SemaDecl.cpp revision 8eead16398c003dc2a8be22f44e8c2d92af80479
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      // Make sure we get the storage class from the canonical declaration,
1223      // since otherwise we will get spurious warnings on specialized
1224      // static template functions.
1225      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1226          FD->isInlineSpecified())
1227        return false;
1228    }
1229
1230    if (FD->doesThisDeclarationHaveABody() &&
1231        Context.DeclMustBeEmitted(FD))
1232      return false;
1233  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1234    // Don't warn on variables of const-qualified or reference type, since their
1235    // values can be used even if though they're not odr-used, and because const
1236    // qualified variables can appear in headers in contexts where they're not
1237    // intended to be used.
1238    // FIXME: Use more principled rules for these exemptions.
1239    if (!VD->isFileVarDecl() ||
1240        VD->getType().isConstQualified() ||
1241        VD->getType()->isReferenceType() ||
1242        Context.DeclMustBeEmitted(VD))
1243      return false;
1244
1245    if (VD->isStaticDataMember() &&
1246        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1247      return false;
1248
1249  } else {
1250    return false;
1251  }
1252
1253  // Only warn for unused decls internal to the translation unit.
1254  return mightHaveNonExternalLinkage(D);
1255}
1256
1257void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1258  if (!D)
1259    return;
1260
1261  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1262    const FunctionDecl *First = FD->getFirstDeclaration();
1263    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1264      return; // First should already be in the vector.
1265  }
1266
1267  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1268    const VarDecl *First = VD->getFirstDeclaration();
1269    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1270      return; // First should already be in the vector.
1271  }
1272
1273  if (ShouldWarnIfUnusedFileScopedDecl(D))
1274    UnusedFileScopedDecls.push_back(D);
1275}
1276
1277static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1278  if (D->isInvalidDecl())
1279    return false;
1280
1281  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1282    return false;
1283
1284  if (isa<LabelDecl>(D))
1285    return true;
1286
1287  // White-list anything that isn't a local variable.
1288  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1289      !D->getDeclContext()->isFunctionOrMethod())
1290    return false;
1291
1292  // Types of valid local variables should be complete, so this should succeed.
1293  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1294
1295    // White-list anything with an __attribute__((unused)) type.
1296    QualType Ty = VD->getType();
1297
1298    // Only look at the outermost level of typedef.
1299    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1300      if (TT->getDecl()->hasAttr<UnusedAttr>())
1301        return false;
1302    }
1303
1304    // If we failed to complete the type for some reason, or if the type is
1305    // dependent, don't diagnose the variable.
1306    if (Ty->isIncompleteType() || Ty->isDependentType())
1307      return false;
1308
1309    if (const TagType *TT = Ty->getAs<TagType>()) {
1310      const TagDecl *Tag = TT->getDecl();
1311      if (Tag->hasAttr<UnusedAttr>())
1312        return false;
1313
1314      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1315        if (!RD->hasTrivialDestructor())
1316          return false;
1317
1318        if (const Expr *Init = VD->getInit()) {
1319          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1320            Init = Cleanups->getSubExpr();
1321          const CXXConstructExpr *Construct =
1322            dyn_cast<CXXConstructExpr>(Init);
1323          if (Construct && !Construct->isElidable()) {
1324            CXXConstructorDecl *CD = Construct->getConstructor();
1325            if (!CD->isTrivial())
1326              return false;
1327          }
1328        }
1329      }
1330    }
1331
1332    // TODO: __attribute__((unused)) templates?
1333  }
1334
1335  return true;
1336}
1337
1338static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1339                                     FixItHint &Hint) {
1340  if (isa<LabelDecl>(D)) {
1341    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1342                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1343    if (AfterColon.isInvalid())
1344      return;
1345    Hint = FixItHint::CreateRemoval(CharSourceRange::
1346                                    getCharRange(D->getLocStart(), AfterColon));
1347  }
1348  return;
1349}
1350
1351/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1352/// unless they are marked attr(unused).
1353void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1354  FixItHint Hint;
1355  if (!ShouldDiagnoseUnusedDecl(D))
1356    return;
1357
1358  GenerateFixForUnusedDecl(D, Context, Hint);
1359
1360  unsigned DiagID;
1361  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1362    DiagID = diag::warn_unused_exception_param;
1363  else if (isa<LabelDecl>(D))
1364    DiagID = diag::warn_unused_label;
1365  else
1366    DiagID = diag::warn_unused_variable;
1367
1368  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1369}
1370
1371static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1372  // Verify that we have no forward references left.  If so, there was a goto
1373  // or address of a label taken, but no definition of it.  Label fwd
1374  // definitions are indicated with a null substmt.
1375  if (L->getStmt() == 0)
1376    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1377}
1378
1379void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1380  if (S->decl_empty()) return;
1381  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1382         "Scope shouldn't contain decls!");
1383
1384  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1385       I != E; ++I) {
1386    Decl *TmpD = (*I);
1387    assert(TmpD && "This decl didn't get pushed??");
1388
1389    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1390    NamedDecl *D = cast<NamedDecl>(TmpD);
1391
1392    if (!D->getDeclName()) continue;
1393
1394    // Diagnose unused variables in this scope.
1395    if (!S->hasUnrecoverableErrorOccurred())
1396      DiagnoseUnusedDecl(D);
1397
1398    // If this was a forward reference to a label, verify it was defined.
1399    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1400      CheckPoppedLabel(LD, *this);
1401
1402    // Remove this name from our lexical scope.
1403    IdResolver.RemoveDecl(D);
1404  }
1405}
1406
1407void Sema::ActOnStartFunctionDeclarator() {
1408  ++InFunctionDeclarator;
1409}
1410
1411void Sema::ActOnEndFunctionDeclarator() {
1412  assert(InFunctionDeclarator);
1413  --InFunctionDeclarator;
1414}
1415
1416/// \brief Look for an Objective-C class in the translation unit.
1417///
1418/// \param Id The name of the Objective-C class we're looking for. If
1419/// typo-correction fixes this name, the Id will be updated
1420/// to the fixed name.
1421///
1422/// \param IdLoc The location of the name in the translation unit.
1423///
1424/// \param DoTypoCorrection If true, this routine will attempt typo correction
1425/// if there is no class with the given name.
1426///
1427/// \returns The declaration of the named Objective-C class, or NULL if the
1428/// class could not be found.
1429ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1430                                              SourceLocation IdLoc,
1431                                              bool DoTypoCorrection) {
1432  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1433  // creation from this context.
1434  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1435
1436  if (!IDecl && DoTypoCorrection) {
1437    // Perform typo correction at the given location, but only if we
1438    // find an Objective-C class name.
1439    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1440    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1441                                       LookupOrdinaryName, TUScope, NULL,
1442                                       Validator)) {
1443      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1444      Diag(IdLoc, diag::err_undef_interface_suggest)
1445        << Id << IDecl->getDeclName()
1446        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1447      Diag(IDecl->getLocation(), diag::note_previous_decl)
1448        << IDecl->getDeclName();
1449
1450      Id = IDecl->getIdentifier();
1451    }
1452  }
1453  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1454  // This routine must always return a class definition, if any.
1455  if (Def && Def->getDefinition())
1456      Def = Def->getDefinition();
1457  return Def;
1458}
1459
1460/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1461/// from S, where a non-field would be declared. This routine copes
1462/// with the difference between C and C++ scoping rules in structs and
1463/// unions. For example, the following code is well-formed in C but
1464/// ill-formed in C++:
1465/// @code
1466/// struct S6 {
1467///   enum { BAR } e;
1468/// };
1469///
1470/// void test_S6() {
1471///   struct S6 a;
1472///   a.e = BAR;
1473/// }
1474/// @endcode
1475/// For the declaration of BAR, this routine will return a different
1476/// scope. The scope S will be the scope of the unnamed enumeration
1477/// within S6. In C++, this routine will return the scope associated
1478/// with S6, because the enumeration's scope is a transparent
1479/// context but structures can contain non-field names. In C, this
1480/// routine will return the translation unit scope, since the
1481/// enumeration's scope is a transparent context and structures cannot
1482/// contain non-field names.
1483Scope *Sema::getNonFieldDeclScope(Scope *S) {
1484  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1485         (S->getEntity() &&
1486          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1487         (S->isClassScope() && !getLangOpts().CPlusPlus))
1488    S = S->getParent();
1489  return S;
1490}
1491
1492/// \brief Looks up the declaration of "struct objc_super" and
1493/// saves it for later use in building builtin declaration of
1494/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1495/// pre-existing declaration exists no action takes place.
1496static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1497                                        IdentifierInfo *II) {
1498  if (!II->isStr("objc_msgSendSuper"))
1499    return;
1500  ASTContext &Context = ThisSema.Context;
1501
1502  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1503                      SourceLocation(), Sema::LookupTagName);
1504  ThisSema.LookupName(Result, S);
1505  if (Result.getResultKind() == LookupResult::Found)
1506    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1507      Context.setObjCSuperType(Context.getTagDeclType(TD));
1508}
1509
1510/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1511/// file scope.  lazily create a decl for it. ForRedeclaration is true
1512/// if we're creating this built-in in anticipation of redeclaring the
1513/// built-in.
1514NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1515                                     Scope *S, bool ForRedeclaration,
1516                                     SourceLocation Loc) {
1517  LookupPredefedObjCSuperType(*this, S, II);
1518
1519  Builtin::ID BID = (Builtin::ID)bid;
1520
1521  ASTContext::GetBuiltinTypeError Error;
1522  QualType R = Context.GetBuiltinType(BID, Error);
1523  switch (Error) {
1524  case ASTContext::GE_None:
1525    // Okay
1526    break;
1527
1528  case ASTContext::GE_Missing_stdio:
1529    if (ForRedeclaration)
1530      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1531        << Context.BuiltinInfo.GetName(BID);
1532    return 0;
1533
1534  case ASTContext::GE_Missing_setjmp:
1535    if (ForRedeclaration)
1536      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1537        << Context.BuiltinInfo.GetName(BID);
1538    return 0;
1539
1540  case ASTContext::GE_Missing_ucontext:
1541    if (ForRedeclaration)
1542      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1543        << Context.BuiltinInfo.GetName(BID);
1544    return 0;
1545  }
1546
1547  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1548    Diag(Loc, diag::ext_implicit_lib_function_decl)
1549      << Context.BuiltinInfo.GetName(BID)
1550      << R;
1551    if (Context.BuiltinInfo.getHeaderName(BID) &&
1552        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1553          != DiagnosticsEngine::Ignored)
1554      Diag(Loc, diag::note_please_include_header)
1555        << Context.BuiltinInfo.getHeaderName(BID)
1556        << Context.BuiltinInfo.GetName(BID);
1557  }
1558
1559  FunctionDecl *New = FunctionDecl::Create(Context,
1560                                           Context.getTranslationUnitDecl(),
1561                                           Loc, Loc, II, R, /*TInfo=*/0,
1562                                           SC_Extern,
1563                                           false,
1564                                           /*hasPrototype=*/true);
1565  New->setImplicit();
1566
1567  // Create Decl objects for each parameter, adding them to the
1568  // FunctionDecl.
1569  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1570    SmallVector<ParmVarDecl*, 16> Params;
1571    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1572      ParmVarDecl *parm =
1573        ParmVarDecl::Create(Context, New, SourceLocation(),
1574                            SourceLocation(), 0,
1575                            FT->getArgType(i), /*TInfo=*/0,
1576                            SC_None, 0);
1577      parm->setScopeInfo(0, i);
1578      Params.push_back(parm);
1579    }
1580    New->setParams(Params);
1581  }
1582
1583  AddKnownFunctionAttributes(New);
1584
1585  // TUScope is the translation-unit scope to insert this function into.
1586  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1587  // relate Scopes to DeclContexts, and probably eliminate CurContext
1588  // entirely, but we're not there yet.
1589  DeclContext *SavedContext = CurContext;
1590  CurContext = Context.getTranslationUnitDecl();
1591  PushOnScopeChains(New, TUScope);
1592  CurContext = SavedContext;
1593  return New;
1594}
1595
1596/// \brief Filter out any previous declarations that the given declaration
1597/// should not consider because they are not permitted to conflict, e.g.,
1598/// because they come from hidden sub-modules and do not refer to the same
1599/// entity.
1600static void filterNonConflictingPreviousDecls(ASTContext &context,
1601                                              NamedDecl *decl,
1602                                              LookupResult &previous){
1603  // This is only interesting when modules are enabled.
1604  if (!context.getLangOpts().Modules)
1605    return;
1606
1607  // Empty sets are uninteresting.
1608  if (previous.empty())
1609    return;
1610
1611  LookupResult::Filter filter = previous.makeFilter();
1612  while (filter.hasNext()) {
1613    NamedDecl *old = filter.next();
1614
1615    // Non-hidden declarations are never ignored.
1616    if (!old->isHidden())
1617      continue;
1618
1619    if (old->getLinkage() != ExternalLinkage)
1620      filter.erase();
1621  }
1622
1623  filter.done();
1624}
1625
1626bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1627  QualType OldType;
1628  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1629    OldType = OldTypedef->getUnderlyingType();
1630  else
1631    OldType = Context.getTypeDeclType(Old);
1632  QualType NewType = New->getUnderlyingType();
1633
1634  if (NewType->isVariablyModifiedType()) {
1635    // Must not redefine a typedef with a variably-modified type.
1636    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1637    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1638      << Kind << NewType;
1639    if (Old->getLocation().isValid())
1640      Diag(Old->getLocation(), diag::note_previous_definition);
1641    New->setInvalidDecl();
1642    return true;
1643  }
1644
1645  if (OldType != NewType &&
1646      !OldType->isDependentType() &&
1647      !NewType->isDependentType() &&
1648      !Context.hasSameType(OldType, NewType)) {
1649    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1650    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1651      << Kind << NewType << OldType;
1652    if (Old->getLocation().isValid())
1653      Diag(Old->getLocation(), diag::note_previous_definition);
1654    New->setInvalidDecl();
1655    return true;
1656  }
1657  return false;
1658}
1659
1660/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1661/// same name and scope as a previous declaration 'Old'.  Figure out
1662/// how to resolve this situation, merging decls or emitting
1663/// diagnostics as appropriate. If there was an error, set New to be invalid.
1664///
1665void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1666  // If the new decl is known invalid already, don't bother doing any
1667  // merging checks.
1668  if (New->isInvalidDecl()) return;
1669
1670  // Allow multiple definitions for ObjC built-in typedefs.
1671  // FIXME: Verify the underlying types are equivalent!
1672  if (getLangOpts().ObjC1) {
1673    const IdentifierInfo *TypeID = New->getIdentifier();
1674    switch (TypeID->getLength()) {
1675    default: break;
1676    case 2:
1677      {
1678        if (!TypeID->isStr("id"))
1679          break;
1680        QualType T = New->getUnderlyingType();
1681        if (!T->isPointerType())
1682          break;
1683        if (!T->isVoidPointerType()) {
1684          QualType PT = T->getAs<PointerType>()->getPointeeType();
1685          if (!PT->isStructureType())
1686            break;
1687        }
1688        Context.setObjCIdRedefinitionType(T);
1689        // Install the built-in type for 'id', ignoring the current definition.
1690        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1691        return;
1692      }
1693    case 5:
1694      if (!TypeID->isStr("Class"))
1695        break;
1696      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1697      // Install the built-in type for 'Class', ignoring the current definition.
1698      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1699      return;
1700    case 3:
1701      if (!TypeID->isStr("SEL"))
1702        break;
1703      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1704      // Install the built-in type for 'SEL', ignoring the current definition.
1705      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1706      return;
1707    }
1708    // Fall through - the typedef name was not a builtin type.
1709  }
1710
1711  // Verify the old decl was also a type.
1712  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1713  if (!Old) {
1714    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1715      << New->getDeclName();
1716
1717    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1718    if (OldD->getLocation().isValid())
1719      Diag(OldD->getLocation(), diag::note_previous_definition);
1720
1721    return New->setInvalidDecl();
1722  }
1723
1724  // If the old declaration is invalid, just give up here.
1725  if (Old->isInvalidDecl())
1726    return New->setInvalidDecl();
1727
1728  // If the typedef types are not identical, reject them in all languages and
1729  // with any extensions enabled.
1730  if (isIncompatibleTypedef(Old, New))
1731    return;
1732
1733  // The types match.  Link up the redeclaration chain if the old
1734  // declaration was a typedef.
1735  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1736    New->setPreviousDeclaration(Typedef);
1737
1738  if (getLangOpts().MicrosoftExt)
1739    return;
1740
1741  if (getLangOpts().CPlusPlus) {
1742    // C++ [dcl.typedef]p2:
1743    //   In a given non-class scope, a typedef specifier can be used to
1744    //   redefine the name of any type declared in that scope to refer
1745    //   to the type to which it already refers.
1746    if (!isa<CXXRecordDecl>(CurContext))
1747      return;
1748
1749    // C++0x [dcl.typedef]p4:
1750    //   In a given class scope, a typedef specifier can be used to redefine
1751    //   any class-name declared in that scope that is not also a typedef-name
1752    //   to refer to the type to which it already refers.
1753    //
1754    // This wording came in via DR424, which was a correction to the
1755    // wording in DR56, which accidentally banned code like:
1756    //
1757    //   struct S {
1758    //     typedef struct A { } A;
1759    //   };
1760    //
1761    // in the C++03 standard. We implement the C++0x semantics, which
1762    // allow the above but disallow
1763    //
1764    //   struct S {
1765    //     typedef int I;
1766    //     typedef int I;
1767    //   };
1768    //
1769    // since that was the intent of DR56.
1770    if (!isa<TypedefNameDecl>(Old))
1771      return;
1772
1773    Diag(New->getLocation(), diag::err_redefinition)
1774      << New->getDeclName();
1775    Diag(Old->getLocation(), diag::note_previous_definition);
1776    return New->setInvalidDecl();
1777  }
1778
1779  // Modules always permit redefinition of typedefs, as does C11.
1780  if (getLangOpts().Modules || getLangOpts().C11)
1781    return;
1782
1783  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1784  // is normally mapped to an error, but can be controlled with
1785  // -Wtypedef-redefinition.  If either the original or the redefinition is
1786  // in a system header, don't emit this for compatibility with GCC.
1787  if (getDiagnostics().getSuppressSystemWarnings() &&
1788      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1789       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1790    return;
1791
1792  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1793    << New->getDeclName();
1794  Diag(Old->getLocation(), diag::note_previous_definition);
1795  return;
1796}
1797
1798/// DeclhasAttr - returns true if decl Declaration already has the target
1799/// attribute.
1800static bool
1801DeclHasAttr(const Decl *D, const Attr *A) {
1802  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1803  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1804  // responsible for making sure they are consistent.
1805  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1806  if (AA)
1807    return false;
1808
1809  // The following thread safety attributes can also be duplicated.
1810  switch (A->getKind()) {
1811    case attr::ExclusiveLocksRequired:
1812    case attr::SharedLocksRequired:
1813    case attr::LocksExcluded:
1814    case attr::ExclusiveLockFunction:
1815    case attr::SharedLockFunction:
1816    case attr::UnlockFunction:
1817    case attr::ExclusiveTrylockFunction:
1818    case attr::SharedTrylockFunction:
1819    case attr::GuardedBy:
1820    case attr::PtGuardedBy:
1821    case attr::AcquiredBefore:
1822    case attr::AcquiredAfter:
1823      return false;
1824    default:
1825      ;
1826  }
1827
1828  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1829  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1830  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1831    if ((*i)->getKind() == A->getKind()) {
1832      if (Ann) {
1833        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1834          return true;
1835        continue;
1836      }
1837      // FIXME: Don't hardcode this check
1838      if (OA && isa<OwnershipAttr>(*i))
1839        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1840      return true;
1841    }
1842
1843  return false;
1844}
1845
1846static bool isAttributeTargetADefinition(Decl *D) {
1847  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1848    return VD->isThisDeclarationADefinition();
1849  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1850    return TD->isCompleteDefinition() || TD->isBeingDefined();
1851  return true;
1852}
1853
1854/// Merge alignment attributes from \p Old to \p New, taking into account the
1855/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1856///
1857/// \return \c true if any attributes were added to \p New.
1858static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1859  // Look for alignas attributes on Old, and pick out whichever attribute
1860  // specifies the strictest alignment requirement.
1861  AlignedAttr *OldAlignasAttr = 0;
1862  AlignedAttr *OldStrictestAlignAttr = 0;
1863  unsigned OldAlign = 0;
1864  for (specific_attr_iterator<AlignedAttr>
1865         I = Old->specific_attr_begin<AlignedAttr>(),
1866         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1867    // FIXME: We have no way of representing inherited dependent alignments
1868    // in a case like:
1869    //   template<int A, int B> struct alignas(A) X;
1870    //   template<int A, int B> struct alignas(B) X {};
1871    // For now, we just ignore any alignas attributes which are not on the
1872    // definition in such a case.
1873    if (I->isAlignmentDependent())
1874      return false;
1875
1876    if (I->isAlignas())
1877      OldAlignasAttr = *I;
1878
1879    unsigned Align = I->getAlignment(S.Context);
1880    if (Align > OldAlign) {
1881      OldAlign = Align;
1882      OldStrictestAlignAttr = *I;
1883    }
1884  }
1885
1886  // Look for alignas attributes on New.
1887  AlignedAttr *NewAlignasAttr = 0;
1888  unsigned NewAlign = 0;
1889  for (specific_attr_iterator<AlignedAttr>
1890         I = New->specific_attr_begin<AlignedAttr>(),
1891         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1892    if (I->isAlignmentDependent())
1893      return false;
1894
1895    if (I->isAlignas())
1896      NewAlignasAttr = *I;
1897
1898    unsigned Align = I->getAlignment(S.Context);
1899    if (Align > NewAlign)
1900      NewAlign = Align;
1901  }
1902
1903  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1904    // Both declarations have 'alignas' attributes. We require them to match.
1905    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1906    // fall short. (If two declarations both have alignas, they must both match
1907    // every definition, and so must match each other if there is a definition.)
1908
1909    // If either declaration only contains 'alignas(0)' specifiers, then it
1910    // specifies the natural alignment for the type.
1911    if (OldAlign == 0 || NewAlign == 0) {
1912      QualType Ty;
1913      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1914        Ty = VD->getType();
1915      else
1916        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1917
1918      if (OldAlign == 0)
1919        OldAlign = S.Context.getTypeAlign(Ty);
1920      if (NewAlign == 0)
1921        NewAlign = S.Context.getTypeAlign(Ty);
1922    }
1923
1924    if (OldAlign != NewAlign) {
1925      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1926        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1927        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1928      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1929    }
1930  }
1931
1932  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1933    // C++11 [dcl.align]p6:
1934    //   if any declaration of an entity has an alignment-specifier,
1935    //   every defining declaration of that entity shall specify an
1936    //   equivalent alignment.
1937    // C11 6.7.5/7:
1938    //   If the definition of an object does not have an alignment
1939    //   specifier, any other declaration of that object shall also
1940    //   have no alignment specifier.
1941    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1942      << OldAlignasAttr->isC11();
1943    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1944      << OldAlignasAttr->isC11();
1945  }
1946
1947  bool AnyAdded = false;
1948
1949  // Ensure we have an attribute representing the strictest alignment.
1950  if (OldAlign > NewAlign) {
1951    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1952    Clone->setInherited(true);
1953    New->addAttr(Clone);
1954    AnyAdded = true;
1955  }
1956
1957  // Ensure we have an alignas attribute if the old declaration had one.
1958  if (OldAlignasAttr && !NewAlignasAttr &&
1959      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1960    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1961    Clone->setInherited(true);
1962    New->addAttr(Clone);
1963    AnyAdded = true;
1964  }
1965
1966  return AnyAdded;
1967}
1968
1969static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1970                               bool Override) {
1971  InheritableAttr *NewAttr = NULL;
1972  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1973  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1974    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1975                                      AA->getIntroduced(), AA->getDeprecated(),
1976                                      AA->getObsoleted(), AA->getUnavailable(),
1977                                      AA->getMessage(), Override,
1978                                      AttrSpellingListIndex);
1979  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1980    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1981                                    AttrSpellingListIndex);
1982  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1983    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1984                                        AttrSpellingListIndex);
1985  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1986    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1987                                   AttrSpellingListIndex);
1988  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1989    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1990                                   AttrSpellingListIndex);
1991  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1992    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1993                                FA->getFormatIdx(), FA->getFirstArg(),
1994                                AttrSpellingListIndex);
1995  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1996    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1997                                 AttrSpellingListIndex);
1998  else if (isa<AlignedAttr>(Attr))
1999    // AlignedAttrs are handled separately, because we need to handle all
2000    // such attributes on a declaration at the same time.
2001    NewAttr = 0;
2002  else if (!DeclHasAttr(D, Attr))
2003    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2004
2005  if (NewAttr) {
2006    NewAttr->setInherited(true);
2007    D->addAttr(NewAttr);
2008    return true;
2009  }
2010
2011  return false;
2012}
2013
2014static const Decl *getDefinition(const Decl *D) {
2015  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2016    return TD->getDefinition();
2017  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2018    return VD->getDefinition();
2019  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2020    const FunctionDecl* Def;
2021    if (FD->hasBody(Def))
2022      return Def;
2023  }
2024  return NULL;
2025}
2026
2027static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2028  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2029       I != E; ++I) {
2030    Attr *Attribute = *I;
2031    if (Attribute->getKind() == Kind)
2032      return true;
2033  }
2034  return false;
2035}
2036
2037/// checkNewAttributesAfterDef - If we already have a definition, check that
2038/// there are no new attributes in this declaration.
2039static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2040  if (!New->hasAttrs())
2041    return;
2042
2043  const Decl *Def = getDefinition(Old);
2044  if (!Def || Def == New)
2045    return;
2046
2047  AttrVec &NewAttributes = New->getAttrs();
2048  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2049    const Attr *NewAttribute = NewAttributes[I];
2050    if (hasAttribute(Def, NewAttribute->getKind())) {
2051      ++I;
2052      continue; // regular attr merging will take care of validating this.
2053    }
2054
2055    if (isa<C11NoReturnAttr>(NewAttribute)) {
2056      // C's _Noreturn is allowed to be added to a function after it is defined.
2057      ++I;
2058      continue;
2059    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2060      if (AA->isAlignas()) {
2061        // C++11 [dcl.align]p6:
2062        //   if any declaration of an entity has an alignment-specifier,
2063        //   every defining declaration of that entity shall specify an
2064        //   equivalent alignment.
2065        // C11 6.7.5/7:
2066        //   If the definition of an object does not have an alignment
2067        //   specifier, any other declaration of that object shall also
2068        //   have no alignment specifier.
2069        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2070          << AA->isC11();
2071        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2072          << AA->isC11();
2073        NewAttributes.erase(NewAttributes.begin() + I);
2074        --E;
2075        continue;
2076      }
2077    }
2078
2079    S.Diag(NewAttribute->getLocation(),
2080           diag::warn_attribute_precede_definition);
2081    S.Diag(Def->getLocation(), diag::note_previous_definition);
2082    NewAttributes.erase(NewAttributes.begin() + I);
2083    --E;
2084  }
2085}
2086
2087/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2088void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2089                               AvailabilityMergeKind AMK) {
2090  if (!Old->hasAttrs() && !New->hasAttrs())
2091    return;
2092
2093  // attributes declared post-definition are currently ignored
2094  checkNewAttributesAfterDef(*this, New, Old);
2095
2096  if (!Old->hasAttrs())
2097    return;
2098
2099  bool foundAny = New->hasAttrs();
2100
2101  // Ensure that any moving of objects within the allocated map is done before
2102  // we process them.
2103  if (!foundAny) New->setAttrs(AttrVec());
2104
2105  for (specific_attr_iterator<InheritableAttr>
2106         i = Old->specific_attr_begin<InheritableAttr>(),
2107         e = Old->specific_attr_end<InheritableAttr>();
2108       i != e; ++i) {
2109    bool Override = false;
2110    // Ignore deprecated/unavailable/availability attributes if requested.
2111    if (isa<DeprecatedAttr>(*i) ||
2112        isa<UnavailableAttr>(*i) ||
2113        isa<AvailabilityAttr>(*i)) {
2114      switch (AMK) {
2115      case AMK_None:
2116        continue;
2117
2118      case AMK_Redeclaration:
2119        break;
2120
2121      case AMK_Override:
2122        Override = true;
2123        break;
2124      }
2125    }
2126
2127    if (mergeDeclAttribute(*this, New, *i, Override))
2128      foundAny = true;
2129  }
2130
2131  if (mergeAlignedAttrs(*this, New, Old))
2132    foundAny = true;
2133
2134  if (!foundAny) New->dropAttrs();
2135}
2136
2137/// mergeParamDeclAttributes - Copy attributes from the old parameter
2138/// to the new one.
2139static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2140                                     const ParmVarDecl *oldDecl,
2141                                     Sema &S) {
2142  // C++11 [dcl.attr.depend]p2:
2143  //   The first declaration of a function shall specify the
2144  //   carries_dependency attribute for its declarator-id if any declaration
2145  //   of the function specifies the carries_dependency attribute.
2146  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2147      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2148    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2149           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2150    // Find the first declaration of the parameter.
2151    // FIXME: Should we build redeclaration chains for function parameters?
2152    const FunctionDecl *FirstFD =
2153      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2154    const ParmVarDecl *FirstVD =
2155      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2156    S.Diag(FirstVD->getLocation(),
2157           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2158  }
2159
2160  if (!oldDecl->hasAttrs())
2161    return;
2162
2163  bool foundAny = newDecl->hasAttrs();
2164
2165  // Ensure that any moving of objects within the allocated map is
2166  // done before we process them.
2167  if (!foundAny) newDecl->setAttrs(AttrVec());
2168
2169  for (specific_attr_iterator<InheritableParamAttr>
2170       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2171       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2172    if (!DeclHasAttr(newDecl, *i)) {
2173      InheritableAttr *newAttr =
2174        cast<InheritableParamAttr>((*i)->clone(S.Context));
2175      newAttr->setInherited(true);
2176      newDecl->addAttr(newAttr);
2177      foundAny = true;
2178    }
2179  }
2180
2181  if (!foundAny) newDecl->dropAttrs();
2182}
2183
2184namespace {
2185
2186/// Used in MergeFunctionDecl to keep track of function parameters in
2187/// C.
2188struct GNUCompatibleParamWarning {
2189  ParmVarDecl *OldParm;
2190  ParmVarDecl *NewParm;
2191  QualType PromotedType;
2192};
2193
2194}
2195
2196/// getSpecialMember - get the special member enum for a method.
2197Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2198  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2199    if (Ctor->isDefaultConstructor())
2200      return Sema::CXXDefaultConstructor;
2201
2202    if (Ctor->isCopyConstructor())
2203      return Sema::CXXCopyConstructor;
2204
2205    if (Ctor->isMoveConstructor())
2206      return Sema::CXXMoveConstructor;
2207  } else if (isa<CXXDestructorDecl>(MD)) {
2208    return Sema::CXXDestructor;
2209  } else if (MD->isCopyAssignmentOperator()) {
2210    return Sema::CXXCopyAssignment;
2211  } else if (MD->isMoveAssignmentOperator()) {
2212    return Sema::CXXMoveAssignment;
2213  }
2214
2215  return Sema::CXXInvalid;
2216}
2217
2218/// canRedefineFunction - checks if a function can be redefined. Currently,
2219/// only extern inline functions can be redefined, and even then only in
2220/// GNU89 mode.
2221static bool canRedefineFunction(const FunctionDecl *FD,
2222                                const LangOptions& LangOpts) {
2223  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2224          !LangOpts.CPlusPlus &&
2225          FD->isInlineSpecified() &&
2226          FD->getStorageClass() == SC_Extern);
2227}
2228
2229/// Is the given calling convention the ABI default for the given
2230/// declaration?
2231static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2232  CallingConv ABIDefaultCC;
2233  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2234    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2235  } else {
2236    // Free C function or a static method.
2237    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2238  }
2239  return ABIDefaultCC == CC;
2240}
2241
2242template <typename T>
2243static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2244  const DeclContext *DC = Old->getDeclContext();
2245  if (DC->isRecord())
2246    return false;
2247
2248  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2249  if (OldLinkage == CXXLanguageLinkage &&
2250      New->getDeclContext()->isExternCContext())
2251    return true;
2252  if (OldLinkage == CLanguageLinkage &&
2253      New->getDeclContext()->isExternCXXContext())
2254    return true;
2255  return false;
2256}
2257
2258/// MergeFunctionDecl - We just parsed a function 'New' from
2259/// declarator D which has the same name and scope as a previous
2260/// declaration 'Old'.  Figure out how to resolve this situation,
2261/// merging decls or emitting diagnostics as appropriate.
2262///
2263/// In C++, New and Old must be declarations that are not
2264/// overloaded. Use IsOverload to determine whether New and Old are
2265/// overloaded, and to select the Old declaration that New should be
2266/// merged with.
2267///
2268/// Returns true if there was an error, false otherwise.
2269bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2270  // Verify the old decl was also a function.
2271  FunctionDecl *Old = 0;
2272  if (FunctionTemplateDecl *OldFunctionTemplate
2273        = dyn_cast<FunctionTemplateDecl>(OldD))
2274    Old = OldFunctionTemplate->getTemplatedDecl();
2275  else
2276    Old = dyn_cast<FunctionDecl>(OldD);
2277  if (!Old) {
2278    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2279      if (New->getFriendObjectKind()) {
2280        Diag(New->getLocation(), diag::err_using_decl_friend);
2281        Diag(Shadow->getTargetDecl()->getLocation(),
2282             diag::note_using_decl_target);
2283        Diag(Shadow->getUsingDecl()->getLocation(),
2284             diag::note_using_decl) << 0;
2285        return true;
2286      }
2287
2288      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2289      Diag(Shadow->getTargetDecl()->getLocation(),
2290           diag::note_using_decl_target);
2291      Diag(Shadow->getUsingDecl()->getLocation(),
2292           diag::note_using_decl) << 0;
2293      return true;
2294    }
2295
2296    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2297      << New->getDeclName();
2298    Diag(OldD->getLocation(), diag::note_previous_definition);
2299    return true;
2300  }
2301
2302  // Determine whether the previous declaration was a definition,
2303  // implicit declaration, or a declaration.
2304  diag::kind PrevDiag;
2305  if (Old->isThisDeclarationADefinition())
2306    PrevDiag = diag::note_previous_definition;
2307  else if (Old->isImplicit())
2308    PrevDiag = diag::note_previous_implicit_declaration;
2309  else
2310    PrevDiag = diag::note_previous_declaration;
2311
2312  QualType OldQType = Context.getCanonicalType(Old->getType());
2313  QualType NewQType = Context.getCanonicalType(New->getType());
2314
2315  // Don't complain about this if we're in GNU89 mode and the old function
2316  // is an extern inline function.
2317  // Don't complain about specializations. They are not supposed to have
2318  // storage classes.
2319  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2320      New->getStorageClass() == SC_Static &&
2321      isExternalLinkage(Old->getLinkage()) &&
2322      !New->getTemplateSpecializationInfo() &&
2323      !canRedefineFunction(Old, getLangOpts())) {
2324    if (getLangOpts().MicrosoftExt) {
2325      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2326      Diag(Old->getLocation(), PrevDiag);
2327    } else {
2328      Diag(New->getLocation(), diag::err_static_non_static) << New;
2329      Diag(Old->getLocation(), PrevDiag);
2330      return true;
2331    }
2332  }
2333
2334  // If a function is first declared with a calling convention, but is
2335  // later declared or defined without one, the second decl assumes the
2336  // calling convention of the first.
2337  //
2338  // It's OK if a function is first declared without a calling convention,
2339  // but is later declared or defined with the default calling convention.
2340  //
2341  // For the new decl, we have to look at the NON-canonical type to tell the
2342  // difference between a function that really doesn't have a calling
2343  // convention and one that is declared cdecl. That's because in
2344  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2345  // because it is the default calling convention.
2346  //
2347  // Note also that we DO NOT return at this point, because we still have
2348  // other tests to run.
2349  const FunctionType *OldType = cast<FunctionType>(OldQType);
2350  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2351  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2352  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2353  bool RequiresAdjustment = false;
2354  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2355    // Fast path: nothing to do.
2356
2357  // Inherit the CC from the previous declaration if it was specified
2358  // there but not here.
2359  } else if (NewTypeInfo.getCC() == CC_Default) {
2360    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2361    RequiresAdjustment = true;
2362
2363  // Don't complain about mismatches when the default CC is
2364  // effectively the same as the explict one. Only Old decl contains correct
2365  // information about storage class of CXXMethod.
2366  } else if (OldTypeInfo.getCC() == CC_Default &&
2367             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2368    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2369    RequiresAdjustment = true;
2370
2371  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2372                                     NewTypeInfo.getCC())) {
2373    // Calling conventions really aren't compatible, so complain.
2374    Diag(New->getLocation(), diag::err_cconv_change)
2375      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2376      << (OldTypeInfo.getCC() == CC_Default)
2377      << (OldTypeInfo.getCC() == CC_Default ? "" :
2378          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2379    Diag(Old->getLocation(), diag::note_previous_declaration);
2380    return true;
2381  }
2382
2383  // FIXME: diagnose the other way around?
2384  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2385    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2386    RequiresAdjustment = true;
2387  }
2388
2389  // Merge regparm attribute.
2390  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2391      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2392    if (NewTypeInfo.getHasRegParm()) {
2393      Diag(New->getLocation(), diag::err_regparm_mismatch)
2394        << NewType->getRegParmType()
2395        << OldType->getRegParmType();
2396      Diag(Old->getLocation(), diag::note_previous_declaration);
2397      return true;
2398    }
2399
2400    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2401    RequiresAdjustment = true;
2402  }
2403
2404  // Merge ns_returns_retained attribute.
2405  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2406    if (NewTypeInfo.getProducesResult()) {
2407      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2408      Diag(Old->getLocation(), diag::note_previous_declaration);
2409      return true;
2410    }
2411
2412    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2413    RequiresAdjustment = true;
2414  }
2415
2416  if (RequiresAdjustment) {
2417    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2418    New->setType(QualType(NewType, 0));
2419    NewQType = Context.getCanonicalType(New->getType());
2420  }
2421
2422  // If this redeclaration makes the function inline, we may need to add it to
2423  // UndefinedButUsed.
2424  if (!Old->isInlined() && New->isInlined() &&
2425      !New->hasAttr<GNUInlineAttr>() &&
2426      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2427      Old->isUsed(false) &&
2428      !Old->isDefined() && !New->isThisDeclarationADefinition())
2429    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2430                                           SourceLocation()));
2431
2432  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2433  // about it.
2434  if (New->hasAttr<GNUInlineAttr>() &&
2435      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2436    UndefinedButUsed.erase(Old->getCanonicalDecl());
2437  }
2438
2439  if (getLangOpts().CPlusPlus) {
2440    // (C++98 13.1p2):
2441    //   Certain function declarations cannot be overloaded:
2442    //     -- Function declarations that differ only in the return type
2443    //        cannot be overloaded.
2444    QualType OldReturnType = OldType->getResultType();
2445    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2446    QualType ResQT;
2447    if (OldReturnType != NewReturnType) {
2448      if (NewReturnType->isObjCObjectPointerType()
2449          && OldReturnType->isObjCObjectPointerType())
2450        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2451      if (ResQT.isNull()) {
2452        if (New->isCXXClassMember() && New->isOutOfLine())
2453          Diag(New->getLocation(),
2454               diag::err_member_def_does_not_match_ret_type) << New;
2455        else
2456          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2457        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2458        return true;
2459      }
2460      else
2461        NewQType = ResQT;
2462    }
2463
2464    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2465    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2466    if (OldMethod && NewMethod) {
2467      // Preserve triviality.
2468      NewMethod->setTrivial(OldMethod->isTrivial());
2469
2470      // MSVC allows explicit template specialization at class scope:
2471      // 2 CXMethodDecls referring to the same function will be injected.
2472      // We don't want a redeclartion error.
2473      bool IsClassScopeExplicitSpecialization =
2474                              OldMethod->isFunctionTemplateSpecialization() &&
2475                              NewMethod->isFunctionTemplateSpecialization();
2476      bool isFriend = NewMethod->getFriendObjectKind();
2477
2478      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2479          !IsClassScopeExplicitSpecialization) {
2480        //    -- Member function declarations with the same name and the
2481        //       same parameter types cannot be overloaded if any of them
2482        //       is a static member function declaration.
2483        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2484          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2485          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2486          return true;
2487        }
2488
2489        // C++ [class.mem]p1:
2490        //   [...] A member shall not be declared twice in the
2491        //   member-specification, except that a nested class or member
2492        //   class template can be declared and then later defined.
2493        if (ActiveTemplateInstantiations.empty()) {
2494          unsigned NewDiag;
2495          if (isa<CXXConstructorDecl>(OldMethod))
2496            NewDiag = diag::err_constructor_redeclared;
2497          else if (isa<CXXDestructorDecl>(NewMethod))
2498            NewDiag = diag::err_destructor_redeclared;
2499          else if (isa<CXXConversionDecl>(NewMethod))
2500            NewDiag = diag::err_conv_function_redeclared;
2501          else
2502            NewDiag = diag::err_member_redeclared;
2503
2504          Diag(New->getLocation(), NewDiag);
2505        } else {
2506          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2507            << New << New->getType();
2508        }
2509        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2510
2511      // Complain if this is an explicit declaration of a special
2512      // member that was initially declared implicitly.
2513      //
2514      // As an exception, it's okay to befriend such methods in order
2515      // to permit the implicit constructor/destructor/operator calls.
2516      } else if (OldMethod->isImplicit()) {
2517        if (isFriend) {
2518          NewMethod->setImplicit();
2519        } else {
2520          Diag(NewMethod->getLocation(),
2521               diag::err_definition_of_implicitly_declared_member)
2522            << New << getSpecialMember(OldMethod);
2523          return true;
2524        }
2525      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2526        Diag(NewMethod->getLocation(),
2527             diag::err_definition_of_explicitly_defaulted_member)
2528          << getSpecialMember(OldMethod);
2529        return true;
2530      }
2531    }
2532
2533    // C++11 [dcl.attr.noreturn]p1:
2534    //   The first declaration of a function shall specify the noreturn
2535    //   attribute if any declaration of that function specifies the noreturn
2536    //   attribute.
2537    if (New->hasAttr<CXX11NoReturnAttr>() &&
2538        !Old->hasAttr<CXX11NoReturnAttr>()) {
2539      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2540           diag::err_noreturn_missing_on_first_decl);
2541      Diag(Old->getFirstDeclaration()->getLocation(),
2542           diag::note_noreturn_missing_first_decl);
2543    }
2544
2545    // C++11 [dcl.attr.depend]p2:
2546    //   The first declaration of a function shall specify the
2547    //   carries_dependency attribute for its declarator-id if any declaration
2548    //   of the function specifies the carries_dependency attribute.
2549    if (New->hasAttr<CarriesDependencyAttr>() &&
2550        !Old->hasAttr<CarriesDependencyAttr>()) {
2551      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2552           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2553      Diag(Old->getFirstDeclaration()->getLocation(),
2554           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2555    }
2556
2557    // (C++98 8.3.5p3):
2558    //   All declarations for a function shall agree exactly in both the
2559    //   return type and the parameter-type-list.
2560    // We also want to respect all the extended bits except noreturn.
2561
2562    // noreturn should now match unless the old type info didn't have it.
2563    QualType OldQTypeForComparison = OldQType;
2564    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2565      assert(OldQType == QualType(OldType, 0));
2566      const FunctionType *OldTypeForComparison
2567        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2568      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2569      assert(OldQTypeForComparison.isCanonical());
2570    }
2571
2572    if (haveIncompatibleLanguageLinkages(Old, New)) {
2573      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2574      Diag(Old->getLocation(), PrevDiag);
2575      return true;
2576    }
2577
2578    if (OldQTypeForComparison == NewQType)
2579      return MergeCompatibleFunctionDecls(New, Old, S);
2580
2581    // Fall through for conflicting redeclarations and redefinitions.
