SemaDecl.cpp revision 8be0c74e4a779b13c2d8fd8482dcd438eeb089d3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return false;
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().MicrosoftExt && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785
786void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
787  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
788  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
789    // We assume that the caller has already called
790    // ActOnReenterTemplateScope
791    FD = TFD->getTemplatedDecl();
792  }
793  if (!FD)
794    return;
795
796  PushDeclContext(S, FD);
797  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
798    ParmVarDecl *Param = FD->getParamDecl(P);
799    // If the parameter has an identifier, then add it to the scope
800    if (Param->getIdentifier()) {
801      S->AddDecl(Param);
802      IdResolver.AddDecl(Param);
803    }
804  }
805}
806
807
808/// \brief Determine whether we allow overloading of the function
809/// PrevDecl with another declaration.
810///
811/// This routine determines whether overloading is possible, not
812/// whether some new function is actually an overload. It will return
813/// true in C++ (where we can always provide overloads) or, as an
814/// extension, in C when the previous function is already an
815/// overloaded function declaration or has the "overloadable"
816/// attribute.
817static bool AllowOverloadingOfFunction(LookupResult &Previous,
818                                       ASTContext &Context) {
819  if (Context.getLangOptions().CPlusPlus)
820    return true;
821
822  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
823    return true;
824
825  return (Previous.getResultKind() == LookupResult::Found
826          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
827}
828
829/// Add this decl to the scope shadowed decl chains.
830void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
831  // Move up the scope chain until we find the nearest enclosing
832  // non-transparent context. The declaration will be introduced into this
833  // scope.
834  while (S->getEntity() &&
835         ((DeclContext *)S->getEntity())->isTransparentContext())
836    S = S->getParent();
837
838  // Add scoped declarations into their context, so that they can be
839  // found later. Declarations without a context won't be inserted
840  // into any context.
841  if (AddToContext)
842    CurContext->addDecl(D);
843
844  // Out-of-line definitions shouldn't be pushed into scope in C++.
845  // Out-of-line variable and function definitions shouldn't even in C.
846  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
847      D->isOutOfLine())
848    return;
849
850  // Template instantiations should also not be pushed into scope.
851  if (isa<FunctionDecl>(D) &&
852      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
853    return;
854
855  // If this replaces anything in the current scope,
856  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
857                               IEnd = IdResolver.end();
858  for (; I != IEnd; ++I) {
859    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
860      S->RemoveDecl(*I);
861      IdResolver.RemoveDecl(*I);
862
863      // Should only need to replace one decl.
864      break;
865    }
866  }
867
868  S->AddDecl(D);
869
870  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
871    // Implicitly-generated labels may end up getting generated in an order that
872    // isn't strictly lexical, which breaks name lookup. Be careful to insert
873    // the label at the appropriate place in the identifier chain.
874    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
875      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
876      if (IDC == CurContext) {
877        if (!S->isDeclScope(*I))
878          continue;
879      } else if (IDC->Encloses(CurContext))
880        break;
881    }
882
883    IdResolver.InsertDeclAfter(I, D);
884  } else {
885    IdResolver.AddDecl(D);
886  }
887}
888
889bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
890                         bool ExplicitInstantiationOrSpecialization) {
891  return IdResolver.isDeclInScope(D, Ctx, Context, S,
892                                  ExplicitInstantiationOrSpecialization);
893}
894
895Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
896  DeclContext *TargetDC = DC->getPrimaryContext();
897  do {
898    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
899      if (ScopeDC->getPrimaryContext() == TargetDC)
900        return S;
901  } while ((S = S->getParent()));
902
903  return 0;
904}
905
906static bool isOutOfScopePreviousDeclaration(NamedDecl *,
907                                            DeclContext*,
908                                            ASTContext&);
909
910/// Filters out lookup results that don't fall within the given scope
911/// as determined by isDeclInScope.
912void Sema::FilterLookupForScope(LookupResult &R,
913                                DeclContext *Ctx, Scope *S,
914                                bool ConsiderLinkage,
915                                bool ExplicitInstantiationOrSpecialization) {
916  LookupResult::Filter F = R.makeFilter();
917  while (F.hasNext()) {
918    NamedDecl *D = F.next();
919
920    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
921      continue;
922
923    if (ConsiderLinkage &&
924        isOutOfScopePreviousDeclaration(D, Ctx, Context))
925      continue;
926
927    F.erase();
928  }
929
930  F.done();
931}
932
933static bool isUsingDecl(NamedDecl *D) {
934  return isa<UsingShadowDecl>(D) ||
935         isa<UnresolvedUsingTypenameDecl>(D) ||
936         isa<UnresolvedUsingValueDecl>(D);
937}
938
939/// Removes using shadow declarations from the lookup results.
940static void RemoveUsingDecls(LookupResult &R) {
941  LookupResult::Filter F = R.makeFilter();
942  while (F.hasNext())
943    if (isUsingDecl(F.next()))
944      F.erase();
945
946  F.done();
947}
948
949/// \brief Check for this common pattern:
950/// @code
951/// class S {
952///   S(const S&); // DO NOT IMPLEMENT
953///   void operator=(const S&); // DO NOT IMPLEMENT
954/// };
955/// @endcode
956static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
957  // FIXME: Should check for private access too but access is set after we get
958  // the decl here.
959  if (D->doesThisDeclarationHaveABody())
960    return false;
961
962  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
963    return CD->isCopyConstructor();
964  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
965    return Method->isCopyAssignmentOperator();
966  return false;
967}
968
969bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
970  assert(D);
971
972  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
973    return false;
974
975  // Ignore class templates.
976  if (D->getDeclContext()->isDependentContext() ||
977      D->getLexicalDeclContext()->isDependentContext())
978    return false;
979
980  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
981    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
985      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
986        return false;
987    } else {
988      // 'static inline' functions are used in headers; don't warn.
989      if (FD->getStorageClass() == SC_Static &&
990          FD->isInlineSpecified())
991        return false;
992    }
993
994    if (FD->doesThisDeclarationHaveABody() &&
995        Context.DeclMustBeEmitted(FD))
996      return false;
997  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
998    if (!VD->isFileVarDecl() ||
999        VD->getType().isConstant(Context) ||
1000        Context.DeclMustBeEmitted(VD))
1001      return false;
1002
1003    if (VD->isStaticDataMember() &&
1004        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1005      return false;
1006
1007  } else {
1008    return false;
1009  }
1010
1011  // Only warn for unused decls internal to the translation unit.
1012  if (D->getLinkage() == ExternalLinkage)
1013    return false;
1014
1015  return true;
1016}
1017
1018void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1019  if (!D)
1020    return;
1021
1022  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1023    const FunctionDecl *First = FD->getFirstDeclaration();
1024    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1029    const VarDecl *First = VD->getFirstDeclaration();
1030    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1031      return; // First should already be in the vector.
1032  }
1033
1034   if (ShouldWarnIfUnusedFileScopedDecl(D))
1035     UnusedFileScopedDecls.push_back(D);
1036 }
1037
1038static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1039  if (D->isInvalidDecl())
1040    return false;
1041
1042  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1043    return false;
1044
1045  if (isa<LabelDecl>(D))
1046    return true;
1047
1048  // White-list anything that isn't a local variable.
1049  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1050      !D->getDeclContext()->isFunctionOrMethod())
1051    return false;
1052
1053  // Types of valid local variables should be complete, so this should succeed.
1054  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1055
1056    // White-list anything with an __attribute__((unused)) type.
1057    QualType Ty = VD->getType();
1058
1059    // Only look at the outermost level of typedef.
1060    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1061      if (TT->getDecl()->hasAttr<UnusedAttr>())
1062        return false;
1063    }
1064
1065    // If we failed to complete the type for some reason, or if the type is
1066    // dependent, don't diagnose the variable.
1067    if (Ty->isIncompleteType() || Ty->isDependentType())
1068      return false;
1069
1070    if (const TagType *TT = Ty->getAs<TagType>()) {
1071      const TagDecl *Tag = TT->getDecl();
1072      if (Tag->hasAttr<UnusedAttr>())
1073        return false;
1074
1075      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1076        // FIXME: Checking for the presence of a user-declared constructor
1077        // isn't completely accurate; we'd prefer to check that the initializer
1078        // has no side effects.
1079        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1080          return false;
1081      }
1082    }
1083
1084    // TODO: __attribute__((unused)) templates?
1085  }
1086
1087  return true;
1088}
1089
1090static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1091                                     FixItHint &Hint) {
1092  if (isa<LabelDecl>(D)) {
1093    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1094                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1095    if (AfterColon.isInvalid())
1096      return;
1097    Hint = FixItHint::CreateRemoval(CharSourceRange::
1098                                    getCharRange(D->getLocStart(), AfterColon));
1099  }
1100  return;
1101}
1102
1103/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1104/// unless they are marked attr(unused).
1105void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1106  FixItHint Hint;
1107  if (!ShouldDiagnoseUnusedDecl(D))
1108    return;
1109
1110  GenerateFixForUnusedDecl(D, Context, Hint);
1111
1112  unsigned DiagID;
1113  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1114    DiagID = diag::warn_unused_exception_param;
1115  else if (isa<LabelDecl>(D))
1116    DiagID = diag::warn_unused_label;
1117  else
1118    DiagID = diag::warn_unused_variable;
1119
1120  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1121}
1122
1123static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1124  // Verify that we have no forward references left.  If so, there was a goto
1125  // or address of a label taken, but no definition of it.  Label fwd
1126  // definitions are indicated with a null substmt.
1127  if (L->getStmt() == 0)
1128    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1129}
1130
1131void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1132  if (S->decl_empty()) return;
1133  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1134         "Scope shouldn't contain decls!");
1135
1136  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1137       I != E; ++I) {
1138    Decl *TmpD = (*I);
1139    assert(TmpD && "This decl didn't get pushed??");
1140
1141    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1142    NamedDecl *D = cast<NamedDecl>(TmpD);
1143
1144    if (!D->getDeclName()) continue;
1145
1146    // Diagnose unused variables in this scope.
1147    if (!S->hasErrorOccurred())
1148      DiagnoseUnusedDecl(D);
1149
1150    // If this was a forward reference to a label, verify it was defined.
1151    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1152      CheckPoppedLabel(LD, *this);
1153
1154    // Remove this name from our lexical scope.
1155    IdResolver.RemoveDecl(D);
1156  }
1157}
1158
1159/// \brief Look for an Objective-C class in the translation unit.
1160///
1161/// \param Id The name of the Objective-C class we're looking for. If
1162/// typo-correction fixes this name, the Id will be updated
1163/// to the fixed name.
1164///
1165/// \param IdLoc The location of the name in the translation unit.
1166///
1167/// \param TypoCorrection If true, this routine will attempt typo correction
1168/// if there is no class with the given name.
1169///
1170/// \returns The declaration of the named Objective-C class, or NULL if the
1171/// class could not be found.
1172ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1173                                              SourceLocation IdLoc,
1174                                              bool DoTypoCorrection) {
1175  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1176  // creation from this context.
1177  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1178
1179  if (!IDecl && DoTypoCorrection) {
1180    // Perform typo correction at the given location, but only if we
1181    // find an Objective-C class name.
1182    TypoCorrection C;
1183    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1184                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1185        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1186      Diag(IdLoc, diag::err_undef_interface_suggest)
1187        << Id << IDecl->getDeclName()
1188        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1189      Diag(IDecl->getLocation(), diag::note_previous_decl)
1190        << IDecl->getDeclName();
1191
1192      Id = IDecl->getIdentifier();
1193    }
1194  }
1195
1196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1197}
1198
1199/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1200/// from S, where a non-field would be declared. This routine copes
1201/// with the difference between C and C++ scoping rules in structs and
1202/// unions. For example, the following code is well-formed in C but
1203/// ill-formed in C++:
1204/// @code
1205/// struct S6 {
1206///   enum { BAR } e;
1207/// };
1208///
1209/// void test_S6() {
1210///   struct S6 a;
1211///   a.e = BAR;
1212/// }
1213/// @endcode
1214/// For the declaration of BAR, this routine will return a different
1215/// scope. The scope S will be the scope of the unnamed enumeration
1216/// within S6. In C++, this routine will return the scope associated
1217/// with S6, because the enumeration's scope is a transparent
1218/// context but structures can contain non-field names. In C, this
1219/// routine will return the translation unit scope, since the
1220/// enumeration's scope is a transparent context and structures cannot
1221/// contain non-field names.
1222Scope *Sema::getNonFieldDeclScope(Scope *S) {
1223  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1224         (S->getEntity() &&
1225          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1226         (S->isClassScope() && !getLangOptions().CPlusPlus))
1227    S = S->getParent();
1228  return S;
1229}
1230
1231/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1232/// file scope.  lazily create a decl for it. ForRedeclaration is true
1233/// if we're creating this built-in in anticipation of redeclaring the
1234/// built-in.
1235NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1236                                     Scope *S, bool ForRedeclaration,
1237                                     SourceLocation Loc) {
1238  Builtin::ID BID = (Builtin::ID)bid;
1239
1240  ASTContext::GetBuiltinTypeError Error;
1241  QualType R = Context.GetBuiltinType(BID, Error);
1242  switch (Error) {
1243  case ASTContext::GE_None:
1244    // Okay
1245    break;
1246
1247  case ASTContext::GE_Missing_stdio:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252
1253  case ASTContext::GE_Missing_setjmp:
1254    if (ForRedeclaration)
1255      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1256        << Context.BuiltinInfo.GetName(BID);
1257    return 0;
1258  }
1259
1260  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1261    Diag(Loc, diag::ext_implicit_lib_function_decl)
1262      << Context.BuiltinInfo.GetName(BID)
1263      << R;
1264    if (Context.BuiltinInfo.getHeaderName(BID) &&
1265        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1266          != Diagnostic::Ignored)
1267      Diag(Loc, diag::note_please_include_header)
1268        << Context.BuiltinInfo.getHeaderName(BID)
1269        << Context.BuiltinInfo.GetName(BID);
1270  }
1271
1272  FunctionDecl *New = FunctionDecl::Create(Context,
1273                                           Context.getTranslationUnitDecl(),
1274                                           Loc, Loc, II, R, /*TInfo=*/0,
1275                                           SC_Extern,
1276                                           SC_None, false,
1277                                           /*hasPrototype=*/true);
1278  New->setImplicit();
1279
1280  // Create Decl objects for each parameter, adding them to the
1281  // FunctionDecl.
1282  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1283    SmallVector<ParmVarDecl*, 16> Params;
1284    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1285      ParmVarDecl *parm =
1286        ParmVarDecl::Create(Context, New, SourceLocation(),
1287                            SourceLocation(), 0,
1288                            FT->getArgType(i), /*TInfo=*/0,
1289                            SC_None, SC_None, 0);
1290      parm->setScopeInfo(0, i);
1291      Params.push_back(parm);
1292    }
1293    New->setParams(Params.data(), Params.size());
1294  }
1295
1296  AddKnownFunctionAttributes(New);
1297
1298  // TUScope is the translation-unit scope to insert this function into.
1299  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1300  // relate Scopes to DeclContexts, and probably eliminate CurContext
1301  // entirely, but we're not there yet.
1302  DeclContext *SavedContext = CurContext;
1303  CurContext = Context.getTranslationUnitDecl();
1304  PushOnScopeChains(New, TUScope);
1305  CurContext = SavedContext;
1306  return New;
1307}
1308
1309/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1310/// same name and scope as a previous declaration 'Old'.  Figure out
1311/// how to resolve this situation, merging decls or emitting
1312/// diagnostics as appropriate. If there was an error, set New to be invalid.
1313///
1314void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1315  // If the new decl is known invalid already, don't bother doing any
1316  // merging checks.
1317  if (New->isInvalidDecl()) return;
1318
1319  // Allow multiple definitions for ObjC built-in typedefs.
1320  // FIXME: Verify the underlying types are equivalent!
1321  if (getLangOptions().ObjC1) {
1322    const IdentifierInfo *TypeID = New->getIdentifier();
1323    switch (TypeID->getLength()) {
1324    default: break;
1325    case 2:
1326      if (!TypeID->isStr("id"))
1327        break;
1328      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1329      // Install the built-in type for 'id', ignoring the current definition.
1330      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1331      return;
1332    case 5:
1333      if (!TypeID->isStr("Class"))
1334        break;
1335      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1336      // Install the built-in type for 'Class', ignoring the current definition.
1337      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1338      return;
1339    case 3:
1340      if (!TypeID->isStr("SEL"))
1341        break;
1342      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1343      // Install the built-in type for 'SEL', ignoring the current definition.
1344      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1345      return;
1346    }
1347    // Fall through - the typedef name was not a builtin type.
1348  }
1349
1350  // Verify the old decl was also a type.
1351  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1352  if (!Old) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1354      << New->getDeclName();
1355
1356    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1357    if (OldD->getLocation().isValid())
1358      Diag(OldD->getLocation(), diag::note_previous_definition);
1359
1360    return New->setInvalidDecl();
1361  }
1362
1363  // If the old declaration is invalid, just give up here.
1364  if (Old->isInvalidDecl())
1365    return New->setInvalidDecl();
1366
1367  // Determine the "old" type we'll use for checking and diagnostics.
1368  QualType OldType;
1369  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1370    OldType = OldTypedef->getUnderlyingType();
1371  else
1372    OldType = Context.getTypeDeclType(Old);
1373
1374  // If the typedef types are not identical, reject them in all languages and
1375  // with any extensions enabled.
1376
1377  if (OldType != New->getUnderlyingType() &&
1378      Context.getCanonicalType(OldType) !=
1379      Context.getCanonicalType(New->getUnderlyingType())) {
1380    int Kind = 0;
1381    if (isa<TypeAliasDecl>(Old))
1382      Kind = 1;
1383    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1384      << Kind << New->getUnderlyingType() << OldType;
1385    if (Old->getLocation().isValid())
1386      Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389
1390  // The types match.  Link up the redeclaration chain if the old
1391  // declaration was a typedef.
1392  // FIXME: this is a potential source of weirdness if the type
1393  // spellings don't match exactly.
1394  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1395    New->setPreviousDeclaration(Typedef);
1396
1397  // __module_private__ is propagated to later declarations.
1398  if (Old->isModulePrivate())
1399    New->setModulePrivate();
1400  else if (New->isModulePrivate())
1401    diagnoseModulePrivateRedeclaration(New, Old);
1402
1403  if (getLangOptions().MicrosoftExt)
1404    return;
1405
1406  if (getLangOptions().CPlusPlus) {
1407    // C++ [dcl.typedef]p2:
1408    //   In a given non-class scope, a typedef specifier can be used to
1409    //   redefine the name of any type declared in that scope to refer
1410    //   to the type to which it already refers.
1411    if (!isa<CXXRecordDecl>(CurContext))
1412      return;
1413
1414    // C++0x [dcl.typedef]p4:
1415    //   In a given class scope, a typedef specifier can be used to redefine
1416    //   any class-name declared in that scope that is not also a typedef-name
1417    //   to refer to the type to which it already refers.
1418    //
1419    // This wording came in via DR424, which was a correction to the
1420    // wording in DR56, which accidentally banned code like:
1421    //
1422    //   struct S {
1423    //     typedef struct A { } A;
1424    //   };
1425    //
1426    // in the C++03 standard. We implement the C++0x semantics, which
1427    // allow the above but disallow
1428    //
1429    //   struct S {
1430    //     typedef int I;
1431    //     typedef int I;
1432    //   };
1433    //
1434    // since that was the intent of DR56.
1435    if (!isa<TypedefNameDecl>(Old))
1436      return;
1437
1438    Diag(New->getLocation(), diag::err_redefinition)
1439      << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1445  // is normally mapped to an error, but can be controlled with
1446  // -Wtypedef-redefinition.  If either the original or the redefinition is
1447  // in a system header, don't emit this for compatibility with GCC.
1448  if (getDiagnostics().getSuppressSystemWarnings() &&
1449      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1450       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1451    return;
1452
1453  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1454    << New->getDeclName();
1455  Diag(Old->getLocation(), diag::note_previous_definition);
1456  return;
1457}
1458
1459/// DeclhasAttr - returns true if decl Declaration already has the target
1460/// attribute.
1461static bool
1462DeclHasAttr(const Decl *D, const Attr *A) {
1463  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1464  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1465  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1466    if ((*i)->getKind() == A->getKind()) {
1467      if (Ann) {
1468        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1469          return true;
1470        continue;
1471      }
1472      // FIXME: Don't hardcode this check
1473      if (OA && isa<OwnershipAttr>(*i))
1474        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1475      return true;
1476    }
1477
1478  return false;
1479}
1480
1481/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1482static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1483                                ASTContext &C, bool mergeDeprecation = true) {
1484  if (!oldDecl->hasAttrs())
1485    return;
1486
1487  bool foundAny = newDecl->hasAttrs();
1488
1489  // Ensure that any moving of objects within the allocated map is done before
1490  // we process them.
1491  if (!foundAny) newDecl->setAttrs(AttrVec());
1492
1493  for (specific_attr_iterator<InheritableAttr>
1494       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1495       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1496    // Ignore deprecated and unavailable attributes if requested.
1497    if (!mergeDeprecation &&
1498        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1499      continue;
1500
1501    if (!DeclHasAttr(newDecl, *i)) {
1502      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1503      newAttr->setInherited(true);
1504      newDecl->addAttr(newAttr);
1505      foundAny = true;
1506    }
1507  }
1508
1509  if (!foundAny) newDecl->dropAttrs();
1510}
1511
1512/// mergeParamDeclAttributes - Copy attributes from the old parameter
1513/// to the new one.
1514static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1515                                     const ParmVarDecl *oldDecl,
1516                                     ASTContext &C) {
1517  if (!oldDecl->hasAttrs())
1518    return;
1519
1520  bool foundAny = newDecl->hasAttrs();
1521
1522  // Ensure that any moving of objects within the allocated map is
1523  // done before we process them.
1524  if (!foundAny) newDecl->setAttrs(AttrVec());
1525
1526  for (specific_attr_iterator<InheritableParamAttr>
1527       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1528       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1529    if (!DeclHasAttr(newDecl, *i)) {
1530      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1531      newAttr->setInherited(true);
1532      newDecl->addAttr(newAttr);
1533      foundAny = true;
1534    }
1535  }
1536
1537  if (!foundAny) newDecl->dropAttrs();
1538}
1539
1540namespace {
1541
1542/// Used in MergeFunctionDecl to keep track of function parameters in
1543/// C.
1544struct GNUCompatibleParamWarning {
1545  ParmVarDecl *OldParm;
1546  ParmVarDecl *NewParm;
1547  QualType PromotedType;
1548};
1549
1550}
1551
1552/// getSpecialMember - get the special member enum for a method.
1553Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1554  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1555    if (Ctor->isDefaultConstructor())
1556      return Sema::CXXDefaultConstructor;
1557
1558    if (Ctor->isCopyConstructor())
1559      return Sema::CXXCopyConstructor;
1560
1561    if (Ctor->isMoveConstructor())
1562      return Sema::CXXMoveConstructor;
1563  } else if (isa<CXXDestructorDecl>(MD)) {
1564    return Sema::CXXDestructor;
1565  } else if (MD->isCopyAssignmentOperator()) {
1566    return Sema::CXXCopyAssignment;
1567  } else if (MD->isMoveAssignmentOperator()) {
1568    return Sema::CXXMoveAssignment;
1569  }
1570
1571  return Sema::CXXInvalid;
1572}
1573
1574/// canRedefineFunction - checks if a function can be redefined. Currently,
1575/// only extern inline functions can be redefined, and even then only in
1576/// GNU89 mode.
1577static bool canRedefineFunction(const FunctionDecl *FD,
1578                                const LangOptions& LangOpts) {
1579  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1580          !LangOpts.CPlusPlus &&
1581          FD->isInlineSpecified() &&
1582          FD->getStorageClass() == SC_Extern);
1583}
1584
1585/// MergeFunctionDecl - We just parsed a function 'New' from
1586/// declarator D which has the same name and scope as a previous
1587/// declaration 'Old'.  Figure out how to resolve this situation,
1588/// merging decls or emitting diagnostics as appropriate.
1589///
1590/// In C++, New and Old must be declarations that are not
1591/// overloaded. Use IsOverload to determine whether New and Old are
1592/// overloaded, and to select the Old declaration that New should be
1593/// merged with.
1594///
1595/// Returns true if there was an error, false otherwise.
1596bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1597  // Verify the old decl was also a function.
1598  FunctionDecl *Old = 0;
1599  if (FunctionTemplateDecl *OldFunctionTemplate
1600        = dyn_cast<FunctionTemplateDecl>(OldD))
1601    Old = OldFunctionTemplate->getTemplatedDecl();
1602  else
1603    Old = dyn_cast<FunctionDecl>(OldD);
1604  if (!Old) {
1605    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1606      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1607      Diag(Shadow->getTargetDecl()->getLocation(),
1608           diag::note_using_decl_target);
1609      Diag(Shadow->getUsingDecl()->getLocation(),
1610           diag::note_using_decl) << 0;
1611      return true;
1612    }
1613
1614    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1615      << New->getDeclName();
1616    Diag(OldD->getLocation(), diag::note_previous_definition);
1617    return true;
1618  }
1619
1620  // Determine whether the previous declaration was a definition,
1621  // implicit declaration, or a declaration.
1622  diag::kind PrevDiag;
1623  if (Old->isThisDeclarationADefinition())
1624    PrevDiag = diag::note_previous_definition;
1625  else if (Old->isImplicit())
1626    PrevDiag = diag::note_previous_implicit_declaration;
1627  else
1628    PrevDiag = diag::note_previous_declaration;
1629
1630  QualType OldQType = Context.getCanonicalType(Old->getType());
1631  QualType NewQType = Context.getCanonicalType(New->getType());
1632
1633  // Don't complain about this if we're in GNU89 mode and the old function
1634  // is an extern inline function.
1635  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1636      New->getStorageClass() == SC_Static &&
1637      Old->getStorageClass() != SC_Static &&
1638      !canRedefineFunction(Old, getLangOptions())) {
1639    if (getLangOptions().MicrosoftExt) {
1640      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1641      Diag(Old->getLocation(), PrevDiag);
1642    } else {
1643      Diag(New->getLocation(), diag::err_static_non_static) << New;
1644      Diag(Old->getLocation(), PrevDiag);
1645      return true;
1646    }
1647  }
1648
1649  // If a function is first declared with a calling convention, but is
1650  // later declared or defined without one, the second decl assumes the
1651  // calling convention of the first.
1652  //
1653  // For the new decl, we have to look at the NON-canonical type to tell the
1654  // difference between a function that really doesn't have a calling
1655  // convention and one that is declared cdecl. That's because in
1656  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1657  // because it is the default calling convention.
1658  //
1659  // Note also that we DO NOT return at this point, because we still have
1660  // other tests to run.
1661  const FunctionType *OldType = cast<FunctionType>(OldQType);
1662  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1663  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1664  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1665  bool RequiresAdjustment = false;
1666  if (OldTypeInfo.getCC() != CC_Default &&
1667      NewTypeInfo.getCC() == CC_Default) {
1668    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1669    RequiresAdjustment = true;
1670  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1671                                     NewTypeInfo.getCC())) {
1672    // Calling conventions really aren't compatible, so complain.
1673    Diag(New->getLocation(), diag::err_cconv_change)
1674      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1675      << (OldTypeInfo.getCC() == CC_Default)
1676      << (OldTypeInfo.getCC() == CC_Default ? "" :
1677          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1678    Diag(Old->getLocation(), diag::note_previous_declaration);
1679    return true;
1680  }
1681
1682  // FIXME: diagnose the other way around?
1683  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1684    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1685    RequiresAdjustment = true;
1686  }
1687
1688  // Merge regparm attribute.
1689  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1690      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1691    if (NewTypeInfo.getHasRegParm()) {
1692      Diag(New->getLocation(), diag::err_regparm_mismatch)
1693        << NewType->getRegParmType()
1694        << OldType->getRegParmType();
1695      Diag(Old->getLocation(), diag::note_previous_declaration);
1696      return true;
1697    }
1698
1699    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1700    RequiresAdjustment = true;
1701  }
1702
1703  if (RequiresAdjustment) {
1704    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1705    New->setType(QualType(NewType, 0));
1706    NewQType = Context.getCanonicalType(New->getType());
1707  }
1708
1709  if (getLangOptions().CPlusPlus) {
1710    // (C++98 13.1p2):
1711    //   Certain function declarations cannot be overloaded:
1712    //     -- Function declarations that differ only in the return type
1713    //        cannot be overloaded.
1714    QualType OldReturnType = OldType->getResultType();
1715    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1716    QualType ResQT;
1717    if (OldReturnType != NewReturnType) {
1718      if (NewReturnType->isObjCObjectPointerType()
1719          && OldReturnType->isObjCObjectPointerType())
1720        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1721      if (ResQT.isNull()) {
1722        if (New->isCXXClassMember() && New->isOutOfLine())
1723          Diag(New->getLocation(),
1724               diag::err_member_def_does_not_match_ret_type) << New;
1725        else
1726          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1727        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1728        return true;
1729      }
1730      else
1731        NewQType = ResQT;
1732    }
1733
1734    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1735    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1736    if (OldMethod && NewMethod) {
1737      // Preserve triviality.
1738      NewMethod->setTrivial(OldMethod->isTrivial());
1739
1740      // MSVC allows explicit template specialization at class scope:
1741      // 2 CXMethodDecls referring to the same function will be injected.
1742      // We don't want a redeclartion error.
1743      bool IsClassScopeExplicitSpecialization =
1744                              OldMethod->isFunctionTemplateSpecialization() &&
1745                              NewMethod->isFunctionTemplateSpecialization();
1746      bool isFriend = NewMethod->getFriendObjectKind();
1747
1748      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1749          !IsClassScopeExplicitSpecialization) {
1750        //    -- Member function declarations with the same name and the
1751        //       same parameter types cannot be overloaded if any of them
1752        //       is a static member function declaration.
1753        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1754          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1755          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1756          return true;
1757        }
1758
1759        // C++ [class.mem]p1:
1760        //   [...] A member shall not be declared twice in the
1761        //   member-specification, except that a nested class or member
1762        //   class template can be declared and then later defined.
1763        unsigned NewDiag;
1764        if (isa<CXXConstructorDecl>(OldMethod))
1765          NewDiag = diag::err_constructor_redeclared;
1766        else if (isa<CXXDestructorDecl>(NewMethod))
1767          NewDiag = diag::err_destructor_redeclared;
1768        else if (isa<CXXConversionDecl>(NewMethod))
1769          NewDiag = diag::err_conv_function_redeclared;
1770        else
1771          NewDiag = diag::err_member_redeclared;
1772
1773        Diag(New->getLocation(), NewDiag);
1774        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1775
1776      // Complain if this is an explicit declaration of a special
1777      // member that was initially declared implicitly.
1778      //
1779      // As an exception, it's okay to befriend such methods in order
1780      // to permit the implicit constructor/destructor/operator calls.
1781      } else if (OldMethod->isImplicit()) {
1782        if (isFriend) {
1783          NewMethod->setImplicit();
1784        } else {
1785          Diag(NewMethod->getLocation(),
1786               diag::err_definition_of_implicitly_declared_member)
1787            << New << getSpecialMember(OldMethod);
1788          return true;
1789        }
1790      } else if (OldMethod->isExplicitlyDefaulted()) {
1791        Diag(NewMethod->getLocation(),
1792             diag::err_definition_of_explicitly_defaulted_member)
1793          << getSpecialMember(OldMethod);
1794        return true;
1795      }
1796    }
1797
1798    // (C++98 8.3.5p3):
1799    //   All declarations for a function shall agree exactly in both the
1800    //   return type and the parameter-type-list.
1801    // We also want to respect all the extended bits except noreturn.
1802
1803    // noreturn should now match unless the old type info didn't have it.
1804    QualType OldQTypeForComparison = OldQType;
1805    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1806      assert(OldQType == QualType(OldType, 0));
1807      const FunctionType *OldTypeForComparison
1808        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1809      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1810      assert(OldQTypeForComparison.isCanonical());
1811    }
1812
1813    if (OldQTypeForComparison == NewQType)
1814      return MergeCompatibleFunctionDecls(New, Old);
1815
1816    // Fall through for conflicting redeclarations and redefinitions.
1817  }
1818
1819  // C: Function types need to be compatible, not identical. This handles
1820  // duplicate function decls like "void f(int); void f(enum X);" properly.
1821  if (!getLangOptions().CPlusPlus &&
1822      Context.typesAreCompatible(OldQType, NewQType)) {
1823    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1824    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1825    const FunctionProtoType *OldProto = 0;
1826    if (isa<FunctionNoProtoType>(NewFuncType) &&
1827        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1828      // The old declaration provided a function prototype, but the
1829      // new declaration does not. Merge in the prototype.
1830      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1831      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1832                                                 OldProto->arg_type_end());
1833      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1834                                         ParamTypes.data(), ParamTypes.size(),
1835                                         OldProto->getExtProtoInfo());
1836      New->setType(NewQType);
1837      New->setHasInheritedPrototype();
1838
1839      // Synthesize a parameter for each argument type.
1840      SmallVector<ParmVarDecl*, 16> Params;
1841      for (FunctionProtoType::arg_type_iterator
1842             ParamType = OldProto->arg_type_begin(),
1843             ParamEnd = OldProto->arg_type_end();
1844           ParamType != ParamEnd; ++ParamType) {
1845        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1846                                                 SourceLocation(),
1847                                                 SourceLocation(), 0,
1848                                                 *ParamType, /*TInfo=*/0,
1849                                                 SC_None, SC_None,
1850                                                 0);
1851        Param->setScopeInfo(0, Params.size());
1852        Param->setImplicit();
1853        Params.push_back(Param);
1854      }
1855
1856      New->setParams(Params.data(), Params.size());
1857    }
1858
1859    return MergeCompatibleFunctionDecls(New, Old);
1860  }
1861
1862  // GNU C permits a K&R definition to follow a prototype declaration
1863  // if the declared types of the parameters in the K&R definition
1864  // match the types in the prototype declaration, even when the
1865  // promoted types of the parameters from the K&R definition differ
1866  // from the types in the prototype. GCC then keeps the types from
1867  // the prototype.
1868  //
1869  // If a variadic prototype is followed by a non-variadic K&R definition,
1870  // the K&R definition becomes variadic.  This is sort of an edge case, but
1871  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1872  // C99 6.9.1p8.
1873  if (!getLangOptions().CPlusPlus &&
1874      Old->hasPrototype() && !New->hasPrototype() &&
1875      New->getType()->getAs<FunctionProtoType>() &&
1876      Old->getNumParams() == New->getNumParams()) {
1877    SmallVector<QualType, 16> ArgTypes;
1878    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1879    const FunctionProtoType *OldProto
1880      = Old->getType()->getAs<FunctionProtoType>();
1881    const FunctionProtoType *NewProto
1882      = New->getType()->getAs<FunctionProtoType>();
1883
1884    // Determine whether this is the GNU C extension.
