SemaDecl.cpp revision 8ff7d69e3cfae245a243edcf074dadd4883ae3a2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/Analysis/CFG.h"
22#include "clang/AST/CXXInheritance.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/AST/StmtObjC.h"
28#include "clang/Parse/DeclSpec.h"
29#include "clang/Parse/ParseDiagnostic.h"
30#include "clang/Parse/Template.h"
31#include "clang/Basic/PartialDiagnostic.h"
32#include "clang/Basic/SourceManager.h"
33#include "clang/Basic/TargetInfo.h"
34// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
35#include "clang/Lex/Preprocessor.h"
36#include "clang/Lex/HeaderSearch.h"
37#include "llvm/ADT/BitVector.h"
38#include "llvm/ADT/STLExtras.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43#include <queue>
44using namespace clang;
45
46/// getDeclName - Return a pretty name for the specified decl if possible, or
47/// an empty string if not.  This is used for pretty crash reporting.
48std::string Sema::getDeclName(DeclPtrTy d) {
49  Decl *D = d.getAs<Decl>();
50  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
51    return DN->getQualifiedNameAsString();
52  return "";
53}
54
55Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                                Scope *S, const CXXScopeSpec *SS,
72                                bool isClassName,
73                                TypeTy *ObjectTypePtr) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isSet()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return 0;
96
97        // We know from the grammar that this name refers to a type, so build a
98        // TypenameType node to describe the type.
99        // FIXME: Record somewhere that this TypenameType node has no "typename"
100        // keyword associated with it.
101        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
102                                 II, SS->getRange()).getAsOpaquePtr();
103      }
104
105      return 0;
106    }
107
108    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
109      return 0;
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    return 0;
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return 0;
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return 0;
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    // C++ [temp.local]p2:
197    //   Within the scope of a class template specialization or
198    //   partial specialization, when the injected-class-name is
199    //   not followed by a <, it is equivalent to the
200    //   injected-class-name followed by the template-argument s
201    //   of the class template specialization or partial
202    //   specialization enclosed in <>.
203    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
204      if (RD->isInjectedClassName())
205        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
206          T = Template->getInjectedClassNameType(Context);
207
208    if (T.isNull())
209      T = Context.getTypeDeclType(TD);
210
211    if (SS)
212      T = getQualifiedNameType(*SS, T);
213
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    T = Context.getObjCInterfaceType(IDecl);
216  } else if (UnresolvedUsingTypenameDecl *UUDecl =
217               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
218    // FIXME: preserve source structure information.
219    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
220  } else {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return 0;
224  }
225
226  return T.getAsOpaquePtr();
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      case TagDecl::TK_struct: return DeclSpec::TST_struct;
243      case TagDecl::TK_union:  return DeclSpec::TST_union;
244      case TagDecl::TK_class:  return DeclSpec::TST_class;
245      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   const CXXScopeSpec *SS,
256                                   TypeTy *&SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = 0;
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  // FIXME: It would be nice if we could correct for typos in built-in
266  // names, such as "itn" for "int".
267
268  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
269    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
270    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
271        !Result->isInvalidDecl()) {
272      // We found a similarly-named type or interface; suggest that.
273      if (!SS || !SS->isSet())
274        Diag(IILoc, diag::err_unknown_typename_suggest)
275          << &II << Lookup.getLookupName()
276          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
277                                                     Result->getNameAsString());
278      else if (DeclContext *DC = computeDeclContext(*SS, false))
279        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
280          << &II << DC << Lookup.getLookupName() << SS->getRange()
281          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
282                                                     Result->getNameAsString());
283      else
284        llvm_unreachable("could not have corrected a typo here");
285
286      Diag(Result->getLocation(), diag::note_previous_decl)
287        << Result->getDeclName();
288
289      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
290      return true;
291    }
292  }
293
294  // FIXME: Should we move the logic that tries to recover from a missing tag
295  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
296
297  if (!SS || (!SS->isSet() && !SS->isInvalid()))
298    Diag(IILoc, diag::err_unknown_typename) << &II;
299  else if (DeclContext *DC = computeDeclContext(*SS, false))
300    Diag(IILoc, diag::err_typename_nested_not_found)
301      << &II << DC << SS->getRange();
302  else if (isDependentScopeSpecifier(*SS)) {
303    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
304      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
305      << SourceRange(SS->getRange().getBegin(), IILoc)
306      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
307                                               "typename ");
308    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  if (isa<ObjCMethodDecl>(DC))
345    return Context.getTranslationUnitDecl();
346
347  return DC->getLexicalParent();
348}
349
350void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
351  assert(getContainingDC(DC) == CurContext &&
352      "The next DeclContext should be lexically contained in the current one.");
353  CurContext = DC;
354  S->setEntity(DC);
355}
356
357void Sema::PopDeclContext() {
358  assert(CurContext && "DeclContext imbalance!");
359
360  CurContext = getContainingDC(CurContext);
361}
362
363/// EnterDeclaratorContext - Used when we must lookup names in the context
364/// of a declarator's nested name specifier.
365///
366void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
367  // C++0x [basic.lookup.unqual]p13:
368  //   A name used in the definition of a static data member of class
369  //   X (after the qualified-id of the static member) is looked up as
370  //   if the name was used in a member function of X.
371  // C++0x [basic.lookup.unqual]p14:
372  //   If a variable member of a namespace is defined outside of the
373  //   scope of its namespace then any name used in the definition of
374  //   the variable member (after the declarator-id) is looked up as
375  //   if the definition of the variable member occurred in its
376  //   namespace.
377  // Both of these imply that we should push a scope whose context
378  // is the semantic context of the declaration.  We can't use
379  // PushDeclContext here because that context is not necessarily
380  // lexically contained in the current context.  Fortunately,
381  // the containing scope should have the appropriate information.
382
383  assert(!S->getEntity() && "scope already has entity");
384
385#ifndef NDEBUG
386  Scope *Ancestor = S->getParent();
387  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
388  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
389#endif
390
391  CurContext = DC;
392  S->setEntity(DC);
393}
394
395void Sema::ExitDeclaratorContext(Scope *S) {
396  assert(S->getEntity() == CurContext && "Context imbalance!");
397
398  // Switch back to the lexical context.  The safety of this is
399  // enforced by an assert in EnterDeclaratorContext.
400  Scope *Ancestor = S->getParent();
401  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
402  CurContext = (DeclContext*) Ancestor->getEntity();
403
404  // We don't need to do anything with the scope, which is going to
405  // disappear.
406}
407
408/// \brief Determine whether we allow overloading of the function
409/// PrevDecl with another declaration.
410///
411/// This routine determines whether overloading is possible, not
412/// whether some new function is actually an overload. It will return
413/// true in C++ (where we can always provide overloads) or, as an
414/// extension, in C when the previous function is already an
415/// overloaded function declaration or has the "overloadable"
416/// attribute.
417static bool AllowOverloadingOfFunction(LookupResult &Previous,
418                                       ASTContext &Context) {
419  if (Context.getLangOptions().CPlusPlus)
420    return true;
421
422  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
423    return true;
424
425  return (Previous.getResultKind() == LookupResult::Found
426          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
427}
428
429/// Add this decl to the scope shadowed decl chains.
430void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
431  // Move up the scope chain until we find the nearest enclosing
432  // non-transparent context. The declaration will be introduced into this
433  // scope.
434  while (S->getEntity() &&
435         ((DeclContext *)S->getEntity())->isTransparentContext())
436    S = S->getParent();
437
438  // Add scoped declarations into their context, so that they can be
439  // found later. Declarations without a context won't be inserted
440  // into any context.
441  if (AddToContext)
442    CurContext->addDecl(D);
443
444  // Out-of-line function and variable definitions should not be pushed into
445  // scope.
446  if ((isa<FunctionTemplateDecl>(D) &&
447       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
448      (isa<FunctionDecl>(D) &&
449       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
450        cast<FunctionDecl>(D)->isOutOfLine())) ||
451      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
452    return;
453
454  // If this replaces anything in the current scope,
455  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
456                               IEnd = IdResolver.end();
457  for (; I != IEnd; ++I) {
458    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
459      S->RemoveDecl(DeclPtrTy::make(*I));
460      IdResolver.RemoveDecl(*I);
461
462      // Should only need to replace one decl.
463      break;
464    }
465  }
466
467  S->AddDecl(DeclPtrTy::make(D));
468  IdResolver.AddDecl(D);
469}
470
471bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
472  return IdResolver.isDeclInScope(D, Ctx, Context, S);
473}
474
475static bool isOutOfScopePreviousDeclaration(NamedDecl *,
476                                            DeclContext*,
477                                            ASTContext&);
478
479/// Filters out lookup results that don't fall within the given scope
480/// as determined by isDeclInScope.
481static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
482                                 DeclContext *Ctx, Scope *S,
483                                 bool ConsiderLinkage) {
484  LookupResult::Filter F = R.makeFilter();
485  while (F.hasNext()) {
486    NamedDecl *D = F.next();
487
488    if (SemaRef.isDeclInScope(D, Ctx, S))
489      continue;
490
491    if (ConsiderLinkage &&
492        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
493      continue;
494
495    F.erase();
496  }
497
498  F.done();
499}
500
501static bool isUsingDecl(NamedDecl *D) {
502  return isa<UsingShadowDecl>(D) ||
503         isa<UnresolvedUsingTypenameDecl>(D) ||
504         isa<UnresolvedUsingValueDecl>(D);
505}
506
507/// Removes using shadow declarations from the lookup results.
508static void RemoveUsingDecls(LookupResult &R) {
509  LookupResult::Filter F = R.makeFilter();
510  while (F.hasNext())
511    if (isUsingDecl(F.next()))
512      F.erase();
513
514  F.done();
515}
516
517static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
518  if (D->isUsed() || D->hasAttr<UnusedAttr>())
519    return false;
520
521  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
522    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
523      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
524        if (!RD->hasTrivialConstructor())
525          return false;
526        if (!RD->hasTrivialDestructor())
527          return false;
528      }
529    }
530  }
531
532  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
533          !isa<ImplicitParamDecl>(D) &&
534          D->getDeclContext()->isFunctionOrMethod());
535}
536
537void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
538  if (S->decl_empty()) return;
539  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
540         "Scope shouldn't contain decls!");
541
542  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
543       I != E; ++I) {
544    Decl *TmpD = (*I).getAs<Decl>();
545    assert(TmpD && "This decl didn't get pushed??");
546
547    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
548    NamedDecl *D = cast<NamedDecl>(TmpD);
549
550    if (!D->getDeclName()) continue;
551
552    // Diagnose unused variables in this scope.
553    if (ShouldDiagnoseUnusedDecl(D))
554      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
555
556    // Remove this name from our lexical scope.
557    IdResolver.RemoveDecl(D);
558  }
559}
560
561/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
562/// return 0 if one not found.
563///
564/// \param Id the name of the Objective-C class we're looking for. If
565/// typo-correction fixes this name, the Id will be updated
566/// to the fixed name.
567///
568/// \param RecoverLoc if provided, this routine will attempt to
569/// recover from a typo in the name of an existing Objective-C class
570/// and, if successful, will return the lookup that results from
571/// typo-correction.
572ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
573                                              SourceLocation RecoverLoc) {
574  // The third "scope" argument is 0 since we aren't enabling lazy built-in
575  // creation from this context.
576  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
577
578  if (!IDecl && !RecoverLoc.isInvalid()) {
579    // Perform typo correction at the given location, but only if we
580    // find an Objective-C class name.
581    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
582    if (CorrectTypo(R, TUScope, 0) &&
583        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
584      Diag(RecoverLoc, diag::err_undef_interface_suggest)
585        << Id << IDecl->getDeclName()
586        << CodeModificationHint::CreateReplacement(RecoverLoc,
587                                                   IDecl->getNameAsString());
588      Diag(IDecl->getLocation(), diag::note_previous_decl)
589        << IDecl->getDeclName();
590
591      Id = IDecl->getIdentifier();
592    }
593  }
594
595  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
596}
597
598/// getNonFieldDeclScope - Retrieves the innermost scope, starting
599/// from S, where a non-field would be declared. This routine copes
600/// with the difference between C and C++ scoping rules in structs and
601/// unions. For example, the following code is well-formed in C but
602/// ill-formed in C++:
603/// @code
604/// struct S6 {
605///   enum { BAR } e;
606/// };
607///
608/// void test_S6() {
609///   struct S6 a;
610///   a.e = BAR;
611/// }
612/// @endcode
613/// For the declaration of BAR, this routine will return a different
614/// scope. The scope S will be the scope of the unnamed enumeration
615/// within S6. In C++, this routine will return the scope associated
616/// with S6, because the enumeration's scope is a transparent
617/// context but structures can contain non-field names. In C, this
618/// routine will return the translation unit scope, since the
619/// enumeration's scope is a transparent context and structures cannot
620/// contain non-field names.
621Scope *Sema::getNonFieldDeclScope(Scope *S) {
622  while (((S->getFlags() & Scope::DeclScope) == 0) ||
623         (S->getEntity() &&
624          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
625         (S->isClassScope() && !getLangOptions().CPlusPlus))
626    S = S->getParent();
627  return S;
628}
629
630void Sema::InitBuiltinVaListType() {
631  if (!Context.getBuiltinVaListType().isNull())
632    return;
633
634  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
635  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
636  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
637  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
638}
639
640/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
641/// file scope.  lazily create a decl for it. ForRedeclaration is true
642/// if we're creating this built-in in anticipation of redeclaring the
643/// built-in.
644NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
645                                     Scope *S, bool ForRedeclaration,
646                                     SourceLocation Loc) {
647  Builtin::ID BID = (Builtin::ID)bid;
648
649  if (Context.BuiltinInfo.hasVAListUse(BID))
650    InitBuiltinVaListType();
651
652  ASTContext::GetBuiltinTypeError Error;
653  QualType R = Context.GetBuiltinType(BID, Error);
654  switch (Error) {
655  case ASTContext::GE_None:
656    // Okay
657    break;
658
659  case ASTContext::GE_Missing_stdio:
660    if (ForRedeclaration)
661      Diag(Loc, diag::err_implicit_decl_requires_stdio)
662        << Context.BuiltinInfo.GetName(BID);
663    return 0;
664
665  case ASTContext::GE_Missing_setjmp:
666    if (ForRedeclaration)
667      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
668        << Context.BuiltinInfo.GetName(BID);
669    return 0;
670  }
671
672  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
673    Diag(Loc, diag::ext_implicit_lib_function_decl)
674      << Context.BuiltinInfo.GetName(BID)
675      << R;
676    if (Context.BuiltinInfo.getHeaderName(BID) &&
677        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
678          != Diagnostic::Ignored)
679      Diag(Loc, diag::note_please_include_header)
680        << Context.BuiltinInfo.getHeaderName(BID)
681        << Context.BuiltinInfo.GetName(BID);
682  }
683
684  FunctionDecl *New = FunctionDecl::Create(Context,
685                                           Context.getTranslationUnitDecl(),
686                                           Loc, II, R, /*TInfo=*/0,
687                                           FunctionDecl::Extern, false,
688                                           /*hasPrototype=*/true);
689  New->setImplicit();
690
691  // Create Decl objects for each parameter, adding them to the
692  // FunctionDecl.
693  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
694    llvm::SmallVector<ParmVarDecl*, 16> Params;
695    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
696      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
697                                           FT->getArgType(i), /*TInfo=*/0,
698                                           VarDecl::None, 0));
699    New->setParams(Context, Params.data(), Params.size());
700  }
701
702  AddKnownFunctionAttributes(New);
703
704  // TUScope is the translation-unit scope to insert this function into.
705  // FIXME: This is hideous. We need to teach PushOnScopeChains to
706  // relate Scopes to DeclContexts, and probably eliminate CurContext
707  // entirely, but we're not there yet.
708  DeclContext *SavedContext = CurContext;
709  CurContext = Context.getTranslationUnitDecl();
710  PushOnScopeChains(New, TUScope);
711  CurContext = SavedContext;
712  return New;
713}
714
715/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
716/// same name and scope as a previous declaration 'Old'.  Figure out
717/// how to resolve this situation, merging decls or emitting
718/// diagnostics as appropriate. If there was an error, set New to be invalid.
719///
720void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
721  // If the new decl is known invalid already, don't bother doing any
722  // merging checks.
723  if (New->isInvalidDecl()) return;
724
725  // Allow multiple definitions for ObjC built-in typedefs.
726  // FIXME: Verify the underlying types are equivalent!
727  if (getLangOptions().ObjC1) {
728    const IdentifierInfo *TypeID = New->getIdentifier();
729    switch (TypeID->getLength()) {
730    default: break;
731    case 2:
732      if (!TypeID->isStr("id"))
733        break;
734      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
735      // Install the built-in type for 'id', ignoring the current definition.
736      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
737      return;
738    case 5:
739      if (!TypeID->isStr("Class"))
740        break;
741      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
742      // Install the built-in type for 'Class', ignoring the current definition.
743      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
744      return;
745    case 3:
746      if (!TypeID->isStr("SEL"))
747        break;
748      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
749      // Install the built-in type for 'SEL', ignoring the current definition.
750      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
751      return;
752    case 8:
753      if (!TypeID->isStr("Protocol"))
754        break;
755      Context.setObjCProtoType(New->getUnderlyingType());
756      return;
757    }
758    // Fall through - the typedef name was not a builtin type.
759  }
760
761  // Verify the old decl was also a type.
762  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
763  if (!Old) {
764    Diag(New->getLocation(), diag::err_redefinition_different_kind)
765      << New->getDeclName();
766
767    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
768    if (OldD->getLocation().isValid())
769      Diag(OldD->getLocation(), diag::note_previous_definition);
770
771    return New->setInvalidDecl();
772  }
773
774  // If the old declaration is invalid, just give up here.
775  if (Old->isInvalidDecl())
776    return New->setInvalidDecl();
777
778  // Determine the "old" type we'll use for checking and diagnostics.
779  QualType OldType;
780  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
781    OldType = OldTypedef->getUnderlyingType();
782  else
783    OldType = Context.getTypeDeclType(Old);
784
785  // If the typedef types are not identical, reject them in all languages and
786  // with any extensions enabled.
787
788  if (OldType != New->getUnderlyingType() &&
789      Context.getCanonicalType(OldType) !=
790      Context.getCanonicalType(New->getUnderlyingType())) {
791    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
792      << New->getUnderlyingType() << OldType;
793    if (Old->getLocation().isValid())
794      Diag(Old->getLocation(), diag::note_previous_definition);
795    return New->setInvalidDecl();
796  }
797
798  // The types match.  Link up the redeclaration chain if the old
799  // declaration was a typedef.
800  // FIXME: this is a potential source of wierdness if the type
801  // spellings don't match exactly.
802  if (isa<TypedefDecl>(Old))
803    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
804
805  if (getLangOptions().Microsoft)
806    return;
807
808  if (getLangOptions().CPlusPlus) {
809    // C++ [dcl.typedef]p2:
810    //   In a given non-class scope, a typedef specifier can be used to
811    //   redefine the name of any type declared in that scope to refer
812    //   to the type to which it already refers.
813    if (!isa<CXXRecordDecl>(CurContext))
814      return;
815
816    // C++0x [dcl.typedef]p4:
817    //   In a given class scope, a typedef specifier can be used to redefine
818    //   any class-name declared in that scope that is not also a typedef-name
819    //   to refer to the type to which it already refers.
820    //
821    // This wording came in via DR424, which was a correction to the
822    // wording in DR56, which accidentally banned code like:
823    //
824    //   struct S {
825    //     typedef struct A { } A;
826    //   };
827    //
828    // in the C++03 standard. We implement the C++0x semantics, which
829    // allow the above but disallow
830    //
831    //   struct S {
832    //     typedef int I;
833    //     typedef int I;
834    //   };
835    //
836    // since that was the intent of DR56.
837    if (!isa<TypedefDecl >(Old))
838      return;
839
840    Diag(New->getLocation(), diag::err_redefinition)
841      << New->getDeclName();
842    Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // If we have a redefinition of a typedef in C, emit a warning.  This warning
847  // is normally mapped to an error, but can be controlled with
848  // -Wtypedef-redefinition.  If either the original or the redefinition is
849  // in a system header, don't emit this for compatibility with GCC.
850  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
851      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
852       Context.getSourceManager().isInSystemHeader(New->getLocation())))
853    return;
854
855  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
856    << New->getDeclName();
857  Diag(Old->getLocation(), diag::note_previous_definition);
858  return;
859}
860
861/// DeclhasAttr - returns true if decl Declaration already has the target
862/// attribute.
863static bool
864DeclHasAttr(const Decl *decl, const Attr *target) {
865  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
866    if (attr->getKind() == target->getKind())
867      return true;
868
869  return false;
870}
871
872/// MergeAttributes - append attributes from the Old decl to the New one.
873static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
874  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
875    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
876      Attr *NewAttr = attr->clone(C);
877      NewAttr->setInherited(true);
878      New->addAttr(NewAttr);
879    }
880  }
881}
882
883/// Used in MergeFunctionDecl to keep track of function parameters in
884/// C.