2582  }
2583
2584  // C: Function types need to be compatible, not identical. This handles
2585  // duplicate function decls like "void f(int); void f(enum X);" properly.
2586  if (!getLangOpts().CPlusPlus &&
2587      Context.typesAreCompatible(OldQType, NewQType)) {
2588    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2589    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2590    const FunctionProtoType *OldProto = 0;
2591    if (isa<FunctionNoProtoType>(NewFuncType) &&
2592        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2593      // The old declaration provided a function prototype, but the
2594      // new declaration does not. Merge in the prototype.
2595      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2596      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2597                                                 OldProto->arg_type_end());
2598      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2599                                         ParamTypes,
2600                                         OldProto->getExtProtoInfo());
2601      New->setType(NewQType);
2602      New->setHasInheritedPrototype();
2603
2604      // Synthesize a parameter for each argument type.
2605      SmallVector<ParmVarDecl*, 16> Params;
2606      for (FunctionProtoType::arg_type_iterator
2607             ParamType = OldProto->arg_type_begin(),
2608             ParamEnd = OldProto->arg_type_end();
2609           ParamType != ParamEnd; ++ParamType) {
2610        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2611                                                 SourceLocation(),
2612                                                 SourceLocation(), 0,
2613                                                 *ParamType, /*TInfo=*/0,
2614                                                 SC_None,
2615                                                 0);
2616        Param->setScopeInfo(0, Params.size());
2617        Param->setImplicit();
2618        Params.push_back(Param);
2619      }
2620
2621      New->setParams(Params);
2622    }
2623
2624    return MergeCompatibleFunctionDecls(New, Old, S);
2625  }
2626
2627  // GNU C permits a K&R definition to follow a prototype declaration
2628  // if the declared types of the parameters in the K&R definition
2629  // match the types in the prototype declaration, even when the
2630  // promoted types of the parameters from the K&R definition differ
2631  // from the types in the prototype. GCC then keeps the types from
2632  // the prototype.
2633  //
2634  // If a variadic prototype is followed by a non-variadic K&R definition,
2635  // the K&R definition becomes variadic.  This is sort of an edge case, but
2636  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2637  // C99 6.9.1p8.
2638  if (!getLangOpts().CPlusPlus &&
2639      Old->hasPrototype() && !New->hasPrototype() &&
2640      New->getType()->getAs<FunctionProtoType>() &&
2641      Old->getNumParams() == New->getNumParams()) {
2642    SmallVector<QualType, 16> ArgTypes;
2643    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2644    const FunctionProtoType *OldProto
2645      = Old->getType()->getAs<FunctionProtoType>();
2646    const FunctionProtoType *NewProto
2647      = New->getType()->getAs<FunctionProtoType>();
2648
2649    // Determine whether this is the GNU C extension.
2650    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2651                                               NewProto->getResultType());
2652    bool LooseCompatible = !MergedReturn.isNull();
2653    for (unsigned Idx = 0, End = Old->getNumParams();
2654         LooseCompatible && Idx != End; ++Idx) {
2655      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2656      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2657      if (Context.typesAreCompatible(OldParm->getType(),
2658                                     NewProto->getArgType(Idx))) {
2659        ArgTypes.push_back(NewParm->getType());
2660      } else if (Context.typesAreCompatible(OldParm->getType(),
2661                                            NewParm->getType(),
2662                                            /*CompareUnqualified=*/true)) {
2663        GNUCompatibleParamWarning Warn
2664          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2665        Warnings.push_back(Warn);
2666        ArgTypes.push_back(NewParm->getType());
2667      } else
2668        LooseCompatible = false;
2669    }
2670
2671    if (LooseCompatible) {
2672      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2673        Diag(Warnings[Warn].NewParm->getLocation(),
2674             diag::ext_param_promoted_not_compatible_with_prototype)
2675          << Warnings[Warn].PromotedType
2676          << Warnings[Warn].OldParm->getType();
2677        if (Warnings[Warn].OldParm->getLocation().isValid())
2678          Diag(Warnings[Warn].OldParm->getLocation(),
2679               diag::note_previous_declaration);
2680      }
2681
2682      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2683                                           OldProto->getExtProtoInfo()));
2684      return MergeCompatibleFunctionDecls(New, Old, S);
2685    }
2686
2687    // Fall through to diagnose conflicting types.
2688  }
2689
2690  // A function that has already been declared has been redeclared or
2691  // defined with a different type; show an appropriate diagnostic.
2692
2693  // If the previous declaration was an implicitly-generated builtin
2694  // declaration, then at the very least we should use a specialized note.
2695  unsigned BuiltinID;
2696  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2697    // If it's actually a library-defined builtin function like 'malloc'
2698    // or 'printf', just warn about the incompatible redeclaration.
2699    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2700      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2701      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2702        << Old << Old->getType();
2703
2704      // If this is a global redeclaration, just forget hereafter
2705      // about the "builtin-ness" of the function.
2706      //
2707      // Doing this for local extern declarations is problematic.  If
2708      // the builtin declaration remains visible, a second invalid
2709      // local declaration will produce a hard error; if it doesn't
2710      // remain visible, a single bogus local redeclaration (which is
2711      // actually only a warning) could break all the downstream code.
2712      if (!New->getDeclContext()->isFunctionOrMethod())
2713        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2714
2715      return false;
2716    }
2717
2718    PrevDiag = diag::note_previous_builtin_declaration;
2719  }
2720
2721  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2722  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2723  return true;
2724}
2725
2726/// \brief Completes the merge of two function declarations that are
2727/// known to be compatible.
2728///
2729/// This routine handles the merging of attributes and other
2730/// properties of function declarations form the old declaration to
2731/// the new declaration, once we know that New is in fact a
2732/// redeclaration of Old.
2733///
2734/// \returns false
2735bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2736                                        Scope *S) {
2737  // Merge the attributes
2738  mergeDeclAttributes(New, Old);
2739
2740  // Merge "pure" flag.
2741  if (Old->isPure())
2742    New->setPure();
2743
2744  // Merge "used" flag.
2745  if (Old->isUsed(false))
2746    New->setUsed();
2747
2748  // Merge attributes from the parameters.  These can mismatch with K&R
2749  // declarations.
2750  if (New->getNumParams() == Old->getNumParams())
2751    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2752      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2753                               *this);
2754
2755  if (getLangOpts().CPlusPlus)
2756    return MergeCXXFunctionDecl(New, Old, S);
2757
2758  // Merge the function types so the we get the composite types for the return
2759  // and argument types.
2760  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2761  if (!Merged.isNull())
2762    New->setType(Merged);
2763
2764  return false;
2765}
2766
2767
2768void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2769                                ObjCMethodDecl *oldMethod) {
2770
2771  // Merge the attributes, including deprecated/unavailable
2772  AvailabilityMergeKind MergeKind =
2773    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2774                                                   : AMK_Override;
2775  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2776
2777  // Merge attributes from the parameters.
2778  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2779                                       oe = oldMethod->param_end();
2780  for (ObjCMethodDecl::param_iterator
2781         ni = newMethod->param_begin(), ne = newMethod->param_end();
2782       ni != ne && oi != oe; ++ni, ++oi)
2783    mergeParamDeclAttributes(*ni, *oi, *this);
2784
2785  CheckObjCMethodOverride(newMethod, oldMethod);
2786}
2787
2788/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2789/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2790/// emitting diagnostics as appropriate.
2791///
2792/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2793/// to here in AddInitializerToDecl. We can't check them before the initializer
2794/// is attached.
2795void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2796  if (New->isInvalidDecl() || Old->isInvalidDecl())
2797    return;
2798
2799  QualType MergedT;
2800  if (getLangOpts().CPlusPlus) {
2801    if (New->getType()->isUndeducedType()) {
2802      // We don't know what the new type is until the initializer is attached.
2803      return;
2804    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2805      // These could still be something that needs exception specs checked.
2806      return MergeVarDeclExceptionSpecs(New, Old);
2807    }
2808    // C++ [basic.link]p10:
2809    //   [...] the types specified by all declarations referring to a given
2810    //   object or function shall be identical, except that declarations for an
2811    //   array object can specify array types that differ by the presence or
2812    //   absence of a major array bound (8.3.4).
2813    else if (Old->getType()->isIncompleteArrayType() &&
2814             New->getType()->isArrayType()) {
2815      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2816      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2817      if (Context.hasSameType(OldArray->getElementType(),
2818                              NewArray->getElementType()))
2819        MergedT = New->getType();
2820    } else if (Old->getType()->isArrayType() &&
2821             New->getType()->isIncompleteArrayType()) {
2822      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2823      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2824      if (Context.hasSameType(OldArray->getElementType(),
2825                              NewArray->getElementType()))
2826        MergedT = Old->getType();
2827    } else if (New->getType()->isObjCObjectPointerType()
2828               && Old->getType()->isObjCObjectPointerType()) {
2829        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2830                                                        Old->getType());
2831    }
2832  } else {
2833    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2834  }
2835  if (MergedT.isNull()) {
2836    Diag(New->getLocation(), diag::err_redefinition_different_type)
2837      << New->getDeclName() << New->getType() << Old->getType();
2838    Diag(Old->getLocation(), diag::note_previous_definition);
2839    return New->setInvalidDecl();
2840  }
2841
2842  // Don't actually update the type on the new declaration if the old
2843  // declaration was a extern declaration in a different scope.
2844  if (!OldWasHidden)
2845    New->setType(MergedT);
2846}
2847
2848/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2849/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2850/// situation, merging decls or emitting diagnostics as appropriate.
2851///
2852/// Tentative definition rules (C99 6.9.2p2) are checked by
2853/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2854/// definitions here, since the initializer hasn't been attached.
2855///
2856void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2857                        bool PreviousWasHidden) {
2858  // If the new decl is already invalid, don't do any other checking.
2859  if (New->isInvalidDecl())
2860    return;
2861
2862  // Verify the old decl was also a variable.
2863  VarDecl *Old = 0;
2864  if (!Previous.isSingleResult() ||
2865      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2866    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2867      << New->getDeclName();
2868    Diag(Previous.getRepresentativeDecl()->getLocation(),
2869         diag::note_previous_definition);
2870    return New->setInvalidDecl();
2871  }
2872
2873  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2874    return;
2875
2876  // C++ [class.mem]p1:
2877  //   A member shall not be declared twice in the member-specification [...]
2878  //
2879  // Here, we need only consider static data members.
2880  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2881    Diag(New->getLocation(), diag::err_duplicate_member)
2882      << New->getIdentifier();
2883    Diag(Old->getLocation(), diag::note_previous_declaration);
2884    New->setInvalidDecl();
2885  }
2886
2887  mergeDeclAttributes(New, Old);
2888  // Warn if an already-declared variable is made a weak_import in a subsequent
2889  // declaration
2890  if (New->getAttr<WeakImportAttr>() &&
2891      Old->getStorageClass() == SC_None &&
2892      !Old->getAttr<WeakImportAttr>()) {
2893    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2894    Diag(Old->getLocation(), diag::note_previous_definition);
2895    // Remove weak_import attribute on new declaration.
2896    New->dropAttr<WeakImportAttr>();
2897  }
2898
2899  // Merge the types.
2900  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2901  if (New->isInvalidDecl())
2902    return;
2903
2904  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2905  if (New->getStorageClass() == SC_Static &&
2906      !New->isStaticDataMember() &&
2907      isExternalLinkage(Old->getLinkage())) {
2908    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2909    Diag(Old->getLocation(), diag::note_previous_definition);
2910    return New->setInvalidDecl();
2911  }
2912  // C99 6.2.2p4:
2913  //   For an identifier declared with the storage-class specifier
2914  //   extern in a scope in which a prior declaration of that
2915  //   identifier is visible,23) if the prior declaration specifies
2916  //   internal or external linkage, the linkage of the identifier at
2917  //   the later declaration is the same as the linkage specified at
2918  //   the prior declaration. If no prior declaration is visible, or
2919  //   if the prior declaration specifies no linkage, then the
2920  //   identifier has external linkage.
2921  if (New->hasExternalStorage() && Old->hasLinkage())
2922    /* Okay */;
2923  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2924           !New->isStaticDataMember() &&
2925           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2926    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2927    Diag(Old->getLocation(), diag::note_previous_definition);
2928    return New->setInvalidDecl();
2929  }
2930
2931  // Check if extern is followed by non-extern and vice-versa.
2932  if (New->hasExternalStorage() &&
2933      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2934    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2935    Diag(Old->getLocation(), diag::note_previous_definition);
2936    return New->setInvalidDecl();
2937  }
2938  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2939      !New->hasExternalStorage()) {
2940    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2941    Diag(Old->getLocation(), diag::note_previous_definition);
2942    return New->setInvalidDecl();
2943  }
2944
2945  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2946
2947  // FIXME: The test for external storage here seems wrong? We still
2948  // need to check for mismatches.
2949  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2950      // Don't complain about out-of-line definitions of static members.
2951      !(Old->getLexicalDeclContext()->isRecord() &&
2952        !New->getLexicalDeclContext()->isRecord())) {
2953    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2954    Diag(Old->getLocation(), diag::note_previous_definition);
2955    return New->setInvalidDecl();
2956  }
2957
2958  if (New->getTLSKind() != Old->getTLSKind()) {
2959    if (!Old->getTLSKind()) {
2960      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2961      Diag(Old->getLocation(), diag::note_previous_declaration);
2962    } else if (!New->getTLSKind()) {
2963      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2964      Diag(Old->getLocation(), diag::note_previous_declaration);
2965    } else {
2966      // Do not allow redeclaration to change the variable between requiring
2967      // static and dynamic initialization.
2968      // FIXME: GCC allows this, but uses the TLS keyword on the first
2969      // declaration to determine the kind. Do we need to be compatible here?
2970      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
2971        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
2972      Diag(Old->getLocation(), diag::note_previous_declaration);
2973    }
2974  }
2975
2976  // C++ doesn't have tentative definitions, so go right ahead and check here.
2977  const VarDecl *Def;
2978  if (getLangOpts().CPlusPlus &&
2979      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2980      (Def = Old->getDefinition())) {
2981    Diag(New->getLocation(), diag::err_redefinition)
2982      << New->getDeclName();
2983    Diag(Def->getLocation(), diag::note_previous_definition);
2984    New->setInvalidDecl();
2985    return;
2986  }
2987
2988  if (haveIncompatibleLanguageLinkages(Old, New)) {
2989    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2990    Diag(Old->getLocation(), diag::note_previous_definition);
2991    New->setInvalidDecl();
2992    return;
2993  }
2994
2995  // Merge "used" flag.
2996  if (Old->isUsed(false))
2997    New->setUsed();
2998
2999  // Keep a chain of previous declarations.
3000  New->setPreviousDeclaration(Old);
3001
3002  // Inherit access appropriately.
3003  New->setAccess(Old->getAccess());
3004}
3005
3006/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3007/// no declarator (e.g. "struct foo;") is parsed.
3008Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3009                                       DeclSpec &DS) {
3010  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3011}
3012
3013/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3014/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3015/// parameters to cope with template friend declarations.
3016Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3017                                       DeclSpec &DS,
3018                                       MultiTemplateParamsArg TemplateParams,
3019                                       bool IsExplicitInstantiation) {
3020  Decl *TagD = 0;
3021  TagDecl *Tag = 0;
3022  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3023      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3024      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3025      DS.getTypeSpecType() == DeclSpec::TST_union ||
3026      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3027    TagD = DS.getRepAsDecl();
3028
3029    if (!TagD) // We probably had an error
3030      return 0;
3031
3032    // Note that the above type specs guarantee that the
3033    // type rep is a Decl, whereas in many of the others
3034    // it's a Type.
3035    if (isa<TagDecl>(TagD))
3036      Tag = cast<TagDecl>(TagD);
3037    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3038      Tag = CTD->getTemplatedDecl();
3039  }
3040
3041  if (Tag) {
3042    getASTContext().addUnnamedTag(Tag);
3043    Tag->setFreeStanding();
3044    if (Tag->isInvalidDecl())
3045      return Tag;
3046  }
3047
3048  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3049    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3050    // or incomplete types shall not be restrict-qualified."
3051    if (TypeQuals & DeclSpec::TQ_restrict)
3052      Diag(DS.getRestrictSpecLoc(),
3053           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3054           << DS.getSourceRange();
3055  }
3056
3057  if (DS.isConstexprSpecified()) {
3058    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3059    // and definitions of functions and variables.
3060    if (Tag)
3061      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3062        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3063            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3064            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3065            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3066    else
3067      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3068    // Don't emit warnings after this error.
3069    return TagD;
3070  }
3071
3072  DiagnoseFunctionSpecifiers(DS);
3073
3074  if (DS.isFriendSpecified()) {
3075    // If we're dealing with a decl but not a TagDecl, assume that
3076    // whatever routines created it handled the friendship aspect.
3077    if (TagD && !Tag)
3078      return 0;
3079    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3080  }
3081
3082  CXXScopeSpec &SS = DS.getTypeSpecScope();
3083  bool IsExplicitSpecialization =
3084    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3085  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3086      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3087    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3088    // nested-name-specifier unless it is an explicit instantiation
3089    // or an explicit specialization.
3090    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3091    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3092      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3093          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3094          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3095          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3096      << SS.getRange();
3097    return 0;
3098  }
3099
3100  // Track whether this decl-specifier declares anything.
3101  bool DeclaresAnything = true;
3102
3103  // Handle anonymous struct definitions.
3104  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3105    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3106        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3107      if (getLangOpts().CPlusPlus ||
3108          Record->getDeclContext()->isRecord())
3109        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3110
3111      DeclaresAnything = false;
3112    }
3113  }
3114
3115  // Check for Microsoft C extension: anonymous struct member.
3116  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3117      CurContext->isRecord() &&
3118      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3119    // Handle 2 kinds of anonymous struct:
3120    //   struct STRUCT;
3121    // and
3122    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3123    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3124    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3125        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3126         DS.getRepAsType().get()->isStructureType())) {
3127      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3128        << DS.getSourceRange();
3129      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3130    }
3131  }
3132
3133  // Skip all the checks below if we have a type error.
3134  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3135      (TagD && TagD->isInvalidDecl()))
3136    return TagD;
3137
3138  if (getLangOpts().CPlusPlus &&
3139      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3140    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3141      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3142          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3143        DeclaresAnything = false;
3144
3145  if (!DS.isMissingDeclaratorOk()) {
3146    // Customize diagnostic for a typedef missing a name.
3147    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3148      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3149        << DS.getSourceRange();
3150    else
3151      DeclaresAnything = false;
3152  }
3153
3154  if (DS.isModulePrivateSpecified() &&
3155      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3156    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3157      << Tag->getTagKind()
3158      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3159
3160  ActOnDocumentableDecl(TagD);
3161
3162  // C 6.7/2:
3163  //   A declaration [...] shall declare at least a declarator [...], a tag,
3164  //   or the members of an enumeration.
3165  // C++ [dcl.dcl]p3:
3166  //   [If there are no declarators], and except for the declaration of an
3167  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3168  //   names into the program, or shall redeclare a name introduced by a
3169  //   previous declaration.
3170  if (!DeclaresAnything) {
3171    // In C, we allow this as a (popular) extension / bug. Don't bother
3172    // producing further diagnostics for redundant qualifiers after this.
3173    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3174    return TagD;
3175  }
3176
3177  // C++ [dcl.stc]p1:
3178  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3179  //   init-declarator-list of the declaration shall not be empty.
3180  // C++ [dcl.fct.spec]p1:
3181  //   If a cv-qualifier appears in a decl-specifier-seq, the
3182  //   init-declarator-list of the declaration shall not be empty.
3183  //
3184  // Spurious qualifiers here appear to be valid in C.
3185  unsigned DiagID = diag::warn_standalone_specifier;
3186  if (getLangOpts().CPlusPlus)
3187    DiagID = diag::ext_standalone_specifier;
3188
3189  // Note that a linkage-specification sets a storage class, but
3190  // 'extern "C" struct foo;' is actually valid and not theoretically
3191  // useless.
3192  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3193    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3194      Diag(DS.getStorageClassSpecLoc(), DiagID)
3195        << DeclSpec::getSpecifierName(SCS);
3196
3197  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3198    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3199      << DeclSpec::getSpecifierName(TSCS);
3200  if (DS.getTypeQualifiers()) {
3201    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3202      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3203    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3204      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3205    // Restrict is covered above.
3206    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3207      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3208  }
3209
3210  // Warn about ignored type attributes, for example:
3211  // __attribute__((aligned)) struct A;
3212  // Attributes should be placed after tag to apply to type declaration.
3213  if (!DS.getAttributes().empty()) {
3214    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3215    if (TypeSpecType == DeclSpec::TST_class ||
3216        TypeSpecType == DeclSpec::TST_struct ||
3217        TypeSpecType == DeclSpec::TST_interface ||
3218        TypeSpecType == DeclSpec::TST_union ||
3219        TypeSpecType == DeclSpec::TST_enum) {
3220      AttributeList* attrs = DS.getAttributes().getList();
3221      while (attrs) {
3222        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3223        << attrs->getName()
3224        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3225            TypeSpecType == DeclSpec::TST_struct ? 1 :
3226            TypeSpecType == DeclSpec::TST_union ? 2 :
3227            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3228        attrs = attrs->getNext();
3229      }
3230    }
3231  }
3232
3233  return TagD;
3234}
3235
3236/// We are trying to inject an anonymous member into the given scope;
3237/// check if there's an existing declaration that can't be overloaded.
3238///
3239/// \return true if this is a forbidden redeclaration
3240static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3241                                         Scope *S,
3242                                         DeclContext *Owner,
3243                                         DeclarationName Name,
3244                                         SourceLocation NameLoc,
3245                                         unsigned diagnostic) {
3246  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3247                 Sema::ForRedeclaration);
3248  if (!SemaRef.LookupName(R, S)) return false;
3249
3250  if (R.getAsSingle<TagDecl>())
3251    return false;
3252
3253  // Pick a representative declaration.
3254  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3255  assert(PrevDecl && "Expected a non-null Decl");
3256
3257  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3258    return false;
3259
3260  SemaRef.Diag(NameLoc, diagnostic) << Name;
3261  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3262
3263  return true;
3264}
3265
3266/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3267/// anonymous struct or union AnonRecord into the owning context Owner
3268/// and scope S. This routine will be invoked just after we realize
3269/// that an unnamed union or struct is actually an anonymous union or
3270/// struct, e.g.,
3271///
3272/// @code
3273/// union {
3274///   int i;
3275///   float f;
3276/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3277///    // f into the surrounding scope.x
3278/// @endcode
3279///
3280/// This routine is recursive, injecting the names of nested anonymous
3281/// structs/unions into the owning context and scope as well.
3282static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3283                                                DeclContext *Owner,
3284                                                RecordDecl *AnonRecord,
3285                                                AccessSpecifier AS,
3286                              SmallVector<NamedDecl*, 2> &Chaining,
3287                                                      bool MSAnonStruct) {
3288  unsigned diagKind
3289    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3290                            : diag::err_anonymous_struct_member_redecl;
3291
3292  bool Invalid = false;
3293
3294  // Look every FieldDecl and IndirectFieldDecl with a name.
3295  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3296                               DEnd = AnonRecord->decls_end();
3297       D != DEnd; ++D) {
3298    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3299        cast<NamedDecl>(*D)->getDeclName()) {
3300      ValueDecl *VD = cast<ValueDecl>(*D);
3301      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3302                                       VD->getLocation(), diagKind)) {
3303        // C++ [class.union]p2:
3304        //   The names of the members of an anonymous union shall be
3305        //   distinct from the names of any other entity in the
3306        //   scope in which the anonymous union is declared.
3307        Invalid = true;
3308      } else {
3309        // C++ [class.union]p2:
3310        //   For the purpose of name lookup, after the anonymous union
3311        //   definition, the members of the anonymous union are
3312        //   considered to have been defined in the scope in which the
3313        //   anonymous union is declared.
3314        unsigned OldChainingSize = Chaining.size();
3315        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3316          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3317               PE = IF->chain_end(); PI != PE; ++PI)
3318            Chaining.push_back(*PI);
3319        else
3320          Chaining.push_back(VD);
3321
3322        assert(Chaining.size() >= 2);
3323        NamedDecl **NamedChain =
3324          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3325        for (unsigned i = 0; i < Chaining.size(); i++)
3326          NamedChain[i] = Chaining[i];
3327
3328        IndirectFieldDecl* IndirectField =
3329          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3330                                    VD->getIdentifier(), VD->getType(),
3331                                    NamedChain, Chaining.size());
3332
3333        IndirectField->setAccess(AS);
3334        IndirectField->setImplicit();
3335        SemaRef.PushOnScopeChains(IndirectField, S);
3336
3337        // That includes picking up the appropriate access specifier.
3338        if (AS != AS_none) IndirectField->setAccess(AS);
3339
3340        Chaining.resize(OldChainingSize);
3341      }
3342    }
3343  }
3344
3345  return Invalid;
3346}
3347
3348/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3349/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3350/// illegal input values are mapped to SC_None.
3351static StorageClass
3352StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3353  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3354  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3355         "Parser allowed 'typedef' as storage class VarDecl.");
3356  switch (StorageClassSpec) {
3357  case DeclSpec::SCS_unspecified:    return SC_None;
3358  case DeclSpec::SCS_extern:
3359    if (DS.isExternInLinkageSpec())
3360      return SC_None;
3361    return SC_Extern;
3362  case DeclSpec::SCS_static:         return SC_Static;
3363  case DeclSpec::SCS_auto:           return SC_Auto;
3364  case DeclSpec::SCS_register:       return SC_Register;
3365  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3366    // Illegal SCSs map to None: error reporting is up to the caller.
3367  case DeclSpec::SCS_mutable:        // Fall through.
3368  case DeclSpec::SCS_typedef:        return SC_None;
3369  }
3370  llvm_unreachable("unknown storage class specifier");
3371}
3372
3373/// BuildAnonymousStructOrUnion - Handle the declaration of an
3374/// anonymous structure or union. Anonymous unions are a C++ feature
3375/// (C++ [class.union]) and a C11 feature; anonymous structures
3376/// are a C11 feature and GNU C++ extension.
3377Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3378                                             AccessSpecifier AS,
3379                                             RecordDecl *Record) {
3380  DeclContext *Owner = Record->getDeclContext();
3381
3382  // Diagnose whether this anonymous struct/union is an extension.
3383  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3384    Diag(Record->getLocation(), diag::ext_anonymous_union);
3385  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3386    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3387  else if (!Record->isUnion() && !getLangOpts().C11)
3388    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3389
3390  // C and C++ require different kinds of checks for anonymous
3391  // structs/unions.
3392  bool Invalid = false;
3393  if (getLangOpts().CPlusPlus) {
3394    const char* PrevSpec = 0;
3395    unsigned DiagID;
3396    if (Record->isUnion()) {
3397      // C++ [class.union]p6:
3398      //   Anonymous unions declared in a named namespace or in the
3399      //   global namespace shall be declared static.
3400      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3401          (isa<TranslationUnitDecl>(Owner) ||
3402           (isa<NamespaceDecl>(Owner) &&
3403            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3404        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3405          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3406
3407        // Recover by adding 'static'.
3408        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3409                               PrevSpec, DiagID);
3410      }
3411      // C++ [class.union]p6:
3412      //   A storage class is not allowed in a declaration of an
3413      //   anonymous union in a class scope.
3414      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3415               isa<RecordDecl>(Owner)) {
3416        Diag(DS.getStorageClassSpecLoc(),
3417             diag::err_anonymous_union_with_storage_spec)
3418          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3419
3420        // Recover by removing the storage specifier.
3421        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3422                               SourceLocation(),
3423                               PrevSpec, DiagID);
3424      }
3425    }
3426
3427    // Ignore const/volatile/restrict qualifiers.
3428    if (DS.getTypeQualifiers()) {
3429      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3430        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3431          << Record->isUnion() << "const"
3432          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3433      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3434        Diag(DS.getVolatileSpecLoc(),
3435             diag::ext_anonymous_struct_union_qualified)
3436          << Record->isUnion() << "volatile"
3437          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3438      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3439        Diag(DS.getRestrictSpecLoc(),
3440             diag::ext_anonymous_struct_union_qualified)
3441          << Record->isUnion() << "restrict"
3442          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3443      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3444        Diag(DS.getAtomicSpecLoc(),
3445             diag::ext_anonymous_struct_union_qualified)
3446          << Record->isUnion() << "_Atomic"
3447          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3448
3449      DS.ClearTypeQualifiers();
3450    }
3451
3452    // C++ [class.union]p2:
3453    //   The member-specification of an anonymous union shall only
3454    //   define non-static data members. [Note: nested types and
3455    //   functions cannot be declared within an anonymous union. ]
3456    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3457                                 MemEnd = Record->decls_end();
3458         Mem != MemEnd; ++Mem) {
3459      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3460        // C++ [class.union]p3:
3461        //   An anonymous union shall not have private or protected
3462        //   members (clause 11).
3463        assert(FD->getAccess() != AS_none);
3464        if (FD->getAccess() != AS_public) {
3465          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3466            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3467          Invalid = true;
3468        }
3469
3470        // C++ [class.union]p1
3471        //   An object of a class with a non-trivial constructor, a non-trivial
3472        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3473        //   assignment operator cannot be a member of a union, nor can an
3474        //   array of such objects.
3475        if (CheckNontrivialField(FD))
3476          Invalid = true;
3477      } else if ((*Mem)->isImplicit()) {
3478        // Any implicit members are fine.
3479      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3480        // This is a type that showed up in an
3481        // elaborated-type-specifier inside the anonymous struct or
3482        // union, but which actually declares a type outside of the
3483        // anonymous struct or union. It's okay.
3484      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3485        if (!MemRecord->isAnonymousStructOrUnion() &&
3486            MemRecord->getDeclName()) {
3487          // Visual C++ allows type definition in anonymous struct or union.
3488          if (getLangOpts().MicrosoftExt)
3489            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3490              << (int)Record->isUnion();
3491          else {
3492            // This is a nested type declaration.
3493            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3494              << (int)Record->isUnion();
3495            Invalid = true;
3496          }
3497        } else {
3498          // This is an anonymous type definition within another anonymous type.
3499          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3500          // not part of standard C++.
3501          Diag(MemRecord->getLocation(),
3502               diag::ext_anonymous_record_with_anonymous_type)
3503            << (int)Record->isUnion();
3504        }
3505      } else if (isa<AccessSpecDecl>(*Mem)) {
3506        // Any access specifier is fine.
3507      } else {
3508        // We have something that isn't a non-static data
3509        // member. Complain about it.
3510        unsigned DK = diag::err_anonymous_record_bad_member;
3511        if (isa<TypeDecl>(*Mem))
3512          DK = diag::err_anonymous_record_with_type;
3513        else if (isa<FunctionDecl>(*Mem))
3514          DK = diag::err_anonymous_record_with_function;
3515        else if (isa<VarDecl>(*Mem))
3516          DK = diag::err_anonymous_record_with_static;
3517
3518        // Visual C++ allows type definition in anonymous struct or union.
3519        if (getLangOpts().MicrosoftExt &&
3520            DK == diag::err_anonymous_record_with_type)
3521          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3522            << (int)Record->isUnion();
3523        else {
3524          Diag((*Mem)->getLocation(), DK)
3525              << (int)Record->isUnion();
3526          Invalid = true;
3527        }
3528      }
3529    }
3530  }
3531
3532  if (!Record->isUnion() && !Owner->isRecord()) {
3533    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3534      << (int)getLangOpts().CPlusPlus;
3535    Invalid = true;
3536  }
3537
3538  // Mock up a declarator.
3539  Declarator Dc(DS, Declarator::MemberContext);
3540  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3541  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3542
3543  // Create a declaration for this anonymous struct/union.
3544  NamedDecl *Anon = 0;
3545  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3546    Anon = FieldDecl::Create(Context, OwningClass,
3547                             DS.getLocStart(),
3548                             Record->getLocation(),
3549                             /*IdentifierInfo=*/0,
3550                             Context.getTypeDeclType(Record),
3551                             TInfo,
3552                             /*BitWidth=*/0, /*Mutable=*/false,
3553                             /*InitStyle=*/ICIS_NoInit);
3554    Anon->setAccess(AS);
3555    if (getLangOpts().CPlusPlus)
3556      FieldCollector->Add(cast<FieldDecl>(Anon));
3557  } else {
3558    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3559    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3560    if (SCSpec == DeclSpec::SCS_mutable) {
3561      // mutable can only appear on non-static class members, so it's always
3562      // an error here
3563      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3564      Invalid = true;
3565      SC = SC_None;
3566    }
3567
3568    Anon = VarDecl::Create(Context, Owner,
3569                           DS.getLocStart(),
3570                           Record->getLocation(), /*IdentifierInfo=*/0,
3571                           Context.getTypeDeclType(Record),
3572                           TInfo, SC);
3573
3574    // Default-initialize the implicit variable. This initialization will be
3575    // trivial in almost all cases, except if a union member has an in-class
3576    // initializer:
3577    //   union { int n = 0; };
3578    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3579  }
3580  Anon->setImplicit();
3581
3582  // Add the anonymous struct/union object to the current
3583  // context. We'll be referencing this object when we refer to one of
3584  // its members.
3585  Owner->addDecl(Anon);
3586
3587  // Inject the members of the anonymous struct/union into the owning
3588  // context and into the identifier resolver chain for name lookup
3589  // purposes.
3590  SmallVector<NamedDecl*, 2> Chain;
3591  Chain.push_back(Anon);
3592
3593  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3594                                          Chain, false))
3595    Invalid = true;
3596
3597  // Mark this as an anonymous struct/union type. Note that we do not
3598  // do this until after we have already checked and injected the
3599  // members of this anonymous struct/union type, because otherwise
3600  // the members could be injected twice: once by DeclContext when it
3601  // builds its lookup table, and once by
3602  // InjectAnonymousStructOrUnionMembers.
3603  Record->setAnonymousStructOrUnion(true);
3604
3605  if (Invalid)
3606    Anon->setInvalidDecl();
3607
3608  return Anon;
3609}
3610
3611/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3612/// Microsoft C anonymous structure.
3613/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3614/// Example:
3615///
3616/// struct A { int a; };
3617/// struct B { struct A; int b; };
3618///
3619/// void foo() {
3620///   B var;
3621///   var.a = 3;
3622/// }
3623///
3624Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3625                                           RecordDecl *Record) {
3626
3627  // If there is no Record, get the record via the typedef.
3628  if (!Record)
3629    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3630
3631  // Mock up a declarator.
3632  Declarator Dc(DS, Declarator::TypeNameContext);
3633  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3634  assert(TInfo && "couldn't build declarator info for anonymous struct");
3635
3636  // Create a declaration for this anonymous struct.
3637  NamedDecl* Anon = FieldDecl::Create(Context,
3638                             cast<RecordDecl>(CurContext),
3639                             DS.getLocStart(),
3640                             DS.getLocStart(),
3641                             /*IdentifierInfo=*/0,
3642                             Context.getTypeDeclType(Record),
3643                             TInfo,
3644                             /*BitWidth=*/0, /*Mutable=*/false,
3645                             /*InitStyle=*/ICIS_NoInit);
3646  Anon->setImplicit();
3647
3648  // Add the anonymous struct object to the current context.
3649  CurContext->addDecl(Anon);
3650
3651  // Inject the members of the anonymous struct into the current
3652  // context and into the identifier resolver chain for name lookup
3653  // purposes.
3654  SmallVector<NamedDecl*, 2> Chain;
3655  Chain.push_back(Anon);
3656
3657  RecordDecl *RecordDef = Record->getDefinition();
3658  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3659                                                        RecordDef, AS_none,
3660                                                        Chain, true))
3661    Anon->setInvalidDecl();
3662
3663  return Anon;
3664}
3665
3666/// GetNameForDeclarator - Determine the full declaration name for the
3667/// given Declarator.
3668DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3669  return GetNameFromUnqualifiedId(D.getName());
3670}
3671
3672/// \brief Retrieves the declaration name from a parsed unqualified-id.
3673DeclarationNameInfo
3674Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3675  DeclarationNameInfo NameInfo;
3676  NameInfo.setLoc(Name.StartLocation);
3677
3678  switch (Name.getKind()) {
3679
3680  case UnqualifiedId::IK_ImplicitSelfParam:
3681  case UnqualifiedId::IK_Identifier:
3682    NameInfo.setName(Name.Identifier);
3683    NameInfo.setLoc(Name.StartLocation);
3684    return NameInfo;
3685
3686  case UnqualifiedId::IK_OperatorFunctionId:
3687    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3688                                           Name.OperatorFunctionId.Operator));
3689    NameInfo.setLoc(Name.StartLocation);
3690    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3691      = Name.OperatorFunctionId.SymbolLocations[0];
3692    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3693      = Name.EndLocation.getRawEncoding();
3694    return NameInfo;
3695
3696  case UnqualifiedId::IK_LiteralOperatorId:
3697    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3698                                                           Name.Identifier));
3699    NameInfo.setLoc(Name.StartLocation);
3700    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3701    return NameInfo;
3702
3703  case UnqualifiedId::IK_ConversionFunctionId: {
3704    TypeSourceInfo *TInfo;
3705    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3706    if (Ty.isNull())
3707      return DeclarationNameInfo();
3708    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3709                                               Context.getCanonicalType(Ty)));
3710    NameInfo.setLoc(Name.StartLocation);
3711    NameInfo.setNamedTypeInfo(TInfo);
3712    return NameInfo;
3713  }
3714
3715  case UnqualifiedId::IK_ConstructorName: {
3716    TypeSourceInfo *TInfo;
3717    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3718    if (Ty.isNull())
3719      return DeclarationNameInfo();
3720    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3721                                              Context.getCanonicalType(Ty)));
3722    NameInfo.setLoc(Name.StartLocation);
3723    NameInfo.setNamedTypeInfo(TInfo);
3724    return NameInfo;
3725  }
3726
3727  case UnqualifiedId::IK_ConstructorTemplateId: {
3728    // In well-formed code, we can only have a constructor
3729    // template-id that refers to the current context, so go there
3730    // to find the actual type being constructed.
3731    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3732    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3733      return DeclarationNameInfo();
3734
3735    // Determine the type of the class being constructed.
3736    QualType CurClassType = Context.getTypeDeclType(CurClass);
3737
3738    // FIXME: Check two things: that the template-id names the same type as
3739    // CurClassType, and that the template-id does not occur when the name
3740    // was qualified.
3741
3742    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3743                                    Context.getCanonicalType(CurClassType)));
3744    NameInfo.setLoc(Name.StartLocation);
3745    // FIXME: should we retrieve TypeSourceInfo?
3746    NameInfo.setNamedTypeInfo(0);
3747    return NameInfo;
3748  }
3749
3750  case UnqualifiedId::IK_DestructorName: {
3751    TypeSourceInfo *TInfo;
3752    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3753    if (Ty.isNull())
3754      return DeclarationNameInfo();
3755    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3756                                              Context.getCanonicalType(Ty)));
3757    NameInfo.setLoc(Name.StartLocation);
3758    NameInfo.setNamedTypeInfo(TInfo);
3759    return NameInfo;
3760  }
3761
3762  case UnqualifiedId::IK_TemplateId: {
3763    TemplateName TName = Name.TemplateId->Template.get();
3764    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3765    return Context.getNameForTemplate(TName, TNameLoc);
3766  }
3767
3768  } // switch (Name.getKind())
3769
3770  llvm_unreachable("Unknown name kind");
3771}
3772
3773static QualType getCoreType(QualType Ty) {
3774  do {
3775    if (Ty->isPointerType() || Ty->isReferenceType())
3776      Ty = Ty->getPointeeType();
3777    else if (Ty->isArrayType())
3778      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3779    else
3780      return Ty.withoutLocalFastQualifiers();
3781  } while (true);
3782}
3783
3784/// hasSimilarParameters - Determine whether the C++ functions Declaration
3785/// and Definition have "nearly" matching parameters. This heuristic is
3786/// used to improve diagnostics in the case where an out-of-line function
3787/// definition doesn't match any declaration within the class or namespace.
3788/// Also sets Params to the list of indices to the parameters that differ
3789/// between the declaration and the definition. If hasSimilarParameters
3790/// returns true and Params is empty, then all of the parameters match.
3791static bool hasSimilarParameters(ASTContext &Context,
3792                                     FunctionDecl *Declaration,
3793                                     FunctionDecl *Definition,
3794                                     SmallVectorImpl<unsigned> &Params) {
3795  Params.clear();
3796  if (Declaration->param_size() != Definition->param_size())
3797    return false;
3798  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3799    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3800    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3801
3802    // The parameter types are identical
3803    if (Context.hasSameType(DefParamTy, DeclParamTy))
3804      continue;
3805
3806    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3807    QualType DefParamBaseTy = getCoreType(DefParamTy);
3808    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3809    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3810
3811    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3812        (DeclTyName && DeclTyName == DefTyName))
3813      Params.push_back(Idx);
3814    else  // The two parameters aren't even close
3815      return false;
3816  }
3817
3818  return true;
3819}
3820
3821/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3822/// declarator needs to be rebuilt in the current instantiation.
3823/// Any bits of declarator which appear before the name are valid for
3824/// consideration here.  That's specifically the type in the decl spec
3825/// and the base type in any member-pointer chunks.
3826static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3827                                                    DeclarationName Name) {
3828  // The types we specifically need to rebuild are:
3829  //   - typenames, typeofs, and decltypes
3830  //   - types which will become injected class names
3831  // Of course, we also need to rebuild any type referencing such a
3832  // type.  It's safest to just say "dependent", but we call out a
3833  // few cases here.
3834
3835  DeclSpec &DS = D.getMutableDeclSpec();
3836  switch (DS.getTypeSpecType()) {
3837  case DeclSpec::TST_typename:
3838  case DeclSpec::TST_typeofType:
3839  case DeclSpec::TST_underlyingType:
3840  case DeclSpec::TST_atomic: {
3841    // Grab the type from the parser.
3842    TypeSourceInfo *TSI = 0;
3843    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3844    if (T.isNull() || !T->isDependentType()) break;
3845
3846    // Make sure there's a type source info.  This isn't really much
3847    // of a waste; most dependent types should have type source info
3848    // attached already.
3849    if (!TSI)
3850      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3851
3852    // Rebuild the type in the current instantiation.
3853    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3854    if (!TSI) return true;
3855
3856    // Store the new type back in the decl spec.
3857    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3858    DS.UpdateTypeRep(LocType);
3859    break;
3860  }
3861
3862  case DeclSpec::TST_decltype:
3863  case DeclSpec::TST_typeofExpr: {
3864    Expr *E = DS.getRepAsExpr();
3865    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3866    if (Result.isInvalid()) return true;
3867    DS.UpdateExprRep(Result.get());
3868    break;
3869  }
3870
3871  default:
3872    // Nothing to do for these decl specs.
3873    break;
3874  }
3875
3876  // It doesn't matter what order we do this in.
3877  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3878    DeclaratorChunk &Chunk = D.getTypeObject(I);
3879
3880    // The only type information in the declarator which can come
3881    // before the declaration name is the base type of a member
3882    // pointer.
3883    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3884      continue;
3885
3886    // Rebuild the scope specifier in-place.
3887    CXXScopeSpec &SS = Chunk.Mem.Scope();
3888    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3889      return true;
3890  }
3891
3892  return false;
3893}
3894
3895Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3896  D.setFunctionDefinitionKind(FDK_Declaration);
3897  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3898
3899  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3900      Dcl && Dcl->getDeclContext()->isFileContext())
3901    Dcl->setTopLevelDeclInObjCContainer();
3902
3903  return Dcl;
3904}
3905
3906/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3907///   If T is the name of a class, then each of the following shall have a
3908///   name different from T:
3909///     - every static data member of class T;
3910///     - every member function of class T
3911///     - every member of class T that is itself a type;
3912/// \returns true if the declaration name violates these rules.