1885    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1886                                               NewProto->getResultType());
1887    bool LooseCompatible = !MergedReturn.isNull();
1888    for (unsigned Idx = 0, End = Old->getNumParams();
1889         LooseCompatible && Idx != End; ++Idx) {
1890      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1891      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1892      if (Context.typesAreCompatible(OldParm->getType(),
1893                                     NewProto->getArgType(Idx))) {
1894        ArgTypes.push_back(NewParm->getType());
1895      } else if (Context.typesAreCompatible(OldParm->getType(),
1896                                            NewParm->getType(),
1897                                            /*CompareUnqualified=*/true)) {
1898        GNUCompatibleParamWarning Warn
1899          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1900        Warnings.push_back(Warn);
1901        ArgTypes.push_back(NewParm->getType());
1902      } else
1903        LooseCompatible = false;
1904    }
1905
1906    if (LooseCompatible) {
1907      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1908        Diag(Warnings[Warn].NewParm->getLocation(),
1909             diag::ext_param_promoted_not_compatible_with_prototype)
1910          << Warnings[Warn].PromotedType
1911          << Warnings[Warn].OldParm->getType();
1912        if (Warnings[Warn].OldParm->getLocation().isValid())
1913          Diag(Warnings[Warn].OldParm->getLocation(),
1914               diag::note_previous_declaration);
1915      }
1916
1917      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1918                                           ArgTypes.size(),
1919                                           OldProto->getExtProtoInfo()));
1920      return MergeCompatibleFunctionDecls(New, Old);
1921    }
1922
1923    // Fall through to diagnose conflicting types.
1924  }
1925
1926  // A function that has already been declared has been redeclared or defined
1927  // with a different type- show appropriate diagnostic
1928  if (unsigned BuiltinID = Old->getBuiltinID()) {
1929    // The user has declared a builtin function with an incompatible
1930    // signature.
1931    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1932      // The function the user is redeclaring is a library-defined
1933      // function like 'malloc' or 'printf'. Warn about the
1934      // redeclaration, then pretend that we don't know about this
1935      // library built-in.
1936      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1937      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1938        << Old << Old->getType();
1939      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1940      Old->setInvalidDecl();
1941      return false;
1942    }
1943
1944    PrevDiag = diag::note_previous_builtin_declaration;
1945  }
1946
1947  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1948  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1949  return true;
1950}
1951
1952/// \brief Completes the merge of two function declarations that are
1953/// known to be compatible.
1954///
1955/// This routine handles the merging of attributes and other
1956/// properties of function declarations form the old declaration to
1957/// the new declaration, once we know that New is in fact a
1958/// redeclaration of Old.
1959///
1960/// \returns false
1961bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1962  // Merge the attributes
1963  mergeDeclAttributes(New, Old, Context);
1964
1965  // Merge the storage class.
1966  if (Old->getStorageClass() != SC_Extern &&
1967      Old->getStorageClass() != SC_None)
1968    New->setStorageClass(Old->getStorageClass());
1969
1970  // Merge "pure" flag.
1971  if (Old->isPure())
1972    New->setPure();
1973
1974  // __module_private__ is propagated to later declarations.
1975  if (Old->isModulePrivate())
1976    New->setModulePrivate();
1977  else if (New->isModulePrivate())
1978    diagnoseModulePrivateRedeclaration(New, Old);
1979
1980  // Merge attributes from the parameters.  These can mismatch with K&R
1981  // declarations.
1982  if (New->getNumParams() == Old->getNumParams())
1983    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1984      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1985                               Context);
1986
1987  if (getLangOptions().CPlusPlus)
1988    return MergeCXXFunctionDecl(New, Old);
1989
1990  return false;
1991}
1992
1993
1994void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1995                                const ObjCMethodDecl *oldMethod) {
1996  // We don't want to merge unavailable and deprecated attributes
1997  // except from interface to implementation.
1998  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1999
2000  // Merge the attributes.
2001  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2002
2003  // Merge attributes from the parameters.
2004  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
2005         ni = newMethod->param_begin(), ne = newMethod->param_end();
2006       ni != ne; ++ni, ++oi)
2007    mergeParamDeclAttributes(*ni, *oi, Context);
2008
2009  CheckObjCMethodOverride(newMethod, oldMethod, true);
2010}
2011
2012/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2013/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2014/// emitting diagnostics as appropriate.
2015///
2016/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2017/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2018/// check them before the initializer is attached.
2019///
2020void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2021  if (New->isInvalidDecl() || Old->isInvalidDecl())
2022    return;
2023
2024  QualType MergedT;
2025  if (getLangOptions().CPlusPlus) {
2026    AutoType *AT = New->getType()->getContainedAutoType();
2027    if (AT && !AT->isDeduced()) {
2028      // We don't know what the new type is until the initializer is attached.
2029      return;
2030    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2031      // These could still be something that needs exception specs checked.
2032      return MergeVarDeclExceptionSpecs(New, Old);
2033    }
2034    // C++ [basic.link]p10:
2035    //   [...] the types specified by all declarations referring to a given
2036    //   object or function shall be identical, except that declarations for an
2037    //   array object can specify array types that differ by the presence or
2038    //   absence of a major array bound (8.3.4).
2039    else if (Old->getType()->isIncompleteArrayType() &&
2040             New->getType()->isArrayType()) {
2041      CanQual<ArrayType> OldArray
2042        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2043      CanQual<ArrayType> NewArray
2044        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2045      if (OldArray->getElementType() == NewArray->getElementType())
2046        MergedT = New->getType();
2047    } else if (Old->getType()->isArrayType() &&
2048             New->getType()->isIncompleteArrayType()) {
2049      CanQual<ArrayType> OldArray
2050        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2051      CanQual<ArrayType> NewArray
2052        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2053      if (OldArray->getElementType() == NewArray->getElementType())
2054        MergedT = Old->getType();
2055    } else if (New->getType()->isObjCObjectPointerType()
2056               && Old->getType()->isObjCObjectPointerType()) {
2057        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2058                                                        Old->getType());
2059    }
2060  } else {
2061    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2062  }
2063  if (MergedT.isNull()) {
2064    Diag(New->getLocation(), diag::err_redefinition_different_type)
2065      << New->getDeclName();
2066    Diag(Old->getLocation(), diag::note_previous_definition);
2067    return New->setInvalidDecl();
2068  }
2069  New->setType(MergedT);
2070}
2071
2072/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2073/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2074/// situation, merging decls or emitting diagnostics as appropriate.
2075///
2076/// Tentative definition rules (C99 6.9.2p2) are checked by
2077/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2078/// definitions here, since the initializer hasn't been attached.
2079///
2080void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2081  // If the new decl is already invalid, don't do any other checking.
2082  if (New->isInvalidDecl())
2083    return;
2084
2085  // Verify the old decl was also a variable.
2086  VarDecl *Old = 0;
2087  if (!Previous.isSingleResult() ||
2088      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2089    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2090      << New->getDeclName();
2091    Diag(Previous.getRepresentativeDecl()->getLocation(),
2092         diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  // C++ [class.mem]p1:
2097  //   A member shall not be declared twice in the member-specification [...]
2098  //
2099  // Here, we need only consider static data members.
2100  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2101    Diag(New->getLocation(), diag::err_duplicate_member)
2102      << New->getIdentifier();
2103    Diag(Old->getLocation(), diag::note_previous_declaration);
2104    New->setInvalidDecl();
2105  }
2106
2107  mergeDeclAttributes(New, Old, Context);
2108  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2109  if (New->getAttr<WeakImportAttr>() &&
2110      Old->getStorageClass() == SC_None &&
2111      !Old->getAttr<WeakImportAttr>()) {
2112    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2113    Diag(Old->getLocation(), diag::note_previous_definition);
2114    // Remove weak_import attribute on new declaration.
2115    New->dropAttr<WeakImportAttr>();
2116  }
2117
2118  // Merge the types.
2119  MergeVarDeclTypes(New, Old);
2120  if (New->isInvalidDecl())
2121    return;
2122
2123  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2124  if (New->getStorageClass() == SC_Static &&
2125      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2126    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2127    Diag(Old->getLocation(), diag::note_previous_definition);
2128    return New->setInvalidDecl();
2129  }
2130  // C99 6.2.2p4:
2131  //   For an identifier declared with the storage-class specifier
2132  //   extern in a scope in which a prior declaration of that
2133  //   identifier is visible,23) if the prior declaration specifies
2134  //   internal or external linkage, the linkage of the identifier at
2135  //   the later declaration is the same as the linkage specified at
2136  //   the prior declaration. If no prior declaration is visible, or
2137  //   if the prior declaration specifies no linkage, then the
2138  //   identifier has external linkage.
2139  if (New->hasExternalStorage() && Old->hasLinkage())
2140    /* Okay */;
2141  else if (New->getStorageClass() != SC_Static &&
2142           Old->getStorageClass() == SC_Static) {
2143    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147
2148  // Check if extern is followed by non-extern and vice-versa.
2149  if (New->hasExternalStorage() &&
2150      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2151    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2152    Diag(Old->getLocation(), diag::note_previous_definition);
2153    return New->setInvalidDecl();
2154  }
2155  if (Old->hasExternalStorage() &&
2156      !New->hasLinkage() && New->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161
2162  // __module_private__ is propagated to later declarations.
2163  if (Old->isModulePrivate())
2164    New->setModulePrivate();
2165  else if (New->isModulePrivate())
2166    diagnoseModulePrivateRedeclaration(New, Old);
2167
2168  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2169
2170  // FIXME: The test for external storage here seems wrong? We still
2171  // need to check for mismatches.
2172  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2173      // Don't complain about out-of-line definitions of static members.
2174      !(Old->getLexicalDeclContext()->isRecord() &&
2175        !New->getLexicalDeclContext()->isRecord())) {
2176    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2177    Diag(Old->getLocation(), diag::note_previous_definition);
2178    return New->setInvalidDecl();
2179  }
2180
2181  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2182    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2185    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2186    Diag(Old->getLocation(), diag::note_previous_definition);
2187  }
2188
2189  // C++ doesn't have tentative definitions, so go right ahead and check here.
2190  const VarDecl *Def;
2191  if (getLangOptions().CPlusPlus &&
2192      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2193      (Def = Old->getDefinition())) {
2194    Diag(New->getLocation(), diag::err_redefinition)
2195      << New->getDeclName();
2196    Diag(Def->getLocation(), diag::note_previous_definition);
2197    New->setInvalidDecl();
2198    return;
2199  }
2200  // c99 6.2.2 P4.
2201  // For an identifier declared with the storage-class specifier extern in a
2202  // scope in which a prior declaration of that identifier is visible, if
2203  // the prior declaration specifies internal or external linkage, the linkage
2204  // of the identifier at the later declaration is the same as the linkage
2205  // specified at the prior declaration.
2206  // FIXME. revisit this code.
2207  if (New->hasExternalStorage() &&
2208      Old->getLinkage() == InternalLinkage &&
2209      New->getDeclContext() == Old->getDeclContext())
2210    New->setStorageClass(Old->getStorageClass());
2211
2212  // Keep a chain of previous declarations.
2213  New->setPreviousDeclaration(Old);
2214
2215  // Inherit access appropriately.
2216  New->setAccess(Old->getAccess());
2217}
2218
2219/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2220/// no declarator (e.g. "struct foo;") is parsed.
2221Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2222                                       DeclSpec &DS) {
2223  return ParsedFreeStandingDeclSpec(S, AS, DS,
2224                                    MultiTemplateParamsArg(*this, 0, 0));
2225}
2226
2227/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2228/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2229/// parameters to cope with template friend declarations.
2230Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2231                                       DeclSpec &DS,
2232                                       MultiTemplateParamsArg TemplateParams) {
2233  Decl *TagD = 0;
2234  TagDecl *Tag = 0;
2235  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2236      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2237      DS.getTypeSpecType() == DeclSpec::TST_union ||
2238      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2239    TagD = DS.getRepAsDecl();
2240
2241    if (!TagD) // We probably had an error
2242      return 0;
2243
2244    // Note that the above type specs guarantee that the
2245    // type rep is a Decl, whereas in many of the others
2246    // it's a Type.
2247    Tag = dyn_cast<TagDecl>(TagD);
2248  }
2249
2250  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2251    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2252    // or incomplete types shall not be restrict-qualified."
2253    if (TypeQuals & DeclSpec::TQ_restrict)
2254      Diag(DS.getRestrictSpecLoc(),
2255           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2256           << DS.getSourceRange();
2257  }
2258
2259  if (DS.isConstexprSpecified()) {
2260    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2261    // and definitions of functions and variables.
2262    if (Tag)
2263      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2264        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2265            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2266            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2267    else
2268      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2269    // Don't emit warnings after this error.
2270    return TagD;
2271  }
2272
2273  if (DS.isFriendSpecified()) {
2274    // If we're dealing with a decl but not a TagDecl, assume that
2275    // whatever routines created it handled the friendship aspect.
2276    if (TagD && !Tag)
2277      return 0;
2278    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2279  }
2280
2281  // Track whether we warned about the fact that there aren't any
2282  // declarators.
2283  bool emittedWarning = false;
2284
2285  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2286    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2287
2288    if (!Record->getDeclName() && Record->isDefinition() &&
2289        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2290      if (getLangOptions().CPlusPlus ||
2291          Record->getDeclContext()->isRecord())
2292        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2293
2294      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2295        << DS.getSourceRange();
2296      emittedWarning = true;
2297    }
2298  }
2299
2300  // Check for Microsoft C extension: anonymous struct.
2301  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2302      CurContext->isRecord() &&
2303      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2304    // Handle 2 kinds of anonymous struct:
2305    //   struct STRUCT;
2306    // and
2307    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2308    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2309    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2310        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2311         DS.getRepAsType().get()->isStructureType())) {
2312      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2313        << DS.getSourceRange();
2314      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2315    }
2316  }
2317
2318  if (getLangOptions().CPlusPlus &&
2319      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2320    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2321      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2322          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2323        Diag(Enum->getLocation(), diag::ext_no_declarators)
2324          << DS.getSourceRange();
2325        emittedWarning = true;
2326      }
2327
2328  // Skip all the checks below if we have a type error.
2329  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2330
2331  if (!DS.isMissingDeclaratorOk()) {
2332    // Warn about typedefs of enums without names, since this is an
2333    // extension in both Microsoft and GNU.
2334    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2335        Tag && isa<EnumDecl>(Tag)) {
2336      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2337        << DS.getSourceRange();
2338      return Tag;
2339    }
2340
2341    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2342      << DS.getSourceRange();
2343    emittedWarning = true;
2344  }
2345
2346  // We're going to complain about a bunch of spurious specifiers;
2347  // only do this if we're declaring a tag, because otherwise we
2348  // should be getting diag::ext_no_declarators.
2349  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2350    return TagD;
2351
2352  // Note that a linkage-specification sets a storage class, but
2353  // 'extern "C" struct foo;' is actually valid and not theoretically
2354  // useless.
2355  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2356    if (!DS.isExternInLinkageSpec())
2357      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2358        << DeclSpec::getSpecifierName(scs);
2359
2360  if (DS.isThreadSpecified())
2361    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2362  if (DS.getTypeQualifiers()) {
2363    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2364      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2365    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2366      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2367    // Restrict is covered above.
2368  }
2369  if (DS.isInlineSpecified())
2370    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2371  if (DS.isVirtualSpecified())
2372    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2373  if (DS.isExplicitSpecified())
2374    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2375
2376  if (DS.isModulePrivateSpecified() &&
2377      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2378    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2379      << Tag->getTagKind()
2380      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2381
2382  // FIXME: Warn on useless attributes
2383
2384  return TagD;
2385}
2386
2387/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2388/// builds a statement for it and returns it so it is evaluated.
2389StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2390  StmtResult R;
2391  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2392    Expr *Exp = DS.getRepAsExpr();
2393    QualType Ty = Exp->getType();
2394    if (Ty->isPointerType()) {
2395      do
2396        Ty = Ty->getAs<PointerType>()->getPointeeType();
2397      while (Ty->isPointerType());
2398    }
2399    if (Ty->isVariableArrayType()) {
2400      R = ActOnExprStmt(MakeFullExpr(Exp));
2401    }
2402  }
2403  return R;
2404}
2405
2406/// We are trying to inject an anonymous member into the given scope;
2407/// check if there's an existing declaration that can't be overloaded.
2408///
2409/// \return true if this is a forbidden redeclaration
2410static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2411                                         Scope *S,
2412                                         DeclContext *Owner,
2413                                         DeclarationName Name,
2414                                         SourceLocation NameLoc,
2415                                         unsigned diagnostic) {
2416  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2417                 Sema::ForRedeclaration);
2418  if (!SemaRef.LookupName(R, S)) return false;
2419
2420  if (R.getAsSingle<TagDecl>())
2421    return false;
2422
2423  // Pick a representative declaration.
2424  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2425  assert(PrevDecl && "Expected a non-null Decl");
2426
2427  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2428    return false;
2429
2430  SemaRef.Diag(NameLoc, diagnostic) << Name;
2431  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2432
2433  return true;
2434}
2435
2436/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2437/// anonymous struct or union AnonRecord into the owning context Owner
2438/// and scope S. This routine will be invoked just after we realize
2439/// that an unnamed union or struct is actually an anonymous union or
2440/// struct, e.g.,
2441///
2442/// @code
2443/// union {
2444///   int i;
2445///   float f;
2446/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2447///    // f into the surrounding scope.x
2448/// @endcode
2449///
2450/// This routine is recursive, injecting the names of nested anonymous
2451/// structs/unions into the owning context and scope as well.
2452static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2453                                                DeclContext *Owner,
2454                                                RecordDecl *AnonRecord,
2455                                                AccessSpecifier AS,
2456                              SmallVector<NamedDecl*, 2> &Chaining,
2457                                                      bool MSAnonStruct) {
2458  unsigned diagKind
2459    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2460                            : diag::err_anonymous_struct_member_redecl;
2461
2462  bool Invalid = false;
2463
2464  // Look every FieldDecl and IndirectFieldDecl with a name.
2465  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2466                               DEnd = AnonRecord->decls_end();
2467       D != DEnd; ++D) {
2468    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2469        cast<NamedDecl>(*D)->getDeclName()) {
2470      ValueDecl *VD = cast<ValueDecl>(*D);
2471      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2472                                       VD->getLocation(), diagKind)) {
2473        // C++ [class.union]p2:
2474        //   The names of the members of an anonymous union shall be
2475        //   distinct from the names of any other entity in the
2476        //   scope in which the anonymous union is declared.
2477        Invalid = true;
2478      } else {
2479        // C++ [class.union]p2:
2480        //   For the purpose of name lookup, after the anonymous union
2481        //   definition, the members of the anonymous union are
2482        //   considered to have been defined in the scope in which the
2483        //   anonymous union is declared.
2484        unsigned OldChainingSize = Chaining.size();
2485        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2486          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2487               PE = IF->chain_end(); PI != PE; ++PI)
2488            Chaining.push_back(*PI);
2489        else
2490          Chaining.push_back(VD);
2491
2492        assert(Chaining.size() >= 2);
2493        NamedDecl **NamedChain =
2494          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2495        for (unsigned i = 0; i < Chaining.size(); i++)
2496          NamedChain[i] = Chaining[i];
2497
2498        IndirectFieldDecl* IndirectField =
2499          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2500                                    VD->getIdentifier(), VD->getType(),
2501                                    NamedChain, Chaining.size());
2502
2503        IndirectField->setAccess(AS);
2504        IndirectField->setImplicit();
2505        SemaRef.PushOnScopeChains(IndirectField, S);
2506
2507        // That includes picking up the appropriate access specifier.
2508        if (AS != AS_none) IndirectField->setAccess(AS);
2509
2510        Chaining.resize(OldChainingSize);
2511      }
2512    }
2513  }
2514
2515  return Invalid;
2516}
2517
2518/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2519/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2520/// illegal input values are mapped to SC_None.
2521static StorageClass
2522StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2523  switch (StorageClassSpec) {
2524  case DeclSpec::SCS_unspecified:    return SC_None;
2525  case DeclSpec::SCS_extern:         return SC_Extern;
2526  case DeclSpec::SCS_static:         return SC_Static;
2527  case DeclSpec::SCS_auto:           return SC_Auto;
2528  case DeclSpec::SCS_register:       return SC_Register;
2529  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2530    // Illegal SCSs map to None: error reporting is up to the caller.
2531  case DeclSpec::SCS_mutable:        // Fall through.
2532  case DeclSpec::SCS_typedef:        return SC_None;
2533  }
2534  llvm_unreachable("unknown storage class specifier");
2535}
2536
2537/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2538/// a StorageClass. Any error reporting is up to the caller:
2539/// illegal input values are mapped to SC_None.
2540static StorageClass
2541StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2542  switch (StorageClassSpec) {
2543  case DeclSpec::SCS_unspecified:    return SC_None;
2544  case DeclSpec::SCS_extern:         return SC_Extern;
2545  case DeclSpec::SCS_static:         return SC_Static;
2546  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2547    // Illegal SCSs map to None: error reporting is up to the caller.
2548  case DeclSpec::SCS_auto:           // Fall through.
2549  case DeclSpec::SCS_mutable:        // Fall through.
2550  case DeclSpec::SCS_register:       // Fall through.
2551  case DeclSpec::SCS_typedef:        return SC_None;
2552  }
2553  llvm_unreachable("unknown storage class specifier");
2554}
2555
2556/// BuildAnonymousStructOrUnion - Handle the declaration of an
2557/// anonymous structure or union. Anonymous unions are a C++ feature
2558/// (C++ [class.union]) and a GNU C extension; anonymous structures
2559/// are a GNU C and GNU C++ extension.
2560Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2561                                             AccessSpecifier AS,
2562                                             RecordDecl *Record) {
2563  DeclContext *Owner = Record->getDeclContext();
2564
2565  // Diagnose whether this anonymous struct/union is an extension.
2566  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2567    Diag(Record->getLocation(), diag::ext_anonymous_union);
2568  else if (!Record->isUnion())
2569    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2570
2571  // C and C++ require different kinds of checks for anonymous
2572  // structs/unions.
2573  bool Invalid = false;
2574  if (getLangOptions().CPlusPlus) {
2575    const char* PrevSpec = 0;
2576    unsigned DiagID;
2577    // C++ [class.union]p3:
2578    //   Anonymous unions declared in a named namespace or in the
2579    //   global namespace shall be declared static.
2580    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2581        (isa<TranslationUnitDecl>(Owner) ||
2582         (isa<NamespaceDecl>(Owner) &&
2583          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2584      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2585      Invalid = true;
2586
2587      // Recover by adding 'static'.
2588      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2589                             PrevSpec, DiagID, getLangOptions());
2590    }
2591    // C++ [class.union]p3:
2592    //   A storage class is not allowed in a declaration of an
2593    //   anonymous union in a class scope.
2594    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2595             isa<RecordDecl>(Owner)) {
2596      Diag(DS.getStorageClassSpecLoc(),
2597           diag::err_anonymous_union_with_storage_spec);
2598      Invalid = true;
2599
2600      // Recover by removing the storage specifier.
2601      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2602                             PrevSpec, DiagID, getLangOptions());
2603    }
2604
2605    // Ignore const/volatile/restrict qualifiers.
2606    if (DS.getTypeQualifiers()) {
2607      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2608        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2609          << Record->isUnion() << 0
2610          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2611      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2612        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2613          << Record->isUnion() << 1
2614          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2615      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2616        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2617          << Record->isUnion() << 2
2618          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2619
2620      DS.ClearTypeQualifiers();
2621    }
2622
2623    // C++ [class.union]p2:
2624    //   The member-specification of an anonymous union shall only
2625    //   define non-static data members. [Note: nested types and
2626    //   functions cannot be declared within an anonymous union. ]
2627    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2628                                 MemEnd = Record->decls_end();
2629         Mem != MemEnd; ++Mem) {
2630      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2631        // C++ [class.union]p3:
2632        //   An anonymous union shall not have private or protected
2633        //   members (clause 11).
2634        assert(FD->getAccess() != AS_none);
2635        if (FD->getAccess() != AS_public) {
2636          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2637            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2638          Invalid = true;
2639        }
2640
2641        // C++ [class.union]p1
2642        //   An object of a class with a non-trivial constructor, a non-trivial
2643        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2644        //   assignment operator cannot be a member of a union, nor can an
2645        //   array of such objects.
2646        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2647          Invalid = true;
2648      } else if ((*Mem)->isImplicit()) {
2649        // Any implicit members are fine.
2650      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2651        // This is a type that showed up in an
2652        // elaborated-type-specifier inside the anonymous struct or
2653        // union, but which actually declares a type outside of the
2654        // anonymous struct or union. It's okay.
2655      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2656        if (!MemRecord->isAnonymousStructOrUnion() &&
2657            MemRecord->getDeclName()) {
2658          // Visual C++ allows type definition in anonymous struct or union.
2659          if (getLangOptions().MicrosoftExt)
2660            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2661              << (int)Record->isUnion();
2662          else {
2663            // This is a nested type declaration.
2664            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2665              << (int)Record->isUnion();
2666            Invalid = true;
2667          }
2668        }
2669      } else if (isa<AccessSpecDecl>(*Mem)) {
2670        // Any access specifier is fine.
2671      } else {
2672        // We have something that isn't a non-static data
2673        // member. Complain about it.
2674        unsigned DK = diag::err_anonymous_record_bad_member;
2675        if (isa<TypeDecl>(*Mem))
2676          DK = diag::err_anonymous_record_with_type;
2677        else if (isa<FunctionDecl>(*Mem))
2678          DK = diag::err_anonymous_record_with_function;
2679        else if (isa<VarDecl>(*Mem))
2680          DK = diag::err_anonymous_record_with_static;
2681
2682        // Visual C++ allows type definition in anonymous struct or union.
2683        if (getLangOptions().MicrosoftExt &&
2684            DK == diag::err_anonymous_record_with_type)
2685          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2686            << (int)Record->isUnion();
2687        else {
2688          Diag((*Mem)->getLocation(), DK)
2689              << (int)Record->isUnion();
2690          Invalid = true;
2691        }
2692      }
2693    }
2694  }
2695
2696  if (!Record->isUnion() && !Owner->isRecord()) {
2697    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2698      << (int)getLangOptions().CPlusPlus;
2699    Invalid = true;
2700  }
2701
2702  // Mock up a declarator.
2703  Declarator Dc(DS, Declarator::MemberContext);
2704  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2705  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2706
2707  // Create a declaration for this anonymous struct/union.
2708  NamedDecl *Anon = 0;
2709  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2710    Anon = FieldDecl::Create(Context, OwningClass,
2711                             DS.getSourceRange().getBegin(),
2712                             Record->getLocation(),
2713                             /*IdentifierInfo=*/0,
2714                             Context.getTypeDeclType(Record),
2715                             TInfo,
2716                             /*BitWidth=*/0, /*Mutable=*/false,
2717                             /*HasInit=*/false);
2718    Anon->setAccess(AS);
2719    if (getLangOptions().CPlusPlus)
2720      FieldCollector->Add(cast<FieldDecl>(Anon));
2721  } else {
2722    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2723    assert(SCSpec != DeclSpec::SCS_typedef &&
2724           "Parser allowed 'typedef' as storage class VarDecl.");
2725    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2726    if (SCSpec == DeclSpec::SCS_mutable) {
2727      // mutable can only appear on non-static class members, so it's always
2728      // an error here
2729      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2730      Invalid = true;
2731      SC = SC_None;
2732    }
2733    SCSpec = DS.getStorageClassSpecAsWritten();
2734    VarDecl::StorageClass SCAsWritten
2735      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2736
2737    Anon = VarDecl::Create(Context, Owner,
2738                           DS.getSourceRange().getBegin(),
2739                           Record->getLocation(), /*IdentifierInfo=*/0,
2740                           Context.getTypeDeclType(Record),
2741                           TInfo, SC, SCAsWritten);
2742
2743    // Default-initialize the implicit variable. This initialization will be
2744    // trivial in almost all cases, except if a union member has an in-class
2745    // initializer:
2746    //   union { int n = 0; };
2747    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2748  }
2749  Anon->setImplicit();
2750
2751  // Add the anonymous struct/union object to the current
2752  // context. We'll be referencing this object when we refer to one of
2753  // its members.
2754  Owner->addDecl(Anon);
2755
2756  // Inject the members of the anonymous struct/union into the owning
2757  // context and into the identifier resolver chain for name lookup
2758  // purposes.
2759  SmallVector<NamedDecl*, 2> Chain;
2760  Chain.push_back(Anon);
2761
2762  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2763                                          Chain, false))
2764    Invalid = true;
2765
2766  // Mark this as an anonymous struct/union type. Note that we do not
2767  // do this until after we have already checked and injected the
2768  // members of this anonymous struct/union type, because otherwise
2769  // the members could be injected twice: once by DeclContext when it
2770  // builds its lookup table, and once by
2771  // InjectAnonymousStructOrUnionMembers.
2772  Record->setAnonymousStructOrUnion(true);
2773
2774  if (Invalid)
2775    Anon->setInvalidDecl();
2776
2777  return Anon;
2778}
2779
2780/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2781/// Microsoft C anonymous structure.
2782/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2783/// Example:
2784///
2785/// struct A { int a; };
2786/// struct B { struct A; int b; };
2787///
2788/// void foo() {
2789///   B var;
2790///   var.a = 3;
2791/// }
2792///
2793Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2794                                           RecordDecl *Record) {
2795
2796  // If there is no Record, get the record via the typedef.
2797  if (!Record)
2798    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2799
2800  // Mock up a declarator.
2801  Declarator Dc(DS, Declarator::TypeNameContext);
2802  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2803  assert(TInfo && "couldn't build declarator info for anonymous struct");
2804
2805  // Create a declaration for this anonymous struct.
2806  NamedDecl* Anon = FieldDecl::Create(Context,
2807                             cast<RecordDecl>(CurContext),
2808                             DS.getSourceRange().getBegin(),
2809                             DS.getSourceRange().getBegin(),
2810                             /*IdentifierInfo=*/0,
2811                             Context.getTypeDeclType(Record),
2812                             TInfo,
2813                             /*BitWidth=*/0, /*Mutable=*/false,
2814                             /*HasInit=*/false);
2815  Anon->setImplicit();
2816
2817  // Add the anonymous struct object to the current context.
2818  CurContext->addDecl(Anon);
2819
2820  // Inject the members of the anonymous struct into the current
2821  // context and into the identifier resolver chain for name lookup
2822  // purposes.
2823  SmallVector<NamedDecl*, 2> Chain;
2824  Chain.push_back(Anon);
2825
2826  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2827                                          Record->getDefinition(),
2828                                          AS_none, Chain, true))
2829    Anon->setInvalidDecl();
2830
2831  return Anon;
2832}
2833
2834/// GetNameForDeclarator - Determine the full declaration name for the
2835/// given Declarator.
2836DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2837  return GetNameFromUnqualifiedId(D.getName());
2838}
2839
2840/// \brief Retrieves the declaration name from a parsed unqualified-id.
2841DeclarationNameInfo
2842Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2843  DeclarationNameInfo NameInfo;
2844  NameInfo.setLoc(Name.StartLocation);
2845
2846  switch (Name.getKind()) {
2847
2848  case UnqualifiedId::IK_ImplicitSelfParam:
2849  case UnqualifiedId::IK_Identifier:
2850    NameInfo.setName(Name.Identifier);
2851    NameInfo.setLoc(Name.StartLocation);
2852    return NameInfo;
2853
2854  case UnqualifiedId::IK_OperatorFunctionId:
2855    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2856                                           Name.OperatorFunctionId.Operator));
2857    NameInfo.setLoc(Name.StartLocation);
2858    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2859      = Name.OperatorFunctionId.SymbolLocations[0];
2860    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2861      = Name.EndLocation.getRawEncoding();
2862    return NameInfo;
2863
2864  case UnqualifiedId::IK_LiteralOperatorId:
2865    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2866                                                           Name.Identifier));
2867    NameInfo.setLoc(Name.StartLocation);
2868    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2869    return NameInfo;
2870
2871  case UnqualifiedId::IK_ConversionFunctionId: {
2872    TypeSourceInfo *TInfo;
2873    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2874    if (Ty.isNull())
2875      return DeclarationNameInfo();
2876    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2877                                               Context.getCanonicalType(Ty)));
2878    NameInfo.setLoc(Name.StartLocation);
2879    NameInfo.setNamedTypeInfo(TInfo);
2880    return NameInfo;
2881  }
2882
2883  case UnqualifiedId::IK_ConstructorName: {
2884    TypeSourceInfo *TInfo;
2885    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2886    if (Ty.isNull())
2887      return DeclarationNameInfo();
2888    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2889                                              Context.getCanonicalType(Ty)));
2890    NameInfo.setLoc(Name.StartLocation);
2891    NameInfo.setNamedTypeInfo(TInfo);
2892    return NameInfo;
2893  }
2894
2895  case UnqualifiedId::IK_ConstructorTemplateId: {
2896    // In well-formed code, we can only have a constructor
2897    // template-id that refers to the current context, so go there
2898    // to find the actual type being constructed.
2899    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2900    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2901      return DeclarationNameInfo();
2902
2903    // Determine the type of the class being constructed.
2904    QualType CurClassType = Context.getTypeDeclType(CurClass);
2905
2906    // FIXME: Check two things: that the template-id names the same type as
2907    // CurClassType, and that the template-id does not occur when the name
2908    // was qualified.
2909
2910    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2911                                    Context.getCanonicalType(CurClassType)));
2912    NameInfo.setLoc(Name.StartLocation);
2913    // FIXME: should we retrieve TypeSourceInfo?
2914    NameInfo.setNamedTypeInfo(0);
2915    return NameInfo;
2916  }
2917
2918  case UnqualifiedId::IK_DestructorName: {
2919    TypeSourceInfo *TInfo;
2920    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2921    if (Ty.isNull())
2922      return DeclarationNameInfo();
2923    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2924                                              Context.getCanonicalType(Ty)));
2925    NameInfo.setLoc(Name.StartLocation);
2926    NameInfo.setNamedTypeInfo(TInfo);
2927    return NameInfo;
2928  }
2929
2930  case UnqualifiedId::IK_TemplateId: {
2931    TemplateName TName = Name.TemplateId->Template.get();
2932    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2933    return Context.getNameForTemplate(TName, TNameLoc);
2934  }
2935
2936  } // switch (Name.getKind())
2937
2938  assert(false && "Unknown name kind");
2939  return DeclarationNameInfo();
2940}
2941
2942static QualType getCoreType(QualType Ty) {
2943  do {
2944    if (Ty->isPointerType() || Ty->isReferenceType())
2945      Ty = Ty->getPointeeType();
2946    else if (Ty->isArrayType())
2947      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2948    else
2949      return Ty.withoutLocalFastQualifiers();
2950  } while (true);
2951}
2952
2953/// isNearlyMatchingFunction - Determine whether the C++ functions
2954/// Declaration and Definition are "nearly" matching. This heuristic
2955/// is used to improve diagnostics in the case where an out-of-line
2956/// function definition doesn't match any declaration within the class
2957/// or namespace. Also sets Params to the list of indices to the
2958/// parameters that differ between the declaration and the definition.
2959static bool isNearlyMatchingFunction(ASTContext &Context,
2960                                     FunctionDecl *Declaration,
2961                                     FunctionDecl *Definition,
2962                                     llvm::SmallVectorImpl<unsigned> &Params) {
2963  Params.clear();
2964  if (Declaration->param_size() != Definition->param_size())
2965    return false;
2966  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2967    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2968    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2969
2970    // The parameter types are identical
2971    if (Context.hasSameType(DefParamTy, DeclParamTy))
2972      continue;
2973
2974    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2975    QualType DefParamBaseTy = getCoreType(DefParamTy);
2976    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2977    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2978
2979    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2980        (DeclTyName && DeclTyName == DefTyName))
2981      Params.push_back(Idx);
2982    else  // The two parameters aren't even close
2983      return false;
2984  }
2985
2986  return true;
2987}
2988
2989/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2990/// declarator needs to be rebuilt in the current instantiation.
2991/// Any bits of declarator which appear before the name are valid for
2992/// consideration here.  That's specifically the type in the decl spec
2993/// and the base type in any member-pointer chunks.
2994static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2995                                                    DeclarationName Name) {
2996  // The types we specifically need to rebuild are:
2997  //   - typenames, typeofs, and decltypes
2998  //   - types which will become injected class names
2999  // Of course, we also need to rebuild any type referencing such a
3000  // type.  It's safest to just say "dependent", but we call out a
3001  // few cases here.