885struct GNUCompatibleParamWarning {
886  ParmVarDecl *OldParm;
887  ParmVarDecl *NewParm;
888  QualType PromotedType;
889};
890
891
892/// getSpecialMember - get the special member enum for a method.
893static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
894                                               const CXXMethodDecl *MD) {
895  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
896    if (Ctor->isDefaultConstructor())
897      return Sema::CXXDefaultConstructor;
898    if (Ctor->isCopyConstructor())
899      return Sema::CXXCopyConstructor;
900  }
901
902  if (isa<CXXDestructorDecl>(MD))
903    return Sema::CXXDestructor;
904
905  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
906  return Sema::CXXCopyAssignment;
907}
908
909/// MergeFunctionDecl - We just parsed a function 'New' from
910/// declarator D which has the same name and scope as a previous
911/// declaration 'Old'.  Figure out how to resolve this situation,
912/// merging decls or emitting diagnostics as appropriate.
913///
914/// In C++, New and Old must be declarations that are not
915/// overloaded. Use IsOverload to determine whether New and Old are
916/// overloaded, and to select the Old declaration that New should be
917/// merged with.
918///
919/// Returns true if there was an error, false otherwise.
920bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
921  // Verify the old decl was also a function.
922  FunctionDecl *Old = 0;
923  if (FunctionTemplateDecl *OldFunctionTemplate
924        = dyn_cast<FunctionTemplateDecl>(OldD))
925    Old = OldFunctionTemplate->getTemplatedDecl();
926  else
927    Old = dyn_cast<FunctionDecl>(OldD);
928  if (!Old) {
929    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
930      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
931      Diag(Shadow->getTargetDecl()->getLocation(),
932           diag::note_using_decl_target);
933      Diag(Shadow->getUsingDecl()->getLocation(),
934           diag::note_using_decl) << 0;
935      return true;
936    }
937
938    Diag(New->getLocation(), diag::err_redefinition_different_kind)
939      << New->getDeclName();
940    Diag(OldD->getLocation(), diag::note_previous_definition);
941    return true;
942  }
943
944  // Determine whether the previous declaration was a definition,
945  // implicit declaration, or a declaration.
946  diag::kind PrevDiag;
947  if (Old->isThisDeclarationADefinition())
948    PrevDiag = diag::note_previous_definition;
949  else if (Old->isImplicit())
950    PrevDiag = diag::note_previous_implicit_declaration;
951  else
952    PrevDiag = diag::note_previous_declaration;
953
954  QualType OldQType = Context.getCanonicalType(Old->getType());
955  QualType NewQType = Context.getCanonicalType(New->getType());
956
957  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
958      New->getStorageClass() == FunctionDecl::Static &&
959      Old->getStorageClass() != FunctionDecl::Static) {
960    Diag(New->getLocation(), diag::err_static_non_static)
961      << New;
962    Diag(Old->getLocation(), PrevDiag);
963    return true;
964  }
965
966  if (getLangOptions().CPlusPlus) {
967    // (C++98 13.1p2):
968    //   Certain function declarations cannot be overloaded:
969    //     -- Function declarations that differ only in the return type
970    //        cannot be overloaded.
971    QualType OldReturnType
972      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
973    QualType NewReturnType
974      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
975    if (OldReturnType != NewReturnType) {
976      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
977      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
978      return true;
979    }
980
981    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
982    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
983    if (OldMethod && NewMethod) {
984      if (!NewMethod->getFriendObjectKind() &&
985          NewMethod->getLexicalDeclContext()->isRecord()) {
986        //    -- Member function declarations with the same name and the
987        //       same parameter types cannot be overloaded if any of them
988        //       is a static member function declaration.
989        if (OldMethod->isStatic() || NewMethod->isStatic()) {
990          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
991          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
992          return true;
993        }
994
995        // C++ [class.mem]p1:
996        //   [...] A member shall not be declared twice in the
997        //   member-specification, except that a nested class or member
998        //   class template can be declared and then later defined.
999        unsigned NewDiag;
1000        if (isa<CXXConstructorDecl>(OldMethod))
1001          NewDiag = diag::err_constructor_redeclared;
1002        else if (isa<CXXDestructorDecl>(NewMethod))
1003          NewDiag = diag::err_destructor_redeclared;
1004        else if (isa<CXXConversionDecl>(NewMethod))
1005          NewDiag = diag::err_conv_function_redeclared;
1006        else
1007          NewDiag = diag::err_member_redeclared;
1008
1009        Diag(New->getLocation(), NewDiag);
1010        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1011      } else {
1012        if (OldMethod->isImplicit()) {
1013          Diag(NewMethod->getLocation(),
1014               diag::err_definition_of_implicitly_declared_member)
1015          << New << getSpecialMember(Context, OldMethod);
1016
1017          Diag(OldMethod->getLocation(),
1018               diag::note_previous_implicit_declaration);
1019          return true;
1020        }
1021      }
1022    }
1023
1024    // (C++98 8.3.5p3):
1025    //   All declarations for a function shall agree exactly in both the
1026    //   return type and the parameter-type-list.
1027    // attributes should be ignored when comparing.
1028    if (Context.getNoReturnType(OldQType, false) ==
1029        Context.getNoReturnType(NewQType, false))
1030      return MergeCompatibleFunctionDecls(New, Old);
1031
1032    // Fall through for conflicting redeclarations and redefinitions.
1033  }
1034
1035  // C: Function types need to be compatible, not identical. This handles
1036  // duplicate function decls like "void f(int); void f(enum X);" properly.
1037  if (!getLangOptions().CPlusPlus &&
1038      Context.typesAreCompatible(OldQType, NewQType)) {
1039    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1040    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1041    const FunctionProtoType *OldProto = 0;
1042    if (isa<FunctionNoProtoType>(NewFuncType) &&
1043        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1044      // The old declaration provided a function prototype, but the
1045      // new declaration does not. Merge in the prototype.
1046      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1047      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1048                                                 OldProto->arg_type_end());
1049      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1050                                         ParamTypes.data(), ParamTypes.size(),
1051                                         OldProto->isVariadic(),
1052                                         OldProto->getTypeQuals());
1053      New->setType(NewQType);
1054      New->setHasInheritedPrototype();
1055
1056      // Synthesize a parameter for each argument type.
1057      llvm::SmallVector<ParmVarDecl*, 16> Params;
1058      for (FunctionProtoType::arg_type_iterator
1059             ParamType = OldProto->arg_type_begin(),
1060             ParamEnd = OldProto->arg_type_end();
1061           ParamType != ParamEnd; ++ParamType) {
1062        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1063                                                 SourceLocation(), 0,
1064                                                 *ParamType, /*TInfo=*/0,
1065                                                 VarDecl::None, 0);
1066        Param->setImplicit();
1067        Params.push_back(Param);
1068      }
1069
1070      New->setParams(Context, Params.data(), Params.size());
1071    }
1072
1073    return MergeCompatibleFunctionDecls(New, Old);
1074  }
1075
1076  // GNU C permits a K&R definition to follow a prototype declaration
1077  // if the declared types of the parameters in the K&R definition
1078  // match the types in the prototype declaration, even when the
1079  // promoted types of the parameters from the K&R definition differ
1080  // from the types in the prototype. GCC then keeps the types from
1081  // the prototype.
1082  //
1083  // If a variadic prototype is followed by a non-variadic K&R definition,
1084  // the K&R definition becomes variadic.  This is sort of an edge case, but
1085  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1086  // C99 6.9.1p8.
1087  if (!getLangOptions().CPlusPlus &&
1088      Old->hasPrototype() && !New->hasPrototype() &&
1089      New->getType()->getAs<FunctionProtoType>() &&
1090      Old->getNumParams() == New->getNumParams()) {
1091    llvm::SmallVector<QualType, 16> ArgTypes;
1092    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1093    const FunctionProtoType *OldProto
1094      = Old->getType()->getAs<FunctionProtoType>();
1095    const FunctionProtoType *NewProto
1096      = New->getType()->getAs<FunctionProtoType>();
1097
1098    // Determine whether this is the GNU C extension.
1099    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1100                                               NewProto->getResultType());
1101    bool LooseCompatible = !MergedReturn.isNull();
1102    for (unsigned Idx = 0, End = Old->getNumParams();
1103         LooseCompatible && Idx != End; ++Idx) {
1104      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1105      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1106      if (Context.typesAreCompatible(OldParm->getType(),
1107                                     NewProto->getArgType(Idx))) {
1108        ArgTypes.push_back(NewParm->getType());
1109      } else if (Context.typesAreCompatible(OldParm->getType(),
1110                                            NewParm->getType())) {
1111        GNUCompatibleParamWarning Warn
1112          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1113        Warnings.push_back(Warn);
1114        ArgTypes.push_back(NewParm->getType());
1115      } else
1116        LooseCompatible = false;
1117    }
1118
1119    if (LooseCompatible) {
1120      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1121        Diag(Warnings[Warn].NewParm->getLocation(),
1122             diag::ext_param_promoted_not_compatible_with_prototype)
1123          << Warnings[Warn].PromotedType
1124          << Warnings[Warn].OldParm->getType();
1125        Diag(Warnings[Warn].OldParm->getLocation(),
1126             diag::note_previous_declaration);
1127      }
1128
1129      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1130                                           ArgTypes.size(),
1131                                           OldProto->isVariadic(), 0));
1132      return MergeCompatibleFunctionDecls(New, Old);
1133    }
1134
1135    // Fall through to diagnose conflicting types.
1136  }
1137
1138  // A function that has already been declared has been redeclared or defined
1139  // with a different type- show appropriate diagnostic
1140  if (unsigned BuiltinID = Old->getBuiltinID()) {
1141    // The user has declared a builtin function with an incompatible
1142    // signature.
1143    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1144      // The function the user is redeclaring is a library-defined
1145      // function like 'malloc' or 'printf'. Warn about the
1146      // redeclaration, then pretend that we don't know about this
1147      // library built-in.
1148      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1149      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1150        << Old << Old->getType();
1151      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1152      Old->setInvalidDecl();
1153      return false;
1154    }
1155
1156    PrevDiag = diag::note_previous_builtin_declaration;
1157  }
1158
1159  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1160  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1161  return true;
1162}
1163
1164/// \brief Completes the merge of two function declarations that are
1165/// known to be compatible.
1166///
1167/// This routine handles the merging of attributes and other
1168/// properties of function declarations form the old declaration to
1169/// the new declaration, once we know that New is in fact a
1170/// redeclaration of Old.
1171///
1172/// \returns false
1173bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1174  // Merge the attributes
1175  MergeAttributes(New, Old, Context);
1176
1177  // Merge the storage class.
1178  if (Old->getStorageClass() != FunctionDecl::Extern &&
1179      Old->getStorageClass() != FunctionDecl::None)
1180    New->setStorageClass(Old->getStorageClass());
1181
1182  // Merge "pure" flag.
1183  if (Old->isPure())
1184    New->setPure();
1185
1186  // Merge the "deleted" flag.
1187  if (Old->isDeleted())
1188    New->setDeleted();
1189
1190  if (getLangOptions().CPlusPlus)
1191    return MergeCXXFunctionDecl(New, Old);
1192
1193  return false;
1194}
1195
1196/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1197/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1198/// situation, merging decls or emitting diagnostics as appropriate.
1199///
1200/// Tentative definition rules (C99 6.9.2p2) are checked by
1201/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1202/// definitions here, since the initializer hasn't been attached.
1203///
1204void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1205  // If the new decl is already invalid, don't do any other checking.
1206  if (New->isInvalidDecl())
1207    return;
1208
1209  // Verify the old decl was also a variable.
1210  VarDecl *Old = 0;
1211  if (!Previous.isSingleResult() ||
1212      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1213    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1214      << New->getDeclName();
1215    Diag(Previous.getRepresentativeDecl()->getLocation(),
1216         diag::note_previous_definition);
1217    return New->setInvalidDecl();
1218  }
1219
1220  MergeAttributes(New, Old, Context);
1221
1222  // Merge the types
1223  QualType MergedT;
1224  if (getLangOptions().CPlusPlus) {
1225    if (Context.hasSameType(New->getType(), Old->getType()))
1226      MergedT = New->getType();
1227    // C++ [basic.link]p10:
1228    //   [...] the types specified by all declarations referring to a given
1229    //   object or function shall be identical, except that declarations for an
1230    //   array object can specify array types that differ by the presence or
1231    //   absence of a major array bound (8.3.4).
1232    else if (Old->getType()->isIncompleteArrayType() &&
1233             New->getType()->isArrayType()) {
1234      CanQual<ArrayType> OldArray
1235        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1236      CanQual<ArrayType> NewArray
1237        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1238      if (OldArray->getElementType() == NewArray->getElementType())
1239        MergedT = New->getType();
1240    } else if (Old->getType()->isArrayType() &&
1241             New->getType()->isIncompleteArrayType()) {
1242      CanQual<ArrayType> OldArray
1243        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1244      CanQual<ArrayType> NewArray
1245        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1246      if (OldArray->getElementType() == NewArray->getElementType())
1247        MergedT = Old->getType();
1248    }
1249  } else {
1250    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1251  }
1252  if (MergedT.isNull()) {
1253    Diag(New->getLocation(), diag::err_redefinition_different_type)
1254      << New->getDeclName();
1255    Diag(Old->getLocation(), diag::note_previous_definition);
1256    return New->setInvalidDecl();
1257  }
1258  New->setType(MergedT);
1259
1260  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1261  if (New->getStorageClass() == VarDecl::Static &&
1262      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1263    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1264    Diag(Old->getLocation(), diag::note_previous_definition);
1265    return New->setInvalidDecl();
1266  }
1267  // C99 6.2.2p4:
1268  //   For an identifier declared with the storage-class specifier
1269  //   extern in a scope in which a prior declaration of that
1270  //   identifier is visible,23) if the prior declaration specifies
1271  //   internal or external linkage, the linkage of the identifier at
1272  //   the later declaration is the same as the linkage specified at
1273  //   the prior declaration. If no prior declaration is visible, or
1274  //   if the prior declaration specifies no linkage, then the
1275  //   identifier has external linkage.
1276  if (New->hasExternalStorage() && Old->hasLinkage())
1277    /* Okay */;
1278  else if (New->getStorageClass() != VarDecl::Static &&
1279           Old->getStorageClass() == VarDecl::Static) {
1280    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1281    Diag(Old->getLocation(), diag::note_previous_definition);
1282    return New->setInvalidDecl();
1283  }
1284
1285  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1286
1287  // FIXME: The test for external storage here seems wrong? We still
1288  // need to check for mismatches.
1289  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1290      // Don't complain about out-of-line definitions of static members.
1291      !(Old->getLexicalDeclContext()->isRecord() &&
1292        !New->getLexicalDeclContext()->isRecord())) {
1293    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1294    Diag(Old->getLocation(), diag::note_previous_definition);
1295    return New->setInvalidDecl();
1296  }
1297
1298  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1299    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1300    Diag(Old->getLocation(), diag::note_previous_definition);
1301  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1302    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1303    Diag(Old->getLocation(), diag::note_previous_definition);
1304  }
1305
1306  // Keep a chain of previous declarations.
1307  New->setPreviousDeclaration(Old);
1308}
1309
1310static void MarkLive(CFGBlock *e, llvm::BitVector &live) {
1311  std::queue<CFGBlock*> workq;
1312  // Prep work queue
1313  workq.push(e);
1314  // Solve
1315  while (!workq.empty()) {
1316    CFGBlock *item = workq.front();
1317    workq.pop();
1318    live.set(item->getBlockID());
1319    for (CFGBlock::succ_iterator I=item->succ_begin(),
1320           E=item->succ_end();
1321         I != E;
1322         ++I) {
1323      if ((*I) && !live[(*I)->getBlockID()]) {
1324        live.set((*I)->getBlockID());
1325        workq.push(*I);
1326      }
1327    }
1328  }
1329}
1330
1331static SourceLocation GetUnreachableLoc(CFGBlock &b) {
1332  Stmt *S;
1333  if (!b.empty())
1334    S = b[0].getStmt();
1335  else if (b.getTerminator())
1336    S = b.getTerminator();
1337  else
1338    return SourceLocation();
1339
1340  switch (S->getStmtClass()) {
1341  case Expr::BinaryOperatorClass: {
1342    if (b.size() < 2) {
1343      CFGBlock *n = &b;
1344      while (1) {
1345        if (n->getTerminator())
1346          return n->getTerminator()->getLocStart();
1347        if (n->succ_size() != 1)
1348          return SourceLocation();
1349        n = n[0].succ_begin()[0];
1350        if (n->pred_size() != 1)
1351          return SourceLocation();
1352        if (!n->empty())
1353          return n[0][0].getStmt()->getLocStart();
1354      }
1355    }
1356    return b[1].getStmt()->getLocStart();
1357  }
1358  default: ;
1359  }
1360  return S->getLocStart();
1361}
1362
1363static SourceLocation MarkLiveTop(CFGBlock *e, llvm::BitVector &live,
1364                               SourceManager &SM) {
1365  std::queue<CFGBlock*> workq;
1366  // Prep work queue
1367  workq.push(e);
1368  SourceLocation top = GetUnreachableLoc(*e);
1369  bool FromMainFile = false;
1370  bool FromSystemHeader = false;
1371  bool TopValid = false;
1372  if (top.isValid()) {
1373    FromMainFile = SM.isFromMainFile(top);
1374    FromSystemHeader = SM.isInSystemHeader(top);
1375    TopValid = true;
1376  }
1377  // Solve
1378  while (!workq.empty()) {
1379    CFGBlock *item = workq.front();
1380    workq.pop();
1381    SourceLocation c = GetUnreachableLoc(*item);
1382    if (c.isValid()
1383        && (!TopValid
1384            || (SM.isFromMainFile(c) && !FromMainFile)
1385            || (FromSystemHeader && !SM.isInSystemHeader(c))
1386            || SM.isBeforeInTranslationUnit(c, top))) {
1387      top = c;
1388      FromMainFile = SM.isFromMainFile(top);
1389      FromSystemHeader = SM.isInSystemHeader(top);
1390    }
1391    live.set(item->getBlockID());
1392    for (CFGBlock::succ_iterator I=item->succ_begin(),
1393           E=item->succ_end();
1394         I != E;
1395         ++I) {
1396      if ((*I) && !live[(*I)->getBlockID()]) {
1397        live.set((*I)->getBlockID());
1398        workq.push(*I);
1399      }
1400    }
1401  }
1402  return top;
1403}
1404
1405namespace {
1406class LineCmp {
1407  SourceManager &SM;
1408public:
1409  LineCmp(SourceManager &sm) : SM(sm) {
1410  }
1411  bool operator () (SourceLocation l1, SourceLocation l2) {
1412    return l1 < l2;
1413  }
1414};
1415}
1416
1417/// CheckUnreachable - Check for unreachable code.
1418void Sema::CheckUnreachable(AnalysisContext &AC) {
1419  // We avoid checking when there are errors, as the CFG won't faithfully match
1420  // the user's code.
1421  if (getDiagnostics().hasErrorOccurred())
1422    return;
1423  if (Diags.getDiagnosticLevel(diag::warn_unreachable) == Diagnostic::Ignored)
1424    return;
1425
1426  CFG *cfg = AC.getCFG();
1427  if (cfg == 0)
1428    return;
1429
1430  llvm::BitVector live(cfg->getNumBlockIDs());
1431  // Mark all live things first.
1432  MarkLive(&cfg->getEntry(), live);
1433
1434  llvm::SmallVector<SourceLocation, 24> lines;
1435  // First, give warnings for blocks with no predecessors, as they
1436  // can't be part of a loop.
1437  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
1438    CFGBlock &b = **I;
1439    if (!live[b.getBlockID()]) {
1440      if (b.pred_begin() == b.pred_end()) {
1441        SourceLocation c = GetUnreachableLoc(b);
1442        if (!c.isValid()) {
1443          // Blocks without a location can't produce a warning, so don't mark
1444          // reachable blocks from here as live.
1445          live.set(b.getBlockID());
1446          continue;
1447        }
1448        lines.push_back(c);
1449        // Avoid excessive errors by marking everything reachable from here
1450        MarkLive(&b, live);
1451      }
1452    }
1453  }
1454
1455  // And then give warnings for the tops of loops.
1456  for (CFG::iterator I = cfg->begin(), E = cfg->end(); I != E; ++I) {
1457    CFGBlock &b = **I;
1458    if (!live[b.getBlockID()])
1459      // Avoid excessive errors by marking everything reachable from here
1460      lines.push_back(MarkLiveTop(&b, live, Context.getSourceManager()));
1461  }
1462
1463  std::sort(lines.begin(), lines.end(), LineCmp(Context.getSourceManager()));
1464  for (llvm::SmallVector<SourceLocation, 24>::iterator I = lines.begin(),
1465         E = lines.end();
1466       I != E;
1467       ++I)
1468    if (I->isValid())
1469      Diag(*I, diag::warn_unreachable);
1470}
1471
1472/// CheckFallThrough - Check that we don't fall off the end of a
1473/// Statement that should return a value.