3913bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3914                                   DeclarationNameInfo NameInfo) {
3915  DeclarationName Name = NameInfo.getName();
3916
3917  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3918    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3919      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3920      return true;
3921    }
3922
3923  return false;
3924}
3925
3926/// \brief Diagnose a declaration whose declarator-id has the given
3927/// nested-name-specifier.
3928///
3929/// \param SS The nested-name-specifier of the declarator-id.
3930///
3931/// \param DC The declaration context to which the nested-name-specifier
3932/// resolves.
3933///
3934/// \param Name The name of the entity being declared.
3935///
3936/// \param Loc The location of the name of the entity being declared.
3937///
3938/// \returns true if we cannot safely recover from this error, false otherwise.
3939bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3940                                        DeclarationName Name,
3941                                      SourceLocation Loc) {
3942  DeclContext *Cur = CurContext;
3943  while (isa<LinkageSpecDecl>(Cur))
3944    Cur = Cur->getParent();
3945
3946  // C++ [dcl.meaning]p1:
3947  //   A declarator-id shall not be qualified except for the definition
3948  //   of a member function (9.3) or static data member (9.4) outside of
3949  //   its class, the definition or explicit instantiation of a function
3950  //   or variable member of a namespace outside of its namespace, or the
3951  //   definition of an explicit specialization outside of its namespace,
3952  //   or the declaration of a friend function that is a member of
3953  //   another class or namespace (11.3). [...]
3954
3955  // The user provided a superfluous scope specifier that refers back to the
3956  // class or namespaces in which the entity is already declared.
3957  //
3958  // class X {
3959  //   void X::f();
3960  // };
3961  if (Cur->Equals(DC)) {
3962    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3963                                   : diag::err_member_extra_qualification)
3964      << Name << FixItHint::CreateRemoval(SS.getRange());
3965    SS.clear();
3966    return false;
3967  }
3968
3969  // Check whether the qualifying scope encloses the scope of the original
3970  // declaration.
3971  if (!Cur->Encloses(DC)) {
3972    if (Cur->isRecord())
3973      Diag(Loc, diag::err_member_qualification)
3974        << Name << SS.getRange();
3975    else if (isa<TranslationUnitDecl>(DC))
3976      Diag(Loc, diag::err_invalid_declarator_global_scope)
3977        << Name << SS.getRange();
3978    else if (isa<FunctionDecl>(Cur))
3979      Diag(Loc, diag::err_invalid_declarator_in_function)
3980        << Name << SS.getRange();
3981    else
3982      Diag(Loc, diag::err_invalid_declarator_scope)
3983      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3984
3985    return true;
3986  }
3987
3988  if (Cur->isRecord()) {
3989    // Cannot qualify members within a class.
3990    Diag(Loc, diag::err_member_qualification)
3991      << Name << SS.getRange();
3992    SS.clear();
3993
3994    // C++ constructors and destructors with incorrect scopes can break
3995    // our AST invariants by having the wrong underlying types. If
3996    // that's the case, then drop this declaration entirely.
3997    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3998         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3999        !Context.hasSameType(Name.getCXXNameType(),
4000                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4001      return true;
4002
4003    return false;
4004  }
4005
4006  // C++11 [dcl.meaning]p1:
4007  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4008  //   not begin with a decltype-specifer"
4009  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4010  while (SpecLoc.getPrefix())
4011    SpecLoc = SpecLoc.getPrefix();
4012  if (dyn_cast_or_null<DecltypeType>(
4013        SpecLoc.getNestedNameSpecifier()->getAsType()))
4014    Diag(Loc, diag::err_decltype_in_declarator)
4015      << SpecLoc.getTypeLoc().getSourceRange();
4016
4017  return false;
4018}
4019
4020NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4021                                  MultiTemplateParamsArg TemplateParamLists) {
4022  // TODO: consider using NameInfo for diagnostic.
4023  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4024  DeclarationName Name = NameInfo.getName();
4025
4026  // All of these full declarators require an identifier.  If it doesn't have
4027  // one, the ParsedFreeStandingDeclSpec action should be used.
4028  if (!Name) {
4029    if (!D.isInvalidType())  // Reject this if we think it is valid.
4030      Diag(D.getDeclSpec().getLocStart(),
4031           diag::err_declarator_need_ident)
4032        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4033    return 0;
4034  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4035    return 0;
4036
4037  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4038  // we find one that is.
4039  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4040         (S->getFlags() & Scope::TemplateParamScope) != 0)
4041    S = S->getParent();
4042
4043  DeclContext *DC = CurContext;
4044  if (D.getCXXScopeSpec().isInvalid())
4045    D.setInvalidType();
4046  else if (D.getCXXScopeSpec().isSet()) {
4047    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4048                                        UPPC_DeclarationQualifier))
4049      return 0;
4050
4051    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4052    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4053    if (!DC) {
4054      // If we could not compute the declaration context, it's because the
4055      // declaration context is dependent but does not refer to a class,
4056      // class template, or class template partial specialization. Complain
4057      // and return early, to avoid the coming semantic disaster.
4058      Diag(D.getIdentifierLoc(),
4059           diag::err_template_qualified_declarator_no_match)
4060        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4061        << D.getCXXScopeSpec().getRange();
4062      return 0;
4063    }
4064    bool IsDependentContext = DC->isDependentContext();
4065
4066    if (!IsDependentContext &&
4067        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4068      return 0;
4069
4070    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4071      Diag(D.getIdentifierLoc(),
4072           diag::err_member_def_undefined_record)
4073        << Name << DC << D.getCXXScopeSpec().getRange();
4074      D.setInvalidType();
4075    } else if (!D.getDeclSpec().isFriendSpecified()) {
4076      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4077                                      Name, D.getIdentifierLoc())) {
4078        if (DC->isRecord())
4079          return 0;
4080
4081        D.setInvalidType();
4082      }
4083    }
4084
4085    // Check whether we need to rebuild the type of the given
4086    // declaration in the current instantiation.
4087    if (EnteringContext && IsDependentContext &&
4088        TemplateParamLists.size() != 0) {
4089      ContextRAII SavedContext(*this, DC);
4090      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4091        D.setInvalidType();
4092    }
4093  }
4094
4095  if (DiagnoseClassNameShadow(DC, NameInfo))
4096    // If this is a typedef, we'll end up spewing multiple diagnostics.
4097    // Just return early; it's safer.
4098    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4099      return 0;
4100
4101  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4102  QualType R = TInfo->getType();
4103
4104  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4105                                      UPPC_DeclarationType))
4106    D.setInvalidType();
4107
4108  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4109                        ForRedeclaration);
4110
4111  // See if this is a redefinition of a variable in the same scope.
4112  if (!D.getCXXScopeSpec().isSet()) {
4113    bool IsLinkageLookup = false;
4114
4115    // If the declaration we're planning to build will be a function
4116    // or object with linkage, then look for another declaration with
4117    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4118    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4119      /* Do nothing*/;
4120    else if (R->isFunctionType()) {
4121      if (CurContext->isFunctionOrMethod() ||
4122          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4123        IsLinkageLookup = true;
4124    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4125      IsLinkageLookup = true;
4126    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4127             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4128      IsLinkageLookup = true;
4129
4130    if (IsLinkageLookup)
4131      Previous.clear(LookupRedeclarationWithLinkage);
4132
4133    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4134  } else { // Something like "int foo::x;"
4135    LookupQualifiedName(Previous, DC);
4136
4137    // C++ [dcl.meaning]p1:
4138    //   When the declarator-id is qualified, the declaration shall refer to a
4139    //  previously declared member of the class or namespace to which the
4140    //  qualifier refers (or, in the case of a namespace, of an element of the
4141    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4142    //  thereof; [...]
4143    //
4144    // Note that we already checked the context above, and that we do not have
4145    // enough information to make sure that Previous contains the declaration
4146    // we want to match. For example, given:
4147    //
4148    //   class X {
4149    //     void f();
4150    //     void f(float);
4151    //   };
4152    //
4153    //   void X::f(int) { } // ill-formed
4154    //
4155    // In this case, Previous will point to the overload set
4156    // containing the two f's declared in X, but neither of them
4157    // matches.
4158
4159    // C++ [dcl.meaning]p1:
4160    //   [...] the member shall not merely have been introduced by a
4161    //   using-declaration in the scope of the class or namespace nominated by
4162    //   the nested-name-specifier of the declarator-id.
4163    RemoveUsingDecls(Previous);
4164  }
4165
4166  if (Previous.isSingleResult() &&
4167      Previous.getFoundDecl()->isTemplateParameter()) {
4168    // Maybe we will complain about the shadowed template parameter.
4169    if (!D.isInvalidType())
4170      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4171                                      Previous.getFoundDecl());
4172
4173    // Just pretend that we didn't see the previous declaration.
4174    Previous.clear();
4175  }
4176
4177  // In C++, the previous declaration we find might be a tag type
4178  // (class or enum). In this case, the new declaration will hide the
4179  // tag type. Note that this does does not apply if we're declaring a
4180  // typedef (C++ [dcl.typedef]p4).
4181  if (Previous.isSingleTagDecl() &&
4182      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4183    Previous.clear();
4184
4185  // Check that there are no default arguments other than in the parameters
4186  // of a function declaration (C++ only).
4187  if (getLangOpts().CPlusPlus)
4188    CheckExtraCXXDefaultArguments(D);
4189
4190  NamedDecl *New;
4191
4192  bool AddToScope = true;
4193  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4194    if (TemplateParamLists.size()) {
4195      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4196      return 0;
4197    }
4198
4199    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4200  } else if (R->isFunctionType()) {
4201    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4202                                  TemplateParamLists,
4203                                  AddToScope);
4204  } else {
4205    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4206                                  TemplateParamLists);
4207  }
4208
4209  if (New == 0)
4210    return 0;
4211
4212  // If this has an identifier and is not an invalid redeclaration or
4213  // function template specialization, add it to the scope stack.
4214  if (New->getDeclName() && AddToScope &&
4215       !(D.isRedeclaration() && New->isInvalidDecl()))
4216    PushOnScopeChains(New, S);
4217
4218  return New;
4219}
4220
4221/// Helper method to turn variable array types into constant array
4222/// types in certain situations which would otherwise be errors (for
4223/// GCC compatibility).
4224static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4225                                                    ASTContext &Context,
4226                                                    bool &SizeIsNegative,
4227                                                    llvm::APSInt &Oversized) {
4228  // This method tries to turn a variable array into a constant
4229  // array even when the size isn't an ICE.  This is necessary
4230  // for compatibility with code that depends on gcc's buggy
4231  // constant expression folding, like struct {char x[(int)(char*)2];}
4232  SizeIsNegative = false;
4233  Oversized = 0;
4234
4235  if (T->isDependentType())
4236    return QualType();
4237
4238  QualifierCollector Qs;
4239  const Type *Ty = Qs.strip(T);
4240
4241  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4242    QualType Pointee = PTy->getPointeeType();
4243    QualType FixedType =
4244        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4245                                            Oversized);
4246    if (FixedType.isNull()) return FixedType;
4247    FixedType = Context.getPointerType(FixedType);
4248    return Qs.apply(Context, FixedType);
4249  }
4250  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4251    QualType Inner = PTy->getInnerType();
4252    QualType FixedType =
4253        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4254                                            Oversized);
4255    if (FixedType.isNull()) return FixedType;
4256    FixedType = Context.getParenType(FixedType);
4257    return Qs.apply(Context, FixedType);
4258  }
4259
4260  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4261  if (!VLATy)
4262    return QualType();
4263  // FIXME: We should probably handle this case
4264  if (VLATy->getElementType()->isVariablyModifiedType())
4265    return QualType();
4266
4267  llvm::APSInt Res;
4268  if (!VLATy->getSizeExpr() ||
4269      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4270    return QualType();
4271
4272  // Check whether the array size is negative.
4273  if (Res.isSigned() && Res.isNegative()) {
4274    SizeIsNegative = true;
4275    return QualType();
4276  }
4277
4278  // Check whether the array is too large to be addressed.
4279  unsigned ActiveSizeBits
4280    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4281                                              Res);
4282  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4283    Oversized = Res;
4284    return QualType();
4285  }
4286
4287  return Context.getConstantArrayType(VLATy->getElementType(),
4288                                      Res, ArrayType::Normal, 0);
4289}
4290
4291static void
4292FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4293  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4294    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4295    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4296                                      DstPTL.getPointeeLoc());
4297    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4298    return;
4299  }
4300  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4301    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4302    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4303                                      DstPTL.getInnerLoc());
4304    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4305    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4306    return;
4307  }
4308  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4309  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4310  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4311  TypeLoc DstElemTL = DstATL.getElementLoc();
4312  DstElemTL.initializeFullCopy(SrcElemTL);
4313  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4314  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4315  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4316}
4317
4318/// Helper method to turn variable array types into constant array
4319/// types in certain situations which would otherwise be errors (for
4320/// GCC compatibility).
4321static TypeSourceInfo*
4322TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4323                                              ASTContext &Context,
4324                                              bool &SizeIsNegative,
4325                                              llvm::APSInt &Oversized) {
4326  QualType FixedTy
4327    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4328                                          SizeIsNegative, Oversized);
4329  if (FixedTy.isNull())
4330    return 0;
4331  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4332  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4333                                    FixedTInfo->getTypeLoc());
4334  return FixedTInfo;
4335}
4336
4337/// \brief Register the given locally-scoped extern "C" declaration so
4338/// that it can be found later for redeclarations
4339void
4340Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4341                                       const LookupResult &Previous,
4342                                       Scope *S) {
4343  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4344         "Decl is not a locally-scoped decl!");
4345  // Note that we have a locally-scoped external with this name.
4346  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4347}
4348
4349llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4350Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4351  if (ExternalSource) {
4352    // Load locally-scoped external decls from the external source.
4353    SmallVector<NamedDecl *, 4> Decls;
4354    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4355    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4356      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4357        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4358      if (Pos == LocallyScopedExternCDecls.end())
4359        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4360    }
4361  }
4362
4363  return LocallyScopedExternCDecls.find(Name);
4364}
4365
4366/// \brief Diagnose function specifiers on a declaration of an identifier that
4367/// does not identify a function.
4368void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4369  // FIXME: We should probably indicate the identifier in question to avoid
4370  // confusion for constructs like "inline int a(), b;"
4371  if (DS.isInlineSpecified())
4372    Diag(DS.getInlineSpecLoc(),
4373         diag::err_inline_non_function);
4374
4375  if (DS.isVirtualSpecified())
4376    Diag(DS.getVirtualSpecLoc(),
4377         diag::err_virtual_non_function);
4378
4379  if (DS.isExplicitSpecified())
4380    Diag(DS.getExplicitSpecLoc(),
4381         diag::err_explicit_non_function);
4382
4383  if (DS.isNoreturnSpecified())
4384    Diag(DS.getNoreturnSpecLoc(),
4385         diag::err_noreturn_non_function);
4386}
4387
4388NamedDecl*
4389Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4390                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4391  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4392  if (D.getCXXScopeSpec().isSet()) {
4393    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4394      << D.getCXXScopeSpec().getRange();
4395    D.setInvalidType();
4396    // Pretend we didn't see the scope specifier.
4397    DC = CurContext;
4398    Previous.clear();
4399  }
4400
4401  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4402
4403  if (D.getDeclSpec().isConstexprSpecified())
4404    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4405      << 1;
4406
4407  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4408    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4409      << D.getName().getSourceRange();
4410    return 0;
4411  }
4412
4413  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4414  if (!NewTD) return 0;
4415
4416  // Handle attributes prior to checking for duplicates in MergeVarDecl
4417  ProcessDeclAttributes(S, NewTD, D);
4418
4419  CheckTypedefForVariablyModifiedType(S, NewTD);
4420
4421  bool Redeclaration = D.isRedeclaration();
4422  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4423  D.setRedeclaration(Redeclaration);
4424  return ND;
4425}
4426
4427void
4428Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4429  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4430  // then it shall have block scope.
4431  // Note that variably modified types must be fixed before merging the decl so
4432  // that redeclarations will match.
4433  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4434  QualType T = TInfo->getType();
4435  if (T->isVariablyModifiedType()) {
4436    getCurFunction()->setHasBranchProtectedScope();
4437
4438    if (S->getFnParent() == 0) {
4439      bool SizeIsNegative;
4440      llvm::APSInt Oversized;
4441      TypeSourceInfo *FixedTInfo =
4442        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4443                                                      SizeIsNegative,
4444                                                      Oversized);
4445      if (FixedTInfo) {
4446        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4447        NewTD->setTypeSourceInfo(FixedTInfo);
4448      } else {
4449        if (SizeIsNegative)
4450          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4451        else if (T->isVariableArrayType())
4452          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4453        else if (Oversized.getBoolValue())
4454          Diag(NewTD->getLocation(), diag::err_array_too_large)
4455            << Oversized.toString(10);
4456        else
4457          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4458        NewTD->setInvalidDecl();
4459      }
4460    }
4461  }
4462}
4463
4464
4465/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4466/// declares a typedef-name, either using the 'typedef' type specifier or via
4467/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4468NamedDecl*
4469Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4470                           LookupResult &Previous, bool &Redeclaration) {
4471  // Merge the decl with the existing one if appropriate. If the decl is
4472  // in an outer scope, it isn't the same thing.
4473  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4474                       /*ExplicitInstantiationOrSpecialization=*/false);
4475  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4476  if (!Previous.empty()) {
4477    Redeclaration = true;
4478    MergeTypedefNameDecl(NewTD, Previous);
4479  }
4480
4481  // If this is the C FILE type, notify the AST context.
4482  if (IdentifierInfo *II = NewTD->getIdentifier())
4483    if (!NewTD->isInvalidDecl() &&
4484        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4485      if (II->isStr("FILE"))
4486        Context.setFILEDecl(NewTD);
4487      else if (II->isStr("jmp_buf"))
4488        Context.setjmp_bufDecl(NewTD);
4489      else if (II->isStr("sigjmp_buf"))
4490        Context.setsigjmp_bufDecl(NewTD);
4491      else if (II->isStr("ucontext_t"))
4492        Context.setucontext_tDecl(NewTD);
4493    }
4494
4495  return NewTD;
4496}
4497
4498/// \brief Determines whether the given declaration is an out-of-scope
4499/// previous declaration.
4500///
4501/// This routine should be invoked when name lookup has found a
4502/// previous declaration (PrevDecl) that is not in the scope where a
4503/// new declaration by the same name is being introduced. If the new
4504/// declaration occurs in a local scope, previous declarations with
4505/// linkage may still be considered previous declarations (C99
4506/// 6.2.2p4-5, C++ [basic.link]p6).
4507///
4508/// \param PrevDecl the previous declaration found by name
4509/// lookup
4510///
4511/// \param DC the context in which the new declaration is being
4512/// declared.
4513///
4514/// \returns true if PrevDecl is an out-of-scope previous declaration
4515/// for a new delcaration with the same name.
4516static bool
4517isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4518                                ASTContext &Context) {
4519  if (!PrevDecl)
4520    return false;
4521
4522  if (!PrevDecl->hasLinkage())
4523    return false;
4524
4525  if (Context.getLangOpts().CPlusPlus) {
4526    // C++ [basic.link]p6:
4527    //   If there is a visible declaration of an entity with linkage
4528    //   having the same name and type, ignoring entities declared
4529    //   outside the innermost enclosing namespace scope, the block
4530    //   scope declaration declares that same entity and receives the
4531    //   linkage of the previous declaration.
4532    DeclContext *OuterContext = DC->getRedeclContext();
4533    if (!OuterContext->isFunctionOrMethod())
4534      // This rule only applies to block-scope declarations.
4535      return false;
4536
4537    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4538    if (PrevOuterContext->isRecord())
4539      // We found a member function: ignore it.
4540      return false;
4541
4542    // Find the innermost enclosing namespace for the new and
4543    // previous declarations.
4544    OuterContext = OuterContext->getEnclosingNamespaceContext();
4545    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4546
4547    // The previous declaration is in a different namespace, so it
4548    // isn't the same function.
4549    if (!OuterContext->Equals(PrevOuterContext))
4550      return false;
4551  }
4552
4553  return true;
4554}
4555
4556static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4557  CXXScopeSpec &SS = D.getCXXScopeSpec();
4558  if (!SS.isSet()) return;
4559  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4560}
4561
4562bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4563  QualType type = decl->getType();
4564  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4565  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4566    // Various kinds of declaration aren't allowed to be __autoreleasing.
4567    unsigned kind = -1U;
4568    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4569      if (var->hasAttr<BlocksAttr>())
4570        kind = 0; // __block
4571      else if (!var->hasLocalStorage())
4572        kind = 1; // global
4573    } else if (isa<ObjCIvarDecl>(decl)) {
4574      kind = 3; // ivar
4575    } else if (isa<FieldDecl>(decl)) {
4576      kind = 2; // field
4577    }
4578
4579    if (kind != -1U) {
4580      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4581        << kind;
4582    }
4583  } else if (lifetime == Qualifiers::OCL_None) {
4584    // Try to infer lifetime.
4585    if (!type->isObjCLifetimeType())
4586      return false;
4587
4588    lifetime = type->getObjCARCImplicitLifetime();
4589    type = Context.getLifetimeQualifiedType(type, lifetime);
4590    decl->setType(type);
4591  }
4592
4593  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4594    // Thread-local variables cannot have lifetime.
4595    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4596        var->getTLSKind()) {
4597      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4598        << var->getType();
4599      return true;
4600    }
4601  }
4602
4603  return false;
4604}
4605
4606static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4607  // 'weak' only applies to declarations with external linkage.
4608  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4609    if (ND.getLinkage() != ExternalLinkage) {
4610      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4611      ND.dropAttr<WeakAttr>();
4612    }
4613  }
4614  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4615    if (ND.hasExternalLinkage()) {
4616      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4617      ND.dropAttr<WeakRefAttr>();
4618    }
4619  }
4620}
4621
4622/// Given that we are within the definition of the given function,
4623/// will that definition behave like C99's 'inline', where the
4624/// definition is discarded except for optimization purposes?
4625static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4626  // Try to avoid calling GetGVALinkageForFunction.
4627
4628  // All cases of this require the 'inline' keyword.
4629  if (!FD->isInlined()) return false;
4630
4631  // This is only possible in C++ with the gnu_inline attribute.
4632  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4633    return false;
4634
4635  // Okay, go ahead and call the relatively-more-expensive function.
4636
4637#ifndef NDEBUG
4638  // AST quite reasonably asserts that it's working on a function
4639  // definition.  We don't really have a way to tell it that we're
4640  // currently defining the function, so just lie to it in +Asserts
4641  // builds.  This is an awful hack.
4642  FD->setLazyBody(1);
4643#endif
4644
4645  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4646
4647#ifndef NDEBUG
4648  FD->setLazyBody(0);
4649#endif
4650
4651  return isC99Inline;
4652}
4653
4654static bool shouldConsiderLinkage(const VarDecl *VD) {
4655  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4656  if (DC->isFunctionOrMethod())
4657    return VD->hasExternalStorage();
4658  if (DC->isFileContext())
4659    return true;
4660  if (DC->isRecord())
4661    return false;
4662  llvm_unreachable("Unexpected context");
4663}
4664
4665static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4666  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4667  if (DC->isFileContext() || DC->isFunctionOrMethod())
4668    return true;
4669  if (DC->isRecord())
4670    return false;
4671  llvm_unreachable("Unexpected context");
4672}
4673
4674NamedDecl*
4675Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4676                              TypeSourceInfo *TInfo, LookupResult &Previous,
4677                              MultiTemplateParamsArg TemplateParamLists) {
4678  QualType R = TInfo->getType();
4679  DeclarationName Name = GetNameForDeclarator(D).getName();
4680
4681  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4682  VarDecl::StorageClass SC =
4683    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4684
4685  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4686    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4687    // half array type (unless the cl_khr_fp16 extension is enabled).
4688    if (Context.getBaseElementType(R)->isHalfType()) {
4689      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4690      D.setInvalidType();
4691    }
4692  }
4693
4694  if (SCSpec == DeclSpec::SCS_mutable) {
4695    // mutable can only appear on non-static class members, so it's always
4696    // an error here
4697    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4698    D.setInvalidType();
4699    SC = SC_None;
4700  }
4701
4702  // C++11 [dcl.stc]p4:
4703  //   When thread_local is applied to a variable of block scope the
4704  //   storage-class-specifier static is implied if it does not appear
4705  //   explicitly.
4706  // Core issue: 'static' is not implied if the variable is declared 'extern'.
4707  if (SCSpec == DeclSpec::SCS_unspecified &&
4708      D.getDeclSpec().getThreadStorageClassSpec() ==
4709          DeclSpec::TSCS_thread_local && DC->isFunctionOrMethod())
4710    SC = SC_Static;
4711
4712  IdentifierInfo *II = Name.getAsIdentifierInfo();
4713  if (!II) {
4714    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4715      << Name;
4716    return 0;
4717  }
4718
4719  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4720
4721  if (!DC->isRecord() && S->getFnParent() == 0) {
4722    // C99 6.9p2: The storage-class specifiers auto and register shall not
4723    // appear in the declaration specifiers in an external declaration.
4724    if (SC == SC_Auto || SC == SC_Register) {
4725
4726      // If this is a register variable with an asm label specified, then this
4727      // is a GNU extension.
4728      if (SC == SC_Register && D.getAsmLabel())
4729        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4730      else
4731        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4732      D.setInvalidType();
4733    }
4734  }
4735
4736  if (getLangOpts().OpenCL) {
4737    // Set up the special work-group-local storage class for variables in the
4738    // OpenCL __local address space.
4739    if (R.getAddressSpace() == LangAS::opencl_local) {
4740      SC = SC_OpenCLWorkGroupLocal;
4741    }
4742
4743    // OpenCL v1.2 s6.9.b p4:
4744    // The sampler type cannot be used with the __local and __global address
4745    // space qualifiers.
4746    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4747      R.getAddressSpace() == LangAS::opencl_global)) {
4748      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4749    }
4750
4751    // OpenCL 1.2 spec, p6.9 r:
4752    // The event type cannot be used to declare a program scope variable.
4753    // The event type cannot be used with the __local, __constant and __global
4754    // address space qualifiers.
4755    if (R->isEventT()) {
4756      if (S->getParent() == 0) {
4757        Diag(D.getLocStart(), diag::err_event_t_global_var);
4758        D.setInvalidType();
4759      }
4760
4761      if (R.getAddressSpace()) {
4762        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4763        D.setInvalidType();
4764      }
4765    }
4766  }
4767
4768  bool isExplicitSpecialization = false;
4769  VarDecl *NewVD;
4770  if (!getLangOpts().CPlusPlus) {
4771    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4772                            D.getIdentifierLoc(), II,
4773                            R, TInfo, SC);
4774
4775    if (D.isInvalidType())
4776      NewVD->setInvalidDecl();
4777  } else {
4778    if (DC->isRecord() && !CurContext->isRecord()) {
4779      // This is an out-of-line definition of a static data member.
4780      if (SC == SC_Static) {
4781        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4782             diag::err_static_out_of_line)
4783          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4784      }
4785    }
4786    if (SC == SC_Static && CurContext->isRecord()) {
4787      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4788        if (RD->isLocalClass())
4789          Diag(D.getIdentifierLoc(),
4790               diag::err_static_data_member_not_allowed_in_local_class)
4791            << Name << RD->getDeclName();
4792
4793        // C++98 [class.union]p1: If a union contains a static data member,
4794        // the program is ill-formed. C++11 drops this restriction.
4795        if (RD->isUnion())
4796          Diag(D.getIdentifierLoc(),
4797               getLangOpts().CPlusPlus11
4798                 ? diag::warn_cxx98_compat_static_data_member_in_union
4799                 : diag::ext_static_data_member_in_union) << Name;
4800        // We conservatively disallow static data members in anonymous structs.
4801        else if (!RD->getDeclName())
4802          Diag(D.getIdentifierLoc(),
4803               diag::err_static_data_member_not_allowed_in_anon_struct)
4804            << Name << RD->isUnion();
4805      }
4806    }
4807
4808    // Match up the template parameter lists with the scope specifier, then
4809    // determine whether we have a template or a template specialization.
4810    isExplicitSpecialization = false;
4811    bool Invalid = false;
4812    if (TemplateParameterList *TemplateParams
4813        = MatchTemplateParametersToScopeSpecifier(
4814                                  D.getDeclSpec().getLocStart(),
4815                                                  D.getIdentifierLoc(),
4816                                                  D.getCXXScopeSpec(),
4817                                                  TemplateParamLists.data(),
4818                                                  TemplateParamLists.size(),
4819                                                  /*never a friend*/ false,
4820                                                  isExplicitSpecialization,
4821                                                  Invalid)) {
4822      if (TemplateParams->size() > 0) {
4823        // There is no such thing as a variable template.
4824        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4825          << II
4826          << SourceRange(TemplateParams->getTemplateLoc(),
4827                         TemplateParams->getRAngleLoc());
4828        return 0;
4829      } else {
4830        // There is an extraneous 'template<>' for this variable. Complain
4831        // about it, but allow the declaration of the variable.
4832        Diag(TemplateParams->getTemplateLoc(),
4833             diag::err_template_variable_noparams)
4834          << II
4835          << SourceRange(TemplateParams->getTemplateLoc(),
4836                         TemplateParams->getRAngleLoc());
4837      }
4838    }
4839
4840    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4841                            D.getIdentifierLoc(), II,
4842                            R, TInfo, SC);
4843
4844    // If this decl has an auto type in need of deduction, make a note of the
4845    // Decl so we can diagnose uses of it in its own initializer.
4846    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4847      ParsingInitForAutoVars.insert(NewVD);
4848
4849    if (D.isInvalidType() || Invalid)
4850      NewVD->setInvalidDecl();
4851
4852    SetNestedNameSpecifier(NewVD, D);
4853
4854    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4855      NewVD->setTemplateParameterListsInfo(Context,
4856                                           TemplateParamLists.size(),
4857                                           TemplateParamLists.data());
4858    }
4859
4860    if (D.getDeclSpec().isConstexprSpecified())
4861      NewVD->setConstexpr(true);
4862  }
4863
4864  // Set the lexical context. If the declarator has a C++ scope specifier, the
4865  // lexical context will be different from the semantic context.
4866  NewVD->setLexicalDeclContext(CurContext);
4867
4868  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4869    if (NewVD->hasLocalStorage())
4870      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4871           diag::err_thread_non_global)
4872        << DeclSpec::getSpecifierName(TSCS);
4873    else if (!Context.getTargetInfo().isTLSSupported())
4874      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4875           diag::err_thread_unsupported);
4876    else
4877      NewVD->setTLSKind(TSCS == DeclSpec::TSCS_thread_local
4878                          ? VarDecl::TLS_Dynamic
4879                          : VarDecl::TLS_Static);
4880  }
4881
4882  // C99 6.7.4p3
4883  //   An inline definition of a function with external linkage shall
4884  //   not contain a definition of a modifiable object with static or
4885  //   thread storage duration...
4886  // We only apply this when the function is required to be defined
4887  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4888  // that a local variable with thread storage duration still has to
4889  // be marked 'static'.  Also note that it's possible to get these
4890  // semantics in C++ using __attribute__((gnu_inline)).
4891  if (SC == SC_Static && S->getFnParent() != 0 &&
4892      !NewVD->getType().isConstQualified()) {
4893    FunctionDecl *CurFD = getCurFunctionDecl();
4894    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4895      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4896           diag::warn_static_local_in_extern_inline);
4897      MaybeSuggestAddingStaticToDecl(CurFD);
4898    }
4899  }
4900
4901  if (D.getDeclSpec().isModulePrivateSpecified()) {
4902    if (isExplicitSpecialization)
4903      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4904        << 2
4905        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4906    else if (NewVD->hasLocalStorage())
4907      Diag(NewVD->getLocation(), diag::err_module_private_local)
4908        << 0 << NewVD->getDeclName()
4909        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4910        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4911    else
4912      NewVD->setModulePrivate();
4913  }
4914
4915  // Handle attributes prior to checking for duplicates in MergeVarDecl
4916  ProcessDeclAttributes(S, NewVD, D);
4917
4918  if (NewVD->hasAttrs())
4919    CheckAlignasUnderalignment(NewVD);
4920
4921  if (getLangOpts().CUDA) {
4922    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4923    // storage [duration]."
4924    if (SC == SC_None && S->getFnParent() != 0 &&
4925        (NewVD->hasAttr<CUDASharedAttr>() ||
4926         NewVD->hasAttr<CUDAConstantAttr>())) {
4927      NewVD->setStorageClass(SC_Static);
4928    }
4929  }
4930
4931  // In auto-retain/release, infer strong retension for variables of
4932  // retainable type.
4933  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4934    NewVD->setInvalidDecl();
4935
4936  // Handle GNU asm-label extension (encoded as an attribute).
4937  if (Expr *E = (Expr*)D.getAsmLabel()) {
4938    // The parser guarantees this is a string.
4939    StringLiteral *SE = cast<StringLiteral>(E);
4940    StringRef Label = SE->getString();
4941    if (S->getFnParent() != 0) {
4942      switch (SC) {
4943      case SC_None:
4944      case SC_Auto:
4945        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4946        break;
4947      case SC_Register:
4948        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4949          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4950        break;
4951      case SC_Static:
4952      case SC_Extern:
4953      case SC_PrivateExtern:
4954      case SC_OpenCLWorkGroupLocal:
4955        break;
4956      }
4957    }
4958
4959    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4960                                                Context, Label));
4961  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4962    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4963      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4964    if (I != ExtnameUndeclaredIdentifiers.end()) {
4965      NewVD->addAttr(I->second);
4966      ExtnameUndeclaredIdentifiers.erase(I);
4967    }
4968  }
4969
4970  // Diagnose shadowed variables before filtering for scope.
4971  if (!D.getCXXScopeSpec().isSet())
4972    CheckShadow(S, NewVD, Previous);
4973
4974  // Don't consider existing declarations that are in a different
4975  // scope and are out-of-semantic-context declarations (if the new
4976  // declaration has linkage).
4977  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4978                       isExplicitSpecialization);
4979
4980  if (!getLangOpts().CPlusPlus) {
4981    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4982  } else {
4983    // Merge the decl with the existing one if appropriate.
4984    if (!Previous.empty()) {
4985      if (Previous.isSingleResult() &&
4986          isa<FieldDecl>(Previous.getFoundDecl()) &&
4987          D.getCXXScopeSpec().isSet()) {
4988        // The user tried to define a non-static data member
4989        // out-of-line (C++ [dcl.meaning]p1).
4990        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4991          << D.getCXXScopeSpec().getRange();
4992        Previous.clear();
4993        NewVD->setInvalidDecl();
4994      }
4995    } else if (D.getCXXScopeSpec().isSet()) {
4996      // No previous declaration in the qualifying scope.
4997      Diag(D.getIdentifierLoc(), diag::err_no_member)
4998        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4999        << D.getCXXScopeSpec().getRange();
5000      NewVD->setInvalidDecl();
5001    }
5002
5003    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5004
5005    // This is an explicit specialization of a static data member. Check it.
5006    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5007        CheckMemberSpecialization(NewVD, Previous))
5008      NewVD->setInvalidDecl();
5009  }
5010
5011  ProcessPragmaWeak(S, NewVD);
5012  checkAttributesAfterMerging(*this, *NewVD);
5013
5014  // If this is a locally-scoped extern C variable, update the map of
5015  // such variables.
5016  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
5017      !NewVD->isInvalidDecl())
5018    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
5019
5020  return NewVD;
5021}
5022
5023/// \brief Diagnose variable or built-in function shadowing.  Implements
5024/// -Wshadow.
5025///
5026/// This method is called whenever a VarDecl is added to a "useful"
5027/// scope.
5028///
5029/// \param S the scope in which the shadowing name is being declared
5030/// \param R the lookup of the name
5031///
5032void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5033  // Return if warning is ignored.
5034  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5035        DiagnosticsEngine::Ignored)
5036    return;
5037
5038  // Don't diagnose declarations at file scope.
5039  if (D->hasGlobalStorage())
5040    return;
5041
5042  DeclContext *NewDC = D->getDeclContext();
5043
5044  // Only diagnose if we're shadowing an unambiguous field or variable.
5045  if (R.getResultKind() != LookupResult::Found)
5046    return;
5047
5048  NamedDecl* ShadowedDecl = R.getFoundDecl();
5049  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5050    return;
5051
5052  // Fields are not shadowed by variables in C++ static methods.
5053  if (isa<FieldDecl>(ShadowedDecl))
5054    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5055      if (MD->isStatic())
5056        return;
5057
5058  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5059    if (shadowedVar->isExternC()) {
5060      // For shadowing external vars, make sure that we point to the global
5061      // declaration, not a locally scoped extern declaration.
5062      for (VarDecl::redecl_iterator
5063             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5064           I != E; ++I)
5065        if (I->isFileVarDecl()) {
5066          ShadowedDecl = *I;
5067          break;
5068        }
5069    }
5070
5071  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5072
5073  // Only warn about certain kinds of shadowing for class members.
5074  if (NewDC && NewDC->isRecord()) {
5075    // In particular, don't warn about shadowing non-class members.
5076    if (!OldDC->isRecord())
5077      return;
5078
5079    // TODO: should we warn about static data members shadowing
5080    // static data members from base classes?
5081
5082    // TODO: don't diagnose for inaccessible shadowed members.
5083    // This is hard to do perfectly because we might friend the
5084    // shadowing context, but that's just a false negative.
5085  }
5086
5087  // Determine what kind of declaration we're shadowing.
5088  unsigned Kind;
5089  if (isa<RecordDecl>(OldDC)) {
5090    if (isa<FieldDecl>(ShadowedDecl))
5091      Kind = 3; // field
5092    else
5093      Kind = 2; // static data member
5094  } else if (OldDC->isFileContext())
5095    Kind = 1; // global
5096  else
5097    Kind = 0; // local
5098
5099  DeclarationName Name = R.getLookupName();
5100
5101  // Emit warning and note.
5102  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5103  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5104}
5105
5106/// \brief Check -Wshadow without the advantage of a previous lookup.
5107void Sema::CheckShadow(Scope *S, VarDecl *D) {
5108  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5109        DiagnosticsEngine::Ignored)
5110    return;
5111
5112  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5113                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5114  LookupName(R, S);
5115  CheckShadow(S, D, R);
5116}
5117
5118template<typename T>
5119static bool mayConflictWithNonVisibleExternC(const T *ND) {
5120  const DeclContext *DC = ND->getDeclContext();
5121  if (DC->getRedeclContext()->isTranslationUnit())
5122    return true;
5123
5124  // We know that is the first decl we see, other than function local
5125  // extern C ones. If this is C++ and the decl is not in a extern C context
5126  // it cannot have C language linkage. Avoid calling isExternC in that case.
5127  // We need to this because of code like
5128  //
5129  // namespace { struct bar {}; }
5130  // auto foo = bar();
5131  //
5132  // This code runs before the init of foo is set, and therefore before
5133  // the type of foo is known. Not knowing the type we cannot know its linkage
5134  // unless it is in an extern C block.
5135  if (!DC->isExternCContext()) {
5136    const ASTContext &Context = ND->getASTContext();
5137    if (Context.getLangOpts().CPlusPlus)
5138      return false;
5139  }
5140
5141  return ND->isExternC();
5142}
5143
5144void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5145  // If the decl is already known invalid, don't check it.
5146  if (NewVD->isInvalidDecl())
5147    return;
5148
5149  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5150  QualType T = TInfo->getType();
5151
5152  // Defer checking an 'auto' type until its initializer is attached.
5153  if (T->isUndeducedType())
5154    return;
5155
5156  if (T->isObjCObjectType()) {
5157    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5158      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5159    T = Context.getObjCObjectPointerType(T);
5160    NewVD->setType(T);
5161  }
5162
5163  // Emit an error if an address space was applied to decl with local storage.
5164  // This includes arrays of objects with address space qualifiers, but not
5165  // automatic variables that point to other address spaces.
5166  // ISO/IEC TR 18037 S5.1.2
5167  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5168    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5169    NewVD->setInvalidDecl();
5170    return;
5171  }
5172
5173  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5174  // __constant address space.
5175  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5176      && T.getAddressSpace() != LangAS::opencl_constant
5177      && !T->isSamplerT()){
5178    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5179    NewVD->setInvalidDecl();
5180    return;
5181  }
5182
5183  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5184  // scope.
5185  if ((getLangOpts().OpenCLVersion >= 120)
5186      && NewVD->isStaticLocal()) {
5187    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5188    NewVD->setInvalidDecl();
5189    return;
5190  }
5191
5192  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5193      && !NewVD->hasAttr<BlocksAttr>()) {
5194    if (getLangOpts().getGC() != LangOptions::NonGC)
5195      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5196    else {
5197      assert(!getLangOpts().ObjCAutoRefCount);
5198      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5199    }
5200  }
5201
5202  bool isVM = T->isVariablyModifiedType();
5203  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5204      NewVD->hasAttr<BlocksAttr>())
5205    getCurFunction()->setHasBranchProtectedScope();
5206
5207  if ((isVM && NewVD->hasLinkage()) ||
5208      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5209    bool SizeIsNegative;
5210    llvm::APSInt Oversized;
5211    TypeSourceInfo *FixedTInfo =
5212      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5213                                                    SizeIsNegative, Oversized);
5214    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5215      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5216      // FIXME: This won't give the correct result for
5217      // int a[10][n];
5218      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5219
5220      if (NewVD->isFileVarDecl())
5221        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5222        << SizeRange;
5223      else if (NewVD->getStorageClass() == SC_Static)
5224        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5225        << SizeRange;
5226      else
5227        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5228        << SizeRange;
5229      NewVD->setInvalidDecl();
5230      return;
5231    }
5232
5233    if (FixedTInfo == 0) {
5234      if (NewVD->isFileVarDecl())
5235        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5236      else
5237        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5238      NewVD->setInvalidDecl();
5239      return;
5240    }
5241
5242    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5243    NewVD->setType(FixedTInfo->getType());
5244    NewVD->setTypeSourceInfo(FixedTInfo);
5245  }
5246
5247  if (T->isVoidType() && NewVD->isThisDeclarationADefinition()) {
5248    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5249      << T;
5250    NewVD->setInvalidDecl();
5251    return;
5252  }
5253
5254  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5255    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5256    NewVD->setInvalidDecl();
5257    return;
5258  }
5259
5260  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5261    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5262    NewVD->setInvalidDecl();
5263    return;
5264  }
5265
5266  if (NewVD->isConstexpr() && !T->isDependentType() &&
5267      RequireLiteralType(NewVD->getLocation(), T,
5268                         diag::err_constexpr_var_non_literal)) {
5269    // Can't perform this check until the type is deduced.
5270    NewVD->setInvalidDecl();
5271    return;
5272  }
5273}
5274
5275/// \brief Perform semantic checking on a newly-created variable
5276/// declaration.
5277///
5278/// This routine performs all of the type-checking required for a
5279/// variable declaration once it has been built. It is used both to
5280/// check variables after they have been parsed and their declarators
5281/// have been translated into a declaration, and to check variables
5282/// that have been instantiated from a template.
5283///
5284/// Sets NewVD->isInvalidDecl() if an error was encountered.
5285///
5286/// Returns true if the variable declaration is a redeclaration.
5287bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5288                                    LookupResult &Previous) {
5289  CheckVariableDeclarationType(NewVD);
5290
5291  // If the decl is already known invalid, don't check it.
5292  if (NewVD->isInvalidDecl())
5293    return false;
5294
5295  // If we did not find anything by this name, look for a non-visible
5296  // extern "C" declaration with the same name.
5297  //
5298  // Clang has a lot of problems with extern local declarations.
5299  // The actual standards text here is:
5300  //
5301  // C++11 [basic.link]p6:
5302  //   The name of a function declared in block scope and the name
5303  //   of a variable declared by a block scope extern declaration
5304  //   have linkage. If there is a visible declaration of an entity
5305  //   with linkage having the same name and type, ignoring entities
5306  //   declared outside the innermost enclosing namespace scope, the
5307  //   block scope declaration declares that same entity and
5308  //   receives the linkage of the previous declaration.