3002
3003  DeclSpec &DS = D.getMutableDeclSpec();
3004  switch (DS.getTypeSpecType()) {
3005  case DeclSpec::TST_typename:
3006  case DeclSpec::TST_typeofType:
3007  case DeclSpec::TST_decltype:
3008  case DeclSpec::TST_underlyingType: {
3009    // Grab the type from the parser.
3010    TypeSourceInfo *TSI = 0;
3011    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3012    if (T.isNull() || !T->isDependentType()) break;
3013
3014    // Make sure there's a type source info.  This isn't really much
3015    // of a waste; most dependent types should have type source info
3016    // attached already.
3017    if (!TSI)
3018      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3019
3020    // Rebuild the type in the current instantiation.
3021    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3022    if (!TSI) return true;
3023
3024    // Store the new type back in the decl spec.
3025    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3026    DS.UpdateTypeRep(LocType);
3027    break;
3028  }
3029
3030  case DeclSpec::TST_typeofExpr: {
3031    Expr *E = DS.getRepAsExpr();
3032    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3033    if (Result.isInvalid()) return true;
3034    DS.UpdateExprRep(Result.get());
3035    break;
3036  }
3037
3038  default:
3039    // Nothing to do for these decl specs.
3040    break;
3041  }
3042
3043  // It doesn't matter what order we do this in.
3044  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3045    DeclaratorChunk &Chunk = D.getTypeObject(I);
3046
3047    // The only type information in the declarator which can come
3048    // before the declaration name is the base type of a member
3049    // pointer.
3050    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3051      continue;
3052
3053    // Rebuild the scope specifier in-place.
3054    CXXScopeSpec &SS = Chunk.Mem.Scope();
3055    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3056      return true;
3057  }
3058
3059  return false;
3060}
3061
3062Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3063  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3064                          /*IsFunctionDefinition=*/false);
3065}
3066
3067/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3068///   If T is the name of a class, then each of the following shall have a
3069///   name different from T:
3070///     - every static data member of class T;
3071///     - every member function of class T
3072///     - every member of class T that is itself a type;
3073/// \returns true if the declaration name violates these rules.
3074bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3075                                   DeclarationNameInfo NameInfo) {
3076  DeclarationName Name = NameInfo.getName();
3077
3078  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3079    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3080      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3081      return true;
3082    }
3083
3084  return false;
3085}
3086
3087Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3088                             MultiTemplateParamsArg TemplateParamLists,
3089                             bool IsFunctionDefinition) {
3090  // TODO: consider using NameInfo for diagnostic.
3091  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3092  DeclarationName Name = NameInfo.getName();
3093
3094  // All of these full declarators require an identifier.  If it doesn't have
3095  // one, the ParsedFreeStandingDeclSpec action should be used.
3096  if (!Name) {
3097    if (!D.isInvalidType())  // Reject this if we think it is valid.
3098      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3099           diag::err_declarator_need_ident)
3100        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3101    return 0;
3102  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3103    return 0;
3104
3105  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3106  // we find one that is.
3107  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3108         (S->getFlags() & Scope::TemplateParamScope) != 0)
3109    S = S->getParent();
3110
3111  DeclContext *DC = CurContext;
3112  if (D.getCXXScopeSpec().isInvalid())
3113    D.setInvalidType();
3114  else if (D.getCXXScopeSpec().isSet()) {
3115    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3116                                        UPPC_DeclarationQualifier))
3117      return 0;
3118
3119    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3120    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3121    if (!DC) {
3122      // If we could not compute the declaration context, it's because the
3123      // declaration context is dependent but does not refer to a class,
3124      // class template, or class template partial specialization. Complain
3125      // and return early, to avoid the coming semantic disaster.
3126      Diag(D.getIdentifierLoc(),
3127           diag::err_template_qualified_declarator_no_match)
3128        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3129        << D.getCXXScopeSpec().getRange();
3130      return 0;
3131    }
3132    bool IsDependentContext = DC->isDependentContext();
3133
3134    if (!IsDependentContext &&
3135        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3136      return 0;
3137
3138    if (isa<CXXRecordDecl>(DC)) {
3139      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3140        Diag(D.getIdentifierLoc(),
3141             diag::err_member_def_undefined_record)
3142          << Name << DC << D.getCXXScopeSpec().getRange();
3143        D.setInvalidType();
3144      } else if (isa<CXXRecordDecl>(CurContext) &&
3145                 !D.getDeclSpec().isFriendSpecified()) {
3146        // The user provided a superfluous scope specifier inside a class
3147        // definition:
3148        //
3149        // class X {
3150        //   void X::f();
3151        // };
3152        if (CurContext->Equals(DC))
3153          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3154            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3155        else
3156          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3157            << Name << D.getCXXScopeSpec().getRange();
3158
3159        // Pretend that this qualifier was not here.
3160        D.getCXXScopeSpec().clear();
3161      }
3162    }
3163
3164    // Check whether we need to rebuild the type of the given
3165    // declaration in the current instantiation.
3166    if (EnteringContext && IsDependentContext &&
3167        TemplateParamLists.size() != 0) {
3168      ContextRAII SavedContext(*this, DC);
3169      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3170        D.setInvalidType();
3171    }
3172  }
3173
3174  if (DiagnoseClassNameShadow(DC, NameInfo))
3175    // If this is a typedef, we'll end up spewing multiple diagnostics.
3176    // Just return early; it's safer.
3177    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3178      return 0;
3179
3180  NamedDecl *New;
3181
3182  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3183  QualType R = TInfo->getType();
3184
3185  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3186                                      UPPC_DeclarationType))
3187    D.setInvalidType();
3188
3189  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3190                        ForRedeclaration);
3191
3192  // See if this is a redefinition of a variable in the same scope.
3193  if (!D.getCXXScopeSpec().isSet()) {
3194    bool IsLinkageLookup = false;
3195
3196    // If the declaration we're planning to build will be a function
3197    // or object with linkage, then look for another declaration with
3198    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3199    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3200      /* Do nothing*/;
3201    else if (R->isFunctionType()) {
3202      if (CurContext->isFunctionOrMethod() ||
3203          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3204        IsLinkageLookup = true;
3205    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3206      IsLinkageLookup = true;
3207    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3208             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3209      IsLinkageLookup = true;
3210
3211    if (IsLinkageLookup)
3212      Previous.clear(LookupRedeclarationWithLinkage);
3213
3214    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3215  } else { // Something like "int foo::x;"
3216    LookupQualifiedName(Previous, DC);
3217
3218    // Don't consider using declarations as previous declarations for
3219    // out-of-line members.
3220    RemoveUsingDecls(Previous);
3221
3222    // C++ 7.3.1.2p2:
3223    // Members (including explicit specializations of templates) of a named
3224    // namespace can also be defined outside that namespace by explicit
3225    // qualification of the name being defined, provided that the entity being
3226    // defined was already declared in the namespace and the definition appears
3227    // after the point of declaration in a namespace that encloses the
3228    // declarations namespace.
3229    //
3230    // Note that we only check the context at this point. We don't yet
3231    // have enough information to make sure that PrevDecl is actually
3232    // the declaration we want to match. For example, given:
3233    //
3234    //   class X {
3235    //     void f();
3236    //     void f(float);
3237    //   };
3238    //
3239    //   void X::f(int) { } // ill-formed
3240    //
3241    // In this case, PrevDecl will point to the overload set
3242    // containing the two f's declared in X, but neither of them
3243    // matches.
3244
3245    // First check whether we named the global scope.
3246    if (isa<TranslationUnitDecl>(DC)) {
3247      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3248        << Name << D.getCXXScopeSpec().getRange();
3249    } else {
3250      DeclContext *Cur = CurContext;
3251      while (isa<LinkageSpecDecl>(Cur))
3252        Cur = Cur->getParent();
3253      if (!Cur->Encloses(DC)) {
3254        // The qualifying scope doesn't enclose the original declaration.
3255        // Emit diagnostic based on current scope.
3256        SourceLocation L = D.getIdentifierLoc();
3257        SourceRange R = D.getCXXScopeSpec().getRange();
3258        if (isa<FunctionDecl>(Cur))
3259          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3260        else
3261          Diag(L, diag::err_invalid_declarator_scope)
3262            << Name << cast<NamedDecl>(DC) << R;
3263        D.setInvalidType();
3264      }
3265    }
3266  }
3267
3268  if (Previous.isSingleResult() &&
3269      Previous.getFoundDecl()->isTemplateParameter()) {
3270    // Maybe we will complain about the shadowed template parameter.
3271    if (!D.isInvalidType())
3272      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3273                                          Previous.getFoundDecl()))
3274        D.setInvalidType();
3275
3276    // Just pretend that we didn't see the previous declaration.
3277    Previous.clear();
3278  }
3279
3280  // In C++, the previous declaration we find might be a tag type
3281  // (class or enum). In this case, the new declaration will hide the
3282  // tag type. Note that this does does not apply if we're declaring a
3283  // typedef (C++ [dcl.typedef]p4).
3284  if (Previous.isSingleTagDecl() &&
3285      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3286    Previous.clear();
3287
3288  bool Redeclaration = false;
3289  bool AddToScope = true;
3290  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3291    if (TemplateParamLists.size()) {
3292      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3293      return 0;
3294    }
3295
3296    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3297  } else if (R->isFunctionType()) {
3298    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3299                                  move(TemplateParamLists),
3300                                  IsFunctionDefinition, Redeclaration,
3301                                  AddToScope);
3302  } else {
3303    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3304                                  move(TemplateParamLists),
3305                                  Redeclaration);
3306  }
3307
3308  if (New == 0)
3309    return 0;
3310
3311  // If this has an identifier and is not an invalid redeclaration or
3312  // function template specialization, add it to the scope stack.
3313  if (New->getDeclName() && AddToScope &&
3314       !(Redeclaration && New->isInvalidDecl()))
3315    PushOnScopeChains(New, S);
3316
3317  return New;
3318}
3319
3320/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3321/// types into constant array types in certain situations which would otherwise
3322/// be errors (for GCC compatibility).
3323static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3324                                                    ASTContext &Context,
3325                                                    bool &SizeIsNegative,
3326                                                    llvm::APSInt &Oversized) {
3327  // This method tries to turn a variable array into a constant
3328  // array even when the size isn't an ICE.  This is necessary
3329  // for compatibility with code that depends on gcc's buggy
3330  // constant expression folding, like struct {char x[(int)(char*)2];}
3331  SizeIsNegative = false;
3332  Oversized = 0;
3333
3334  if (T->isDependentType())
3335    return QualType();
3336
3337  QualifierCollector Qs;
3338  const Type *Ty = Qs.strip(T);
3339
3340  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3341    QualType Pointee = PTy->getPointeeType();
3342    QualType FixedType =
3343        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3344                                            Oversized);
3345    if (FixedType.isNull()) return FixedType;
3346    FixedType = Context.getPointerType(FixedType);
3347    return Qs.apply(Context, FixedType);
3348  }
3349  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3350    QualType Inner = PTy->getInnerType();
3351    QualType FixedType =
3352        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3353                                            Oversized);
3354    if (FixedType.isNull()) return FixedType;
3355    FixedType = Context.getParenType(FixedType);
3356    return Qs.apply(Context, FixedType);
3357  }
3358
3359  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3360  if (!VLATy)
3361    return QualType();
3362  // FIXME: We should probably handle this case
3363  if (VLATy->getElementType()->isVariablyModifiedType())
3364    return QualType();
3365
3366  Expr::EvalResult EvalResult;
3367  if (!VLATy->getSizeExpr() ||
3368      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3369      !EvalResult.Val.isInt())
3370    return QualType();
3371
3372  // Check whether the array size is negative.
3373  llvm::APSInt &Res = EvalResult.Val.getInt();
3374  if (Res.isSigned() && Res.isNegative()) {
3375    SizeIsNegative = true;
3376    return QualType();
3377  }
3378
3379  // Check whether the array is too large to be addressed.
3380  unsigned ActiveSizeBits
3381    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3382                                              Res);
3383  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3384    Oversized = Res;
3385    return QualType();
3386  }
3387
3388  return Context.getConstantArrayType(VLATy->getElementType(),
3389                                      Res, ArrayType::Normal, 0);
3390}
3391
3392/// \brief Register the given locally-scoped external C declaration so
3393/// that it can be found later for redeclarations
3394void
3395Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3396                                       const LookupResult &Previous,
3397                                       Scope *S) {
3398  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3399         "Decl is not a locally-scoped decl!");
3400  // Note that we have a locally-scoped external with this name.
3401  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3402
3403  if (!Previous.isSingleResult())
3404    return;
3405
3406  NamedDecl *PrevDecl = Previous.getFoundDecl();
3407
3408  // If there was a previous declaration of this variable, it may be
3409  // in our identifier chain. Update the identifier chain with the new
3410  // declaration.
3411  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3412    // The previous declaration was found on the identifer resolver
3413    // chain, so remove it from its scope.
3414
3415    if (S->isDeclScope(PrevDecl)) {
3416      // Special case for redeclarations in the SAME scope.
3417      // Because this declaration is going to be added to the identifier chain
3418      // later, we should temporarily take it OFF the chain.
3419      IdResolver.RemoveDecl(ND);
3420
3421    } else {
3422      // Find the scope for the original declaration.
3423      while (S && !S->isDeclScope(PrevDecl))
3424        S = S->getParent();
3425    }
3426
3427    if (S)
3428      S->RemoveDecl(PrevDecl);
3429  }
3430}
3431
3432llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3433Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3434  if (ExternalSource) {
3435    // Load locally-scoped external decls from the external source.
3436    SmallVector<NamedDecl *, 4> Decls;
3437    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3438    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3439      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3440        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3441      if (Pos == LocallyScopedExternalDecls.end())
3442        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3443    }
3444  }
3445
3446  return LocallyScopedExternalDecls.find(Name);
3447}
3448
3449/// \brief Diagnose function specifiers on a declaration of an identifier that
3450/// does not identify a function.
3451void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3452  // FIXME: We should probably indicate the identifier in question to avoid
3453  // confusion for constructs like "inline int a(), b;"
3454  if (D.getDeclSpec().isInlineSpecified())
3455    Diag(D.getDeclSpec().getInlineSpecLoc(),
3456         diag::err_inline_non_function);
3457
3458  if (D.getDeclSpec().isVirtualSpecified())
3459    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3460         diag::err_virtual_non_function);
3461
3462  if (D.getDeclSpec().isExplicitSpecified())
3463    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3464         diag::err_explicit_non_function);
3465}
3466
3467NamedDecl*
3468Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3469                             QualType R,  TypeSourceInfo *TInfo,
3470                             LookupResult &Previous, bool &Redeclaration) {
3471  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3472  if (D.getCXXScopeSpec().isSet()) {
3473    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3474      << D.getCXXScopeSpec().getRange();
3475    D.setInvalidType();
3476    // Pretend we didn't see the scope specifier.
3477    DC = CurContext;
3478    Previous.clear();
3479  }
3480
3481  if (getLangOptions().CPlusPlus) {
3482    // Check that there are no default arguments (C++ only).
3483    CheckExtraCXXDefaultArguments(D);
3484  }
3485
3486  DiagnoseFunctionSpecifiers(D);
3487
3488  if (D.getDeclSpec().isThreadSpecified())
3489    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3490  if (D.getDeclSpec().isConstexprSpecified())
3491    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3492      << 1;
3493
3494  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3495    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3496      << D.getName().getSourceRange();
3497    return 0;
3498  }
3499
3500  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3501  if (!NewTD) return 0;
3502
3503  // Handle attributes prior to checking for duplicates in MergeVarDecl
3504  ProcessDeclAttributes(S, NewTD, D);
3505
3506  CheckTypedefForVariablyModifiedType(S, NewTD);
3507
3508  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3509}
3510
3511void
3512Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3513  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3514  // then it shall have block scope.
3515  // Note that variably modified types must be fixed before merging the decl so
3516  // that redeclarations will match.
3517  QualType T = NewTD->getUnderlyingType();
3518  if (T->isVariablyModifiedType()) {
3519    getCurFunction()->setHasBranchProtectedScope();
3520
3521    if (S->getFnParent() == 0) {
3522      bool SizeIsNegative;
3523      llvm::APSInt Oversized;
3524      QualType FixedTy =
3525          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3526                                              Oversized);
3527      if (!FixedTy.isNull()) {
3528        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3529        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3530      } else {
3531        if (SizeIsNegative)
3532          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3533        else if (T->isVariableArrayType())
3534          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3535        else if (Oversized.getBoolValue())
3536          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3537        else
3538          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3539        NewTD->setInvalidDecl();
3540      }
3541    }
3542  }
3543}
3544
3545
3546/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3547/// declares a typedef-name, either using the 'typedef' type specifier or via
3548/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3549NamedDecl*
3550Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3551                           LookupResult &Previous, bool &Redeclaration) {
3552  // Merge the decl with the existing one if appropriate. If the decl is
3553  // in an outer scope, it isn't the same thing.
3554  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3555                       /*ExplicitInstantiationOrSpecialization=*/false);
3556  if (!Previous.empty()) {
3557    Redeclaration = true;
3558    MergeTypedefNameDecl(NewTD, Previous);
3559  }
3560
3561  // If this is the C FILE type, notify the AST context.
3562  if (IdentifierInfo *II = NewTD->getIdentifier())
3563    if (!NewTD->isInvalidDecl() &&
3564        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3565      if (II->isStr("FILE"))
3566        Context.setFILEDecl(NewTD);
3567      else if (II->isStr("jmp_buf"))
3568        Context.setjmp_bufDecl(NewTD);
3569      else if (II->isStr("sigjmp_buf"))
3570        Context.setsigjmp_bufDecl(NewTD);
3571      else if (II->isStr("__builtin_va_list"))
3572        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3573    }
3574
3575  return NewTD;
3576}
3577
3578/// \brief Determines whether the given declaration is an out-of-scope
3579/// previous declaration.
3580///
3581/// This routine should be invoked when name lookup has found a
3582/// previous declaration (PrevDecl) that is not in the scope where a
3583/// new declaration by the same name is being introduced. If the new
3584/// declaration occurs in a local scope, previous declarations with
3585/// linkage may still be considered previous declarations (C99
3586/// 6.2.2p4-5, C++ [basic.link]p6).
3587///
3588/// \param PrevDecl the previous declaration found by name
3589/// lookup
3590///
3591/// \param DC the context in which the new declaration is being
3592/// declared.
3593///
3594/// \returns true if PrevDecl is an out-of-scope previous declaration
3595/// for a new delcaration with the same name.
3596static bool
3597isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3598                                ASTContext &Context) {
3599  if (!PrevDecl)
3600    return false;
3601
3602  if (!PrevDecl->hasLinkage())
3603    return false;
3604
3605  if (Context.getLangOptions().CPlusPlus) {
3606    // C++ [basic.link]p6:
3607    //   If there is a visible declaration of an entity with linkage
3608    //   having the same name and type, ignoring entities declared
3609    //   outside the innermost enclosing namespace scope, the block
3610    //   scope declaration declares that same entity and receives the
3611    //   linkage of the previous declaration.
3612    DeclContext *OuterContext = DC->getRedeclContext();
3613    if (!OuterContext->isFunctionOrMethod())
3614      // This rule only applies to block-scope declarations.
3615      return false;
3616
3617    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3618    if (PrevOuterContext->isRecord())
3619      // We found a member function: ignore it.
3620      return false;
3621
3622    // Find the innermost enclosing namespace for the new and
3623    // previous declarations.
3624    OuterContext = OuterContext->getEnclosingNamespaceContext();
3625    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3626
3627    // The previous declaration is in a different namespace, so it
3628    // isn't the same function.
3629    if (!OuterContext->Equals(PrevOuterContext))
3630      return false;
3631  }
3632
3633  return true;
3634}
3635
3636static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3637  CXXScopeSpec &SS = D.getCXXScopeSpec();
3638  if (!SS.isSet()) return;
3639  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3640}
3641
3642bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3643  QualType type = decl->getType();
3644  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3645  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3646    // Various kinds of declaration aren't allowed to be __autoreleasing.
3647    unsigned kind = -1U;
3648    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3649      if (var->hasAttr<BlocksAttr>())
3650        kind = 0; // __block
3651      else if (!var->hasLocalStorage())
3652        kind = 1; // global
3653    } else if (isa<ObjCIvarDecl>(decl)) {
3654      kind = 3; // ivar
3655    } else if (isa<FieldDecl>(decl)) {
3656      kind = 2; // field
3657    }
3658
3659    if (kind != -1U) {
3660      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3661        << kind;
3662    }
3663  } else if (lifetime == Qualifiers::OCL_None) {
3664    // Try to infer lifetime.
3665    if (!type->isObjCLifetimeType())
3666      return false;
3667
3668    lifetime = type->getObjCARCImplicitLifetime();
3669    type = Context.getLifetimeQualifiedType(type, lifetime);
3670    decl->setType(type);
3671  }
3672
3673  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3674    // Thread-local variables cannot have lifetime.
3675    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3676        var->isThreadSpecified()) {
3677      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3678        << var->getType();
3679      return true;
3680    }
3681  }
3682
3683  return false;
3684}
3685
3686NamedDecl*
3687Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3688                              QualType R, TypeSourceInfo *TInfo,
3689                              LookupResult &Previous,
3690                              MultiTemplateParamsArg TemplateParamLists,
3691                              bool &Redeclaration) {
3692  DeclarationName Name = GetNameForDeclarator(D).getName();
3693
3694  // Check that there are no default arguments (C++ only).
3695  if (getLangOptions().CPlusPlus)
3696    CheckExtraCXXDefaultArguments(D);
3697
3698  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3699  assert(SCSpec != DeclSpec::SCS_typedef &&
3700         "Parser allowed 'typedef' as storage class VarDecl.");
3701  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3702  if (SCSpec == DeclSpec::SCS_mutable) {
3703    // mutable can only appear on non-static class members, so it's always
3704    // an error here
3705    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3706    D.setInvalidType();
3707    SC = SC_None;
3708  }
3709  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3710  VarDecl::StorageClass SCAsWritten
3711    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3712
3713  IdentifierInfo *II = Name.getAsIdentifierInfo();
3714  if (!II) {
3715    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3716      << Name.getAsString();
3717    return 0;
3718  }
3719
3720  DiagnoseFunctionSpecifiers(D);
3721
3722  if (!DC->isRecord() && S->getFnParent() == 0) {
3723    // C99 6.9p2: The storage-class specifiers auto and register shall not
3724    // appear in the declaration specifiers in an external declaration.
3725    if (SC == SC_Auto || SC == SC_Register) {
3726
3727      // If this is a register variable with an asm label specified, then this
3728      // is a GNU extension.
3729      if (SC == SC_Register && D.getAsmLabel())
3730        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3731      else
3732        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3733      D.setInvalidType();
3734    }
3735  }
3736
3737  if (getLangOptions().OpenCL) {
3738    // Set up the special work-group-local storage class for variables in the
3739    // OpenCL __local address space.
3740    if (R.getAddressSpace() == LangAS::opencl_local)
3741      SC = SC_OpenCLWorkGroupLocal;
3742  }
3743
3744  bool isExplicitSpecialization = false;
3745  VarDecl *NewVD;
3746  if (!getLangOptions().CPlusPlus) {
3747    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3748                            D.getIdentifierLoc(), II,
3749                            R, TInfo, SC, SCAsWritten);
3750
3751    if (D.isInvalidType())
3752      NewVD->setInvalidDecl();
3753  } else {
3754    if (DC->isRecord() && !CurContext->isRecord()) {
3755      // This is an out-of-line definition of a static data member.
3756      if (SC == SC_Static) {
3757        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3758             diag::err_static_out_of_line)
3759          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3760      } else if (SC == SC_None)
3761        SC = SC_Static;
3762    }
3763    if (SC == SC_Static) {
3764      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3765        if (RD->isLocalClass())
3766          Diag(D.getIdentifierLoc(),
3767               diag::err_static_data_member_not_allowed_in_local_class)
3768            << Name << RD->getDeclName();
3769
3770        // C++ [class.union]p1: If a union contains a static data member,
3771        // the program is ill-formed.
3772        //
3773        // We also disallow static data members in anonymous structs.
3774        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3775          Diag(D.getIdentifierLoc(),
3776               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3777            << Name << RD->isUnion();
3778      }
3779    }
3780
3781    // Match up the template parameter lists with the scope specifier, then
3782    // determine whether we have a template or a template specialization.
3783    isExplicitSpecialization = false;
3784    bool Invalid = false;
3785    if (TemplateParameterList *TemplateParams
3786        = MatchTemplateParametersToScopeSpecifier(
3787                                  D.getDeclSpec().getSourceRange().getBegin(),
3788                                                  D.getIdentifierLoc(),
3789                                                  D.getCXXScopeSpec(),
3790                                                  TemplateParamLists.get(),
3791                                                  TemplateParamLists.size(),
3792                                                  /*never a friend*/ false,
3793                                                  isExplicitSpecialization,
3794                                                  Invalid)) {
3795      if (TemplateParams->size() > 0) {
3796        // There is no such thing as a variable template.
3797        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3798          << II
3799          << SourceRange(TemplateParams->getTemplateLoc(),
3800                         TemplateParams->getRAngleLoc());
3801        return 0;
3802      } else {
3803        // There is an extraneous 'template<>' for this variable. Complain
3804        // about it, but allow the declaration of the variable.
3805        Diag(TemplateParams->getTemplateLoc(),
3806             diag::err_template_variable_noparams)
3807          << II
3808          << SourceRange(TemplateParams->getTemplateLoc(),
3809                         TemplateParams->getRAngleLoc());
3810      }
3811    }
3812
3813    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3814                            D.getIdentifierLoc(), II,
3815                            R, TInfo, SC, SCAsWritten);
3816
3817    // If this decl has an auto type in need of deduction, make a note of the
3818    // Decl so we can diagnose uses of it in its own initializer.
3819    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3820        R->getContainedAutoType())
3821      ParsingInitForAutoVars.insert(NewVD);
3822
3823    if (D.isInvalidType() || Invalid)
3824      NewVD->setInvalidDecl();
3825
3826    SetNestedNameSpecifier(NewVD, D);
3827
3828    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3829      NewVD->setTemplateParameterListsInfo(Context,
3830                                           TemplateParamLists.size(),
3831                                           TemplateParamLists.release());
3832    }
3833
3834    if (D.getDeclSpec().isConstexprSpecified()) {
3835      // FIXME: check this is a valid use of constexpr.
3836      NewVD->setConstexpr(true);
3837    }
3838  }
3839
3840  // Set the lexical context. If the declarator has a C++ scope specifier, the
3841  // lexical context will be different from the semantic context.
3842  NewVD->setLexicalDeclContext(CurContext);
3843
3844  if (D.getDeclSpec().isThreadSpecified()) {
3845    if (NewVD->hasLocalStorage())
3846      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3847    else if (!Context.getTargetInfo().isTLSSupported())
3848      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3849    else
3850      NewVD->setThreadSpecified(true);
3851  }
3852
3853  if (D.getDeclSpec().isModulePrivateSpecified()) {
3854    if (isExplicitSpecialization)
3855      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3856        << 2
3857        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3858    else if (NewVD->hasLocalStorage())
3859      Diag(NewVD->getLocation(), diag::err_module_private_local)
3860        << 0 << NewVD->getDeclName()
3861        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3862        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3863    else
3864      NewVD->setModulePrivate();
3865  }
3866
3867  // Handle attributes prior to checking for duplicates in MergeVarDecl
3868  ProcessDeclAttributes(S, NewVD, D);
3869
3870  // In auto-retain/release, infer strong retension for variables of
3871  // retainable type.
3872  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3873    NewVD->setInvalidDecl();
3874
3875  // Handle GNU asm-label extension (encoded as an attribute).
3876  if (Expr *E = (Expr*)D.getAsmLabel()) {
3877    // The parser guarantees this is a string.
3878    StringLiteral *SE = cast<StringLiteral>(E);
3879    StringRef Label = SE->getString();
3880    if (S->getFnParent() != 0) {
3881      switch (SC) {
3882      case SC_None:
3883      case SC_Auto:
3884        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3885        break;
3886      case SC_Register:
3887        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3888          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3889        break;
3890      case SC_Static:
3891      case SC_Extern:
3892      case SC_PrivateExtern:
3893      case SC_OpenCLWorkGroupLocal:
3894        break;
3895      }
3896    }
3897
3898    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3899                                                Context, Label));
3900  }
3901
3902  // Diagnose shadowed variables before filtering for scope.
3903  if (!D.getCXXScopeSpec().isSet())
3904    CheckShadow(S, NewVD, Previous);
3905
3906  // Don't consider existing declarations that are in a different
3907  // scope and are out-of-semantic-context declarations (if the new
3908  // declaration has linkage).
3909  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3910                       isExplicitSpecialization);
3911
3912  if (!getLangOptions().CPlusPlus)
3913    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3914  else {
3915    // Merge the decl with the existing one if appropriate.
3916    if (!Previous.empty()) {
3917      if (Previous.isSingleResult() &&
3918          isa<FieldDecl>(Previous.getFoundDecl()) &&
3919          D.getCXXScopeSpec().isSet()) {
3920        // The user tried to define a non-static data member
3921        // out-of-line (C++ [dcl.meaning]p1).
3922        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3923          << D.getCXXScopeSpec().getRange();
3924        Previous.clear();
3925        NewVD->setInvalidDecl();
3926      }
3927    } else if (D.getCXXScopeSpec().isSet()) {
3928      // No previous declaration in the qualifying scope.
3929      Diag(D.getIdentifierLoc(), diag::err_no_member)
3930        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3931        << D.getCXXScopeSpec().getRange();
3932      NewVD->setInvalidDecl();
3933    }
3934
3935    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3936
3937    // This is an explicit specialization of a static data member. Check it.
3938    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3939        CheckMemberSpecialization(NewVD, Previous))
3940      NewVD->setInvalidDecl();
3941  }
3942
3943  // attributes declared post-definition are currently ignored
3944  // FIXME: This should be handled in attribute merging, not
3945  // here.
3946  if (Previous.isSingleResult()) {
3947    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3948    if (Def && (Def = Def->getDefinition()) &&
3949        Def != NewVD && D.hasAttributes()) {
3950      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3951      Diag(Def->getLocation(), diag::note_previous_definition);
3952    }
3953  }
3954
3955  // If this is a locally-scoped extern C variable, update the map of
3956  // such variables.
3957  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3958      !NewVD->isInvalidDecl())
3959    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3960
3961  // If there's a #pragma GCC visibility in scope, and this isn't a class
3962  // member, set the visibility of this variable.
3963  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3964    AddPushedVisibilityAttribute(NewVD);
3965
3966  MarkUnusedFileScopedDecl(NewVD);
3967
3968  return NewVD;
3969}
3970
3971/// \brief Diagnose variable or built-in function shadowing.  Implements
3972/// -Wshadow.
3973///
3974/// This method is called whenever a VarDecl is added to a "useful"
3975/// scope.
3976///
3977/// \param S the scope in which the shadowing name is being declared
3978/// \param R the lookup of the name
3979///
3980void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3981  // Return if warning is ignored.
3982  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3983        Diagnostic::Ignored)
3984    return;
3985
3986  // Don't diagnose declarations at file scope.
3987  if (D->hasGlobalStorage())
3988    return;
3989
3990  DeclContext *NewDC = D->getDeclContext();
3991
3992  // Only diagnose if we're shadowing an unambiguous field or variable.
3993  if (R.getResultKind() != LookupResult::Found)
3994    return;
3995
3996  NamedDecl* ShadowedDecl = R.getFoundDecl();
3997  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3998    return;
3999
4000  // Fields are not shadowed by variables in C++ static methods.
4001  if (isa<FieldDecl>(ShadowedDecl))
4002    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4003      if (MD->isStatic())
4004        return;
4005
4006  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4007    if (shadowedVar->isExternC()) {
4008      // For shadowing external vars, make sure that we point to the global
4009      // declaration, not a locally scoped extern declaration.
4010      for (VarDecl::redecl_iterator
4011             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4012           I != E; ++I)
4013        if (I->isFileVarDecl()) {
4014          ShadowedDecl = *I;
4015          break;
4016        }
4017    }
4018
4019  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4020
4021  // Only warn about certain kinds of shadowing for class members.
4022  if (NewDC && NewDC->isRecord()) {
4023    // In particular, don't warn about shadowing non-class members.
4024    if (!OldDC->isRecord())
4025      return;
4026
4027    // TODO: should we warn about static data members shadowing
4028    // static data members from base classes?
4029
4030    // TODO: don't diagnose for inaccessible shadowed members.
4031    // This is hard to do perfectly because we might friend the
4032    // shadowing context, but that's just a false negative.
4033  }
4034
4035  // Determine what kind of declaration we're shadowing.
4036  unsigned Kind;
4037  if (isa<RecordDecl>(OldDC)) {
4038    if (isa<FieldDecl>(ShadowedDecl))
4039      Kind = 3; // field
4040    else
4041      Kind = 2; // static data member
4042  } else if (OldDC->isFileContext())
4043    Kind = 1; // global
4044  else
4045    Kind = 0; // local
4046
4047  DeclarationName Name = R.getLookupName();
4048
4049  // Emit warning and note.
4050  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4051  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4052}
4053
4054/// \brief Check -Wshadow without the advantage of a previous lookup.
4055void Sema::CheckShadow(Scope *S, VarDecl *D) {
4056  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4057        Diagnostic::Ignored)
4058    return;
4059
4060  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4061                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4062  LookupName(R, S);
4063  CheckShadow(S, D, R);
4064}
4065
4066/// \brief Perform semantic checking on a newly-created variable
4067/// declaration.
4068///
4069/// This routine performs all of the type-checking required for a
4070/// variable declaration once it has been built. It is used both to
4071/// check variables after they have been parsed and their declarators
4072/// have been translated into a declaration, and to check variables
4073/// that have been instantiated from a template.
4074///
4075/// Sets NewVD->isInvalidDecl() if an error was encountered.
4076void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4077                                    LookupResult &Previous,
4078                                    bool &Redeclaration) {
4079  // If the decl is already known invalid, don't check it.
4080  if (NewVD->isInvalidDecl())
4081    return;
4082
4083  QualType T = NewVD->getType();
4084
4085  if (T->isObjCObjectType()) {
4086    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4087      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4088    T = Context.getObjCObjectPointerType(T);
4089    NewVD->setType(T);
4090  }
4091
4092  // Emit an error if an address space was applied to decl with local storage.
4093  // This includes arrays of objects with address space qualifiers, but not
4094  // automatic variables that point to other address spaces.
4095  // ISO/IEC TR 18037 S5.1.2
4096  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4097    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4098    return NewVD->setInvalidDecl();
4099  }
4100
4101  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4102      && !NewVD->hasAttr<BlocksAttr>()) {
4103    if (getLangOptions().getGC() != LangOptions::NonGC)
4104      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4105    else
4106      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4107  }
4108
4109  bool isVM = T->isVariablyModifiedType();
4110  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4111      NewVD->hasAttr<BlocksAttr>())
4112    getCurFunction()->setHasBranchProtectedScope();
4113
4114  if ((isVM && NewVD->hasLinkage()) ||
4115      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4116    bool SizeIsNegative;
4117    llvm::APSInt Oversized;
4118    QualType FixedTy =
4119        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4120                                            Oversized);
4121
4122    if (FixedTy.isNull() && T->isVariableArrayType()) {
4123      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4124      // FIXME: This won't give the correct result for
4125      // int a[10][n];
4126      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4127
4128      if (NewVD->isFileVarDecl())
4129        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4130        << SizeRange;
4131      else if (NewVD->getStorageClass() == SC_Static)
4132        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4133        << SizeRange;
4134      else
4135        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4136        << SizeRange;
4137      return NewVD->setInvalidDecl();
4138    }
4139
4140    if (FixedTy.isNull()) {
4141      if (NewVD->isFileVarDecl())
4142        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4143      else
4144        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4145      return NewVD->setInvalidDecl();
4146    }
4147
4148    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4149    NewVD->setType(FixedTy);
4150  }
4151
4152  if (Previous.empty() && NewVD->isExternC()) {
4153    // Since we did not find anything by this name and we're declaring
4154    // an extern "C" variable, look for a non-visible extern "C"
4155    // declaration with the same name.