1474///
1475/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1476/// MaybeFallThrough iff we might or might not fall off the end,
1477/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1478/// return.  We assume NeverFallThrough iff we never fall off the end of the
1479/// statement but we may return.  We assume that functions not marked noreturn
1480/// will return.
1481Sema::ControlFlowKind Sema::CheckFallThrough(AnalysisContext &AC) {
1482  CFG *cfg = AC.getCFG();
1483  if (cfg == 0)
1484    // FIXME: This should be NeverFallThrough
1485    return NeverFallThroughOrReturn;
1486
1487  // The CFG leaves in dead things, and we don't want to dead code paths to
1488  // confuse us, so we mark all live things first.
1489  std::queue<CFGBlock*> workq;
1490  llvm::BitVector live(cfg->getNumBlockIDs());
1491  MarkLive(&cfg->getEntry(), live);
1492
1493  // Now we know what is live, we check the live precessors of the exit block
1494  // and look for fall through paths, being careful to ignore normal returns,
1495  // and exceptional paths.
1496  bool HasLiveReturn = false;
1497  bool HasFakeEdge = false;
1498  bool HasPlainEdge = false;
1499  bool HasAbnormalEdge = false;
1500  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1501         E = cfg->getExit().pred_end();
1502       I != E;
1503       ++I) {
1504    CFGBlock& B = **I;
1505    if (!live[B.getBlockID()])
1506      continue;
1507    if (B.size() == 0) {
1508      // A labeled empty statement, or the entry block...
1509      HasPlainEdge = true;
1510      continue;
1511    }
1512    Stmt *S = B[B.size()-1];
1513    if (isa<ReturnStmt>(S)) {
1514      HasLiveReturn = true;
1515      continue;
1516    }
1517    if (isa<ObjCAtThrowStmt>(S)) {
1518      HasFakeEdge = true;
1519      continue;
1520    }
1521    if (isa<CXXThrowExpr>(S)) {
1522      HasFakeEdge = true;
1523      continue;
1524    }
1525    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
1526      if (AS->isMSAsm()) {
1527        HasFakeEdge = true;
1528        HasLiveReturn = true;
1529        continue;
1530      }
1531    }
1532    if (isa<CXXTryStmt>(S)) {
1533      HasAbnormalEdge = true;
1534      continue;
1535    }
1536
1537    bool NoReturnEdge = false;
1538    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1539      if (B.succ_begin()[0] != &cfg->getExit()) {
1540        HasAbnormalEdge = true;
1541        continue;
1542      }
1543      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1544      if (CEE->getType().getNoReturnAttr()) {
1545        NoReturnEdge = true;
1546        HasFakeEdge = true;
1547      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1548        ValueDecl *VD = DRE->getDecl();
1549        if (VD->hasAttr<NoReturnAttr>()) {
1550          NoReturnEdge = true;
1551          HasFakeEdge = true;
1552        }
1553      }
1554    }
1555    // FIXME: Add noreturn message sends.
1556    if (NoReturnEdge == false)
1557      HasPlainEdge = true;
1558  }
1559  if (!HasPlainEdge) {
1560    if (HasLiveReturn)
1561      return NeverFallThrough;
1562    return NeverFallThroughOrReturn;
1563  }
1564  if (HasAbnormalEdge || HasFakeEdge || HasLiveReturn)
1565    return MaybeFallThrough;
1566  // This says AlwaysFallThrough for calls to functions that are not marked
1567  // noreturn, that don't return.  If people would like this warning to be more
1568  // accurate, such functions should be marked as noreturn.
1569  return AlwaysFallThrough;
1570}
1571
1572/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1573/// function that should return a value.  Check that we don't fall off the end
1574/// of a noreturn function.  We assume that functions and blocks not marked
1575/// noreturn will return.
1576void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body,
1577                                          AnalysisContext &AC) {
1578  // FIXME: Would be nice if we had a better way to control cascading errors,
1579  // but for now, avoid them.  The problem is that when Parse sees:
1580  //   int foo() { return a; }
1581  // The return is eaten and the Sema code sees just:
1582  //   int foo() { }
1583  // which this code would then warn about.
1584  if (getDiagnostics().hasErrorOccurred())
1585    return;
1586
1587  bool ReturnsVoid = false;
1588  bool HasNoReturn = false;
1589  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1590    // If the result type of the function is a dependent type, we don't know
1591    // whether it will be void or not, so don't
1592    if (FD->getResultType()->isDependentType())
1593      return;
1594    if (FD->getResultType()->isVoidType())
1595      ReturnsVoid = true;
1596    if (FD->hasAttr<NoReturnAttr>())
1597      HasNoReturn = true;
1598  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1599    if (MD->getResultType()->isVoidType())
1600      ReturnsVoid = true;
1601    if (MD->hasAttr<NoReturnAttr>())
1602      HasNoReturn = true;
1603  }
1604
1605  // Short circuit for compilation speed.
1606  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1607       == Diagnostic::Ignored || ReturnsVoid)
1608      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1609          == Diagnostic::Ignored || !HasNoReturn)
1610      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1611          == Diagnostic::Ignored || !ReturnsVoid))
1612    return;
1613  // FIXME: Function try block
1614  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1615    switch (CheckFallThrough(AC)) {
1616    case MaybeFallThrough:
1617      if (HasNoReturn)
1618        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1619      else if (!ReturnsVoid)
1620        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1621      break;
1622    case AlwaysFallThrough:
1623      if (HasNoReturn)
1624        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1625      else if (!ReturnsVoid)
1626        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1627      break;
1628    case NeverFallThroughOrReturn:
1629      if (ReturnsVoid && !HasNoReturn)
1630        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1631      break;
1632    case NeverFallThrough:
1633      break;
1634    }
1635  }
1636}
1637
1638/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1639/// that should return a value.  Check that we don't fall off the end of a
1640/// noreturn block.  We assume that functions and blocks not marked noreturn
1641/// will return.
1642void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body,
1643                                    AnalysisContext &AC) {
1644  // FIXME: Would be nice if we had a better way to control cascading errors,
1645  // but for now, avoid them.  The problem is that when Parse sees:
1646  //   int foo() { return a; }
1647  // The return is eaten and the Sema code sees just:
1648  //   int foo() { }
1649  // which this code would then warn about.
1650  if (getDiagnostics().hasErrorOccurred())
1651    return;
1652  bool ReturnsVoid = false;
1653  bool HasNoReturn = false;
1654  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1655    if (FT->getResultType()->isVoidType())
1656      ReturnsVoid = true;
1657    if (FT->getNoReturnAttr())
1658      HasNoReturn = true;
1659  }
1660
1661  // Short circuit for compilation speed.
1662  if (ReturnsVoid
1663      && !HasNoReturn
1664      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1665          == Diagnostic::Ignored || !ReturnsVoid))
1666    return;
1667  // FIXME: Funtion try block
1668  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1669    switch (CheckFallThrough(AC)) {
1670    case MaybeFallThrough:
1671      if (HasNoReturn)
1672        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1673      else if (!ReturnsVoid)
1674        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1675      break;
1676    case AlwaysFallThrough:
1677      if (HasNoReturn)
1678        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1679      else if (!ReturnsVoid)
1680        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1681      break;
1682    case NeverFallThroughOrReturn:
1683      if (ReturnsVoid)
1684        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1685      break;
1686    case NeverFallThrough:
1687      break;
1688    }
1689  }
1690}
1691
1692/// CheckParmsForFunctionDef - Check that the parameters of the given
1693/// function are appropriate for the definition of a function. This
1694/// takes care of any checks that cannot be performed on the
1695/// declaration itself, e.g., that the types of each of the function
1696/// parameters are complete.
1697bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1698  bool HasInvalidParm = false;
1699  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1700    ParmVarDecl *Param = FD->getParamDecl(p);
1701
1702    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1703    // function declarator that is part of a function definition of
1704    // that function shall not have incomplete type.
1705    //
1706    // This is also C++ [dcl.fct]p6.
1707    if (!Param->isInvalidDecl() &&
1708        RequireCompleteType(Param->getLocation(), Param->getType(),
1709                               diag::err_typecheck_decl_incomplete_type)) {
1710      Param->setInvalidDecl();
1711      HasInvalidParm = true;
1712    }
1713
1714    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1715    // declaration of each parameter shall include an identifier.
1716    if (Param->getIdentifier() == 0 &&
1717        !Param->isImplicit() &&
1718        !getLangOptions().CPlusPlus)
1719      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1720  }
1721
1722  return HasInvalidParm;
1723}
1724
1725/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1726/// no declarator (e.g. "struct foo;") is parsed.
1727Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1728  // FIXME: Error on auto/register at file scope
1729  // FIXME: Error on inline/virtual/explicit
1730  // FIXME: Warn on useless __thread
1731  // FIXME: Warn on useless const/volatile
1732  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1733  // FIXME: Warn on useless attributes
1734  Decl *TagD = 0;
1735  TagDecl *Tag = 0;
1736  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1737      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1738      DS.getTypeSpecType() == DeclSpec::TST_union ||
1739      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1740    TagD = static_cast<Decl *>(DS.getTypeRep());
1741
1742    if (!TagD) // We probably had an error
1743      return DeclPtrTy();
1744
1745    // Note that the above type specs guarantee that the
1746    // type rep is a Decl, whereas in many of the others
1747    // it's a Type.
1748    Tag = dyn_cast<TagDecl>(TagD);
1749  }
1750
1751  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1752    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1753    // or incomplete types shall not be restrict-qualified."
1754    if (TypeQuals & DeclSpec::TQ_restrict)
1755      Diag(DS.getRestrictSpecLoc(),
1756           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1757           << DS.getSourceRange();
1758  }
1759
1760  if (DS.isFriendSpecified()) {
1761    // If we're dealing with a class template decl, assume that the
1762    // template routines are handling it.
1763    if (TagD && isa<ClassTemplateDecl>(TagD))
1764      return DeclPtrTy();
1765    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1766  }
1767
1768  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1769    // If there are attributes in the DeclSpec, apply them to the record.
1770    if (const AttributeList *AL = DS.getAttributes())
1771      ProcessDeclAttributeList(S, Record, AL);
1772
1773    if (!Record->getDeclName() && Record->isDefinition() &&
1774        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1775      if (getLangOptions().CPlusPlus ||
1776          Record->getDeclContext()->isRecord())
1777        return BuildAnonymousStructOrUnion(S, DS, Record);
1778
1779      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1780        << DS.getSourceRange();
1781    }
1782
1783    // Microsoft allows unnamed struct/union fields. Don't complain
1784    // about them.
1785    // FIXME: Should we support Microsoft's extensions in this area?
1786    if (Record->getDeclName() && getLangOptions().Microsoft)
1787      return DeclPtrTy::make(Tag);
1788  }
1789
1790  if (!DS.isMissingDeclaratorOk() &&
1791      DS.getTypeSpecType() != DeclSpec::TST_error) {
1792    // Warn about typedefs of enums without names, since this is an
1793    // extension in both Microsoft an GNU.
1794    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1795        Tag && isa<EnumDecl>(Tag)) {
1796      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1797        << DS.getSourceRange();
1798      return DeclPtrTy::make(Tag);
1799    }
1800
1801    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1802      << DS.getSourceRange();
1803    return DeclPtrTy();
1804  }
1805
1806  return DeclPtrTy::make(Tag);
1807}
1808
1809/// We are trying to inject an anonymous member into the given scope;
1810/// check if there's an existing declaration that can't be overloaded.
1811///
1812/// \return true if this is a forbidden redeclaration
1813static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1814                                         Scope *S,
1815                                         DeclarationName Name,
1816                                         SourceLocation NameLoc,
1817                                         unsigned diagnostic) {
1818  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1819                 Sema::ForRedeclaration);
1820  if (!SemaRef.LookupName(R, S)) return false;
1821
1822  if (R.getAsSingle<TagDecl>())
1823    return false;
1824
1825  // Pick a representative declaration.
1826  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1827
1828  SemaRef.Diag(NameLoc, diagnostic) << Name;
1829  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1830
1831  return true;
1832}
1833
1834/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1835/// anonymous struct or union AnonRecord into the owning context Owner
1836/// and scope S. This routine will be invoked just after we realize
1837/// that an unnamed union or struct is actually an anonymous union or
1838/// struct, e.g.,
1839///
1840/// @code
1841/// union {
1842///   int i;
1843///   float f;
1844/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1845///    // f into the surrounding scope.x
1846/// @endcode
1847///
1848/// This routine is recursive, injecting the names of nested anonymous
1849/// structs/unions into the owning context and scope as well.
1850bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1851                                               RecordDecl *AnonRecord) {
1852  unsigned diagKind
1853    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1854                            : diag::err_anonymous_struct_member_redecl;
1855
1856  bool Invalid = false;
1857  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1858                               FEnd = AnonRecord->field_end();
1859       F != FEnd; ++F) {
1860    if ((*F)->getDeclName()) {
1861      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1862                                       (*F)->getLocation(), diagKind)) {
1863        // C++ [class.union]p2:
1864        //   The names of the members of an anonymous union shall be
1865        //   distinct from the names of any other entity in the
1866        //   scope in which the anonymous union is declared.
1867        Invalid = true;
1868      } else {
1869        // C++ [class.union]p2:
1870        //   For the purpose of name lookup, after the anonymous union
1871        //   definition, the members of the anonymous union are
1872        //   considered to have been defined in the scope in which the
1873        //   anonymous union is declared.
1874        Owner->makeDeclVisibleInContext(*F);
1875        S->AddDecl(DeclPtrTy::make(*F));
1876        IdResolver.AddDecl(*F);
1877      }
1878    } else if (const RecordType *InnerRecordType
1879                 = (*F)->getType()->getAs<RecordType>()) {
1880      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1881      if (InnerRecord->isAnonymousStructOrUnion())
1882        Invalid = Invalid ||
1883          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1884    }
1885  }
1886
1887  return Invalid;
1888}
1889
1890/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1891/// anonymous structure or union. Anonymous unions are a C++ feature
1892/// (C++ [class.union]) and a GNU C extension; anonymous structures
1893/// are a GNU C and GNU C++ extension.
1894Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1895                                                  RecordDecl *Record) {
1896  DeclContext *Owner = Record->getDeclContext();
1897
1898  // Diagnose whether this anonymous struct/union is an extension.
1899  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1900    Diag(Record->getLocation(), diag::ext_anonymous_union);
1901  else if (!Record->isUnion())
1902    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1903
1904  // C and C++ require different kinds of checks for anonymous
1905  // structs/unions.
1906  bool Invalid = false;
1907  if (getLangOptions().CPlusPlus) {
1908    const char* PrevSpec = 0;
1909    unsigned DiagID;
1910    // C++ [class.union]p3:
1911    //   Anonymous unions declared in a named namespace or in the
1912    //   global namespace shall be declared static.
1913    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1914        (isa<TranslationUnitDecl>(Owner) ||
1915         (isa<NamespaceDecl>(Owner) &&
1916          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1917      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1918      Invalid = true;
1919
1920      // Recover by adding 'static'.
1921      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1922                             PrevSpec, DiagID);
1923    }
1924    // C++ [class.union]p3:
1925    //   A storage class is not allowed in a declaration of an
1926    //   anonymous union in a class scope.
1927    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1928             isa<RecordDecl>(Owner)) {
1929      Diag(DS.getStorageClassSpecLoc(),
1930           diag::err_anonymous_union_with_storage_spec);
1931      Invalid = true;
1932
1933      // Recover by removing the storage specifier.
1934      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1935                             PrevSpec, DiagID);
1936    }
1937
1938    // C++ [class.union]p2:
1939    //   The member-specification of an anonymous union shall only
1940    //   define non-static data members. [Note: nested types and
1941    //   functions cannot be declared within an anonymous union. ]
1942    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1943                                 MemEnd = Record->decls_end();
1944         Mem != MemEnd; ++Mem) {
1945      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1946        // C++ [class.union]p3:
1947        //   An anonymous union shall not have private or protected
1948        //   members (clause 11).
1949        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1950          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1951            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1952          Invalid = true;
1953        }
1954      } else if ((*Mem)->isImplicit()) {
1955        // Any implicit members are fine.
1956      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1957        // This is a type that showed up in an
1958        // elaborated-type-specifier inside the anonymous struct or
1959        // union, but which actually declares a type outside of the
1960        // anonymous struct or union. It's okay.
1961      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1962        if (!MemRecord->isAnonymousStructOrUnion() &&
1963            MemRecord->getDeclName()) {
1964          // This is a nested type declaration.
1965          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1966            << (int)Record->isUnion();
1967          Invalid = true;
1968        }
1969      } else {
1970        // We have something that isn't a non-static data
1971        // member. Complain about it.
1972        unsigned DK = diag::err_anonymous_record_bad_member;
1973        if (isa<TypeDecl>(*Mem))
1974          DK = diag::err_anonymous_record_with_type;
1975        else if (isa<FunctionDecl>(*Mem))
1976          DK = diag::err_anonymous_record_with_function;
1977        else if (isa<VarDecl>(*Mem))
1978          DK = diag::err_anonymous_record_with_static;
1979        Diag((*Mem)->getLocation(), DK)
1980            << (int)Record->isUnion();
1981          Invalid = true;
1982      }
1983    }
1984  }
1985
1986  if (!Record->isUnion() && !Owner->isRecord()) {
1987    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1988      << (int)getLangOptions().CPlusPlus;
1989    Invalid = true;
1990  }
1991
1992  // Mock up a declarator.
1993  Declarator Dc(DS, Declarator::TypeNameContext);
1994  TypeSourceInfo *TInfo = 0;
1995  GetTypeForDeclarator(Dc, S, &TInfo);
1996  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1997
1998  // Create a declaration for this anonymous struct/union.
1999  NamedDecl *Anon = 0;
2000  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2001    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
2002                             /*IdentifierInfo=*/0,
2003                             Context.getTypeDeclType(Record),
2004                             TInfo,
2005                             /*BitWidth=*/0, /*Mutable=*/false);
2006    Anon->setAccess(AS_public);
2007    if (getLangOptions().CPlusPlus)
2008      FieldCollector->Add(cast<FieldDecl>(Anon));
2009  } else {
2010    VarDecl::StorageClass SC;
2011    switch (DS.getStorageClassSpec()) {
2012    default: assert(0 && "Unknown storage class!");
2013    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2014    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2015    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2016    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2017    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2018    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2019    case DeclSpec::SCS_mutable:
2020      // mutable can only appear on non-static class members, so it's always
2021      // an error here
2022      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2023      Invalid = true;
2024      SC = VarDecl::None;
2025      break;
2026    }
2027
2028    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2029                           /*IdentifierInfo=*/0,
2030                           Context.getTypeDeclType(Record),
2031                           TInfo,
2032                           SC);
2033  }
2034  Anon->setImplicit();
2035
2036  // Add the anonymous struct/union object to the current
2037  // context. We'll be referencing this object when we refer to one of
2038  // its members.
2039  Owner->addDecl(Anon);
2040
2041  // Inject the members of the anonymous struct/union into the owning
2042  // context and into the identifier resolver chain for name lookup
2043  // purposes.
2044  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
2045    Invalid = true;
2046
2047  // Mark this as an anonymous struct/union type. Note that we do not
2048  // do this until after we have already checked and injected the
2049  // members of this anonymous struct/union type, because otherwise
2050  // the members could be injected twice: once by DeclContext when it
2051  // builds its lookup table, and once by
2052  // InjectAnonymousStructOrUnionMembers.
2053  Record->setAnonymousStructOrUnion(true);
2054
2055  if (Invalid)
2056    Anon->setInvalidDecl();
2057
2058  return DeclPtrTy::make(Anon);
2059}
2060
2061
2062/// GetNameForDeclarator - Determine the full declaration name for the
2063/// given Declarator.
2064DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
2065  return GetNameFromUnqualifiedId(D.getName());
2066}
2067
2068/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
2069DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2070  switch (Name.getKind()) {
2071    case UnqualifiedId::IK_Identifier:
2072      return DeclarationName(Name.Identifier);
2073
2074    case UnqualifiedId::IK_OperatorFunctionId:
2075      return Context.DeclarationNames.getCXXOperatorName(
2076                                              Name.OperatorFunctionId.Operator);
2077
2078    case UnqualifiedId::IK_LiteralOperatorId:
2079      return Context.DeclarationNames.getCXXLiteralOperatorName(
2080                                                               Name.Identifier);
2081
2082    case UnqualifiedId::IK_ConversionFunctionId: {
2083      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
2084      if (Ty.isNull())
2085        return DeclarationName();
2086
2087      return Context.DeclarationNames.getCXXConversionFunctionName(
2088                                                  Context.getCanonicalType(Ty));
2089    }
2090
2091    case UnqualifiedId::IK_ConstructorName: {
2092      QualType Ty = GetTypeFromParser(Name.ConstructorName);
2093      if (Ty.isNull())
2094        return DeclarationName();
2095
2096      return Context.DeclarationNames.getCXXConstructorName(
2097                                                  Context.getCanonicalType(Ty));
2098    }
2099
2100    case UnqualifiedId::IK_ConstructorTemplateId: {
2101      // In well-formed code, we can only have a constructor
2102      // template-id that refers to the current context, so go there
2103      // to find the actual type being constructed.