5309  //
5310  // C11 6.2.7p4:
5311  //   For an identifier with internal or external linkage declared
5312  //   in a scope in which a prior declaration of that identifier is
5313  //   visible, if the prior declaration specifies internal or
5314  //   external linkage, the type of the identifier at the later
5315  //   declaration becomes the composite type.
5316  //
5317  // The most important point here is that we're not allowed to
5318  // update our understanding of the type according to declarations
5319  // not in scope.
5320  bool PreviousWasHidden = false;
5321  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5322    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5323      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5324    if (Pos != LocallyScopedExternCDecls.end()) {
5325      Previous.addDecl(Pos->second);
5326      PreviousWasHidden = true;
5327    }
5328  }
5329
5330  // Filter out any non-conflicting previous declarations.
5331  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5332
5333  if (!Previous.empty()) {
5334    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5335    return true;
5336  }
5337  return false;
5338}
5339
5340/// \brief Data used with FindOverriddenMethod
5341struct FindOverriddenMethodData {
5342  Sema *S;
5343  CXXMethodDecl *Method;
5344};
5345
5346/// \brief Member lookup function that determines whether a given C++
5347/// method overrides a method in a base class, to be used with
5348/// CXXRecordDecl::lookupInBases().
5349static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5350                                 CXXBasePath &Path,
5351                                 void *UserData) {
5352  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5353
5354  FindOverriddenMethodData *Data
5355    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5356
5357  DeclarationName Name = Data->Method->getDeclName();
5358
5359  // FIXME: Do we care about other names here too?
5360  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5361    // We really want to find the base class destructor here.
5362    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5363    CanQualType CT = Data->S->Context.getCanonicalType(T);
5364
5365    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5366  }
5367
5368  for (Path.Decls = BaseRecord->lookup(Name);
5369       !Path.Decls.empty();
5370       Path.Decls = Path.Decls.slice(1)) {
5371    NamedDecl *D = Path.Decls.front();
5372    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5373      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5374        return true;
5375    }
5376  }
5377
5378  return false;
5379}
5380
5381namespace {
5382  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5383}
5384/// \brief Report an error regarding overriding, along with any relevant
5385/// overriden methods.
5386///
5387/// \param DiagID the primary error to report.
5388/// \param MD the overriding method.
5389/// \param OEK which overrides to include as notes.
5390static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5391                            OverrideErrorKind OEK = OEK_All) {
5392  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5393  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5394                                      E = MD->end_overridden_methods();
5395       I != E; ++I) {
5396    // This check (& the OEK parameter) could be replaced by a predicate, but
5397    // without lambdas that would be overkill. This is still nicer than writing
5398    // out the diag loop 3 times.
5399    if ((OEK == OEK_All) ||
5400        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5401        (OEK == OEK_Deleted && (*I)->isDeleted()))
5402      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5403  }
5404}
5405
5406/// AddOverriddenMethods - See if a method overrides any in the base classes,
5407/// and if so, check that it's a valid override and remember it.
5408bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5409  // Look for virtual methods in base classes that this method might override.
5410  CXXBasePaths Paths;
5411  FindOverriddenMethodData Data;
5412  Data.Method = MD;
5413  Data.S = this;
5414  bool hasDeletedOverridenMethods = false;
5415  bool hasNonDeletedOverridenMethods = false;
5416  bool AddedAny = false;
5417  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5418    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5419         E = Paths.found_decls_end(); I != E; ++I) {
5420      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5421        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5422        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5423            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5424            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5425            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5426          hasDeletedOverridenMethods |= OldMD->isDeleted();
5427          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5428          AddedAny = true;
5429        }
5430      }
5431    }
5432  }
5433
5434  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5435    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5436  }
5437  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5438    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5439  }
5440
5441  return AddedAny;
5442}
5443
5444namespace {
5445  // Struct for holding all of the extra arguments needed by
5446  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5447  struct ActOnFDArgs {
5448    Scope *S;
5449    Declarator &D;
5450    MultiTemplateParamsArg TemplateParamLists;
5451    bool AddToScope;
5452  };
5453}
5454
5455namespace {
5456
5457// Callback to only accept typo corrections that have a non-zero edit distance.
5458// Also only accept corrections that have the same parent decl.
5459class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5460 public:
5461  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5462                            CXXRecordDecl *Parent)
5463      : Context(Context), OriginalFD(TypoFD),
5464        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5465
5466  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5467    if (candidate.getEditDistance() == 0)
5468      return false;
5469
5470    SmallVector<unsigned, 1> MismatchedParams;
5471    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5472                                          CDeclEnd = candidate.end();
5473         CDecl != CDeclEnd; ++CDecl) {
5474      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5475
5476      if (FD && !FD->hasBody() &&
5477          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5478        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5479          CXXRecordDecl *Parent = MD->getParent();
5480          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5481            return true;
5482        } else if (!ExpectedParent) {
5483          return true;
5484        }
5485      }
5486    }
5487
5488    return false;
5489  }
5490
5491 private:
5492  ASTContext &Context;
5493  FunctionDecl *OriginalFD;
5494  CXXRecordDecl *ExpectedParent;
5495};
5496
5497}
5498
5499/// \brief Generate diagnostics for an invalid function redeclaration.
5500///
5501/// This routine handles generating the diagnostic messages for an invalid
5502/// function redeclaration, including finding possible similar declarations
5503/// or performing typo correction if there are no previous declarations with
5504/// the same name.
5505///
5506/// Returns a NamedDecl iff typo correction was performed and substituting in
5507/// the new declaration name does not cause new errors.
5508static NamedDecl* DiagnoseInvalidRedeclaration(
5509    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5510    ActOnFDArgs &ExtraArgs) {
5511  NamedDecl *Result = NULL;
5512  DeclarationName Name = NewFD->getDeclName();
5513  DeclContext *NewDC = NewFD->getDeclContext();
5514  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5515                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5516  SmallVector<unsigned, 1> MismatchedParams;
5517  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5518  TypoCorrection Correction;
5519  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5520                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5521  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5522                                  : diag::err_member_def_does_not_match;
5523
5524  NewFD->setInvalidDecl();
5525  SemaRef.LookupQualifiedName(Prev, NewDC);
5526  assert(!Prev.isAmbiguous() &&
5527         "Cannot have an ambiguity in previous-declaration lookup");
5528  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5529  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5530                                      MD ? MD->getParent() : 0);
5531  if (!Prev.empty()) {
5532    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5533         Func != FuncEnd; ++Func) {
5534      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5535      if (FD &&
5536          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5537        // Add 1 to the index so that 0 can mean the mismatch didn't
5538        // involve a parameter
5539        unsigned ParamNum =
5540            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5541        NearMatches.push_back(std::make_pair(FD, ParamNum));
5542      }
5543    }
5544  // If the qualified name lookup yielded nothing, try typo correction
5545  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5546                                         Prev.getLookupKind(), 0, 0,
5547                                         Validator, NewDC))) {
5548    // Trap errors.
5549    Sema::SFINAETrap Trap(SemaRef);
5550
5551    // Set up everything for the call to ActOnFunctionDeclarator
5552    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5553                              ExtraArgs.D.getIdentifierLoc());
5554    Previous.clear();
5555    Previous.setLookupName(Correction.getCorrection());
5556    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5557                                    CDeclEnd = Correction.end();
5558         CDecl != CDeclEnd; ++CDecl) {
5559      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5560      if (FD && !FD->hasBody() &&
5561          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5562        Previous.addDecl(FD);
5563      }
5564    }
5565    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5566    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5567    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5568    // eliminate the need for the parameter pack ExtraArgs.
5569    Result = SemaRef.ActOnFunctionDeclarator(
5570        ExtraArgs.S, ExtraArgs.D,
5571        Correction.getCorrectionDecl()->getDeclContext(),
5572        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5573        ExtraArgs.AddToScope);
5574    if (Trap.hasErrorOccurred()) {
5575      // Pretend the typo correction never occurred
5576      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5577                                ExtraArgs.D.getIdentifierLoc());
5578      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5579      Previous.clear();
5580      Previous.setLookupName(Name);
5581      Result = NULL;
5582    } else {
5583      for (LookupResult::iterator Func = Previous.begin(),
5584                               FuncEnd = Previous.end();
5585           Func != FuncEnd; ++Func) {
5586        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5587          NearMatches.push_back(std::make_pair(FD, 0));
5588      }
5589    }
5590    if (NearMatches.empty()) {
5591      // Ignore the correction if it didn't yield any close FunctionDecl matches
5592      Correction = TypoCorrection();
5593    } else {
5594      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5595                             : diag::err_member_def_does_not_match_suggest;
5596    }
5597  }
5598
5599  if (Correction) {
5600    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5601    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5602    // turn causes the correction to fully qualify the name. If we fix
5603    // CorrectTypo to minimally qualify then this change should be good.
5604    SourceRange FixItLoc(NewFD->getLocation());
5605    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5606    if (Correction.getCorrectionSpecifier() && SS.isValid())
5607      FixItLoc.setBegin(SS.getBeginLoc());
5608    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5609        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5610        << FixItHint::CreateReplacement(
5611            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5612  } else {
5613    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5614        << Name << NewDC << NewFD->getLocation();
5615  }
5616
5617  bool NewFDisConst = false;
5618  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5619    NewFDisConst = NewMD->isConst();
5620
5621  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5622       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5623       NearMatch != NearMatchEnd; ++NearMatch) {
5624    FunctionDecl *FD = NearMatch->first;
5625    bool FDisConst = false;
5626    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5627      FDisConst = MD->isConst();
5628
5629    if (unsigned Idx = NearMatch->second) {
5630      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5631      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5632      if (Loc.isInvalid()) Loc = FD->getLocation();
5633      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5634          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5635    } else if (Correction) {
5636      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5637          << Correction.getQuoted(SemaRef.getLangOpts());
5638    } else if (FDisConst != NewFDisConst) {
5639      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5640          << NewFDisConst << FD->getSourceRange().getEnd();
5641    } else
5642      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5643  }
5644  return Result;
5645}
5646
5647static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5648                                                          Declarator &D) {
5649  switch (D.getDeclSpec().getStorageClassSpec()) {
5650  default: llvm_unreachable("Unknown storage class!");
5651  case DeclSpec::SCS_auto:
5652  case DeclSpec::SCS_register:
5653  case DeclSpec::SCS_mutable:
5654    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5655                 diag::err_typecheck_sclass_func);
5656    D.setInvalidType();
5657    break;
5658  case DeclSpec::SCS_unspecified: break;
5659  case DeclSpec::SCS_extern:
5660    if (D.getDeclSpec().isExternInLinkageSpec())
5661      return SC_None;
5662    return SC_Extern;
5663  case DeclSpec::SCS_static: {
5664    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5665      // C99 6.7.1p5:
5666      //   The declaration of an identifier for a function that has
5667      //   block scope shall have no explicit storage-class specifier
5668      //   other than extern
5669      // See also (C++ [dcl.stc]p4).
5670      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5671                   diag::err_static_block_func);
5672      break;
5673    } else
5674      return SC_Static;
5675  }
5676  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5677  }
5678
5679  // No explicit storage class has already been returned
5680  return SC_None;
5681}
5682
5683static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5684                                           DeclContext *DC, QualType &R,
5685                                           TypeSourceInfo *TInfo,
5686                                           FunctionDecl::StorageClass SC,
5687                                           bool &IsVirtualOkay) {
5688  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5689  DeclarationName Name = NameInfo.getName();
5690
5691  FunctionDecl *NewFD = 0;
5692  bool isInline = D.getDeclSpec().isInlineSpecified();
5693
5694  if (!SemaRef.getLangOpts().CPlusPlus) {
5695    // Determine whether the function was written with a
5696    // prototype. This true when:
5697    //   - there is a prototype in the declarator, or
5698    //   - the type R of the function is some kind of typedef or other reference
5699    //     to a type name (which eventually refers to a function type).
5700    bool HasPrototype =
5701      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5702      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5703
5704    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5705                                 D.getLocStart(), NameInfo, R,
5706                                 TInfo, SC, isInline,
5707                                 HasPrototype, false);
5708    if (D.isInvalidType())
5709      NewFD->setInvalidDecl();
5710
5711    // Set the lexical context.
5712    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5713
5714    return NewFD;
5715  }
5716
5717  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5718  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5719
5720  // Check that the return type is not an abstract class type.
5721  // For record types, this is done by the AbstractClassUsageDiagnoser once
5722  // the class has been completely parsed.
5723  if (!DC->isRecord() &&
5724      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5725                                     R->getAs<FunctionType>()->getResultType(),
5726                                     diag::err_abstract_type_in_decl,
5727                                     SemaRef.AbstractReturnType))
5728    D.setInvalidType();
5729
5730  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5731    // This is a C++ constructor declaration.
5732    assert(DC->isRecord() &&
5733           "Constructors can only be declared in a member context");
5734
5735    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5736    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5737                                      D.getLocStart(), NameInfo,
5738                                      R, TInfo, isExplicit, isInline,
5739                                      /*isImplicitlyDeclared=*/false,
5740                                      isConstexpr);
5741
5742  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5743    // This is a C++ destructor declaration.
5744    if (DC->isRecord()) {
5745      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5746      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5747      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5748                                        SemaRef.Context, Record,
5749                                        D.getLocStart(),
5750                                        NameInfo, R, TInfo, isInline,
5751                                        /*isImplicitlyDeclared=*/false);
5752
5753      // If the class is complete, then we now create the implicit exception
5754      // specification. If the class is incomplete or dependent, we can't do
5755      // it yet.
5756      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5757          Record->getDefinition() && !Record->isBeingDefined() &&
5758          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5759        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5760      }
5761
5762      IsVirtualOkay = true;
5763      return NewDD;
5764
5765    } else {
5766      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5767      D.setInvalidType();
5768
5769      // Create a FunctionDecl to satisfy the function definition parsing
5770      // code path.
5771      return FunctionDecl::Create(SemaRef.Context, DC,
5772                                  D.getLocStart(),
5773                                  D.getIdentifierLoc(), Name, R, TInfo,
5774                                  SC, isInline,
5775                                  /*hasPrototype=*/true, isConstexpr);
5776    }
5777
5778  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5779    if (!DC->isRecord()) {
5780      SemaRef.Diag(D.getIdentifierLoc(),
5781           diag::err_conv_function_not_member);
5782      return 0;
5783    }
5784
5785    SemaRef.CheckConversionDeclarator(D, R, SC);
5786    IsVirtualOkay = true;
5787    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5788                                     D.getLocStart(), NameInfo,
5789                                     R, TInfo, isInline, isExplicit,
5790                                     isConstexpr, SourceLocation());
5791
5792  } else if (DC->isRecord()) {
5793    // If the name of the function is the same as the name of the record,
5794    // then this must be an invalid constructor that has a return type.
5795    // (The parser checks for a return type and makes the declarator a
5796    // constructor if it has no return type).
5797    if (Name.getAsIdentifierInfo() &&
5798        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5799      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5800        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5801        << SourceRange(D.getIdentifierLoc());
5802      return 0;
5803    }
5804
5805    // This is a C++ method declaration.
5806    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5807                                               cast<CXXRecordDecl>(DC),
5808                                               D.getLocStart(), NameInfo, R,
5809                                               TInfo, SC, isInline,
5810                                               isConstexpr, SourceLocation());
5811    IsVirtualOkay = !Ret->isStatic();
5812    return Ret;
5813  } else {
5814    // Determine whether the function was written with a
5815    // prototype. This true when:
5816    //   - we're in C++ (where every function has a prototype),
5817    return FunctionDecl::Create(SemaRef.Context, DC,
5818                                D.getLocStart(),
5819                                NameInfo, R, TInfo, SC, isInline,
5820                                true/*HasPrototype*/, isConstexpr);
5821  }
5822}
5823
5824void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5825  // In C++, the empty parameter-type-list must be spelled "void"; a
5826  // typedef of void is not permitted.
5827  if (getLangOpts().CPlusPlus &&
5828      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5829    bool IsTypeAlias = false;
5830    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5831      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5832    else if (const TemplateSpecializationType *TST =
5833               Param->getType()->getAs<TemplateSpecializationType>())
5834      IsTypeAlias = TST->isTypeAlias();
5835    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5836      << IsTypeAlias;
5837  }
5838}
5839
5840NamedDecl*
5841Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5842                              TypeSourceInfo *TInfo, LookupResult &Previous,
5843                              MultiTemplateParamsArg TemplateParamLists,
5844                              bool &AddToScope) {
5845  QualType R = TInfo->getType();
5846
5847  assert(R.getTypePtr()->isFunctionType());
5848
5849  // TODO: consider using NameInfo for diagnostic.
5850  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5851  DeclarationName Name = NameInfo.getName();
5852  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5853
5854  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
5855    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5856         diag::err_invalid_thread)
5857      << DeclSpec::getSpecifierName(TSCS);
5858
5859  // Do not allow returning a objc interface by-value.
5860  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5861    Diag(D.getIdentifierLoc(),
5862         diag::err_object_cannot_be_passed_returned_by_value) << 0
5863    << R->getAs<FunctionType>()->getResultType()
5864    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5865
5866    QualType T = R->getAs<FunctionType>()->getResultType();
5867    T = Context.getObjCObjectPointerType(T);
5868    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5869      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5870      R = Context.getFunctionType(T,
5871                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5872                                                     FPT->getNumArgs()),
5873                                  EPI);
5874    }
5875    else if (isa<FunctionNoProtoType>(R))
5876      R = Context.getFunctionNoProtoType(T);
5877  }
5878
5879  bool isFriend = false;
5880  FunctionTemplateDecl *FunctionTemplate = 0;
5881  bool isExplicitSpecialization = false;
5882  bool isFunctionTemplateSpecialization = false;
5883
5884  bool isDependentClassScopeExplicitSpecialization = false;
5885  bool HasExplicitTemplateArgs = false;
5886  TemplateArgumentListInfo TemplateArgs;
5887
5888  bool isVirtualOkay = false;
5889
5890  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5891                                              isVirtualOkay);
5892  if (!NewFD) return 0;
5893
5894  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5895    NewFD->setTopLevelDeclInObjCContainer();
5896
5897  if (getLangOpts().CPlusPlus) {
5898    bool isInline = D.getDeclSpec().isInlineSpecified();
5899    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5900    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5901    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5902    isFriend = D.getDeclSpec().isFriendSpecified();
5903    if (isFriend && !isInline && D.isFunctionDefinition()) {
5904      // C++ [class.friend]p5
5905      //   A function can be defined in a friend declaration of a
5906      //   class . . . . Such a function is implicitly inline.
5907      NewFD->setImplicitlyInline();
5908    }
5909
5910    // If this is a method defined in an __interface, and is not a constructor
5911    // or an overloaded operator, then set the pure flag (isVirtual will already
5912    // return true).
5913    if (const CXXRecordDecl *Parent =
5914          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5915      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5916        NewFD->setPure(true);
5917    }
5918
5919    SetNestedNameSpecifier(NewFD, D);
5920    isExplicitSpecialization = false;
5921    isFunctionTemplateSpecialization = false;
5922    if (D.isInvalidType())
5923      NewFD->setInvalidDecl();
5924
5925    // Set the lexical context. If the declarator has a C++
5926    // scope specifier, or is the object of a friend declaration, the
5927    // lexical context will be different from the semantic context.
5928    NewFD->setLexicalDeclContext(CurContext);
5929
5930    // Match up the template parameter lists with the scope specifier, then
5931    // determine whether we have a template or a template specialization.
5932    bool Invalid = false;
5933    if (TemplateParameterList *TemplateParams
5934          = MatchTemplateParametersToScopeSpecifier(
5935                                  D.getDeclSpec().getLocStart(),
5936                                  D.getIdentifierLoc(),
5937                                  D.getCXXScopeSpec(),
5938                                  TemplateParamLists.data(),
5939                                  TemplateParamLists.size(),
5940                                  isFriend,
5941                                  isExplicitSpecialization,
5942                                  Invalid)) {
5943      if (TemplateParams->size() > 0) {
5944        // This is a function template
5945
5946        // Check that we can declare a template here.
5947        if (CheckTemplateDeclScope(S, TemplateParams))
5948          return 0;
5949
5950        // A destructor cannot be a template.
5951        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5952          Diag(NewFD->getLocation(), diag::err_destructor_template);
5953          return 0;
5954        }
5955
5956        // If we're adding a template to a dependent context, we may need to
5957        // rebuilding some of the types used within the template parameter list,
5958        // now that we know what the current instantiation is.
5959        if (DC->isDependentContext()) {
5960          ContextRAII SavedContext(*this, DC);
5961          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5962            Invalid = true;
5963        }
5964
5965
5966        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5967                                                        NewFD->getLocation(),
5968                                                        Name, TemplateParams,
5969                                                        NewFD);
5970        FunctionTemplate->setLexicalDeclContext(CurContext);
5971        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5972
5973        // For source fidelity, store the other template param lists.
5974        if (TemplateParamLists.size() > 1) {
5975          NewFD->setTemplateParameterListsInfo(Context,
5976                                               TemplateParamLists.size() - 1,
5977                                               TemplateParamLists.data());
5978        }
5979      } else {
5980        // This is a function template specialization.
5981        isFunctionTemplateSpecialization = true;
5982        // For source fidelity, store all the template param lists.
5983        NewFD->setTemplateParameterListsInfo(Context,
5984                                             TemplateParamLists.size(),
5985                                             TemplateParamLists.data());
5986
5987        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5988        if (isFriend) {
5989          // We want to remove the "template<>", found here.
5990          SourceRange RemoveRange = TemplateParams->getSourceRange();
5991
5992          // If we remove the template<> and the name is not a
5993          // template-id, we're actually silently creating a problem:
5994          // the friend declaration will refer to an untemplated decl,
5995          // and clearly the user wants a template specialization.  So
5996          // we need to insert '<>' after the name.
5997          SourceLocation InsertLoc;
5998          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5999            InsertLoc = D.getName().getSourceRange().getEnd();
6000            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6001          }
6002
6003          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6004            << Name << RemoveRange
6005            << FixItHint::CreateRemoval(RemoveRange)
6006            << FixItHint::CreateInsertion(InsertLoc, "<>");
6007        }
6008      }
6009    }
6010    else {
6011      // All template param lists were matched against the scope specifier:
6012      // this is NOT (an explicit specialization of) a template.
6013      if (TemplateParamLists.size() > 0)
6014        // For source fidelity, store all the template param lists.
6015        NewFD->setTemplateParameterListsInfo(Context,
6016                                             TemplateParamLists.size(),
6017                                             TemplateParamLists.data());
6018    }
6019
6020    if (Invalid) {
6021      NewFD->setInvalidDecl();
6022      if (FunctionTemplate)
6023        FunctionTemplate->setInvalidDecl();
6024    }
6025
6026    // C++ [dcl.fct.spec]p5:
6027    //   The virtual specifier shall only be used in declarations of
6028    //   nonstatic class member functions that appear within a
6029    //   member-specification of a class declaration; see 10.3.
6030    //
6031    if (isVirtual && !NewFD->isInvalidDecl()) {
6032      if (!isVirtualOkay) {
6033        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6034             diag::err_virtual_non_function);
6035      } else if (!CurContext->isRecord()) {
6036        // 'virtual' was specified outside of the class.
6037        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6038             diag::err_virtual_out_of_class)
6039          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6040      } else if (NewFD->getDescribedFunctionTemplate()) {
6041        // C++ [temp.mem]p3:
6042        //  A member function template shall not be virtual.
6043        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6044             diag::err_virtual_member_function_template)
6045          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6046      } else {
6047        // Okay: Add virtual to the method.
6048        NewFD->setVirtualAsWritten(true);
6049      }
6050    }
6051
6052    // C++ [dcl.fct.spec]p3:
6053    //  The inline specifier shall not appear on a block scope function
6054    //  declaration.
6055    if (isInline && !NewFD->isInvalidDecl()) {
6056      if (CurContext->isFunctionOrMethod()) {
6057        // 'inline' is not allowed on block scope function declaration.
6058        Diag(D.getDeclSpec().getInlineSpecLoc(),
6059             diag::err_inline_declaration_block_scope) << Name
6060          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6061      }
6062    }
6063
6064    // C++ [dcl.fct.spec]p6:
6065    //  The explicit specifier shall be used only in the declaration of a
6066    //  constructor or conversion function within its class definition;
6067    //  see 12.3.1 and 12.3.2.
6068    if (isExplicit && !NewFD->isInvalidDecl()) {
6069      if (!CurContext->isRecord()) {
6070        // 'explicit' was specified outside of the class.
6071        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6072             diag::err_explicit_out_of_class)
6073          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6074      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6075                 !isa<CXXConversionDecl>(NewFD)) {
6076        // 'explicit' was specified on a function that wasn't a constructor
6077        // or conversion function.
6078        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6079             diag::err_explicit_non_ctor_or_conv_function)
6080          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6081      }
6082    }
6083
6084    if (isConstexpr) {
6085      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6086      // are implicitly inline.
6087      NewFD->setImplicitlyInline();
6088
6089      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6090      // be either constructors or to return a literal type. Therefore,
6091      // destructors cannot be declared constexpr.
6092      if (isa<CXXDestructorDecl>(NewFD))
6093        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6094    }
6095
6096    // If __module_private__ was specified, mark the function accordingly.
6097    if (D.getDeclSpec().isModulePrivateSpecified()) {
6098      if (isFunctionTemplateSpecialization) {
6099        SourceLocation ModulePrivateLoc
6100          = D.getDeclSpec().getModulePrivateSpecLoc();
6101        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6102          << 0
6103          << FixItHint::CreateRemoval(ModulePrivateLoc);
6104      } else {
6105        NewFD->setModulePrivate();
6106        if (FunctionTemplate)
6107          FunctionTemplate->setModulePrivate();
6108      }
6109    }
6110
6111    if (isFriend) {
6112      // For now, claim that the objects have no previous declaration.
6113      if (FunctionTemplate) {
6114        FunctionTemplate->setObjectOfFriendDecl(false);
6115        FunctionTemplate->setAccess(AS_public);
6116      }
6117      NewFD->setObjectOfFriendDecl(false);
6118      NewFD->setAccess(AS_public);
6119    }
6120
6121    // If a function is defined as defaulted or deleted, mark it as such now.
6122    switch (D.getFunctionDefinitionKind()) {
6123      case FDK_Declaration:
6124      case FDK_Definition:
6125        break;
6126
6127      case FDK_Defaulted:
6128        NewFD->setDefaulted();
6129        break;
6130
6131      case FDK_Deleted:
6132        NewFD->setDeletedAsWritten();
6133        break;
6134    }
6135
6136    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6137        D.isFunctionDefinition()) {
6138      // C++ [class.mfct]p2:
6139      //   A member function may be defined (8.4) in its class definition, in
6140      //   which case it is an inline member function (7.1.2)
6141      NewFD->setImplicitlyInline();
6142    }
6143
6144    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6145        !CurContext->isRecord()) {
6146      // C++ [class.static]p1:
6147      //   A data or function member of a class may be declared static
6148      //   in a class definition, in which case it is a static member of
6149      //   the class.
6150
6151      // Complain about the 'static' specifier if it's on an out-of-line
6152      // member function definition.
6153      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6154           diag::err_static_out_of_line)
6155        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6156    }
6157
6158    // C++11 [except.spec]p15:
6159    //   A deallocation function with no exception-specification is treated
6160    //   as if it were specified with noexcept(true).
6161    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6162    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6163         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6164        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6165      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6166      EPI.ExceptionSpecType = EST_BasicNoexcept;
6167      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6168                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6169                                                         FPT->getNumArgs()),
6170                                             EPI));
6171    }
6172  }
6173
6174  // Filter out previous declarations that don't match the scope.
6175  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6176                       isExplicitSpecialization ||
6177                       isFunctionTemplateSpecialization);
6178
6179  // Handle GNU asm-label extension (encoded as an attribute).
6180  if (Expr *E = (Expr*) D.getAsmLabel()) {
6181    // The parser guarantees this is a string.
6182    StringLiteral *SE = cast<StringLiteral>(E);
6183    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6184                                                SE->getString()));
6185  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6186    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6187      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6188    if (I != ExtnameUndeclaredIdentifiers.end()) {
6189      NewFD->addAttr(I->second);
6190      ExtnameUndeclaredIdentifiers.erase(I);
6191    }
6192  }
6193
6194  // Copy the parameter declarations from the declarator D to the function
6195  // declaration NewFD, if they are available.  First scavenge them into Params.
6196  SmallVector<ParmVarDecl*, 16> Params;
6197  if (D.isFunctionDeclarator()) {
6198    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6199
6200    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6201    // function that takes no arguments, not a function that takes a
6202    // single void argument.
6203    // We let through "const void" here because Sema::GetTypeForDeclarator
6204    // already checks for that case.
6205    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6206        FTI.ArgInfo[0].Param &&
6207        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6208      // Empty arg list, don't push any params.
6209      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6210    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6211      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6212        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6213        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6214        Param->setDeclContext(NewFD);
6215        Params.push_back(Param);
6216
6217        if (Param->isInvalidDecl())
6218          NewFD->setInvalidDecl();
6219      }
6220    }
6221
6222  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6223    // When we're declaring a function with a typedef, typeof, etc as in the
6224    // following example, we'll need to synthesize (unnamed)
6225    // parameters for use in the declaration.
6226    //
6227    // @code
6228    // typedef void fn(int);
6229    // fn f;
6230    // @endcode
6231
6232    // Synthesize a parameter for each argument type.
6233    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6234         AE = FT->arg_type_end(); AI != AE; ++AI) {
6235      ParmVarDecl *Param =
6236        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6237      Param->setScopeInfo(0, Params.size());
6238      Params.push_back(Param);
6239    }
6240  } else {
6241    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6242           "Should not need args for typedef of non-prototype fn");
6243  }
6244
6245  // Finally, we know we have the right number of parameters, install them.
6246  NewFD->setParams(Params);
6247
6248  // Find all anonymous symbols defined during the declaration of this function
6249  // and add to NewFD. This lets us track decls such 'enum Y' in:
6250  //
6251  //   void f(enum Y {AA} x) {}
6252  //
6253  // which would otherwise incorrectly end up in the translation unit scope.
6254  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6255  DeclsInPrototypeScope.clear();
6256
6257  if (D.getDeclSpec().isNoreturnSpecified())
6258    NewFD->addAttr(
6259        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6260                                       Context));
6261
6262  // Process the non-inheritable attributes on this declaration.
6263  ProcessDeclAttributes(S, NewFD, D,
6264                        /*NonInheritable=*/true, /*Inheritable=*/false);
6265
6266  // Functions returning a variably modified type violate C99 6.7.5.2p2
6267  // because all functions have linkage.
6268  if (!NewFD->isInvalidDecl() &&
6269      NewFD->getResultType()->isVariablyModifiedType()) {
6270    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6271    NewFD->setInvalidDecl();
6272  }
6273
6274  // Handle attributes.
6275  ProcessDeclAttributes(S, NewFD, D,
6276                        /*NonInheritable=*/false, /*Inheritable=*/true);
6277
6278  QualType RetType = NewFD->getResultType();
6279  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6280      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6281  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6282      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6283    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6284    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6285      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6286                                                        Context));
6287    }
6288  }
6289
6290  if (!getLangOpts().CPlusPlus) {
6291    // Perform semantic checking on the function declaration.
6292    bool isExplicitSpecialization=false;
6293    if (!NewFD->isInvalidDecl()) {
6294      if (NewFD->isMain())
6295        CheckMain(NewFD, D.getDeclSpec());
6296      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6297                                                  isExplicitSpecialization));
6298    }
6299    // Make graceful recovery from an invalid redeclaration.
6300    else if (!Previous.empty())
6301           D.setRedeclaration(true);
6302    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6303            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6304           "previous declaration set still overloaded");
6305  } else {
6306    // If the declarator is a template-id, translate the parser's template
6307    // argument list into our AST format.
6308    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6309      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6310      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6311      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6312      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6313                                         TemplateId->NumArgs);
6314      translateTemplateArguments(TemplateArgsPtr,
6315                                 TemplateArgs);
6316
6317      HasExplicitTemplateArgs = true;
6318
6319      if (NewFD->isInvalidDecl()) {
6320        HasExplicitTemplateArgs = false;
6321      } else if (FunctionTemplate) {
6322        // Function template with explicit template arguments.
6323        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6324          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6325
6326        HasExplicitTemplateArgs = false;
6327      } else if (!isFunctionTemplateSpecialization &&
6328                 !D.getDeclSpec().isFriendSpecified()) {
6329        // We have encountered something that the user meant to be a
6330        // specialization (because it has explicitly-specified template
6331        // arguments) but that was not introduced with a "template<>" (or had
6332        // too few of them).
6333        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6334          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6335          << FixItHint::CreateInsertion(
6336                                    D.getDeclSpec().getLocStart(),
6337                                        "template<> ");
6338        isFunctionTemplateSpecialization = true;
6339      } else {
6340        // "friend void foo<>(int);" is an implicit specialization decl.
6341        isFunctionTemplateSpecialization = true;
6342      }
6343    } else if (isFriend && isFunctionTemplateSpecialization) {
6344      // This combination is only possible in a recovery case;  the user
6345      // wrote something like:
6346      //   template <> friend void foo(int);
6347      // which we're recovering from as if the user had written:
6348      //   friend void foo<>(int);
6349      // Go ahead and fake up a template id.
6350      HasExplicitTemplateArgs = true;
6351        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6352      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6353    }
6354
6355    // If it's a friend (and only if it's a friend), it's possible
6356    // that either the specialized function type or the specialized
6357    // template is dependent, and therefore matching will fail.  In
6358    // this case, don't check the specialization yet.
6359    bool InstantiationDependent = false;
6360    if (isFunctionTemplateSpecialization && isFriend &&
6361        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6362         TemplateSpecializationType::anyDependentTemplateArguments(
6363            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6364            InstantiationDependent))) {
6365      assert(HasExplicitTemplateArgs &&
6366             "friend function specialization without template args");
6367      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6368                                                       Previous))
6369        NewFD->setInvalidDecl();
6370    } else if (isFunctionTemplateSpecialization) {
6371      if (CurContext->isDependentContext() && CurContext->isRecord()
6372          && !isFriend) {
6373        isDependentClassScopeExplicitSpecialization = true;
6374        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6375          diag::ext_function_specialization_in_class :
6376          diag::err_function_specialization_in_class)
6377          << NewFD->getDeclName();
6378      } else if (CheckFunctionTemplateSpecialization(NewFD,
6379                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6380                                                     Previous))
6381        NewFD->setInvalidDecl();
6382
6383      // C++ [dcl.stc]p1:
6384      //   A storage-class-specifier shall not be specified in an explicit
6385      //   specialization (14.7.3)
6386      if (SC != SC_None) {
6387        if (SC != NewFD->getTemplateSpecializationInfo()->getTemplate()->getTemplatedDecl()->getStorageClass())
6388          Diag(NewFD->getLocation(),
6389               diag::err_explicit_specialization_inconsistent_storage_class)
6390            << SC
6391            << FixItHint::CreateRemoval(
6392                                      D.getDeclSpec().getStorageClassSpecLoc());
6393
6394        else
6395          Diag(NewFD->getLocation(),
6396               diag::ext_explicit_specialization_storage_class)
6397            << FixItHint::CreateRemoval(
6398                                      D.getDeclSpec().getStorageClassSpecLoc());
6399      }
6400
6401    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6402      if (CheckMemberSpecialization(NewFD, Previous))
6403          NewFD->setInvalidDecl();
6404    }
6405
6406    // Perform semantic checking on the function declaration.
6407    if (!isDependentClassScopeExplicitSpecialization) {
6408      if (NewFD->isInvalidDecl()) {
6409        // If this is a class member, mark the class invalid immediately.
6410        // This avoids some consistency errors later.
6411        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6412          methodDecl->getParent()->setInvalidDecl();
6413      } else {
6414        if (NewFD->isMain())
6415          CheckMain(NewFD, D.getDeclSpec());
6416        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6417                                                    isExplicitSpecialization));
6418      }
6419    }
6420
6421    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6422            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6423           "previous declaration set still overloaded");
6424
6425    NamedDecl *PrincipalDecl = (FunctionTemplate
6426                                ? cast<NamedDecl>(FunctionTemplate)
6427                                : NewFD);
6428
6429    if (isFriend && D.isRedeclaration()) {
6430      AccessSpecifier Access = AS_public;
6431      if (!NewFD->isInvalidDecl())
6432        Access = NewFD->getPreviousDecl()->getAccess();
6433
6434      NewFD->setAccess(Access);
6435      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6436
6437      PrincipalDecl->setObjectOfFriendDecl(true);
6438    }
6439
6440    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6441        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6442      PrincipalDecl->setNonMemberOperator();
6443
6444    // If we have a function template, check the template parameter
6445    // list. This will check and merge default template arguments.
6446    if (FunctionTemplate) {
6447      FunctionTemplateDecl *PrevTemplate =
6448                                     FunctionTemplate->getPreviousDecl();
6449      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6450                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6451                            D.getDeclSpec().isFriendSpecified()
6452                              ? (D.isFunctionDefinition()
6453                                   ? TPC_FriendFunctionTemplateDefinition
6454                                   : TPC_FriendFunctionTemplate)
6455                              : (D.getCXXScopeSpec().isSet() &&
6456                                 DC && DC->isRecord() &&
6457                                 DC->isDependentContext())
6458                                  ? TPC_ClassTemplateMember
6459                                  : TPC_FunctionTemplate);
6460    }
6461
6462    if (NewFD->isInvalidDecl()) {
6463      // Ignore all the rest of this.
6464    } else if (!D.isRedeclaration()) {
6465      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6466                                       AddToScope };
6467      // Fake up an access specifier if it's supposed to be a class member.
6468      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6469        NewFD->setAccess(AS_public);
6470
6471      // Qualified decls generally require a previous declaration.
6472      if (D.getCXXScopeSpec().isSet()) {
6473        // ...with the major exception of templated-scope or
6474        // dependent-scope friend declarations.
6475
6476        // TODO: we currently also suppress this check in dependent
6477        // contexts because (1) the parameter depth will be off when
6478        // matching friend templates and (2) we might actually be
6479        // selecting a friend based on a dependent factor.  But there
6480        // are situations where these conditions don't apply and we
6481        // can actually do this check immediately.
6482        if (isFriend &&
6483            (TemplateParamLists.size() ||
6484             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6485             CurContext->isDependentContext())) {
6486          // ignore these
6487        } else {
6488          // The user tried to provide an out-of-line definition for a
6489          // function that is a member of a class or namespace, but there
6490          // was no such member function declared (C++ [class.mfct]p2,
6491          // C++ [namespace.memdef]p2). For example:
6492          //
6493          // class X {
6494          //   void f() const;
6495          // };
6496          //
6497          // void X::f() { } // ill-formed
6498          //
6499          // Complain about this problem, and attempt to suggest close
6500          // matches (e.g., those that differ only in cv-qualifiers and
6501          // whether the parameter types are references).
6502
6503          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6504                                                               NewFD,
6505                                                               ExtraArgs)) {
6506            AddToScope = ExtraArgs.AddToScope;
6507            return Result;
6508          }
6509        }
6510
6511        // Unqualified local friend declarations are required to resolve
6512        // to something.
6513      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6514        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6515                                                             NewFD,
6516                                                             ExtraArgs)) {
6517          AddToScope = ExtraArgs.AddToScope;
6518          return Result;
6519        }
6520      }
6521
6522    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6523               !isFriend && !isFunctionTemplateSpecialization &&
6524               !isExplicitSpecialization) {
6525      // An out-of-line member function declaration must also be a
6526      // definition (C++ [dcl.meaning]p1).
6527      // Note that this is not the case for explicit specializations of
6528      // function templates or member functions of class templates, per
6529      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6530      // extension for compatibility with old SWIG code which likes to
6531      // generate them.
6532      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6533        << D.getCXXScopeSpec().getRange();
6534    }
6535  }
6536
6537  ProcessPragmaWeak(S, NewFD);
6538  checkAttributesAfterMerging(*this, *NewFD);
6539
6540  AddKnownFunctionAttributes(NewFD);
6541
6542  if (NewFD->hasAttr<OverloadableAttr>() &&
6543      !NewFD->getType()->getAs<FunctionProtoType>()) {
6544    Diag(NewFD->getLocation(),
6545         diag::err_attribute_overloadable_no_prototype)
6546      << NewFD;
6547
6548    // Turn this into a variadic function with no parameters.
6549    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6550    FunctionProtoType::ExtProtoInfo EPI;
6551    EPI.Variadic = true;
6552    EPI.ExtInfo = FT->getExtInfo();
6553
6554    QualType R = Context.getFunctionType(FT->getResultType(),
6555                                         ArrayRef<QualType>(),
6556                                         EPI);
6557    NewFD->setType(R);
6558  }
6559
6560  // If there's a #pragma GCC visibility in scope, and this isn't a class
6561  // member, set the visibility of this function.
6562  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6563    AddPushedVisibilityAttribute(NewFD);
6564
6565  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6566  // marking the function.
6567  AddCFAuditedAttribute(NewFD);
6568
6569  // If this is a locally-scoped extern C function, update the
6570  // map of such names.
6571  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6572      && !NewFD->isInvalidDecl())
6573    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6574
6575  // Set this FunctionDecl's range up to the right paren.
6576  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6577
6578  if (getLangOpts().CPlusPlus) {
6579    if (FunctionTemplate) {
6580      if (NewFD->isInvalidDecl())
6581        FunctionTemplate->setInvalidDecl();
6582      return FunctionTemplate;
6583    }
6584  }
6585
6586  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6587    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6588    if ((getLangOpts().OpenCLVersion >= 120)
6589        && (SC == SC_Static)) {
6590      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6591      D.setInvalidType();
6592    }
6593
6594    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6595    if (!NewFD->getResultType()->isVoidType()) {
6596      Diag(D.getIdentifierLoc(),
6597           diag::err_expected_kernel_void_return_type);
6598      D.setInvalidType();
6599    }
6600
6601    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6602         PE = NewFD->param_end(); PI != PE; ++PI) {
6603      ParmVarDecl *Param = *PI;
6604      QualType PT = Param->getType();
6605
6606      // OpenCL v1.2 s6.9.a:
6607      // A kernel function argument cannot be declared as a
6608      // pointer to a pointer type.
6609      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6610        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6611        D.setInvalidType();
6612      }
6613
6614      // OpenCL v1.2 s6.8 n:
6615      // A kernel function argument cannot be declared
6616      // of event_t type.
6617      if (PT->isEventT()) {
6618        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6619        D.setInvalidType();
6620      }
6621    }
6622  }
6623
6624  MarkUnusedFileScopedDecl(NewFD);
6625
6626  if (getLangOpts().CUDA)
6627    if (IdentifierInfo *II = NewFD->getIdentifier())
6628      if (!NewFD->isInvalidDecl() &&
6629          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6630        if (II->isStr("cudaConfigureCall")) {
6631          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6632            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6633
6634          Context.setcudaConfigureCallDecl(NewFD);
6635        }
6636      }
6637
6638  // Here we have an function template explicit specialization at class scope.
6639  // The actually specialization will be postponed to template instatiation
6640  // time via the ClassScopeFunctionSpecializationDecl node.
6641  if (isDependentClassScopeExplicitSpecialization) {
6642    ClassScopeFunctionSpecializationDecl *NewSpec =
6643                         ClassScopeFunctionSpecializationDecl::Create(
6644                                Context, CurContext, SourceLocation(),
6645                                cast<CXXMethodDecl>(NewFD),
6646                                HasExplicitTemplateArgs, TemplateArgs);
6647    CurContext->addDecl(NewSpec);
6648    AddToScope = false;
6649  }
6650
6651  return NewFD;
6652}
6653
6654/// \brief Perform semantic checking of a new function declaration.
6655///
6656/// Performs semantic analysis of the new function declaration
6657/// NewFD. This routine performs all semantic checking that does not
6658/// require the actual declarator involved in the declaration, and is
6659/// used both for the declaration of functions as they are parsed
6660/// (called via ActOnDeclarator) and for the declaration of functions
6661/// that have been instantiated via C++ template instantiation (called
6662/// via InstantiateDecl).