4156    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4157      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4158    if (Pos != LocallyScopedExternalDecls.end())
4159      Previous.addDecl(Pos->second);
4160  }
4161
4162  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4163    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4164      << T;
4165    return NewVD->setInvalidDecl();
4166  }
4167
4168  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4169    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4170    return NewVD->setInvalidDecl();
4171  }
4172
4173  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4174    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4175    return NewVD->setInvalidDecl();
4176  }
4177
4178  // Function pointers and references cannot have qualified function type, only
4179  // function pointer-to-members can do that.
4180  QualType Pointee;
4181  unsigned PtrOrRef = 0;
4182  if (const PointerType *Ptr = T->getAs<PointerType>())
4183    Pointee = Ptr->getPointeeType();
4184  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4185    Pointee = Ref->getPointeeType();
4186    PtrOrRef = 1;
4187  }
4188  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4189      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4190    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4191        << PtrOrRef;
4192    return NewVD->setInvalidDecl();
4193  }
4194
4195  if (!Previous.empty()) {
4196    Redeclaration = true;
4197    MergeVarDecl(NewVD, Previous);
4198  }
4199}
4200
4201/// \brief Data used with FindOverriddenMethod
4202struct FindOverriddenMethodData {
4203  Sema *S;
4204  CXXMethodDecl *Method;
4205};
4206
4207/// \brief Member lookup function that determines whether a given C++
4208/// method overrides a method in a base class, to be used with
4209/// CXXRecordDecl::lookupInBases().
4210static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4211                                 CXXBasePath &Path,
4212                                 void *UserData) {
4213  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4214
4215  FindOverriddenMethodData *Data
4216    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4217
4218  DeclarationName Name = Data->Method->getDeclName();
4219
4220  // FIXME: Do we care about other names here too?
4221  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4222    // We really want to find the base class destructor here.
4223    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4224    CanQualType CT = Data->S->Context.getCanonicalType(T);
4225
4226    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4227  }
4228
4229  for (Path.Decls = BaseRecord->lookup(Name);
4230       Path.Decls.first != Path.Decls.second;
4231       ++Path.Decls.first) {
4232    NamedDecl *D = *Path.Decls.first;
4233    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4234      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4235        return true;
4236    }
4237  }
4238
4239  return false;
4240}
4241
4242/// AddOverriddenMethods - See if a method overrides any in the base classes,
4243/// and if so, check that it's a valid override and remember it.
4244bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4245  // Look for virtual methods in base classes that this method might override.
4246  CXXBasePaths Paths;
4247  FindOverriddenMethodData Data;
4248  Data.Method = MD;
4249  Data.S = this;
4250  bool AddedAny = false;
4251  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4252    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4253         E = Paths.found_decls_end(); I != E; ++I) {
4254      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4255        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4256        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4257            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4258            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4259          AddedAny = true;
4260        }
4261      }
4262    }
4263  }
4264
4265  return AddedAny;
4266}
4267
4268static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4269                                         bool isFriendDecl) {
4270  DeclarationName Name = NewFD->getDeclName();
4271  DeclContext *DC = NewFD->getDeclContext();
4272  LookupResult Prev(S, Name, NewFD->getLocation(),
4273                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4274  llvm::SmallVector<unsigned, 1> MismatchedParams;
4275  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4276  TypoCorrection Correction;
4277  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4278                                  : diag::err_member_def_does_not_match;
4279
4280  NewFD->setInvalidDecl();
4281  S.LookupQualifiedName(Prev, DC);
4282  assert(!Prev.isAmbiguous() &&
4283         "Cannot have an ambiguity in previous-declaration lookup");
4284  if (!Prev.empty()) {
4285    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4286         Func != FuncEnd; ++Func) {
4287      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4288      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4289                                         MismatchedParams)) {
4290        // Add 1 to the index so that 0 can mean the mismatch didn't
4291        // involve a parameter
4292        unsigned ParamNum =
4293            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4294        NearMatches.push_back(std::make_pair(FD, ParamNum));
4295      }
4296    }
4297  // If the qualified name lookup yielded nothing, try typo correction
4298  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4299                                         Prev.getLookupKind(), 0, 0, DC)) &&
4300             Correction.getCorrection() != Name) {
4301    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4302                                    CDeclEnd = Correction.end();
4303         CDecl != CDeclEnd; ++CDecl) {
4304      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4305      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4306                                         MismatchedParams)) {
4307        // Add 1 to the index so that 0 can mean the mismatch didn't
4308        // involve a parameter
4309        unsigned ParamNum =
4310            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4311        NearMatches.push_back(std::make_pair(FD, ParamNum));
4312      }
4313    }
4314    if (!NearMatches.empty())
4315      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4316                             : diag::err_member_def_does_not_match_suggest;
4317  }
4318
4319  // Ignore the correction if it didn't yield any close FunctionDecl matches
4320  if (Correction && NearMatches.empty())
4321    Correction = TypoCorrection();
4322
4323  if (Correction)
4324    S.Diag(NewFD->getLocation(), DiagMsg)
4325        << Name << DC << Correction.getQuoted(S.getLangOptions())
4326        << FixItHint::CreateReplacement(
4327            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4328  else
4329    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4330
4331  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4332       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4333       NearMatch != NearMatchEnd; ++NearMatch) {
4334    FunctionDecl *FD = NearMatch->first;
4335
4336    if (unsigned Idx = NearMatch->second) {
4337      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4338      S.Diag(FDParam->getTypeSpecStartLoc(),
4339             diag::note_member_def_close_param_match)
4340          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4341    } else if (Correction) {
4342      S.Diag(FD->getLocation(), diag::note_previous_decl)
4343        << Correction.getQuoted(S.getLangOptions());
4344    } else
4345      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4346  }
4347}
4348
4349NamedDecl*
4350Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4351                              QualType R, TypeSourceInfo *TInfo,
4352                              LookupResult &Previous,
4353                              MultiTemplateParamsArg TemplateParamLists,
4354                              bool IsFunctionDefinition, bool &Redeclaration,
4355                              bool &AddToScope) {
4356  assert(R.getTypePtr()->isFunctionType());
4357
4358  // TODO: consider using NameInfo for diagnostic.
4359  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4360  DeclarationName Name = NameInfo.getName();
4361  FunctionDecl::StorageClass SC = SC_None;
4362  switch (D.getDeclSpec().getStorageClassSpec()) {
4363  default: assert(0 && "Unknown storage class!");
4364  case DeclSpec::SCS_auto:
4365  case DeclSpec::SCS_register:
4366  case DeclSpec::SCS_mutable:
4367    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4368         diag::err_typecheck_sclass_func);
4369    D.setInvalidType();
4370    break;
4371  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4372  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4373  case DeclSpec::SCS_static: {
4374    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4375      // C99 6.7.1p5:
4376      //   The declaration of an identifier for a function that has
4377      //   block scope shall have no explicit storage-class specifier
4378      //   other than extern
4379      // See also (C++ [dcl.stc]p4).
4380      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4381           diag::err_static_block_func);
4382      SC = SC_None;
4383    } else
4384      SC = SC_Static;
4385    break;
4386  }
4387  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4388  }
4389
4390  if (D.getDeclSpec().isThreadSpecified())
4391    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4392
4393  // Do not allow returning a objc interface by-value.
4394  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4395    Diag(D.getIdentifierLoc(),
4396         diag::err_object_cannot_be_passed_returned_by_value) << 0
4397    << R->getAs<FunctionType>()->getResultType()
4398    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4399
4400    QualType T = R->getAs<FunctionType>()->getResultType();
4401    T = Context.getObjCObjectPointerType(T);
4402    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4403      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4404      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4405                                  FPT->getNumArgs(), EPI);
4406    }
4407    else if (isa<FunctionNoProtoType>(R))
4408      R = Context.getFunctionNoProtoType(T);
4409  }
4410
4411  FunctionDecl *NewFD;
4412  bool isInline = D.getDeclSpec().isInlineSpecified();
4413  bool isFriend = false;
4414  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4415  FunctionDecl::StorageClass SCAsWritten
4416    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4417  FunctionTemplateDecl *FunctionTemplate = 0;
4418  bool isExplicitSpecialization = false;
4419  bool isFunctionTemplateSpecialization = false;
4420  bool isDependentClassScopeExplicitSpecialization = false;
4421
4422  if (!getLangOptions().CPlusPlus) {
4423    // Determine whether the function was written with a
4424    // prototype. This true when:
4425    //   - there is a prototype in the declarator, or
4426    //   - the type R of the function is some kind of typedef or other reference
4427    //     to a type name (which eventually refers to a function type).
4428    bool HasPrototype =
4429    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4430    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4431
4432    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4433                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4434                                 HasPrototype);
4435    if (D.isInvalidType())
4436      NewFD->setInvalidDecl();
4437
4438    // Set the lexical context.
4439    NewFD->setLexicalDeclContext(CurContext);
4440    // Filter out previous declarations that don't match the scope.
4441    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4442                         /*ExplicitInstantiationOrSpecialization=*/false);
4443  } else {
4444    isFriend = D.getDeclSpec().isFriendSpecified();
4445    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4446    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4447    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4448    bool isVirtualOkay = false;
4449
4450    // Check that the return type is not an abstract class type.
4451    // For record types, this is done by the AbstractClassUsageDiagnoser once
4452    // the class has been completely parsed.
4453    if (!DC->isRecord() &&
4454      RequireNonAbstractType(D.getIdentifierLoc(),
4455                             R->getAs<FunctionType>()->getResultType(),
4456                             diag::err_abstract_type_in_decl,
4457                             AbstractReturnType))
4458      D.setInvalidType();
4459
4460    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4461      // This is a C++ constructor declaration.
4462      assert(DC->isRecord() &&
4463             "Constructors can only be declared in a member context");
4464
4465      R = CheckConstructorDeclarator(D, R, SC);
4466
4467      // Create the new declaration
4468      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4469                                         Context,
4470                                         cast<CXXRecordDecl>(DC),
4471                                         D.getSourceRange().getBegin(),
4472                                         NameInfo, R, TInfo,
4473                                         isExplicit, isInline,
4474                                         /*isImplicitlyDeclared=*/false,
4475                                         isConstexpr);
4476
4477      NewFD = NewCD;
4478    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4479      // This is a C++ destructor declaration.
4480      if (DC->isRecord()) {
4481        R = CheckDestructorDeclarator(D, R, SC);
4482        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4483
4484        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4485                                          D.getSourceRange().getBegin(),
4486                                          NameInfo, R, TInfo,
4487                                          isInline,
4488                                          /*isImplicitlyDeclared=*/false);
4489        NewFD = NewDD;
4490        isVirtualOkay = true;
4491
4492        // If the class is complete, then we now create the implicit exception
4493        // specification. If the class is incomplete or dependent, we can't do
4494        // it yet.
4495        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4496            Record->getDefinition() && !Record->isBeingDefined() &&
4497            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4498          AdjustDestructorExceptionSpec(Record, NewDD);
4499        }
4500
4501      } else {
4502        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4503
4504        // Create a FunctionDecl to satisfy the function definition parsing
4505        // code path.
4506        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4507                                     D.getIdentifierLoc(), Name, R, TInfo,
4508                                     SC, SCAsWritten, isInline,
4509                                     /*hasPrototype=*/true, isConstexpr);
4510        D.setInvalidType();
4511      }
4512    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4513      if (!DC->isRecord()) {
4514        Diag(D.getIdentifierLoc(),
4515             diag::err_conv_function_not_member);
4516        return 0;
4517      }
4518
4519      CheckConversionDeclarator(D, R, SC);
4520      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4521                                        D.getSourceRange().getBegin(),
4522                                        NameInfo, R, TInfo,
4523                                        isInline, isExplicit, isConstexpr,
4524                                        SourceLocation());
4525
4526      isVirtualOkay = true;
4527    } else if (DC->isRecord()) {
4528      // If the name of the function is the same as the name of the record,
4529      // then this must be an invalid constructor that has a return type.
4530      // (The parser checks for a return type and makes the declarator a
4531      // constructor if it has no return type).
4532      if (Name.getAsIdentifierInfo() &&
4533          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4534        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4535          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4536          << SourceRange(D.getIdentifierLoc());
4537        return 0;
4538      }
4539
4540      bool isStatic = SC == SC_Static;
4541
4542      // [class.free]p1:
4543      // Any allocation function for a class T is a static member
4544      // (even if not explicitly declared static).
4545      if (Name.getCXXOverloadedOperator() == OO_New ||
4546          Name.getCXXOverloadedOperator() == OO_Array_New)
4547        isStatic = true;
4548
4549      // [class.free]p6 Any deallocation function for a class X is a static member
4550      // (even if not explicitly declared static).
4551      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4552          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4553        isStatic = true;
4554
4555      // This is a C++ method declaration.
4556      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4557                                               Context, cast<CXXRecordDecl>(DC),
4558                                               D.getSourceRange().getBegin(),
4559                                               NameInfo, R, TInfo,
4560                                               isStatic, SCAsWritten, isInline,
4561                                               isConstexpr,
4562                                               SourceLocation());
4563      NewFD = NewMD;
4564
4565      isVirtualOkay = !isStatic;
4566    } else {
4567      // Determine whether the function was written with a
4568      // prototype. This true when:
4569      //   - we're in C++ (where every function has a prototype),
4570      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4571                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4572                                   true/*HasPrototype*/, isConstexpr);
4573    }
4574
4575    if (isFriend && !isInline && IsFunctionDefinition) {
4576      // C++ [class.friend]p5
4577      //   A function can be defined in a friend declaration of a
4578      //   class . . . . Such a function is implicitly inline.
4579      NewFD->setImplicitlyInline();
4580    }
4581
4582    SetNestedNameSpecifier(NewFD, D);
4583    isExplicitSpecialization = false;
4584    isFunctionTemplateSpecialization = false;
4585    if (D.isInvalidType())
4586      NewFD->setInvalidDecl();
4587
4588    // Set the lexical context. If the declarator has a C++
4589    // scope specifier, or is the object of a friend declaration, the
4590    // lexical context will be different from the semantic context.
4591    NewFD->setLexicalDeclContext(CurContext);
4592
4593    // Match up the template parameter lists with the scope specifier, then
4594    // determine whether we have a template or a template specialization.
4595    bool Invalid = false;
4596    if (TemplateParameterList *TemplateParams
4597          = MatchTemplateParametersToScopeSpecifier(
4598                                  D.getDeclSpec().getSourceRange().getBegin(),
4599                                  D.getIdentifierLoc(),
4600                                  D.getCXXScopeSpec(),
4601                                  TemplateParamLists.get(),
4602                                  TemplateParamLists.size(),
4603                                  isFriend,
4604                                  isExplicitSpecialization,
4605                                  Invalid)) {
4606      if (TemplateParams->size() > 0) {
4607        // This is a function template
4608
4609        // Check that we can declare a template here.
4610        if (CheckTemplateDeclScope(S, TemplateParams))
4611          return 0;
4612
4613        // A destructor cannot be a template.
4614        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4615          Diag(NewFD->getLocation(), diag::err_destructor_template);
4616          return 0;
4617        }
4618
4619        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4620                                                        NewFD->getLocation(),
4621                                                        Name, TemplateParams,
4622                                                        NewFD);
4623        FunctionTemplate->setLexicalDeclContext(CurContext);
4624        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4625
4626        // For source fidelity, store the other template param lists.
4627        if (TemplateParamLists.size() > 1) {
4628          NewFD->setTemplateParameterListsInfo(Context,
4629                                               TemplateParamLists.size() - 1,
4630                                               TemplateParamLists.release());
4631        }
4632      } else {
4633        // This is a function template specialization.
4634        isFunctionTemplateSpecialization = true;
4635        // For source fidelity, store all the template param lists.
4636        NewFD->setTemplateParameterListsInfo(Context,
4637                                             TemplateParamLists.size(),
4638                                             TemplateParamLists.release());
4639
4640        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4641        if (isFriend) {
4642          // We want to remove the "template<>", found here.
4643          SourceRange RemoveRange = TemplateParams->getSourceRange();
4644
4645          // If we remove the template<> and the name is not a
4646          // template-id, we're actually silently creating a problem:
4647          // the friend declaration will refer to an untemplated decl,
4648          // and clearly the user wants a template specialization.  So
4649          // we need to insert '<>' after the name.
4650          SourceLocation InsertLoc;
4651          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4652            InsertLoc = D.getName().getSourceRange().getEnd();
4653            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4654          }
4655
4656          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4657            << Name << RemoveRange
4658            << FixItHint::CreateRemoval(RemoveRange)
4659            << FixItHint::CreateInsertion(InsertLoc, "<>");
4660        }
4661      }
4662    }
4663    else {
4664      // All template param lists were matched against the scope specifier:
4665      // this is NOT (an explicit specialization of) a template.
4666      if (TemplateParamLists.size() > 0)
4667        // For source fidelity, store all the template param lists.
4668        NewFD->setTemplateParameterListsInfo(Context,
4669                                             TemplateParamLists.size(),
4670                                             TemplateParamLists.release());
4671    }
4672
4673    if (Invalid) {
4674      NewFD->setInvalidDecl();
4675      if (FunctionTemplate)
4676        FunctionTemplate->setInvalidDecl();
4677    }
4678
4679    // C++ [dcl.fct.spec]p5:
4680    //   The virtual specifier shall only be used in declarations of
4681    //   nonstatic class member functions that appear within a
4682    //   member-specification of a class declaration; see 10.3.
4683    //
4684    if (isVirtual && !NewFD->isInvalidDecl()) {
4685      if (!isVirtualOkay) {
4686        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4687             diag::err_virtual_non_function);
4688      } else if (!CurContext->isRecord()) {
4689        // 'virtual' was specified outside of the class.
4690        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4691             diag::err_virtual_out_of_class)
4692          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4693      } else if (NewFD->getDescribedFunctionTemplate()) {
4694        // C++ [temp.mem]p3:
4695        //  A member function template shall not be virtual.
4696        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4697             diag::err_virtual_member_function_template)
4698          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4699      } else {
4700        // Okay: Add virtual to the method.
4701        NewFD->setVirtualAsWritten(true);
4702      }
4703    }
4704
4705    // C++ [dcl.fct.spec]p3:
4706    //  The inline specifier shall not appear on a block scope function declaration.
4707    if (isInline && !NewFD->isInvalidDecl()) {
4708      if (CurContext->isFunctionOrMethod()) {
4709        // 'inline' is not allowed on block scope function declaration.
4710        Diag(D.getDeclSpec().getInlineSpecLoc(),
4711             diag::err_inline_declaration_block_scope) << Name
4712          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4713      }
4714    }
4715
4716    // C++ [dcl.fct.spec]p6:
4717    //  The explicit specifier shall be used only in the declaration of a
4718    //  constructor or conversion function within its class definition; see 12.3.1
4719    //  and 12.3.2.
4720    if (isExplicit && !NewFD->isInvalidDecl()) {
4721      if (!CurContext->isRecord()) {
4722        // 'explicit' was specified outside of the class.
4723        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4724             diag::err_explicit_out_of_class)
4725          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4726      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4727                 !isa<CXXConversionDecl>(NewFD)) {
4728        // 'explicit' was specified on a function that wasn't a constructor
4729        // or conversion function.
4730        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4731             diag::err_explicit_non_ctor_or_conv_function)
4732          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4733      }
4734    }
4735
4736    if (isConstexpr) {
4737      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4738      // are implicitly inline.
4739      NewFD->setImplicitlyInline();
4740
4741      // FIXME: If this is a redeclaration, check the original declaration was
4742      // marked constepr.
4743
4744      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4745      // be either constructors or to return a literal type. Therefore,
4746      // destructors cannot be declared constexpr.
4747      if (isa<CXXDestructorDecl>(NewFD))
4748        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4749             diag::err_constexpr_dtor);
4750    }
4751
4752    // If __module_private__ was specified, mark the function accordingly.
4753    if (D.getDeclSpec().isModulePrivateSpecified()) {
4754      if (isFunctionTemplateSpecialization) {
4755        SourceLocation ModulePrivateLoc
4756          = D.getDeclSpec().getModulePrivateSpecLoc();
4757        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4758          << 0
4759          << FixItHint::CreateRemoval(ModulePrivateLoc);
4760      } else {
4761        NewFD->setModulePrivate();
4762        if (FunctionTemplate)
4763          FunctionTemplate->setModulePrivate();
4764      }
4765    }
4766
4767    // Filter out previous declarations that don't match the scope.
4768    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4769                         isExplicitSpecialization ||
4770                         isFunctionTemplateSpecialization);
4771
4772    if (isFriend) {
4773      // For now, claim that the objects have no previous declaration.
4774      if (FunctionTemplate) {
4775        FunctionTemplate->setObjectOfFriendDecl(false);
4776        FunctionTemplate->setAccess(AS_public);
4777      }
4778      NewFD->setObjectOfFriendDecl(false);
4779      NewFD->setAccess(AS_public);
4780    }
4781
4782    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4783      // A method is implicitly inline if it's defined in its class
4784      // definition.
4785      NewFD->setImplicitlyInline();
4786    }
4787
4788    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4789        !CurContext->isRecord()) {
4790      // C++ [class.static]p1:
4791      //   A data or function member of a class may be declared static
4792      //   in a class definition, in which case it is a static member of
4793      //   the class.
4794
4795      // Complain about the 'static' specifier if it's on an out-of-line
4796      // member function definition.
4797      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4798           diag::err_static_out_of_line)
4799        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4800    }
4801  }
4802
4803  // Handle GNU asm-label extension (encoded as an attribute).
4804  if (Expr *E = (Expr*) D.getAsmLabel()) {
4805    // The parser guarantees this is a string.
4806    StringLiteral *SE = cast<StringLiteral>(E);
4807    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4808                                                SE->getString()));
4809  }
4810
4811  // Copy the parameter declarations from the declarator D to the function
4812  // declaration NewFD, if they are available.  First scavenge them into Params.
4813  SmallVector<ParmVarDecl*, 16> Params;
4814  if (D.isFunctionDeclarator()) {
4815    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4816
4817    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4818    // function that takes no arguments, not a function that takes a
4819    // single void argument.
4820    // We let through "const void" here because Sema::GetTypeForDeclarator
4821    // already checks for that case.
4822    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4823        FTI.ArgInfo[0].Param &&
4824        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4825      // Empty arg list, don't push any params.
4826      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4827
4828      // In C++, the empty parameter-type-list must be spelled "void"; a
4829      // typedef of void is not permitted.
4830      if (getLangOptions().CPlusPlus &&
4831          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4832        bool IsTypeAlias = false;
4833        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4834          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4835        else if (const TemplateSpecializationType *TST =
4836                   Param->getType()->getAs<TemplateSpecializationType>())
4837          IsTypeAlias = TST->isTypeAlias();
4838        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4839          << IsTypeAlias;
4840      }
4841    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4842      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4843        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4844        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4845        Param->setDeclContext(NewFD);
4846        Params.push_back(Param);
4847
4848        if (Param->isInvalidDecl())
4849          NewFD->setInvalidDecl();
4850      }
4851    }
4852
4853  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4854    // When we're declaring a function with a typedef, typeof, etc as in the
4855    // following example, we'll need to synthesize (unnamed)
4856    // parameters for use in the declaration.
4857    //
4858    // @code
4859    // typedef void fn(int);
4860    // fn f;
4861    // @endcode
4862
4863    // Synthesize a parameter for each argument type.
4864    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4865         AE = FT->arg_type_end(); AI != AE; ++AI) {
4866      ParmVarDecl *Param =
4867        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4868      Param->setScopeInfo(0, Params.size());
4869      Params.push_back(Param);
4870    }
4871  } else {
4872    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4873           "Should not need args for typedef of non-prototype fn");
4874  }
4875  // Finally, we know we have the right number of parameters, install them.
4876  NewFD->setParams(Params.data(), Params.size());
4877
4878  // Process the non-inheritable attributes on this declaration.
4879  ProcessDeclAttributes(S, NewFD, D,
4880                        /*NonInheritable=*/true, /*Inheritable=*/false);
4881
4882  if (!getLangOptions().CPlusPlus) {
4883    // Perform semantic checking on the function declaration.
4884    bool isExplicitSpecialization=false;
4885    if (!NewFD->isInvalidDecl()) {
4886      if (NewFD->getResultType()->isVariablyModifiedType()) {
4887        // Functions returning a variably modified type violate C99 6.7.5.2p2
4888        // because all functions have linkage.
4889        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4890        NewFD->setInvalidDecl();
4891      } else {
4892        if (NewFD->isMain())
4893          CheckMain(NewFD, D.getDeclSpec());
4894        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4895                                 Redeclaration);
4896      }
4897    }
4898    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4899            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4900           "previous declaration set still overloaded");
4901  } else {
4902    // If the declarator is a template-id, translate the parser's template
4903    // argument list into our AST format.
4904    bool HasExplicitTemplateArgs = false;
4905    TemplateArgumentListInfo TemplateArgs;
4906    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4907      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4908      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4909      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4910      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4911                                         TemplateId->getTemplateArgs(),
4912                                         TemplateId->NumArgs);
4913      translateTemplateArguments(TemplateArgsPtr,
4914                                 TemplateArgs);
4915      TemplateArgsPtr.release();
4916
4917      HasExplicitTemplateArgs = true;
4918
4919      if (NewFD->isInvalidDecl()) {
4920        HasExplicitTemplateArgs = false;
4921      } else if (FunctionTemplate) {
4922        // Function template with explicit template arguments.
4923        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4924          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4925
4926        HasExplicitTemplateArgs = false;
4927      } else if (!isFunctionTemplateSpecialization &&
4928                 !D.getDeclSpec().isFriendSpecified()) {
4929        // We have encountered something that the user meant to be a
4930        // specialization (because it has explicitly-specified template
4931        // arguments) but that was not introduced with a "template<>" (or had
4932        // too few of them).
4933        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4934          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4935          << FixItHint::CreateInsertion(
4936                                        D.getDeclSpec().getSourceRange().getBegin(),
4937                                                  "template<> ");
4938        isFunctionTemplateSpecialization = true;
4939      } else {
4940        // "friend void foo<>(int);" is an implicit specialization decl.
4941        isFunctionTemplateSpecialization = true;
4942      }
4943    } else if (isFriend && isFunctionTemplateSpecialization) {
4944      // This combination is only possible in a recovery case;  the user
4945      // wrote something like:
4946      //   template <> friend void foo(int);
4947      // which we're recovering from as if the user had written:
4948      //   friend void foo<>(int);
4949      // Go ahead and fake up a template id.
4950      HasExplicitTemplateArgs = true;
4951        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4952      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4953    }
4954
4955    // If it's a friend (and only if it's a friend), it's possible
4956    // that either the specialized function type or the specialized
4957    // template is dependent, and therefore matching will fail.  In
4958    // this case, don't check the specialization yet.
4959    if (isFunctionTemplateSpecialization && isFriend &&
4960        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4961      assert(HasExplicitTemplateArgs &&
4962             "friend function specialization without template args");
4963      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4964                                                       Previous))
4965        NewFD->setInvalidDecl();
4966    } else if (isFunctionTemplateSpecialization) {
4967      if (CurContext->isDependentContext() && CurContext->isRecord()
4968          && !isFriend) {
4969        isDependentClassScopeExplicitSpecialization = true;
4970        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
4971          diag::ext_function_specialization_in_class :
4972          diag::err_function_specialization_in_class)
4973          << NewFD->getDeclName();
4974      } else if (CheckFunctionTemplateSpecialization(NewFD,
4975                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4976                                                     Previous))
4977        NewFD->setInvalidDecl();
4978
4979      // C++ [dcl.stc]p1:
4980      //   A storage-class-specifier shall not be specified in an explicit
4981      //   specialization (14.7.3)
4982      if (SC != SC_None) {
4983        if (SC != NewFD->getStorageClass())
4984          Diag(NewFD->getLocation(),
4985               diag::err_explicit_specialization_inconsistent_storage_class)
4986            << SC
4987            << FixItHint::CreateRemoval(
4988                                      D.getDeclSpec().getStorageClassSpecLoc());
4989
4990        else
4991          Diag(NewFD->getLocation(),
4992               diag::ext_explicit_specialization_storage_class)
4993            << FixItHint::CreateRemoval(
4994                                      D.getDeclSpec().getStorageClassSpecLoc());
4995      }
4996
4997    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4998      if (CheckMemberSpecialization(NewFD, Previous))
4999          NewFD->setInvalidDecl();
5000    }
5001
5002    // Perform semantic checking on the function declaration.
5003    if (!isDependentClassScopeExplicitSpecialization) {
5004      if (NewFD->isInvalidDecl()) {
5005        // If this is a class member, mark the class invalid immediately.
5006        // This avoids some consistency errors later.
5007        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5008          methodDecl->getParent()->setInvalidDecl();
5009      } else {
5010        if (NewFD->isMain())
5011          CheckMain(NewFD, D.getDeclSpec());
5012        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
5013                                 Redeclaration);
5014      }
5015    }
5016
5017    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5018            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5019           "previous declaration set still overloaded");
5020
5021    NamedDecl *PrincipalDecl = (FunctionTemplate
5022                                ? cast<NamedDecl>(FunctionTemplate)
5023                                : NewFD);
5024
5025    if (isFriend && Redeclaration) {
5026      AccessSpecifier Access = AS_public;
5027      if (!NewFD->isInvalidDecl())
5028        Access = NewFD->getPreviousDeclaration()->getAccess();
5029
5030      NewFD->setAccess(Access);
5031      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5032
5033      PrincipalDecl->setObjectOfFriendDecl(true);
5034    }
5035
5036    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5037        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5038      PrincipalDecl->setNonMemberOperator();
5039
5040    // If we have a function template, check the template parameter
5041    // list. This will check and merge default template arguments.
5042    if (FunctionTemplate) {
5043      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5044      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5045                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5046                            D.getDeclSpec().isFriendSpecified()
5047                              ? (IsFunctionDefinition
5048                                   ? TPC_FriendFunctionTemplateDefinition
5049                                   : TPC_FriendFunctionTemplate)
5050                              : (D.getCXXScopeSpec().isSet() &&
5051                                 DC && DC->isRecord() &&
5052                                 DC->isDependentContext())
5053                                  ? TPC_ClassTemplateMember
5054                                  : TPC_FunctionTemplate);
5055    }
5056
5057    if (NewFD->isInvalidDecl()) {
5058      // Ignore all the rest of this.
5059    } else if (!Redeclaration) {
5060      // Fake up an access specifier if it's supposed to be a class member.
5061      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5062        NewFD->setAccess(AS_public);
5063
5064      // Qualified decls generally require a previous declaration.
5065      if (D.getCXXScopeSpec().isSet()) {
5066        // ...with the major exception of templated-scope or
5067        // dependent-scope friend declarations.
5068
5069        // TODO: we currently also suppress this check in dependent
5070        // contexts because (1) the parameter depth will be off when
5071        // matching friend templates and (2) we might actually be
5072        // selecting a friend based on a dependent factor.  But there
5073        // are situations where these conditions don't apply and we
5074        // can actually do this check immediately.
5075        if (isFriend &&
5076            (TemplateParamLists.size() ||
5077             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5078             CurContext->isDependentContext())) {
5079          // ignore these
5080        } else {
5081          // The user tried to provide an out-of-line definition for a
5082          // function that is a member of a class or namespace, but there
5083          // was no such member function declared (C++ [class.mfct]p2,
5084          // C++ [namespace.memdef]p2). For example:
5085          //
5086          // class X {
5087          //   void f() const;
5088          // };
5089          //
5090          // void X::f() { } // ill-formed
5091          //
5092          // Complain about this problem, and attempt to suggest close
5093          // matches (e.g., those that differ only in cv-qualifiers and
5094          // whether the parameter types are references).
5095
5096          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5097        }
5098
5099        // Unqualified local friend declarations are required to resolve
5100        // to something.
5101      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5102        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5103      }
5104
5105    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5106               !isFriend && !isFunctionTemplateSpecialization &&
5107               !isExplicitSpecialization) {
5108      // An out-of-line member function declaration must also be a
5109      // definition (C++ [dcl.meaning]p1).
5110      // Note that this is not the case for explicit specializations of
5111      // function templates or member functions of class templates, per
5112      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5113      // for compatibility with old SWIG code which likes to generate them.
5114      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5115        << D.getCXXScopeSpec().getRange();
5116    }
5117  }
5118
5119
5120  // Handle attributes. We need to have merged decls when handling attributes
5121  // (for example to check for conflicts, etc).
5122  // FIXME: This needs to happen before we merge declarations. Then,
5123  // let attribute merging cope with attribute conflicts.
5124  ProcessDeclAttributes(S, NewFD, D,
5125                        /*NonInheritable=*/false, /*Inheritable=*/true);
5126
5127  // attributes declared post-definition are currently ignored
5128  // FIXME: This should happen during attribute merging
5129  if (Redeclaration && Previous.isSingleResult()) {
5130    const FunctionDecl *Def;
5131    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5132    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5133      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5134      Diag(Def->getLocation(), diag::note_previous_definition);
5135    }
5136  }
5137
5138  AddKnownFunctionAttributes(NewFD);
5139
5140  if (NewFD->hasAttr<OverloadableAttr>() &&
5141      !NewFD->getType()->getAs<FunctionProtoType>()) {
5142    Diag(NewFD->getLocation(),
5143         diag::err_attribute_overloadable_no_prototype)
5144      << NewFD;
5145
5146    // Turn this into a variadic function with no parameters.
5147    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5148    FunctionProtoType::ExtProtoInfo EPI;
5149    EPI.Variadic = true;
5150    EPI.ExtInfo = FT->getExtInfo();
5151
5152    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5153    NewFD->setType(R);
5154  }
5155
5156  // If there's a #pragma GCC visibility in scope, and this isn't a class
5157  // member, set the visibility of this function.
5158  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5159    AddPushedVisibilityAttribute(NewFD);
5160
5161  // If this is a locally-scoped extern C function, update the
5162  // map of such names.
5163  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5164      && !NewFD->isInvalidDecl())
5165    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5166
5167  // Set this FunctionDecl's range up to the right paren.
5168  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5169
5170  if (getLangOptions().CPlusPlus) {
5171    if (FunctionTemplate) {
5172      if (NewFD->isInvalidDecl())
5173        FunctionTemplate->setInvalidDecl();
5174      return FunctionTemplate;
5175    }
5176  }
5177
5178  MarkUnusedFileScopedDecl(NewFD);
5179
5180  if (getLangOptions().CUDA)
5181    if (IdentifierInfo *II = NewFD->getIdentifier())
5182      if (!NewFD->isInvalidDecl() &&
5183          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5184        if (II->isStr("cudaConfigureCall")) {
5185          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5186            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5187
5188          Context.setcudaConfigureCallDecl(NewFD);
5189        }
5190      }
5191
5192  // Here we have an function template explicit specialization at class scope.
5193  // The actually specialization will be postponed to template instatiation
5194  // time via the ClassScopeFunctionSpecializationDecl node.