2104      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2105      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2106        return DeclarationName();
2107
2108      // Determine the type of the class being constructed.
2109      QualType CurClassType;
2110      if (ClassTemplateDecl *ClassTemplate
2111            = CurClass->getDescribedClassTemplate())
2112        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
2113      else
2114        CurClassType = Context.getTypeDeclType(CurClass);
2115
2116      // FIXME: Check two things: that the template-id names the same type as
2117      // CurClassType, and that the template-id does not occur when the name
2118      // was qualified.
2119
2120      return Context.DeclarationNames.getCXXConstructorName(
2121                                       Context.getCanonicalType(CurClassType));
2122    }
2123
2124    case UnqualifiedId::IK_DestructorName: {
2125      QualType Ty = GetTypeFromParser(Name.DestructorName);
2126      if (Ty.isNull())
2127        return DeclarationName();
2128
2129      return Context.DeclarationNames.getCXXDestructorName(
2130                                                           Context.getCanonicalType(Ty));
2131    }
2132
2133    case UnqualifiedId::IK_TemplateId: {
2134      TemplateName TName
2135        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
2136      return Context.getNameForTemplate(TName);
2137    }
2138  }
2139
2140  assert(false && "Unknown name kind");
2141  return DeclarationName();
2142}
2143
2144/// isNearlyMatchingFunction - Determine whether the C++ functions
2145/// Declaration and Definition are "nearly" matching. This heuristic
2146/// is used to improve diagnostics in the case where an out-of-line
2147/// function definition doesn't match any declaration within
2148/// the class or namespace.
2149static bool isNearlyMatchingFunction(ASTContext &Context,
2150                                     FunctionDecl *Declaration,
2151                                     FunctionDecl *Definition) {
2152  if (Declaration->param_size() != Definition->param_size())
2153    return false;
2154  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2155    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2156    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2157
2158    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2159                                        DefParamTy.getNonReferenceType()))
2160      return false;
2161  }
2162
2163  return true;
2164}
2165
2166Sema::DeclPtrTy
2167Sema::HandleDeclarator(Scope *S, Declarator &D,
2168                       MultiTemplateParamsArg TemplateParamLists,
2169                       bool IsFunctionDefinition) {
2170  DeclarationName Name = GetNameForDeclarator(D);
2171
2172  // All of these full declarators require an identifier.  If it doesn't have
2173  // one, the ParsedFreeStandingDeclSpec action should be used.
2174  if (!Name) {
2175    if (!D.isInvalidType())  // Reject this if we think it is valid.
2176      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2177           diag::err_declarator_need_ident)
2178        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2179    return DeclPtrTy();
2180  }
2181
2182  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2183  // we find one that is.
2184  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2185         (S->getFlags() & Scope::TemplateParamScope) != 0)
2186    S = S->getParent();
2187
2188  // If this is an out-of-line definition of a member of a class template
2189  // or class template partial specialization, we may need to rebuild the
2190  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
2191  // for more information.
2192  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
2193  // handle expressions properly.
2194  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
2195  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
2196      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
2197      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
2198       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
2199       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
2200       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
2201    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
2202      // FIXME: Preserve type source info.
2203      QualType T = GetTypeFromParser(DS.getTypeRep());
2204
2205      DeclContext *SavedContext = CurContext;
2206      CurContext = DC;
2207      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
2208      CurContext = SavedContext;
2209
2210      if (T.isNull())
2211        return DeclPtrTy();
2212      DS.UpdateTypeRep(T.getAsOpaquePtr());
2213    }
2214  }
2215
2216  DeclContext *DC;
2217  NamedDecl *New;
2218
2219  TypeSourceInfo *TInfo = 0;
2220  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2221
2222  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2223                        ForRedeclaration);
2224
2225  // See if this is a redefinition of a variable in the same scope.
2226  if (D.getCXXScopeSpec().isInvalid()) {
2227    DC = CurContext;
2228    D.setInvalidType();
2229  } else if (!D.getCXXScopeSpec().isSet()) {
2230    bool IsLinkageLookup = false;
2231
2232    // If the declaration we're planning to build will be a function
2233    // or object with linkage, then look for another declaration with
2234    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2235    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2236      /* Do nothing*/;
2237    else if (R->isFunctionType()) {
2238      if (CurContext->isFunctionOrMethod() ||
2239          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2240        IsLinkageLookup = true;
2241    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2242      IsLinkageLookup = true;
2243    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2244             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2245      IsLinkageLookup = true;
2246
2247    if (IsLinkageLookup)
2248      Previous.clear(LookupRedeclarationWithLinkage);
2249
2250    DC = CurContext;
2251    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2252  } else { // Something like "int foo::x;"
2253    DC = computeDeclContext(D.getCXXScopeSpec(), true);
2254
2255    if (!DC) {
2256      // If we could not compute the declaration context, it's because the
2257      // declaration context is dependent but does not refer to a class,
2258      // class template, or class template partial specialization. Complain
2259      // and return early, to avoid the coming semantic disaster.
2260      Diag(D.getIdentifierLoc(),
2261           diag::err_template_qualified_declarator_no_match)
2262        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2263        << D.getCXXScopeSpec().getRange();
2264      return DeclPtrTy();
2265    }
2266
2267    if (!DC->isDependentContext() &&
2268        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2269      return DeclPtrTy();
2270
2271    LookupQualifiedName(Previous, DC);
2272
2273    // Don't consider using declarations as previous declarations for
2274    // out-of-line members.
2275    RemoveUsingDecls(Previous);
2276
2277    // C++ 7.3.1.2p2:
2278    // Members (including explicit specializations of templates) of a named
2279    // namespace can also be defined outside that namespace by explicit
2280    // qualification of the name being defined, provided that the entity being
2281    // defined was already declared in the namespace and the definition appears
2282    // after the point of declaration in a namespace that encloses the
2283    // declarations namespace.
2284    //
2285    // Note that we only check the context at this point. We don't yet
2286    // have enough information to make sure that PrevDecl is actually
2287    // the declaration we want to match. For example, given:
2288    //
2289    //   class X {
2290    //     void f();
2291    //     void f(float);
2292    //   };
2293    //
2294    //   void X::f(int) { } // ill-formed
2295    //
2296    // In this case, PrevDecl will point to the overload set
2297    // containing the two f's declared in X, but neither of them
2298    // matches.
2299
2300    // First check whether we named the global scope.
2301    if (isa<TranslationUnitDecl>(DC)) {
2302      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2303        << Name << D.getCXXScopeSpec().getRange();
2304    } else {
2305      DeclContext *Cur = CurContext;
2306      while (isa<LinkageSpecDecl>(Cur))
2307        Cur = Cur->getParent();
2308      if (!Cur->Encloses(DC)) {
2309        // The qualifying scope doesn't enclose the original declaration.
2310        // Emit diagnostic based on current scope.
2311        SourceLocation L = D.getIdentifierLoc();
2312        SourceRange R = D.getCXXScopeSpec().getRange();
2313        if (isa<FunctionDecl>(Cur))
2314          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2315        else
2316          Diag(L, diag::err_invalid_declarator_scope)
2317            << Name << cast<NamedDecl>(DC) << R;
2318        D.setInvalidType();
2319      }
2320    }
2321  }
2322
2323  if (Previous.isSingleResult() &&
2324      Previous.getFoundDecl()->isTemplateParameter()) {
2325    // Maybe we will complain about the shadowed template parameter.
2326    if (!D.isInvalidType())
2327      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2328                                          Previous.getFoundDecl()))
2329        D.setInvalidType();
2330
2331    // Just pretend that we didn't see the previous declaration.
2332    Previous.clear();
2333  }
2334
2335  // In C++, the previous declaration we find might be a tag type
2336  // (class or enum). In this case, the new declaration will hide the
2337  // tag type. Note that this does does not apply if we're declaring a
2338  // typedef (C++ [dcl.typedef]p4).
2339  if (Previous.isSingleTagDecl() &&
2340      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2341    Previous.clear();
2342
2343  bool Redeclaration = false;
2344  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2345    if (TemplateParamLists.size()) {
2346      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2347      return DeclPtrTy();
2348    }
2349
2350    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2351  } else if (R->isFunctionType()) {
2352    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2353                                  move(TemplateParamLists),
2354                                  IsFunctionDefinition, Redeclaration);
2355  } else {
2356    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2357                                  move(TemplateParamLists),
2358                                  Redeclaration);
2359  }
2360
2361  if (New == 0)
2362    return DeclPtrTy();
2363
2364  // If this has an identifier and is not an invalid redeclaration or
2365  // function template specialization, add it to the scope stack.
2366  if (Name && !(Redeclaration && New->isInvalidDecl()))
2367    PushOnScopeChains(New, S);
2368
2369  return DeclPtrTy::make(New);
2370}
2371
2372/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2373/// types into constant array types in certain situations which would otherwise
2374/// be errors (for GCC compatibility).
2375static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2376                                                    ASTContext &Context,
2377                                                    bool &SizeIsNegative) {
2378  // This method tries to turn a variable array into a constant
2379  // array even when the size isn't an ICE.  This is necessary
2380  // for compatibility with code that depends on gcc's buggy
2381  // constant expression folding, like struct {char x[(int)(char*)2];}
2382  SizeIsNegative = false;
2383
2384  QualifierCollector Qs;
2385  const Type *Ty = Qs.strip(T);
2386
2387  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2388    QualType Pointee = PTy->getPointeeType();
2389    QualType FixedType =
2390        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2391    if (FixedType.isNull()) return FixedType;
2392    FixedType = Context.getPointerType(FixedType);
2393    return Qs.apply(FixedType);
2394  }
2395
2396  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2397  if (!VLATy)
2398    return QualType();
2399  // FIXME: We should probably handle this case
2400  if (VLATy->getElementType()->isVariablyModifiedType())
2401    return QualType();
2402
2403  Expr::EvalResult EvalResult;
2404  if (!VLATy->getSizeExpr() ||
2405      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2406      !EvalResult.Val.isInt())
2407    return QualType();
2408
2409  llvm::APSInt &Res = EvalResult.Val.getInt();
2410  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2411    // TODO: preserve the size expression in declarator info
2412    return Context.getConstantArrayType(VLATy->getElementType(),
2413                                        Res, ArrayType::Normal, 0);
2414  }
2415
2416  SizeIsNegative = true;
2417  return QualType();
2418}
2419
2420/// \brief Register the given locally-scoped external C declaration so
2421/// that it can be found later for redeclarations
2422void
2423Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2424                                       const LookupResult &Previous,
2425                                       Scope *S) {
2426  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2427         "Decl is not a locally-scoped decl!");
2428  // Note that we have a locally-scoped external with this name.
2429  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2430
2431  if (!Previous.isSingleResult())
2432    return;
2433
2434  NamedDecl *PrevDecl = Previous.getFoundDecl();
2435
2436  // If there was a previous declaration of this variable, it may be
2437  // in our identifier chain. Update the identifier chain with the new
2438  // declaration.
2439  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2440    // The previous declaration was found on the identifer resolver
2441    // chain, so remove it from its scope.
2442    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2443      S = S->getParent();
2444
2445    if (S)
2446      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2447  }
2448}
2449
2450/// \brief Diagnose function specifiers on a declaration of an identifier that
2451/// does not identify a function.
2452void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2453  // FIXME: We should probably indicate the identifier in question to avoid
2454  // confusion for constructs like "inline int a(), b;"
2455  if (D.getDeclSpec().isInlineSpecified())
2456    Diag(D.getDeclSpec().getInlineSpecLoc(),
2457         diag::err_inline_non_function);
2458
2459  if (D.getDeclSpec().isVirtualSpecified())
2460    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2461         diag::err_virtual_non_function);
2462
2463  if (D.getDeclSpec().isExplicitSpecified())
2464    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2465         diag::err_explicit_non_function);
2466}
2467
2468NamedDecl*
2469Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2470                             QualType R,  TypeSourceInfo *TInfo,
2471                             LookupResult &Previous, bool &Redeclaration) {
2472  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2473  if (D.getCXXScopeSpec().isSet()) {
2474    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2475      << D.getCXXScopeSpec().getRange();
2476    D.setInvalidType();
2477    // Pretend we didn't see the scope specifier.
2478    DC = 0;
2479  }
2480
2481  if (getLangOptions().CPlusPlus) {
2482    // Check that there are no default arguments (C++ only).
2483    CheckExtraCXXDefaultArguments(D);
2484  }
2485
2486  DiagnoseFunctionSpecifiers(D);
2487
2488  if (D.getDeclSpec().isThreadSpecified())
2489    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2490
2491  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2492  if (!NewTD) return 0;
2493
2494  // Handle attributes prior to checking for duplicates in MergeVarDecl
2495  ProcessDeclAttributes(S, NewTD, D);
2496
2497  // Merge the decl with the existing one if appropriate. If the decl is
2498  // in an outer scope, it isn't the same thing.
2499  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2500  if (!Previous.empty()) {
2501    Redeclaration = true;
2502    MergeTypeDefDecl(NewTD, Previous);
2503  }
2504
2505  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2506  // then it shall have block scope.
2507  QualType T = NewTD->getUnderlyingType();
2508  if (T->isVariablyModifiedType()) {
2509    CurFunctionNeedsScopeChecking = true;
2510
2511    if (S->getFnParent() == 0) {
2512      bool SizeIsNegative;
2513      QualType FixedTy =
2514          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2515      if (!FixedTy.isNull()) {
2516        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2517        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2518      } else {
2519        if (SizeIsNegative)
2520          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2521        else if (T->isVariableArrayType())
2522          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2523        else
2524          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2525        NewTD->setInvalidDecl();
2526      }
2527    }
2528  }
2529
2530  // If this is the C FILE type, notify the AST context.
2531  if (IdentifierInfo *II = NewTD->getIdentifier())
2532    if (!NewTD->isInvalidDecl() &&
2533        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2534      if (II->isStr("FILE"))
2535        Context.setFILEDecl(NewTD);
2536      else if (II->isStr("jmp_buf"))
2537        Context.setjmp_bufDecl(NewTD);
2538      else if (II->isStr("sigjmp_buf"))
2539        Context.setsigjmp_bufDecl(NewTD);
2540    }
2541
2542  return NewTD;
2543}
2544
2545/// \brief Determines whether the given declaration is an out-of-scope
2546/// previous declaration.
2547///
2548/// This routine should be invoked when name lookup has found a
2549/// previous declaration (PrevDecl) that is not in the scope where a
2550/// new declaration by the same name is being introduced. If the new
2551/// declaration occurs in a local scope, previous declarations with
2552/// linkage may still be considered previous declarations (C99
2553/// 6.2.2p4-5, C++ [basic.link]p6).
2554///
2555/// \param PrevDecl the previous declaration found by name
2556/// lookup
2557///
2558/// \param DC the context in which the new declaration is being
2559/// declared.
2560///
2561/// \returns true if PrevDecl is an out-of-scope previous declaration
2562/// for a new delcaration with the same name.
2563static bool
2564isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2565                                ASTContext &Context) {
2566  if (!PrevDecl)
2567    return 0;
2568
2569  if (!PrevDecl->hasLinkage())
2570    return false;
2571
2572  if (Context.getLangOptions().CPlusPlus) {
2573    // C++ [basic.link]p6:
2574    //   If there is a visible declaration of an entity with linkage
2575    //   having the same name and type, ignoring entities declared
2576    //   outside the innermost enclosing namespace scope, the block
2577    //   scope declaration declares that same entity and receives the
2578    //   linkage of the previous declaration.
2579    DeclContext *OuterContext = DC->getLookupContext();
2580    if (!OuterContext->isFunctionOrMethod())
2581      // This rule only applies to block-scope declarations.
2582      return false;
2583    else {
2584      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2585      if (PrevOuterContext->isRecord())
2586        // We found a member function: ignore it.
2587        return false;
2588      else {
2589        // Find the innermost enclosing namespace for the new and
2590        // previous declarations.
2591        while (!OuterContext->isFileContext())
2592          OuterContext = OuterContext->getParent();
2593        while (!PrevOuterContext->isFileContext())
2594          PrevOuterContext = PrevOuterContext->getParent();
2595
2596        // The previous declaration is in a different namespace, so it
2597        // isn't the same function.
2598        if (OuterContext->getPrimaryContext() !=
2599            PrevOuterContext->getPrimaryContext())
2600          return false;
2601      }
2602    }
2603  }
2604
2605  return true;
2606}
2607
2608NamedDecl*
2609Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2610                              QualType R, TypeSourceInfo *TInfo,
2611                              LookupResult &Previous,
2612                              MultiTemplateParamsArg TemplateParamLists,
2613                              bool &Redeclaration) {
2614  DeclarationName Name = GetNameForDeclarator(D);
2615
2616  // Check that there are no default arguments (C++ only).
2617  if (getLangOptions().CPlusPlus)
2618    CheckExtraCXXDefaultArguments(D);
2619
2620  VarDecl *NewVD;
2621  VarDecl::StorageClass SC;
2622  switch (D.getDeclSpec().getStorageClassSpec()) {
2623  default: assert(0 && "Unknown storage class!");
2624  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2625  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2626  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2627  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2628  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2629  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2630  case DeclSpec::SCS_mutable:
2631    // mutable can only appear on non-static class members, so it's always
2632    // an error here
2633    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2634    D.setInvalidType();
2635    SC = VarDecl::None;
2636    break;
2637  }
2638
2639  IdentifierInfo *II = Name.getAsIdentifierInfo();
2640  if (!II) {
2641    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2642      << Name.getAsString();
2643    return 0;
2644  }
2645
2646  DiagnoseFunctionSpecifiers(D);
2647
2648  if (!DC->isRecord() && S->getFnParent() == 0) {
2649    // C99 6.9p2: The storage-class specifiers auto and register shall not
2650    // appear in the declaration specifiers in an external declaration.
2651    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2652
2653      // If this is a register variable with an asm label specified, then this
2654      // is a GNU extension.
2655      if (SC == VarDecl::Register && D.getAsmLabel())
2656        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2657      else
2658        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2659      D.setInvalidType();
2660    }
2661  }
2662  if (DC->isRecord() && !CurContext->isRecord()) {
2663    // This is an out-of-line definition of a static data member.
2664    if (SC == VarDecl::Static) {
2665      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2666           diag::err_static_out_of_line)
2667        << CodeModificationHint::CreateRemoval(
2668                                      D.getDeclSpec().getStorageClassSpecLoc());
2669    } else if (SC == VarDecl::None)
2670      SC = VarDecl::Static;
2671  }
2672  if (SC == VarDecl::Static) {
2673    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2674      if (RD->isLocalClass())
2675        Diag(D.getIdentifierLoc(),
2676             diag::err_static_data_member_not_allowed_in_local_class)
2677          << Name << RD->getDeclName();
2678    }
2679  }
2680
2681  // Match up the template parameter lists with the scope specifier, then
2682  // determine whether we have a template or a template specialization.
2683  bool isExplicitSpecialization = false;
2684  if (TemplateParameterList *TemplateParams
2685        = MatchTemplateParametersToScopeSpecifier(
2686                                  D.getDeclSpec().getSourceRange().getBegin(),
2687                                                  D.getCXXScopeSpec(),
2688                        (TemplateParameterList**)TemplateParamLists.get(),
2689                                                   TemplateParamLists.size(),
2690                                                  isExplicitSpecialization)) {
2691    if (TemplateParams->size() > 0) {
2692      // There is no such thing as a variable template.
2693      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2694        << II
2695        << SourceRange(TemplateParams->getTemplateLoc(),
2696                       TemplateParams->getRAngleLoc());
2697      return 0;
2698    } else {
2699      // There is an extraneous 'template<>' for this variable. Complain
2700      // about it, but allow the declaration of the variable.
2701      Diag(TemplateParams->getTemplateLoc(),
2702           diag::err_template_variable_noparams)
2703        << II
2704        << SourceRange(TemplateParams->getTemplateLoc(),
2705                       TemplateParams->getRAngleLoc());
2706
2707      isExplicitSpecialization = true;
2708    }
2709  }
2710
2711  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2712                          II, R, TInfo, SC);
2713
2714  if (D.isInvalidType())
2715    NewVD->setInvalidDecl();
2716
2717  if (D.getDeclSpec().isThreadSpecified()) {
2718    if (NewVD->hasLocalStorage())
2719      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2720    else if (!Context.Target.isTLSSupported())
2721      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2722    else
2723      NewVD->setThreadSpecified(true);
2724  }
2725
2726  // Set the lexical context. If the declarator has a C++ scope specifier, the
2727  // lexical context will be different from the semantic context.