6663///
6664/// \param IsExplicitSpecialization whether this new function declaration is
6665/// an explicit specialization of the previous declaration.
6666///
6667/// This sets NewFD->isInvalidDecl() to true if there was an error.
6668///
6669/// \returns true if the function declaration is a redeclaration.
6670bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6671                                    LookupResult &Previous,
6672                                    bool IsExplicitSpecialization) {
6673  assert(!NewFD->getResultType()->isVariablyModifiedType()
6674         && "Variably modified return types are not handled here");
6675
6676  // Check for a previous declaration of this name.
6677  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6678    // Since we did not find anything by this name, look for a non-visible
6679    // extern "C" declaration with the same name.
6680    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6681      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6682    if (Pos != LocallyScopedExternCDecls.end())
6683      Previous.addDecl(Pos->second);
6684  }
6685
6686  // Filter out any non-conflicting previous declarations.
6687  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6688
6689  bool Redeclaration = false;
6690  NamedDecl *OldDecl = 0;
6691
6692  // Merge or overload the declaration with an existing declaration of
6693  // the same name, if appropriate.
6694  if (!Previous.empty()) {
6695    // Determine whether NewFD is an overload of PrevDecl or
6696    // a declaration that requires merging. If it's an overload,
6697    // there's no more work to do here; we'll just add the new
6698    // function to the scope.
6699    if (!AllowOverloadingOfFunction(Previous, Context)) {
6700      NamedDecl *Candidate = Previous.getFoundDecl();
6701      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6702        Redeclaration = true;
6703        OldDecl = Candidate;
6704      }
6705    } else {
6706      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6707                            /*NewIsUsingDecl*/ false)) {
6708      case Ovl_Match:
6709        Redeclaration = true;
6710        break;
6711
6712      case Ovl_NonFunction:
6713        Redeclaration = true;
6714        break;
6715
6716      case Ovl_Overload:
6717        Redeclaration = false;
6718        break;
6719      }
6720
6721      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6722        // If a function name is overloadable in C, then every function
6723        // with that name must be marked "overloadable".
6724        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6725          << Redeclaration << NewFD;
6726        NamedDecl *OverloadedDecl = 0;
6727        if (Redeclaration)
6728          OverloadedDecl = OldDecl;
6729        else if (!Previous.empty())
6730          OverloadedDecl = Previous.getRepresentativeDecl();
6731        if (OverloadedDecl)
6732          Diag(OverloadedDecl->getLocation(),
6733               diag::note_attribute_overloadable_prev_overload);
6734        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6735                                                        Context));
6736      }
6737    }
6738  }
6739
6740  // C++11 [dcl.constexpr]p8:
6741  //   A constexpr specifier for a non-static member function that is not
6742  //   a constructor declares that member function to be const.
6743  //
6744  // This needs to be delayed until we know whether this is an out-of-line
6745  // definition of a static member function.
6746  //
6747  // This rule is not present in C++1y, so we produce a backwards
6748  // compatibility warning whenever it happens in C++11.
6749  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6750  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6751      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6752      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6753    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6754    if (FunctionTemplateDecl *OldTD =
6755          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6756      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6757    if (!OldMD || !OldMD->isStatic()) {
6758      const FunctionProtoType *FPT =
6759        MD->getType()->castAs<FunctionProtoType>();
6760      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6761      EPI.TypeQuals |= Qualifiers::Const;
6762      MD->setType(Context.getFunctionType(FPT->getResultType(),
6763                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6764                                                         FPT->getNumArgs()),
6765                                          EPI));
6766
6767      // Warn that we did this, if we're not performing template instantiation.
6768      // In that case, we'll have warned already when the template was defined.
6769      if (ActiveTemplateInstantiations.empty()) {
6770        SourceLocation AddConstLoc;
6771        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6772                .IgnoreParens().getAs<FunctionTypeLoc>())
6773          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6774
6775        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6776          << FixItHint::CreateInsertion(AddConstLoc, " const");
6777      }
6778    }
6779  }
6780
6781  if (Redeclaration) {
6782    // NewFD and OldDecl represent declarations that need to be
6783    // merged.
6784    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6785      NewFD->setInvalidDecl();
6786      return Redeclaration;
6787    }
6788
6789    Previous.clear();
6790    Previous.addDecl(OldDecl);
6791
6792    if (FunctionTemplateDecl *OldTemplateDecl
6793                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6794      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6795      FunctionTemplateDecl *NewTemplateDecl
6796        = NewFD->getDescribedFunctionTemplate();
6797      assert(NewTemplateDecl && "Template/non-template mismatch");
6798      if (CXXMethodDecl *Method
6799            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6800        Method->setAccess(OldTemplateDecl->getAccess());
6801        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6802      }
6803
6804      // If this is an explicit specialization of a member that is a function
6805      // template, mark it as a member specialization.
6806      if (IsExplicitSpecialization &&
6807          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6808        NewTemplateDecl->setMemberSpecialization();
6809        assert(OldTemplateDecl->isMemberSpecialization());
6810      }
6811
6812    } else {
6813      // This needs to happen first so that 'inline' propagates.
6814      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6815
6816      if (isa<CXXMethodDecl>(NewFD)) {
6817        // A valid redeclaration of a C++ method must be out-of-line,
6818        // but (unfortunately) it's not necessarily a definition
6819        // because of templates, which means that the previous
6820        // declaration is not necessarily from the class definition.
6821
6822        // For just setting the access, that doesn't matter.
6823        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6824        NewFD->setAccess(oldMethod->getAccess());
6825
6826        // Update the key-function state if necessary for this ABI.
6827        if (NewFD->isInlined() &&
6828            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6829          // setNonKeyFunction needs to work with the original
6830          // declaration from the class definition, and isVirtual() is
6831          // just faster in that case, so map back to that now.
6832          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6833          if (oldMethod->isVirtual()) {
6834            Context.setNonKeyFunction(oldMethod);
6835          }
6836        }
6837      }
6838    }
6839  }
6840
6841  // Semantic checking for this function declaration (in isolation).
6842  if (getLangOpts().CPlusPlus) {
6843    // C++-specific checks.
6844    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6845      CheckConstructor(Constructor);
6846    } else if (CXXDestructorDecl *Destructor =
6847                dyn_cast<CXXDestructorDecl>(NewFD)) {
6848      CXXRecordDecl *Record = Destructor->getParent();
6849      QualType ClassType = Context.getTypeDeclType(Record);
6850
6851      // FIXME: Shouldn't we be able to perform this check even when the class
6852      // type is dependent? Both gcc and edg can handle that.
6853      if (!ClassType->isDependentType()) {
6854        DeclarationName Name
6855          = Context.DeclarationNames.getCXXDestructorName(
6856                                        Context.getCanonicalType(ClassType));
6857        if (NewFD->getDeclName() != Name) {
6858          Diag(NewFD->getLocation(), diag::err_destructor_name);
6859          NewFD->setInvalidDecl();
6860          return Redeclaration;
6861        }
6862      }
6863    } else if (CXXConversionDecl *Conversion
6864               = dyn_cast<CXXConversionDecl>(NewFD)) {
6865      ActOnConversionDeclarator(Conversion);
6866    }
6867
6868    // Find any virtual functions that this function overrides.
6869    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6870      if (!Method->isFunctionTemplateSpecialization() &&
6871          !Method->getDescribedFunctionTemplate() &&
6872          Method->isCanonicalDecl()) {
6873        if (AddOverriddenMethods(Method->getParent(), Method)) {
6874          // If the function was marked as "static", we have a problem.
6875          if (NewFD->getStorageClass() == SC_Static) {
6876            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6877          }
6878        }
6879      }
6880
6881      if (Method->isStatic())
6882        checkThisInStaticMemberFunctionType(Method);
6883    }
6884
6885    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6886    if (NewFD->isOverloadedOperator() &&
6887        CheckOverloadedOperatorDeclaration(NewFD)) {
6888      NewFD->setInvalidDecl();
6889      return Redeclaration;
6890    }
6891
6892    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6893    if (NewFD->getLiteralIdentifier() &&
6894        CheckLiteralOperatorDeclaration(NewFD)) {
6895      NewFD->setInvalidDecl();
6896      return Redeclaration;
6897    }
6898
6899    // In C++, check default arguments now that we have merged decls. Unless
6900    // the lexical context is the class, because in this case this is done
6901    // during delayed parsing anyway.
6902    if (!CurContext->isRecord())
6903      CheckCXXDefaultArguments(NewFD);
6904
6905    // If this function declares a builtin function, check the type of this
6906    // declaration against the expected type for the builtin.
6907    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6908      ASTContext::GetBuiltinTypeError Error;
6909      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6910      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6911      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6912        // The type of this function differs from the type of the builtin,
6913        // so forget about the builtin entirely.
6914        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6915      }
6916    }
6917
6918    // If this function is declared as being extern "C", then check to see if
6919    // the function returns a UDT (class, struct, or union type) that is not C
6920    // compatible, and if it does, warn the user.
6921    // But, issue any diagnostic on the first declaration only.
6922    if (NewFD->isExternC() && Previous.empty()) {
6923      QualType R = NewFD->getResultType();
6924      if (R->isIncompleteType() && !R->isVoidType())
6925        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6926            << NewFD << R;
6927      else if (!R.isPODType(Context) && !R->isVoidType() &&
6928               !R->isObjCObjectPointerType())
6929        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6930    }
6931  }
6932  return Redeclaration;
6933}
6934
6935static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6936  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6937  if (!TSI)
6938    return SourceRange();
6939
6940  TypeLoc TL = TSI->getTypeLoc();
6941  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6942  if (!FunctionTL)
6943    return SourceRange();
6944
6945  TypeLoc ResultTL = FunctionTL.getResultLoc();
6946  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6947    return ResultTL.getSourceRange();
6948
6949  return SourceRange();
6950}
6951
6952void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6953  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6954  //   static or constexpr is ill-formed.
6955  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6956  //   appear in a declaration of main.
6957  // static main is not an error under C99, but we should warn about it.
6958  // We accept _Noreturn main as an extension.
6959  if (FD->getStorageClass() == SC_Static)
6960    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6961         ? diag::err_static_main : diag::warn_static_main)
6962      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6963  if (FD->isInlineSpecified())
6964    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6965      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6966  if (DS.isNoreturnSpecified()) {
6967    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6968    SourceRange NoreturnRange(NoreturnLoc,
6969                              PP.getLocForEndOfToken(NoreturnLoc));
6970    Diag(NoreturnLoc, diag::ext_noreturn_main);
6971    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6972      << FixItHint::CreateRemoval(NoreturnRange);
6973  }
6974  if (FD->isConstexpr()) {
6975    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6976      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6977    FD->setConstexpr(false);
6978  }
6979
6980  QualType T = FD->getType();
6981  assert(T->isFunctionType() && "function decl is not of function type");
6982  const FunctionType* FT = T->castAs<FunctionType>();
6983
6984  // All the standards say that main() should should return 'int'.
6985  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6986    // In C and C++, main magically returns 0 if you fall off the end;
6987    // set the flag which tells us that.
6988    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6989    FD->setHasImplicitReturnZero(true);
6990
6991  // In C with GNU extensions we allow main() to have non-integer return
6992  // type, but we should warn about the extension, and we disable the
6993  // implicit-return-zero rule.
6994  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6995    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6996
6997    SourceRange ResultRange = getResultSourceRange(FD);
6998    if (ResultRange.isValid())
6999      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7000          << FixItHint::CreateReplacement(ResultRange, "int");
7001
7002  // Otherwise, this is just a flat-out error.
7003  } else {
7004    SourceRange ResultRange = getResultSourceRange(FD);
7005    if (ResultRange.isValid())
7006      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7007          << FixItHint::CreateReplacement(ResultRange, "int");
7008    else
7009      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7010
7011    FD->setInvalidDecl(true);
7012  }
7013
7014  // Treat protoless main() as nullary.
7015  if (isa<FunctionNoProtoType>(FT)) return;
7016
7017  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7018  unsigned nparams = FTP->getNumArgs();
7019  assert(FD->getNumParams() == nparams);
7020
7021  bool HasExtraParameters = (nparams > 3);
7022
7023  // Darwin passes an undocumented fourth argument of type char**.  If
7024  // other platforms start sprouting these, the logic below will start
7025  // getting shifty.
7026  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7027    HasExtraParameters = false;
7028
7029  if (HasExtraParameters) {
7030    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7031    FD->setInvalidDecl(true);
7032    nparams = 3;
7033  }
7034
7035  // FIXME: a lot of the following diagnostics would be improved
7036  // if we had some location information about types.
7037
7038  QualType CharPP =
7039    Context.getPointerType(Context.getPointerType(Context.CharTy));
7040  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7041
7042  for (unsigned i = 0; i < nparams; ++i) {
7043    QualType AT = FTP->getArgType(i);
7044
7045    bool mismatch = true;
7046
7047    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7048      mismatch = false;
7049    else if (Expected[i] == CharPP) {
7050      // As an extension, the following forms are okay:
7051      //   char const **
7052      //   char const * const *
7053      //   char * const *
7054
7055      QualifierCollector qs;
7056      const PointerType* PT;
7057      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7058          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7059          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7060                              Context.CharTy)) {
7061        qs.removeConst();
7062        mismatch = !qs.empty();
7063      }
7064    }
7065
7066    if (mismatch) {
7067      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7068      // TODO: suggest replacing given type with expected type
7069      FD->setInvalidDecl(true);
7070    }
7071  }
7072
7073  if (nparams == 1 && !FD->isInvalidDecl()) {
7074    Diag(FD->getLocation(), diag::warn_main_one_arg);
7075  }
7076
7077  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7078    Diag(FD->getLocation(), diag::err_main_template_decl);
7079    FD->setInvalidDecl();
7080  }
7081}
7082
7083bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7084  // FIXME: Need strict checking.  In C89, we need to check for
7085  // any assignment, increment, decrement, function-calls, or
7086  // commas outside of a sizeof.  In C99, it's the same list,
7087  // except that the aforementioned are allowed in unevaluated
7088  // expressions.  Everything else falls under the
7089  // "may accept other forms of constant expressions" exception.
7090  // (We never end up here for C++, so the constant expression
7091  // rules there don't matter.)
7092  if (Init->isConstantInitializer(Context, false))
7093    return false;
7094  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7095    << Init->getSourceRange();
7096  return true;
7097}
7098
7099namespace {
7100  // Visits an initialization expression to see if OrigDecl is evaluated in
7101  // its own initialization and throws a warning if it does.
7102  class SelfReferenceChecker
7103      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7104    Sema &S;
7105    Decl *OrigDecl;
7106    bool isRecordType;
7107    bool isPODType;
7108    bool isReferenceType;
7109
7110  public:
7111    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7112
7113    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7114                                                    S(S), OrigDecl(OrigDecl) {
7115      isPODType = false;
7116      isRecordType = false;
7117      isReferenceType = false;
7118      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7119        isPODType = VD->getType().isPODType(S.Context);
7120        isRecordType = VD->getType()->isRecordType();
7121        isReferenceType = VD->getType()->isReferenceType();
7122      }
7123    }
7124
7125    // For most expressions, the cast is directly above the DeclRefExpr.
7126    // For conditional operators, the cast can be outside the conditional
7127    // operator if both expressions are DeclRefExpr's.
7128    void HandleValue(Expr *E) {
7129      if (isReferenceType)
7130        return;
7131      E = E->IgnoreParenImpCasts();
7132      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7133        HandleDeclRefExpr(DRE);
7134        return;
7135      }
7136
7137      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7138        HandleValue(CO->getTrueExpr());
7139        HandleValue(CO->getFalseExpr());
7140        return;
7141      }
7142
7143      if (isa<MemberExpr>(E)) {
7144        Expr *Base = E->IgnoreParenImpCasts();
7145        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7146          // Check for static member variables and don't warn on them.
7147          if (!isa<FieldDecl>(ME->getMemberDecl()))
7148            return;
7149          Base = ME->getBase()->IgnoreParenImpCasts();
7150        }
7151        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7152          HandleDeclRefExpr(DRE);
7153        return;
7154      }
7155    }
7156
7157    // Reference types are handled here since all uses of references are
7158    // bad, not just r-value uses.
7159    void VisitDeclRefExpr(DeclRefExpr *E) {
7160      if (isReferenceType)
7161        HandleDeclRefExpr(E);
7162    }
7163
7164    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7165      if (E->getCastKind() == CK_LValueToRValue ||
7166          (isRecordType && E->getCastKind() == CK_NoOp))
7167        HandleValue(E->getSubExpr());
7168
7169      Inherited::VisitImplicitCastExpr(E);
7170    }
7171
7172    void VisitMemberExpr(MemberExpr *E) {
7173      // Don't warn on arrays since they can be treated as pointers.
7174      if (E->getType()->canDecayToPointerType()) return;
7175
7176      // Warn when a non-static method call is followed by non-static member
7177      // field accesses, which is followed by a DeclRefExpr.
7178      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7179      bool Warn = (MD && !MD->isStatic());
7180      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7181      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7182        if (!isa<FieldDecl>(ME->getMemberDecl()))
7183          Warn = false;
7184        Base = ME->getBase()->IgnoreParenImpCasts();
7185      }
7186
7187      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7188        if (Warn)
7189          HandleDeclRefExpr(DRE);
7190        return;
7191      }
7192
7193      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7194      // Visit that expression.
7195      Visit(Base);
7196    }
7197
7198    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7199      if (E->getNumArgs() > 0)
7200        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7201          HandleDeclRefExpr(DRE);
7202
7203      Inherited::VisitCXXOperatorCallExpr(E);
7204    }
7205
7206    void VisitUnaryOperator(UnaryOperator *E) {
7207      // For POD record types, addresses of its own members are well-defined.
7208      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7209          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7210        if (!isPODType)
7211          HandleValue(E->getSubExpr());
7212        return;
7213      }
7214      Inherited::VisitUnaryOperator(E);
7215    }
7216
7217    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7218
7219    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7220      Decl* ReferenceDecl = DRE->getDecl();
7221      if (OrigDecl != ReferenceDecl) return;
7222      unsigned diag;
7223      if (isReferenceType) {
7224        diag = diag::warn_uninit_self_reference_in_reference_init;
7225      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7226        diag = diag::warn_static_self_reference_in_init;
7227      } else {
7228        diag = diag::warn_uninit_self_reference_in_init;
7229      }
7230
7231      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7232                            S.PDiag(diag)
7233                              << DRE->getNameInfo().getName()
7234                              << OrigDecl->getLocation()
7235                              << DRE->getSourceRange());
7236    }
7237  };
7238
7239  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7240  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7241                                 bool DirectInit) {
7242    // Parameters arguments are occassionially constructed with itself,
7243    // for instance, in recursive functions.  Skip them.
7244    if (isa<ParmVarDecl>(OrigDecl))
7245      return;
7246
7247    E = E->IgnoreParens();
7248
7249    // Skip checking T a = a where T is not a record or reference type.
7250    // Doing so is a way to silence uninitialized warnings.
7251    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7252      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7253        if (ICE->getCastKind() == CK_LValueToRValue)
7254          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7255            if (DRE->getDecl() == OrigDecl)
7256              return;
7257
7258    SelfReferenceChecker(S, OrigDecl).Visit(E);
7259  }
7260}
7261
7262/// AddInitializerToDecl - Adds the initializer Init to the
7263/// declaration dcl. If DirectInit is true, this is C++ direct
7264/// initialization rather than copy initialization.
7265void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7266                                bool DirectInit, bool TypeMayContainAuto) {
7267  // If there is no declaration, there was an error parsing it.  Just ignore
7268  // the initializer.
7269  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7270    return;
7271
7272  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7273    // With declarators parsed the way they are, the parser cannot
7274    // distinguish between a normal initializer and a pure-specifier.
7275    // Thus this grotesque test.
7276    IntegerLiteral *IL;
7277    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7278        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7279      CheckPureMethod(Method, Init->getSourceRange());
7280    else {
7281      Diag(Method->getLocation(), diag::err_member_function_initialization)
7282        << Method->getDeclName() << Init->getSourceRange();
7283      Method->setInvalidDecl();
7284    }
7285    return;
7286  }
7287
7288  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7289  if (!VDecl) {
7290    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7291    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7292    RealDecl->setInvalidDecl();
7293    return;
7294  }
7295
7296  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7297
7298  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7299  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7300    Expr *DeduceInit = Init;
7301    // Initializer could be a C++ direct-initializer. Deduction only works if it
7302    // contains exactly one expression.
7303    if (CXXDirectInit) {
7304      if (CXXDirectInit->getNumExprs() == 0) {
7305        // It isn't possible to write this directly, but it is possible to
7306        // end up in this situation with "auto x(some_pack...);"
7307        Diag(CXXDirectInit->getLocStart(),
7308             diag::err_auto_var_init_no_expression)
7309          << VDecl->getDeclName() << VDecl->getType()
7310          << VDecl->getSourceRange();
7311        RealDecl->setInvalidDecl();
7312        return;
7313      } else if (CXXDirectInit->getNumExprs() > 1) {
7314        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7315             diag::err_auto_var_init_multiple_expressions)
7316          << VDecl->getDeclName() << VDecl->getType()
7317          << VDecl->getSourceRange();
7318        RealDecl->setInvalidDecl();
7319        return;
7320      } else {
7321        DeduceInit = CXXDirectInit->getExpr(0);
7322      }
7323    }
7324
7325    // Expressions default to 'id' when we're in a debugger.
7326    bool DefaultedToAuto = false;
7327    if (getLangOpts().DebuggerCastResultToId &&
7328        Init->getType() == Context.UnknownAnyTy) {
7329      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7330      if (Result.isInvalid()) {
7331        VDecl->setInvalidDecl();
7332        return;
7333      }
7334      Init = Result.take();
7335      DefaultedToAuto = true;
7336    }
7337
7338    QualType DeducedType;
7339    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7340            DAR_Failed)
7341      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7342    if (DeducedType.isNull()) {
7343      RealDecl->setInvalidDecl();
7344      return;
7345    }
7346    VDecl->setType(DeducedType);
7347    assert(VDecl->isLinkageValid());
7348
7349    // In ARC, infer lifetime.
7350    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7351      VDecl->setInvalidDecl();
7352
7353    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7354    // 'id' instead of a specific object type prevents most of our usual checks.
7355    // We only want to warn outside of template instantiations, though:
7356    // inside a template, the 'id' could have come from a parameter.
7357    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7358        DeducedType->isObjCIdType()) {
7359      SourceLocation Loc =
7360          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7361      Diag(Loc, diag::warn_auto_var_is_id)
7362        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7363    }
7364
7365    // If this is a redeclaration, check that the type we just deduced matches
7366    // the previously declared type.
7367    if (VarDecl *Old = VDecl->getPreviousDecl())
7368      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7369
7370    // Check the deduced type is valid for a variable declaration.
7371    CheckVariableDeclarationType(VDecl);
7372    if (VDecl->isInvalidDecl())
7373      return;
7374  }
7375
7376  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7377    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7378    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7379    VDecl->setInvalidDecl();
7380    return;
7381  }
7382
7383  if (!VDecl->getType()->isDependentType()) {
7384    // A definition must end up with a complete type, which means it must be
7385    // complete with the restriction that an array type might be completed by
7386    // the initializer; note that later code assumes this restriction.
7387    QualType BaseDeclType = VDecl->getType();
7388    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7389      BaseDeclType = Array->getElementType();
7390    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7391                            diag::err_typecheck_decl_incomplete_type)) {
7392      RealDecl->setInvalidDecl();
7393      return;
7394    }
7395
7396    // The variable can not have an abstract class type.
7397    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7398                               diag::err_abstract_type_in_decl,
7399                               AbstractVariableType))
7400      VDecl->setInvalidDecl();
7401  }
7402
7403  const VarDecl *Def;
7404  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7405    Diag(VDecl->getLocation(), diag::err_redefinition)
7406      << VDecl->getDeclName();
7407    Diag(Def->getLocation(), diag::note_previous_definition);
7408    VDecl->setInvalidDecl();
7409    return;
7410  }
7411
7412  const VarDecl* PrevInit = 0;
7413  if (getLangOpts().CPlusPlus) {
7414    // C++ [class.static.data]p4
7415    //   If a static data member is of const integral or const
7416    //   enumeration type, its declaration in the class definition can
7417    //   specify a constant-initializer which shall be an integral
7418    //   constant expression (5.19). In that case, the member can appear
7419    //   in integral constant expressions. The member shall still be
7420    //   defined in a namespace scope if it is used in the program and the
7421    //   namespace scope definition shall not contain an initializer.
7422    //
7423    // We already performed a redefinition check above, but for static
7424    // data members we also need to check whether there was an in-class
7425    // declaration with an initializer.
7426    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7427      Diag(VDecl->getLocation(), diag::err_redefinition)
7428        << VDecl->getDeclName();
7429      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7430      return;
7431    }
7432
7433    if (VDecl->hasLocalStorage())
7434      getCurFunction()->setHasBranchProtectedScope();
7435
7436    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7437      VDecl->setInvalidDecl();
7438      return;
7439    }
7440  }
7441
7442  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7443  // a kernel function cannot be initialized."
7444  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7445    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7446    VDecl->setInvalidDecl();
7447    return;
7448  }
7449
7450  // Get the decls type and save a reference for later, since
7451  // CheckInitializerTypes may change it.
7452  QualType DclT = VDecl->getType(), SavT = DclT;
7453
7454  // Expressions default to 'id' when we're in a debugger
7455  // and we are assigning it to a variable of Objective-C pointer type.
7456  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7457      Init->getType() == Context.UnknownAnyTy) {
7458    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7459    if (Result.isInvalid()) {
7460      VDecl->setInvalidDecl();
7461      return;
7462    }
7463    Init = Result.take();
7464  }
7465
7466  // Perform the initialization.
7467  if (!VDecl->isInvalidDecl()) {
7468    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7469    InitializationKind Kind
7470      = DirectInit ?
7471          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7472                                                           Init->getLocStart(),
7473                                                           Init->getLocEnd())
7474                        : InitializationKind::CreateDirectList(
7475                                                          VDecl->getLocation())
7476                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7477                                                    Init->getLocStart());
7478
7479    Expr **Args = &Init;
7480    unsigned NumArgs = 1;
7481    if (CXXDirectInit) {
7482      Args = CXXDirectInit->getExprs();
7483      NumArgs = CXXDirectInit->getNumExprs();
7484    }
7485    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7486    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7487                                        MultiExprArg(Args, NumArgs), &DclT);
7488    if (Result.isInvalid()) {
7489      VDecl->setInvalidDecl();
7490      return;
7491    }
7492
7493    Init = Result.takeAs<Expr>();
7494  }
7495
7496  // Check for self-references within variable initializers.
7497  // Variables declared within a function/method body (except for references)
7498  // are handled by a dataflow analysis.
7499  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7500      VDecl->getType()->isReferenceType()) {
7501    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7502  }
7503
7504  // If the type changed, it means we had an incomplete type that was
7505  // completed by the initializer. For example:
7506  //   int ary[] = { 1, 3, 5 };
7507  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7508  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7509    VDecl->setType(DclT);
7510
7511  if (!VDecl->isInvalidDecl()) {
7512    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7513
7514    if (VDecl->hasAttr<BlocksAttr>())
7515      checkRetainCycles(VDecl, Init);
7516
7517    // It is safe to assign a weak reference into a strong variable.
7518    // Although this code can still have problems:
7519    //   id x = self.weakProp;
7520    //   id y = self.weakProp;
7521    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7522    // paths through the function. This should be revisited if
7523    // -Wrepeated-use-of-weak is made flow-sensitive.
7524    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7525      DiagnosticsEngine::Level Level =
7526        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7527                                 Init->getLocStart());
7528      if (Level != DiagnosticsEngine::Ignored)
7529        getCurFunction()->markSafeWeakUse(Init);
7530    }
7531  }
7532
7533  // The initialization is usually a full-expression.
7534  //
7535  // FIXME: If this is a braced initialization of an aggregate, it is not
7536  // an expression, and each individual field initializer is a separate
7537  // full-expression. For instance, in:
7538  //
7539  //   struct Temp { ~Temp(); };
7540  //   struct S { S(Temp); };
7541  //   struct T { S a, b; } t = { Temp(), Temp() }
7542  //
7543  // we should destroy the first Temp before constructing the second.
7544  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7545                                          false,
7546                                          VDecl->isConstexpr());
7547  if (Result.isInvalid()) {
7548    VDecl->setInvalidDecl();
7549    return;
7550  }
7551  Init = Result.take();
7552
7553  // Attach the initializer to the decl.
7554  VDecl->setInit(Init);
7555
7556  if (VDecl->isLocalVarDecl()) {
7557    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7558    // static storage duration shall be constant expressions or string literals.
7559    // C++ does not have this restriction.
7560    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7561        VDecl->getStorageClass() == SC_Static)
7562      CheckForConstantInitializer(Init, DclT);
7563  } else if (VDecl->isStaticDataMember() &&
7564             VDecl->getLexicalDeclContext()->isRecord()) {
7565    // This is an in-class initialization for a static data member, e.g.,
7566    //
7567    // struct S {
7568    //   static const int value = 17;
7569    // };
7570
7571    // C++ [class.mem]p4:
7572    //   A member-declarator can contain a constant-initializer only
7573    //   if it declares a static member (9.4) of const integral or
7574    //   const enumeration type, see 9.4.2.
7575    //
7576    // C++11 [class.static.data]p3:
7577    //   If a non-volatile const static data member is of integral or
7578    //   enumeration type, its declaration in the class definition can
7579    //   specify a brace-or-equal-initializer in which every initalizer-clause
7580    //   that is an assignment-expression is a constant expression. A static
7581    //   data member of literal type can be declared in the class definition
7582    //   with the constexpr specifier; if so, its declaration shall specify a
7583    //   brace-or-equal-initializer in which every initializer-clause that is
7584    //   an assignment-expression is a constant expression.
7585
7586    // Do nothing on dependent types.
7587    if (DclT->isDependentType()) {
7588
7589    // Allow any 'static constexpr' members, whether or not they are of literal
7590    // type. We separately check that every constexpr variable is of literal
7591    // type.
7592    } else if (VDecl->isConstexpr()) {
7593
7594    // Require constness.
7595    } else if (!DclT.isConstQualified()) {
7596      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7597        << Init->getSourceRange();
7598      VDecl->setInvalidDecl();
7599
7600    // We allow integer constant expressions in all cases.
7601    } else if (DclT->isIntegralOrEnumerationType()) {
7602      // Check whether the expression is a constant expression.
7603      SourceLocation Loc;
7604      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7605        // In C++11, a non-constexpr const static data member with an
7606        // in-class initializer cannot be volatile.
7607        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7608      else if (Init->isValueDependent())
7609        ; // Nothing to check.
7610      else if (Init->isIntegerConstantExpr(Context, &Loc))
7611        ; // Ok, it's an ICE!
7612      else if (Init->isEvaluatable(Context)) {
7613        // If we can constant fold the initializer through heroics, accept it,
7614        // but report this as a use of an extension for -pedantic.
7615        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7616          << Init->getSourceRange();
7617      } else {
7618        // Otherwise, this is some crazy unknown case.  Report the issue at the
7619        // location provided by the isIntegerConstantExpr failed check.
7620        Diag(Loc, diag::err_in_class_initializer_non_constant)
7621          << Init->getSourceRange();
7622        VDecl->setInvalidDecl();
7623      }
7624
7625    // We allow foldable floating-point constants as an extension.
7626    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7627      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7628      // it anyway and provide a fixit to add the 'constexpr'.
7629      if (getLangOpts().CPlusPlus11) {
7630        Diag(VDecl->getLocation(),
7631             diag::ext_in_class_initializer_float_type_cxx11)
7632            << DclT << Init->getSourceRange();
7633        Diag(VDecl->getLocStart(),
7634             diag::note_in_class_initializer_float_type_cxx11)
7635            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7636      } else {
7637        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7638          << DclT << Init->getSourceRange();
7639
7640        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7641          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7642            << Init->getSourceRange();
7643          VDecl->setInvalidDecl();
7644        }
7645      }
7646
7647    // Suggest adding 'constexpr' in C++11 for literal types.
7648    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7649      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7650        << DclT << Init->getSourceRange()
7651        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7652      VDecl->setConstexpr(true);
7653
7654    } else {
7655      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7656        << DclT << Init->getSourceRange();
7657      VDecl->setInvalidDecl();
7658    }
7659  } else if (VDecl->isFileVarDecl()) {
7660    if (VDecl->getStorageClass() == SC_Extern &&
7661        (!getLangOpts().CPlusPlus ||
7662         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7663           VDecl->isExternC())))
7664      Diag(VDecl->getLocation(), diag::warn_extern_init);
7665
7666    // C99 6.7.8p4. All file scoped initializers need to be constant.
7667    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7668      CheckForConstantInitializer(Init, DclT);
7669    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7670             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7671             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7672             !Init->isConstantInitializer(
7673                 Context, VDecl->getType()->isReferenceType())) {
7674      // GNU C++98 edits for __thread, [basic.start.init]p4:
7675      //   An object of thread storage duration shall not require dynamic
7676      //   initialization.
7677      // FIXME: Need strict checking here.
7678      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7679      if (getLangOpts().CPlusPlus11)
7680        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7681    }
7682  }
7683
7684  // We will represent direct-initialization similarly to copy-initialization:
7685  //    int x(1);  -as-> int x = 1;
7686  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7687  //
7688  // Clients that want to distinguish between the two forms, can check for
7689  // direct initializer using VarDecl::getInitStyle().
7690  // A major benefit is that clients that don't particularly care about which
7691  // exactly form was it (like the CodeGen) can handle both cases without
7692  // special case code.
7693
7694  // C++ 8.5p11:
7695  // The form of initialization (using parentheses or '=') is generally
7696  // insignificant, but does matter when the entity being initialized has a
7697  // class type.
7698  if (CXXDirectInit) {
7699    assert(DirectInit && "Call-style initializer must be direct init.");
7700    VDecl->setInitStyle(VarDecl::CallInit);
7701  } else if (DirectInit) {
7702    // This must be list-initialization. No other way is direct-initialization.
7703    VDecl->setInitStyle(VarDecl::ListInit);
7704  }
7705
7706  CheckCompleteVariableDeclaration(VDecl);
7707}
7708
7709/// ActOnInitializerError - Given that there was an error parsing an
7710/// initializer for the given declaration, try to return to some form
7711/// of sanity.
7712void Sema::ActOnInitializerError(Decl *D) {
7713  // Our main concern here is re-establishing invariants like "a
7714  // variable's type is either dependent or complete".
7715  if (!D || D->isInvalidDecl()) return;
7716
7717  VarDecl *VD = dyn_cast<VarDecl>(D);
7718  if (!VD) return;
7719
7720  // Auto types are meaningless if we can't make sense of the initializer.
7721  if (ParsingInitForAutoVars.count(D)) {
7722    D->setInvalidDecl();
7723    return;
7724  }
7725
7726  QualType Ty = VD->getType();
7727  if (Ty->isDependentType()) return;
7728
7729  // Require a complete type.
7730  if (RequireCompleteType(VD->getLocation(),
7731                          Context.getBaseElementType(Ty),
7732                          diag::err_typecheck_decl_incomplete_type)) {
7733    VD->setInvalidDecl();
7734    return;
7735  }
7736
7737  // Require an abstract type.
7738  if (RequireNonAbstractType(VD->getLocation(), Ty,
7739                             diag::err_abstract_type_in_decl,
7740                             AbstractVariableType)) {
7741    VD->setInvalidDecl();
7742    return;
7743  }
7744
7745  // Don't bother complaining about constructors or destructors,
7746  // though.
7747}
7748
7749void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7750                                  bool TypeMayContainAuto) {
7751  // If there is no declaration, there was an error parsing it. Just ignore it.
7752  if (RealDecl == 0)
7753    return;
7754
7755  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7756    QualType Type = Var->getType();
7757
7758    // C++11 [dcl.spec.auto]p3
7759    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7760      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7761        << Var->getDeclName() << Type;
7762      Var->setInvalidDecl();
7763      return;
7764    }
7765
7766    // C++11 [class.static.data]p3: A static data member can be declared with
7767    // the constexpr specifier; if so, its declaration shall specify
7768    // a brace-or-equal-initializer.
7769    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7770    // the definition of a variable [...] or the declaration of a static data
7771    // member.
7772    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7773      if (Var->isStaticDataMember())
7774        Diag(Var->getLocation(),
7775             diag::err_constexpr_static_mem_var_requires_init)
7776          << Var->getDeclName();
7777      else
7778        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7779      Var->setInvalidDecl();
7780      return;
7781    }
7782
7783    switch (Var->isThisDeclarationADefinition()) {
7784    case VarDecl::Definition:
7785      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7786        break;
7787
7788      // We have an out-of-line definition of a static data member
7789      // that has an in-class initializer, so we type-check this like
7790      // a declaration.
7791      //
7792      // Fall through
7793
7794    case VarDecl::DeclarationOnly:
7795      // It's only a declaration.
7796
7797      // Block scope. C99 6.7p7: If an identifier for an object is
7798      // declared with no linkage (C99 6.2.2p6), the type for the
7799      // object shall be complete.
7800      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7801          !Var->getLinkage() && !Var->isInvalidDecl() &&
7802          RequireCompleteType(Var->getLocation(), Type,
7803                              diag::err_typecheck_decl_incomplete_type))
7804        Var->setInvalidDecl();
7805
7806      // Make sure that the type is not abstract.
7807      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7808          RequireNonAbstractType(Var->getLocation(), Type,
7809                                 diag::err_abstract_type_in_decl,
7810                                 AbstractVariableType))
7811        Var->setInvalidDecl();
7812      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7813          Var->getStorageClass() == SC_PrivateExtern) {
7814        Diag(Var->getLocation(), diag::warn_private_extern);
7815        Diag(Var->getLocation(), diag::note_private_extern);
7816      }
7817
7818      return;
7819
7820    case VarDecl::TentativeDefinition:
7821      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7822      // object that has file scope without an initializer, and without a
7823      // storage-class specifier or with the storage-class specifier "static",
7824      // constitutes a tentative definition. Note: A tentative definition with
7825      // external linkage is valid (C99 6.2.2p5).
7826      if (!Var->isInvalidDecl()) {
7827        if (const IncompleteArrayType *ArrayT
7828                                    = Context.getAsIncompleteArrayType(Type)) {
7829          if (RequireCompleteType(Var->getLocation(),
7830                                  ArrayT->getElementType(),
7831                                  diag::err_illegal_decl_array_incomplete_type))
7832            Var->setInvalidDecl();
7833        } else if (Var->getStorageClass() == SC_Static) {
7834          // C99 6.9.2p3: If the declaration of an identifier for an object is
7835          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7836          // declared type shall not be an incomplete type.
7837          // NOTE: code such as the following
7838          //     static struct s;
7839          //     struct s { int a; };
7840          // is accepted by gcc. Hence here we issue a warning instead of
7841          // an error and we do not invalidate the static declaration.
7842          // NOTE: to avoid multiple warnings, only check the first declaration.
7843          if (Var->getPreviousDecl() == 0)
7844            RequireCompleteType(Var->getLocation(), Type,
7845                                diag::ext_typecheck_decl_incomplete_type);
7846        }
7847      }
7848
7849      // Record the tentative definition; we're done.
7850      if (!Var->isInvalidDecl())
7851        TentativeDefinitions.push_back(Var);
7852      return;
7853    }
7854
7855    // Provide a specific diagnostic for uninitialized variable
7856    // definitions with incomplete array type.
7857    if (Type->isIncompleteArrayType()) {
7858      Diag(Var->getLocation(),
7859           diag::err_typecheck_incomplete_array_needs_initializer);
7860      Var->setInvalidDecl();
7861      return;
7862    }
7863
7864    // Provide a specific diagnostic for uninitialized variable
7865    // definitions with reference type.
7866    if (Type->isReferenceType()) {
7867      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7868        << Var->getDeclName()
7869        << SourceRange(Var->getLocation(), Var->getLocation());
7870      Var->setInvalidDecl();
7871      return;
7872    }
7873
7874    // Do not attempt to type-check the default initializer for a
7875    // variable with dependent type.
7876    if (Type->isDependentType())
7877      return;
7878
7879    if (Var->isInvalidDecl())
7880      return;
7881
7882    if (RequireCompleteType(Var->getLocation(),
7883                            Context.getBaseElementType(Type),
7884                            diag::err_typecheck_decl_incomplete_type)) {
7885      Var->setInvalidDecl();
7886      return;
7887    }
7888
7889    // The variable can not have an abstract class type.
7890    if (RequireNonAbstractType(Var->getLocation(), Type,
7891                               diag::err_abstract_type_in_decl,
7892                               AbstractVariableType)) {
7893      Var->setInvalidDecl();
7894      return;
7895    }
7896
7897    // Check for jumps past the implicit initializer.  C++0x
7898    // clarifies that this applies to a "variable with automatic
7899    // storage duration", not a "local variable".
7900    // C++11 [stmt.dcl]p3
7901    //   A program that jumps from a point where a variable with automatic
7902    //   storage duration is not in scope to a point where it is in scope is
7903    //   ill-formed unless the variable has scalar type, class type with a
7904    //   trivial default constructor and a trivial destructor, a cv-qualified
7905    //   version of one of these types, or an array of one of the preceding
7906    //   types and is declared without an initializer.
7907    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7908      if (const RecordType *Record
7909            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7910        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7911        // Mark the function for further checking even if the looser rules of
7912        // C++11 do not require such checks, so that we can diagnose
7913        // incompatibilities with C++98.
7914        if (!CXXRecord->isPOD())
7915          getCurFunction()->setHasBranchProtectedScope();
7916      }
7917    }
7918
7919    // C++03 [dcl.init]p9:
7920    //   If no initializer is specified for an object, and the
7921    //   object is of (possibly cv-qualified) non-POD class type (or
7922    //   array thereof), the object shall be default-initialized; if
7923    //   the object is of const-qualified type, the underlying class
7924    //   type shall have a user-declared default
7925    //   constructor. Otherwise, if no initializer is specified for
7926    //   a non- static object, the object and its subobjects, if
7927    //   any, have an indeterminate initial value); if the object
7928    //   or any of its subobjects are of const-qualified type, the
7929    //   program is ill-formed.
7930    // C++0x [dcl.init]p11:
7931    //   If no initializer is specified for an object, the object is
7932    //   default-initialized; [...].
7933    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7934    InitializationKind Kind
7935      = InitializationKind::CreateDefault(Var->getLocation());
7936
7937    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7938    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7939    if (Init.isInvalid())
7940      Var->setInvalidDecl();
7941    else if (Init.get()) {
7942      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7943      // This is important for template substitution.
7944      Var->setInitStyle(VarDecl::CallInit);
7945    }
7946
7947    CheckCompleteVariableDeclaration(Var);
7948  }
7949}
7950
7951void Sema::ActOnCXXForRangeDecl(Decl *D) {
7952  VarDecl *VD = dyn_cast<VarDecl>(D);
7953  if (!VD) {
7954    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7955    D->setInvalidDecl();
7956    return;
7957  }
7958
7959  VD->setCXXForRangeDecl(true);
7960
7961  // for-range-declaration cannot be given a storage class specifier.
7962  int Error = -1;
7963  switch (VD->getStorageClass()) {
7964  case SC_None:
7965    break;
7966  case SC_Extern:
7967    Error = 0;
7968    break;
7969  case SC_Static:
7970    Error = 1;
7971    break;
7972  case SC_PrivateExtern:
7973    Error = 2;
7974    break;
7975  case SC_Auto:
7976    Error = 3;
7977    break;
7978  case SC_Register:
7979    Error = 4;
7980    break;
7981  case SC_OpenCLWorkGroupLocal:
7982    llvm_unreachable("Unexpected storage class");
7983  }
7984  if (VD->isConstexpr())
7985    Error = 5;
7986  if (Error != -1) {
7987    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7988      << VD->getDeclName() << Error;
7989    D->setInvalidDecl();
7990  }
7991}
7992
7993void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7994  if (var->isInvalidDecl()) return;
7995
7996  // In ARC, don't allow jumps past the implicit initialization of a
7997  // local retaining variable.