5195  if (isDependentClassScopeExplicitSpecialization) {
5196    ClassScopeFunctionSpecializationDecl *NewSpec =
5197                         ClassScopeFunctionSpecializationDecl::Create(
5198                                Context, CurContext,  SourceLocation(),
5199                                cast<CXXMethodDecl>(NewFD));
5200    CurContext->addDecl(NewSpec);
5201    AddToScope = false;
5202  }
5203
5204  return NewFD;
5205}
5206
5207/// \brief Perform semantic checking of a new function declaration.
5208///
5209/// Performs semantic analysis of the new function declaration
5210/// NewFD. This routine performs all semantic checking that does not
5211/// require the actual declarator involved in the declaration, and is
5212/// used both for the declaration of functions as they are parsed
5213/// (called via ActOnDeclarator) and for the declaration of functions
5214/// that have been instantiated via C++ template instantiation (called
5215/// via InstantiateDecl).
5216///
5217/// \param IsExplicitSpecialiation whether this new function declaration is
5218/// an explicit specialization of the previous declaration.
5219///
5220/// This sets NewFD->isInvalidDecl() to true if there was an error.
5221void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5222                                    LookupResult &Previous,
5223                                    bool IsExplicitSpecialization,
5224                                    bool &Redeclaration) {
5225  assert(!NewFD->getResultType()->isVariablyModifiedType()
5226         && "Variably modified return types are not handled here");
5227
5228  // Check for a previous declaration of this name.
5229  if (Previous.empty() && NewFD->isExternC()) {
5230    // Since we did not find anything by this name and we're declaring
5231    // an extern "C" function, look for a non-visible extern "C"
5232    // declaration with the same name.
5233    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5234      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5235    if (Pos != LocallyScopedExternalDecls.end())
5236      Previous.addDecl(Pos->second);
5237  }
5238
5239  // Merge or overload the declaration with an existing declaration of
5240  // the same name, if appropriate.
5241  if (!Previous.empty()) {
5242    // Determine whether NewFD is an overload of PrevDecl or
5243    // a declaration that requires merging. If it's an overload,
5244    // there's no more work to do here; we'll just add the new
5245    // function to the scope.
5246
5247    NamedDecl *OldDecl = 0;
5248    if (!AllowOverloadingOfFunction(Previous, Context)) {
5249      Redeclaration = true;
5250      OldDecl = Previous.getFoundDecl();
5251    } else {
5252      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5253                            /*NewIsUsingDecl*/ false)) {
5254      case Ovl_Match:
5255        Redeclaration = true;
5256        break;
5257
5258      case Ovl_NonFunction:
5259        Redeclaration = true;
5260        break;
5261
5262      case Ovl_Overload:
5263        Redeclaration = false;
5264        break;
5265      }
5266
5267      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5268        // If a function name is overloadable in C, then every function
5269        // with that name must be marked "overloadable".
5270        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5271          << Redeclaration << NewFD;
5272        NamedDecl *OverloadedDecl = 0;
5273        if (Redeclaration)
5274          OverloadedDecl = OldDecl;
5275        else if (!Previous.empty())
5276          OverloadedDecl = Previous.getRepresentativeDecl();
5277        if (OverloadedDecl)
5278          Diag(OverloadedDecl->getLocation(),
5279               diag::note_attribute_overloadable_prev_overload);
5280        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5281                                                        Context));
5282      }
5283    }
5284
5285    if (Redeclaration) {
5286      // NewFD and OldDecl represent declarations that need to be
5287      // merged.
5288      if (MergeFunctionDecl(NewFD, OldDecl))
5289        return NewFD->setInvalidDecl();
5290
5291      Previous.clear();
5292      Previous.addDecl(OldDecl);
5293
5294      if (FunctionTemplateDecl *OldTemplateDecl
5295                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5296        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5297        FunctionTemplateDecl *NewTemplateDecl
5298          = NewFD->getDescribedFunctionTemplate();
5299        assert(NewTemplateDecl && "Template/non-template mismatch");
5300        if (CXXMethodDecl *Method
5301              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5302          Method->setAccess(OldTemplateDecl->getAccess());
5303          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5304        }
5305
5306        // If this is an explicit specialization of a member that is a function
5307        // template, mark it as a member specialization.
5308        if (IsExplicitSpecialization &&
5309            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5310          NewTemplateDecl->setMemberSpecialization();
5311          assert(OldTemplateDecl->isMemberSpecialization());
5312        }
5313
5314        if (OldTemplateDecl->isModulePrivate())
5315          NewTemplateDecl->setModulePrivate();
5316
5317      } else {
5318        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5319          NewFD->setAccess(OldDecl->getAccess());
5320        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5321      }
5322    }
5323  }
5324
5325  // Semantic checking for this function declaration (in isolation).
5326  if (getLangOptions().CPlusPlus) {
5327    // C++-specific checks.
5328    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5329      CheckConstructor(Constructor);
5330    } else if (CXXDestructorDecl *Destructor =
5331                dyn_cast<CXXDestructorDecl>(NewFD)) {
5332      CXXRecordDecl *Record = Destructor->getParent();
5333      QualType ClassType = Context.getTypeDeclType(Record);
5334
5335      // FIXME: Shouldn't we be able to perform this check even when the class
5336      // type is dependent? Both gcc and edg can handle that.
5337      if (!ClassType->isDependentType()) {
5338        DeclarationName Name
5339          = Context.DeclarationNames.getCXXDestructorName(
5340                                        Context.getCanonicalType(ClassType));
5341        if (NewFD->getDeclName() != Name) {
5342          Diag(NewFD->getLocation(), diag::err_destructor_name);
5343          return NewFD->setInvalidDecl();
5344        }
5345      }
5346    } else if (CXXConversionDecl *Conversion
5347               = dyn_cast<CXXConversionDecl>(NewFD)) {
5348      ActOnConversionDeclarator(Conversion);
5349    }
5350
5351    // Find any virtual functions that this function overrides.
5352    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5353      if (!Method->isFunctionTemplateSpecialization() &&
5354          !Method->getDescribedFunctionTemplate()) {
5355        if (AddOverriddenMethods(Method->getParent(), Method)) {
5356          // If the function was marked as "static", we have a problem.
5357          if (NewFD->getStorageClass() == SC_Static) {
5358            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5359              << NewFD->getDeclName();
5360            for (CXXMethodDecl::method_iterator
5361                      Overridden = Method->begin_overridden_methods(),
5362                   OverriddenEnd = Method->end_overridden_methods();
5363                 Overridden != OverriddenEnd;
5364                 ++Overridden) {
5365              Diag((*Overridden)->getLocation(),
5366                   diag::note_overridden_virtual_function);
5367            }
5368          }
5369        }
5370      }
5371    }
5372
5373    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5374    if (NewFD->isOverloadedOperator() &&
5375        CheckOverloadedOperatorDeclaration(NewFD))
5376      return NewFD->setInvalidDecl();
5377
5378    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5379    if (NewFD->getLiteralIdentifier() &&
5380        CheckLiteralOperatorDeclaration(NewFD))
5381      return NewFD->setInvalidDecl();
5382
5383    // In C++, check default arguments now that we have merged decls. Unless
5384    // the lexical context is the class, because in this case this is done
5385    // during delayed parsing anyway.
5386    if (!CurContext->isRecord())
5387      CheckCXXDefaultArguments(NewFD);
5388
5389    // If this function declares a builtin function, check the type of this
5390    // declaration against the expected type for the builtin.
5391    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5392      ASTContext::GetBuiltinTypeError Error;
5393      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5394      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5395        // The type of this function differs from the type of the builtin,
5396        // so forget about the builtin entirely.
5397        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5398      }
5399    }
5400  }
5401}
5402
5403void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5404  // C++ [basic.start.main]p3:  A program that declares main to be inline
5405  //   or static is ill-formed.
5406  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5407  //   shall not appear in a declaration of main.
5408  // static main is not an error under C99, but we should warn about it.
5409  if (FD->getStorageClass() == SC_Static)
5410    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5411         ? diag::err_static_main : diag::warn_static_main)
5412      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5413  if (FD->isInlineSpecified())
5414    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5415      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5416
5417  QualType T = FD->getType();
5418  assert(T->isFunctionType() && "function decl is not of function type");
5419  const FunctionType* FT = T->getAs<FunctionType>();
5420
5421  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5422    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5423    FD->setInvalidDecl(true);
5424  }
5425
5426  // Treat protoless main() as nullary.
5427  if (isa<FunctionNoProtoType>(FT)) return;
5428
5429  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5430  unsigned nparams = FTP->getNumArgs();
5431  assert(FD->getNumParams() == nparams);
5432
5433  bool HasExtraParameters = (nparams > 3);
5434
5435  // Darwin passes an undocumented fourth argument of type char**.  If
5436  // other platforms start sprouting these, the logic below will start
5437  // getting shifty.
5438  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5439    HasExtraParameters = false;
5440
5441  if (HasExtraParameters) {
5442    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5443    FD->setInvalidDecl(true);
5444    nparams = 3;
5445  }
5446
5447  // FIXME: a lot of the following diagnostics would be improved
5448  // if we had some location information about types.
5449
5450  QualType CharPP =
5451    Context.getPointerType(Context.getPointerType(Context.CharTy));
5452  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5453
5454  for (unsigned i = 0; i < nparams; ++i) {
5455    QualType AT = FTP->getArgType(i);
5456
5457    bool mismatch = true;
5458
5459    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5460      mismatch = false;
5461    else if (Expected[i] == CharPP) {
5462      // As an extension, the following forms are okay:
5463      //   char const **
5464      //   char const * const *
5465      //   char * const *
5466
5467      QualifierCollector qs;
5468      const PointerType* PT;
5469      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5470          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5471          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5472        qs.removeConst();
5473        mismatch = !qs.empty();
5474      }
5475    }
5476
5477    if (mismatch) {
5478      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5479      // TODO: suggest replacing given type with expected type
5480      FD->setInvalidDecl(true);
5481    }
5482  }
5483
5484  if (nparams == 1 && !FD->isInvalidDecl()) {
5485    Diag(FD->getLocation(), diag::warn_main_one_arg);
5486  }
5487
5488  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5489    Diag(FD->getLocation(), diag::err_main_template_decl);
5490    FD->setInvalidDecl();
5491  }
5492}
5493
5494bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5495  // FIXME: Need strict checking.  In C89, we need to check for
5496  // any assignment, increment, decrement, function-calls, or
5497  // commas outside of a sizeof.  In C99, it's the same list,
5498  // except that the aforementioned are allowed in unevaluated
5499  // expressions.  Everything else falls under the
5500  // "may accept other forms of constant expressions" exception.
5501  // (We never end up here for C++, so the constant expression
5502  // rules there don't matter.)
5503  if (Init->isConstantInitializer(Context, false))
5504    return false;
5505  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5506    << Init->getSourceRange();
5507  return true;
5508}
5509
5510namespace {
5511  // Visits an initialization expression to see if OrigDecl is evaluated in
5512  // its own initialization and throws a warning if it does.
5513  class SelfReferenceChecker
5514      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5515    Sema &S;
5516    Decl *OrigDecl;
5517    bool isRecordType;
5518    bool isPODType;
5519
5520  public:
5521    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5522
5523    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5524                                                    S(S), OrigDecl(OrigDecl) {
5525      isPODType = false;
5526      isRecordType = false;
5527      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5528        isPODType = VD->getType().isPODType(S.Context);
5529        isRecordType = VD->getType()->isRecordType();
5530      }
5531    }
5532
5533    void VisitExpr(Expr *E) {
5534      if (isa<ObjCMessageExpr>(*E)) return;
5535      if (isRecordType) {
5536        Expr *expr = E;
5537        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5538          ValueDecl *VD = ME->getMemberDecl();
5539          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5540          expr = ME->getBase();
5541        }
5542        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5543          HandleDeclRefExpr(DRE);
5544          return;
5545        }
5546      }
5547      Inherited::VisitExpr(E);
5548    }
5549
5550    void VisitMemberExpr(MemberExpr *E) {
5551      if (E->getType()->canDecayToPointerType()) return;
5552      if (isa<FieldDecl>(E->getMemberDecl()))
5553        if (DeclRefExpr *DRE
5554              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5555          HandleDeclRefExpr(DRE);
5556          return;
5557        }
5558      Inherited::VisitMemberExpr(E);
5559    }
5560
5561    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5562      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5563          (isRecordType && E->getCastKind() == CK_NoOp)) {
5564        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5565        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5566          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5567        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5568          HandleDeclRefExpr(DRE);
5569          return;
5570        }
5571      }
5572      Inherited::VisitImplicitCastExpr(E);
5573    }
5574
5575    void VisitUnaryOperator(UnaryOperator *E) {
5576      // For POD record types, addresses of its own members are well-defined.
5577      if (isRecordType && isPODType) return;
5578      Inherited::VisitUnaryOperator(E);
5579    }
5580
5581    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5582      Decl* ReferenceDecl = DRE->getDecl();
5583      if (OrigDecl != ReferenceDecl) return;
5584      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5585                          Sema::NotForRedeclaration);
5586      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5587                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5588                              << Result.getLookupName()
5589                              << OrigDecl->getLocation()
5590                              << DRE->getSourceRange());
5591    }
5592  };
5593}
5594
5595/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5596void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5597  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5598}
5599
5600/// AddInitializerToDecl - Adds the initializer Init to the
5601/// declaration dcl. If DirectInit is true, this is C++ direct
5602/// initialization rather than copy initialization.
5603void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5604                                bool DirectInit, bool TypeMayContainAuto) {
5605  // If there is no declaration, there was an error parsing it.  Just ignore
5606  // the initializer.
5607  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5608    return;
5609
5610  // Check for self-references within variable initializers.
5611  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5612    // Variables declared within a function/method body are handled
5613    // by a dataflow analysis.
5614    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5615      CheckSelfReference(RealDecl, Init);
5616  }
5617  else {
5618    CheckSelfReference(RealDecl, Init);
5619  }
5620
5621  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5622    // With declarators parsed the way they are, the parser cannot
5623    // distinguish between a normal initializer and a pure-specifier.
5624    // Thus this grotesque test.
5625    IntegerLiteral *IL;
5626    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5627        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5628      CheckPureMethod(Method, Init->getSourceRange());
5629    else {
5630      Diag(Method->getLocation(), diag::err_member_function_initialization)
5631        << Method->getDeclName() << Init->getSourceRange();
5632      Method->setInvalidDecl();
5633    }
5634    return;
5635  }
5636
5637  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5638  if (!VDecl) {
5639    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5640    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5641    RealDecl->setInvalidDecl();
5642    return;
5643  }
5644
5645  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5646  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5647    TypeSourceInfo *DeducedType = 0;
5648    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5649      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5650        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5651        << Init->getSourceRange();
5652    if (!DeducedType) {
5653      RealDecl->setInvalidDecl();
5654      return;
5655    }
5656    VDecl->setTypeSourceInfo(DeducedType);
5657    VDecl->setType(DeducedType->getType());
5658
5659    // In ARC, infer lifetime.
5660    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5661      VDecl->setInvalidDecl();
5662
5663    // If this is a redeclaration, check that the type we just deduced matches
5664    // the previously declared type.
5665    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5666      MergeVarDeclTypes(VDecl, Old);
5667  }
5668
5669
5670  // A definition must end up with a complete type, which means it must be
5671  // complete with the restriction that an array type might be completed by the
5672  // initializer; note that later code assumes this restriction.
5673  QualType BaseDeclType = VDecl->getType();
5674  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5675    BaseDeclType = Array->getElementType();
5676  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5677                          diag::err_typecheck_decl_incomplete_type)) {
5678    RealDecl->setInvalidDecl();
5679    return;
5680  }
5681
5682  // The variable can not have an abstract class type.
5683  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5684                             diag::err_abstract_type_in_decl,
5685                             AbstractVariableType))
5686    VDecl->setInvalidDecl();
5687
5688  const VarDecl *Def;
5689  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5690    Diag(VDecl->getLocation(), diag::err_redefinition)
5691      << VDecl->getDeclName();
5692    Diag(Def->getLocation(), diag::note_previous_definition);
5693    VDecl->setInvalidDecl();
5694    return;
5695  }
5696
5697  const VarDecl* PrevInit = 0;
5698  if (getLangOptions().CPlusPlus) {
5699    // C++ [class.static.data]p4
5700    //   If a static data member is of const integral or const
5701    //   enumeration type, its declaration in the class definition can
5702    //   specify a constant-initializer which shall be an integral
5703    //   constant expression (5.19). In that case, the member can appear
5704    //   in integral constant expressions. The member shall still be
5705    //   defined in a namespace scope if it is used in the program and the
5706    //   namespace scope definition shall not contain an initializer.
5707    //
5708    // We already performed a redefinition check above, but for static
5709    // data members we also need to check whether there was an in-class
5710    // declaration with an initializer.
5711    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5712      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5713      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5714      return;
5715    }
5716
5717    if (VDecl->hasLocalStorage())
5718      getCurFunction()->setHasBranchProtectedScope();
5719
5720    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5721      VDecl->setInvalidDecl();
5722      return;
5723    }
5724  }
5725
5726  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5727  // a kernel function cannot be initialized."
5728  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5729    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5730    VDecl->setInvalidDecl();
5731    return;
5732  }
5733
5734  // Capture the variable that is being initialized and the style of
5735  // initialization.
5736  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5737
5738  // FIXME: Poor source location information.
5739  InitializationKind Kind
5740    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5741                                                   Init->getLocStart(),
5742                                                   Init->getLocEnd())
5743                : InitializationKind::CreateCopy(VDecl->getLocation(),
5744                                                 Init->getLocStart());
5745
5746  // Get the decls type and save a reference for later, since
5747  // CheckInitializerTypes may change it.
5748  QualType DclT = VDecl->getType(), SavT = DclT;
5749  if (VDecl->isLocalVarDecl()) {
5750    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5751      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5752      VDecl->setInvalidDecl();
5753    } else if (!VDecl->isInvalidDecl()) {
5754      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5755      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5756                                                MultiExprArg(*this, &Init, 1),
5757                                                &DclT);
5758      if (Result.isInvalid()) {
5759        VDecl->setInvalidDecl();
5760        return;
5761      }
5762
5763      Init = Result.takeAs<Expr>();
5764
5765      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5766      // Don't check invalid declarations to avoid emitting useless diagnostics.
5767      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5768        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5769          CheckForConstantInitializer(Init, DclT);
5770      }
5771    }
5772  } else if (VDecl->isStaticDataMember() &&
5773             VDecl->getLexicalDeclContext()->isRecord()) {
5774    // This is an in-class initialization for a static data member, e.g.,
5775    //
5776    // struct S {
5777    //   static const int value = 17;
5778    // };
5779
5780    // Try to perform the initialization regardless.
5781    if (!VDecl->isInvalidDecl()) {
5782      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5783      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5784                                          MultiExprArg(*this, &Init, 1),
5785                                          &DclT);
5786      if (Result.isInvalid()) {
5787        VDecl->setInvalidDecl();
5788        return;
5789      }
5790
5791      Init = Result.takeAs<Expr>();
5792    }
5793
5794    // C++ [class.mem]p4:
5795    //   A member-declarator can contain a constant-initializer only
5796    //   if it declares a static member (9.4) of const integral or
5797    //   const enumeration type, see 9.4.2.
5798    QualType T = VDecl->getType();
5799
5800    // Do nothing on dependent types.
5801    if (T->isDependentType()) {
5802
5803    // Require constness.
5804    } else if (!T.isConstQualified()) {
5805      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5806        << Init->getSourceRange();
5807      VDecl->setInvalidDecl();
5808
5809    // We allow integer constant expressions in all cases.
5810    } else if (T->isIntegralOrEnumerationType()) {
5811      // Check whether the expression is a constant expression.
5812      SourceLocation Loc;
5813      if (Init->isValueDependent())
5814        ; // Nothing to check.
5815      else if (Init->isIntegerConstantExpr(Context, &Loc))
5816        ; // Ok, it's an ICE!
5817      else if (Init->isEvaluatable(Context)) {
5818        // If we can constant fold the initializer through heroics, accept it,
5819        // but report this as a use of an extension for -pedantic.
5820        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5821          << Init->getSourceRange();
5822      } else {
5823        // Otherwise, this is some crazy unknown case.  Report the issue at the
5824        // location provided by the isIntegerConstantExpr failed check.
5825        Diag(Loc, diag::err_in_class_initializer_non_constant)
5826          << Init->getSourceRange();
5827        VDecl->setInvalidDecl();
5828      }
5829
5830    // We allow floating-point constants as an extension in C++03, and
5831    // C++0x has far more complicated rules that we don't really
5832    // implement fully.
5833    } else {
5834      bool Allowed = false;
5835      if (getLangOptions().CPlusPlus0x) {
5836        Allowed = T->isLiteralType();
5837      } else if (T->isFloatingType()) { // also permits complex, which is ok
5838        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5839          << T << Init->getSourceRange();
5840        Allowed = true;
5841      }
5842
5843      if (!Allowed) {
5844        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5845          << T << Init->getSourceRange();
5846        VDecl->setInvalidDecl();
5847
5848      // TODO: there are probably expressions that pass here that shouldn't.
5849      } else if (!Init->isValueDependent() &&
5850                 !Init->isConstantInitializer(Context, false)) {
5851        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5852          << Init->getSourceRange();
5853        VDecl->setInvalidDecl();
5854      }
5855    }
5856  } else if (VDecl->isFileVarDecl()) {
5857    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5858        (!getLangOptions().CPlusPlus ||
5859         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5860      Diag(VDecl->getLocation(), diag::warn_extern_init);
5861    if (!VDecl->isInvalidDecl()) {
5862      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5863      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5864                                                MultiExprArg(*this, &Init, 1),
5865                                                &DclT);
5866      if (Result.isInvalid()) {
5867        VDecl->setInvalidDecl();
5868        return;
5869      }
5870
5871      Init = Result.takeAs<Expr>();
5872    }
5873
5874    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5875    // Don't check invalid declarations to avoid emitting useless diagnostics.
5876    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5877      // C99 6.7.8p4. All file scoped initializers need to be constant.
5878      CheckForConstantInitializer(Init, DclT);
5879    }
5880  }
5881  // If the type changed, it means we had an incomplete type that was
5882  // completed by the initializer. For example:
5883  //   int ary[] = { 1, 3, 5 };
5884  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5885  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5886    VDecl->setType(DclT);
5887    Init->setType(DclT);
5888  }
5889
5890  // Check any implicit conversions within the expression.
5891  CheckImplicitConversions(Init, VDecl->getLocation());
5892
5893  if (!VDecl->isInvalidDecl())
5894    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5895
5896  Init = MaybeCreateExprWithCleanups(Init);
5897  // Attach the initializer to the decl.
5898  VDecl->setInit(Init);
5899
5900  CheckCompleteVariableDeclaration(VDecl);
5901}
5902
5903/// ActOnInitializerError - Given that there was an error parsing an
5904/// initializer for the given declaration, try to return to some form
5905/// of sanity.
5906void Sema::ActOnInitializerError(Decl *D) {
5907  // Our main concern here is re-establishing invariants like "a
5908  // variable's type is either dependent or complete".
5909  if (!D || D->isInvalidDecl()) return;
5910
5911  VarDecl *VD = dyn_cast<VarDecl>(D);
5912  if (!VD) return;
5913
5914  // Auto types are meaningless if we can't make sense of the initializer.
5915  if (ParsingInitForAutoVars.count(D)) {
5916    D->setInvalidDecl();
5917    return;
5918  }
5919
5920  QualType Ty = VD->getType();
5921  if (Ty->isDependentType()) return;
5922
5923  // Require a complete type.
5924  if (RequireCompleteType(VD->getLocation(),
5925                          Context.getBaseElementType(Ty),
5926                          diag::err_typecheck_decl_incomplete_type)) {
5927    VD->setInvalidDecl();
5928    return;
5929  }
5930
5931  // Require an abstract type.
5932  if (RequireNonAbstractType(VD->getLocation(), Ty,
5933                             diag::err_abstract_type_in_decl,
5934                             AbstractVariableType)) {
5935    VD->setInvalidDecl();
5936    return;
5937  }
5938
5939  // Don't bother complaining about constructors or destructors,
5940  // though.
5941}
5942
5943void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5944                                  bool TypeMayContainAuto) {
5945  // If there is no declaration, there was an error parsing it. Just ignore it.
5946  if (RealDecl == 0)
5947    return;
5948
5949  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5950    QualType Type = Var->getType();
5951
5952    // C++0x [dcl.spec.auto]p3
5953    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5954      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5955        << Var->getDeclName() << Type;
5956      Var->setInvalidDecl();
5957      return;
5958    }
5959
5960    switch (Var->isThisDeclarationADefinition()) {
5961    case VarDecl::Definition:
5962      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5963        break;
5964
5965      // We have an out-of-line definition of a static data member
5966      // that has an in-class initializer, so we type-check this like
5967      // a declaration.
5968      //
5969      // Fall through
5970
5971    case VarDecl::DeclarationOnly:
5972      // It's only a declaration.
5973
5974      // Block scope. C99 6.7p7: If an identifier for an object is
5975      // declared with no linkage (C99 6.2.2p6), the type for the
5976      // object shall be complete.
5977      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5978          !Var->getLinkage() && !Var->isInvalidDecl() &&
5979          RequireCompleteType(Var->getLocation(), Type,
5980                              diag::err_typecheck_decl_incomplete_type))
5981        Var->setInvalidDecl();
5982
5983      // Make sure that the type is not abstract.
5984      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5985          RequireNonAbstractType(Var->getLocation(), Type,
5986                                 diag::err_abstract_type_in_decl,
5987                                 AbstractVariableType))
5988        Var->setInvalidDecl();
5989      return;
5990
5991    case VarDecl::TentativeDefinition:
5992      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5993      // object that has file scope without an initializer, and without a
5994      // storage-class specifier or with the storage-class specifier "static",
5995      // constitutes a tentative definition. Note: A tentative definition with
5996      // external linkage is valid (C99 6.2.2p5).
5997      if (!Var->isInvalidDecl()) {
5998        if (const IncompleteArrayType *ArrayT
5999                                    = Context.getAsIncompleteArrayType(Type)) {
6000          if (RequireCompleteType(Var->getLocation(),
6001                                  ArrayT->getElementType(),
6002                                  diag::err_illegal_decl_array_incomplete_type))
6003            Var->setInvalidDecl();
6004        } else if (Var->getStorageClass() == SC_Static) {
6005          // C99 6.9.2p3: If the declaration of an identifier for an object is
6006          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6007          // declared type shall not be an incomplete type.
6008          // NOTE: code such as the following
6009          //     static struct s;
6010          //     struct s { int a; };
6011          // is accepted by gcc. Hence here we issue a warning instead of
6012          // an error and we do not invalidate the static declaration.
6013          // NOTE: to avoid multiple warnings, only check the first declaration.
6014          if (Var->getPreviousDeclaration() == 0)
6015            RequireCompleteType(Var->getLocation(), Type,
6016                                diag::ext_typecheck_decl_incomplete_type);
6017        }
6018      }
6019
6020      // Record the tentative definition; we're done.
6021      if (!Var->isInvalidDecl())
6022        TentativeDefinitions.push_back(Var);
6023      return;
6024    }
6025
6026    // Provide a specific diagnostic for uninitialized variable
6027    // definitions with incomplete array type.
6028    if (Type->isIncompleteArrayType()) {
6029      Diag(Var->getLocation(),
6030           diag::err_typecheck_incomplete_array_needs_initializer);
6031      Var->setInvalidDecl();
6032      return;
6033    }
6034
6035    // Provide a specific diagnostic for uninitialized variable
6036    // definitions with reference type.
6037    if (Type->isReferenceType()) {
6038      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6039        << Var->getDeclName()
6040        << SourceRange(Var->getLocation(), Var->getLocation());
6041      Var->setInvalidDecl();
6042      return;
6043    }
6044
6045    // Do not attempt to type-check the default initializer for a
6046    // variable with dependent type.
6047    if (Type->isDependentType())
6048      return;
6049
6050    if (Var->isInvalidDecl())
6051      return;
6052
6053    if (RequireCompleteType(Var->getLocation(),
6054                            Context.getBaseElementType(Type),
6055                            diag::err_typecheck_decl_incomplete_type)) {
6056      Var->setInvalidDecl();
6057      return;
6058    }
6059
6060    // The variable can not have an abstract class type.
6061    if (RequireNonAbstractType(Var->getLocation(), Type,
6062                               diag::err_abstract_type_in_decl,
6063                               AbstractVariableType)) {
6064      Var->setInvalidDecl();
6065      return;
6066    }
6067
6068    // Check for jumps past the implicit initializer.  C++0x
6069    // clarifies that this applies to a "variable with automatic
6070    // storage duration", not a "local variable".
6071    // C++0x [stmt.dcl]p3
6072    //   A program that jumps from a point where a variable with automatic
6073    //   storage duration is not in scope to a point where it is in scope is
6074    //   ill-formed unless the variable has scalar type, class type with a
6075    //   trivial default constructor and a trivial destructor, a cv-qualified
6076    //   version of one of these types, or an array of one of the preceding
6077    //   types and is declared without an initializer.
6078    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6079      if (const RecordType *Record
6080            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6081        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6082        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6083            (getLangOptions().CPlusPlus0x &&
6084             (!CXXRecord->hasTrivialDefaultConstructor() ||
6085              !CXXRecord->hasTrivialDestructor())))
6086          getCurFunction()->setHasBranchProtectedScope();
6087      }
6088    }
6089
6090    // C++03 [dcl.init]p9:
6091    //   If no initializer is specified for an object, and the
6092    //   object is of (possibly cv-qualified) non-POD class type (or
6093    //   array thereof), the object shall be default-initialized; if
6094    //   the object is of const-qualified type, the underlying class
6095    //   type shall have a user-declared default
6096    //   constructor. Otherwise, if no initializer is specified for
6097    //   a non- static object, the object and its subobjects, if
6098    //   any, have an indeterminate initial value); if the object
6099    //   or any of its subobjects are of const-qualified type, the
6100    //   program is ill-formed.
6101    // C++0x [dcl.init]p11:
6102    //   If no initializer is specified for an object, the object is
6103    //   default-initialized; [...].
6104    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6105    InitializationKind Kind
6106      = InitializationKind::CreateDefault(Var->getLocation());
6107
6108    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6109    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6110                                      MultiExprArg(*this, 0, 0));
6111    if (Init.isInvalid())
6112      Var->setInvalidDecl();
6113    else if (Init.get())
6114      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6115
6116    CheckCompleteVariableDeclaration(Var);
6117  }
6118}
6119
6120void Sema::ActOnCXXForRangeDecl(Decl *D) {
6121  VarDecl *VD = dyn_cast<VarDecl>(D);
6122  if (!VD) {
6123    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6124    D->setInvalidDecl();
6125    return;
6126  }
6127
6128  VD->setCXXForRangeDecl(true);
6129
6130  // for-range-declaration cannot be given a storage class specifier.
6131  int Error = -1;
6132  switch (VD->getStorageClassAsWritten()) {
6133  case SC_None:
6134    break;
6135  case SC_Extern:
6136    Error = 0;
6137    break;
6138  case SC_Static:
6139    Error = 1;
6140    break;
6141  case SC_PrivateExtern:
6142    Error = 2;
6143    break;
6144  case SC_Auto:
6145    Error = 3;
6146    break;
6147  case SC_Register:
6148    Error = 4;
6149    break;
6150  case SC_OpenCLWorkGroupLocal:
6151    llvm_unreachable("Unexpected storage class");
6152  }
6153  // FIXME: constexpr isn't allowed here.
6154  //if (DS.isConstexprSpecified())
6155  //  Error = 5;
6156  if (Error != -1) {
6157    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6158      << VD->getDeclName() << Error;
6159    D->setInvalidDecl();
6160  }
6161}
6162
6163void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6164  if (var->isInvalidDecl()) return;
6165
6166  // In ARC, don't allow jumps past the implicit initialization of a
6167  // local retaining variable.
6168  if (getLangOptions().ObjCAutoRefCount &&
6169      var->hasLocalStorage()) {
6170    switch (var->getType().getObjCLifetime()) {
6171    case Qualifiers::OCL_None:
6172    case Qualifiers::OCL_ExplicitNone:
6173    case Qualifiers::OCL_Autoreleasing:
6174      break;
6175
6176    case Qualifiers::OCL_Weak:
6177    case Qualifiers::OCL_Strong:
6178      getCurFunction()->setHasBranchProtectedScope();
6179      break;
6180    }
6181  }
6182
6183  // All the following checks are C++ only.
6184  if (!getLangOptions().CPlusPlus) return;
6185
6186  QualType baseType = Context.getBaseElementType(var->getType());
6187  if (baseType->isDependentType()) return;
6188
6189  // __block variables might require us to capture a copy-initializer.
6190  if (var->hasAttr<BlocksAttr>()) {
6191    // It's currently invalid to ever have a __block variable with an
6192    // array type; should we diagnose that here?
6193
6194    // Regardless, we don't want to ignore array nesting when
6195    // constructing this copy.
6196    QualType type = var->getType();
6197
6198    if (type->isStructureOrClassType()) {
6199      SourceLocation poi = var->getLocation();
6200      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6201      ExprResult result =
6202        PerformCopyInitialization(
6203                        InitializedEntity::InitializeBlock(poi, type, false),
6204                                  poi, Owned(varRef));
6205      if (!result.isInvalid()) {
6206        result = MaybeCreateExprWithCleanups(result);
6207        Expr *init = result.takeAs<Expr>();
6208        Context.setBlockVarCopyInits(var, init);
6209      }
6210    }
6211  }
6212
6213  // Check for global constructors.
6214  if (!var->getDeclContext()->isDependentContext() &&
6215      var->hasGlobalStorage() &&
6216      !var->isStaticLocal() &&
6217      var->getInit() &&
6218      !var->getInit()->isConstantInitializer(Context,
6219                                             baseType->isReferenceType()))
6220    Diag(var->getLocation(), diag::warn_global_constructor)
6221      << var->getInit()->getSourceRange();
6222
6223  // Require the destructor.
6224  if (const RecordType *recordType = baseType->getAs<RecordType>())
6225    FinalizeVarWithDestructor(var, recordType);
6226}
6227
6228/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6229/// any semantic actions necessary after any initializer has been attached.
6230void
6231Sema::FinalizeDeclaration(Decl *ThisDecl) {
6232  // Note that we are no longer parsing the initializer for this declaration.
6233  ParsingInitForAutoVars.erase(ThisDecl);
6234}
6235
6236Sema::DeclGroupPtrTy
6237Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6238                              Decl **Group, unsigned NumDecls) {
6239  SmallVector<Decl*, 8> Decls;
6240
6241  if (DS.isTypeSpecOwned())
6242    Decls.push_back(DS.getRepAsDecl());
6243
6244  for (unsigned i = 0; i != NumDecls; ++i)
6245    if (Decl *D = Group[i])
6246      Decls.push_back(D);
6247
6248  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6249                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6250}
6251
6252/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6253/// group, performing any necessary semantic checking.
6254Sema::DeclGroupPtrTy
6255Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6256                           bool TypeMayContainAuto) {
6257  // C++0x [dcl.spec.auto]p7:
6258  //   If the type deduced for the template parameter U is not the same in each
6259  //   deduction, the program is ill-formed.
6260  // FIXME: When initializer-list support is added, a distinction is needed
6261  // between the deduced type U and the deduced type which 'auto' stands for.
6262  //   auto a = 0, b = { 1, 2, 3 };
6263  // is legal because the deduced type U is 'int' in both cases.
6264  if (TypeMayContainAuto && NumDecls > 1) {
6265    QualType Deduced;
6266    CanQualType DeducedCanon;
6267    VarDecl *DeducedDecl = 0;
6268    for (unsigned i = 0; i != NumDecls; ++i) {
6269      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6270        AutoType *AT = D->getType()->getContainedAutoType();
6271        // Don't reissue diagnostics when instantiating a template.