2728  NewVD->setLexicalDeclContext(CurContext);
2729
2730  // Handle attributes prior to checking for duplicates in MergeVarDecl
2731  ProcessDeclAttributes(S, NewVD, D);
2732
2733  // Handle GNU asm-label extension (encoded as an attribute).
2734  if (Expr *E = (Expr*) D.getAsmLabel()) {
2735    // The parser guarantees this is a string.
2736    StringLiteral *SE = cast<StringLiteral>(E);
2737    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2738  }
2739
2740  // Don't consider existing declarations that are in a different
2741  // scope and are out-of-semantic-context declarations (if the new
2742  // declaration has linkage).
2743  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2744
2745  // Merge the decl with the existing one if appropriate.
2746  if (!Previous.empty()) {
2747    if (Previous.isSingleResult() &&
2748        isa<FieldDecl>(Previous.getFoundDecl()) &&
2749        D.getCXXScopeSpec().isSet()) {
2750      // The user tried to define a non-static data member
2751      // out-of-line (C++ [dcl.meaning]p1).
2752      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2753        << D.getCXXScopeSpec().getRange();
2754      Previous.clear();
2755      NewVD->setInvalidDecl();
2756    }
2757  } else if (D.getCXXScopeSpec().isSet()) {
2758    // No previous declaration in the qualifying scope.
2759    Diag(D.getIdentifierLoc(), diag::err_no_member)
2760      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2761      << D.getCXXScopeSpec().getRange();
2762    NewVD->setInvalidDecl();
2763  }
2764
2765  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2766
2767  // This is an explicit specialization of a static data member. Check it.
2768  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2769      CheckMemberSpecialization(NewVD, Previous))
2770    NewVD->setInvalidDecl();
2771
2772  // attributes declared post-definition are currently ignored
2773  if (Previous.isSingleResult()) {
2774    const VarDecl *Def = 0;
2775    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2776    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2777      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2778      Diag(Def->getLocation(), diag::note_previous_definition);
2779    }
2780  }
2781
2782  // If this is a locally-scoped extern C variable, update the map of
2783  // such variables.
2784  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2785      !NewVD->isInvalidDecl())
2786    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2787
2788  return NewVD;
2789}
2790
2791/// \brief Perform semantic checking on a newly-created variable
2792/// declaration.
2793///
2794/// This routine performs all of the type-checking required for a
2795/// variable declaration once it has been built. It is used both to
2796/// check variables after they have been parsed and their declarators
2797/// have been translated into a declaration, and to check variables
2798/// that have been instantiated from a template.
2799///
2800/// Sets NewVD->isInvalidDecl() if an error was encountered.
2801void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2802                                    LookupResult &Previous,
2803                                    bool &Redeclaration) {
2804  // If the decl is already known invalid, don't check it.
2805  if (NewVD->isInvalidDecl())
2806    return;
2807
2808  QualType T = NewVD->getType();
2809
2810  if (T->isObjCInterfaceType()) {
2811    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2812    return NewVD->setInvalidDecl();
2813  }
2814
2815  // Emit an error if an address space was applied to decl with local storage.
2816  // This includes arrays of objects with address space qualifiers, but not
2817  // automatic variables that point to other address spaces.
2818  // ISO/IEC TR 18037 S5.1.2
2819  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2820    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2821    return NewVD->setInvalidDecl();
2822  }
2823
2824  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2825      && !NewVD->hasAttr<BlocksAttr>())
2826    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2827
2828  bool isVM = T->isVariablyModifiedType();
2829  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2830      NewVD->hasAttr<BlocksAttr>())
2831    CurFunctionNeedsScopeChecking = true;
2832
2833  if ((isVM && NewVD->hasLinkage()) ||
2834      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2835    bool SizeIsNegative;
2836    QualType FixedTy =
2837        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2838
2839    if (FixedTy.isNull() && T->isVariableArrayType()) {
2840      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2841      // FIXME: This won't give the correct result for
2842      // int a[10][n];
2843      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2844
2845      if (NewVD->isFileVarDecl())
2846        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2847        << SizeRange;
2848      else if (NewVD->getStorageClass() == VarDecl::Static)
2849        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2850        << SizeRange;
2851      else
2852        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2853        << SizeRange;
2854      return NewVD->setInvalidDecl();
2855    }
2856
2857    if (FixedTy.isNull()) {
2858      if (NewVD->isFileVarDecl())
2859        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2860      else
2861        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2862      return NewVD->setInvalidDecl();
2863    }
2864
2865    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2866    NewVD->setType(FixedTy);
2867  }
2868
2869  if (Previous.empty() && NewVD->isExternC()) {
2870    // Since we did not find anything by this name and we're declaring
2871    // an extern "C" variable, look for a non-visible extern "C"
2872    // declaration with the same name.
2873    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2874      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2875    if (Pos != LocallyScopedExternalDecls.end())
2876      Previous.addDecl(Pos->second);
2877  }
2878
2879  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2880    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2881      << T;
2882    return NewVD->setInvalidDecl();
2883  }
2884
2885  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2886    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2887    return NewVD->setInvalidDecl();
2888  }
2889
2890  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2891    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2892    return NewVD->setInvalidDecl();
2893  }
2894
2895  if (!Previous.empty()) {
2896    Redeclaration = true;
2897    MergeVarDecl(NewVD, Previous);
2898  }
2899}
2900
2901/// \brief Data used with FindOverriddenMethod
2902struct FindOverriddenMethodData {
2903  Sema *S;
2904  CXXMethodDecl *Method;
2905};
2906
2907/// \brief Member lookup function that determines whether a given C++
2908/// method overrides a method in a base class, to be used with
2909/// CXXRecordDecl::lookupInBases().
2910static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2911                                 CXXBasePath &Path,
2912                                 void *UserData) {
2913  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2914
2915  FindOverriddenMethodData *Data
2916    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2917
2918  DeclarationName Name = Data->Method->getDeclName();
2919
2920  // FIXME: Do we care about other names here too?
2921  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2922    // We really want to find the base class constructor here.
2923    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2924    CanQualType CT = Data->S->Context.getCanonicalType(T);
2925
2926    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2927  }
2928
2929  for (Path.Decls = BaseRecord->lookup(Name);
2930       Path.Decls.first != Path.Decls.second;
2931       ++Path.Decls.first) {
2932    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2933      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2934        return true;
2935    }
2936  }
2937
2938  return false;
2939}
2940
2941/// AddOverriddenMethods - See if a method overrides any in the base classes,
2942/// and if so, check that it's a valid override and remember it.
2943void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2944  // Look for virtual methods in base classes that this method might override.
2945  CXXBasePaths Paths;
2946  FindOverriddenMethodData Data;
2947  Data.Method = MD;
2948  Data.S = this;
2949  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2950    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2951         E = Paths.found_decls_end(); I != E; ++I) {
2952      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2953        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2954            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2955            !CheckOverridingFunctionAttributes(MD, OldMD))
2956          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2957      }
2958    }
2959  }
2960}
2961
2962NamedDecl*
2963Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2964                              QualType R, TypeSourceInfo *TInfo,
2965                              LookupResult &Previous,
2966                              MultiTemplateParamsArg TemplateParamLists,
2967                              bool IsFunctionDefinition, bool &Redeclaration) {
2968  assert(R.getTypePtr()->isFunctionType());
2969
2970  DeclarationName Name = GetNameForDeclarator(D);
2971  FunctionDecl::StorageClass SC = FunctionDecl::None;
2972  switch (D.getDeclSpec().getStorageClassSpec()) {
2973  default: assert(0 && "Unknown storage class!");
2974  case DeclSpec::SCS_auto:
2975  case DeclSpec::SCS_register:
2976  case DeclSpec::SCS_mutable:
2977    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2978         diag::err_typecheck_sclass_func);
2979    D.setInvalidType();
2980    break;
2981  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2982  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2983  case DeclSpec::SCS_static: {
2984    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2985      // C99 6.7.1p5:
2986      //   The declaration of an identifier for a function that has
2987      //   block scope shall have no explicit storage-class specifier
2988      //   other than extern
2989      // See also (C++ [dcl.stc]p4).
2990      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2991           diag::err_static_block_func);
2992      SC = FunctionDecl::None;
2993    } else
2994      SC = FunctionDecl::Static;
2995    break;
2996  }
2997  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2998  }
2999
3000  if (D.getDeclSpec().isThreadSpecified())
3001    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3002
3003  bool isFriend = D.getDeclSpec().isFriendSpecified();
3004  bool isInline = D.getDeclSpec().isInlineSpecified();
3005  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3006  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3007
3008  // Check that the return type is not an abstract class type.
3009  // For record types, this is done by the AbstractClassUsageDiagnoser once
3010  // the class has been completely parsed.
3011  if (!DC->isRecord() &&
3012      RequireNonAbstractType(D.getIdentifierLoc(),
3013                             R->getAs<FunctionType>()->getResultType(),
3014                             diag::err_abstract_type_in_decl,
3015                             AbstractReturnType))
3016    D.setInvalidType();
3017
3018  // Do not allow returning a objc interface by-value.
3019  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
3020    Diag(D.getIdentifierLoc(),
3021         diag::err_object_cannot_be_passed_returned_by_value) << 0
3022      << R->getAs<FunctionType>()->getResultType();
3023    D.setInvalidType();
3024  }
3025
3026  bool isVirtualOkay = false;
3027  FunctionDecl *NewFD;
3028
3029  if (isFriend) {
3030    // C++ [class.friend]p5
3031    //   A function can be defined in a friend declaration of a
3032    //   class . . . . Such a function is implicitly inline.
3033    isInline |= IsFunctionDefinition;
3034  }
3035
3036  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3037    // This is a C++ constructor declaration.
3038    assert(DC->isRecord() &&
3039           "Constructors can only be declared in a member context");
3040
3041    R = CheckConstructorDeclarator(D, R, SC);
3042
3043    // Create the new declaration
3044    NewFD = CXXConstructorDecl::Create(Context,
3045                                       cast<CXXRecordDecl>(DC),
3046                                       D.getIdentifierLoc(), Name, R, TInfo,
3047                                       isExplicit, isInline,
3048                                       /*isImplicitlyDeclared=*/false);
3049  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3050    // This is a C++ destructor declaration.
3051    if (DC->isRecord()) {
3052      R = CheckDestructorDeclarator(D, SC);
3053
3054      NewFD = CXXDestructorDecl::Create(Context,
3055                                        cast<CXXRecordDecl>(DC),
3056                                        D.getIdentifierLoc(), Name, R,
3057                                        isInline,
3058                                        /*isImplicitlyDeclared=*/false);
3059
3060      isVirtualOkay = true;
3061    } else {
3062      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3063
3064      // Create a FunctionDecl to satisfy the function definition parsing
3065      // code path.
3066      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3067                                   Name, R, TInfo, SC, isInline,
3068                                   /*hasPrototype=*/true);
3069      D.setInvalidType();
3070    }
3071  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3072    if (!DC->isRecord()) {
3073      Diag(D.getIdentifierLoc(),
3074           diag::err_conv_function_not_member);
3075      return 0;
3076    }
3077
3078    CheckConversionDeclarator(D, R, SC);
3079    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3080                                      D.getIdentifierLoc(), Name, R, TInfo,
3081                                      isInline, isExplicit);
3082
3083    isVirtualOkay = true;
3084  } else if (DC->isRecord()) {
3085    // If the of the function is the same as the name of the record, then this
3086    // must be an invalid constructor that has a return type.
3087    // (The parser checks for a return type and makes the declarator a
3088    // constructor if it has no return type).
3089    // must have an invalid constructor that has a return type
3090    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3091      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3092        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3093        << SourceRange(D.getIdentifierLoc());
3094      return 0;
3095    }
3096
3097    bool isStatic = SC == FunctionDecl::Static;
3098
3099    // [class.free]p1:
3100    // Any allocation function for a class T is a static member
3101    // (even if not explicitly declared static).
3102    if (Name.getCXXOverloadedOperator() == OO_New ||
3103        Name.getCXXOverloadedOperator() == OO_Array_New)
3104      isStatic = true;
3105
3106    // [class.free]p6 Any deallocation function for a class X is a static member
3107    // (even if not explicitly declared static).
3108    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3109        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3110      isStatic = true;
3111
3112    // This is a C++ method declaration.
3113    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3114                                  D.getIdentifierLoc(), Name, R, TInfo,
3115                                  isStatic, isInline);
3116
3117    isVirtualOkay = !isStatic;
3118  } else {
3119    // Determine whether the function was written with a
3120    // prototype. This true when:
3121    //   - we're in C++ (where every function has a prototype),
3122    //   - there is a prototype in the declarator, or
3123    //   - the type R of the function is some kind of typedef or other reference
3124    //     to a type name (which eventually refers to a function type).
3125    bool HasPrototype =
3126       getLangOptions().CPlusPlus ||
3127       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3128       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3129
3130    NewFD = FunctionDecl::Create(Context, DC,
3131                                 D.getIdentifierLoc(),
3132                                 Name, R, TInfo, SC, isInline, HasPrototype);
3133  }
3134
3135  if (D.isInvalidType())
3136    NewFD->setInvalidDecl();
3137
3138  // Set the lexical context. If the declarator has a C++
3139  // scope specifier, or is the object of a friend declaration, the
3140  // lexical context will be different from the semantic context.
3141  NewFD->setLexicalDeclContext(CurContext);
3142
3143  // Match up the template parameter lists with the scope specifier, then
3144  // determine whether we have a template or a template specialization.
3145  FunctionTemplateDecl *FunctionTemplate = 0;
3146  bool isExplicitSpecialization = false;
3147  bool isFunctionTemplateSpecialization = false;
3148  if (TemplateParameterList *TemplateParams
3149        = MatchTemplateParametersToScopeSpecifier(
3150                                  D.getDeclSpec().getSourceRange().getBegin(),
3151                                  D.getCXXScopeSpec(),
3152                           (TemplateParameterList**)TemplateParamLists.get(),
3153                                                  TemplateParamLists.size(),
3154                                                  isExplicitSpecialization)) {
3155    if (TemplateParams->size() > 0) {
3156      // This is a function template
3157
3158      // Check that we can declare a template here.
3159      if (CheckTemplateDeclScope(S, TemplateParams))
3160        return 0;
3161
3162      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3163                                                      NewFD->getLocation(),
3164                                                      Name, TemplateParams,
3165                                                      NewFD);
3166      FunctionTemplate->setLexicalDeclContext(CurContext);
3167      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3168    } else {
3169      // This is a function template specialization.
3170      isFunctionTemplateSpecialization = true;
3171    }
3172
3173    // FIXME: Free this memory properly.
3174    TemplateParamLists.release();
3175  }
3176
3177  // C++ [dcl.fct.spec]p5:
3178  //   The virtual specifier shall only be used in declarations of
3179  //   nonstatic class member functions that appear within a
3180  //   member-specification of a class declaration; see 10.3.
3181  //
3182  if (isVirtual && !NewFD->isInvalidDecl()) {
3183    if (!isVirtualOkay) {
3184       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3185           diag::err_virtual_non_function);
3186    } else if (!CurContext->isRecord()) {
3187      // 'virtual' was specified outside of the class.
3188      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3189        << CodeModificationHint::CreateRemoval(
3190                                           D.getDeclSpec().getVirtualSpecLoc());
3191    } else {
3192      // Okay: Add virtual to the method.
3193      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3194      CurClass->setMethodAsVirtual(NewFD);
3195    }
3196  }
3197
3198  // Filter out previous declarations that don't match the scope.
3199  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3200
3201  if (isFriend) {
3202    // DC is the namespace in which the function is being declared.
3203    assert((DC->isFileContext() || !Previous.empty()) &&
3204           "previously-undeclared friend function being created "
3205           "in a non-namespace context");
3206
3207    if (FunctionTemplate) {
3208      FunctionTemplate->setObjectOfFriendDecl(
3209                                   /* PreviouslyDeclared= */ !Previous.empty());
3210      FunctionTemplate->setAccess(AS_public);
3211    }
3212    else
3213      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
3214
3215    NewFD->setAccess(AS_public);
3216  }
3217
3218  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3219      !CurContext->isRecord()) {
3220    // C++ [class.static]p1:
3221    //   A data or function member of a class may be declared static
3222    //   in a class definition, in which case it is a static member of
3223    //   the class.
3224
3225    // Complain about the 'static' specifier if it's on an out-of-line
3226    // member function definition.
3227    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3228         diag::err_static_out_of_line)
3229      << CodeModificationHint::CreateRemoval(
3230                                      D.getDeclSpec().getStorageClassSpecLoc());
3231  }
3232
3233  // Handle GNU asm-label extension (encoded as an attribute).
3234  if (Expr *E = (Expr*) D.getAsmLabel()) {
3235    // The parser guarantees this is a string.
3236    StringLiteral *SE = cast<StringLiteral>(E);
3237    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
3238  }
3239
3240  // Copy the parameter declarations from the declarator D to the function
3241  // declaration NewFD, if they are available.  First scavenge them into Params.
3242  llvm::SmallVector<ParmVarDecl*, 16> Params;
3243  if (D.getNumTypeObjects() > 0) {
3244    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3245
3246    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3247    // function that takes no arguments, not a function that takes a
3248    // single void argument.
3249    // We let through "const void" here because Sema::GetTypeForDeclarator
3250    // already checks for that case.
3251    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3252        FTI.ArgInfo[0].Param &&
3253        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3254      // Empty arg list, don't push any params.
3255      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3256
3257      // In C++, the empty parameter-type-list must be spelled "void"; a
3258      // typedef of void is not permitted.
3259      if (getLangOptions().CPlusPlus &&
3260          Param->getType().getUnqualifiedType() != Context.VoidTy)
3261        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3262      // FIXME: Leaks decl?
3263    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3264      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3265        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3266        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3267        Param->setDeclContext(NewFD);
3268        Params.push_back(Param);
3269      }
3270    }
3271
3272  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3273    // When we're declaring a function with a typedef, typeof, etc as in the
3274    // following example, we'll need to synthesize (unnamed)
3275    // parameters for use in the declaration.
3276    //
3277    // @code
3278    // typedef void fn(int);
3279    // fn f;
3280    // @endcode
3281
3282    // Synthesize a parameter for each argument type.
3283    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3284         AE = FT->arg_type_end(); AI != AE; ++AI) {
3285      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3286                                               SourceLocation(), 0,
3287                                               *AI, /*TInfo=*/0,
3288                                               VarDecl::None, 0);
3289      Param->setImplicit();
3290      Params.push_back(Param);
3291    }
3292  } else {
3293    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3294           "Should not need args for typedef of non-prototype fn");
3295  }
3296  // Finally, we know we have the right number of parameters, install them.
3297  NewFD->setParams(Context, Params.data(), Params.size());
3298
3299  // If the declarator is a template-id, translate the parser's template
3300  // argument list into our AST format.
3301  bool HasExplicitTemplateArgs = false;
3302  TemplateArgumentListInfo TemplateArgs;
3303  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3304    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3305    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3306    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3307    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3308                                       TemplateId->getTemplateArgs(),
3309                                       TemplateId->NumArgs);
3310    translateTemplateArguments(TemplateArgsPtr,
3311                               TemplateArgs);
3312    TemplateArgsPtr.release();
3313
3314    HasExplicitTemplateArgs = true;
3315
3316    if (FunctionTemplate) {
3317      // FIXME: Diagnose function template with explicit template
3318      // arguments.
3319      HasExplicitTemplateArgs = false;
3320    } else if (!isFunctionTemplateSpecialization &&
3321               !D.getDeclSpec().isFriendSpecified()) {
3322      // We have encountered something that the user meant to be a
3323      // specialization (because it has explicitly-specified template
3324      // arguments) but that was not introduced with a "template<>" (or had
3325      // too few of them).
3326      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3327        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3328        << CodeModificationHint::CreateInsertion(
3329                                   D.getDeclSpec().getSourceRange().getBegin(),
3330                                                 "template<> ");
3331      isFunctionTemplateSpecialization = true;
3332    }
3333  }
3334
3335  if (isFunctionTemplateSpecialization) {
3336      if (CheckFunctionTemplateSpecialization(NewFD,
3337                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3338                                              Previous))
3339        NewFD->setInvalidDecl();
3340  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3341             CheckMemberSpecialization(NewFD, Previous))
3342    NewFD->setInvalidDecl();
3343
3344  // Perform semantic checking on the function declaration.
3345  bool OverloadableAttrRequired = false; // FIXME: HACK!
3346  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3347                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3348
3349  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3350          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3351         "previous declaration set still overloaded");
3352
3353  // If we have a function template, check the template parameter
3354  // list. This will check and merge default template arguments.
3355  if (FunctionTemplate) {
3356    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3357    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3358                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3359             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3360                                                : TPC_FunctionTemplate);
3361  }
3362
3363  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3364    // An out-of-line member function declaration must also be a
3365    // definition (C++ [dcl.meaning]p1).