7998  if (getLangOpts().ObjCAutoRefCount &&
7999      var->hasLocalStorage()) {
8000    switch (var->getType().getObjCLifetime()) {
8001    case Qualifiers::OCL_None:
8002    case Qualifiers::OCL_ExplicitNone:
8003    case Qualifiers::OCL_Autoreleasing:
8004      break;
8005
8006    case Qualifiers::OCL_Weak:
8007    case Qualifiers::OCL_Strong:
8008      getCurFunction()->setHasBranchProtectedScope();
8009      break;
8010    }
8011  }
8012
8013  if (var->isThisDeclarationADefinition() &&
8014      var->hasExternalLinkage() &&
8015      getDiagnostics().getDiagnosticLevel(
8016                       diag::warn_missing_variable_declarations,
8017                       var->getLocation())) {
8018    // Find a previous declaration that's not a definition.
8019    VarDecl *prev = var->getPreviousDecl();
8020    while (prev && prev->isThisDeclarationADefinition())
8021      prev = prev->getPreviousDecl();
8022
8023    if (!prev)
8024      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8025  }
8026
8027  if (var->getTLSKind() == VarDecl::TLS_Static &&
8028      var->getType().isDestructedType()) {
8029    // GNU C++98 edits for __thread, [basic.start.term]p3:
8030    //   The type of an object with thread storage duration shall not
8031    //   have a non-trivial destructor.
8032    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8033    if (getLangOpts().CPlusPlus11)
8034      Diag(var->getLocation(), diag::note_use_thread_local);
8035  }
8036
8037  // All the following checks are C++ only.
8038  if (!getLangOpts().CPlusPlus) return;
8039
8040  QualType type = var->getType();
8041  if (type->isDependentType()) return;
8042
8043  // __block variables might require us to capture a copy-initializer.
8044  if (var->hasAttr<BlocksAttr>()) {
8045    // It's currently invalid to ever have a __block variable with an
8046    // array type; should we diagnose that here?
8047
8048    // Regardless, we don't want to ignore array nesting when
8049    // constructing this copy.
8050    if (type->isStructureOrClassType()) {
8051      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8052      SourceLocation poi = var->getLocation();
8053      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8054      ExprResult result
8055        = PerformMoveOrCopyInitialization(
8056            InitializedEntity::InitializeBlock(poi, type, false),
8057            var, var->getType(), varRef, /*AllowNRVO=*/true);
8058      if (!result.isInvalid()) {
8059        result = MaybeCreateExprWithCleanups(result);
8060        Expr *init = result.takeAs<Expr>();
8061        Context.setBlockVarCopyInits(var, init);
8062      }
8063    }
8064  }
8065
8066  Expr *Init = var->getInit();
8067  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8068  QualType baseType = Context.getBaseElementType(type);
8069
8070  if (!var->getDeclContext()->isDependentContext() &&
8071      Init && !Init->isValueDependent()) {
8072    if (IsGlobal && !var->isConstexpr() &&
8073        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8074                                            var->getLocation())
8075          != DiagnosticsEngine::Ignored &&
8076        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8077      Diag(var->getLocation(), diag::warn_global_constructor)
8078        << Init->getSourceRange();
8079
8080    if (var->isConstexpr()) {
8081      SmallVector<PartialDiagnosticAt, 8> Notes;
8082      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8083        SourceLocation DiagLoc = var->getLocation();
8084        // If the note doesn't add any useful information other than a source
8085        // location, fold it into the primary diagnostic.
8086        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8087              diag::note_invalid_subexpr_in_const_expr) {
8088          DiagLoc = Notes[0].first;
8089          Notes.clear();
8090        }
8091        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8092          << var << Init->getSourceRange();
8093        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8094          Diag(Notes[I].first, Notes[I].second);
8095      }
8096    } else if (var->isUsableInConstantExpressions(Context)) {
8097      // Check whether the initializer of a const variable of integral or
8098      // enumeration type is an ICE now, since we can't tell whether it was
8099      // initialized by a constant expression if we check later.
8100      var->checkInitIsICE();
8101    }
8102  }
8103
8104  // Require the destructor.
8105  if (const RecordType *recordType = baseType->getAs<RecordType>())
8106    FinalizeVarWithDestructor(var, recordType);
8107}
8108
8109/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8110/// any semantic actions necessary after any initializer has been attached.
8111void
8112Sema::FinalizeDeclaration(Decl *ThisDecl) {
8113  // Note that we are no longer parsing the initializer for this declaration.
8114  ParsingInitForAutoVars.erase(ThisDecl);
8115
8116  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8117  if (!VD)
8118    return;
8119
8120  const DeclContext *DC = VD->getDeclContext();
8121  // If there's a #pragma GCC visibility in scope, and this isn't a class
8122  // member, set the visibility of this variable.
8123  if (!DC->isRecord() && VD->hasExternalLinkage())
8124    AddPushedVisibilityAttribute(VD);
8125
8126  if (VD->isFileVarDecl())
8127    MarkUnusedFileScopedDecl(VD);
8128
8129  // Now we have parsed the initializer and can update the table of magic
8130  // tag values.
8131  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8132      !VD->getType()->isIntegralOrEnumerationType())
8133    return;
8134
8135  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8136         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8137         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8138       I != E; ++I) {
8139    const Expr *MagicValueExpr = VD->getInit();
8140    if (!MagicValueExpr) {
8141      continue;
8142    }
8143    llvm::APSInt MagicValueInt;
8144    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8145      Diag(I->getRange().getBegin(),
8146           diag::err_type_tag_for_datatype_not_ice)
8147        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8148      continue;
8149    }
8150    if (MagicValueInt.getActiveBits() > 64) {
8151      Diag(I->getRange().getBegin(),
8152           diag::err_type_tag_for_datatype_too_large)
8153        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8154      continue;
8155    }
8156    uint64_t MagicValue = MagicValueInt.getZExtValue();
8157    RegisterTypeTagForDatatype(I->getArgumentKind(),
8158                               MagicValue,
8159                               I->getMatchingCType(),
8160                               I->getLayoutCompatible(),
8161                               I->getMustBeNull());
8162  }
8163}
8164
8165Sema::DeclGroupPtrTy
8166Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8167                              Decl **Group, unsigned NumDecls) {
8168  SmallVector<Decl*, 8> Decls;
8169
8170  if (DS.isTypeSpecOwned())
8171    Decls.push_back(DS.getRepAsDecl());
8172
8173  for (unsigned i = 0; i != NumDecls; ++i)
8174    if (Decl *D = Group[i])
8175      Decls.push_back(D);
8176
8177  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8178    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8179      getASTContext().addUnnamedTag(Tag);
8180
8181  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8182                              DS.containsPlaceholderType());
8183}
8184
8185/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8186/// group, performing any necessary semantic checking.
8187Sema::DeclGroupPtrTy
8188Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8189                           bool TypeMayContainAuto) {
8190  // C++0x [dcl.spec.auto]p7:
8191  //   If the type deduced for the template parameter U is not the same in each
8192  //   deduction, the program is ill-formed.
8193  // FIXME: When initializer-list support is added, a distinction is needed
8194  // between the deduced type U and the deduced type which 'auto' stands for.
8195  //   auto a = 0, b = { 1, 2, 3 };
8196  // is legal because the deduced type U is 'int' in both cases.
8197  if (TypeMayContainAuto && NumDecls > 1) {
8198    QualType Deduced;
8199    CanQualType DeducedCanon;
8200    VarDecl *DeducedDecl = 0;
8201    for (unsigned i = 0; i != NumDecls; ++i) {
8202      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8203        AutoType *AT = D->getType()->getContainedAutoType();
8204        // Don't reissue diagnostics when instantiating a template.
8205        if (AT && D->isInvalidDecl())
8206          break;
8207        QualType U = AT ? AT->getDeducedType() : QualType();
8208        if (!U.isNull()) {
8209          CanQualType UCanon = Context.getCanonicalType(U);
8210          if (Deduced.isNull()) {
8211            Deduced = U;
8212            DeducedCanon = UCanon;
8213            DeducedDecl = D;
8214          } else if (DeducedCanon != UCanon) {
8215            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8216                 diag::err_auto_different_deductions)
8217              << Deduced << DeducedDecl->getDeclName()
8218              << U << D->getDeclName()
8219              << DeducedDecl->getInit()->getSourceRange()
8220              << D->getInit()->getSourceRange();
8221            D->setInvalidDecl();
8222            break;
8223          }
8224        }
8225      }
8226    }
8227  }
8228
8229  ActOnDocumentableDecls(Group, NumDecls);
8230
8231  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8232}
8233
8234void Sema::ActOnDocumentableDecl(Decl *D) {
8235  ActOnDocumentableDecls(&D, 1);
8236}
8237
8238void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8239  // Don't parse the comment if Doxygen diagnostics are ignored.
8240  if (NumDecls == 0 || !Group[0])
8241   return;
8242
8243  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8244                               Group[0]->getLocation())
8245        == DiagnosticsEngine::Ignored)
8246    return;
8247
8248  if (NumDecls >= 2) {
8249    // This is a decl group.  Normally it will contain only declarations
8250    // procuded from declarator list.  But in case we have any definitions or
8251    // additional declaration references:
8252    //   'typedef struct S {} S;'
8253    //   'typedef struct S *S;'
8254    //   'struct S *pS;'
8255    // FinalizeDeclaratorGroup adds these as separate declarations.
8256    Decl *MaybeTagDecl = Group[0];
8257    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8258      Group++;
8259      NumDecls--;
8260    }
8261  }
8262
8263  // See if there are any new comments that are not attached to a decl.
8264  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8265  if (!Comments.empty() &&
8266      !Comments.back()->isAttached()) {
8267    // There is at least one comment that not attached to a decl.
8268    // Maybe it should be attached to one of these decls?
8269    //
8270    // Note that this way we pick up not only comments that precede the
8271    // declaration, but also comments that *follow* the declaration -- thanks to
8272    // the lookahead in the lexer: we've consumed the semicolon and looked
8273    // ahead through comments.
8274    for (unsigned i = 0; i != NumDecls; ++i)
8275      Context.getCommentForDecl(Group[i], &PP);
8276  }
8277}
8278
8279/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8280/// to introduce parameters into function prototype scope.
8281Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8282  const DeclSpec &DS = D.getDeclSpec();
8283
8284  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8285  // C++03 [dcl.stc]p2 also permits 'auto'.
8286  VarDecl::StorageClass StorageClass = SC_None;
8287  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8288    StorageClass = SC_Register;
8289  } else if (getLangOpts().CPlusPlus &&
8290             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8291    StorageClass = SC_Auto;
8292  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8293    Diag(DS.getStorageClassSpecLoc(),
8294         diag::err_invalid_storage_class_in_func_decl);
8295    D.getMutableDeclSpec().ClearStorageClassSpecs();
8296  }
8297
8298  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8299    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8300      << DeclSpec::getSpecifierName(TSCS);
8301  if (DS.isConstexprSpecified())
8302    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8303      << 0;
8304
8305  DiagnoseFunctionSpecifiers(DS);
8306
8307  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8308  QualType parmDeclType = TInfo->getType();
8309
8310  if (getLangOpts().CPlusPlus) {
8311    // Check that there are no default arguments inside the type of this
8312    // parameter.
8313    CheckExtraCXXDefaultArguments(D);
8314
8315    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8316    if (D.getCXXScopeSpec().isSet()) {
8317      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8318        << D.getCXXScopeSpec().getRange();
8319      D.getCXXScopeSpec().clear();
8320    }
8321  }
8322
8323  // Ensure we have a valid name
8324  IdentifierInfo *II = 0;
8325  if (D.hasName()) {
8326    II = D.getIdentifier();
8327    if (!II) {
8328      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8329        << GetNameForDeclarator(D).getName().getAsString();
8330      D.setInvalidType(true);
8331    }
8332  }
8333
8334  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8335  if (II) {
8336    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8337                   ForRedeclaration);
8338    LookupName(R, S);
8339    if (R.isSingleResult()) {
8340      NamedDecl *PrevDecl = R.getFoundDecl();
8341      if (PrevDecl->isTemplateParameter()) {
8342        // Maybe we will complain about the shadowed template parameter.
8343        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8344        // Just pretend that we didn't see the previous declaration.
8345        PrevDecl = 0;
8346      } else if (S->isDeclScope(PrevDecl)) {
8347        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8348        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8349
8350        // Recover by removing the name
8351        II = 0;
8352        D.SetIdentifier(0, D.getIdentifierLoc());
8353        D.setInvalidType(true);
8354      }
8355    }
8356  }
8357
8358  // Temporarily put parameter variables in the translation unit, not
8359  // the enclosing context.  This prevents them from accidentally
8360  // looking like class members in C++.
8361  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8362                                    D.getLocStart(),
8363                                    D.getIdentifierLoc(), II,
8364                                    parmDeclType, TInfo,
8365                                    StorageClass);
8366
8367  if (D.isInvalidType())
8368    New->setInvalidDecl();
8369
8370  assert(S->isFunctionPrototypeScope());
8371  assert(S->getFunctionPrototypeDepth() >= 1);
8372  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8373                    S->getNextFunctionPrototypeIndex());
8374
8375  // Add the parameter declaration into this scope.
8376  S->AddDecl(New);
8377  if (II)
8378    IdResolver.AddDecl(New);
8379
8380  ProcessDeclAttributes(S, New, D);
8381
8382  if (D.getDeclSpec().isModulePrivateSpecified())
8383    Diag(New->getLocation(), diag::err_module_private_local)
8384      << 1 << New->getDeclName()
8385      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8386      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8387
8388  if (New->hasAttr<BlocksAttr>()) {
8389    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8390  }
8391  return New;
8392}
8393
8394/// \brief Synthesizes a variable for a parameter arising from a
8395/// typedef.
8396ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8397                                              SourceLocation Loc,
8398                                              QualType T) {
8399  /* FIXME: setting StartLoc == Loc.
8400     Would it be worth to modify callers so as to provide proper source
8401     location for the unnamed parameters, embedding the parameter's type? */
8402  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8403                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8404                                           SC_None, 0);
8405  Param->setImplicit();
8406  return Param;
8407}
8408
8409void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8410                                    ParmVarDecl * const *ParamEnd) {
8411  // Don't diagnose unused-parameter errors in template instantiations; we
8412  // will already have done so in the template itself.
8413  if (!ActiveTemplateInstantiations.empty())
8414    return;
8415
8416  for (; Param != ParamEnd; ++Param) {
8417    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8418        !(*Param)->hasAttr<UnusedAttr>()) {
8419      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8420        << (*Param)->getDeclName();
8421    }
8422  }
8423}
8424
8425void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8426                                                  ParmVarDecl * const *ParamEnd,
8427                                                  QualType ReturnTy,
8428                                                  NamedDecl *D) {
8429  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8430    return;
8431
8432  // Warn if the return value is pass-by-value and larger than the specified
8433  // threshold.
8434  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8435    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8436    if (Size > LangOpts.NumLargeByValueCopy)
8437      Diag(D->getLocation(), diag::warn_return_value_size)
8438          << D->getDeclName() << Size;
8439  }
8440
8441  // Warn if any parameter is pass-by-value and larger than the specified
8442  // threshold.
8443  for (; Param != ParamEnd; ++Param) {
8444    QualType T = (*Param)->getType();
8445    if (T->isDependentType() || !T.isPODType(Context))
8446      continue;
8447    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8448    if (Size > LangOpts.NumLargeByValueCopy)
8449      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8450          << (*Param)->getDeclName() << Size;
8451  }
8452}
8453
8454ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8455                                  SourceLocation NameLoc, IdentifierInfo *Name,
8456                                  QualType T, TypeSourceInfo *TSInfo,
8457                                  VarDecl::StorageClass StorageClass) {
8458  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8459  if (getLangOpts().ObjCAutoRefCount &&
8460      T.getObjCLifetime() == Qualifiers::OCL_None &&
8461      T->isObjCLifetimeType()) {
8462
8463    Qualifiers::ObjCLifetime lifetime;
8464
8465    // Special cases for arrays:
8466    //   - if it's const, use __unsafe_unretained
8467    //   - otherwise, it's an error
8468    if (T->isArrayType()) {
8469      if (!T.isConstQualified()) {
8470        DelayedDiagnostics.add(
8471            sema::DelayedDiagnostic::makeForbiddenType(
8472            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8473      }
8474      lifetime = Qualifiers::OCL_ExplicitNone;
8475    } else {
8476      lifetime = T->getObjCARCImplicitLifetime();
8477    }
8478    T = Context.getLifetimeQualifiedType(T, lifetime);
8479  }
8480
8481  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8482                                         Context.getAdjustedParameterType(T),
8483                                         TSInfo,
8484                                         StorageClass, 0);
8485
8486  // Parameters can not be abstract class types.
8487  // For record types, this is done by the AbstractClassUsageDiagnoser once
8488  // the class has been completely parsed.
8489  if (!CurContext->isRecord() &&
8490      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8491                             AbstractParamType))
8492    New->setInvalidDecl();
8493
8494  // Parameter declarators cannot be interface types. All ObjC objects are
8495  // passed by reference.
8496  if (T->isObjCObjectType()) {
8497    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8498    Diag(NameLoc,
8499         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8500      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8501    T = Context.getObjCObjectPointerType(T);
8502    New->setType(T);
8503  }
8504
8505  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8506  // duration shall not be qualified by an address-space qualifier."
8507  // Since all parameters have automatic store duration, they can not have
8508  // an address space.
8509  if (T.getAddressSpace() != 0) {
8510    Diag(NameLoc, diag::err_arg_with_address_space);
8511    New->setInvalidDecl();
8512  }
8513
8514  return New;
8515}
8516
8517void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8518                                           SourceLocation LocAfterDecls) {
8519  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8520
8521  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8522  // for a K&R function.
8523  if (!FTI.hasPrototype) {
8524    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8525      --i;
8526      if (FTI.ArgInfo[i].Param == 0) {
8527        SmallString<256> Code;
8528        llvm::raw_svector_ostream(Code) << "  int "
8529                                        << FTI.ArgInfo[i].Ident->getName()
8530                                        << ";\n";
8531        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8532          << FTI.ArgInfo[i].Ident
8533          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8534
8535        // Implicitly declare the argument as type 'int' for lack of a better
8536        // type.
8537        AttributeFactory attrs;
8538        DeclSpec DS(attrs);
8539        const char* PrevSpec; // unused
8540        unsigned DiagID; // unused
8541        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8542                           PrevSpec, DiagID);
8543        // Use the identifier location for the type source range.
8544        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8545        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8546        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8547        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8548        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8549      }
8550    }
8551  }
8552}
8553
8554Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8555  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8556  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8557  Scope *ParentScope = FnBodyScope->getParent();
8558
8559  D.setFunctionDefinitionKind(FDK_Definition);
8560  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8561  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8562}
8563
8564static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8565                             const FunctionDecl*& PossibleZeroParamPrototype) {
8566  // Don't warn about invalid declarations.
8567  if (FD->isInvalidDecl())
8568    return false;
8569
8570  // Or declarations that aren't global.
8571  if (!FD->isGlobal())
8572    return false;
8573
8574  // Don't warn about C++ member functions.
8575  if (isa<CXXMethodDecl>(FD))
8576    return false;
8577
8578  // Don't warn about 'main'.
8579  if (FD->isMain())
8580    return false;
8581
8582  // Don't warn about inline functions.
8583  if (FD->isInlined())
8584    return false;
8585
8586  // Don't warn about function templates.
8587  if (FD->getDescribedFunctionTemplate())
8588    return false;
8589
8590  // Don't warn about function template specializations.
8591  if (FD->isFunctionTemplateSpecialization())
8592    return false;
8593
8594  // Don't warn for OpenCL kernels.
8595  if (FD->hasAttr<OpenCLKernelAttr>())
8596    return false;
8597
8598  bool MissingPrototype = true;
8599  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8600       Prev; Prev = Prev->getPreviousDecl()) {
8601    // Ignore any declarations that occur in function or method
8602    // scope, because they aren't visible from the header.
8603    if (Prev->getDeclContext()->isFunctionOrMethod())
8604      continue;
8605
8606    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8607    if (FD->getNumParams() == 0)
8608      PossibleZeroParamPrototype = Prev;
8609    break;
8610  }
8611
8612  return MissingPrototype;
8613}
8614
8615void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8616  // Don't complain if we're in GNU89 mode and the previous definition
8617  // was an extern inline function.
8618  const FunctionDecl *Definition;
8619  if (FD->isDefined(Definition) &&
8620      !canRedefineFunction(Definition, getLangOpts())) {
8621    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8622        Definition->getStorageClass() == SC_Extern)
8623      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8624        << FD->getDeclName() << getLangOpts().CPlusPlus;
8625    else
8626      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8627    Diag(Definition->getLocation(), diag::note_previous_definition);
8628    FD->setInvalidDecl();
8629  }
8630}
8631
8632Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8633  // Clear the last template instantiation error context.
8634  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8635
8636  if (!D)
8637    return D;
8638  FunctionDecl *FD = 0;
8639
8640  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8641    FD = FunTmpl->getTemplatedDecl();
8642  else
8643    FD = cast<FunctionDecl>(D);
8644
8645  // Enter a new function scope
8646  PushFunctionScope();
8647
8648  // See if this is a redefinition.
8649  if (!FD->isLateTemplateParsed())
8650    CheckForFunctionRedefinition(FD);
8651
8652  // Builtin functions cannot be defined.
8653  if (unsigned BuiltinID = FD->getBuiltinID()) {
8654    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8655      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8656      FD->setInvalidDecl();
8657    }
8658  }
8659
8660  // The return type of a function definition must be complete
8661  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8662  QualType ResultType = FD->getResultType();
8663  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8664      !FD->isInvalidDecl() &&
8665      RequireCompleteType(FD->getLocation(), ResultType,
8666                          diag::err_func_def_incomplete_result))
8667    FD->setInvalidDecl();
8668
8669  // GNU warning -Wmissing-prototypes:
8670  //   Warn if a global function is defined without a previous
8671  //   prototype declaration. This warning is issued even if the
8672  //   definition itself provides a prototype. The aim is to detect
8673  //   global functions that fail to be declared in header files.
8674  const FunctionDecl *PossibleZeroParamPrototype = 0;
8675  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8676    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8677
8678    if (PossibleZeroParamPrototype) {
8679      // We found a declaration that is not a prototype,
8680      // but that could be a zero-parameter prototype
8681      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8682      TypeLoc TL = TI->getTypeLoc();
8683      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8684        Diag(PossibleZeroParamPrototype->getLocation(),
8685             diag::note_declaration_not_a_prototype)
8686          << PossibleZeroParamPrototype
8687          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8688    }
8689  }
8690
8691  if (FnBodyScope)
8692    PushDeclContext(FnBodyScope, FD);
8693
8694  // Check the validity of our function parameters
8695  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8696                           /*CheckParameterNames=*/true);
8697
8698  // Introduce our parameters into the function scope
8699  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8700    ParmVarDecl *Param = FD->getParamDecl(p);
8701    Param->setOwningFunction(FD);
8702
8703    // If this has an identifier, add it to the scope stack.
8704    if (Param->getIdentifier() && FnBodyScope) {
8705      CheckShadow(FnBodyScope, Param);
8706
8707      PushOnScopeChains(Param, FnBodyScope);
8708    }
8709  }
8710
8711  // If we had any tags defined in the function prototype,
8712  // introduce them into the function scope.
8713  if (FnBodyScope) {
8714    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8715           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8716      NamedDecl *D = *I;
8717
8718      // Some of these decls (like enums) may have been pinned to the translation unit
8719      // for lack of a real context earlier. If so, remove from the translation unit
8720      // and reattach to the current context.
8721      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8722        // Is the decl actually in the context?
8723        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8724               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8725          if (*DI == D) {
8726            Context.getTranslationUnitDecl()->removeDecl(D);
8727            break;
8728          }
8729        }
8730        // Either way, reassign the lexical decl context to our FunctionDecl.
8731        D->setLexicalDeclContext(CurContext);
8732      }
8733
8734      // If the decl has a non-null name, make accessible in the current scope.
8735      if (!D->getName().empty())
8736        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8737
8738      // Similarly, dive into enums and fish their constants out, making them
8739      // accessible in this scope.
8740      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8741        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8742               EE = ED->enumerator_end(); EI != EE; ++EI)
8743          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8744      }
8745    }
8746  }
8747
8748  // Ensure that the function's exception specification is instantiated.
8749  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8750    ResolveExceptionSpec(D->getLocation(), FPT);
8751
8752  // Checking attributes of current function definition
8753  // dllimport attribute.
8754  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8755  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8756    // dllimport attribute cannot be directly applied to definition.
8757    // Microsoft accepts dllimport for functions defined within class scope.
8758    if (!DA->isInherited() &&
8759        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8760      Diag(FD->getLocation(),
8761           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8762        << "dllimport";
8763      FD->setInvalidDecl();
8764      return D;
8765    }
8766
8767    // Visual C++ appears to not think this is an issue, so only issue
8768    // a warning when Microsoft extensions are disabled.
8769    if (!LangOpts.MicrosoftExt) {
8770      // If a symbol previously declared dllimport is later defined, the
8771      // attribute is ignored in subsequent references, and a warning is
8772      // emitted.
8773      Diag(FD->getLocation(),
8774           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8775        << FD->getName() << "dllimport";
8776    }
8777  }
8778  // We want to attach documentation to original Decl (which might be
8779  // a function template).
8780  ActOnDocumentableDecl(D);
8781  return D;
8782}
8783
8784/// \brief Given the set of return statements within a function body,
8785/// compute the variables that are subject to the named return value
8786/// optimization.
8787///
8788/// Each of the variables that is subject to the named return value
8789/// optimization will be marked as NRVO variables in the AST, and any
8790/// return statement that has a marked NRVO variable as its NRVO candidate can
8791/// use the named return value optimization.
8792///
8793/// This function applies a very simplistic algorithm for NRVO: if every return
8794/// statement in the function has the same NRVO candidate, that candidate is
8795/// the NRVO variable.
8796///
8797/// FIXME: Employ a smarter algorithm that accounts for multiple return
8798/// statements and the lifetimes of the NRVO candidates. We should be able to
8799/// find a maximal set of NRVO variables.
8800void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8801  ReturnStmt **Returns = Scope->Returns.data();
8802
8803  const VarDecl *NRVOCandidate = 0;
8804  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8805    if (!Returns[I]->getNRVOCandidate())
8806      return;
8807
8808    if (!NRVOCandidate)
8809      NRVOCandidate = Returns[I]->getNRVOCandidate();
8810    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8811      return;
8812  }
8813
8814  if (NRVOCandidate)
8815    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8816}
8817
8818bool Sema::canSkipFunctionBody(Decl *D) {
8819  if (!Consumer.shouldSkipFunctionBody(D))
8820    return false;
8821
8822  if (isa<ObjCMethodDecl>(D))
8823    return true;
8824
8825  FunctionDecl *FD = 0;
8826  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8827    FD = FTD->getTemplatedDecl();
8828  else
8829    FD = cast<FunctionDecl>(D);
8830
8831  // We cannot skip the body of a function (or function template) which is
8832  // constexpr, since we may need to evaluate its body in order to parse the
8833  // rest of the file.
8834  return !FD->isConstexpr();
8835}
8836
8837Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8838  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8839    FD->setHasSkippedBody();
8840  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8841    MD->setHasSkippedBody();
8842  return ActOnFinishFunctionBody(Decl, 0);
8843}
8844
8845Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8846  return ActOnFinishFunctionBody(D, BodyArg, false);
8847}
8848
8849Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8850                                    bool IsInstantiation) {
8851  FunctionDecl *FD = 0;
8852  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8853  if (FunTmpl)
8854    FD = FunTmpl->getTemplatedDecl();
8855  else
8856    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8857
8858  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8859  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8860
8861  if (FD) {
8862    FD->setBody(Body);
8863
8864    // The only way to be included in UndefinedButUsed is if there is an
8865    // ODR use before the definition. Avoid the expensive map lookup if this
8866    // is the first declaration.
8867    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8868      if (FD->getLinkage() != ExternalLinkage)
8869        UndefinedButUsed.erase(FD);
8870      else if (FD->isInlined() &&
8871               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8872               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8873        UndefinedButUsed.erase(FD);
8874    }
8875
8876    // If the function implicitly returns zero (like 'main') or is naked,
8877    // don't complain about missing return statements.
8878    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8879      WP.disableCheckFallThrough();
8880
8881    // MSVC permits the use of pure specifier (=0) on function definition,
8882    // defined at class scope, warn about this non standard construct.
8883    if (getLangOpts().MicrosoftExt && FD->isPure())
8884      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8885
8886    if (!FD->isInvalidDecl()) {
8887      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8888      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8889                                             FD->getResultType(), FD);
8890
8891      // If this is a constructor, we need a vtable.
8892      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8893        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8894
8895      // Try to apply the named return value optimization. We have to check
8896      // if we can do this here because lambdas keep return statements around
8897      // to deduce an implicit return type.
8898      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8899          !FD->isDependentContext())
8900        computeNRVO(Body, getCurFunction());
8901    }
8902
8903    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8904           "Function parsing confused");
8905  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8906    assert(MD == getCurMethodDecl() && "Method parsing confused");
8907    MD->setBody(Body);
8908    if (!MD->isInvalidDecl()) {
8909      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8910      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8911                                             MD->getResultType(), MD);
8912
8913      if (Body)
8914        computeNRVO(Body, getCurFunction());
8915    }
8916    if (getCurFunction()->ObjCShouldCallSuper) {
8917      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8918        << MD->getSelector().getAsString();
8919      getCurFunction()->ObjCShouldCallSuper = false;
8920    }
8921  } else {
8922    return 0;
8923  }
8924
8925  assert(!getCurFunction()->ObjCShouldCallSuper &&
8926         "This should only be set for ObjC methods, which should have been "
8927         "handled in the block above.");
8928
8929  // Verify and clean out per-function state.
8930  if (Body) {
8931    // C++ constructors that have function-try-blocks can't have return
8932    // statements in the handlers of that block. (C++ [except.handle]p14)
8933    // Verify this.
8934    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8935      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8936
8937    // Verify that gotos and switch cases don't jump into scopes illegally.
8938    if (getCurFunction()->NeedsScopeChecking() &&
8939        !dcl->isInvalidDecl() &&
8940        !hasAnyUnrecoverableErrorsInThisFunction() &&
8941        !PP.isCodeCompletionEnabled())
8942      DiagnoseInvalidJumps(Body);
8943
8944    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8945      if (!Destructor->getParent()->isDependentType())
8946        CheckDestructor(Destructor);
8947
8948      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8949                                             Destructor->getParent());
8950    }
8951
8952    // If any errors have occurred, clear out any temporaries that may have
8953    // been leftover. This ensures that these temporaries won't be picked up for
8954    // deletion in some later function.
8955    if (PP.getDiagnostics().hasErrorOccurred() ||
8956        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8957      DiscardCleanupsInEvaluationContext();
8958    }
8959    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8960        !isa<FunctionTemplateDecl>(dcl)) {
8961      // Since the body is valid, issue any analysis-based warnings that are
8962      // enabled.
8963      ActivePolicy = &WP;
8964    }
8965
8966    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8967        (!CheckConstexprFunctionDecl(FD) ||
8968         !CheckConstexprFunctionBody(FD, Body)))
8969      FD->setInvalidDecl();
8970
8971    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8972    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8973    assert(MaybeODRUseExprs.empty() &&
8974           "Leftover expressions for odr-use checking");
8975  }
8976
8977  if (!IsInstantiation)
8978    PopDeclContext();
8979
8980  PopFunctionScopeInfo(ActivePolicy, dcl);
8981
8982  // If any errors have occurred, clear out any temporaries that may have
8983  // been leftover. This ensures that these temporaries won't be picked up for
8984  // deletion in some later function.
8985  if (getDiagnostics().hasErrorOccurred()) {
8986    DiscardCleanupsInEvaluationContext();
8987  }
8988
8989  return dcl;
8990}
8991
8992
8993/// When we finish delayed parsing of an attribute, we must attach it to the
8994/// relevant Decl.
8995void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8996                                       ParsedAttributes &Attrs) {
8997  // Always attach attributes to the underlying decl.
8998  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8999    D = TD->getTemplatedDecl();
9000  ProcessDeclAttributeList(S, D, Attrs.getList());
9001
9002  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9003    if (Method->isStatic())
9004      checkThisInStaticMemberFunctionAttributes(Method);
9005}
9006
9007
9008/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9009/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9010NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9011                                          IdentifierInfo &II, Scope *S) {
9012  // Before we produce a declaration for an implicitly defined
9013  // function, see whether there was a locally-scoped declaration of
9014  // this name as a function or variable. If so, use that
9015  // (non-visible) declaration, and complain about it.
9016  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
9017    = findLocallyScopedExternCDecl(&II);
9018  if (Pos != LocallyScopedExternCDecls.end()) {
9019    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
9020    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
9021    return Pos->second;
9022  }
9023
9024  // Extension in C99.  Legal in C90, but warn about it.
9025  unsigned diag_id;
9026  if (II.getName().startswith("__builtin_"))
9027    diag_id = diag::warn_builtin_unknown;
9028  else if (getLangOpts().C99)
9029    diag_id = diag::ext_implicit_function_decl;
9030  else
9031    diag_id = diag::warn_implicit_function_decl;
9032  Diag(Loc, diag_id) << &II;
9033
9034  // Because typo correction is expensive, only do it if the implicit
9035  // function declaration is going to be treated as an error.
9036  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9037    TypoCorrection Corrected;
9038    DeclFilterCCC<FunctionDecl> Validator;
9039    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9040                                      LookupOrdinaryName, S, 0, Validator))) {
9041      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9042      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9043      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9044
9045      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9046          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9047
9048      if (Func->getLocation().isValid()
9049          && !II.getName().startswith("__builtin_"))
9050        Diag(Func->getLocation(), diag::note_previous_decl)
9051            << CorrectedQuotedStr;
9052    }
9053  }
9054
9055  // Set a Declarator for the implicit definition: int foo();
9056  const char *Dummy;
9057  AttributeFactory attrFactory;
9058  DeclSpec DS(attrFactory);
9059  unsigned DiagID;
9060  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9061  (void)Error; // Silence warning.
9062  assert(!Error && "Error setting up implicit decl!");
9063  SourceLocation NoLoc;
9064  Declarator D(DS, Declarator::BlockContext);
9065  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9066                                             /*IsAmbiguous=*/false,
9067                                             /*RParenLoc=*/NoLoc,
9068                                             /*ArgInfo=*/0,
9069                                             /*NumArgs=*/0,
9070                                             /*EllipsisLoc=*/NoLoc,
9071                                             /*RParenLoc=*/NoLoc,
9072                                             /*TypeQuals=*/0,
9073                                             /*RefQualifierIsLvalueRef=*/true,
9074                                             /*RefQualifierLoc=*/NoLoc,
9075                                             /*ConstQualifierLoc=*/NoLoc,
9076                                             /*VolatileQualifierLoc=*/NoLoc,
9077                                             /*MutableLoc=*/NoLoc,
9078                                             EST_None,
9079                                             /*ESpecLoc=*/NoLoc,
9080                                             /*Exceptions=*/0,
9081                                             /*ExceptionRanges=*/0,
9082                                             /*NumExceptions=*/0,
9083                                             /*NoexceptExpr=*/0,
9084                                             Loc, Loc, D),
9085                DS.getAttributes(),
9086                SourceLocation());
9087  D.SetIdentifier(&II, Loc);
9088
9089  // Insert this function into translation-unit scope.
9090
9091  DeclContext *PrevDC = CurContext;
9092  CurContext = Context.getTranslationUnitDecl();
9093
9094  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9095  FD->setImplicit();
9096
9097  CurContext = PrevDC;
9098
9099  AddKnownFunctionAttributes(FD);
9100
9101  return FD;
9102}
9103
9104/// \brief Adds any function attributes that we know a priori based on
9105/// the declaration of this function.
9106///
9107/// These attributes can apply both to implicitly-declared builtins
9108/// (like __builtin___printf_chk) or to library-declared functions
9109/// like NSLog or printf.
9110///
9111/// We need to check for duplicate attributes both here and where user-written
9112/// attributes are applied to declarations.
9113void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9114  if (FD->isInvalidDecl())
9115    return;
9116
9117  // If this is a built-in function, map its builtin attributes to
9118  // actual attributes.
9119  if (unsigned BuiltinID = FD->getBuiltinID()) {
9120    // Handle printf-formatting attributes.
9121    unsigned FormatIdx;
9122    bool HasVAListArg;
9123    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9124      if (!FD->getAttr<FormatAttr>()) {
9125        const char *fmt = "printf";
9126        unsigned int NumParams = FD->getNumParams();
9127        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9128            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9129          fmt = "NSString";
9130        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9131                                               fmt, FormatIdx+1,
9132                                               HasVAListArg ? 0 : FormatIdx+2));
9133      }
9134    }
9135    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9136                                             HasVAListArg)) {
9137     if (!FD->getAttr<FormatAttr>())
9138       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9139                                              "scanf", FormatIdx+1,
9140                                              HasVAListArg ? 0 : FormatIdx+2));
9141    }
9142
9143    // Mark const if we don't care about errno and that is the only
9144    // thing preventing the function from being const. This allows
9145    // IRgen to use LLVM intrinsics for such functions.
9146    if (!getLangOpts().MathErrno &&
9147        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9148      if (!FD->getAttr<ConstAttr>())
9149        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9150    }
9151
9152    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9153        !FD->getAttr<ReturnsTwiceAttr>())
9154      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9155    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9156      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9157    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9158      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9159  }
9160
9161  IdentifierInfo *Name = FD->getIdentifier();
9162  if (!Name)
9163    return;
9164  if ((!getLangOpts().CPlusPlus &&
9165       FD->getDeclContext()->isTranslationUnit()) ||
9166      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9167       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9168       LinkageSpecDecl::lang_c)) {
9169    // Okay: this could be a libc/libm/Objective-C function we know
9170    // about.
9171  } else
9172    return;
9173
9174  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9175    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9176    // target-specific builtins, perhaps?
9177    if (!FD->getAttr<FormatAttr>())
9178      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9179                                             "printf", 2,
9180                                             Name->isStr("vasprintf") ? 0 : 3));
9181  }
9182
9183  if (Name->isStr("__CFStringMakeConstantString")) {
9184    // We already have a __builtin___CFStringMakeConstantString,
9185    // but builds that use -fno-constant-cfstrings don't go through that.
9186    if (!FD->getAttr<FormatArgAttr>())
9187      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9188  }
9189}
9190
9191TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9192                                    TypeSourceInfo *TInfo) {
9193  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9194  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9195
9196  if (!TInfo) {
9197    assert(D.isInvalidType() && "no declarator info for valid type");
9198    TInfo = Context.getTrivialTypeSourceInfo(T);
9199  }
9200
9201  // Scope manipulation handled by caller.
9202  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9203                                           D.getLocStart(),
9204                                           D.getIdentifierLoc(),
9205                                           D.getIdentifier(),
9206                                           TInfo);
9207
9208  // Bail out immediately if we have an invalid declaration.
9209  if (D.isInvalidType()) {
9210    NewTD->setInvalidDecl();
9211    return NewTD;
9212  }
9213
9214  if (D.getDeclSpec().isModulePrivateSpecified()) {
9215    if (CurContext->isFunctionOrMethod())
9216      Diag(NewTD->getLocation(), diag::err_module_private_local)
9217        << 2 << NewTD->getDeclName()
9218        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9219        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9220    else
9221      NewTD->setModulePrivate();
9222  }
9223
9224  // C++ [dcl.typedef]p8:
9225  //   If the typedef declaration defines an unnamed class (or
9226  //   enum), the first typedef-name declared by the declaration
9227  //   to be that class type (or enum type) is used to denote the
9228  //   class type (or enum type) for linkage purposes only.
9229  // We need to check whether the type was declared in the declaration.
9230  switch (D.getDeclSpec().getTypeSpecType()) {
9231  case TST_enum:
9232  case TST_struct:
9233  case TST_interface:
9234  case TST_union:
9235  case TST_class: {
9236    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9237
9238    // Do nothing if the tag is not anonymous or already has an
9239    // associated typedef (from an earlier typedef in this decl group).
9240    if (tagFromDeclSpec->getIdentifier()) break;
9241    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9242
9243    // A well-formed anonymous tag must always be a TUK_Definition.
9244    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9245
9246    // The type must match the tag exactly;  no qualifiers allowed.
9247    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9248      break;
9249
9250    // Otherwise, set this is the anon-decl typedef for the tag.
9251    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9252    break;
9253  }
9254
9255  default:
9256    break;
9257  }
9258
9259  return NewTD;
9260}
9261
9262
9263/// \brief Check that this is a valid underlying type for an enum declaration.
9264bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9265  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9266  QualType T = TI->getType();
9267
9268  if (T->isDependentType())
9269    return false;
9270
9271  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9272    if (BT->isInteger())
9273      return false;
9274
9275  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9276  return true;
9277}
9278
9279/// Check whether this is a valid redeclaration of a previous enumeration.
9280/// \return true if the redeclaration was invalid.
9281bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9282                                  QualType EnumUnderlyingTy,
9283                                  const EnumDecl *Prev) {
9284  bool IsFixed = !EnumUnderlyingTy.isNull();
9285
9286  if (IsScoped != Prev->isScoped()) {
9287    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9288      << Prev->isScoped();
9289    Diag(Prev->getLocation(), diag::note_previous_use);
9290    return true;
9291  }
9292
9293  if (IsFixed && Prev->isFixed()) {
9294    if (!EnumUnderlyingTy->isDependentType() &&
9295        !Prev->getIntegerType()->isDependentType() &&
9296        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9297                                        Prev->getIntegerType())) {
9298      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9299        << EnumUnderlyingTy << Prev->getIntegerType();
9300      Diag(Prev->getLocation(), diag::note_previous_use);
9301      return true;
9302    }
9303  } else if (IsFixed != Prev->isFixed()) {
9304    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9305      << Prev->isFixed();
9306    Diag(Prev->getLocation(), diag::note_previous_use);
9307    return true;
9308  }
9309
9310  return false;
9311}
9312
9313/// \brief Get diagnostic %select index for tag kind for
9314/// redeclaration diagnostic message.
9315/// WARNING: Indexes apply to particular diagnostics only!
9316///
9317/// \returns diagnostic %select index.
9318static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9319  switch (Tag) {
9320  case TTK_Struct: return 0;
9321  case TTK_Interface: return 1;
9322  case TTK_Class:  return 2;
9323  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9324  }
9325}
9326
9327/// \brief Determine if tag kind is a class-key compatible with
9328/// class for redeclaration (class, struct, or __interface).
9329///
9330/// \returns true iff the tag kind is compatible.
9331static bool isClassCompatTagKind(TagTypeKind Tag)
9332{
9333  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9334}
9335
9336/// \brief Determine whether a tag with a given kind is acceptable
9337/// as a redeclaration of the given tag declaration.
9338///
9339/// \returns true if the new tag kind is acceptable, false otherwise.
9340bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9341                                        TagTypeKind NewTag, bool isDefinition,
9342                                        SourceLocation NewTagLoc,
9343                                        const IdentifierInfo &Name) {
9344  // C++ [dcl.type.elab]p3:
9345  //   The class-key or enum keyword present in the
9346  //   elaborated-type-specifier shall agree in kind with the
9347  //   declaration to which the name in the elaborated-type-specifier
9348  //   refers. This rule also applies to the form of
9349  //   elaborated-type-specifier that declares a class-name or
9350  //   friend class since it can be construed as referring to the
9351  //   definition of the class. Thus, in any
9352  //   elaborated-type-specifier, the enum keyword shall be used to
9353  //   refer to an enumeration (7.2), the union class-key shall be
9354  //   used to refer to a union (clause 9), and either the class or
9355  //   struct class-key shall be used to refer to a class (clause 9)
9356  //   declared using the class or struct class-key.