6272        if (AT && D->isInvalidDecl())
6273          break;
6274        if (AT && AT->isDeduced()) {
6275          QualType U = AT->getDeducedType();
6276          CanQualType UCanon = Context.getCanonicalType(U);
6277          if (Deduced.isNull()) {
6278            Deduced = U;
6279            DeducedCanon = UCanon;
6280            DeducedDecl = D;
6281          } else if (DeducedCanon != UCanon) {
6282            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6283                 diag::err_auto_different_deductions)
6284              << Deduced << DeducedDecl->getDeclName()
6285              << U << D->getDeclName()
6286              << DeducedDecl->getInit()->getSourceRange()
6287              << D->getInit()->getSourceRange();
6288            D->setInvalidDecl();
6289            break;
6290          }
6291        }
6292      }
6293    }
6294  }
6295
6296  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6297}
6298
6299
6300/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6301/// to introduce parameters into function prototype scope.
6302Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6303  const DeclSpec &DS = D.getDeclSpec();
6304
6305  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6306  VarDecl::StorageClass StorageClass = SC_None;
6307  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6308  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6309    StorageClass = SC_Register;
6310    StorageClassAsWritten = SC_Register;
6311  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6312    Diag(DS.getStorageClassSpecLoc(),
6313         diag::err_invalid_storage_class_in_func_decl);
6314    D.getMutableDeclSpec().ClearStorageClassSpecs();
6315  }
6316
6317  if (D.getDeclSpec().isThreadSpecified())
6318    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6319  if (D.getDeclSpec().isConstexprSpecified())
6320    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6321      << 0;
6322
6323  DiagnoseFunctionSpecifiers(D);
6324
6325  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6326  QualType parmDeclType = TInfo->getType();
6327
6328  if (getLangOptions().CPlusPlus) {
6329    // Check that there are no default arguments inside the type of this
6330    // parameter.
6331    CheckExtraCXXDefaultArguments(D);
6332
6333    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6334    if (D.getCXXScopeSpec().isSet()) {
6335      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6336        << D.getCXXScopeSpec().getRange();
6337      D.getCXXScopeSpec().clear();
6338    }
6339  }
6340
6341  // Ensure we have a valid name
6342  IdentifierInfo *II = 0;
6343  if (D.hasName()) {
6344    II = D.getIdentifier();
6345    if (!II) {
6346      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6347        << GetNameForDeclarator(D).getName().getAsString();
6348      D.setInvalidType(true);
6349    }
6350  }
6351
6352  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6353  if (II) {
6354    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6355                   ForRedeclaration);
6356    LookupName(R, S);
6357    if (R.isSingleResult()) {
6358      NamedDecl *PrevDecl = R.getFoundDecl();
6359      if (PrevDecl->isTemplateParameter()) {
6360        // Maybe we will complain about the shadowed template parameter.
6361        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6362        // Just pretend that we didn't see the previous declaration.
6363        PrevDecl = 0;
6364      } else if (S->isDeclScope(PrevDecl)) {
6365        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6366        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6367
6368        // Recover by removing the name
6369        II = 0;
6370        D.SetIdentifier(0, D.getIdentifierLoc());
6371        D.setInvalidType(true);
6372      }
6373    }
6374  }
6375
6376  // Temporarily put parameter variables in the translation unit, not
6377  // the enclosing context.  This prevents them from accidentally
6378  // looking like class members in C++.
6379  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6380                                    D.getSourceRange().getBegin(),
6381                                    D.getIdentifierLoc(), II,
6382                                    parmDeclType, TInfo,
6383                                    StorageClass, StorageClassAsWritten);
6384
6385  if (D.isInvalidType())
6386    New->setInvalidDecl();
6387
6388  assert(S->isFunctionPrototypeScope());
6389  assert(S->getFunctionPrototypeDepth() >= 1);
6390  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6391                    S->getNextFunctionPrototypeIndex());
6392
6393  // Add the parameter declaration into this scope.
6394  S->AddDecl(New);
6395  if (II)
6396    IdResolver.AddDecl(New);
6397
6398  ProcessDeclAttributes(S, New, D);
6399
6400  if (D.getDeclSpec().isModulePrivateSpecified())
6401    Diag(New->getLocation(), diag::err_module_private_local)
6402      << 1 << New->getDeclName()
6403      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6404      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6405
6406  if (New->hasAttr<BlocksAttr>()) {
6407    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6408  }
6409  return New;
6410}
6411
6412/// \brief Synthesizes a variable for a parameter arising from a
6413/// typedef.
6414ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6415                                              SourceLocation Loc,
6416                                              QualType T) {
6417  /* FIXME: setting StartLoc == Loc.
6418     Would it be worth to modify callers so as to provide proper source
6419     location for the unnamed parameters, embedding the parameter's type? */
6420  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6421                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6422                                           SC_None, SC_None, 0);
6423  Param->setImplicit();
6424  return Param;
6425}
6426
6427void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6428                                    ParmVarDecl * const *ParamEnd) {
6429  // Don't diagnose unused-parameter errors in template instantiations; we
6430  // will already have done so in the template itself.
6431  if (!ActiveTemplateInstantiations.empty())
6432    return;
6433
6434  for (; Param != ParamEnd; ++Param) {
6435    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6436        !(*Param)->hasAttr<UnusedAttr>()) {
6437      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6438        << (*Param)->getDeclName();
6439    }
6440  }
6441}
6442
6443void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6444                                                  ParmVarDecl * const *ParamEnd,
6445                                                  QualType ReturnTy,
6446                                                  NamedDecl *D) {
6447  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6448    return;
6449
6450  // Warn if the return value is pass-by-value and larger than the specified
6451  // threshold.
6452  if (ReturnTy.isPODType(Context)) {
6453    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6454    if (Size > LangOpts.NumLargeByValueCopy)
6455      Diag(D->getLocation(), diag::warn_return_value_size)
6456          << D->getDeclName() << Size;
6457  }
6458
6459  // Warn if any parameter is pass-by-value and larger than the specified
6460  // threshold.
6461  for (; Param != ParamEnd; ++Param) {
6462    QualType T = (*Param)->getType();
6463    if (!T.isPODType(Context))
6464      continue;
6465    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6466    if (Size > LangOpts.NumLargeByValueCopy)
6467      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6468          << (*Param)->getDeclName() << Size;
6469  }
6470}
6471
6472ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6473                                  SourceLocation NameLoc, IdentifierInfo *Name,
6474                                  QualType T, TypeSourceInfo *TSInfo,
6475                                  VarDecl::StorageClass StorageClass,
6476                                  VarDecl::StorageClass StorageClassAsWritten) {
6477  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6478  if (getLangOptions().ObjCAutoRefCount &&
6479      T.getObjCLifetime() == Qualifiers::OCL_None &&
6480      T->isObjCLifetimeType()) {
6481
6482    Qualifiers::ObjCLifetime lifetime;
6483
6484    // Special cases for arrays:
6485    //   - if it's const, use __unsafe_unretained
6486    //   - otherwise, it's an error
6487    if (T->isArrayType()) {
6488      if (!T.isConstQualified()) {
6489        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6490          << TSInfo->getTypeLoc().getSourceRange();
6491      }
6492      lifetime = Qualifiers::OCL_ExplicitNone;
6493    } else {
6494      lifetime = T->getObjCARCImplicitLifetime();
6495    }
6496    T = Context.getLifetimeQualifiedType(T, lifetime);
6497  }
6498
6499  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6500                                         Context.getAdjustedParameterType(T),
6501                                         TSInfo,
6502                                         StorageClass, StorageClassAsWritten,
6503                                         0);
6504
6505  // Parameters can not be abstract class types.
6506  // For record types, this is done by the AbstractClassUsageDiagnoser once
6507  // the class has been completely parsed.
6508  if (!CurContext->isRecord() &&
6509      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6510                             AbstractParamType))
6511    New->setInvalidDecl();
6512
6513  // Parameter declarators cannot be interface types. All ObjC objects are
6514  // passed by reference.
6515  if (T->isObjCObjectType()) {
6516    Diag(NameLoc,
6517         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6518      << FixItHint::CreateInsertion(NameLoc, "*");
6519    T = Context.getObjCObjectPointerType(T);
6520    New->setType(T);
6521  }
6522
6523  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6524  // duration shall not be qualified by an address-space qualifier."
6525  // Since all parameters have automatic store duration, they can not have
6526  // an address space.
6527  if (T.getAddressSpace() != 0) {
6528    Diag(NameLoc, diag::err_arg_with_address_space);
6529    New->setInvalidDecl();
6530  }
6531
6532  return New;
6533}
6534
6535void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6536                                           SourceLocation LocAfterDecls) {
6537  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6538
6539  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6540  // for a K&R function.
6541  if (!FTI.hasPrototype) {
6542    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6543      --i;
6544      if (FTI.ArgInfo[i].Param == 0) {
6545        llvm::SmallString<256> Code;
6546        llvm::raw_svector_ostream(Code) << "  int "
6547                                        << FTI.ArgInfo[i].Ident->getName()
6548                                        << ";\n";
6549        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6550          << FTI.ArgInfo[i].Ident
6551          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6552
6553        // Implicitly declare the argument as type 'int' for lack of a better
6554        // type.
6555        AttributeFactory attrs;
6556        DeclSpec DS(attrs);
6557        const char* PrevSpec; // unused
6558        unsigned DiagID; // unused
6559        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6560                           PrevSpec, DiagID);
6561        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6562        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6563        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6564      }
6565    }
6566  }
6567}
6568
6569Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6570                                         Declarator &D) {
6571  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6572  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6573  Scope *ParentScope = FnBodyScope->getParent();
6574
6575  Decl *DP = HandleDeclarator(ParentScope, D,
6576                              MultiTemplateParamsArg(*this),
6577                              /*IsFunctionDefinition=*/true);
6578  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6579}
6580
6581static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6582  // Don't warn about invalid declarations.
6583  if (FD->isInvalidDecl())
6584    return false;
6585
6586  // Or declarations that aren't global.
6587  if (!FD->isGlobal())
6588    return false;
6589
6590  // Don't warn about C++ member functions.
6591  if (isa<CXXMethodDecl>(FD))
6592    return false;
6593
6594  // Don't warn about 'main'.
6595  if (FD->isMain())
6596    return false;
6597
6598  // Don't warn about inline functions.
6599  if (FD->isInlined())
6600    return false;
6601
6602  // Don't warn about function templates.
6603  if (FD->getDescribedFunctionTemplate())
6604    return false;
6605
6606  // Don't warn about function template specializations.
6607  if (FD->isFunctionTemplateSpecialization())
6608    return false;
6609
6610  bool MissingPrototype = true;
6611  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6612       Prev; Prev = Prev->getPreviousDeclaration()) {
6613    // Ignore any declarations that occur in function or method
6614    // scope, because they aren't visible from the header.
6615    if (Prev->getDeclContext()->isFunctionOrMethod())
6616      continue;
6617
6618    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6619    break;
6620  }
6621
6622  return MissingPrototype;
6623}
6624
6625void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6626  // Don't complain if we're in GNU89 mode and the previous definition
6627  // was an extern inline function.
6628  const FunctionDecl *Definition;
6629  if (FD->isDefined(Definition) &&
6630      !canRedefineFunction(Definition, getLangOptions())) {
6631    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6632        Definition->getStorageClass() == SC_Extern)
6633      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6634        << FD->getDeclName() << getLangOptions().CPlusPlus;
6635    else
6636      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6637    Diag(Definition->getLocation(), diag::note_previous_definition);
6638  }
6639}
6640
6641Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6642  // Clear the last template instantiation error context.
6643  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6644
6645  if (!D)
6646    return D;
6647  FunctionDecl *FD = 0;
6648
6649  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6650    FD = FunTmpl->getTemplatedDecl();
6651  else
6652    FD = cast<FunctionDecl>(D);
6653
6654  // Enter a new function scope
6655  PushFunctionScope();
6656
6657  // See if this is a redefinition.
6658  if (!FD->isLateTemplateParsed())
6659    CheckForFunctionRedefinition(FD);
6660
6661  // Builtin functions cannot be defined.
6662  if (unsigned BuiltinID = FD->getBuiltinID()) {
6663    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6664      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6665      FD->setInvalidDecl();
6666    }
6667  }
6668
6669  // The return type of a function definition must be complete
6670  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6671  QualType ResultType = FD->getResultType();
6672  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6673      !FD->isInvalidDecl() &&
6674      RequireCompleteType(FD->getLocation(), ResultType,
6675                          diag::err_func_def_incomplete_result))
6676    FD->setInvalidDecl();
6677
6678  // GNU warning -Wmissing-prototypes:
6679  //   Warn if a global function is defined without a previous
6680  //   prototype declaration. This warning is issued even if the
6681  //   definition itself provides a prototype. The aim is to detect
6682  //   global functions that fail to be declared in header files.
6683  if (ShouldWarnAboutMissingPrototype(FD))
6684    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6685
6686  if (FnBodyScope)
6687    PushDeclContext(FnBodyScope, FD);
6688
6689  // Check the validity of our function parameters
6690  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6691                           /*CheckParameterNames=*/true);
6692
6693  // Introduce our parameters into the function scope
6694  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6695    ParmVarDecl *Param = FD->getParamDecl(p);
6696    Param->setOwningFunction(FD);
6697
6698    // If this has an identifier, add it to the scope stack.
6699    if (Param->getIdentifier() && FnBodyScope) {
6700      CheckShadow(FnBodyScope, Param);
6701
6702      PushOnScopeChains(Param, FnBodyScope);
6703    }
6704  }
6705
6706  // Checking attributes of current function definition
6707  // dllimport attribute.
6708  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6709  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6710    // dllimport attribute cannot be directly applied to definition.
6711    // Microsoft accepts dllimport for functions defined within class scope.
6712    if (!DA->isInherited() &&
6713        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6714      Diag(FD->getLocation(),
6715           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6716        << "dllimport";
6717      FD->setInvalidDecl();
6718      return FD;
6719    }
6720
6721    // Visual C++ appears to not think this is an issue, so only issue
6722    // a warning when Microsoft extensions are disabled.
6723    if (!LangOpts.MicrosoftExt) {
6724      // If a symbol previously declared dllimport is later defined, the
6725      // attribute is ignored in subsequent references, and a warning is
6726      // emitted.
6727      Diag(FD->getLocation(),
6728           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6729        << FD->getName() << "dllimport";
6730    }
6731  }
6732  return FD;
6733}
6734
6735/// \brief Given the set of return statements within a function body,
6736/// compute the variables that are subject to the named return value
6737/// optimization.
6738///
6739/// Each of the variables that is subject to the named return value
6740/// optimization will be marked as NRVO variables in the AST, and any
6741/// return statement that has a marked NRVO variable as its NRVO candidate can
6742/// use the named return value optimization.
6743///
6744/// This function applies a very simplistic algorithm for NRVO: if every return
6745/// statement in the function has the same NRVO candidate, that candidate is
6746/// the NRVO variable.
6747///
6748/// FIXME: Employ a smarter algorithm that accounts for multiple return
6749/// statements and the lifetimes of the NRVO candidates. We should be able to
6750/// find a maximal set of NRVO variables.
6751void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6752  ReturnStmt **Returns = Scope->Returns.data();
6753
6754  const VarDecl *NRVOCandidate = 0;
6755  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6756    if (!Returns[I]->getNRVOCandidate())
6757      return;
6758
6759    if (!NRVOCandidate)
6760      NRVOCandidate = Returns[I]->getNRVOCandidate();
6761    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6762      return;
6763  }
6764
6765  if (NRVOCandidate)
6766    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6767}
6768
6769Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6770  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6771}
6772
6773Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6774                                    bool IsInstantiation) {
6775  FunctionDecl *FD = 0;
6776  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6777  if (FunTmpl)
6778    FD = FunTmpl->getTemplatedDecl();
6779  else
6780    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6781
6782  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6783  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6784
6785  if (FD) {
6786    FD->setBody(Body);
6787    if (FD->isMain()) {
6788      // C and C++ allow for main to automagically return 0.
6789      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6790      FD->setHasImplicitReturnZero(true);
6791      WP.disableCheckFallThrough();
6792    } else if (FD->hasAttr<NakedAttr>()) {
6793      // If the function is marked 'naked', don't complain about missing return
6794      // statements.
6795      WP.disableCheckFallThrough();
6796    }
6797
6798    // MSVC permits the use of pure specifier (=0) on function definition,
6799    // defined at class scope, warn about this non standard construct.
6800    if (getLangOptions().MicrosoftExt && FD->isPure())
6801      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6802
6803    if (!FD->isInvalidDecl()) {
6804      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6805      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6806                                             FD->getResultType(), FD);
6807
6808      // If this is a constructor, we need a vtable.
6809      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6810        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6811
6812      computeNRVO(Body, getCurFunction());
6813    }
6814
6815    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6816  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6817    assert(MD == getCurMethodDecl() && "Method parsing confused");
6818    MD->setBody(Body);
6819    if (Body)
6820      MD->setEndLoc(Body->getLocEnd());
6821    if (!MD->isInvalidDecl()) {
6822      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6823      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6824                                             MD->getResultType(), MD);
6825
6826      if (Body)
6827        computeNRVO(Body, getCurFunction());
6828    }
6829    if (ObjCShouldCallSuperDealloc) {
6830      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6831      ObjCShouldCallSuperDealloc = false;
6832    }
6833    if (ObjCShouldCallSuperFinalize) {
6834      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6835      ObjCShouldCallSuperFinalize = false;
6836    }
6837  } else {
6838    return 0;
6839  }
6840
6841  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6842         "ObjC methods, which should have been handled in the block above.");
6843  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6844         "ObjC methods, which should have been handled in the block above.");
6845
6846  // Verify and clean out per-function state.
6847  if (Body) {
6848    // C++ constructors that have function-try-blocks can't have return
6849    // statements in the handlers of that block. (C++ [except.handle]p14)
6850    // Verify this.
6851    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6852      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6853
6854    // Verify that gotos and switch cases don't jump into scopes illegally.
6855    if (getCurFunction()->NeedsScopeChecking() &&
6856        !dcl->isInvalidDecl() &&
6857        !hasAnyUnrecoverableErrorsInThisFunction())
6858      DiagnoseInvalidJumps(Body);
6859
6860    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6861      if (!Destructor->getParent()->isDependentType())
6862        CheckDestructor(Destructor);
6863
6864      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6865                                             Destructor->getParent());
6866    }
6867
6868    // If any errors have occurred, clear out any temporaries that may have
6869    // been leftover. This ensures that these temporaries won't be picked up for
6870    // deletion in some later function.
6871    if (PP.getDiagnostics().hasErrorOccurred() ||
6872        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6873      ExprTemporaries.clear();
6874      ExprNeedsCleanups = false;
6875    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6876      // Since the body is valid, issue any analysis-based warnings that are
6877      // enabled.
6878      ActivePolicy = &WP;
6879    }
6880
6881    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6882    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6883  }
6884
6885  if (!IsInstantiation)
6886    PopDeclContext();
6887
6888  PopFunctionOrBlockScope(ActivePolicy, dcl);
6889
6890  // If any errors have occurred, clear out any temporaries that may have
6891  // been leftover. This ensures that these temporaries won't be picked up for
6892  // deletion in some later function.
6893  if (getDiagnostics().hasErrorOccurred()) {
6894    ExprTemporaries.clear();
6895    ExprNeedsCleanups = false;
6896  }
6897
6898  return dcl;
6899}
6900
6901
6902/// When we finish delayed parsing of an attribute, we must attach it to the
6903/// relevant Decl.
6904void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6905                                       ParsedAttributes &Attrs) {
6906  ProcessDeclAttributeList(S, D, Attrs.getList());
6907}
6908
6909
6910/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6911/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6912NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6913                                          IdentifierInfo &II, Scope *S) {
6914  // Before we produce a declaration for an implicitly defined
6915  // function, see whether there was a locally-scoped declaration of
6916  // this name as a function or variable. If so, use that
6917  // (non-visible) declaration, and complain about it.
6918  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6919    = findLocallyScopedExternalDecl(&II);
6920  if (Pos != LocallyScopedExternalDecls.end()) {
6921    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6922    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6923    return Pos->second;
6924  }
6925
6926  // Extension in C99.  Legal in C90, but warn about it.
6927  if (II.getName().startswith("__builtin_"))
6928    Diag(Loc, diag::warn_builtin_unknown) << &II;
6929  else if (getLangOptions().C99)
6930    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6931  else
6932    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6933
6934  // Set a Declarator for the implicit definition: int foo();
6935  const char *Dummy;
6936  AttributeFactory attrFactory;
6937  DeclSpec DS(attrFactory);
6938  unsigned DiagID;
6939  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6940  (void)Error; // Silence warning.
6941  assert(!Error && "Error setting up implicit decl!");
6942  Declarator D(DS, Declarator::BlockContext);
6943  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6944                                             0, 0, true, SourceLocation(),
6945                                             SourceLocation(),
6946                                             EST_None, SourceLocation(),
6947                                             0, 0, 0, 0, Loc, Loc, D),
6948                DS.getAttributes(),
6949                SourceLocation());
6950  D.SetIdentifier(&II, Loc);
6951
6952  // Insert this function into translation-unit scope.
6953
6954  DeclContext *PrevDC = CurContext;
6955  CurContext = Context.getTranslationUnitDecl();
6956
6957  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6958  FD->setImplicit();
6959
6960  CurContext = PrevDC;
6961
6962  AddKnownFunctionAttributes(FD);
6963
6964  return FD;
6965}
6966
6967/// \brief Adds any function attributes that we know a priori based on
6968/// the declaration of this function.
6969///
6970/// These attributes can apply both to implicitly-declared builtins
6971/// (like __builtin___printf_chk) or to library-declared functions
6972/// like NSLog or printf.
6973///
6974/// We need to check for duplicate attributes both here and where user-written
6975/// attributes are applied to declarations.
6976void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6977  if (FD->isInvalidDecl())
6978    return;
6979
6980  // If this is a built-in function, map its builtin attributes to
6981  // actual attributes.
6982  if (unsigned BuiltinID = FD->getBuiltinID()) {
6983    // Handle printf-formatting attributes.
6984    unsigned FormatIdx;
6985    bool HasVAListArg;
6986    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6987      if (!FD->getAttr<FormatAttr>())
6988        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6989                                                "printf", FormatIdx+1,
6990                                               HasVAListArg ? 0 : FormatIdx+2));
6991    }
6992    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6993                                             HasVAListArg)) {
6994     if (!FD->getAttr<FormatAttr>())
6995       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6996                                              "scanf", FormatIdx+1,
6997                                              HasVAListArg ? 0 : FormatIdx+2));
6998    }
6999
7000    // Mark const if we don't care about errno and that is the only
7001    // thing preventing the function from being const. This allows
7002    // IRgen to use LLVM intrinsics for such functions.
7003    if (!getLangOptions().MathErrno &&
7004        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7005      if (!FD->getAttr<ConstAttr>())
7006        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7007    }
7008
7009    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7010      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7011    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7012      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7013  }
7014
7015  IdentifierInfo *Name = FD->getIdentifier();
7016  if (!Name)
7017    return;
7018  if ((!getLangOptions().CPlusPlus &&
7019       FD->getDeclContext()->isTranslationUnit()) ||
7020      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7021       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7022       LinkageSpecDecl::lang_c)) {
7023    // Okay: this could be a libc/libm/Objective-C function we know
7024    // about.
7025  } else
7026    return;
7027
7028  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7029    // FIXME: NSLog and NSLogv should be target specific
7030    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7031      // FIXME: We known better than our headers.
7032      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7033    } else
7034      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7035                                             "printf", 1,
7036                                             Name->isStr("NSLogv") ? 0 : 2));
7037  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7038    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7039    // target-specific builtins, perhaps?
7040    if (!FD->getAttr<FormatAttr>())
7041      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7042                                             "printf", 2,
7043                                             Name->isStr("vasprintf") ? 0 : 3));
7044  }
7045}
7046
7047TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7048                                    TypeSourceInfo *TInfo) {
7049  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7050  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7051
7052  if (!TInfo) {
7053    assert(D.isInvalidType() && "no declarator info for valid type");
7054    TInfo = Context.getTrivialTypeSourceInfo(T);
7055  }
7056
7057  // Scope manipulation handled by caller.
7058  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7059                                           D.getSourceRange().getBegin(),
7060                                           D.getIdentifierLoc(),
7061                                           D.getIdentifier(),
7062                                           TInfo);
7063
7064  // Bail out immediately if we have an invalid declaration.
7065  if (D.isInvalidType()) {
7066    NewTD->setInvalidDecl();
7067    return NewTD;
7068  }
7069
7070  if (D.getDeclSpec().isModulePrivateSpecified()) {
7071    if (CurContext->isFunctionOrMethod())
7072      Diag(NewTD->getLocation(), diag::err_module_private_local)
7073        << 2 << NewTD->getDeclName()
7074        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7075        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7076    else
7077      NewTD->setModulePrivate();
7078  }
7079
7080  // C++ [dcl.typedef]p8:
7081  //   If the typedef declaration defines an unnamed class (or
7082  //   enum), the first typedef-name declared by the declaration
7083  //   to be that class type (or enum type) is used to denote the
7084  //   class type (or enum type) for linkage purposes only.
7085  // We need to check whether the type was declared in the declaration.
7086  switch (D.getDeclSpec().getTypeSpecType()) {
7087  case TST_enum:
7088  case TST_struct:
7089  case TST_union:
7090  case TST_class: {
7091    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7092
7093    // Do nothing if the tag is not anonymous or already has an
7094    // associated typedef (from an earlier typedef in this decl group).
7095    if (tagFromDeclSpec->getIdentifier()) break;
7096    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7097
7098    // A well-formed anonymous tag must always be a TUK_Definition.
7099    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7100
7101    // The type must match the tag exactly;  no qualifiers allowed.
7102    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7103      break;
7104
7105    // Otherwise, set this is the anon-decl typedef for the tag.
7106    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7107    break;
7108  }
7109
7110  default:
7111    break;
7112  }
7113
7114  return NewTD;
7115}
7116
7117
7118/// \brief Determine whether a tag with a given kind is acceptable
7119/// as a redeclaration of the given tag declaration.
7120///
7121/// \returns true if the new tag kind is acceptable, false otherwise.
7122bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7123                                        TagTypeKind NewTag, bool isDefinition,
7124                                        SourceLocation NewTagLoc,
7125                                        const IdentifierInfo &Name) {
7126  // C++ [dcl.type.elab]p3:
7127  //   The class-key or enum keyword present in the
7128  //   elaborated-type-specifier shall agree in kind with the
7129  //   declaration to which the name in the elaborated-type-specifier
7130  //   refers. This rule also applies to the form of
7131  //   elaborated-type-specifier that declares a class-name or
7132  //   friend class since it can be construed as referring to the
7133  //   definition of the class. Thus, in any
7134  //   elaborated-type-specifier, the enum keyword shall be used to
7135  //   refer to an enumeration (7.2), the union class-key shall be
7136  //   used to refer to a union (clause 9), and either the class or
7137  //   struct class-key shall be used to refer to a class (clause 9)
7138  //   declared using the class or struct class-key.
7139  TagTypeKind OldTag = Previous->getTagKind();
7140  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7141    if (OldTag == NewTag)
7142      return true;
7143
7144  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7145      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7146    // Warn about the struct/class tag mismatch.
7147    bool isTemplate = false;
7148    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7149      isTemplate = Record->getDescribedClassTemplate();
7150
7151    if (!ActiveTemplateInstantiations.empty()) {
7152      // In a template instantiation, do not offer fix-its for tag mismatches
7153      // since they usually mess up the template instead of fixing the problem.
7154      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7155        << (NewTag == TTK_Class) << isTemplate << &Name;
7156      return true;
7157    }
7158
7159    if (isDefinition) {
7160      // On definitions, check previous tags and issue a fix-it for each
7161      // one that doesn't match the current tag.
7162      if (Previous->getDefinition()) {
7163        // Don't suggest fix-its for redefinitions.
7164        return true;
7165      }
7166
7167      bool previousMismatch = false;
7168      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7169           E(Previous->redecls_end()); I != E; ++I) {
7170        if (I->getTagKind() != NewTag) {
7171          if (!previousMismatch) {
7172            previousMismatch = true;
7173            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7174              << (NewTag == TTK_Class) << isTemplate << &Name;
7175          }
7176          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7177            << (NewTag == TTK_Class)
7178            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7179                                            NewTag == TTK_Class?
7180                                            "class" : "struct");
7181        }
7182      }
7183      return true;
7184    }
7185
7186    // Check for a previous definition.  If current tag and definition
7187    // are same type, do nothing.  If no definition, but disagree with
7188    // with previous tag type, give a warning, but no fix-it.
7189    const TagDecl *Redecl = Previous->getDefinition() ?
7190                            Previous->getDefinition() : Previous;
7191    if (Redecl->getTagKind() == NewTag) {
7192      return true;
7193    }
7194
7195    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7196      << (NewTag == TTK_Class)
7197      << isTemplate << &Name;
7198    Diag(Redecl->getLocation(), diag::note_previous_use);
7199
7200    // If there is a previous defintion, suggest a fix-it.
7201    if (Previous->getDefinition()) {
7202        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7203          << (Redecl->getTagKind() == TTK_Class)
7204          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7205                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7206    }
7207
7208    return true;
7209  }
7210  return false;
7211}
7212
7213/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7214/// former case, Name will be non-null.  In the later case, Name will be null.
7215/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7216/// reference/declaration/definition of a tag.
7217Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7218                     SourceLocation KWLoc, CXXScopeSpec &SS,
7219                     IdentifierInfo *Name, SourceLocation NameLoc,
7220                     AttributeList *Attr, AccessSpecifier AS,
7221                     SourceLocation ModulePrivateLoc,
7222                     MultiTemplateParamsArg TemplateParameterLists,
7223                     bool &OwnedDecl, bool &IsDependent,
7224                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7225                     TypeResult UnderlyingType) {
7226  // If this is not a definition, it must have a name.
7227  assert((Name != 0 || TUK == TUK_Definition) &&
7228         "Nameless record must be a definition!");
7229  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7230
7231  OwnedDecl = false;
7232  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7233
7234  // FIXME: Check explicit specializations more carefully.
7235  bool isExplicitSpecialization = false;
7236  bool Invalid = false;
7237
7238  // We only need to do this matching if we have template parameters
7239  // or a scope specifier, which also conveniently avoids this work
7240  // for non-C++ cases.
7241  if (TemplateParameterLists.size() > 0 ||
7242      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7243    if (TemplateParameterList *TemplateParams
7244          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7245                                                TemplateParameterLists.get(),
7246                                                TemplateParameterLists.size(),
7247                                                    TUK == TUK_Friend,
7248                                                    isExplicitSpecialization,
7249                                                    Invalid)) {
7250      if (TemplateParams->size() > 0) {
7251        // This is a declaration or definition of a class template (which may
7252        // be a member of another template).
7253
7254        if (Invalid)
7255          return 0;
7256
7257        OwnedDecl = false;
7258        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7259                                               SS, Name, NameLoc, Attr,
7260                                               TemplateParams, AS,
7261                                               ModulePrivateLoc,
7262                                           TemplateParameterLists.size() - 1,
7263                 (TemplateParameterList**) TemplateParameterLists.release());
7264        return Result.get();
7265      } else {
7266        // The "template<>" header is extraneous.
7267        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7268          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7269        isExplicitSpecialization = true;
7270      }
7271    }
7272  }
7273
7274  // Figure out the underlying type if this a enum declaration. We need to do
7275  // this early, because it's needed to detect if this is an incompatible
7276  // redeclaration.
7277  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7278
7279  if (Kind == TTK_Enum) {
7280    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7281      // No underlying type explicitly specified, or we failed to parse the
7282      // type, default to int.
7283      EnumUnderlying = Context.IntTy.getTypePtr();
7284    else if (UnderlyingType.get()) {
7285      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7286      // integral type; any cv-qualification is ignored.
7287      TypeSourceInfo *TI = 0;
7288      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7289      EnumUnderlying = TI;
7290
7291      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7292
7293      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7294        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7295          << T;
7296        // Recover by falling back to int.
7297        EnumUnderlying = Context.IntTy.getTypePtr();
7298      }
7299
7300      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7301                                          UPPC_FixedUnderlyingType))
7302        EnumUnderlying = Context.IntTy.getTypePtr();
7303
7304    } else if (getLangOptions().MicrosoftExt)
7305      // Microsoft enums are always of int type.
7306      EnumUnderlying = Context.IntTy.getTypePtr();
7307  }
7308
7309  DeclContext *SearchDC = CurContext;
7310  DeclContext *DC = CurContext;
7311  bool isStdBadAlloc = false;
7312
7313  RedeclarationKind Redecl = ForRedeclaration;
7314  if (TUK == TUK_Friend || TUK == TUK_Reference)
7315    Redecl = NotForRedeclaration;
7316
7317  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7318
7319  if (Name && SS.isNotEmpty()) {
7320    // We have a nested-name tag ('struct foo::bar').
7321
7322    // Check for invalid 'foo::'.
7323    if (SS.isInvalid()) {
7324      Name = 0;
7325      goto CreateNewDecl;
7326    }
7327
7328    // If this is a friend or a reference to a class in a dependent
7329    // context, don't try to make a decl for it.
7330    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7331      DC = computeDeclContext(SS, false);
7332      if (!DC) {
7333        IsDependent = true;
7334        return 0;
7335      }
7336    } else {
7337      DC = computeDeclContext(SS, true);
7338      if (!DC) {
7339        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7340          << SS.getRange();
7341        return 0;
7342      }
7343    }
7344
7345    if (RequireCompleteDeclContext(SS, DC))
7346      return 0;
7347
7348    SearchDC = DC;
7349    // Look-up name inside 'foo::'.
7350    LookupQualifiedName(Previous, DC);
7351
7352    if (Previous.isAmbiguous())
7353      return 0;
7354
7355    if (Previous.empty()) {
7356      // Name lookup did not find anything. However, if the
7357      // nested-name-specifier refers to the current instantiation,
7358      // and that current instantiation has any dependent base
7359      // classes, we might find something at instantiation time: treat
7360      // this as a dependent elaborated-type-specifier.
7361      // But this only makes any sense for reference-like lookups.
7362      if (Previous.wasNotFoundInCurrentInstantiation() &&
7363          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7364        IsDependent = true;
7365        return 0;
7366      }
7367
7368      // A tag 'foo::bar' must already exist.
7369      Diag(NameLoc, diag::err_not_tag_in_scope)
7370        << Kind << Name << DC << SS.getRange();
7371      Name = 0;
7372      Invalid = true;
7373      goto CreateNewDecl;
7374    }
7375  } else if (Name) {
7376    // If this is a named struct, check to see if there was a previous forward
7377    // declaration or definition.
7378    // FIXME: We're looking into outer scopes here, even when we
7379    // shouldn't be. Doing so can result in ambiguities that we
7380    // shouldn't be diagnosing.
7381    LookupName(Previous, S);
7382
7383    if (Previous.isAmbiguous() &&
7384        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7385      LookupResult::Filter F = Previous.makeFilter();
7386      while (F.hasNext()) {
7387        NamedDecl *ND = F.next();
7388        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7389          F.erase();
7390      }
7391      F.done();
7392    }
7393
7394    // Note:  there used to be some attempt at recovery here.
7395    if (Previous.isAmbiguous())
7396      return 0;
7397
7398    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7399      // FIXME: This makes sure that we ignore the contexts associated
7400      // with C structs, unions, and enums when looking for a matching
7401      // tag declaration or definition. See the similar lookup tweak
7402      // in Sema::LookupName; is there a better way to deal with this?