3366    // Note that this is not the case for explicit specializations of
3367    // function templates or member functions of class templates, per
3368    // C++ [temp.expl.spec]p2.
3369    if (!IsFunctionDefinition && !isFriend &&
3370        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3371      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3372        << D.getCXXScopeSpec().getRange();
3373      NewFD->setInvalidDecl();
3374    } else if (!Redeclaration &&
3375               !(isFriend && CurContext->isDependentContext())) {
3376      // The user tried to provide an out-of-line definition for a
3377      // function that is a member of a class or namespace, but there
3378      // was no such member function declared (C++ [class.mfct]p2,
3379      // C++ [namespace.memdef]p2). For example:
3380      //
3381      // class X {
3382      //   void f() const;
3383      // };
3384      //
3385      // void X::f() { } // ill-formed
3386      //
3387      // Complain about this problem, and attempt to suggest close
3388      // matches (e.g., those that differ only in cv-qualifiers and
3389      // whether the parameter types are references).
3390      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3391        << Name << DC << D.getCXXScopeSpec().getRange();
3392      NewFD->setInvalidDecl();
3393
3394      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3395                        ForRedeclaration);
3396      LookupQualifiedName(Prev, DC);
3397      assert(!Prev.isAmbiguous() &&
3398             "Cannot have an ambiguity in previous-declaration lookup");
3399      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3400           Func != FuncEnd; ++Func) {
3401        if (isa<FunctionDecl>(*Func) &&
3402            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3403          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3404      }
3405    }
3406  }
3407
3408  // Handle attributes. We need to have merged decls when handling attributes
3409  // (for example to check for conflicts, etc).
3410  // FIXME: This needs to happen before we merge declarations. Then,
3411  // let attribute merging cope with attribute conflicts.
3412  ProcessDeclAttributes(S, NewFD, D);
3413
3414  // attributes declared post-definition are currently ignored
3415  if (Redeclaration && Previous.isSingleResult()) {
3416    const FunctionDecl *Def;
3417    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3418    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3419      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3420      Diag(Def->getLocation(), diag::note_previous_definition);
3421    }
3422  }
3423
3424  AddKnownFunctionAttributes(NewFD);
3425
3426  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3427    // If a function name is overloadable in C, then every function
3428    // with that name must be marked "overloadable".
3429    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3430      << Redeclaration << NewFD;
3431    if (!Previous.empty())
3432      Diag(Previous.getRepresentativeDecl()->getLocation(),
3433           diag::note_attribute_overloadable_prev_overload);
3434    NewFD->addAttr(::new (Context) OverloadableAttr());
3435  }
3436
3437  // If this is a locally-scoped extern C function, update the
3438  // map of such names.
3439  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3440      && !NewFD->isInvalidDecl())
3441    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3442
3443  // Set this FunctionDecl's range up to the right paren.
3444  NewFD->setLocEnd(D.getSourceRange().getEnd());
3445
3446  if (FunctionTemplate && NewFD->isInvalidDecl())
3447    FunctionTemplate->setInvalidDecl();
3448
3449  if (FunctionTemplate)
3450    return FunctionTemplate;
3451
3452  return NewFD;
3453}
3454
3455/// \brief Perform semantic checking of a new function declaration.
3456///
3457/// Performs semantic analysis of the new function declaration
3458/// NewFD. This routine performs all semantic checking that does not
3459/// require the actual declarator involved in the declaration, and is
3460/// used both for the declaration of functions as they are parsed
3461/// (called via ActOnDeclarator) and for the declaration of functions
3462/// that have been instantiated via C++ template instantiation (called
3463/// via InstantiateDecl).
3464///
3465/// \param IsExplicitSpecialiation whether this new function declaration is
3466/// an explicit specialization of the previous declaration.
3467///
3468/// This sets NewFD->isInvalidDecl() to true if there was an error.
3469void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3470                                    LookupResult &Previous,
3471                                    bool IsExplicitSpecialization,
3472                                    bool &Redeclaration,
3473                                    bool &OverloadableAttrRequired) {
3474  // If NewFD is already known erroneous, don't do any of this checking.
3475  if (NewFD->isInvalidDecl())
3476    return;
3477
3478  if (NewFD->getResultType()->isVariablyModifiedType()) {
3479    // Functions returning a variably modified type violate C99 6.7.5.2p2
3480    // because all functions have linkage.
3481    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3482    return NewFD->setInvalidDecl();
3483  }
3484
3485  if (NewFD->isMain())
3486    CheckMain(NewFD);
3487
3488  // Check for a previous declaration of this name.
3489  if (Previous.empty() && NewFD->isExternC()) {
3490    // Since we did not find anything by this name and we're declaring
3491    // an extern "C" function, look for a non-visible extern "C"
3492    // declaration with the same name.
3493    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3494      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3495    if (Pos != LocallyScopedExternalDecls.end())
3496      Previous.addDecl(Pos->second);
3497  }
3498
3499  // Merge or overload the declaration with an existing declaration of
3500  // the same name, if appropriate.
3501  if (!Previous.empty()) {
3502    // Determine whether NewFD is an overload of PrevDecl or
3503    // a declaration that requires merging. If it's an overload,
3504    // there's no more work to do here; we'll just add the new
3505    // function to the scope.
3506
3507    NamedDecl *OldDecl = 0;
3508    if (!AllowOverloadingOfFunction(Previous, Context)) {
3509      Redeclaration = true;
3510      OldDecl = Previous.getFoundDecl();
3511    } else {
3512      if (!getLangOptions().CPlusPlus) {
3513        OverloadableAttrRequired = true;
3514
3515        // Functions marked "overloadable" must have a prototype (that
3516        // we can't get through declaration merging).
3517        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3518          Diag(NewFD->getLocation(),
3519               diag::err_attribute_overloadable_no_prototype)
3520            << NewFD;
3521          Redeclaration = true;
3522
3523          // Turn this into a variadic function with no parameters.
3524          QualType R = Context.getFunctionType(
3525                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3526                     0, 0, true, 0);
3527          NewFD->setType(R);
3528          return NewFD->setInvalidDecl();
3529        }
3530      }
3531
3532      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3533      case Ovl_Match:
3534        Redeclaration = true;
3535        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3536          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3537          Redeclaration = false;
3538        }
3539        break;
3540
3541      case Ovl_NonFunction:
3542        Redeclaration = true;
3543        break;
3544
3545      case Ovl_Overload:
3546        Redeclaration = false;
3547        break;
3548      }
3549    }
3550
3551    if (Redeclaration) {
3552      // NewFD and OldDecl represent declarations that need to be
3553      // merged.
3554      if (MergeFunctionDecl(NewFD, OldDecl))
3555        return NewFD->setInvalidDecl();
3556
3557      Previous.clear();
3558      Previous.addDecl(OldDecl);
3559
3560      if (FunctionTemplateDecl *OldTemplateDecl
3561                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3562        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3563        FunctionTemplateDecl *NewTemplateDecl
3564          = NewFD->getDescribedFunctionTemplate();
3565        assert(NewTemplateDecl && "Template/non-template mismatch");
3566        if (CXXMethodDecl *Method
3567              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3568          Method->setAccess(OldTemplateDecl->getAccess());
3569          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3570        }
3571
3572        // If this is an explicit specialization of a member that is a function
3573        // template, mark it as a member specialization.
3574        if (IsExplicitSpecialization &&
3575            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3576          NewTemplateDecl->setMemberSpecialization();
3577          assert(OldTemplateDecl->isMemberSpecialization());
3578        }
3579      } else {
3580        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3581          NewFD->setAccess(OldDecl->getAccess());
3582        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3583      }
3584    }
3585  }
3586
3587  // Semantic checking for this function declaration (in isolation).
3588  if (getLangOptions().CPlusPlus) {
3589    // C++-specific checks.
3590    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3591      CheckConstructor(Constructor);
3592    } else if (CXXDestructorDecl *Destructor =
3593                dyn_cast<CXXDestructorDecl>(NewFD)) {
3594      CXXRecordDecl *Record = Destructor->getParent();
3595      QualType ClassType = Context.getTypeDeclType(Record);
3596
3597      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3598      // type is dependent? Both gcc and edg can handle that.
3599      if (!ClassType->isDependentType()) {
3600        DeclarationName Name
3601          = Context.DeclarationNames.getCXXDestructorName(
3602                                        Context.getCanonicalType(ClassType));
3603        if (NewFD->getDeclName() != Name) {
3604          Diag(NewFD->getLocation(), diag::err_destructor_name);
3605          return NewFD->setInvalidDecl();
3606        }
3607      }
3608
3609      Record->setUserDeclaredDestructor(true);
3610      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3611      // user-defined destructor.
3612      Record->setPOD(false);
3613
3614      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3615      // declared destructor.
3616      // FIXME: C++0x: don't do this for "= default" destructors
3617      Record->setHasTrivialDestructor(false);
3618    } else if (CXXConversionDecl *Conversion
3619               = dyn_cast<CXXConversionDecl>(NewFD)) {
3620      ActOnConversionDeclarator(Conversion);
3621    }
3622
3623    // Find any virtual functions that this function overrides.
3624    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3625      if (!Method->isFunctionTemplateSpecialization() &&
3626          !Method->getDescribedFunctionTemplate())
3627        AddOverriddenMethods(Method->getParent(), Method);
3628    }
3629
3630    // Additional checks for the destructor; make sure we do this after we
3631    // figure out whether the destructor is virtual.
3632    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3633      if (!Destructor->getParent()->isDependentType())
3634        CheckDestructor(Destructor);
3635
3636    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3637    if (NewFD->isOverloadedOperator() &&
3638        CheckOverloadedOperatorDeclaration(NewFD))
3639      return NewFD->setInvalidDecl();
3640
3641    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3642    if (NewFD->getLiteralIdentifier() &&
3643        CheckLiteralOperatorDeclaration(NewFD))
3644      return NewFD->setInvalidDecl();
3645
3646    // In C++, check default arguments now that we have merged decls. Unless
3647    // the lexical context is the class, because in this case this is done
3648    // during delayed parsing anyway.
3649    if (!CurContext->isRecord())
3650      CheckCXXDefaultArguments(NewFD);
3651  }
3652}
3653
3654void Sema::CheckMain(FunctionDecl* FD) {
3655  // C++ [basic.start.main]p3:  A program that declares main to be inline
3656  //   or static is ill-formed.
3657  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3658  //   shall not appear in a declaration of main.
3659  // static main is not an error under C99, but we should warn about it.
3660  bool isInline = FD->isInlineSpecified();
3661  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3662  if (isInline || isStatic) {
3663    unsigned diagID = diag::warn_unusual_main_decl;
3664    if (isInline || getLangOptions().CPlusPlus)
3665      diagID = diag::err_unusual_main_decl;
3666
3667    int which = isStatic + (isInline << 1) - 1;
3668    Diag(FD->getLocation(), diagID) << which;
3669  }
3670
3671  QualType T = FD->getType();
3672  assert(T->isFunctionType() && "function decl is not of function type");
3673  const FunctionType* FT = T->getAs<FunctionType>();
3674
3675  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3676    // TODO: add a replacement fixit to turn the return type into 'int'.
3677    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3678    FD->setInvalidDecl(true);
3679  }
3680
3681  // Treat protoless main() as nullary.
3682  if (isa<FunctionNoProtoType>(FT)) return;
3683
3684  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3685  unsigned nparams = FTP->getNumArgs();
3686  assert(FD->getNumParams() == nparams);
3687
3688  bool HasExtraParameters = (nparams > 3);
3689
3690  // Darwin passes an undocumented fourth argument of type char**.  If
3691  // other platforms start sprouting these, the logic below will start
3692  // getting shifty.
3693  if (nparams == 4 &&
3694      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3695    HasExtraParameters = false;
3696
3697  if (HasExtraParameters) {
3698    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3699    FD->setInvalidDecl(true);
3700    nparams = 3;
3701  }
3702
3703  // FIXME: a lot of the following diagnostics would be improved
3704  // if we had some location information about types.
3705
3706  QualType CharPP =
3707    Context.getPointerType(Context.getPointerType(Context.CharTy));
3708  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3709
3710  for (unsigned i = 0; i < nparams; ++i) {
3711    QualType AT = FTP->getArgType(i);
3712
3713    bool mismatch = true;
3714
3715    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3716      mismatch = false;
3717    else if (Expected[i] == CharPP) {
3718      // As an extension, the following forms are okay:
3719      //   char const **
3720      //   char const * const *
3721      //   char * const *
3722
3723      QualifierCollector qs;
3724      const PointerType* PT;
3725      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3726          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3727          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3728        qs.removeConst();
3729        mismatch = !qs.empty();
3730      }
3731    }
3732
3733    if (mismatch) {
3734      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3735      // TODO: suggest replacing given type with expected type
3736      FD->setInvalidDecl(true);
3737    }
3738  }
3739
3740  if (nparams == 1 && !FD->isInvalidDecl()) {
3741    Diag(FD->getLocation(), diag::warn_main_one_arg);
3742  }
3743}
3744
3745bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3746  // FIXME: Need strict checking.  In C89, we need to check for
3747  // any assignment, increment, decrement, function-calls, or
3748  // commas outside of a sizeof.  In C99, it's the same list,
3749  // except that the aforementioned are allowed in unevaluated
3750  // expressions.  Everything else falls under the
3751  // "may accept other forms of constant expressions" exception.
3752  // (We never end up here for C++, so the constant expression
3753  // rules there don't matter.)
3754  if (Init->isConstantInitializer(Context))
3755    return false;
3756  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3757    << Init->getSourceRange();
3758  return true;
3759}
3760
3761void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3762  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3763}
3764
3765/// AddInitializerToDecl - Adds the initializer Init to the
3766/// declaration dcl. If DirectInit is true, this is C++ direct
3767/// initialization rather than copy initialization.
3768void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3769  Decl *RealDecl = dcl.getAs<Decl>();
3770  // If there is no declaration, there was an error parsing it.  Just ignore
3771  // the initializer.
3772  if (RealDecl == 0)
3773    return;
3774
3775  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3776    // With declarators parsed the way they are, the parser cannot
3777    // distinguish between a normal initializer and a pure-specifier.
3778    // Thus this grotesque test.
3779    IntegerLiteral *IL;
3780    Expr *Init = static_cast<Expr *>(init.get());
3781    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3782        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3783      CheckPureMethod(Method, Init->getSourceRange());
3784    else {
3785      Diag(Method->getLocation(), diag::err_member_function_initialization)
3786        << Method->getDeclName() << Init->getSourceRange();
3787      Method->setInvalidDecl();
3788    }
3789    return;
3790  }
3791
3792  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3793  if (!VDecl) {
3794    if (getLangOptions().CPlusPlus &&
3795        RealDecl->getLexicalDeclContext()->isRecord() &&
3796        isa<NamedDecl>(RealDecl))
3797      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3798        << cast<NamedDecl>(RealDecl)->getDeclName();
3799    else
3800      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3801    RealDecl->setInvalidDecl();
3802    return;
3803  }
3804
3805  // A definition must end up with a complete type, which means it must be
3806  // complete with the restriction that an array type might be completed by the
3807  // initializer; note that later code assumes this restriction.
3808  QualType BaseDeclType = VDecl->getType();
3809  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3810    BaseDeclType = Array->getElementType();
3811  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3812                          diag::err_typecheck_decl_incomplete_type)) {
3813    RealDecl->setInvalidDecl();
3814    return;
3815  }
3816
3817  // The variable can not have an abstract class type.
3818  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3819                             diag::err_abstract_type_in_decl,
3820                             AbstractVariableType))
3821    VDecl->setInvalidDecl();
3822
3823  const VarDecl *Def = 0;
3824  if (VDecl->getDefinition(Def)) {
3825    Diag(VDecl->getLocation(), diag::err_redefinition)
3826      << VDecl->getDeclName();
3827    Diag(Def->getLocation(), diag::note_previous_definition);
3828    VDecl->setInvalidDecl();
3829    return;
3830  }
3831
3832  // Take ownership of the expression, now that we're sure we have somewhere
3833  // to put it.
3834  Expr *Init = init.takeAs<Expr>();
3835  assert(Init && "missing initializer");
3836
3837  // Capture the variable that is being initialized and the style of
3838  // initialization.
3839  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3840
3841  // FIXME: Poor source location information.
3842  InitializationKind Kind
3843    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3844                                                   Init->getLocStart(),
3845                                                   Init->getLocEnd())
3846                : InitializationKind::CreateCopy(VDecl->getLocation(),
3847                                                 Init->getLocStart());
3848
3849  // Get the decls type and save a reference for later, since
3850  // CheckInitializerTypes may change it.
3851  QualType DclT = VDecl->getType(), SavT = DclT;
3852  if (VDecl->isBlockVarDecl()) {
3853    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3854      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3855      VDecl->setInvalidDecl();
3856    } else if (!VDecl->isInvalidDecl()) {
3857      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3858      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3859                                          MultiExprArg(*this, (void**)&Init, 1),
3860                                                &DclT);
3861      if (Result.isInvalid()) {
3862        VDecl->setInvalidDecl();
3863        return;
3864      }
3865
3866      Init = Result.takeAs<Expr>();
3867
3868      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3869      // Don't check invalid declarations to avoid emitting useless diagnostics.
3870      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3871        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3872          CheckForConstantInitializer(Init, DclT);
3873      }
3874    }
3875  } else if (VDecl->isStaticDataMember() &&
3876             VDecl->getLexicalDeclContext()->isRecord()) {
3877    // This is an in-class initialization for a static data member, e.g.,
3878    //
3879    // struct S {
3880    //   static const int value = 17;
3881    // };
3882
3883    // Attach the initializer
3884    VDecl->setInit(Context, Init);
3885
3886    // C++ [class.mem]p4:
3887    //   A member-declarator can contain a constant-initializer only
3888    //   if it declares a static member (9.4) of const integral or
3889    //   const enumeration type, see 9.4.2.
3890    QualType T = VDecl->getType();
3891    if (!T->isDependentType() &&
3892        (!Context.getCanonicalType(T).isConstQualified() ||
3893         !T->isIntegralType())) {
3894      Diag(VDecl->getLocation(), diag::err_member_initialization)
3895        << VDecl->getDeclName() << Init->getSourceRange();
3896      VDecl->setInvalidDecl();
3897    } else {
3898      // C++ [class.static.data]p4:
3899      //   If a static data member is of const integral or const
3900      //   enumeration type, its declaration in the class definition
3901      //   can specify a constant-initializer which shall be an
3902      //   integral constant expression (5.19).
3903      if (!Init->isTypeDependent() &&
3904          !Init->getType()->isIntegralType()) {
3905        // We have a non-dependent, non-integral or enumeration type.
3906        Diag(Init->getSourceRange().getBegin(),
3907             diag::err_in_class_initializer_non_integral_type)
3908          << Init->getType() << Init->getSourceRange();
3909        VDecl->setInvalidDecl();
3910      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3911        // Check whether the expression is a constant expression.
3912        llvm::APSInt Value;
3913        SourceLocation Loc;
3914        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3915          Diag(Loc, diag::err_in_class_initializer_non_constant)
3916            << Init->getSourceRange();
3917          VDecl->setInvalidDecl();
3918        } else if (!VDecl->getType()->isDependentType())
3919          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3920      }
3921    }
3922  } else if (VDecl->isFileVarDecl()) {
3923    if (VDecl->getStorageClass() == VarDecl::Extern)
3924      Diag(VDecl->getLocation(), diag::warn_extern_init);
3925    if (!VDecl->isInvalidDecl()) {
3926      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3927      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3928                                          MultiExprArg(*this, (void**)&Init, 1),
3929                                                &DclT);
3930      if (Result.isInvalid()) {
3931        VDecl->setInvalidDecl();
3932        return;
3933      }
3934
3935      Init = Result.takeAs<Expr>();
3936    }
3937
3938    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3939    // Don't check invalid declarations to avoid emitting useless diagnostics.
3940    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3941      // C99 6.7.8p4. All file scoped initializers need to be constant.
3942      CheckForConstantInitializer(Init, DclT);
3943    }
3944  }
3945  // If the type changed, it means we had an incomplete type that was
3946  // completed by the initializer. For example:
3947  //   int ary[] = { 1, 3, 5 };
3948  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3949  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3950    VDecl->setType(DclT);
3951    Init->setType(DclT);
3952  }
3953
3954  Init = MaybeCreateCXXExprWithTemporaries(Init);
3955  // Attach the initializer to the decl.
3956  VDecl->setInit(Context, Init);
3957
3958  // If the previous declaration of VDecl was a tentative definition,
3959  // remove it from the set of tentative definitions.
3960  if (VDecl->getPreviousDeclaration() &&
3961      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3962    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3963    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3964  }
3965
3966  if (getLangOptions().CPlusPlus) {
3967    // Make sure we mark the destructor as used if necessary.
