NewSign);
8561    ECD->setInitVal(InitVal);
8562
8563    // Adjust the Expr initializer and type.
8564    if (ECD->getInitExpr() &&
8565	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8566      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8567                                                CK_IntegralCast,
8568                                                ECD->getInitExpr(),
8569                                                /*base paths*/ 0,
8570                                                VK_RValue));
8571    if (getLangOptions().CPlusPlus)
8572      // C++ [dcl.enum]p4: Following the closing brace of an
8573      // enum-specifier, each enumerator has the type of its
8574      // enumeration.
8575      ECD->setType(EnumType);
8576    else
8577      ECD->setType(NewTy);
8578  }
8579
8580  Enum->completeDefinition(BestType, BestPromotionType,
8581                           NumPositiveBits, NumNegativeBits);
8582}
8583
8584Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8585                                  SourceLocation StartLoc,
8586                                  SourceLocation EndLoc) {
8587  StringLiteral *AsmString = cast<StringLiteral>(expr);
8588
8589  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8590                                                   AsmString, StartLoc,
8591                                                   EndLoc);
8592  CurContext->addDecl(New);
8593  return New;
8594}
8595
8596void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8597                             SourceLocation PragmaLoc,
8598                             SourceLocation NameLoc) {
8599  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8600
8601  if (PrevDecl) {
8602    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8603  } else {
8604    (void)WeakUndeclaredIdentifiers.insert(
8605      std::pair<IdentifierInfo*,WeakInfo>
8606        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8607  }
8608}
8609
8610void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8611                                IdentifierInfo* AliasName,
8612                                SourceLocation PragmaLoc,
8613                                SourceLocation NameLoc,
8614                                SourceLocation AliasNameLoc) {
8615  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8616                                    LookupOrdinaryName);
8617  WeakInfo W = WeakInfo(Name, NameLoc);
8618
8619  if (PrevDecl) {
8620    if (!PrevDecl->hasAttr<AliasAttr>())
8621      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8622        DeclApplyPragmaWeak(TUScope, ND, W);
8623  } else {
8624    (void)WeakUndeclaredIdentifiers.insert(
8625      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8626  }
8627}
8628