9357  TagTypeKind OldTag = Previous->getTagKind();
9358  if (!isDefinition || !isClassCompatTagKind(NewTag))
9359    if (OldTag == NewTag)
9360      return true;
9361
9362  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9363    // Warn about the struct/class tag mismatch.
9364    bool isTemplate = false;
9365    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9366      isTemplate = Record->getDescribedClassTemplate();
9367
9368    if (!ActiveTemplateInstantiations.empty()) {
9369      // In a template instantiation, do not offer fix-its for tag mismatches
9370      // since they usually mess up the template instead of fixing the problem.
9371      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9372        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9373        << getRedeclDiagFromTagKind(OldTag);
9374      return true;
9375    }
9376
9377    if (isDefinition) {
9378      // On definitions, check previous tags and issue a fix-it for each
9379      // one that doesn't match the current tag.
9380      if (Previous->getDefinition()) {
9381        // Don't suggest fix-its for redefinitions.
9382        return true;
9383      }
9384
9385      bool previousMismatch = false;
9386      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9387           E(Previous->redecls_end()); I != E; ++I) {
9388        if (I->getTagKind() != NewTag) {
9389          if (!previousMismatch) {
9390            previousMismatch = true;
9391            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9392              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9393              << getRedeclDiagFromTagKind(I->getTagKind());
9394          }
9395          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9396            << getRedeclDiagFromTagKind(NewTag)
9397            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9398                 TypeWithKeyword::getTagTypeKindName(NewTag));
9399        }
9400      }
9401      return true;
9402    }
9403
9404    // Check for a previous definition.  If current tag and definition
9405    // are same type, do nothing.  If no definition, but disagree with
9406    // with previous tag type, give a warning, but no fix-it.
9407    const TagDecl *Redecl = Previous->getDefinition() ?
9408                            Previous->getDefinition() : Previous;
9409    if (Redecl->getTagKind() == NewTag) {
9410      return true;
9411    }
9412
9413    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9414      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9415      << getRedeclDiagFromTagKind(OldTag);
9416    Diag(Redecl->getLocation(), diag::note_previous_use);
9417
9418    // If there is a previous defintion, suggest a fix-it.
9419    if (Previous->getDefinition()) {
9420        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9421          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9422          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9423               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9424    }
9425
9426    return true;
9427  }
9428  return false;
9429}
9430
9431/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9432/// former case, Name will be non-null.  In the later case, Name will be null.
9433/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9434/// reference/declaration/definition of a tag.
9435Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9436                     SourceLocation KWLoc, CXXScopeSpec &SS,
9437                     IdentifierInfo *Name, SourceLocation NameLoc,
9438                     AttributeList *Attr, AccessSpecifier AS,
9439                     SourceLocation ModulePrivateLoc,
9440                     MultiTemplateParamsArg TemplateParameterLists,
9441                     bool &OwnedDecl, bool &IsDependent,
9442                     SourceLocation ScopedEnumKWLoc,
9443                     bool ScopedEnumUsesClassTag,
9444                     TypeResult UnderlyingType) {
9445  // If this is not a definition, it must have a name.
9446  IdentifierInfo *OrigName = Name;
9447  assert((Name != 0 || TUK == TUK_Definition) &&
9448         "Nameless record must be a definition!");
9449  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9450
9451  OwnedDecl = false;
9452  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9453  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9454
9455  // FIXME: Check explicit specializations more carefully.
9456  bool isExplicitSpecialization = false;
9457  bool Invalid = false;
9458
9459  // We only need to do this matching if we have template parameters
9460  // or a scope specifier, which also conveniently avoids this work
9461  // for non-C++ cases.
9462  if (TemplateParameterLists.size() > 0 ||
9463      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9464    if (TemplateParameterList *TemplateParams
9465          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9466                                                TemplateParameterLists.data(),
9467                                                TemplateParameterLists.size(),
9468                                                    TUK == TUK_Friend,
9469                                                    isExplicitSpecialization,
9470                                                    Invalid)) {
9471      if (Kind == TTK_Enum) {
9472        Diag(KWLoc, diag::err_enum_template);
9473        return 0;
9474      }
9475
9476      if (TemplateParams->size() > 0) {
9477        // This is a declaration or definition of a class template (which may
9478        // be a member of another template).
9479
9480        if (Invalid)
9481          return 0;
9482
9483        OwnedDecl = false;
9484        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9485                                               SS, Name, NameLoc, Attr,
9486                                               TemplateParams, AS,
9487                                               ModulePrivateLoc,
9488                                               TemplateParameterLists.size()-1,
9489                                               TemplateParameterLists.data());
9490        return Result.get();
9491      } else {
9492        // The "template<>" header is extraneous.
9493        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9494          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9495        isExplicitSpecialization = true;
9496      }
9497    }
9498  }
9499
9500  // Figure out the underlying type if this a enum declaration. We need to do
9501  // this early, because it's needed to detect if this is an incompatible
9502  // redeclaration.
9503  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9504
9505  if (Kind == TTK_Enum) {
9506    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9507      // No underlying type explicitly specified, or we failed to parse the
9508      // type, default to int.
9509      EnumUnderlying = Context.IntTy.getTypePtr();
9510    else if (UnderlyingType.get()) {
9511      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9512      // integral type; any cv-qualification is ignored.
9513      TypeSourceInfo *TI = 0;
9514      GetTypeFromParser(UnderlyingType.get(), &TI);
9515      EnumUnderlying = TI;
9516
9517      if (CheckEnumUnderlyingType(TI))
9518        // Recover by falling back to int.
9519        EnumUnderlying = Context.IntTy.getTypePtr();
9520
9521      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9522                                          UPPC_FixedUnderlyingType))
9523        EnumUnderlying = Context.IntTy.getTypePtr();
9524
9525    } else if (getLangOpts().MicrosoftMode)
9526      // Microsoft enums are always of int type.
9527      EnumUnderlying = Context.IntTy.getTypePtr();
9528  }
9529
9530  DeclContext *SearchDC = CurContext;
9531  DeclContext *DC = CurContext;
9532  bool isStdBadAlloc = false;
9533
9534  RedeclarationKind Redecl = ForRedeclaration;
9535  if (TUK == TUK_Friend || TUK == TUK_Reference)
9536    Redecl = NotForRedeclaration;
9537
9538  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9539
9540  if (Name && SS.isNotEmpty()) {
9541    // We have a nested-name tag ('struct foo::bar').
9542
9543    // Check for invalid 'foo::'.
9544    if (SS.isInvalid()) {
9545      Name = 0;
9546      goto CreateNewDecl;
9547    }
9548
9549    // If this is a friend or a reference to a class in a dependent
9550    // context, don't try to make a decl for it.
9551    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9552      DC = computeDeclContext(SS, false);
9553      if (!DC) {
9554        IsDependent = true;
9555        return 0;
9556      }
9557    } else {
9558      DC = computeDeclContext(SS, true);
9559      if (!DC) {
9560        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9561          << SS.getRange();
9562        return 0;
9563      }
9564    }
9565
9566    if (RequireCompleteDeclContext(SS, DC))
9567      return 0;
9568
9569    SearchDC = DC;
9570    // Look-up name inside 'foo::'.
9571    LookupQualifiedName(Previous, DC);
9572
9573    if (Previous.isAmbiguous())
9574      return 0;
9575
9576    if (Previous.empty()) {
9577      // Name lookup did not find anything. However, if the
9578      // nested-name-specifier refers to the current instantiation,
9579      // and that current instantiation has any dependent base
9580      // classes, we might find something at instantiation time: treat
9581      // this as a dependent elaborated-type-specifier.
9582      // But this only makes any sense for reference-like lookups.
9583      if (Previous.wasNotFoundInCurrentInstantiation() &&
9584          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9585        IsDependent = true;
9586        return 0;
9587      }
9588
9589      // A tag 'foo::bar' must already exist.
9590      Diag(NameLoc, diag::err_not_tag_in_scope)
9591        << Kind << Name << DC << SS.getRange();
9592      Name = 0;
9593      Invalid = true;
9594      goto CreateNewDecl;
9595    }
9596  } else if (Name) {
9597    // If this is a named struct, check to see if there was a previous forward
9598    // declaration or definition.
9599    // FIXME: We're looking into outer scopes here, even when we
9600    // shouldn't be. Doing so can result in ambiguities that we
9601    // shouldn't be diagnosing.
9602    LookupName(Previous, S);
9603
9604    // When declaring or defining a tag, ignore ambiguities introduced
9605    // by types using'ed into this scope.
9606    if (Previous.isAmbiguous() &&
9607        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9608      LookupResult::Filter F = Previous.makeFilter();
9609      while (F.hasNext()) {
9610        NamedDecl *ND = F.next();
9611        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9612          F.erase();
9613      }
9614      F.done();
9615    }
9616
9617    // C++11 [namespace.memdef]p3:
9618    //   If the name in a friend declaration is neither qualified nor
9619    //   a template-id and the declaration is a function or an
9620    //   elaborated-type-specifier, the lookup to determine whether
9621    //   the entity has been previously declared shall not consider
9622    //   any scopes outside the innermost enclosing namespace.
9623    //
9624    // Does it matter that this should be by scope instead of by
9625    // semantic context?
9626    if (!Previous.empty() && TUK == TUK_Friend) {
9627      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9628      LookupResult::Filter F = Previous.makeFilter();
9629      while (F.hasNext()) {
9630        NamedDecl *ND = F.next();
9631        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9632        if (DC->isFileContext() && !EnclosingNS->Encloses(ND->getDeclContext()))
9633          F.erase();
9634      }
9635      F.done();
9636    }
9637
9638    // Note:  there used to be some attempt at recovery here.
9639    if (Previous.isAmbiguous())
9640      return 0;
9641
9642    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9643      // FIXME: This makes sure that we ignore the contexts associated
9644      // with C structs, unions, and enums when looking for a matching
9645      // tag declaration or definition. See the similar lookup tweak
9646      // in Sema::LookupName; is there a better way to deal with this?
9647      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9648        SearchDC = SearchDC->getParent();
9649    }
9650  } else if (S->isFunctionPrototypeScope()) {
9651    // If this is an enum declaration in function prototype scope, set its
9652    // initial context to the translation unit.
9653    // FIXME: [citation needed]
9654    SearchDC = Context.getTranslationUnitDecl();
9655  }
9656
9657  if (Previous.isSingleResult() &&
9658      Previous.getFoundDecl()->isTemplateParameter()) {
9659    // Maybe we will complain about the shadowed template parameter.
9660    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9661    // Just pretend that we didn't see the previous declaration.
9662    Previous.clear();
9663  }
9664
9665  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9666      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9667    // This is a declaration of or a reference to "std::bad_alloc".
9668    isStdBadAlloc = true;
9669
9670    if (Previous.empty() && StdBadAlloc) {
9671      // std::bad_alloc has been implicitly declared (but made invisible to
9672      // name lookup). Fill in this implicit declaration as the previous
9673      // declaration, so that the declarations get chained appropriately.
9674      Previous.addDecl(getStdBadAlloc());
9675    }
9676  }
9677
9678  // If we didn't find a previous declaration, and this is a reference
9679  // (or friend reference), move to the correct scope.  In C++, we
9680  // also need to do a redeclaration lookup there, just in case
9681  // there's a shadow friend decl.
9682  if (Name && Previous.empty() &&
9683      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9684    if (Invalid) goto CreateNewDecl;
9685    assert(SS.isEmpty());
9686
9687    if (TUK == TUK_Reference) {
9688      // C++ [basic.scope.pdecl]p5:
9689      //   -- for an elaborated-type-specifier of the form
9690      //
9691      //          class-key identifier
9692      //
9693      //      if the elaborated-type-specifier is used in the
9694      //      decl-specifier-seq or parameter-declaration-clause of a
9695      //      function defined in namespace scope, the identifier is
9696      //      declared as a class-name in the namespace that contains
9697      //      the declaration; otherwise, except as a friend
9698      //      declaration, the identifier is declared in the smallest
9699      //      non-class, non-function-prototype scope that contains the
9700      //      declaration.
9701      //
9702      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9703      // C structs and unions.
9704      //
9705      // It is an error in C++ to declare (rather than define) an enum
9706      // type, including via an elaborated type specifier.  We'll
9707      // diagnose that later; for now, declare the enum in the same
9708      // scope as we would have picked for any other tag type.
9709      //
9710      // GNU C also supports this behavior as part of its incomplete
9711      // enum types extension, while GNU C++ does not.
9712      //
9713      // Find the context where we'll be declaring the tag.
9714      // FIXME: We would like to maintain the current DeclContext as the
9715      // lexical context,
9716      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9717        SearchDC = SearchDC->getParent();
9718
9719      // Find the scope where we'll be declaring the tag.
9720      while (S->isClassScope() ||
9721             (getLangOpts().CPlusPlus &&
9722              S->isFunctionPrototypeScope()) ||
9723             ((S->getFlags() & Scope::DeclScope) == 0) ||
9724             (S->getEntity() &&
9725              ((DeclContext *)S->getEntity())->isTransparentContext()))
9726        S = S->getParent();
9727    } else {
9728      assert(TUK == TUK_Friend);
9729      // C++ [namespace.memdef]p3:
9730      //   If a friend declaration in a non-local class first declares a
9731      //   class or function, the friend class or function is a member of
9732      //   the innermost enclosing namespace.
9733      SearchDC = SearchDC->getEnclosingNamespaceContext();
9734    }
9735
9736    // In C++, we need to do a redeclaration lookup to properly
9737    // diagnose some problems.
9738    if (getLangOpts().CPlusPlus) {
9739      Previous.setRedeclarationKind(ForRedeclaration);
9740      LookupQualifiedName(Previous, SearchDC);
9741    }
9742  }
9743
9744  if (!Previous.empty()) {
9745    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9746
9747    // It's okay to have a tag decl in the same scope as a typedef
9748    // which hides a tag decl in the same scope.  Finding this
9749    // insanity with a redeclaration lookup can only actually happen
9750    // in C++.
9751    //
9752    // This is also okay for elaborated-type-specifiers, which is
9753    // technically forbidden by the current standard but which is
9754    // okay according to the likely resolution of an open issue;
9755    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9756    if (getLangOpts().CPlusPlus) {
9757      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9758        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9759          TagDecl *Tag = TT->getDecl();
9760          if (Tag->getDeclName() == Name &&
9761              Tag->getDeclContext()->getRedeclContext()
9762                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9763            PrevDecl = Tag;
9764            Previous.clear();
9765            Previous.addDecl(Tag);
9766            Previous.resolveKind();
9767          }
9768        }
9769      }
9770    }
9771
9772    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9773      // If this is a use of a previous tag, or if the tag is already declared
9774      // in the same scope (so that the definition/declaration completes or
9775      // rementions the tag), reuse the decl.
9776      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9777          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9778        // Make sure that this wasn't declared as an enum and now used as a
9779        // struct or something similar.
9780        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9781                                          TUK == TUK_Definition, KWLoc,
9782                                          *Name)) {
9783          bool SafeToContinue
9784            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9785               Kind != TTK_Enum);
9786          if (SafeToContinue)
9787            Diag(KWLoc, diag::err_use_with_wrong_tag)
9788              << Name
9789              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9790                                              PrevTagDecl->getKindName());
9791          else
9792            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9793          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9794
9795          if (SafeToContinue)
9796            Kind = PrevTagDecl->getTagKind();
9797          else {
9798            // Recover by making this an anonymous redefinition.
9799            Name = 0;
9800            Previous.clear();
9801            Invalid = true;
9802          }
9803        }
9804
9805        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9806          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9807
9808          // If this is an elaborated-type-specifier for a scoped enumeration,
9809          // the 'class' keyword is not necessary and not permitted.
9810          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9811            if (ScopedEnum)
9812              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9813                << PrevEnum->isScoped()
9814                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9815            return PrevTagDecl;
9816          }
9817
9818          QualType EnumUnderlyingTy;
9819          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9820            EnumUnderlyingTy = TI->getType();
9821          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9822            EnumUnderlyingTy = QualType(T, 0);
9823
9824          // All conflicts with previous declarations are recovered by
9825          // returning the previous declaration, unless this is a definition,
9826          // in which case we want the caller to bail out.
9827          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9828                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9829            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9830        }
9831
9832        if (!Invalid) {
9833          // If this is a use, just return the declaration we found.
9834
9835          // FIXME: In the future, return a variant or some other clue
9836          // for the consumer of this Decl to know it doesn't own it.
9837          // For our current ASTs this shouldn't be a problem, but will
9838          // need to be changed with DeclGroups.
9839          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9840               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9841            return PrevTagDecl;
9842
9843          // Diagnose attempts to redefine a tag.
9844          if (TUK == TUK_Definition) {
9845            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9846              // If we're defining a specialization and the previous definition
9847              // is from an implicit instantiation, don't emit an error
9848              // here; we'll catch this in the general case below.
9849              bool IsExplicitSpecializationAfterInstantiation = false;
9850              if (isExplicitSpecialization) {
9851                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9852                  IsExplicitSpecializationAfterInstantiation =
9853                    RD->getTemplateSpecializationKind() !=
9854                    TSK_ExplicitSpecialization;
9855                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9856                  IsExplicitSpecializationAfterInstantiation =
9857                    ED->getTemplateSpecializationKind() !=
9858                    TSK_ExplicitSpecialization;
9859              }
9860
9861              if (!IsExplicitSpecializationAfterInstantiation) {
9862                // A redeclaration in function prototype scope in C isn't
9863                // visible elsewhere, so merely issue a warning.
9864                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9865                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9866                else
9867                  Diag(NameLoc, diag::err_redefinition) << Name;
9868                Diag(Def->getLocation(), diag::note_previous_definition);
9869                // If this is a redefinition, recover by making this
9870                // struct be anonymous, which will make any later
9871                // references get the previous definition.
9872                Name = 0;
9873                Previous.clear();
9874                Invalid = true;
9875              }
9876            } else {
9877              // If the type is currently being defined, complain
9878              // about a nested redefinition.
9879              const TagType *Tag
9880                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9881              if (Tag->isBeingDefined()) {
9882                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9883                Diag(PrevTagDecl->getLocation(),
9884                     diag::note_previous_definition);
9885                Name = 0;
9886                Previous.clear();
9887                Invalid = true;
9888              }
9889            }
9890
9891            // Okay, this is definition of a previously declared or referenced
9892            // tag PrevDecl. We're going to create a new Decl for it.
9893          }
9894        }
9895        // If we get here we have (another) forward declaration or we
9896        // have a definition.  Just create a new decl.
9897
9898      } else {
9899        // If we get here, this is a definition of a new tag type in a nested
9900        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9901        // new decl/type.  We set PrevDecl to NULL so that the entities
9902        // have distinct types.
9903        Previous.clear();
9904      }
9905      // If we get here, we're going to create a new Decl. If PrevDecl
9906      // is non-NULL, it's a definition of the tag declared by
9907      // PrevDecl. If it's NULL, we have a new definition.
9908
9909
9910    // Otherwise, PrevDecl is not a tag, but was found with tag
9911    // lookup.  This is only actually possible in C++, where a few
9912    // things like templates still live in the tag namespace.
9913    } else {
9914      // Use a better diagnostic if an elaborated-type-specifier
9915      // found the wrong kind of type on the first
9916      // (non-redeclaration) lookup.
9917      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9918          !Previous.isForRedeclaration()) {
9919        unsigned Kind = 0;
9920        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9921        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9922        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9923        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9924        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9925        Invalid = true;
9926
9927      // Otherwise, only diagnose if the declaration is in scope.
9928      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9929                                isExplicitSpecialization)) {
9930        // do nothing
9931
9932      // Diagnose implicit declarations introduced by elaborated types.
9933      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9934        unsigned Kind = 0;
9935        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9936        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9937        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9938        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9939        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9940        Invalid = true;
9941
9942      // Otherwise it's a declaration.  Call out a particularly common
9943      // case here.
9944      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9945        unsigned Kind = 0;
9946        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9947        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9948          << Name << Kind << TND->getUnderlyingType();
9949        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9950        Invalid = true;
9951
9952      // Otherwise, diagnose.
9953      } else {
9954        // The tag name clashes with something else in the target scope,
9955        // issue an error and recover by making this tag be anonymous.
9956        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9957        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9958        Name = 0;
9959        Invalid = true;
9960      }
9961
9962      // The existing declaration isn't relevant to us; we're in a
9963      // new scope, so clear out the previous declaration.
9964      Previous.clear();
9965    }
9966  }
9967
9968CreateNewDecl:
9969
9970  TagDecl *PrevDecl = 0;
9971  if (Previous.isSingleResult())
9972    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9973
9974  // If there is an identifier, use the location of the identifier as the
9975  // location of the decl, otherwise use the location of the struct/union
9976  // keyword.
9977  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9978
9979  // Otherwise, create a new declaration. If there is a previous
9980  // declaration of the same entity, the two will be linked via
9981  // PrevDecl.
9982  TagDecl *New;
9983
9984  bool IsForwardReference = false;
9985  if (Kind == TTK_Enum) {
9986    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9987    // enum X { A, B, C } D;    D should chain to X.
9988    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9989                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9990                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9991    // If this is an undefined enum, warn.
9992    if (TUK != TUK_Definition && !Invalid) {
9993      TagDecl *Def;
9994      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
9995          cast<EnumDecl>(New)->isFixed()) {
9996        // C++0x: 7.2p2: opaque-enum-declaration.
9997        // Conflicts are diagnosed above. Do nothing.
9998      }
9999      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10000        Diag(Loc, diag::ext_forward_ref_enum_def)
10001          << New;
10002        Diag(Def->getLocation(), diag::note_previous_definition);
10003      } else {
10004        unsigned DiagID = diag::ext_forward_ref_enum;
10005        if (getLangOpts().MicrosoftMode)
10006          DiagID = diag::ext_ms_forward_ref_enum;
10007        else if (getLangOpts().CPlusPlus)
10008          DiagID = diag::err_forward_ref_enum;
10009        Diag(Loc, DiagID);
10010
10011        // If this is a forward-declared reference to an enumeration, make a
10012        // note of it; we won't actually be introducing the declaration into
10013        // the declaration context.
10014        if (TUK == TUK_Reference)
10015          IsForwardReference = true;
10016      }
10017    }
10018
10019    if (EnumUnderlying) {
10020      EnumDecl *ED = cast<EnumDecl>(New);
10021      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10022        ED->setIntegerTypeSourceInfo(TI);
10023      else
10024        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10025      ED->setPromotionType(ED->getIntegerType());
10026    }
10027
10028  } else {
10029    // struct/union/class
10030
10031    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10032    // struct X { int A; } D;    D should chain to X.
10033    if (getLangOpts().CPlusPlus) {
10034      // FIXME: Look for a way to use RecordDecl for simple structs.
10035      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10036                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10037
10038      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10039        StdBadAlloc = cast<CXXRecordDecl>(New);
10040    } else
10041      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10042                               cast_or_null<RecordDecl>(PrevDecl));
10043  }
10044
10045  // Maybe add qualifier info.
10046  if (SS.isNotEmpty()) {
10047    if (SS.isSet()) {
10048      // If this is either a declaration or a definition, check the
10049      // nested-name-specifier against the current context. We don't do this
10050      // for explicit specializations, because they have similar checking
10051      // (with more specific diagnostics) in the call to
10052      // CheckMemberSpecialization, below.
10053      if (!isExplicitSpecialization &&
10054          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10055          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10056        Invalid = true;
10057
10058      New->setQualifierInfo(SS.getWithLocInContext(Context));
10059      if (TemplateParameterLists.size() > 0) {
10060        New->setTemplateParameterListsInfo(Context,
10061                                           TemplateParameterLists.size(),
10062                                           TemplateParameterLists.data());
10063      }
10064    }
10065    else
10066      Invalid = true;
10067  }
10068
10069  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10070    // Add alignment attributes if necessary; these attributes are checked when
10071    // the ASTContext lays out the structure.
10072    //
10073    // It is important for implementing the correct semantics that this
10074    // happen here (in act on tag decl). The #pragma pack stack is
10075    // maintained as a result of parser callbacks which can occur at
10076    // many points during the parsing of a struct declaration (because
10077    // the #pragma tokens are effectively skipped over during the
10078    // parsing of the struct).
10079    if (TUK == TUK_Definition) {
10080      AddAlignmentAttributesForRecord(RD);
10081      AddMsStructLayoutForRecord(RD);
10082    }
10083  }
10084
10085  if (ModulePrivateLoc.isValid()) {
10086    if (isExplicitSpecialization)
10087      Diag(New->getLocation(), diag::err_module_private_specialization)
10088        << 2
10089        << FixItHint::CreateRemoval(ModulePrivateLoc);
10090    // __module_private__ does not apply to local classes. However, we only
10091    // diagnose this as an error when the declaration specifiers are
10092    // freestanding. Here, we just ignore the __module_private__.
10093    else if (!SearchDC->isFunctionOrMethod())
10094      New->setModulePrivate();
10095  }
10096
10097  // If this is a specialization of a member class (of a class template),
10098  // check the specialization.
10099  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10100    Invalid = true;
10101
10102  if (Invalid)
10103    New->setInvalidDecl();
10104
10105  if (Attr)
10106    ProcessDeclAttributeList(S, New, Attr);
10107
10108  // If we're declaring or defining a tag in function prototype scope
10109  // in C, note that this type can only be used within the function.
10110  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10111    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10112
10113  // Set the lexical context. If the tag has a C++ scope specifier, the
10114  // lexical context will be different from the semantic context.
10115  New->setLexicalDeclContext(CurContext);
10116
10117  // Mark this as a friend decl if applicable.
10118  // In Microsoft mode, a friend declaration also acts as a forward
10119  // declaration so we always pass true to setObjectOfFriendDecl to make
10120  // the tag name visible.
10121  if (TUK == TUK_Friend)
10122    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10123                               getLangOpts().MicrosoftExt);
10124
10125  // Set the access specifier.
10126  if (!Invalid && SearchDC->isRecord())
10127    SetMemberAccessSpecifier(New, PrevDecl, AS);
10128
10129  if (TUK == TUK_Definition)
10130    New->startDefinition();
10131
10132  // If this has an identifier, add it to the scope stack.
10133  if (TUK == TUK_Friend) {
10134    // We might be replacing an existing declaration in the lookup tables;
10135    // if so, borrow its access specifier.
10136    if (PrevDecl)
10137      New->setAccess(PrevDecl->getAccess());
10138
10139    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10140    DC->makeDeclVisibleInContext(New);
10141    if (Name) // can be null along some error paths
10142      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10143        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10144  } else if (Name) {
10145    S = getNonFieldDeclScope(S);
10146    PushOnScopeChains(New, S, !IsForwardReference);
10147    if (IsForwardReference)
10148      SearchDC->makeDeclVisibleInContext(New);
10149
10150  } else {
10151    CurContext->addDecl(New);
10152  }
10153
10154  // If this is the C FILE type, notify the AST context.
10155  if (IdentifierInfo *II = New->getIdentifier())
10156    if (!New->isInvalidDecl() &&
10157        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10158        II->isStr("FILE"))
10159      Context.setFILEDecl(New);
10160
10161  // If we were in function prototype scope (and not in C++ mode), add this
10162  // tag to the list of decls to inject into the function definition scope.
10163  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10164      InFunctionDeclarator && Name)
10165    DeclsInPrototypeScope.push_back(New);
10166
10167  if (PrevDecl)
10168    mergeDeclAttributes(New, PrevDecl);
10169
10170  // If there's a #pragma GCC visibility in scope, set the visibility of this
10171  // record.
10172  AddPushedVisibilityAttribute(New);
10173
10174  OwnedDecl = true;
10175  // In C++, don't return an invalid declaration. We can't recover well from
10176  // the cases where we make the type anonymous.
10177  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10178}
10179
10180void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10181  AdjustDeclIfTemplate(TagD);
10182  TagDecl *Tag = cast<TagDecl>(TagD);
10183
10184  // Enter the tag context.
10185  PushDeclContext(S, Tag);
10186
10187  ActOnDocumentableDecl(TagD);
10188
10189  // If there's a #pragma GCC visibility in scope, set the visibility of this
10190  // record.
10191  AddPushedVisibilityAttribute(Tag);
10192}
10193
10194Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10195  assert(isa<ObjCContainerDecl>(IDecl) &&
10196         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10197  DeclContext *OCD = cast<DeclContext>(IDecl);
10198  assert(getContainingDC(OCD) == CurContext &&
10199      "The next DeclContext should be lexically contained in the current one.");
10200  CurContext = OCD;
10201  return IDecl;
10202}
10203
10204void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10205                                           SourceLocation FinalLoc,
10206                                           SourceLocation LBraceLoc) {
10207  AdjustDeclIfTemplate(TagD);
10208  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10209
10210  FieldCollector->StartClass();
10211
10212  if (!Record->getIdentifier())
10213    return;
10214
10215  if (FinalLoc.isValid())
10216    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10217
10218  // C++ [class]p2:
10219  //   [...] The class-name is also inserted into the scope of the
10220  //   class itself; this is known as the injected-class-name. For
10221  //   purposes of access checking, the injected-class-name is treated
10222  //   as if it were a public member name.
10223  CXXRecordDecl *InjectedClassName
10224    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10225                            Record->getLocStart(), Record->getLocation(),
10226                            Record->getIdentifier(),
10227                            /*PrevDecl=*/0,
10228                            /*DelayTypeCreation=*/true);
10229  Context.getTypeDeclType(InjectedClassName, Record);
10230  InjectedClassName->setImplicit();
10231  InjectedClassName->setAccess(AS_public);
10232  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10233      InjectedClassName->setDescribedClassTemplate(Template);
10234  PushOnScopeChains(InjectedClassName, S);
10235  assert(InjectedClassName->isInjectedClassName() &&
10236         "Broken injected-class-name");
10237}
10238
10239void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10240                                    SourceLocation RBraceLoc) {
10241  AdjustDeclIfTemplate(TagD);
10242  TagDecl *Tag = cast<TagDecl>(TagD);
10243  Tag->setRBraceLoc(RBraceLoc);
10244
10245  // Make sure we "complete" the definition even it is invalid.
10246  if (Tag->isBeingDefined()) {
10247    assert(Tag->isInvalidDecl() && "We should already have completed it");
10248    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10249      RD->completeDefinition();
10250  }
10251
10252  if (isa<CXXRecordDecl>(Tag))
10253    FieldCollector->FinishClass();
10254
10255  // Exit this scope of this tag's definition.
10256  PopDeclContext();
10257
10258  if (getCurLexicalContext()->isObjCContainer() &&
10259      Tag->getDeclContext()->isFileContext())
10260    Tag->setTopLevelDeclInObjCContainer();
10261
10262  // Notify the consumer that we've defined a tag.
10263  Consumer.HandleTagDeclDefinition(Tag);
10264}
10265
10266void Sema::ActOnObjCContainerFinishDefinition() {
10267  // Exit this scope of this interface definition.
10268  PopDeclContext();
10269}
10270
10271void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10272  assert(DC == CurContext && "Mismatch of container contexts");
10273  OriginalLexicalContext = DC;
10274  ActOnObjCContainerFinishDefinition();
10275}
10276
10277void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10278  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10279  OriginalLexicalContext = 0;
10280}
10281
10282void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10283  AdjustDeclIfTemplate(TagD);
10284  TagDecl *Tag = cast<TagDecl>(TagD);
10285  Tag->setInvalidDecl();
10286
10287  // Make sure we "complete" the definition even it is invalid.
10288  if (Tag->isBeingDefined()) {
10289    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10290      RD->completeDefinition();
10291  }
10292
10293  // We're undoing ActOnTagStartDefinition here, not
10294  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10295  // the FieldCollector.
10296
10297  PopDeclContext();
10298}
10299
10300// Note that FieldName may be null for anonymous bitfields.
10301ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10302                                IdentifierInfo *FieldName,
10303                                QualType FieldTy, Expr *BitWidth,
10304                                bool *ZeroWidth) {
10305  // Default to true; that shouldn't confuse checks for emptiness
10306  if (ZeroWidth)
10307    *ZeroWidth = true;
10308
10309  // C99 6.7.2.1p4 - verify the field type.
10310  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10311  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10312    // Handle incomplete types with specific error.
10313    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10314      return ExprError();
10315    if (FieldName)
10316      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10317        << FieldName << FieldTy << BitWidth->getSourceRange();
10318    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10319      << FieldTy << BitWidth->getSourceRange();
10320  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10321                                             UPPC_BitFieldWidth))
10322    return ExprError();
10323
10324  // If the bit-width is type- or value-dependent, don't try to check
10325  // it now.
10326  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10327    return Owned(BitWidth);
10328
10329  llvm::APSInt Value;
10330  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10331  if (ICE.isInvalid())
10332    return ICE;
10333  BitWidth = ICE.take();
10334
10335  if (Value != 0 && ZeroWidth)
10336    *ZeroWidth = false;
10337
10338  // Zero-width bitfield is ok for anonymous field.
10339  if (Value == 0 && FieldName)
10340    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10341
10342  if (Value.isSigned() && Value.isNegative()) {
10343    if (FieldName)
10344      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10345               << FieldName << Value.toString(10);
10346    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10347      << Value.toString(10);
10348  }
10349
10350  if (!FieldTy->isDependentType()) {
10351    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10352    if (Value.getZExtValue() > TypeSize) {
10353      if (!getLangOpts().CPlusPlus) {
10354        if (FieldName)
10355          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10356            << FieldName << (unsigned)Value.getZExtValue()
10357            << (unsigned)TypeSize;
10358
10359        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10360          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10361      }
10362
10363      if (FieldName)
10364        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10365          << FieldName << (unsigned)Value.getZExtValue()
10366          << (unsigned)TypeSize;
10367      else
10368        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10369          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10370    }
10371  }
10372
10373  return Owned(BitWidth);
10374}
10375
10376/// ActOnField - Each field of a C struct/union is passed into this in order
10377/// to create a FieldDecl object for it.
10378Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10379                       Declarator &D, Expr *BitfieldWidth) {
10380  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10381                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10382                               /*InitStyle=*/ICIS_NoInit, AS_public);
10383  return Res;
10384}
10385
10386/// HandleField - Analyze a field of a C struct or a C++ data member.
10387///
10388FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10389                             SourceLocation DeclStart,
10390                             Declarator &D, Expr *BitWidth,
10391                             InClassInitStyle InitStyle,
10392                             AccessSpecifier AS) {
10393  IdentifierInfo *II = D.getIdentifier();
10394  SourceLocation Loc = DeclStart;
10395  if (II) Loc = D.getIdentifierLoc();
10396
10397  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10398  QualType T = TInfo->getType();
10399  if (getLangOpts().CPlusPlus) {
10400    CheckExtraCXXDefaultArguments(D);
10401
10402    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10403                                        UPPC_DataMemberType)) {
10404      D.setInvalidType();
10405      T = Context.IntTy;
10406      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10407    }
10408  }
10409
10410  // TR 18037 does not allow fields to be declared with address spaces.
10411  if (T.getQualifiers().hasAddressSpace()) {
10412    Diag(Loc, diag::err_field_with_address_space);
10413    D.setInvalidType();
10414  }
10415
10416  // OpenCL 1.2 spec, s6.9 r:
10417  // The event type cannot be used to declare a structure or union field.
10418  if (LangOpts.OpenCL && T->isEventT()) {
10419    Diag(Loc, diag::err_event_t_struct_field);
10420    D.setInvalidType();
10421  }
10422
10423  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10424
10425  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10426    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10427         diag::err_invalid_thread)
10428      << DeclSpec::getSpecifierName(TSCS);
10429
10430  // Check to see if this name was declared as a member previously
10431  NamedDecl *PrevDecl = 0;
10432  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10433  LookupName(Previous, S);
10434  switch (Previous.getResultKind()) {
10435    case LookupResult::Found:
10436    case LookupResult::FoundUnresolvedValue:
10437      PrevDecl = Previous.getAsSingle<NamedDecl>();
10438      break;
10439
10440    case LookupResult::FoundOverloaded:
10441      PrevDecl = Previous.getRepresentativeDecl();
10442      break;
10443
10444    case LookupResult::NotFound:
10445    case LookupResult::NotFoundInCurrentInstantiation:
10446    case LookupResult::Ambiguous:
10447      break;
10448  }
10449  Previous.suppressDiagnostics();
10450
10451  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10452    // Maybe we will complain about the shadowed template parameter.
10453    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10454    // Just pretend that we didn't see the previous declaration.
10455    PrevDecl = 0;
10456  }
10457
10458  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10459    PrevDecl = 0;
10460
10461  bool Mutable
10462    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10463  SourceLocation TSSL = D.getLocStart();
10464  FieldDecl *NewFD
10465    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10466                     TSSL, AS, PrevDecl, &D);
10467
10468  if (NewFD->isInvalidDecl())
10469    Record->setInvalidDecl();
10470
10471  if (D.getDeclSpec().isModulePrivateSpecified())
10472    NewFD->setModulePrivate();
10473
10474  if (NewFD->isInvalidDecl() && PrevDecl) {
10475    // Don't introduce NewFD into scope; there's already something
10476    // with the same name in the same scope.
10477  } else if (II) {
10478    PushOnScopeChains(NewFD, S);
10479  } else
10480    Record->addDecl(NewFD);
10481
10482  return NewFD;
10483}
10484
10485/// \brief Build a new FieldDecl and check its well-formedness.
10486///
10487/// This routine builds a new FieldDecl given the fields name, type,
10488/// record, etc. \p PrevDecl should refer to any previous declaration
10489/// with the same name and in the same scope as the field to be
10490/// created.
10491///
10492/// \returns a new FieldDecl.
10493///
10494/// \todo The Declarator argument is a hack. It will be removed once
10495FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10496                                TypeSourceInfo *TInfo,
10497                                RecordDecl *Record, SourceLocation Loc,
10498                                bool Mutable, Expr *BitWidth,
10499                                InClassInitStyle InitStyle,
10500                                SourceLocation TSSL,
10501                                AccessSpecifier AS, NamedDecl *PrevDecl,
10502                                Declarator *D) {
10503  IdentifierInfo *II = Name.getAsIdentifierInfo();
10504  bool InvalidDecl = false;
10505  if (D) InvalidDecl = D->isInvalidType();
10506
10507  // If we receive a broken type, recover by assuming 'int' and
10508  // marking this declaration as invalid.
10509  if (T.isNull()) {
10510    InvalidDecl = true;
10511    T = Context.IntTy;
10512  }
10513
10514  QualType EltTy = Context.getBaseElementType(T);
10515  if (!EltTy->isDependentType()) {
10516    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10517      // Fields of incomplete type force their record to be invalid.
10518      Record->setInvalidDecl();
10519      InvalidDecl = true;
10520    } else {
10521      NamedDecl *Def;
10522      EltTy->isIncompleteType(&Def);
10523      if (Def && Def->isInvalidDecl()) {
10524        Record->setInvalidDecl();
10525        InvalidDecl = true;
10526      }
10527    }
10528  }
10529
10530  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10531  if (BitWidth && getLangOpts().OpenCL) {
10532    Diag(Loc, diag::err_opencl_bitfields);
10533    InvalidDecl = true;
10534  }
10535
10536  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10537  // than a variably modified type.
10538  if (!InvalidDecl && T->isVariablyModifiedType()) {
10539    bool SizeIsNegative;
10540    llvm::APSInt Oversized;
10541
10542    TypeSourceInfo *FixedTInfo =
10543      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10544                                                    SizeIsNegative,
10545                                                    Oversized);
10546    if (FixedTInfo) {
10547      Diag(Loc, diag::warn_illegal_constant_array_size);
10548      TInfo = FixedTInfo;
10549      T = FixedTInfo->getType();
10550    } else {
10551      if (SizeIsNegative)
10552        Diag(Loc, diag::err_typecheck_negative_array_size);
10553      else if (Oversized.getBoolValue())
10554        Diag(Loc, diag::err_array_too_large)
10555          << Oversized.toString(10);
10556      else
10557        Diag(Loc, diag::err_typecheck_field_variable_size);
10558      InvalidDecl = true;
10559    }
10560  }
10561
10562  // Fields can not have abstract class types
10563  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10564                                             diag::err_abstract_type_in_decl,
10565                                             AbstractFieldType))
10566    InvalidDecl = true;
10567
10568  bool ZeroWidth = false;
10569  // If this is declared as a bit-field, check the bit-field.
10570  if (!InvalidDecl && BitWidth) {
10571    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10572    if (!BitWidth) {
10573      InvalidDecl = true;
10574      BitWidth = 0;
10575      ZeroWidth = false;
10576    }
10577  }
10578
10579  // Check that 'mutable' is consistent with the type of the declaration.
10580  if (!InvalidDecl && Mutable) {
10581    unsigned DiagID = 0;
10582    if (T->isReferenceType())
10583      DiagID = diag::err_mutable_reference;
10584    else if (T.isConstQualified())
10585      DiagID = diag::err_mutable_const;
10586
10587    if (DiagID) {
10588      SourceLocation ErrLoc = Loc;
10589      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10590        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10591      Diag(ErrLoc, DiagID);
10592      Mutable = false;
10593      InvalidDecl = true;
10594    }
10595  }
10596
10597  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10598                                       BitWidth, Mutable, InitStyle);
10599  if (InvalidDecl)
10600    NewFD->setInvalidDecl();
10601
10602  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10603    Diag(Loc, diag::err_duplicate_member) << II;
10604    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10605    NewFD->setInvalidDecl();
10606  }
10607
10608  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10609    if (Record->isUnion()) {
10610      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10611        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10612        if (RDecl->getDefinition()) {
10613          // C++ [class.union]p1: An object of a class with a non-trivial
10614          // constructor, a non-trivial copy constructor, a non-trivial
10615          // destructor, or a non-trivial copy assignment operator
10616          // cannot be a member of a union, nor can an array of such
10617          // objects.
10618          if (CheckNontrivialField(NewFD))
10619            NewFD->setInvalidDecl();
10620        }
10621      }
10622
10623      // C++ [class.union]p1: If a union contains a member of reference type,
10624      // the program is ill-formed.
10625      if (EltTy->isReferenceType()) {
10626        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10627          << NewFD->getDeclName() << EltTy;
10628        NewFD->setInvalidDecl();
10629      }
10630    }
10631  }
10632
10633  // FIXME: We need to pass in the attributes given an AST
10634  // representation, not a parser representation.
10635  if (D) {
10636    // FIXME: The current scope is almost... but not entirely... correct here.
10637    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10638
10639    if (NewFD->hasAttrs())
10640      CheckAlignasUnderalignment(NewFD);
10641  }
10642
10643  // In auto-retain/release, infer strong retension for fields of
10644  // retainable type.
10645  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10646    NewFD->setInvalidDecl();
10647
10648  if (T.isObjCGCWeak())
10649    Diag(Loc, diag::warn_attribute_weak_on_field);
10650
10651  NewFD->setAccess(AS);
10652  return NewFD;
10653}
10654
10655bool Sema::CheckNontrivialField(FieldDecl *FD) {
10656  assert(FD);
10657  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10658
10659  if (FD->isInvalidDecl())
10660    return true;
10661
10662  QualType EltTy = Context.getBaseElementType(FD->getType());
10663  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10664    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10665    if (RDecl->getDefinition()) {
10666      // We check for copy constructors before constructors
10667      // because otherwise we'll never get complaints about
10668      // copy constructors.
10669
10670      CXXSpecialMember member = CXXInvalid;
10671      // We're required to check for any non-trivial constructors. Since the
10672      // implicit default constructor is suppressed if there are any
10673      // user-declared constructors, we just need to check that there is a
10674      // trivial default constructor and a trivial copy constructor. (We don't
10675      // worry about move constructors here, since this is a C++98 check.)
10676      if (RDecl->hasNonTrivialCopyConstructor())
10677        member = CXXCopyConstructor;
10678      else if (!RDecl->hasTrivialDefaultConstructor())
10679        member = CXXDefaultConstructor;
10680      else if (RDecl->hasNonTrivialCopyAssignment())
10681        member = CXXCopyAssignment;
10682      else if (RDecl->hasNonTrivialDestructor())
10683        member = CXXDestructor;
10684
10685      if (member != CXXInvalid) {
10686        if (!getLangOpts().CPlusPlus11 &&
10687            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10688          // Objective-C++ ARC: it is an error to have a non-trivial field of
10689          // a union. However, system headers in Objective-C programs
10690          // occasionally have Objective-C lifetime objects within unions,
10691          // and rather than cause the program to fail, we make those
10692          // members unavailable.