3968    QualType InitType = VDecl->getType();
3969    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3970      InitType = Context.getBaseElementType(Array);
3971    if (InitType->isRecordType())
3972      FinalizeVarWithDestructor(VDecl, InitType);
3973  }
3974
3975  return;
3976}
3977
3978void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3979                                  bool TypeContainsUndeducedAuto) {
3980  Decl *RealDecl = dcl.getAs<Decl>();
3981
3982  // If there is no declaration, there was an error parsing it. Just ignore it.
3983  if (RealDecl == 0)
3984    return;
3985
3986  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3987    QualType Type = Var->getType();
3988
3989    // Record tentative definitions.
3990    if (Var->isTentativeDefinition(Context)) {
3991      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3992        InsertPair =
3993           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3994
3995      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3996      // want the second one in the map.
3997      InsertPair.first->second = Var;
3998
3999      // However, for the list, we don't care about the order, just make sure
4000      // that there are no dupes for a given declaration name.
4001      if (InsertPair.second)
4002        TentativeDefinitionList.push_back(Var->getDeclName());
4003    }
4004
4005    // C++ [dcl.init.ref]p3:
4006    //   The initializer can be omitted for a reference only in a
4007    //   parameter declaration (8.3.5), in the declaration of a
4008    //   function return type, in the declaration of a class member
4009    //   within its class declaration (9.2), and where the extern
4010    //   specifier is explicitly used.
4011    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
4012      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4013        << Var->getDeclName()
4014        << SourceRange(Var->getLocation(), Var->getLocation());
4015      Var->setInvalidDecl();
4016      return;
4017    }
4018
4019    // C++0x [dcl.spec.auto]p3
4020    if (TypeContainsUndeducedAuto) {
4021      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4022        << Var->getDeclName() << Type;
4023      Var->setInvalidDecl();
4024      return;
4025    }
4026
4027    // An array without size is an incomplete type, and there are no special
4028    // rules in C++ to make such a definition acceptable.
4029    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
4030        !Var->hasExternalStorage()) {
4031      Diag(Var->getLocation(),
4032           diag::err_typecheck_incomplete_array_needs_initializer);
4033      Var->setInvalidDecl();
4034      return;
4035    }
4036
4037    // C++ [temp.expl.spec]p15:
4038    //   An explicit specialization of a static data member of a template is a
4039    //   definition if the declaration includes an initializer; otherwise, it
4040    //   is a declaration.
4041    if (Var->isStaticDataMember() &&
4042        Var->getInstantiatedFromStaticDataMember() &&
4043        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
4044      return;
4045
4046    // C++ [dcl.init]p9:
4047    //   If no initializer is specified for an object, and the object
4048    //   is of (possibly cv-qualified) non-POD class type (or array
4049    //   thereof), the object shall be default-initialized; if the
4050    //   object is of const-qualified type, the underlying class type
4051    //   shall have a user-declared default constructor.
4052    //
4053    // FIXME: Diagnose the "user-declared default constructor" bit.
4054    if (getLangOptions().CPlusPlus) {
4055      QualType InitType = Type;
4056      if (const ArrayType *Array = Context.getAsArrayType(Type))
4057        InitType = Context.getBaseElementType(Array);
4058      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
4059          InitType->isRecordType() && !InitType->isDependentType()) {
4060        if (!RequireCompleteType(Var->getLocation(), InitType,
4061                                 diag::err_invalid_incomplete_type_use)) {
4062          InitializedEntity Entity
4063            = InitializedEntity::InitializeVariable(Var);
4064          InitializationKind Kind
4065            = InitializationKind::CreateDefault(Var->getLocation());
4066
4067          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4068          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4069                                                  MultiExprArg(*this, 0, 0));
4070          if (Init.isInvalid())
4071            Var->setInvalidDecl();
4072          else {
4073            Var->setInit(Context,
4074                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4075            FinalizeVarWithDestructor(Var, InitType);
4076          }
4077        } else {
4078          Var->setInvalidDecl();
4079        }
4080      }
4081
4082      // The variable can not have an abstract class type.
4083      if (RequireNonAbstractType(Var->getLocation(), Type,
4084                                 diag::err_abstract_type_in_decl,
4085                                 AbstractVariableType))
4086        Var->setInvalidDecl();
4087    }
4088
4089#if 0
4090    // FIXME: Temporarily disabled because we are not properly parsing
4091    // linkage specifications on declarations, e.g.,
4092    //
4093    //   extern "C" const CGPoint CGPointerZero;
4094    //
4095    // C++ [dcl.init]p9:
4096    //
4097    //     If no initializer is specified for an object, and the
4098    //     object is of (possibly cv-qualified) non-POD class type (or
4099    //     array thereof), the object shall be default-initialized; if
4100    //     the object is of const-qualified type, the underlying class
4101    //     type shall have a user-declared default
4102    //     constructor. Otherwise, if no initializer is specified for
4103    //     an object, the object and its subobjects, if any, have an
4104    //     indeterminate initial value; if the object or any of its
4105    //     subobjects are of const-qualified type, the program is
4106    //     ill-formed.
4107    //
4108    // This isn't technically an error in C, so we don't diagnose it.
4109    //
4110    // FIXME: Actually perform the POD/user-defined default
4111    // constructor check.
4112    if (getLangOptions().CPlusPlus &&
4113        Context.getCanonicalType(Type).isConstQualified() &&
4114        !Var->hasExternalStorage())
4115      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
4116        << Var->getName()
4117        << SourceRange(Var->getLocation(), Var->getLocation());
4118#endif
4119  }
4120}
4121
4122Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4123                                                   DeclPtrTy *Group,
4124                                                   unsigned NumDecls) {
4125  llvm::SmallVector<Decl*, 8> Decls;
4126
4127  if (DS.isTypeSpecOwned())
4128    Decls.push_back((Decl*)DS.getTypeRep());
4129
4130  for (unsigned i = 0; i != NumDecls; ++i)
4131    if (Decl *D = Group[i].getAs<Decl>())
4132      Decls.push_back(D);
4133
4134  // Perform semantic analysis that depends on having fully processed both
4135  // the declarator and initializer.
4136  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
4137    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
4138    if (!IDecl)
4139      continue;
4140    QualType T = IDecl->getType();
4141
4142    // Block scope. C99 6.7p7: If an identifier for an object is declared with
4143    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
4144    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
4145      if (T->isDependentType()) {
4146        // If T is dependent, we should not require a complete type.
4147        // (RequireCompleteType shouldn't be called with dependent types.)
4148        // But we still can at least check if we've got an array of unspecified
4149        // size without an initializer.
4150        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
4151            !IDecl->getInit()) {
4152          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
4153            << T;
4154          IDecl->setInvalidDecl();
4155        }
4156      } else if (!IDecl->isInvalidDecl()) {
4157        // If T is an incomplete array type with an initializer list that is
4158        // dependent on something, its size has not been fixed. We could attempt
4159        // to fix the size for such arrays, but we would still have to check
4160        // here for initializers containing a C++0x vararg expansion, e.g.
4161        // template <typename... Args> void f(Args... args) {
4162        //   int vals[] = { args };
4163        // }
4164        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
4165        Expr *Init = IDecl->getInit();
4166        if (IAT && Init &&
4167            (Init->isTypeDependent() || Init->isValueDependent())) {
4168          // Check that the member type of the array is complete, at least.
4169          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
4170                                  diag::err_typecheck_decl_incomplete_type))
4171            IDecl->setInvalidDecl();
4172        } else if (RequireCompleteType(IDecl->getLocation(), T,
4173                                      diag::err_typecheck_decl_incomplete_type))
4174          IDecl->setInvalidDecl();
4175      }
4176    }
4177    // File scope. C99 6.9.2p2: A declaration of an identifier for an
4178    // object that has file scope without an initializer, and without a
4179    // storage-class specifier or with the storage-class specifier "static",
4180    // constitutes a tentative definition. Note: A tentative definition with
4181    // external linkage is valid (C99 6.2.2p5).
4182    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
4183      if (const IncompleteArrayType *ArrayT
4184          = Context.getAsIncompleteArrayType(T)) {
4185        if (RequireCompleteType(IDecl->getLocation(),
4186                                ArrayT->getElementType(),
4187                                diag::err_illegal_decl_array_incomplete_type))
4188          IDecl->setInvalidDecl();
4189      } else if (IDecl->getStorageClass() == VarDecl::Static) {
4190        // C99 6.9.2p3: If the declaration of an identifier for an object is
4191        // a tentative definition and has internal linkage (C99 6.2.2p3), the
4192        // declared type shall not be an incomplete type.
4193        // NOTE: code such as the following
4194        //     static struct s;
4195        //     struct s { int a; };
4196        // is accepted by gcc. Hence here we issue a warning instead of
4197        // an error and we do not invalidate the static declaration.
4198        // NOTE: to avoid multiple warnings, only check the first declaration.
4199        if (IDecl->getPreviousDeclaration() == 0)
4200          RequireCompleteType(IDecl->getLocation(), T,
4201                              diag::ext_typecheck_decl_incomplete_type);
4202      }
4203    }
4204  }
4205  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4206                                                   Decls.data(), Decls.size()));
4207}
4208
4209
4210/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4211/// to introduce parameters into function prototype scope.
4212Sema::DeclPtrTy
4213Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4214  const DeclSpec &DS = D.getDeclSpec();
4215
4216  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4217  VarDecl::StorageClass StorageClass = VarDecl::None;
4218  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4219    StorageClass = VarDecl::Register;
4220  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4221    Diag(DS.getStorageClassSpecLoc(),
4222         diag::err_invalid_storage_class_in_func_decl);
4223    D.getMutableDeclSpec().ClearStorageClassSpecs();
4224  }
4225
4226  if (D.getDeclSpec().isThreadSpecified())
4227    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4228
4229  DiagnoseFunctionSpecifiers(D);
4230
4231  // Check that there are no default arguments inside the type of this
4232  // parameter (C++ only).
4233  if (getLangOptions().CPlusPlus)
4234    CheckExtraCXXDefaultArguments(D);
4235
4236  TypeSourceInfo *TInfo = 0;
4237  TagDecl *OwnedDecl = 0;
4238  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4239
4240  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4241    // C++ [dcl.fct]p6:
4242    //   Types shall not be defined in return or parameter types.
4243    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4244      << Context.getTypeDeclType(OwnedDecl);
4245  }
4246
4247  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
4248  // Can this happen for params?  We already checked that they don't conflict
4249  // among each other.  Here they can only shadow globals, which is ok.
4250  IdentifierInfo *II = D.getIdentifier();
4251  if (II) {
4252    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4253      if (PrevDecl->isTemplateParameter()) {
4254        // Maybe we will complain about the shadowed template parameter.
4255        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4256        // Just pretend that we didn't see the previous declaration.
4257        PrevDecl = 0;
4258      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4259        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4260
4261        // Recover by removing the name
4262        II = 0;
4263        D.SetIdentifier(0, D.getIdentifierLoc());
4264      }
4265    }
4266  }
4267
4268  // Parameters can not be abstract class types.
4269  // For record types, this is done by the AbstractClassUsageDiagnoser once
4270  // the class has been completely parsed.
4271  if (!CurContext->isRecord() &&
4272      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4273                             diag::err_abstract_type_in_decl,
4274                             AbstractParamType))
4275    D.setInvalidType(true);
4276
4277  QualType T = adjustParameterType(parmDeclType);
4278
4279  ParmVarDecl *New
4280    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
4281                          T, TInfo, StorageClass, 0);
4282
4283  if (D.isInvalidType())
4284    New->setInvalidDecl();
4285
4286  // Parameter declarators cannot be interface types. All ObjC objects are
4287  // passed by reference.
4288  if (T->isObjCInterfaceType()) {
4289    Diag(D.getIdentifierLoc(),
4290         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4291    New->setInvalidDecl();
4292  }
4293
4294  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4295  if (D.getCXXScopeSpec().isSet()) {
4296    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4297      << D.getCXXScopeSpec().getRange();
4298    New->setInvalidDecl();
4299  }
4300
4301  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4302  // duration shall not be qualified by an address-space qualifier."
4303  // Since all parameters have automatic store duration, they can not have
4304  // an address space.
4305  if (T.getAddressSpace() != 0) {
4306    Diag(D.getIdentifierLoc(),
4307         diag::err_arg_with_address_space);
4308    New->setInvalidDecl();
4309  }
4310
4311
4312  // Add the parameter declaration into this scope.
4313  S->AddDecl(DeclPtrTy::make(New));
4314  if (II)
4315    IdResolver.AddDecl(New);
4316
4317  ProcessDeclAttributes(S, New, D);
4318
4319  if (New->hasAttr<BlocksAttr>()) {
4320    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4321  }
4322  return DeclPtrTy::make(New);
4323}
4324
4325void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4326                                           SourceLocation LocAfterDecls) {
4327  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4328         "Not a function declarator!");
4329  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4330
4331  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4332  // for a K&R function.
4333  if (!FTI.hasPrototype) {
4334    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4335      --i;
4336      if (FTI.ArgInfo[i].Param == 0) {
4337        llvm::SmallString<256> Code;
4338        llvm::raw_svector_ostream(Code) << "  int "
4339                                        << FTI.ArgInfo[i].Ident->getName()
4340                                        << ";\n";
4341        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4342          << FTI.ArgInfo[i].Ident
4343          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4344
4345        // Implicitly declare the argument as type 'int' for lack of a better
4346        // type.
4347        DeclSpec DS;
4348        const char* PrevSpec; // unused
4349        unsigned DiagID; // unused
4350        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4351                           PrevSpec, DiagID);
4352        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4353        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4354        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4355      }
4356    }
4357  }
4358}
4359
4360Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4361                                              Declarator &D) {
4362  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4363  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4364         "Not a function declarator!");
4365  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4366
4367  if (FTI.hasPrototype) {
4368    // FIXME: Diagnose arguments without names in C.
4369  }
4370
4371  Scope *ParentScope = FnBodyScope->getParent();
4372
4373  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4374                                  MultiTemplateParamsArg(*this),
4375                                  /*IsFunctionDefinition=*/true);
4376  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4377}
4378
4379static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4380  // Don't warn about invalid declarations.
4381  if (FD->isInvalidDecl())
4382    return false;
4383
4384  // Or declarations that aren't global.
4385  if (!FD->isGlobal())
4386    return false;
4387
4388  // Don't warn about C++ member functions.
4389  if (isa<CXXMethodDecl>(FD))
4390    return false;
4391
4392  // Don't warn about 'main'.
4393  if (FD->isMain())
4394    return false;
4395
4396  // Don't warn about inline functions.
4397  if (FD->isInlineSpecified())
4398    return false;
4399
4400  // Don't warn about function templates.
4401  if (FD->getDescribedFunctionTemplate())
4402    return false;
4403
4404  // Don't warn about function template specializations.
4405  if (FD->isFunctionTemplateSpecialization())
4406    return false;
4407
4408  bool MissingPrototype = true;
4409  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4410       Prev; Prev = Prev->getPreviousDeclaration()) {
4411    // Ignore any declarations that occur in function or method
4412    // scope, because they aren't visible from the header.
4413    if (Prev->getDeclContext()->isFunctionOrMethod())
4414      continue;
4415
4416    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4417    break;
4418  }
4419
4420  return MissingPrototype;
4421}
4422
4423Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4424  // Clear the last template instantiation error context.
4425  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4426
4427  if (!D)
4428    return D;
4429  FunctionDecl *FD = 0;
4430
4431  if (FunctionTemplateDecl *FunTmpl
4432        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4433    FD = FunTmpl->getTemplatedDecl();
4434  else
4435    FD = cast<FunctionDecl>(D.getAs<Decl>());
4436
4437  CurFunctionNeedsScopeChecking = false;
4438
4439  // See if this is a redefinition.
4440  const FunctionDecl *Definition;
4441  if (FD->getBody(Definition)) {
4442    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4443    Diag(Definition->getLocation(), diag::note_previous_definition);
4444  }
4445
4446  // Builtin functions cannot be defined.
4447  if (unsigned BuiltinID = FD->getBuiltinID()) {
4448    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4449      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4450      FD->setInvalidDecl();
4451    }
4452  }
4453
4454  // The return type of a function definition must be complete
4455  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4456  QualType ResultType = FD->getResultType();
4457  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4458      !FD->isInvalidDecl() &&
4459      RequireCompleteType(FD->getLocation(), ResultType,
4460                          diag::err_func_def_incomplete_result))
4461    FD->setInvalidDecl();
4462
4463  // GNU warning -Wmissing-prototypes:
4464  //   Warn if a global function is defined without a previous
4465  //   prototype declaration. This warning is issued even if the
4466  //   definition itself provides a prototype. The aim is to detect
4467  //   global functions that fail to be declared in header files.
4468  if (ShouldWarnAboutMissingPrototype(FD))
4469    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4470
4471  if (FnBodyScope)
4472    PushDeclContext(FnBodyScope, FD);
4473
4474  // Check the validity of our function parameters
4475  CheckParmsForFunctionDef(FD);
4476
4477  // Introduce our parameters into the function scope
4478  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4479    ParmVarDecl *Param = FD->getParamDecl(p);
4480    Param->setOwningFunction(FD);
4481
4482    // If this has an identifier, add it to the scope stack.
4483    if (Param->getIdentifier() && FnBodyScope)
4484      PushOnScopeChains(Param, FnBodyScope);
4485  }
4486
4487  // Checking attributes of current function definition
4488  // dllimport attribute.
4489  if (FD->getAttr<DLLImportAttr>() &&
4490      (!FD->getAttr<DLLExportAttr>())) {
4491    // dllimport attribute cannot be applied to definition.
4492    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4493      Diag(FD->getLocation(),
4494           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4495        << "dllimport";
4496      FD->setInvalidDecl();
4497      return DeclPtrTy::make(FD);
4498    } else {
4499      // If a symbol previously declared dllimport is later defined, the
4500      // attribute is ignored in subsequent references, and a warning is
4501      // emitted.
4502      Diag(FD->getLocation(),
4503           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4504        << FD->getNameAsCString() << "dllimport";
4505    }
4506  }
4507  return DeclPtrTy::make(FD);
4508}
4509
4510Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4511  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4512}
4513
4514Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4515                                              bool IsInstantiation) {
4516  Decl *dcl = D.getAs<Decl>();
4517  Stmt *Body = BodyArg.takeAs<Stmt>();
4518
4519  AnalysisContext AC(dcl);
4520  FunctionDecl *FD = 0;
4521  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4522  if (FunTmpl)
4523    FD = FunTmpl->getTemplatedDecl();
4524  else
4525    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4526
4527  if (FD) {
4528    FD->setBody(Body);
4529    if (FD->isMain())
4530      // C and C++ allow for main to automagically return 0.
4531      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4532      FD->setHasImplicitReturnZero(true);
4533    else
4534      CheckFallThroughForFunctionDef(FD, Body, AC);
4535
4536    if (!FD->isInvalidDecl())
4537      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4538
4539    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4540      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4541
4542    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4543  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4544    assert(MD == getCurMethodDecl() && "Method parsing confused");
4545    MD->setBody(Body);
4546    CheckFallThroughForFunctionDef(MD, Body, AC);
4547    MD->setEndLoc(Body->getLocEnd());
4548
4549    if (!MD->isInvalidDecl())
4550      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4551  } else {
4552    Body->Destroy(Context);
4553    return DeclPtrTy();
4554  }
4555  if (!IsInstantiation)
4556    PopDeclContext();
4557
4558  // Verify and clean out per-function state.
4559
4560  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4561
4562  // Check goto/label use.
4563  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4564       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4565    LabelStmt *L = I->second;
4566
4567    // Verify that we have no forward references left.  If so, there was a goto
4568    // or address of a label taken, but no definition of it.  Label fwd
4569    // definitions are indicated with a null substmt.
4570    if (L->getSubStmt() != 0)
4571      continue;
4572
4573    // Emit error.
4574    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4575
4576    // At this point, we have gotos that use the bogus label.  Stitch it into
4577    // the function body so that they aren't leaked and that the AST is well
4578    // formed.
4579    if (Body == 0) {
4580      // The whole function wasn't parsed correctly, just delete this.
4581      L->Destroy(Context);
4582      continue;
4583    }
4584
4585    // Otherwise, the body is valid: we want to stitch the label decl into the
4586    // function somewhere so that it is properly owned and so that the goto
4587    // has a valid target.  Do this by creating a new compound stmt with the
4588    // label in it.
4589
4590    // Give the label a sub-statement.
4591    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4592
4593    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4594                               cast<CXXTryStmt>(Body)->getTryBlock() :
4595                               cast<CompoundStmt>(Body);
4596    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4597    Elements.push_back(L);
4598    Compound->setStmts(Context, &Elements[0], Elements.size());
4599  }
4600  FunctionLabelMap.clear();
4601
4602  if (!Body) return D;
4603
4604  CheckUnreachable(AC);
4605
4606  // Verify that that gotos and switch cases don't jump into scopes illegally.