7403      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7404        SearchDC = SearchDC->getParent();
7405    }
7406  } else if (S->isFunctionPrototypeScope()) {
7407    // If this is an enum declaration in function prototype scope, set its
7408    // initial context to the translation unit.
7409    SearchDC = Context.getTranslationUnitDecl();
7410  }
7411
7412  if (Previous.isSingleResult() &&
7413      Previous.getFoundDecl()->isTemplateParameter()) {
7414    // Maybe we will complain about the shadowed template parameter.
7415    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7416    // Just pretend that we didn't see the previous declaration.
7417    Previous.clear();
7418  }
7419
7420  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7421      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7422    // This is a declaration of or a reference to "std::bad_alloc".
7423    isStdBadAlloc = true;
7424
7425    if (Previous.empty() && StdBadAlloc) {
7426      // std::bad_alloc has been implicitly declared (but made invisible to
7427      // name lookup). Fill in this implicit declaration as the previous
7428      // declaration, so that the declarations get chained appropriately.
7429      Previous.addDecl(getStdBadAlloc());
7430    }
7431  }
7432
7433  // If we didn't find a previous declaration, and this is a reference
7434  // (or friend reference), move to the correct scope.  In C++, we
7435  // also need to do a redeclaration lookup there, just in case
7436  // there's a shadow friend decl.
7437  if (Name && Previous.empty() &&
7438      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7439    if (Invalid) goto CreateNewDecl;
7440    assert(SS.isEmpty());
7441
7442    if (TUK == TUK_Reference) {
7443      // C++ [basic.scope.pdecl]p5:
7444      //   -- for an elaborated-type-specifier of the form
7445      //
7446      //          class-key identifier
7447      //
7448      //      if the elaborated-type-specifier is used in the
7449      //      decl-specifier-seq or parameter-declaration-clause of a
7450      //      function defined in namespace scope, the identifier is
7451      //      declared as a class-name in the namespace that contains
7452      //      the declaration; otherwise, except as a friend
7453      //      declaration, the identifier is declared in the smallest
7454      //      non-class, non-function-prototype scope that contains the
7455      //      declaration.
7456      //
7457      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7458      // C structs and unions.
7459      //
7460      // It is an error in C++ to declare (rather than define) an enum
7461      // type, including via an elaborated type specifier.  We'll
7462      // diagnose that later; for now, declare the enum in the same
7463      // scope as we would have picked for any other tag type.
7464      //
7465      // GNU C also supports this behavior as part of its incomplete
7466      // enum types extension, while GNU C++ does not.
7467      //
7468      // Find the context where we'll be declaring the tag.
7469      // FIXME: We would like to maintain the current DeclContext as the
7470      // lexical context,
7471      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7472        SearchDC = SearchDC->getParent();
7473
7474      // Find the scope where we'll be declaring the tag.
7475      while (S->isClassScope() ||
7476             (getLangOptions().CPlusPlus &&
7477              S->isFunctionPrototypeScope()) ||
7478             ((S->getFlags() & Scope::DeclScope) == 0) ||
7479             (S->getEntity() &&
7480              ((DeclContext *)S->getEntity())->isTransparentContext()))
7481        S = S->getParent();
7482    } else {
7483      assert(TUK == TUK_Friend);
7484      // C++ [namespace.memdef]p3:
7485      //   If a friend declaration in a non-local class first declares a
7486      //   class or function, the friend class or function is a member of
7487      //   the innermost enclosing namespace.
7488      SearchDC = SearchDC->getEnclosingNamespaceContext();
7489    }
7490
7491    // In C++, we need to do a redeclaration lookup to properly
7492    // diagnose some problems.
7493    if (getLangOptions().CPlusPlus) {
7494      Previous.setRedeclarationKind(ForRedeclaration);
7495      LookupQualifiedName(Previous, SearchDC);
7496    }
7497  }
7498
7499  if (!Previous.empty()) {
7500    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7501
7502    // It's okay to have a tag decl in the same scope as a typedef
7503    // which hides a tag decl in the same scope.  Finding this
7504    // insanity with a redeclaration lookup can only actually happen
7505    // in C++.
7506    //
7507    // This is also okay for elaborated-type-specifiers, which is
7508    // technically forbidden by the current standard but which is
7509    // okay according to the likely resolution of an open issue;
7510    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7511    if (getLangOptions().CPlusPlus) {
7512      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7513        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7514          TagDecl *Tag = TT->getDecl();
7515          if (Tag->getDeclName() == Name &&
7516              Tag->getDeclContext()->getRedeclContext()
7517                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7518            PrevDecl = Tag;
7519            Previous.clear();
7520            Previous.addDecl(Tag);
7521            Previous.resolveKind();
7522          }
7523        }
7524      }
7525    }
7526
7527    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7528      // If this is a use of a previous tag, or if the tag is already declared
7529      // in the same scope (so that the definition/declaration completes or
7530      // rementions the tag), reuse the decl.
7531      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7532          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7533        // Make sure that this wasn't declared as an enum and now used as a
7534        // struct or something similar.
7535        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7536                                          TUK == TUK_Definition, KWLoc,
7537                                          *Name)) {
7538          bool SafeToContinue
7539            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7540               Kind != TTK_Enum);
7541          if (SafeToContinue)
7542            Diag(KWLoc, diag::err_use_with_wrong_tag)
7543              << Name
7544              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7545                                              PrevTagDecl->getKindName());
7546          else
7547            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7548          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7549
7550          if (SafeToContinue)
7551            Kind = PrevTagDecl->getTagKind();
7552          else {
7553            // Recover by making this an anonymous redefinition.
7554            Name = 0;
7555            Previous.clear();
7556            Invalid = true;
7557          }
7558        }
7559
7560        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7561          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7562
7563          // All conflicts with previous declarations are recovered by
7564          // returning the previous declaration.
7565          if (ScopedEnum != PrevEnum->isScoped()) {
7566            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7567              << PrevEnum->isScoped();
7568            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7569            return PrevTagDecl;
7570          }
7571          else if (EnumUnderlying && PrevEnum->isFixed()) {
7572            QualType T;
7573            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7574                T = TI->getType();
7575            else
7576                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7577
7578            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7579              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7580                   diag::err_enum_redeclare_type_mismatch)
7581                << T
7582                << PrevEnum->getIntegerType();
7583              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7584              return PrevTagDecl;
7585            }
7586          }
7587          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7588            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7589              << PrevEnum->isFixed();
7590            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7591            return PrevTagDecl;
7592          }
7593        }
7594
7595        if (!Invalid) {
7596          // If this is a use, just return the declaration we found.
7597
7598          // FIXME: In the future, return a variant or some other clue
7599          // for the consumer of this Decl to know it doesn't own it.
7600          // For our current ASTs this shouldn't be a problem, but will
7601          // need to be changed with DeclGroups.
7602          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7603               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7604            return PrevTagDecl;
7605
7606          // Diagnose attempts to redefine a tag.
7607          if (TUK == TUK_Definition) {
7608            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7609              // If we're defining a specialization and the previous definition
7610              // is from an implicit instantiation, don't emit an error
7611              // here; we'll catch this in the general case below.
7612              if (!isExplicitSpecialization ||
7613                  !isa<CXXRecordDecl>(Def) ||
7614                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7615                                               == TSK_ExplicitSpecialization) {
7616                Diag(NameLoc, diag::err_redefinition) << Name;
7617                Diag(Def->getLocation(), diag::note_previous_definition);
7618                // If this is a redefinition, recover by making this
7619                // struct be anonymous, which will make any later
7620                // references get the previous definition.
7621                Name = 0;
7622                Previous.clear();
7623                Invalid = true;
7624              }
7625            } else {
7626              // If the type is currently being defined, complain
7627              // about a nested redefinition.
7628              const TagType *Tag
7629                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7630              if (Tag->isBeingDefined()) {
7631                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7632                Diag(PrevTagDecl->getLocation(),
7633                     diag::note_previous_definition);
7634                Name = 0;
7635                Previous.clear();
7636                Invalid = true;
7637              }
7638            }
7639
7640            // Okay, this is definition of a previously declared or referenced
7641            // tag PrevDecl. We're going to create a new Decl for it.
7642          }
7643        }
7644        // If we get here we have (another) forward declaration or we
7645        // have a definition.  Just create a new decl.
7646
7647      } else {
7648        // If we get here, this is a definition of a new tag type in a nested
7649        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7650        // new decl/type.  We set PrevDecl to NULL so that the entities
7651        // have distinct types.
7652        Previous.clear();
7653      }
7654      // If we get here, we're going to create a new Decl. If PrevDecl
7655      // is non-NULL, it's a definition of the tag declared by
7656      // PrevDecl. If it's NULL, we have a new definition.
7657
7658
7659    // Otherwise, PrevDecl is not a tag, but was found with tag
7660    // lookup.  This is only actually possible in C++, where a few
7661    // things like templates still live in the tag namespace.
7662    } else {
7663      assert(getLangOptions().CPlusPlus);
7664
7665      // Use a better diagnostic if an elaborated-type-specifier
7666      // found the wrong kind of type on the first
7667      // (non-redeclaration) lookup.
7668      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7669          !Previous.isForRedeclaration()) {
7670        unsigned Kind = 0;
7671        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7672        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7673        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7674        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7675        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7676        Invalid = true;
7677
7678      // Otherwise, only diagnose if the declaration is in scope.
7679      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7680                                isExplicitSpecialization)) {
7681        // do nothing
7682
7683      // Diagnose implicit declarations introduced by elaborated types.
7684      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7685        unsigned Kind = 0;
7686        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7687        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7688        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7689        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7690        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7691        Invalid = true;
7692
7693      // Otherwise it's a declaration.  Call out a particularly common
7694      // case here.
7695      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7696        unsigned Kind = 0;
7697        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7698        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7699          << Name << Kind << TND->getUnderlyingType();
7700        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7701        Invalid = true;
7702
7703      // Otherwise, diagnose.
7704      } else {
7705        // The tag name clashes with something else in the target scope,
7706        // issue an error and recover by making this tag be anonymous.
7707        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7708        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7709        Name = 0;
7710        Invalid = true;
7711      }
7712
7713      // The existing declaration isn't relevant to us; we're in a
7714      // new scope, so clear out the previous declaration.
7715      Previous.clear();
7716    }
7717  }
7718
7719CreateNewDecl:
7720
7721  TagDecl *PrevDecl = 0;
7722  if (Previous.isSingleResult())
7723    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7724
7725  // If there is an identifier, use the location of the identifier as the
7726  // location of the decl, otherwise use the location of the struct/union
7727  // keyword.
7728  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7729
7730  // Otherwise, create a new declaration. If there is a previous
7731  // declaration of the same entity, the two will be linked via
7732  // PrevDecl.
7733  TagDecl *New;
7734
7735  bool IsForwardReference = false;
7736  if (Kind == TTK_Enum) {
7737    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7738    // enum X { A, B, C } D;    D should chain to X.
7739    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7740                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7741                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7742    // If this is an undefined enum, warn.
7743    if (TUK != TUK_Definition && !Invalid) {
7744      TagDecl *Def;
7745      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7746        // C++0x: 7.2p2: opaque-enum-declaration.
7747        // Conflicts are diagnosed above. Do nothing.
7748      }
7749      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7750        Diag(Loc, diag::ext_forward_ref_enum_def)
7751          << New;
7752        Diag(Def->getLocation(), diag::note_previous_definition);
7753      } else {
7754        unsigned DiagID = diag::ext_forward_ref_enum;
7755        if (getLangOptions().MicrosoftExt)
7756          DiagID = diag::ext_ms_forward_ref_enum;
7757        else if (getLangOptions().CPlusPlus)
7758          DiagID = diag::err_forward_ref_enum;
7759        Diag(Loc, DiagID);
7760
7761        // If this is a forward-declared reference to an enumeration, make a
7762        // note of it; we won't actually be introducing the declaration into
7763        // the declaration context.
7764        if (TUK == TUK_Reference)
7765          IsForwardReference = true;
7766      }
7767    }
7768
7769    if (EnumUnderlying) {
7770      EnumDecl *ED = cast<EnumDecl>(New);
7771      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7772        ED->setIntegerTypeSourceInfo(TI);
7773      else
7774        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7775      ED->setPromotionType(ED->getIntegerType());
7776    }
7777
7778  } else {
7779    // struct/union/class
7780
7781    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7782    // struct X { int A; } D;    D should chain to X.
7783    if (getLangOptions().CPlusPlus) {
7784      // FIXME: Look for a way to use RecordDecl for simple structs.
7785      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7786                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7787
7788      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7789        StdBadAlloc = cast<CXXRecordDecl>(New);
7790    } else
7791      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7792                               cast_or_null<RecordDecl>(PrevDecl));
7793  }
7794
7795  // Maybe add qualifier info.
7796  if (SS.isNotEmpty()) {
7797    if (SS.isSet()) {
7798      New->setQualifierInfo(SS.getWithLocInContext(Context));
7799      if (TemplateParameterLists.size() > 0) {
7800        New->setTemplateParameterListsInfo(Context,
7801                                           TemplateParameterLists.size(),
7802                    (TemplateParameterList**) TemplateParameterLists.release());
7803      }
7804    }
7805    else
7806      Invalid = true;
7807  }
7808
7809  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7810    // Add alignment attributes if necessary; these attributes are checked when
7811    // the ASTContext lays out the structure.
7812    //
7813    // It is important for implementing the correct semantics that this
7814    // happen here (in act on tag decl). The #pragma pack stack is
7815    // maintained as a result of parser callbacks which can occur at
7816    // many points during the parsing of a struct declaration (because
7817    // the #pragma tokens are effectively skipped over during the
7818    // parsing of the struct).
7819    AddAlignmentAttributesForRecord(RD);
7820
7821    AddMsStructLayoutForRecord(RD);
7822  }
7823
7824  if (PrevDecl && PrevDecl->isModulePrivate())
7825    New->setModulePrivate();
7826  else if (ModulePrivateLoc.isValid()) {
7827    if (isExplicitSpecialization)
7828      Diag(New->getLocation(), diag::err_module_private_specialization)
7829        << 2
7830        << FixItHint::CreateRemoval(ModulePrivateLoc);
7831    else if (PrevDecl && !PrevDecl->isModulePrivate())
7832      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7833    // __module_private__ does not apply to local classes. However, we only
7834    // diagnose this as an error when the declaration specifiers are
7835    // freestanding. Here, we just ignore the __module_private__.
7836    // foobar
7837    else if (!SearchDC->isFunctionOrMethod())
7838      New->setModulePrivate();
7839  }
7840
7841  // If this is a specialization of a member class (of a class template),
7842  // check the specialization.
7843  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7844    Invalid = true;
7845
7846  if (Invalid)
7847    New->setInvalidDecl();
7848
7849  if (Attr)
7850    ProcessDeclAttributeList(S, New, Attr);
7851
7852  // If we're declaring or defining a tag in function prototype scope
7853  // in C, note that this type can only be used within the function.
7854  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7855    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7856
7857  // Set the lexical context. If the tag has a C++ scope specifier, the
7858  // lexical context will be different from the semantic context.
7859  New->setLexicalDeclContext(CurContext);
7860
7861  // Mark this as a friend decl if applicable.
7862  // In Microsoft mode, a friend declaration also acts as a forward
7863  // declaration so we always pass true to setObjectOfFriendDecl to make
7864  // the tag name visible.
7865  if (TUK == TUK_Friend)
7866    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7867                               getLangOptions().MicrosoftExt);
7868
7869  // Set the access specifier.
7870  if (!Invalid && SearchDC->isRecord())
7871    SetMemberAccessSpecifier(New, PrevDecl, AS);
7872
7873  if (TUK == TUK_Definition)
7874    New->startDefinition();
7875
7876  // If this has an identifier, add it to the scope stack.
7877  if (TUK == TUK_Friend) {
7878    // We might be replacing an existing declaration in the lookup tables;
7879    // if so, borrow its access specifier.
7880    if (PrevDecl)
7881      New->setAccess(PrevDecl->getAccess());
7882
7883    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7884    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7885    if (Name) // can be null along some error paths
7886      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7887        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7888  } else if (Name) {
7889    S = getNonFieldDeclScope(S);
7890    PushOnScopeChains(New, S, !IsForwardReference);
7891    if (IsForwardReference)
7892      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7893
7894  } else {
7895    CurContext->addDecl(New);
7896  }
7897
7898  // If this is the C FILE type, notify the AST context.
7899  if (IdentifierInfo *II = New->getIdentifier())
7900    if (!New->isInvalidDecl() &&
7901        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7902        II->isStr("FILE"))
7903      Context.setFILEDecl(New);
7904
7905  OwnedDecl = true;
7906  return New;
7907}
7908
7909void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7910  AdjustDeclIfTemplate(TagD);
7911  TagDecl *Tag = cast<TagDecl>(TagD);
7912
7913  // Enter the tag context.
7914  PushDeclContext(S, Tag);
7915}
7916
7917void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7918  assert(isa<ObjCContainerDecl>(IDecl) &&
7919         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7920  DeclContext *OCD = cast<DeclContext>(IDecl);
7921  assert(getContainingDC(OCD) == CurContext &&
7922      "The next DeclContext should be lexically contained in the current one.");
7923  CurContext = OCD;
7924}
7925
7926void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7927                                           SourceLocation FinalLoc,
7928                                           SourceLocation LBraceLoc) {
7929  AdjustDeclIfTemplate(TagD);
7930  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7931
7932  FieldCollector->StartClass();
7933
7934  if (!Record->getIdentifier())
7935    return;
7936
7937  if (FinalLoc.isValid())
7938    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7939
7940  // C++ [class]p2:
7941  //   [...] The class-name is also inserted into the scope of the
7942  //   class itself; this is known as the injected-class-name. For
7943  //   purposes of access checking, the injected-class-name is treated
7944  //   as if it were a public member name.
7945  CXXRecordDecl *InjectedClassName
7946    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7947                            Record->getLocStart(), Record->getLocation(),
7948                            Record->getIdentifier(),
7949                            /*PrevDecl=*/0,
7950                            /*DelayTypeCreation=*/true);
7951  Context.getTypeDeclType(InjectedClassName, Record);
7952  InjectedClassName->setImplicit();
7953  InjectedClassName->setAccess(AS_public);
7954  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7955      InjectedClassName->setDescribedClassTemplate(Template);
7956  PushOnScopeChains(InjectedClassName, S);
7957  assert(InjectedClassName->isInjectedClassName() &&
7958         "Broken injected-class-name");
7959}
7960
7961void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7962                                    SourceLocation RBraceLoc) {
7963  AdjustDeclIfTemplate(TagD);
7964  TagDecl *Tag = cast<TagDecl>(TagD);
7965  Tag->setRBraceLoc(RBraceLoc);
7966
7967  if (isa<CXXRecordDecl>(Tag))
7968    FieldCollector->FinishClass();
7969
7970  // Exit this scope of this tag's definition.
7971  PopDeclContext();
7972
7973  // Notify the consumer that we've defined a tag.
7974  Consumer.HandleTagDeclDefinition(Tag);
7975}
7976
7977void Sema::ActOnObjCContainerFinishDefinition() {
7978  // Exit this scope of this interface definition.
7979  PopDeclContext();
7980}
7981
7982void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7983  AdjustDeclIfTemplate(TagD);
7984  TagDecl *Tag = cast<TagDecl>(TagD);
7985  Tag->setInvalidDecl();
7986
7987  // We're undoing ActOnTagStartDefinition here, not
7988  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7989  // the FieldCollector.
7990
7991  PopDeclContext();
7992}
7993
7994// Note that FieldName may be null for anonymous bitfields.
7995bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7996                          QualType FieldTy, const Expr *BitWidth,
7997                          bool *ZeroWidth) {
7998  // Default to true; that shouldn't confuse checks for emptiness
7999  if (ZeroWidth)
8000    *ZeroWidth = true;
8001
8002  // C99 6.7.2.1p4 - verify the field type.
8003  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8004  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8005    // Handle incomplete types with specific error.
8006    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8007      return true;
8008    if (FieldName)
8009      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8010        << FieldName << FieldTy << BitWidth->getSourceRange();
8011    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8012      << FieldTy << BitWidth->getSourceRange();
8013  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8014                                             UPPC_BitFieldWidth))
8015    return true;
8016
8017  // If the bit-width is type- or value-dependent, don't try to check
8018  // it now.
8019  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8020    return false;
8021
8022  llvm::APSInt Value;
8023  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8024    return true;
8025
8026  if (Value != 0 && ZeroWidth)
8027    *ZeroWidth = false;
8028
8029  // Zero-width bitfield is ok for anonymous field.
8030  if (Value == 0 && FieldName)
8031    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8032
8033  if (Value.isSigned() && Value.isNegative()) {
8034    if (FieldName)
8035      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8036               << FieldName << Value.toString(10);
8037    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8038      << Value.toString(10);
8039  }
8040
8041  if (!FieldTy->isDependentType()) {
8042    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8043    if (Value.getZExtValue() > TypeSize) {
8044      if (!getLangOptions().CPlusPlus) {
8045        if (FieldName)
8046          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8047            << FieldName << (unsigned)Value.getZExtValue()
8048            << (unsigned)TypeSize;
8049
8050        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8051          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8052      }
8053
8054      if (FieldName)
8055        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8056          << FieldName << (unsigned)Value.getZExtValue()
8057          << (unsigned)TypeSize;
8058      else
8059        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8060          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8061    }
8062  }
8063
8064  return false;
8065}
8066
8067/// ActOnField - Each field of a C struct/union is passed into this in order
8068/// to create a FieldDecl object for it.
8069Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8070                       Declarator &D, Expr *BitfieldWidth) {
8071  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8072                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8073                               /*HasInit=*/false, AS_public);
8074  return Res;
8075}
8076
8077/// HandleField - Analyze a field of a C struct or a C++ data member.
8078///
8079FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8080                             SourceLocation DeclStart,
8081                             Declarator &D, Expr *BitWidth, bool HasInit,
8082                             AccessSpecifier AS) {
8083  IdentifierInfo *II = D.getIdentifier();
8084  SourceLocation Loc = DeclStart;
8085  if (II) Loc = D.getIdentifierLoc();
8086
8087  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8088  QualType T = TInfo->getType();
8089  if (getLangOptions().CPlusPlus) {
8090    CheckExtraCXXDefaultArguments(D);
8091
8092    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8093                                        UPPC_DataMemberType)) {
8094      D.setInvalidType();
8095      T = Context.IntTy;
8096      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8097    }
8098  }
8099
8100  DiagnoseFunctionSpecifiers(D);
8101
8102  if (D.getDeclSpec().isThreadSpecified())
8103    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8104  if (D.getDeclSpec().isConstexprSpecified())
8105    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8106      << 2;
8107
8108  // Check to see if this name was declared as a member previously
8109  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8110  LookupName(Previous, S);
8111  assert((Previous.empty() || Previous.isOverloadedResult() ||
8112          Previous.isSingleResult())
8113    && "Lookup of member name should be either overloaded, single or null");
8114
8115  // If the name is overloaded then get any declaration else get the single result
8116  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8117    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8118
8119  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8120    // Maybe we will complain about the shadowed template parameter.
8121    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8122    // Just pretend that we didn't see the previous declaration.
8123    PrevDecl = 0;
8124  }
8125
8126  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8127    PrevDecl = 0;
8128
8129  bool Mutable
8130    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8131  SourceLocation TSSL = D.getSourceRange().getBegin();
8132  FieldDecl *NewFD
8133    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8134                     TSSL, AS, PrevDecl, &D);
8135
8136  if (NewFD->isInvalidDecl())
8137    Record->setInvalidDecl();
8138
8139  if (D.getDeclSpec().isModulePrivateSpecified())
8140    NewFD->setModulePrivate();
8141
8142  if (NewFD->isInvalidDecl() && PrevDecl) {
8143    // Don't introduce NewFD into scope; there's already something
8144    // with the same name in the same scope.
8145  } else if (II) {
8146    PushOnScopeChains(NewFD, S);
8147  } else
8148    Record->addDecl(NewFD);
8149
8150  return NewFD;
8151}
8152
8153/// \brief Build a new FieldDecl and check its well-formedness.
8154///
8155/// This routine builds a new FieldDecl given the fields name, type,
8156/// record, etc. \p PrevDecl should refer to any previous declaration
8157/// with the same name and in the same scope as the field to be
8158/// created.
8159///
8160/// \returns a new FieldDecl.
8161///
8162/// \todo The Declarator argument is a hack. It will be removed once
8163FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8164                                TypeSourceInfo *TInfo,
8165                                RecordDecl *Record, SourceLocation Loc,
8166                                bool Mutable, Expr *BitWidth, bool HasInit,
8167                                SourceLocation TSSL,
8168                                AccessSpecifier AS, NamedDecl *PrevDecl,
8169                                Declarator *D) {
8170  IdentifierInfo *II = Name.getAsIdentifierInfo();
8171  bool InvalidDecl = false;
8172  if (D) InvalidDecl = D->isInvalidType();
8173
8174  // If we receive a broken type, recover by assuming 'int' and
8175  // marking this declaration as invalid.
8176  if (T.isNull()) {
8177    InvalidDecl = true;
8178    T = Context.IntTy;
8179  }
8180
8181  QualType EltTy = Context.getBaseElementType(T);
8182  if (!EltTy->isDependentType() &&
8183      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8184    // Fields of incomplete type force their record to be invalid.
8185    Record->setInvalidDecl();
8186    InvalidDecl = true;
8187  }
8188
8189  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8190  // than a variably modified type.
8191  if (!InvalidDecl && T->isVariablyModifiedType()) {
8192    bool SizeIsNegative;
8193    llvm::APSInt Oversized;
8194    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8195                                                           SizeIsNegative,
8196                                                           Oversized);
8197    if (!FixedTy.isNull()) {
8198      Diag(Loc, diag::warn_illegal_constant_array_size);
8199      T = FixedTy;
8200    } else {
8201      if (SizeIsNegative)
8202        Diag(Loc, diag::err_typecheck_negative_array_size);
8203      else if (Oversized.getBoolValue())
8204        Diag(Loc, diag::err_array_too_large)
8205          << Oversized.toString(10);
8206      else
8207        Diag(Loc, diag::err_typecheck_field_variable_size);
8208      InvalidDecl = true;
8209    }
8210  }
8211
8212  // Fields can not have abstract class types
8213  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8214                                             diag::err_abstract_type_in_decl,
8215                                             AbstractFieldType))
8216    InvalidDecl = true;
8217
8218  bool ZeroWidth = false;
8219  // If this is declared as a bit-field, check the bit-field.
8220  if (!InvalidDecl && BitWidth &&
8221      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8222    InvalidDecl = true;
8223    BitWidth = 0;
8224    ZeroWidth = false;
8225  }
8226
8227  // Check that 'mutable' is consistent with the type of the declaration.
8228  if (!InvalidDecl && Mutable) {
8229    unsigned DiagID = 0;
8230    if (T->isReferenceType())
8231      DiagID = diag::err_mutable_reference;
8232    else if (T.isConstQualified())
8233      DiagID = diag::err_mutable_const;
8234
8235    if (DiagID) {
8236      SourceLocation ErrLoc = Loc;
8237      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8238        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8239      Diag(ErrLoc, DiagID);
8240      Mutable = false;
8241      InvalidDecl = true;
8242    }
8243  }
8244
8245  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8246                                       BitWidth, Mutable, HasInit);
8247  if (InvalidDecl)
8248    NewFD->setInvalidDecl();
8249
8250  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8251    Diag(Loc, diag::err_duplicate_member) << II;
8252    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8253    NewFD->setInvalidDecl();
8254  }
8255
8256  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8257    if (Record->isUnion()) {
8258      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8259        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8260        if (RDecl->getDefinition()) {
8261          // C++ [class.union]p1: An object of a class with a non-trivial
8262          // constructor, a non-trivial copy constructor, a non-trivial
8263          // destructor, or a non-trivial copy assignment operator
8264          // cannot be a member of a union, nor can an array of such
8265          // objects.
8266          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8267            NewFD->setInvalidDecl();
8268        }
8269      }
8270
8271      // C++ [class.union]p1: If a union contains a member of reference type,
8272      // the program is ill-formed.
8273      if (EltTy->isReferenceType()) {
8274        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8275          << NewFD->getDeclName() << EltTy;
8276        NewFD->setInvalidDecl();
8277      }
8278    }
8279  }
8280
8281  // FIXME: We need to pass in the attributes given an AST
8282  // representation, not a parser representation.
8283  if (D)
8284    // FIXME: What to pass instead of TUScope?
8285    ProcessDeclAttributes(TUScope, NewFD, *D);
8286
8287  // In auto-retain/release, infer strong retension for fields of
8288  // retainable type.
8289  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8290    NewFD->setInvalidDecl();
8291
8292  if (T.isObjCGCWeak())
8293    Diag(Loc, diag::warn_attribute_weak_on_field);
8294
8295  NewFD->setAccess(AS);
8296  return NewFD;
8297}
8298
8299bool Sema::CheckNontrivialField(FieldDecl *FD) {
8300  assert(FD);
8301  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8302
8303  if (FD->isInvalidDecl())
8304    return true;
8305
8306  QualType EltTy = Context.getBaseElementType(FD->getType());
8307  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8308    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8309    if (RDecl->getDefinition()) {
8310      // We check for copy constructors before constructors
8311      // because otherwise we'll never get complaints about
8312      // copy constructors.
8313
8314      CXXSpecialMember member = CXXInvalid;
8315      if (!RDecl->hasTrivialCopyConstructor())
8316        member = CXXCopyConstructor;
8317      else if (!RDecl->hasTrivialDefaultConstructor())
8318        member = CXXDefaultConstructor;
8319      else if (!RDecl->hasTrivialCopyAssignment())
8320        member = CXXCopyAssignment;
8321      else if (!RDecl->hasTrivialDestructor())
8322        member = CXXDestructor;
8323
8324      if (member != CXXInvalid) {
8325        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8326          // Objective-C++ ARC: it is an error to have a non-trivial field of
8327          // a union. However, system headers in Objective-C programs
8328          // occasionally have Objective-C lifetime objects within unions,
8329          // and rather than cause the program to fail, we make those
8330          // members unavailable.
8331          SourceLocation Loc = FD->getLocation();
8332          if (getSourceManager().isInSystemHeader(Loc)) {
8333            if (!FD->hasAttr<UnavailableAttr>())
8334              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8335                                  "this system field has retaining ownership"));
8336            return false;
8337          }
8338        }
8339
8340        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8341              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8342        DiagnoseNontrivial(RT, member);
8343        return true;
8344      }
8345    }
8346  }
8347
8348  return false;
8349}
8350
8351/// DiagnoseNontrivial - Given that a class has a non-trivial
8352/// special member, figure out why.
8353void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8354  QualType QT(T, 0U);
8355  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8356
8357  // Check whether the member was user-declared.
8358  switch (member) {
8359  case CXXInvalid:
8360    break;
8361
8362  case CXXDefaultConstructor:
8363    if (RD->hasUserDeclaredConstructor()) {
8364      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8365      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8366        const FunctionDecl *body = 0;
8367        ci->hasBody(body);
8368        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8369          SourceLocation CtorLoc = ci->getLocation();
8370          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8371          return;
8372        }
8373      }
8374
8375      assert(0 && "found no user-declared constructors");
8376      return;
8377    }
8378    break;
8379
8380  case CXXCopyConstructor:
8381    if (RD->hasUserDeclaredCopyConstructor()) {
8382      SourceLocation CtorLoc =
8383        RD->getCopyConstructor(0)->getLocation();
8384      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8385      return;
8386    }
8387    break;
8388
8389  case CXXMoveConstructor:
8390    if (RD->hasUserDeclaredMoveConstructor()) {
8391      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8392      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8393      return;
8394    }
8395    break;
8396
8397  case CXXCopyAssignment:
8398    if (RD->hasUserDeclaredCopyAssignment()) {
8399      // FIXME: this should use the location of the copy
8400      // assignment, not the type.
8401      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8402      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8403      return;
8404    }
8405    break;
8406
8407  case CXXMoveAssignment:
8408    if (RD->hasUserDeclaredMoveAssignment()) {
8409      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8410      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8411      return;
8412    }
8413    break;
8414
8415  case CXXDestructor:
8416    if (RD->hasUserDeclaredDestructor()) {
8417      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8418      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8419      return;
8420    }
8421    break;
8422  }
8423
8424  typedef CXXRecordDecl::base_class_iterator base_iter;
8425
8426  // Virtual bases and members inhibit trivial copying/construction,
8427  // but not trivial destruction.
8428  if (member != CXXDestructor) {
8429    // Check for virtual bases.  vbases includes indirect virtual bases,
8430    // so we just iterate through the direct bases.
8431    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8432      if (bi->isVirtual()) {
8433        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8434        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8435        return;
8436      }
8437
8438    // Check for virtual methods.
8439    typedef CXXRecordDecl::method_iterator meth_iter;
8440    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8441         ++mi) {
8442      if (mi->isVirtual()) {
8443        SourceLocation MLoc = mi->getSourceRange().getBegin();
8444        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8445        return;
8446      }
8447    }
8448  }
8449
8450  bool (CXXRecordDecl::*hasTrivial)() const;
8451  switch (member) {
8452  case CXXDefaultConstructor:
8453    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8454  case CXXCopyConstructor:
8455    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8456  case CXXCopyAssignment:
8457    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8458  case CXXDestructor:
8459    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8460  default:
8461    assert(0 && "unexpected special member"); return;
8462  }
8463
8464  // Check for nontrivial bases (and recurse).
8465  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8466    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8467    assert(BaseRT && "Don't know how to handle dependent bases");
8468    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8469    if (!(BaseRecTy->*hasTrivial)()) {
8470      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8471      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8472      DiagnoseNontrivial(BaseRT, member);
8473      return;
8474    }
8475  }
8476
8477  // Check for nontrivial members (and recurse).
8478  typedef RecordDecl::field_iterator field_iter;
8479  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8480       ++fi) {
8481    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8482    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8483      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8484
8485      if (!(EltRD->*hasTrivial)()) {
8486        SourceLocation FLoc = (*fi)->getLocation();
8487        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8488        DiagnoseNontrivial(EltRT, member);
8489        return;
8490      }
8491    }
8492
8493    if (EltTy->isObjCLifetimeType()) {
8494      switch (EltTy.getObjCLifetime()) {
8495      case Qualifiers::OCL_None:
8496      case Qualifiers::OCL_ExplicitNone:
8497        break;
8498
8499      case Qualifiers::OCL_Autoreleasing:
8500      case Qualifiers::OCL_Weak:
8501      case Qualifiers::OCL_Strong:
8502        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8503          << QT << EltTy.getObjCLifetime();
8504        return;
8505      }
8506    }
8507  }
8508
8509  assert(0 && "found no explanation for non-trivial member");
8510}
8511
8512/// TranslateIvarVisibility - Translate visibility from a token ID to an
8513///  AST enum value.
8514static ObjCIvarDecl::AccessControl
8515TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8516  switch (ivarVisibility) {
8517  default: assert(0 && "Unknown visitibility kind");
8518  case tok::objc_private: return ObjCIvarDecl::Private;
8519  case tok::objc_public: return ObjCIvarDecl::Public;
8520  case tok::objc_protected: return ObjCIvarDecl::Protected;
8521  case tok::objc_package: return ObjCIvarDecl::Package;
8522  }
8523}
8524
8525/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8526/// in order to create an IvarDecl object for it.