10693          SourceLocation Loc = FD->getLocation();
10694          if (getSourceManager().isInSystemHeader(Loc)) {
10695            if (!FD->hasAttr<UnavailableAttr>())
10696              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10697                                  "this system field has retaining ownership"));
10698            return false;
10699          }
10700        }
10701
10702        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10703               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10704               diag::err_illegal_union_or_anon_struct_member)
10705          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10706        DiagnoseNontrivial(RDecl, member);
10707        return !getLangOpts().CPlusPlus11;
10708      }
10709    }
10710  }
10711
10712  return false;
10713}
10714
10715/// TranslateIvarVisibility - Translate visibility from a token ID to an
10716///  AST enum value.
10717static ObjCIvarDecl::AccessControl
10718TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10719  switch (ivarVisibility) {
10720  default: llvm_unreachable("Unknown visitibility kind");
10721  case tok::objc_private: return ObjCIvarDecl::Private;
10722  case tok::objc_public: return ObjCIvarDecl::Public;
10723  case tok::objc_protected: return ObjCIvarDecl::Protected;
10724  case tok::objc_package: return ObjCIvarDecl::Package;
10725  }
10726}
10727
10728/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10729/// in order to create an IvarDecl object for it.
10730Decl *Sema::ActOnIvar(Scope *S,
10731                                SourceLocation DeclStart,
10732                                Declarator &D, Expr *BitfieldWidth,
10733                                tok::ObjCKeywordKind Visibility) {
10734
10735  IdentifierInfo *II = D.getIdentifier();
10736  Expr *BitWidth = (Expr*)BitfieldWidth;
10737  SourceLocation Loc = DeclStart;
10738  if (II) Loc = D.getIdentifierLoc();
10739
10740  // FIXME: Unnamed fields can be handled in various different ways, for
10741  // example, unnamed unions inject all members into the struct namespace!
10742
10743  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10744  QualType T = TInfo->getType();
10745
10746  if (BitWidth) {
10747    // 6.7.2.1p3, 6.7.2.1p4
10748    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10749    if (!BitWidth)
10750      D.setInvalidType();
10751  } else {
10752    // Not a bitfield.
10753
10754    // validate II.
10755
10756  }
10757  if (T->isReferenceType()) {
10758    Diag(Loc, diag::err_ivar_reference_type);
10759    D.setInvalidType();
10760  }
10761  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10762  // than a variably modified type.
10763  else if (T->isVariablyModifiedType()) {
10764    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10765    D.setInvalidType();
10766  }
10767
10768  // Get the visibility (access control) for this ivar.
10769  ObjCIvarDecl::AccessControl ac =
10770    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10771                                        : ObjCIvarDecl::None;
10772  // Must set ivar's DeclContext to its enclosing interface.
10773  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10774  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10775    return 0;
10776  ObjCContainerDecl *EnclosingContext;
10777  if (ObjCImplementationDecl *IMPDecl =
10778      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10779    if (LangOpts.ObjCRuntime.isFragile()) {
10780    // Case of ivar declared in an implementation. Context is that of its class.
10781      EnclosingContext = IMPDecl->getClassInterface();
10782      assert(EnclosingContext && "Implementation has no class interface!");
10783    }
10784    else
10785      EnclosingContext = EnclosingDecl;
10786  } else {
10787    if (ObjCCategoryDecl *CDecl =
10788        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10789      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10790        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10791        return 0;
10792      }
10793    }
10794    EnclosingContext = EnclosingDecl;
10795  }
10796
10797  // Construct the decl.
10798  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10799                                             DeclStart, Loc, II, T,
10800                                             TInfo, ac, (Expr *)BitfieldWidth);
10801
10802  if (II) {
10803    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10804                                           ForRedeclaration);
10805    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10806        && !isa<TagDecl>(PrevDecl)) {
10807      Diag(Loc, diag::err_duplicate_member) << II;
10808      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10809      NewID->setInvalidDecl();
10810    }
10811  }
10812
10813  // Process attributes attached to the ivar.
10814  ProcessDeclAttributes(S, NewID, D);
10815
10816  if (D.isInvalidType())
10817    NewID->setInvalidDecl();
10818
10819  // In ARC, infer 'retaining' for ivars of retainable type.
10820  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10821    NewID->setInvalidDecl();
10822
10823  if (D.getDeclSpec().isModulePrivateSpecified())
10824    NewID->setModulePrivate();
10825
10826  if (II) {
10827    // FIXME: When interfaces are DeclContexts, we'll need to add
10828    // these to the interface.
10829    S->AddDecl(NewID);
10830    IdResolver.AddDecl(NewID);
10831  }
10832
10833  if (LangOpts.ObjCRuntime.isNonFragile() &&
10834      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10835    Diag(Loc, diag::warn_ivars_in_interface);
10836
10837  return NewID;
10838}
10839
10840/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10841/// class and class extensions. For every class \@interface and class
10842/// extension \@interface, if the last ivar is a bitfield of any type,
10843/// then add an implicit `char :0` ivar to the end of that interface.
10844void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10845                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10846  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10847    return;
10848
10849  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10850  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10851
10852  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10853    return;
10854  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10855  if (!ID) {
10856    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10857      if (!CD->IsClassExtension())
10858        return;
10859    }
10860    // No need to add this to end of @implementation.
10861    else
10862      return;
10863  }
10864  // All conditions are met. Add a new bitfield to the tail end of ivars.
10865  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10866  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10867
10868  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10869                              DeclLoc, DeclLoc, 0,
10870                              Context.CharTy,
10871                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10872                                                               DeclLoc),
10873                              ObjCIvarDecl::Private, BW,
10874                              true);
10875  AllIvarDecls.push_back(Ivar);
10876}
10877
10878void Sema::ActOnFields(Scope* S,
10879                       SourceLocation RecLoc, Decl *EnclosingDecl,
10880                       llvm::ArrayRef<Decl *> Fields,
10881                       SourceLocation LBrac, SourceLocation RBrac,
10882                       AttributeList *Attr) {
10883  assert(EnclosingDecl && "missing record or interface decl");
10884
10885  // If this is an Objective-C @implementation or category and we have
10886  // new fields here we should reset the layout of the interface since
10887  // it will now change.
10888  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10889    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10890    switch (DC->getKind()) {
10891    default: break;
10892    case Decl::ObjCCategory:
10893      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10894      break;
10895    case Decl::ObjCImplementation:
10896      Context.
10897        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10898      break;
10899    }
10900  }
10901
10902  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10903
10904  // Start counting up the number of named members; make sure to include
10905  // members of anonymous structs and unions in the total.
10906  unsigned NumNamedMembers = 0;
10907  if (Record) {
10908    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10909                                   e = Record->decls_end(); i != e; i++) {
10910      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10911        if (IFD->getDeclName())
10912          ++NumNamedMembers;
10913    }
10914  }
10915
10916  // Verify that all the fields are okay.
10917  SmallVector<FieldDecl*, 32> RecFields;
10918
10919  bool ARCErrReported = false;
10920  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10921       i != end; ++i) {
10922    FieldDecl *FD = cast<FieldDecl>(*i);
10923
10924    // Get the type for the field.
10925    const Type *FDTy = FD->getType().getTypePtr();
10926
10927    if (!FD->isAnonymousStructOrUnion()) {
10928      // Remember all fields written by the user.
10929      RecFields.push_back(FD);
10930    }
10931
10932    // If the field is already invalid for some reason, don't emit more
10933    // diagnostics about it.
10934    if (FD->isInvalidDecl()) {
10935      EnclosingDecl->setInvalidDecl();
10936      continue;
10937    }
10938
10939    // C99 6.7.2.1p2:
10940    //   A structure or union shall not contain a member with
10941    //   incomplete or function type (hence, a structure shall not
10942    //   contain an instance of itself, but may contain a pointer to
10943    //   an instance of itself), except that the last member of a
10944    //   structure with more than one named member may have incomplete
10945    //   array type; such a structure (and any union containing,
10946    //   possibly recursively, a member that is such a structure)
10947    //   shall not be a member of a structure or an element of an
10948    //   array.
10949    if (FDTy->isFunctionType()) {
10950      // Field declared as a function.
10951      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10952        << FD->getDeclName();
10953      FD->setInvalidDecl();
10954      EnclosingDecl->setInvalidDecl();
10955      continue;
10956    } else if (FDTy->isIncompleteArrayType() && Record &&
10957               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10958                ((getLangOpts().MicrosoftExt ||
10959                  getLangOpts().CPlusPlus) &&
10960                 (i + 1 == Fields.end() || Record->isUnion())))) {
10961      // Flexible array member.
10962      // Microsoft and g++ is more permissive regarding flexible array.
10963      // It will accept flexible array in union and also
10964      // as the sole element of a struct/class.
10965      if (getLangOpts().MicrosoftExt) {
10966        if (Record->isUnion())
10967          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10968            << FD->getDeclName();
10969        else if (Fields.size() == 1)
10970          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10971            << FD->getDeclName() << Record->getTagKind();
10972      } else if (getLangOpts().CPlusPlus) {
10973        if (Record->isUnion())
10974          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10975            << FD->getDeclName();
10976        else if (Fields.size() == 1)
10977          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10978            << FD->getDeclName() << Record->getTagKind();
10979      } else if (!getLangOpts().C99) {
10980      if (Record->isUnion())
10981        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10982          << FD->getDeclName();
10983      else
10984        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10985          << FD->getDeclName() << Record->getTagKind();
10986      } else if (NumNamedMembers < 1) {
10987        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10988          << FD->getDeclName();
10989        FD->setInvalidDecl();
10990        EnclosingDecl->setInvalidDecl();
10991        continue;
10992      }
10993      if (!FD->getType()->isDependentType() &&
10994          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10995        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10996          << FD->getDeclName() << FD->getType();
10997        FD->setInvalidDecl();
10998        EnclosingDecl->setInvalidDecl();
10999        continue;
11000      }
11001      // Okay, we have a legal flexible array member at the end of the struct.
11002      if (Record)
11003        Record->setHasFlexibleArrayMember(true);
11004    } else if (!FDTy->isDependentType() &&
11005               RequireCompleteType(FD->getLocation(), FD->getType(),
11006                                   diag::err_field_incomplete)) {
11007      // Incomplete type
11008      FD->setInvalidDecl();
11009      EnclosingDecl->setInvalidDecl();
11010      continue;
11011    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11012      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11013        // If this is a member of a union, then entire union becomes "flexible".
11014        if (Record && Record->isUnion()) {
11015          Record->setHasFlexibleArrayMember(true);
11016        } else {
11017          // If this is a struct/class and this is not the last element, reject
11018          // it.  Note that GCC supports variable sized arrays in the middle of
11019          // structures.
11020          if (i + 1 != Fields.end())
11021            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11022              << FD->getDeclName() << FD->getType();
11023          else {
11024            // We support flexible arrays at the end of structs in
11025            // other structs as an extension.
11026            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11027              << FD->getDeclName();
11028            if (Record)
11029              Record->setHasFlexibleArrayMember(true);
11030          }
11031        }
11032      }
11033      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11034          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11035                                 diag::err_abstract_type_in_decl,
11036                                 AbstractIvarType)) {
11037        // Ivars can not have abstract class types
11038        FD->setInvalidDecl();
11039      }
11040      if (Record && FDTTy->getDecl()->hasObjectMember())
11041        Record->setHasObjectMember(true);
11042      if (Record && FDTTy->getDecl()->hasVolatileMember())
11043        Record->setHasVolatileMember(true);
11044    } else if (FDTy->isObjCObjectType()) {
11045      /// A field cannot be an Objective-c object
11046      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11047        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11048      QualType T = Context.getObjCObjectPointerType(FD->getType());
11049      FD->setType(T);
11050    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11051               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11052      // It's an error in ARC if a field has lifetime.
11053      // We don't want to report this in a system header, though,
11054      // so we just make the field unavailable.
11055      // FIXME: that's really not sufficient; we need to make the type
11056      // itself invalid to, say, initialize or copy.
11057      QualType T = FD->getType();
11058      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11059      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11060        SourceLocation loc = FD->getLocation();
11061        if (getSourceManager().isInSystemHeader(loc)) {
11062          if (!FD->hasAttr<UnavailableAttr>()) {
11063            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11064                              "this system field has retaining ownership"));
11065          }
11066        } else {
11067          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11068            << T->isBlockPointerType() << Record->getTagKind();
11069        }
11070        ARCErrReported = true;
11071      }
11072    } else if (getLangOpts().ObjC1 &&
11073               getLangOpts().getGC() != LangOptions::NonGC &&
11074               Record && !Record->hasObjectMember()) {
11075      if (FD->getType()->isObjCObjectPointerType() ||
11076          FD->getType().isObjCGCStrong())
11077        Record->setHasObjectMember(true);
11078      else if (Context.getAsArrayType(FD->getType())) {
11079        QualType BaseType = Context.getBaseElementType(FD->getType());
11080        if (BaseType->isRecordType() &&
11081            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11082          Record->setHasObjectMember(true);
11083        else if (BaseType->isObjCObjectPointerType() ||
11084                 BaseType.isObjCGCStrong())
11085               Record->setHasObjectMember(true);
11086      }
11087    }
11088    if (Record && FD->getType().isVolatileQualified())
11089      Record->setHasVolatileMember(true);
11090    // Keep track of the number of named members.
11091    if (FD->getIdentifier())
11092      ++NumNamedMembers;
11093  }
11094
11095  // Okay, we successfully defined 'Record'.
11096  if (Record) {
11097    bool Completed = false;
11098    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11099      if (!CXXRecord->isInvalidDecl()) {
11100        // Set access bits correctly on the directly-declared conversions.
11101        for (CXXRecordDecl::conversion_iterator
11102               I = CXXRecord->conversion_begin(),
11103               E = CXXRecord->conversion_end(); I != E; ++I)
11104          I.setAccess((*I)->getAccess());
11105
11106        if (!CXXRecord->isDependentType()) {
11107          // Adjust user-defined destructor exception spec.
11108          if (getLangOpts().CPlusPlus11 &&
11109              CXXRecord->hasUserDeclaredDestructor())
11110            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
11111
11112          // Add any implicitly-declared members to this class.
11113          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11114
11115          // If we have virtual base classes, we may end up finding multiple
11116          // final overriders for a given virtual function. Check for this
11117          // problem now.
11118          if (CXXRecord->getNumVBases()) {
11119            CXXFinalOverriderMap FinalOverriders;
11120            CXXRecord->getFinalOverriders(FinalOverriders);
11121
11122            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11123                                             MEnd = FinalOverriders.end();
11124                 M != MEnd; ++M) {
11125              for (OverridingMethods::iterator SO = M->second.begin(),
11126                                            SOEnd = M->second.end();
11127                   SO != SOEnd; ++SO) {
11128                assert(SO->second.size() > 0 &&
11129                       "Virtual function without overridding functions?");
11130                if (SO->second.size() == 1)
11131                  continue;
11132
11133                // C++ [class.virtual]p2:
11134                //   In a derived class, if a virtual member function of a base
11135                //   class subobject has more than one final overrider the
11136                //   program is ill-formed.
11137                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11138                  << (const NamedDecl *)M->first << Record;
11139                Diag(M->first->getLocation(),
11140                     diag::note_overridden_virtual_function);
11141                for (OverridingMethods::overriding_iterator
11142                          OM = SO->second.begin(),
11143                       OMEnd = SO->second.end();
11144                     OM != OMEnd; ++OM)
11145                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11146                    << (const NamedDecl *)M->first << OM->Method->getParent();
11147
11148                Record->setInvalidDecl();
11149              }
11150            }
11151            CXXRecord->completeDefinition(&FinalOverriders);
11152            Completed = true;
11153          }
11154        }
11155      }
11156    }
11157
11158    if (!Completed)
11159      Record->completeDefinition();
11160
11161    if (Record->hasAttrs())
11162      CheckAlignasUnderalignment(Record);
11163  } else {
11164    ObjCIvarDecl **ClsFields =
11165      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11166    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11167      ID->setEndOfDefinitionLoc(RBrac);
11168      // Add ivar's to class's DeclContext.
11169      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11170        ClsFields[i]->setLexicalDeclContext(ID);
11171        ID->addDecl(ClsFields[i]);
11172      }
11173      // Must enforce the rule that ivars in the base classes may not be
11174      // duplicates.
11175      if (ID->getSuperClass())
11176        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11177    } else if (ObjCImplementationDecl *IMPDecl =
11178                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11179      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11180      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11181        // Ivar declared in @implementation never belongs to the implementation.
11182        // Only it is in implementation's lexical context.
11183        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11184      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11185      IMPDecl->setIvarLBraceLoc(LBrac);
11186      IMPDecl->setIvarRBraceLoc(RBrac);
11187    } else if (ObjCCategoryDecl *CDecl =
11188                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11189      // case of ivars in class extension; all other cases have been
11190      // reported as errors elsewhere.
11191      // FIXME. Class extension does not have a LocEnd field.
11192      // CDecl->setLocEnd(RBrac);
11193      // Add ivar's to class extension's DeclContext.
11194      // Diagnose redeclaration of private ivars.
11195      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11196      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11197        if (IDecl) {
11198          if (const ObjCIvarDecl *ClsIvar =
11199              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11200            Diag(ClsFields[i]->getLocation(),
11201                 diag::err_duplicate_ivar_declaration);
11202            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11203            continue;
11204          }
11205          for (ObjCInterfaceDecl::known_extensions_iterator
11206                 Ext = IDecl->known_extensions_begin(),
11207                 ExtEnd = IDecl->known_extensions_end();
11208               Ext != ExtEnd; ++Ext) {
11209            if (const ObjCIvarDecl *ClsExtIvar
11210                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11211              Diag(ClsFields[i]->getLocation(),
11212                   diag::err_duplicate_ivar_declaration);
11213              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11214              continue;
11215            }
11216          }
11217        }
11218        ClsFields[i]->setLexicalDeclContext(CDecl);
11219        CDecl->addDecl(ClsFields[i]);
11220      }
11221      CDecl->setIvarLBraceLoc(LBrac);
11222      CDecl->setIvarRBraceLoc(RBrac);
11223    }
11224  }
11225
11226  if (Attr)
11227    ProcessDeclAttributeList(S, Record, Attr);
11228}
11229
11230/// \brief Determine whether the given integral value is representable within
11231/// the given type T.
11232static bool isRepresentableIntegerValue(ASTContext &Context,
11233                                        llvm::APSInt &Value,
11234                                        QualType T) {
11235  assert(T->isIntegralType(Context) && "Integral type required!");
11236  unsigned BitWidth = Context.getIntWidth(T);
11237
11238  if (Value.isUnsigned() || Value.isNonNegative()) {
11239    if (T->isSignedIntegerOrEnumerationType())
11240      --BitWidth;
11241    return Value.getActiveBits() <= BitWidth;
11242  }
11243  return Value.getMinSignedBits() <= BitWidth;
11244}
11245
11246// \brief Given an integral type, return the next larger integral type
11247// (or a NULL type of no such type exists).
11248static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11249  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11250  // enum checking below.
11251  assert(T->isIntegralType(Context) && "Integral type required!");
11252  const unsigned NumTypes = 4;
11253  QualType SignedIntegralTypes[NumTypes] = {
11254    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11255  };
11256  QualType UnsignedIntegralTypes[NumTypes] = {
11257    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11258    Context.UnsignedLongLongTy
11259  };
11260
11261  unsigned BitWidth = Context.getTypeSize(T);
11262  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11263                                                        : UnsignedIntegralTypes;
11264  for (unsigned I = 0; I != NumTypes; ++I)
11265    if (Context.getTypeSize(Types[I]) > BitWidth)
11266      return Types[I];
11267
11268  return QualType();
11269}
11270
11271EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11272                                          EnumConstantDecl *LastEnumConst,
11273                                          SourceLocation IdLoc,
11274                                          IdentifierInfo *Id,
11275                                          Expr *Val) {
11276  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11277  llvm::APSInt EnumVal(IntWidth);
11278  QualType EltTy;
11279
11280  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11281    Val = 0;
11282
11283  if (Val)
11284    Val = DefaultLvalueConversion(Val).take();
11285
11286  if (Val) {
11287    if (Enum->isDependentType() || Val->isTypeDependent())
11288      EltTy = Context.DependentTy;
11289    else {
11290      SourceLocation ExpLoc;
11291      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11292          !getLangOpts().MicrosoftMode) {
11293        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11294        // constant-expression in the enumerator-definition shall be a converted
11295        // constant expression of the underlying type.
11296        EltTy = Enum->getIntegerType();
11297        ExprResult Converted =
11298          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11299                                           CCEK_Enumerator);
11300        if (Converted.isInvalid())
11301          Val = 0;
11302        else
11303          Val = Converted.take();
11304      } else if (!Val->isValueDependent() &&
11305                 !(Val = VerifyIntegerConstantExpression(Val,
11306                                                         &EnumVal).take())) {
11307        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11308      } else {
11309        if (Enum->isFixed()) {
11310          EltTy = Enum->getIntegerType();
11311
11312          // In Obj-C and Microsoft mode, require the enumeration value to be
11313          // representable in the underlying type of the enumeration. In C++11,
11314          // we perform a non-narrowing conversion as part of converted constant
11315          // expression checking.
11316          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11317            if (getLangOpts().MicrosoftMode) {
11318              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11319              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11320            } else
11321              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11322          } else
11323            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11324        } else if (getLangOpts().CPlusPlus) {
11325          // C++11 [dcl.enum]p5:
11326          //   If the underlying type is not fixed, the type of each enumerator
11327          //   is the type of its initializing value:
11328          //     - If an initializer is specified for an enumerator, the
11329          //       initializing value has the same type as the expression.
11330          EltTy = Val->getType();
11331        } else {
11332          // C99 6.7.2.2p2:
11333          //   The expression that defines the value of an enumeration constant
11334          //   shall be an integer constant expression that has a value
11335          //   representable as an int.
11336
11337          // Complain if the value is not representable in an int.
11338          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11339            Diag(IdLoc, diag::ext_enum_value_not_int)
11340              << EnumVal.toString(10) << Val->getSourceRange()
11341              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11342          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11343            // Force the type of the expression to 'int'.
11344            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11345          }
11346          EltTy = Val->getType();
11347        }
11348      }
11349    }
11350  }
11351
11352  if (!Val) {
11353    if (Enum->isDependentType())
11354      EltTy = Context.DependentTy;
11355    else if (!LastEnumConst) {
11356      // C++0x [dcl.enum]p5:
11357      //   If the underlying type is not fixed, the type of each enumerator
11358      //   is the type of its initializing value:
11359      //     - If no initializer is specified for the first enumerator, the
11360      //       initializing value has an unspecified integral type.
11361      //
11362      // GCC uses 'int' for its unspecified integral type, as does
11363      // C99 6.7.2.2p3.
11364      if (Enum->isFixed()) {
11365        EltTy = Enum->getIntegerType();
11366      }
11367      else {
11368        EltTy = Context.IntTy;
11369      }
11370    } else {
11371      // Assign the last value + 1.
11372      EnumVal = LastEnumConst->getInitVal();
11373      ++EnumVal;
11374      EltTy = LastEnumConst->getType();
11375
11376      // Check for overflow on increment.
11377      if (EnumVal < LastEnumConst->getInitVal()) {
11378        // C++0x [dcl.enum]p5:
11379        //   If the underlying type is not fixed, the type of each enumerator
11380        //   is the type of its initializing value:
11381        //
11382        //     - Otherwise the type of the initializing value is the same as
11383        //       the type of the initializing value of the preceding enumerator
11384        //       unless the incremented value is not representable in that type,
11385        //       in which case the type is an unspecified integral type
11386        //       sufficient to contain the incremented value. If no such type
11387        //       exists, the program is ill-formed.
11388        QualType T = getNextLargerIntegralType(Context, EltTy);
11389        if (T.isNull() || Enum->isFixed()) {
11390          // There is no integral type larger enough to represent this
11391          // value. Complain, then allow the value to wrap around.
11392          EnumVal = LastEnumConst->getInitVal();
11393          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11394          ++EnumVal;
11395          if (Enum->isFixed())
11396            // When the underlying type is fixed, this is ill-formed.
11397            Diag(IdLoc, diag::err_enumerator_wrapped)
11398              << EnumVal.toString(10)
11399              << EltTy;
11400          else
11401            Diag(IdLoc, diag::warn_enumerator_too_large)
11402              << EnumVal.toString(10);
11403        } else {
11404          EltTy = T;
11405        }
11406
11407        // Retrieve the last enumerator's value, extent that type to the
11408        // type that is supposed to be large enough to represent the incremented
11409        // value, then increment.
11410        EnumVal = LastEnumConst->getInitVal();
11411        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11412        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11413        ++EnumVal;
11414
11415        // If we're not in C++, diagnose the overflow of enumerator values,
11416        // which in C99 means that the enumerator value is not representable in
11417        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11418        // permits enumerator values that are representable in some larger
11419        // integral type.
11420        if (!getLangOpts().CPlusPlus && !T.isNull())
11421          Diag(IdLoc, diag::warn_enum_value_overflow);
11422      } else if (!getLangOpts().CPlusPlus &&
11423                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11424        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11425        Diag(IdLoc, diag::ext_enum_value_not_int)
11426          << EnumVal.toString(10) << 1;
11427      }
11428    }
11429  }
11430
11431  if (!EltTy->isDependentType()) {
11432    // Make the enumerator value match the signedness and size of the
11433    // enumerator's type.
11434    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11435    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11436  }
11437
11438  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11439                                  Val, EnumVal);
11440}
11441
11442
11443Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11444                              SourceLocation IdLoc, IdentifierInfo *Id,
11445                              AttributeList *Attr,
11446                              SourceLocation EqualLoc, Expr *Val) {
11447  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11448  EnumConstantDecl *LastEnumConst =
11449    cast_or_null<EnumConstantDecl>(lastEnumConst);
11450
11451  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11452  // we find one that is.
11453  S = getNonFieldDeclScope(S);
11454
11455  // Verify that there isn't already something declared with this name in this
11456  // scope.
11457  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11458                                         ForRedeclaration);
11459  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11460    // Maybe we will complain about the shadowed template parameter.
11461    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11462    // Just pretend that we didn't see the previous declaration.
11463    PrevDecl = 0;
11464  }
11465
11466  if (PrevDecl) {
11467    // When in C++, we may get a TagDecl with the same name; in this case the
11468    // enum constant will 'hide' the tag.
11469    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11470           "Received TagDecl when not in C++!");
11471    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11472      if (isa<EnumConstantDecl>(PrevDecl))
11473        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11474      else
11475        Diag(IdLoc, diag::err_redefinition) << Id;
11476      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11477      return 0;
11478    }
11479  }
11480
11481  // C++ [class.mem]p15:
11482  // If T is the name of a class, then each of the following shall have a name
11483  // different from T:
11484  // - every enumerator of every member of class T that is an unscoped
11485  // enumerated type
11486  if (CXXRecordDecl *Record
11487                      = dyn_cast<CXXRecordDecl>(
11488                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11489    if (!TheEnumDecl->isScoped() &&
11490        Record->getIdentifier() && Record->getIdentifier() == Id)
11491      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11492
11493  EnumConstantDecl *New =
11494    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11495
11496  if (New) {
11497    // Process attributes.
11498    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11499
11500    // Register this decl in the current scope stack.
11501    New->setAccess(TheEnumDecl->getAccess());
11502    PushOnScopeChains(New, S);
11503  }
11504
11505  ActOnDocumentableDecl(New);
11506
11507  return New;
11508}
11509
11510// Returns true when the enum initial expression does not trigger the
11511// duplicate enum warning.  A few common cases are exempted as follows:
11512// Element2 = Element1
11513// Element2 = Element1 + 1
11514// Element2 = Element1 - 1
11515// Where Element2 and Element1 are from the same enum.
11516static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11517  Expr *InitExpr = ECD->getInitExpr();
11518  if (!InitExpr)
11519    return true;
11520  InitExpr = InitExpr->IgnoreImpCasts();
11521
11522  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11523    if (!BO->isAdditiveOp())
11524      return true;
11525    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11526    if (!IL)
11527      return true;
11528    if (IL->getValue() != 1)
11529      return true;
11530
11531    InitExpr = BO->getLHS();
11532  }
11533
11534  // This checks if the elements are from the same enum.
11535  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11536  if (!DRE)
11537    return true;
11538
11539  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11540  if (!EnumConstant)
11541    return true;
11542
11543  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11544      Enum)
11545    return true;
11546
11547  return false;
11548}
11549
11550struct DupKey {
11551  int64_t val;
11552  bool isTombstoneOrEmptyKey;
11553  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11554    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11555};
11556
11557static DupKey GetDupKey(const llvm::APSInt& Val) {
11558  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11559                false);
11560}
11561
11562struct DenseMapInfoDupKey {
11563  static DupKey getEmptyKey() { return DupKey(0, true); }
11564  static DupKey getTombstoneKey() { return DupKey(1, true); }
11565  static unsigned getHashValue(const DupKey Key) {
11566    return (unsigned)(Key.val * 37);
11567  }
11568  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11569    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11570           LHS.val == RHS.val;
11571  }
11572};
11573
11574// Emits a warning when an element is implicitly set a value that
11575// a previous element has already been set to.
11576static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11577                                        EnumDecl *Enum,
11578                                        QualType EnumType) {
11579  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11580                                 Enum->getLocation()) ==
11581      DiagnosticsEngine::Ignored)
11582    return;
11583  // Avoid anonymous enums
11584  if (!Enum->getIdentifier())
11585    return;
11586
11587  // Only check for small enums.
11588  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11589    return;
11590
11591  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11592  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11593
11594  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11595  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11596          ValueToVectorMap;
11597
11598  DuplicatesVector DupVector;
11599  ValueToVectorMap EnumMap;
11600
11601  // Populate the EnumMap with all values represented by enum constants without
11602  // an initialier.
11603  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11604    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11605
11606    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11607    // this constant.  Skip this enum since it may be ill-formed.
11608    if (!ECD) {
11609      return;
11610    }
11611
11612    if (ECD->getInitExpr())
11613      continue;
11614
11615    DupKey Key = GetDupKey(ECD->getInitVal());
11616    DeclOrVector &Entry = EnumMap[Key];
11617
11618    // First time encountering this value.
11619    if (Entry.isNull())
11620      Entry = ECD;
11621  }
11622
11623  // Create vectors for any values that has duplicates.
11624  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11625    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11626    if (!ValidDuplicateEnum(ECD, Enum))
11627      continue;
11628
11629    DupKey Key = GetDupKey(ECD->getInitVal());
11630
11631    DeclOrVector& Entry = EnumMap[Key];
11632    if (Entry.isNull())
11633      continue;
11634
11635    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11636      // Ensure constants are different.
11637      if (D == ECD)
11638        continue;
11639
11640      // Create new vector and push values onto it.
11641      ECDVector *Vec = new ECDVector();
11642      Vec->push_back(D);
11643      Vec->push_back(ECD);
11644
11645      // Update entry to point to the duplicates vector.
11646      Entry = Vec;
11647
11648      // Store the vector somewhere we can consult later for quick emission of
11649      // diagnostics.
11650      DupVector.push_back(Vec);
11651      continue;
11652    }
11653
11654    ECDVector *Vec = Entry.get<ECDVector*>();
11655    // Make sure constants are not added more than once.
11656    if (*Vec->begin() == ECD)
11657      continue;
11658
11659    Vec->push_back(ECD);
11660  }
11661
11662  // Emit diagnostics.
11663  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11664                                  DupVectorEnd = DupVector.end();
11665       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11666    ECDVector *Vec = *DupVectorIter;
11667    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11668
11669    // Emit warning for one enum constant.
11670    ECDVector::iterator I = Vec->begin();
11671    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11672      << (*I)->getName() << (*I)->getInitVal().toString(10)
11673      << (*I)->getSourceRange();
11674    ++I;
11675
11676    // Emit one note for each of the remaining enum constants with
11677    // the same value.
11678    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11679      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11680        << (*I)->getName() << (*I)->getInitVal().toString(10)
11681        << (*I)->getSourceRange();
11682    delete Vec;
11683  }
11684}
11685
11686void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11687                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11688                         ArrayRef<Decl *> Elements,
11689                         Scope *S, AttributeList *Attr) {
11690  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11691  QualType EnumType = Context.getTypeDeclType(Enum);
11692
11693  if (Attr)
11694    ProcessDeclAttributeList(S, Enum, Attr);
11695
11696  if (Enum->isDependentType()) {
11697    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11698      EnumConstantDecl *ECD =
11699        cast_or_null<EnumConstantDecl>(Elements[i]);
11700      if (!ECD) continue;
11701
11702      ECD->setType(EnumType);
11703    }
11704
11705    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11706    return;
11707  }
11708
11709  // TODO: If the result value doesn't fit in an int, it must be a long or long
11710  // long value.  ISO C does not support this, but GCC does as an extension,
11711  // emit a warning.
11712  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11713  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11714  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11715
11716  // Verify that all the values are okay, compute the size of the values, and
11717  // reverse the list.
11718  unsigned NumNegativeBits = 0;
11719  unsigned NumPositiveBits = 0;
11720
11721  // Keep track of whether all elements have type int.
11722  bool AllElementsInt = true;
11723
11724  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11725    EnumConstantDecl *ECD =
11726      cast_or_null<EnumConstantDecl>(Elements[i]);
11727    if (!ECD) continue;  // Already issued a diagnostic.
11728
11729    const llvm::APSInt &InitVal = ECD->getInitVal();
11730
11731    // Keep track of the size of positive and negative values.
11732    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11733      NumPositiveBits = std::max(NumPositiveBits,
11734                                 (unsigned)InitVal.getActiveBits());
11735    else
11736      NumNegativeBits = std::max(NumNegativeBits,
11737                                 (unsigned)InitVal.getMinSignedBits());
11738
11739    // Keep track of whether every enum element has type int (very commmon).
11740    if (AllElementsInt)
11741      AllElementsInt = ECD->getType() == Context.IntTy;
11742  }
11743
11744  // Figure out the type that should be used for this enum.
11745  QualType BestType;
11746  unsigned BestWidth;
11747
11748  // C++0x N3000 [conv.prom]p3:
11749  //   An rvalue of an unscoped enumeration type whose underlying
11750  //   type is not fixed can be converted to an rvalue of the first
11751  //   of the following types that can represent all the values of
11752  //   the enumeration: int, unsigned int, long int, unsigned long
11753  //   int, long long int, or unsigned long long int.
11754  // C99 6.4.4.3p2:
11755  //   An identifier declared as an enumeration constant has type int.
11756  // The C99 rule is modified by a gcc extension
11757  QualType BestPromotionType;
11758
11759  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11760  // -fshort-enums is the equivalent to specifying the packed attribute on all
11761  // enum definitions.
11762  if (LangOpts.ShortEnums)
11763    Packed = true;
11764
11765  if (Enum->isFixed()) {
11766    BestType = Enum->getIntegerType();
11767    if (BestType->isPromotableIntegerType())
11768      BestPromotionType = Context.getPromotedIntegerType(BestType);
11769    else
11770      BestPromotionType = BestType;
11771    // We don't need to set BestWidth, because BestType is going to be the type
11772    // of the enumerators, but we do anyway because otherwise some compilers
11773    // warn that it might be used uninitialized.
11774    BestWidth = CharWidth;
11775  }
11776  else if (NumNegativeBits) {
11777    // If there is a negative value, figure out the smallest integer type (of
11778    // int/long/longlong) that fits.
11779    // If it's packed, check also if it fits a char or a short.
11780    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11781      BestType = Context.SignedCharTy;
11782      BestWidth = CharWidth;
11783    } else if (Packed && NumNegativeBits <= ShortWidth &&
11784               NumPositiveBits < ShortWidth) {
11785      BestType = Context.ShortTy;
11786      BestWidth = ShortWidth;
11787    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11788      BestType = Context.IntTy;
11789      BestWidth = IntWidth;
11790    } else {
11791      BestWidth = Context.getTargetInfo().getLongWidth();
11792
11793      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11794        BestType = Context.LongTy;
11795      } else {
11796        BestWidth = Context.getTargetInfo().getLongLongWidth();
11797
11798        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11799          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11800        BestType = Context.LongLongTy;
11801      }
11802    }
11803    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11804  } else {
11805    // If there is no negative value, figure out the smallest type that fits
11806    // all of the enumerator values.
11807    // If it's packed, check also if it fits a char or a short.
11808    if (Packed && NumPositiveBits <= CharWidth) {
11809      BestType = Context.UnsignedCharTy;
11810      BestPromotionType = Context.IntTy;
11811      BestWidth = CharWidth;
11812    } else if (Packed && NumPositiveBits <= ShortWidth) {
11813      BestType = Context.UnsignedShortTy;
11814      BestPromotionType = Context.IntTy;
11815      BestWidth = ShortWidth;
11816    } else if (NumPositiveBits <= IntWidth) {
11817      BestType = Context.UnsignedIntTy;
11818      BestWidth = IntWidth;
11819      BestPromotionType
11820        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11821                           ? Context.UnsignedIntTy : Context.IntTy;
11822    } else if (NumPositiveBits <=
11823               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11824      BestType = Context.UnsignedLongTy;
11825      BestPromotionType
11826        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11827                           ? Context.UnsignedLongTy : Context.LongTy;
11828    } else {
11829      BestWidth = Context.getTargetInfo().getLongLongWidth();
11830      assert(NumPositiveBits <= BestWidth &&
11831             "How could an initializer get larger than ULL?");
11832      BestType = Context.UnsignedLongLongTy;
11833      BestPromotionType
11834        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11835                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11836    }
11837  }
11838
11839  // Loop over all of the enumerator constants, changing their types to match
11840  // the type of the enum if needed.
11841  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11842    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11843    if (!ECD) continue;  // Already issued a diagnostic.
11844
11845    // Standard C says the enumerators have int type, but we allow, as an
11846    // extension, the enumerators to be larger than int size.  If each
11847    // enumerator value fits in an int, type it as an int, otherwise type it the
11848    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11849    // that X has type 'int', not 'unsigned'.
11850
11851    // Determine whether the value fits into an int.
11852    llvm::APSInt InitVal = ECD->getInitVal();
11853
11854    // If it fits into an integer type, force it.  Otherwise force it to match
11855    // the enum decl type.
11856    QualType NewTy;
11857    unsigned NewWidth;
11858    bool NewSign;
11859    if (!getLangOpts().CPlusPlus &&
11860        !Enum->isFixed() &&
11861        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11862      NewTy = Context.IntTy;
11863      NewWidth = IntWidth;
11864      NewSign = true;
11865    } else if (ECD->getType() == BestType) {
11866      // Already the right type!
11867      if (getLangOpts().CPlusPlus)
11868        // C++ [dcl.enum]p4: Following the closing brace of an
11869        // enum-specifier, each enumerator has the type of its
11870        // enumeration.
11871        ECD->setType(EnumType);
11872      continue;
11873    } else {
11874      NewTy = BestType;
11875      NewWidth = BestWidth;
11876      NewSign = BestType->isSignedIntegerOrEnumerationType();
11877    }
11878
11879    // Adjust the APSInt value.
11880    InitVal = InitVal.extOrTrunc(NewWidth);
11881    InitVal.setIsSigned(NewSign);
11882    ECD->setInitVal(InitVal);
11883
11884    // Adjust the Expr initializer and type.
11885    if (ECD->getInitExpr() &&
11886        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11887      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11888                                                CK_IntegralCast,
11889                                                ECD->getInitExpr(),
11890                                                /*base paths*/ 0,
11891                                                VK_RValue));
11892    if (getLangOpts().CPlusPlus)
11893      // C++ [dcl.enum]p4: Following the closing brace of an
11894      // enum-specifier, each enumerator has the type of its
11895      // enumeration.
11896      ECD->setType(EnumType);
11897    else
11898      ECD->setType(NewTy);
11899  }
11900
11901  Enum->completeDefinition(BestType, BestPromotionType,
11902                           NumPositiveBits, NumNegativeBits);
11903
11904  // If we're declaring a function, ensure this decl isn't forgotten about -
11905  // it needs to go into the function scope.
11906  if (InFunctionDeclarator)
11907    DeclsInPrototypeScope.push_back(Enum);
11908
11909  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
11910
11911  // Now that the enum type is defined, ensure it's not been underaligned.
11912  if (Enum->hasAttrs())
11913    CheckAlignasUnderalignment(Enum);
11914}
11915
11916Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11917                                  SourceLocation StartLoc,
11918                                  SourceLocation EndLoc) {
11919  StringLiteral *AsmString = cast<StringLiteral>(expr);
11920
11921  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11922                                                   AsmString, StartLoc,
11923                                                   EndLoc);
11924  CurContext->addDecl(New);
11925  return New;
11926}
11927
11928DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11929                                   SourceLocation ImportLoc,
11930                                   ModuleIdPath Path) {
11931  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11932                                                Module::AllVisible,
11933                                                /*IsIncludeDirective=*/false);
11934  if (!Mod)
11935    return true;
11936
11937  SmallVector<SourceLocation, 2> IdentifierLocs;
11938  Module *ModCheck = Mod;
11939  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11940    // If we've run out of module parents, just drop the remaining identifiers.
11941    // We need the length to be consistent.
11942    if (!ModCheck)
11943      break;
11944    ModCheck = ModCheck->Parent;
11945
11946    IdentifierLocs.push_back(Path[I].second);
11947  }
11948
11949  ImportDecl *Import = ImportDecl::Create(Context,
11950                                          Context.getTranslationUnitDecl(),
11951                                          AtLoc.isValid()? AtLoc : ImportLoc,
11952                                          Mod, IdentifierLocs);
11953  Context.getTranslationUnitDecl()->addDecl(Import);
11954  return Import;
11955}
11956
11957void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11958  // Create the implicit import declaration.
11959  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11960  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11961                                                   Loc, Mod, Loc);
11962  TU->addDecl(ImportD);
11963  Consumer.HandleImplicitImportDecl(ImportD);
11964
11965  // Make the module visible.
11966  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
11967                                         /*Complain=*/false);
11968}
11969
11970void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11971                                      IdentifierInfo* AliasName,
11972                                      SourceLocation PragmaLoc,
11973                                      SourceLocation NameLoc,
11974                                      SourceLocation AliasNameLoc) {
11975  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11976                                    LookupOrdinaryName);
11977  AsmLabelAttr *Attr =
11978     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11979
11980  if (PrevDecl)
11981    PrevDecl->addAttr(Attr);
11982  else
11983    (void)ExtnameUndeclaredIdentifiers.insert(
11984      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11985}
11986
11987void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11988                             SourceLocation PragmaLoc,
11989                             SourceLocation NameLoc) {
11990  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11991
11992  if (PrevDecl) {
11993    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11994  } else {
11995    (void)WeakUndeclaredIdentifiers.insert(
11996      std::pair<IdentifierInfo*,WeakInfo>
11997        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11998  }
11999}
12000
12001void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12002                                IdentifierInfo* AliasName,
12003                                SourceLocation PragmaLoc,
12004                                SourceLocation NameLoc,
12005                                SourceLocation AliasNameLoc) {
12006  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12007                                    LookupOrdinaryName);
12008  WeakInfo W = WeakInfo(Name, NameLoc);
12009
12010  if (PrevDecl) {
12011    if (!PrevDecl->hasAttr<AliasAttr>())
12012      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12013        DeclApplyPragmaWeak(TUScope, ND, W);
12014  } else {
12015    (void)WeakUndeclaredIdentifiers.insert(
12016      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12017  }
12018}
12019
12020Decl *Sema::getObjCDeclContext() const {
12021  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12022}
12023
12024AvailabilityResult Sema::getCurContextAvailability() const {
12025  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12026  return D->getAvailability();
12027}
12028