8527Decl *Sema::ActOnIvar(Scope *S,
8528                                SourceLocation DeclStart,
8529                                Declarator &D, Expr *BitfieldWidth,
8530                                tok::ObjCKeywordKind Visibility) {
8531
8532  IdentifierInfo *II = D.getIdentifier();
8533  Expr *BitWidth = (Expr*)BitfieldWidth;
8534  SourceLocation Loc = DeclStart;
8535  if (II) Loc = D.getIdentifierLoc();
8536
8537  // FIXME: Unnamed fields can be handled in various different ways, for
8538  // example, unnamed unions inject all members into the struct namespace!
8539
8540  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8541  QualType T = TInfo->getType();
8542
8543  if (BitWidth) {
8544    // 6.7.2.1p3, 6.7.2.1p4
8545    if (VerifyBitField(Loc, II, T, BitWidth)) {
8546      D.setInvalidType();
8547      BitWidth = 0;
8548    }
8549  } else {
8550    // Not a bitfield.
8551
8552    // validate II.
8553
8554  }
8555  if (T->isReferenceType()) {
8556    Diag(Loc, diag::err_ivar_reference_type);
8557    D.setInvalidType();
8558  }
8559  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8560  // than a variably modified type.
8561  else if (T->isVariablyModifiedType()) {
8562    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8563    D.setInvalidType();
8564  }
8565
8566  // Get the visibility (access control) for this ivar.
8567  ObjCIvarDecl::AccessControl ac =
8568    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8569                                        : ObjCIvarDecl::None;
8570  // Must set ivar's DeclContext to its enclosing interface.
8571  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8572  ObjCContainerDecl *EnclosingContext;
8573  if (ObjCImplementationDecl *IMPDecl =
8574      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8575    if (!LangOpts.ObjCNonFragileABI2) {
8576    // Case of ivar declared in an implementation. Context is that of its class.
8577      EnclosingContext = IMPDecl->getClassInterface();
8578      assert(EnclosingContext && "Implementation has no class interface!");
8579    }
8580    else
8581      EnclosingContext = EnclosingDecl;
8582  } else {
8583    if (ObjCCategoryDecl *CDecl =
8584        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8585      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8586        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8587        return 0;
8588      }
8589    }
8590    EnclosingContext = EnclosingDecl;
8591  }
8592
8593  // Construct the decl.
8594  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8595                                             DeclStart, Loc, II, T,
8596                                             TInfo, ac, (Expr *)BitfieldWidth);
8597
8598  if (II) {
8599    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8600                                           ForRedeclaration);
8601    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8602        && !isa<TagDecl>(PrevDecl)) {
8603      Diag(Loc, diag::err_duplicate_member) << II;
8604      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8605      NewID->setInvalidDecl();
8606    }
8607  }
8608
8609  // Process attributes attached to the ivar.
8610  ProcessDeclAttributes(S, NewID, D);
8611
8612  if (D.isInvalidType())
8613    NewID->setInvalidDecl();
8614
8615  // In ARC, infer 'retaining' for ivars of retainable type.
8616  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8617    NewID->setInvalidDecl();
8618
8619  if (D.getDeclSpec().isModulePrivateSpecified())
8620    NewID->setModulePrivate();
8621
8622  if (II) {
8623    // FIXME: When interfaces are DeclContexts, we'll need to add
8624    // these to the interface.
8625    S->AddDecl(NewID);
8626    IdResolver.AddDecl(NewID);
8627  }
8628
8629  return NewID;
8630}
8631
8632/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8633/// class and class extensions. For every class @interface and class
8634/// extension @interface, if the last ivar is a bitfield of any type,
8635/// then add an implicit `char :0` ivar to the end of that interface.
8636void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8637                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8638  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8639    return;
8640
8641  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8642  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8643
8644  if (!Ivar->isBitField())
8645    return;
8646  uint64_t BitFieldSize =
8647    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8648  if (BitFieldSize == 0)
8649    return;
8650  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8651  if (!ID) {
8652    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8653      if (!CD->IsClassExtension())
8654        return;
8655    }
8656    // No need to add this to end of @implementation.
8657    else
8658      return;
8659  }
8660  // All conditions are met. Add a new bitfield to the tail end of ivars.
8661  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8662  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8663
8664  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8665                              DeclLoc, DeclLoc, 0,
8666                              Context.CharTy,
8667                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8668                                                               DeclLoc),
8669                              ObjCIvarDecl::Private, BW,
8670                              true);
8671  AllIvarDecls.push_back(Ivar);
8672}
8673
8674void Sema::ActOnFields(Scope* S,
8675                       SourceLocation RecLoc, Decl *EnclosingDecl,
8676                       Decl **Fields, unsigned NumFields,
8677                       SourceLocation LBrac, SourceLocation RBrac,
8678                       AttributeList *Attr) {
8679  assert(EnclosingDecl && "missing record or interface decl");
8680
8681  // If the decl this is being inserted into is invalid, then it may be a
8682  // redeclaration or some other bogus case.  Don't try to add fields to it.
8683  if (EnclosingDecl->isInvalidDecl())
8684    return;
8685
8686  // Verify that all the fields are okay.
8687  unsigned NumNamedMembers = 0;
8688  SmallVector<FieldDecl*, 32> RecFields;
8689
8690  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8691  bool ARCErrReported = false;
8692  for (unsigned i = 0; i != NumFields; ++i) {
8693    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8694
8695    // Get the type for the field.
8696    const Type *FDTy = FD->getType().getTypePtr();
8697
8698    if (!FD->isAnonymousStructOrUnion()) {
8699      // Remember all fields written by the user.
8700      RecFields.push_back(FD);
8701    }
8702
8703    // If the field is already invalid for some reason, don't emit more
8704    // diagnostics about it.
8705    if (FD->isInvalidDecl()) {
8706      EnclosingDecl->setInvalidDecl();
8707      continue;
8708    }
8709
8710    // C99 6.7.2.1p2:
8711    //   A structure or union shall not contain a member with
8712    //   incomplete or function type (hence, a structure shall not
8713    //   contain an instance of itself, but may contain a pointer to
8714    //   an instance of itself), except that the last member of a
8715    //   structure with more than one named member may have incomplete
8716    //   array type; such a structure (and any union containing,
8717    //   possibly recursively, a member that is such a structure)
8718    //   shall not be a member of a structure or an element of an
8719    //   array.
8720    if (FDTy->isFunctionType()) {
8721      // Field declared as a function.
8722      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8723        << FD->getDeclName();
8724      FD->setInvalidDecl();
8725      EnclosingDecl->setInvalidDecl();
8726      continue;
8727    } else if (FDTy->isIncompleteArrayType() && Record &&
8728               ((i == NumFields - 1 && !Record->isUnion()) ||
8729                ((getLangOptions().MicrosoftExt ||
8730                  getLangOptions().CPlusPlus) &&
8731                 (i == NumFields - 1 || Record->isUnion())))) {
8732      // Flexible array member.
8733      // Microsoft and g++ is more permissive regarding flexible array.
8734      // It will accept flexible array in union and also
8735      // as the sole element of a struct/class.
8736      if (getLangOptions().MicrosoftExt) {
8737        if (Record->isUnion())
8738          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8739            << FD->getDeclName();
8740        else if (NumFields == 1)
8741          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8742            << FD->getDeclName() << Record->getTagKind();
8743      } else if (getLangOptions().CPlusPlus) {
8744        if (Record->isUnion())
8745          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8746            << FD->getDeclName();
8747        else if (NumFields == 1)
8748          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8749            << FD->getDeclName() << Record->getTagKind();
8750      } else if (NumNamedMembers < 1) {
8751        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8752          << FD->getDeclName();
8753        FD->setInvalidDecl();
8754        EnclosingDecl->setInvalidDecl();
8755        continue;
8756      }
8757      if (!FD->getType()->isDependentType() &&
8758          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8759        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8760          << FD->getDeclName() << FD->getType();
8761        FD->setInvalidDecl();
8762        EnclosingDecl->setInvalidDecl();
8763        continue;
8764      }
8765      // Okay, we have a legal flexible array member at the end of the struct.
8766      if (Record)
8767        Record->setHasFlexibleArrayMember(true);
8768    } else if (!FDTy->isDependentType() &&
8769               RequireCompleteType(FD->getLocation(), FD->getType(),
8770                                   diag::err_field_incomplete)) {
8771      // Incomplete type
8772      FD->setInvalidDecl();
8773      EnclosingDecl->setInvalidDecl();
8774      continue;
8775    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8776      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8777        // If this is a member of a union, then entire union becomes "flexible".
8778        if (Record && Record->isUnion()) {
8779          Record->setHasFlexibleArrayMember(true);
8780        } else {
8781          // If this is a struct/class and this is not the last element, reject
8782          // it.  Note that GCC supports variable sized arrays in the middle of
8783          // structures.
8784          if (i != NumFields-1)
8785            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8786              << FD->getDeclName() << FD->getType();
8787          else {
8788            // We support flexible arrays at the end of structs in
8789            // other structs as an extension.
8790            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8791              << FD->getDeclName();
8792            if (Record)
8793              Record->setHasFlexibleArrayMember(true);
8794          }
8795        }
8796      }
8797      if (Record && FDTTy->getDecl()->hasObjectMember())
8798        Record->setHasObjectMember(true);
8799    } else if (FDTy->isObjCObjectType()) {
8800      /// A field cannot be an Objective-c object
8801      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8802        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8803      QualType T = Context.getObjCObjectPointerType(FD->getType());
8804      FD->setType(T);
8805    }
8806    else if (!getLangOptions().CPlusPlus) {
8807      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8808        // It's an error in ARC if a field has lifetime.
8809        // We don't want to report this in a system header, though,
8810        // so we just make the field unavailable.
8811        // FIXME: that's really not sufficient; we need to make the type
8812        // itself invalid to, say, initialize or copy.
8813        QualType T = FD->getType();
8814        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8815        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8816          SourceLocation loc = FD->getLocation();
8817          if (getSourceManager().isInSystemHeader(loc)) {
8818            if (!FD->hasAttr<UnavailableAttr>()) {
8819              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8820                                "this system field has retaining ownership"));
8821            }
8822          } else {
8823            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8824          }
8825          ARCErrReported = true;
8826        }
8827      }
8828      else if (getLangOptions().ObjC1 &&
8829               getLangOptions().getGC() != LangOptions::NonGC &&
8830               Record && !Record->hasObjectMember()) {
8831        if (FD->getType()->isObjCObjectPointerType() ||
8832            FD->getType().isObjCGCStrong())
8833          Record->setHasObjectMember(true);
8834        else if (Context.getAsArrayType(FD->getType())) {
8835          QualType BaseType = Context.getBaseElementType(FD->getType());
8836          if (BaseType->isRecordType() &&
8837              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8838            Record->setHasObjectMember(true);
8839          else if (BaseType->isObjCObjectPointerType() ||
8840                   BaseType.isObjCGCStrong())
8841                 Record->setHasObjectMember(true);
8842        }
8843      }
8844    }
8845    // Keep track of the number of named members.
8846    if (FD->getIdentifier())
8847      ++NumNamedMembers;
8848  }
8849
8850  // Okay, we successfully defined 'Record'.
8851  if (Record) {
8852    bool Completed = false;
8853    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8854      if (!CXXRecord->isInvalidDecl()) {
8855        // Set access bits correctly on the directly-declared conversions.
8856        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8857        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8858             I != E; ++I)
8859          Convs->setAccess(I, (*I)->getAccess());
8860
8861        if (!CXXRecord->isDependentType()) {
8862          // Objective-C Automatic Reference Counting:
8863          //   If a class has a non-static data member of Objective-C pointer
8864          //   type (or array thereof), it is a non-POD type and its
8865          //   default constructor (if any), copy constructor, copy assignment
8866          //   operator, and destructor are non-trivial.
8867          //
8868          // This rule is also handled by CXXRecordDecl::completeDefinition().
8869          // However, here we check whether this particular class is only
8870          // non-POD because of the presence of an Objective-C pointer member.
8871          // If so, objects of this type cannot be shared between code compiled
8872          // with instant objects and code compiled with manual retain/release.
8873          if (getLangOptions().ObjCAutoRefCount &&
8874              CXXRecord->hasObjectMember() &&
8875              CXXRecord->getLinkage() == ExternalLinkage) {
8876            if (CXXRecord->isPOD()) {
8877              Diag(CXXRecord->getLocation(),
8878                   diag::warn_arc_non_pod_class_with_object_member)
8879               << CXXRecord;
8880            } else {
8881              // FIXME: Fix-Its would be nice here, but finding a good location
8882              // for them is going to be tricky.
8883              if (CXXRecord->hasTrivialCopyConstructor())
8884                Diag(CXXRecord->getLocation(),
8885                     diag::warn_arc_trivial_member_function_with_object_member)
8886                  << CXXRecord << 0;
8887              if (CXXRecord->hasTrivialCopyAssignment())
8888                Diag(CXXRecord->getLocation(),
8889                     diag::warn_arc_trivial_member_function_with_object_member)
8890                << CXXRecord << 1;
8891              if (CXXRecord->hasTrivialDestructor())
8892                Diag(CXXRecord->getLocation(),
8893                     diag::warn_arc_trivial_member_function_with_object_member)
8894                << CXXRecord << 2;
8895            }
8896          }
8897
8898          // Adjust user-defined destructor exception spec.
8899          if (getLangOptions().CPlusPlus0x &&
8900              CXXRecord->hasUserDeclaredDestructor())
8901            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8902
8903          // Add any implicitly-declared members to this class.
8904          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8905
8906          // If we have virtual base classes, we may end up finding multiple
8907          // final overriders for a given virtual function. Check for this
8908          // problem now.
8909          if (CXXRecord->getNumVBases()) {
8910            CXXFinalOverriderMap FinalOverriders;
8911            CXXRecord->getFinalOverriders(FinalOverriders);
8912
8913            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8914                                             MEnd = FinalOverriders.end();
8915                 M != MEnd; ++M) {
8916              for (OverridingMethods::iterator SO = M->second.begin(),
8917                                            SOEnd = M->second.end();
8918                   SO != SOEnd; ++SO) {
8919                assert(SO->second.size() > 0 &&
8920                       "Virtual function without overridding functions?");
8921                if (SO->second.size() == 1)
8922                  continue;
8923
8924                // C++ [class.virtual]p2:
8925                //   In a derived class, if a virtual member function of a base
8926                //   class subobject has more than one final overrider the
8927                //   program is ill-formed.
8928                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8929                  << (NamedDecl *)M->first << Record;
8930                Diag(M->first->getLocation(),
8931                     diag::note_overridden_virtual_function);
8932                for (OverridingMethods::overriding_iterator
8933                          OM = SO->second.begin(),
8934                       OMEnd = SO->second.end();
8935                     OM != OMEnd; ++OM)
8936                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8937                    << (NamedDecl *)M->first << OM->Method->getParent();
8938
8939                Record->setInvalidDecl();
8940              }
8941            }
8942            CXXRecord->completeDefinition(&FinalOverriders);
8943            Completed = true;
8944          }
8945        }
8946      }
8947    }
8948
8949    if (!Completed)
8950      Record->completeDefinition();
8951
8952    // Now that the record is complete, do any delayed exception spec checks
8953    // we were missing.
8954    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8955      const CXXDestructorDecl *Dtor =
8956              DelayedDestructorExceptionSpecChecks.back().first;
8957      if (Dtor->getParent() != Record)
8958        break;
8959
8960      assert(!Dtor->getParent()->isDependentType() &&
8961          "Should not ever add destructors of templates into the list.");
8962      CheckOverridingFunctionExceptionSpec(Dtor,
8963          DelayedDestructorExceptionSpecChecks.back().second);
8964      DelayedDestructorExceptionSpecChecks.pop_back();
8965    }
8966
8967  } else {
8968    ObjCIvarDecl **ClsFields =
8969      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8970    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8971      ID->setLocEnd(RBrac);
8972      // Add ivar's to class's DeclContext.
8973      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8974        ClsFields[i]->setLexicalDeclContext(ID);
8975        ID->addDecl(ClsFields[i]);
8976      }
8977      // Must enforce the rule that ivars in the base classes may not be
8978      // duplicates.
8979      if (ID->getSuperClass())
8980        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8981    } else if (ObjCImplementationDecl *IMPDecl =
8982                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8983      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8984      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8985        // Ivar declared in @implementation never belongs to the implementation.
8986        // Only it is in implementation's lexical context.
8987        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8988      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8989    } else if (ObjCCategoryDecl *CDecl =
8990                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8991      // case of ivars in class extension; all other cases have been
8992      // reported as errors elsewhere.
8993      // FIXME. Class extension does not have a LocEnd field.
8994      // CDecl->setLocEnd(RBrac);
8995      // Add ivar's to class extension's DeclContext.
8996      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8997        ClsFields[i]->setLexicalDeclContext(CDecl);
8998        CDecl->addDecl(ClsFields[i]);
8999      }
9000    }
9001  }
9002
9003  if (Attr)
9004    ProcessDeclAttributeList(S, Record, Attr);
9005
9006  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9007  // set the visibility of this record.
9008  if (Record && !Record->getDeclContext()->isRecord())
9009    AddPushedVisibilityAttribute(Record);
9010}
9011
9012/// \brief Determine whether the given integral value is representable within
9013/// the given type T.
9014static bool isRepresentableIntegerValue(ASTContext &Context,
9015                                        llvm::APSInt &Value,
9016                                        QualType T) {
9017  assert(T->isIntegralType(Context) && "Integral type required!");
9018  unsigned BitWidth = Context.getIntWidth(T);
9019
9020  if (Value.isUnsigned() || Value.isNonNegative()) {
9021    if (T->isSignedIntegerOrEnumerationType())
9022      --BitWidth;
9023    return Value.getActiveBits() <= BitWidth;
9024  }
9025  return Value.getMinSignedBits() <= BitWidth;
9026}
9027
9028// \brief Given an integral type, return the next larger integral type
9029// (or a NULL type of no such type exists).
9030static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9031  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9032  // enum checking below.
9033  assert(T->isIntegralType(Context) && "Integral type required!");
9034  const unsigned NumTypes = 4;
9035  QualType SignedIntegralTypes[NumTypes] = {
9036    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9037  };
9038  QualType UnsignedIntegralTypes[NumTypes] = {
9039    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9040    Context.UnsignedLongLongTy
9041  };
9042
9043  unsigned BitWidth = Context.getTypeSize(T);
9044  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9045                                                        : UnsignedIntegralTypes;
9046  for (unsigned I = 0; I != NumTypes; ++I)
9047    if (Context.getTypeSize(Types[I]) > BitWidth)
9048      return Types[I];
9049
9050  return QualType();
9051}
9052
9053EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9054                                          EnumConstantDecl *LastEnumConst,
9055                                          SourceLocation IdLoc,
9056                                          IdentifierInfo *Id,
9057                                          Expr *Val) {
9058  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9059  llvm::APSInt EnumVal(IntWidth);
9060  QualType EltTy;
9061
9062  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9063    Val = 0;
9064
9065  if (Val) {
9066    if (Enum->isDependentType() || Val->isTypeDependent())
9067      EltTy = Context.DependentTy;
9068    else {
9069      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9070      SourceLocation ExpLoc;
9071      if (!Val->isValueDependent() &&
9072          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9073        Val = 0;
9074      } else {
9075        if (!getLangOptions().CPlusPlus) {
9076          // C99 6.7.2.2p2:
9077          //   The expression that defines the value of an enumeration constant
9078          //   shall be an integer constant expression that has a value
9079          //   representable as an int.
9080
9081          // Complain if the value is not representable in an int.
9082          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9083            Diag(IdLoc, diag::ext_enum_value_not_int)
9084              << EnumVal.toString(10) << Val->getSourceRange()
9085              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9086          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9087            // Force the type of the expression to 'int'.
9088            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9089          }
9090        }
9091
9092        if (Enum->isFixed()) {
9093          EltTy = Enum->getIntegerType();
9094
9095          // C++0x [dcl.enum]p5:
9096          //   ... if the initializing value of an enumerator cannot be
9097          //   represented by the underlying type, the program is ill-formed.
9098          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9099            if (getLangOptions().MicrosoftExt) {
9100              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9101              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9102            } else
9103              Diag(IdLoc, diag::err_enumerator_too_large)
9104                << EltTy;
9105          } else
9106            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9107        }
9108        else {
9109          // C++0x [dcl.enum]p5:
9110          //   If the underlying type is not fixed, the type of each enumerator
9111          //   is the type of its initializing value:
9112          //     - If an initializer is specified for an enumerator, the
9113          //       initializing value has the same type as the expression.
9114          EltTy = Val->getType();
9115        }
9116      }
9117    }
9118  }
9119
9120  if (!Val) {
9121    if (Enum->isDependentType())
9122      EltTy = Context.DependentTy;
9123    else if (!LastEnumConst) {
9124      // C++0x [dcl.enum]p5:
9125      //   If the underlying type is not fixed, the type of each enumerator
9126      //   is the type of its initializing value:
9127      //     - If no initializer is specified for the first enumerator, the
9128      //       initializing value has an unspecified integral type.
9129      //
9130      // GCC uses 'int' for its unspecified integral type, as does
9131      // C99 6.7.2.2p3.
9132      if (Enum->isFixed()) {
9133        EltTy = Enum->getIntegerType();
9134      }
9135      else {
9136        EltTy = Context.IntTy;
9137      }
9138    } else {
9139      // Assign the last value + 1.
9140      EnumVal = LastEnumConst->getInitVal();
9141      ++EnumVal;
9142      EltTy = LastEnumConst->getType();
9143
9144      // Check for overflow on increment.
9145      if (EnumVal < LastEnumConst->getInitVal()) {
9146        // C++0x [dcl.enum]p5:
9147        //   If the underlying type is not fixed, the type of each enumerator
9148        //   is the type of its initializing value:
9149        //
9150        //     - Otherwise the type of the initializing value is the same as
9151        //       the type of the initializing value of the preceding enumerator
9152        //       unless the incremented value is not representable in that type,
9153        //       in which case the type is an unspecified integral type
9154        //       sufficient to contain the incremented value. If no such type
9155        //       exists, the program is ill-formed.
9156        QualType T = getNextLargerIntegralType(Context, EltTy);
9157        if (T.isNull() || Enum->isFixed()) {
9158          // There is no integral type larger enough to represent this
9159          // value. Complain, then allow the value to wrap around.
9160          EnumVal = LastEnumConst->getInitVal();
9161          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9162          ++EnumVal;
9163          if (Enum->isFixed())
9164            // When the underlying type is fixed, this is ill-formed.
9165            Diag(IdLoc, diag::err_enumerator_wrapped)
9166              << EnumVal.toString(10)
9167              << EltTy;
9168          else
9169            Diag(IdLoc, diag::warn_enumerator_too_large)
9170              << EnumVal.toString(10);
9171        } else {
9172          EltTy = T;
9173        }
9174
9175        // Retrieve the last enumerator's value, extent that type to the
9176        // type that is supposed to be large enough to represent the incremented
9177        // value, then increment.
9178        EnumVal = LastEnumConst->getInitVal();
9179        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9180        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9181        ++EnumVal;
9182
9183        // If we're not in C++, diagnose the overflow of enumerator values,
9184        // which in C99 means that the enumerator value is not representable in
9185        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9186        // permits enumerator values that are representable in some larger
9187        // integral type.
9188        if (!getLangOptions().CPlusPlus && !T.isNull())
9189          Diag(IdLoc, diag::warn_enum_value_overflow);
9190      } else if (!getLangOptions().CPlusPlus &&
9191                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9192        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9193        Diag(IdLoc, diag::ext_enum_value_not_int)
9194          << EnumVal.toString(10) << 1;
9195      }
9196    }
9197  }
9198
9199  if (!EltTy->isDependentType()) {
9200    // Make the enumerator value match the signedness and size of the
9201    // enumerator's type.
9202    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9203    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9204  }
9205
9206  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9207                                  Val, EnumVal);
9208}
9209
9210
9211Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9212                              SourceLocation IdLoc, IdentifierInfo *Id,
9213                              AttributeList *Attr,
9214                              SourceLocation EqualLoc, Expr *val) {
9215  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9216  EnumConstantDecl *LastEnumConst =
9217    cast_or_null<EnumConstantDecl>(lastEnumConst);
9218  Expr *Val = static_cast<Expr*>(val);
9219
9220  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9221  // we find one that is.
9222  S = getNonFieldDeclScope(S);
9223
9224  // Verify that there isn't already something declared with this name in this
9225  // scope.
9226  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9227                                         ForRedeclaration);
9228  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9229    // Maybe we will complain about the shadowed template parameter.
9230    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9231    // Just pretend that we didn't see the previous declaration.
9232    PrevDecl = 0;
9233  }
9234
9235  if (PrevDecl) {
9236    // When in C++, we may get a TagDecl with the same name; in this case the
9237    // enum constant will 'hide' the tag.
9238    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9239           "Received TagDecl when not in C++!");
9240    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9241      if (isa<EnumConstantDecl>(PrevDecl))
9242        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9243      else
9244        Diag(IdLoc, diag::err_redefinition) << Id;
9245      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9246      return 0;
9247    }
9248  }
9249
9250  // C++ [class.mem]p13:
9251  //   If T is the name of a class, then each of the following shall have a
9252  //   name different from T:
9253  //     - every enumerator of every member of class T that is an enumerated
9254  //       type
9255  if (CXXRecordDecl *Record
9256                      = dyn_cast<CXXRecordDecl>(
9257                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9258    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9259      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9260
9261  EnumConstantDecl *New =
9262    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9263
9264  if (New) {
9265    // Process attributes.
9266    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9267
9268    // Register this decl in the current scope stack.
9269    New->setAccess(TheEnumDecl->getAccess());
9270    PushOnScopeChains(New, S);
9271  }
9272
9273  return New;
9274}
9275
9276void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9277                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9278                         Decl **Elements, unsigned NumElements,
9279                         Scope *S, AttributeList *Attr) {
9280  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9281  QualType EnumType = Context.getTypeDeclType(Enum);
9282
9283  if (Attr)
9284    ProcessDeclAttributeList(S, Enum, Attr);
9285
9286  if (Enum->isDependentType()) {
9287    for (unsigned i = 0; i != NumElements; ++i) {
9288      EnumConstantDecl *ECD =
9289        cast_or_null<EnumConstantDecl>(Elements[i]);
9290      if (!ECD) continue;
9291
9292      ECD->setType(EnumType);
9293    }
9294
9295    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9296    return;
9297  }
9298
9299  // TODO: If the result value doesn't fit in an int, it must be a long or long
9300  // long value.  ISO C does not support this, but GCC does as an extension,
9301  // emit a warning.
9302  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9303  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9304  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9305
9306  // Verify that all the values are okay, compute the size of the values, and
9307  // reverse the list.
9308  unsigned NumNegativeBits = 0;
9309  unsigned NumPositiveBits = 0;
9310
9311  // Keep track of whether all elements have type int.
9312  bool AllElementsInt = true;
9313
9314  for (unsigned i = 0; i != NumElements; ++i) {
9315    EnumConstantDecl *ECD =
9316      cast_or_null<EnumConstantDecl>(Elements[i]);
9317    if (!ECD) continue;  // Already issued a diagnostic.
9318
9319    const llvm::APSInt &InitVal = ECD->getInitVal();
9320
9321    // Keep track of the size of positive and negative values.
9322    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9323      NumPositiveBits = std::max(NumPositiveBits,
9324                                 (unsigned)InitVal.getActiveBits());
9325    else
9326      NumNegativeBits = std::max(NumNegativeBits,
9327                                 (unsigned)InitVal.getMinSignedBits());
9328
9329    // Keep track of whether every enum element has type int (very commmon).
9330    if (AllElementsInt)
9331      AllElementsInt = ECD->getType() == Context.IntTy;
9332  }
9333
9334  // Figure out the type that should be used for this enum.
9335  QualType BestType;
9336  unsigned BestWidth;
9337
9338  // C++0x N3000 [conv.prom]p3:
9339  //   An rvalue of an unscoped enumeration type whose underlying
9340  //   type is not fixed can be converted to an rvalue of the first
9341  //   of the following types that can represent all the values of
9342  //   the enumeration: int, unsigned int, long int, unsigned long
9343  //   int, long long int, or unsigned long long int.
9344  // C99 6.4.4.3p2:
9345  //   An identifier declared as an enumeration constant has type int.
9346  // The C99 rule is modified by a gcc extension
9347  QualType BestPromotionType;
9348
9349  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9350  // -fshort-enums is the equivalent to specifying the packed attribute on all
9351  // enum definitions.
9352  if (LangOpts.ShortEnums)
9353    Packed = true;
9354
9355  if (Enum->isFixed()) {
9356    BestType = BestPromotionType = Enum->getIntegerType();
9357    // We don't need to set BestWidth, because BestType is going to be the type
9358    // of the enumerators, but we do anyway because otherwise some compilers
9359    // warn that it might be used uninitialized.
9360    BestWidth = CharWidth;
9361  }
9362  else if (NumNegativeBits) {
9363    // If there is a negative value, figure out the smallest integer type (of
9364    // int/long/longlong) that fits.
9365    // If it's packed, check also if it fits a char or a short.
9366    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9367      BestType = Context.SignedCharTy;
9368      BestWidth = CharWidth;
9369    } else if (Packed && NumNegativeBits <= ShortWidth &&
9370               NumPositiveBits < ShortWidth) {
9371      BestType = Context.ShortTy;
9372      BestWidth = ShortWidth;
9373    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9374      BestType = Context.IntTy;
9375      BestWidth = IntWidth;
9376    } else {
9377      BestWidth = Context.getTargetInfo().getLongWidth();
9378
9379      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9380        BestType = Context.LongTy;
9381      } else {
9382        BestWidth = Context.getTargetInfo().getLongLongWidth();
9383
9384        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9385          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9386        BestType = Context.LongLongTy;
9387      }
9388    }
9389    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9390  } else {
9391    // If there is no negative value, figure out the smallest type that fits
9392    // all of the enumerator values.
9393    // If it's packed, check also if it fits a char or a short.
9394    if (Packed && NumPositiveBits <= CharWidth) {
9395      BestType = Context.UnsignedCharTy;
9396      BestPromotionType = Context.IntTy;
9397      BestWidth = CharWidth;
9398    } else if (Packed && NumPositiveBits <= ShortWidth) {
9399      BestType = Context.UnsignedShortTy;
9400      BestPromotionType = Context.IntTy;
9401      BestWidth = ShortWidth;
9402    } else if (NumPositiveBits <= IntWidth) {
9403      BestType = Context.UnsignedIntTy;
9404      BestWidth = IntWidth;
9405      BestPromotionType
9406        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9407                           ? Context.UnsignedIntTy : Context.IntTy;
9408    } else if (NumPositiveBits <=
9409               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9410      BestType = Context.UnsignedLongTy;
9411      BestPromotionType
9412        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9413                           ? Context.UnsignedLongTy : Context.LongTy;
9414    } else {
9415      BestWidth = Context.getTargetInfo().getLongLongWidth();
9416      assert(NumPositiveBits <= BestWidth &&
9417             "How could an initializer get larger than ULL?");
9418      BestType = Context.UnsignedLongLongTy;
9419      BestPromotionType
9420        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9421                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9422    }
9423  }
9424
9425  // Loop over all of the enumerator constants, changing their types to match
9426  // the type of the enum if needed.
9427  for (unsigned i = 0; i != NumElements; ++i) {
9428    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9429    if (!ECD) continue;  // Already issued a diagnostic.
9430
9431    // Standard C says the enumerators have int type, but we allow, as an
9432    // extension, the enumerators to be larger than int size.  If each
9433    // enumerator value fits in an int, type it as an int, otherwise type it the
9434    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9435    // that X has type 'int', not 'unsigned'.
9436
9437    // Determine whether the value fits into an int.
9438    llvm::APSInt InitVal = ECD->getInitVal();
9439
9440    // If it fits into an integer type, force it.  Otherwise force it to match
9441    // the enum decl type.
9442    QualType NewTy;
9443    unsigned NewWidth;
9444    bool NewSign;
9445    if (!getLangOptions().CPlusPlus &&
9446        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9447      NewTy = Context.IntTy;
9448      NewWidth = IntWidth;
9449      NewSign = true;
9450    } else if (ECD->getType() == BestType) {
9451      // Already the right type!
9452      if (getLangOptions().CPlusPlus)
9453        // C++ [dcl.enum]p4: Following the closing brace of an
9454        // enum-specifier, each enumerator has the type of its
9455        // enumeration.
9456        ECD->setType(EnumType);
9457      continue;
9458    } else {
9459      NewTy = BestType;
9460      NewWidth = BestWidth;
9461      NewSign = BestType->isSignedIntegerOrEnumerationType();
9462    }
9463
9464    // Adjust the APSInt value.
9465    InitVal = InitVal.extOrTrunc(NewWidth);
9466    InitVal.setIsSigned(NewSign);
9467    ECD->setInitVal(InitVal);
9468
9469    // Adjust the Expr initializer and type.
9470    if (ECD->getInitExpr() &&
9471        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9472      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9473                                                CK_IntegralCast,
9474                                                ECD->getInitExpr(),
9475                                                /*base paths*/ 0,
9476                                                VK_RValue));
9477    if (getLangOptions().CPlusPlus)
9478      // C++ [dcl.enum]p4: Following the closing brace of an
9479      // enum-specifier, each enumerator has the type of its
9480      // enumeration.
9481      ECD->setType(EnumType);
9482    else
9483      ECD->setType(NewTy);
9484  }
9485
9486  Enum->completeDefinition(BestType, BestPromotionType,
9487                           NumPositiveBits, NumNegativeBits);
9488}
9489
9490Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9491                                  SourceLocation StartLoc,
9492                                  SourceLocation EndLoc) {
9493  StringLiteral *AsmString = cast<StringLiteral>(expr);
9494
9495  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9496                                                   AsmString, StartLoc,
9497                                                   EndLoc);
9498  CurContext->addDecl(New);
9499  return New;
9500}
9501
9502DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9503                                   IdentifierInfo &ModuleName,
9504                                   SourceLocation ModuleNameLoc) {
9505  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9506                                                     ModuleName, ModuleNameLoc);
9507  if (!Module)
9508    return true;
9509
9510  // FIXME: Actually create a declaration to describe the module import.
9511  (void)Module;
9512  return DeclResult((Decl *)0);
9513}
9514
9515void
9516Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9517                                         SourceLocation ModulePrivateKeyword) {
9518  assert(!Old->isModulePrivate() && "Old is module-private!");
9519
9520  Diag(New->getLocation(), diag::err_module_private_follows_public)
9521    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9522  Diag(Old->getLocation(), diag::note_previous_declaration)
9523    << Old->getDeclName();
9524
9525  // Drop the __module_private__ from the new declaration, since it's invalid.
9526  New->setModulePrivate(false);
9527}
9528
9529void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9530                             SourceLocation PragmaLoc,
9531                             SourceLocation NameLoc) {
9532  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9533
9534  if (PrevDecl) {
9535    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9536  } else {
9537    (void)WeakUndeclaredIdentifiers.insert(
9538      std::pair<IdentifierInfo*,WeakInfo>
9539        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9540  }
9541}
9542
9543void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9544                                IdentifierInfo* AliasName,
9545                                SourceLocation PragmaLoc,
9546                                SourceLocation NameLoc,
9547                                SourceLocation AliasNameLoc) {
9548  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9549                                    LookupOrdinaryName);
9550  WeakInfo W = WeakInfo(Name, NameLoc);
9551
9552  if (PrevDecl) {
9553    if (!PrevDecl->hasAttr<AliasAttr>())
9554      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9555        DeclApplyPragmaWeak(TUScope, ND, W);
9556  } else {
9557    (void)WeakUndeclaredIdentifiers.insert(
9558      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9559  }
9560}
9561
9562Decl *Sema::getObjCDeclContext() const {
9563  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9564}
9565