4607  if (CurFunctionNeedsScopeChecking)
4608    DiagnoseInvalidJumps(Body);
4609
4610  // C++ constructors that have function-try-blocks can't have return
4611  // statements in the handlers of that block. (C++ [except.handle]p14)
4612  // Verify this.
4613  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4614    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4615
4616  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4617    MarkBaseAndMemberDestructorsReferenced(Destructor);
4618
4619  // If any errors have occurred, clear out any temporaries that may have
4620  // been leftover. This ensures that these temporaries won't be picked up for
4621  // deletion in some later function.
4622  if (PP.getDiagnostics().hasErrorOccurred())
4623    ExprTemporaries.clear();
4624
4625  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4626  return D;
4627}
4628
4629/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4630/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4631NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4632                                          IdentifierInfo &II, Scope *S) {
4633  // Before we produce a declaration for an implicitly defined
4634  // function, see whether there was a locally-scoped declaration of
4635  // this name as a function or variable. If so, use that
4636  // (non-visible) declaration, and complain about it.
4637  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4638    = LocallyScopedExternalDecls.find(&II);
4639  if (Pos != LocallyScopedExternalDecls.end()) {
4640    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4641    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4642    return Pos->second;
4643  }
4644
4645  // Extension in C99.  Legal in C90, but warn about it.
4646  if (II.getName().startswith("__builtin_"))
4647    Diag(Loc, diag::warn_builtin_unknown) << &II;
4648  else if (getLangOptions().C99)
4649    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4650  else
4651    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4652
4653  // Set a Declarator for the implicit definition: int foo();
4654  const char *Dummy;
4655  DeclSpec DS;
4656  unsigned DiagID;
4657  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4658  Error = Error; // Silence warning.
4659  assert(!Error && "Error setting up implicit decl!");
4660  Declarator D(DS, Declarator::BlockContext);
4661  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4662                                             0, 0, false, SourceLocation(),
4663                                             false, 0,0,0, Loc, Loc, D),
4664                SourceLocation());
4665  D.SetIdentifier(&II, Loc);
4666
4667  // Insert this function into translation-unit scope.
4668
4669  DeclContext *PrevDC = CurContext;
4670  CurContext = Context.getTranslationUnitDecl();
4671
4672  FunctionDecl *FD =
4673 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4674  FD->setImplicit();
4675
4676  CurContext = PrevDC;
4677
4678  AddKnownFunctionAttributes(FD);
4679
4680  return FD;
4681}
4682
4683/// \brief Adds any function attributes that we know a priori based on
4684/// the declaration of this function.
4685///
4686/// These attributes can apply both to implicitly-declared builtins
4687/// (like __builtin___printf_chk) or to library-declared functions
4688/// like NSLog or printf.
4689void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4690  if (FD->isInvalidDecl())
4691    return;
4692
4693  // If this is a built-in function, map its builtin attributes to
4694  // actual attributes.
4695  if (unsigned BuiltinID = FD->getBuiltinID()) {
4696    // Handle printf-formatting attributes.
4697    unsigned FormatIdx;
4698    bool HasVAListArg;
4699    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4700      if (!FD->getAttr<FormatAttr>())
4701        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4702                                             HasVAListArg ? 0 : FormatIdx + 2));
4703    }
4704
4705    // Mark const if we don't care about errno and that is the only
4706    // thing preventing the function from being const. This allows
4707    // IRgen to use LLVM intrinsics for such functions.
4708    if (!getLangOptions().MathErrno &&
4709        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4710      if (!FD->getAttr<ConstAttr>())
4711        FD->addAttr(::new (Context) ConstAttr());
4712    }
4713
4714    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4715      FD->addAttr(::new (Context) NoReturnAttr());
4716    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4717      FD->addAttr(::new (Context) NoThrowAttr());
4718    if (Context.BuiltinInfo.isConst(BuiltinID))
4719      FD->addAttr(::new (Context) ConstAttr());
4720  }
4721
4722  IdentifierInfo *Name = FD->getIdentifier();
4723  if (!Name)
4724    return;
4725  if ((!getLangOptions().CPlusPlus &&
4726       FD->getDeclContext()->isTranslationUnit()) ||
4727      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4728       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4729       LinkageSpecDecl::lang_c)) {
4730    // Okay: this could be a libc/libm/Objective-C function we know
4731    // about.
4732  } else
4733    return;
4734
4735  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4736    // FIXME: NSLog and NSLogv should be target specific
4737    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4738      // FIXME: We known better than our headers.
4739      const_cast<FormatAttr *>(Format)->setType("printf");
4740    } else
4741      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4742                                             Name->isStr("NSLogv") ? 0 : 2));
4743  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4744    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4745    // target-specific builtins, perhaps?
4746    if (!FD->getAttr<FormatAttr>())
4747      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4748                                             Name->isStr("vasprintf") ? 0 : 3));
4749  }
4750}
4751
4752TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4753                                    TypeSourceInfo *TInfo) {
4754  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4755  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4756
4757  if (!TInfo) {
4758    assert(D.isInvalidType() && "no declarator info for valid type");
4759    TInfo = Context.getTrivialTypeSourceInfo(T);
4760  }
4761
4762  // Scope manipulation handled by caller.
4763  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4764                                           D.getIdentifierLoc(),
4765                                           D.getIdentifier(),
4766                                           TInfo);
4767
4768  if (const TagType *TT = T->getAs<TagType>()) {
4769    TagDecl *TD = TT->getDecl();
4770
4771    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4772    // keep track of the TypedefDecl.
4773    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4774      TD->setTypedefForAnonDecl(NewTD);
4775  }
4776
4777  if (D.isInvalidType())
4778    NewTD->setInvalidDecl();
4779  return NewTD;
4780}
4781
4782
4783/// \brief Determine whether a tag with a given kind is acceptable
4784/// as a redeclaration of the given tag declaration.
4785///
4786/// \returns true if the new tag kind is acceptable, false otherwise.
4787bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4788                                        TagDecl::TagKind NewTag,
4789                                        SourceLocation NewTagLoc,
4790                                        const IdentifierInfo &Name) {
4791  // C++ [dcl.type.elab]p3:
4792  //   The class-key or enum keyword present in the
4793  //   elaborated-type-specifier shall agree in kind with the
4794  //   declaration to which the name in theelaborated-type-specifier
4795  //   refers. This rule also applies to the form of
4796  //   elaborated-type-specifier that declares a class-name or
4797  //   friend class since it can be construed as referring to the
4798  //   definition of the class. Thus, in any
4799  //   elaborated-type-specifier, the enum keyword shall be used to
4800  //   refer to an enumeration (7.2), the union class-keyshall be
4801  //   used to refer to a union (clause 9), and either the class or
4802  //   struct class-key shall be used to refer to a class (clause 9)
4803  //   declared using the class or struct class-key.
4804  TagDecl::TagKind OldTag = Previous->getTagKind();
4805  if (OldTag == NewTag)
4806    return true;
4807
4808  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4809      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4810    // Warn about the struct/class tag mismatch.
4811    bool isTemplate = false;
4812    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4813      isTemplate = Record->getDescribedClassTemplate();
4814
4815    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4816      << (NewTag == TagDecl::TK_class)
4817      << isTemplate << &Name
4818      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4819                              OldTag == TagDecl::TK_class? "class" : "struct");
4820    Diag(Previous->getLocation(), diag::note_previous_use);
4821    return true;
4822  }
4823  return false;
4824}
4825
4826/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4827/// former case, Name will be non-null.  In the later case, Name will be null.
4828/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4829/// reference/declaration/definition of a tag.
4830Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4831                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4832                               IdentifierInfo *Name, SourceLocation NameLoc,
4833                               AttributeList *Attr, AccessSpecifier AS,
4834                               MultiTemplateParamsArg TemplateParameterLists,
4835                               bool &OwnedDecl, bool &IsDependent) {
4836  // If this is not a definition, it must have a name.
4837  assert((Name != 0 || TUK == TUK_Definition) &&
4838         "Nameless record must be a definition!");
4839
4840  OwnedDecl = false;
4841  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4842
4843  // FIXME: Check explicit specializations more carefully.
4844  bool isExplicitSpecialization = false;
4845  if (TUK != TUK_Reference) {
4846    if (TemplateParameterList *TemplateParams
4847          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4848                        (TemplateParameterList**)TemplateParameterLists.get(),
4849                                              TemplateParameterLists.size(),
4850                                                    isExplicitSpecialization)) {
4851      if (TemplateParams->size() > 0) {
4852        // This is a declaration or definition of a class template (which may
4853        // be a member of another template).
4854        OwnedDecl = false;
4855        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4856                                               SS, Name, NameLoc, Attr,
4857                                               TemplateParams,
4858                                               AS);
4859        TemplateParameterLists.release();
4860        return Result.get();
4861      } else {
4862        // The "template<>" header is extraneous.
4863        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4864          << ElaboratedType::getNameForTagKind(Kind) << Name;
4865        isExplicitSpecialization = true;
4866      }
4867    }
4868
4869    TemplateParameterLists.release();
4870  }
4871
4872  DeclContext *SearchDC = CurContext;
4873  DeclContext *DC = CurContext;
4874  bool isStdBadAlloc = false;
4875  bool Invalid = false;
4876
4877  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4878                                                   : NotForRedeclaration);
4879
4880  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4881
4882  if (Name && SS.isNotEmpty()) {
4883    // We have a nested-name tag ('struct foo::bar').
4884
4885    // Check for invalid 'foo::'.
4886    if (SS.isInvalid()) {
4887      Name = 0;
4888      goto CreateNewDecl;
4889    }
4890
4891    // If this is a friend or a reference to a class in a dependent
4892    // context, don't try to make a decl for it.
4893    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4894      DC = computeDeclContext(SS, false);
4895      if (!DC) {
4896        IsDependent = true;
4897        return DeclPtrTy();
4898      }
4899    }
4900
4901    if (RequireCompleteDeclContext(SS))
4902      return DeclPtrTy::make((Decl *)0);
4903
4904    DC = computeDeclContext(SS, true);
4905    SearchDC = DC;
4906    // Look-up name inside 'foo::'.
4907    LookupQualifiedName(Previous, DC);
4908
4909    if (Previous.isAmbiguous())
4910      return DeclPtrTy();
4911
4912    if (Previous.empty()) {
4913      // Name lookup did not find anything. However, if the
4914      // nested-name-specifier refers to the current instantiation,
4915      // and that current instantiation has any dependent base
4916      // classes, we might find something at instantiation time: treat
4917      // this as a dependent elaborated-type-specifier.
4918      if (Previous.wasNotFoundInCurrentInstantiation()) {
4919        IsDependent = true;
4920        return DeclPtrTy();
4921      }
4922
4923      // A tag 'foo::bar' must already exist.
4924      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4925      Name = 0;
4926      Invalid = true;
4927      goto CreateNewDecl;
4928    }
4929  } else if (Name) {
4930    // If this is a named struct, check to see if there was a previous forward
4931    // declaration or definition.
4932    // FIXME: We're looking into outer scopes here, even when we
4933    // shouldn't be. Doing so can result in ambiguities that we
4934    // shouldn't be diagnosing.
4935    LookupName(Previous, S);
4936
4937    // Note:  there used to be some attempt at recovery here.
4938    if (Previous.isAmbiguous())
4939      return DeclPtrTy();
4940
4941    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4942      // FIXME: This makes sure that we ignore the contexts associated
4943      // with C structs, unions, and enums when looking for a matching
4944      // tag declaration or definition. See the similar lookup tweak
4945      // in Sema::LookupName; is there a better way to deal with this?
4946      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4947        SearchDC = SearchDC->getParent();
4948    }
4949  }
4950
4951  if (Previous.isSingleResult() &&
4952      Previous.getFoundDecl()->isTemplateParameter()) {
4953    // Maybe we will complain about the shadowed template parameter.
4954    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4955    // Just pretend that we didn't see the previous declaration.
4956    Previous.clear();
4957  }
4958
4959  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4960      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4961    // This is a declaration of or a reference to "std::bad_alloc".
4962    isStdBadAlloc = true;
4963
4964    if (Previous.empty() && StdBadAlloc) {
4965      // std::bad_alloc has been implicitly declared (but made invisible to
4966      // name lookup). Fill in this implicit declaration as the previous
4967      // declaration, so that the declarations get chained appropriately.
4968      Previous.addDecl(StdBadAlloc);
4969    }
4970  }
4971
4972  if (!Previous.empty()) {
4973    assert(Previous.isSingleResult());
4974    NamedDecl *PrevDecl = Previous.getFoundDecl();
4975    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4976      // If this is a use of a previous tag, or if the tag is already declared
4977      // in the same scope (so that the definition/declaration completes or
4978      // rementions the tag), reuse the decl.
4979      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4980          isDeclInScope(PrevDecl, SearchDC, S)) {
4981        // Make sure that this wasn't declared as an enum and now used as a
4982        // struct or something similar.
4983        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4984          bool SafeToContinue
4985            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4986               Kind != TagDecl::TK_enum);
4987          if (SafeToContinue)
4988            Diag(KWLoc, diag::err_use_with_wrong_tag)
4989              << Name
4990              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4991                                                  PrevTagDecl->getKindName());
4992          else
4993            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4994          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4995
4996          if (SafeToContinue)
4997            Kind = PrevTagDecl->getTagKind();
4998          else {
4999            // Recover by making this an anonymous redefinition.
5000            Name = 0;
5001            Previous.clear();
5002            Invalid = true;
5003          }
5004        }
5005
5006        if (!Invalid) {
5007          // If this is a use, just return the declaration we found.
5008
5009          // FIXME: In the future, return a variant or some other clue
5010          // for the consumer of this Decl to know it doesn't own it.
5011          // For our current ASTs this shouldn't be a problem, but will
5012          // need to be changed with DeclGroups.
5013          if (TUK == TUK_Reference || TUK == TUK_Friend)
5014            return DeclPtrTy::make(PrevTagDecl);
5015
5016          // Diagnose attempts to redefine a tag.
5017          if (TUK == TUK_Definition) {
5018            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
5019              // If we're defining a specialization and the previous definition
5020              // is from an implicit instantiation, don't emit an error
5021              // here; we'll catch this in the general case below.
5022              if (!isExplicitSpecialization ||
5023                  !isa<CXXRecordDecl>(Def) ||
5024                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5025                                               == TSK_ExplicitSpecialization) {
5026                Diag(NameLoc, diag::err_redefinition) << Name;
5027                Diag(Def->getLocation(), diag::note_previous_definition);
5028                // If this is a redefinition, recover by making this
5029                // struct be anonymous, which will make any later
5030                // references get the previous definition.
5031                Name = 0;
5032                Previous.clear();
5033                Invalid = true;
5034              }
5035            } else {
5036              // If the type is currently being defined, complain
5037              // about a nested redefinition.
5038              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5039              if (Tag->isBeingDefined()) {
5040                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5041                Diag(PrevTagDecl->getLocation(),
5042                     diag::note_previous_definition);
5043                Name = 0;
5044                Previous.clear();
5045                Invalid = true;
5046              }
5047            }
5048
5049            // Okay, this is definition of a previously declared or referenced
5050            // tag PrevDecl. We're going to create a new Decl for it.
5051          }
5052        }
5053        // If we get here we have (another) forward declaration or we
5054        // have a definition.  Just create a new decl.
5055
5056      } else {
5057        // If we get here, this is a definition of a new tag type in a nested
5058        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5059        // new decl/type.  We set PrevDecl to NULL so that the entities
5060        // have distinct types.
5061        Previous.clear();
5062      }
5063      // If we get here, we're going to create a new Decl. If PrevDecl
5064      // is non-NULL, it's a definition of the tag declared by
5065      // PrevDecl. If it's NULL, we have a new definition.
5066    } else {
5067      // PrevDecl is a namespace, template, or anything else
5068      // that lives in the IDNS_Tag identifier namespace.
5069      if (isDeclInScope(PrevDecl, SearchDC, S)) {
5070        // The tag name clashes with a namespace name, issue an error and
5071        // recover by making this tag be anonymous.
5072        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5073        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5074        Name = 0;
5075        Previous.clear();
5076        Invalid = true;
5077      } else {
5078        // The existing declaration isn't relevant to us; we're in a
5079        // new scope, so clear out the previous declaration.
5080        Previous.clear();
5081      }
5082    }
5083  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
5084    // C++ [basic.scope.pdecl]p5:
5085    //   -- for an elaborated-type-specifier of the form
5086    //
5087    //          class-key identifier
5088    //
5089    //      if the elaborated-type-specifier is used in the
5090    //      decl-specifier-seq or parameter-declaration-clause of a
5091    //      function defined in namespace scope, the identifier is
5092    //      declared as a class-name in the namespace that contains
5093    //      the declaration; otherwise, except as a friend
5094    //      declaration, the identifier is declared in the smallest
5095    //      non-class, non-function-prototype scope that contains the
5096    //      declaration.
5097    //
5098    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5099    // C structs and unions.
5100    //
5101    // It is an error in C++ to declare (rather than define) an enum
5102    // type, including via an elaborated type specifier.  We'll
5103    // diagnose that later; for now, declare the enum in the same
5104    // scope as we would have picked for any other tag type.
5105    //
5106    // GNU C also supports this behavior as part of its incomplete
5107    // enum types extension, while GNU C++ does not.
5108    //
5109    // Find the context where we'll be declaring the tag.
5110    // FIXME: We would like to maintain the current DeclContext as the
5111    // lexical context,
5112    while (SearchDC->isRecord())
5113      SearchDC = SearchDC->getParent();
5114
5115    // Find the scope where we'll be declaring the tag.
5116    while (S->isClassScope() ||
5117           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
5118           ((S->getFlags() & Scope::DeclScope) == 0) ||
5119           (S->getEntity() &&
5120            ((DeclContext *)S->getEntity())->isTransparentContext()))
5121      S = S->getParent();
5122
5123  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
5124    // C++ [namespace.memdef]p3:
5125    //   If a friend declaration in a non-local class first declares a
5126    //   class or function, the friend class or function is a member of
5127    //   the innermost enclosing namespace.
5128    while (!SearchDC->isFileContext())
5129      SearchDC = SearchDC->getParent();
5130
5131    // The entity of a decl scope is a DeclContext; see PushDeclContext.
5132    while (S->getEntity() != SearchDC)
5133      S = S->getParent();
5134  }
5135
5136CreateNewDecl:
5137
5138  TagDecl *PrevDecl = 0;
5139  if (Previous.isSingleResult())
5140    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5141
5142  // If there is an identifier, use the location of the identifier as the
5143  // location of the decl, otherwise use the location of the struct/union
5144  // keyword.
5145  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5146
5147  // Otherwise, create a new declaration. If there is a previous
5148  // declaration of the same entity, the two will be linked via
5149  // PrevDecl.
5150  TagDecl *New;
5151
5152  if (Kind == TagDecl::TK_enum) {
5153    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5154    // enum X { A, B, C } D;    D should chain to X.
5155    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5156                           cast_or_null<EnumDecl>(PrevDecl));
5157    // If this is an undefined enum, warn.
5158    if (TUK != TUK_Definition && !Invalid)  {
5159      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5160                                              : diag::ext_forward_ref_enum;
5161      Diag(Loc, DK);
5162    }
5163  } else {
5164    // struct/union/class
5165
5166    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5167    // struct X { int A; } D;    D should chain to X.
5168    if (getLangOptions().CPlusPlus) {
5169      // FIXME: Look for a way to use RecordDecl for simple structs.
5170      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5171                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5172
5173      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5174        StdBadAlloc = cast<CXXRecordDecl>(New);
5175    } else
5176      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5177                               cast_or_null<RecordDecl>(PrevDecl));
5178  }
5179
5180  if (Kind != TagDecl::TK_enum) {
5181    // Handle #pragma pack: if the #pragma pack stack has non-default
5182    // alignment, make up a packed attribute for this decl. These
5183    // attributes are checked when the ASTContext lays out the
5184    // structure.
5185    //
5186    // It is important for implementing the correct semantics that this
5187    // happen here (in act on tag decl). The #pragma pack stack is
5188    // maintained as a result of parser callbacks which can occur at
5189    // many points during the parsing of a struct declaration (because
5190    // the #pragma tokens are effectively skipped over during the
5191    // parsing of the struct).
5192    if (unsigned Alignment = getPragmaPackAlignment())
5193      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
5194  }
5195
5196  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
5197    // C++ [dcl.typedef]p3:
5198    //   [...] Similarly, in a given scope, a class or enumeration
5199    //   shall not be declared with the same name as a typedef-name
5200    //   that is declared in that scope and refers to a type other
5201    //   than the class or enumeration itself.
5202    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
5203                        ForRedeclaration);
5204    LookupName(Lookup, S);
5205    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
5206    NamedDecl *PrevTypedefNamed = PrevTypedef;
5207    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
5208        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
5209          Context.getCanonicalType(Context.getTypeDeclType(New))) {
5210      Diag(Loc, diag::err_tag_definition_of_typedef)
5211        << Context.getTypeDeclType(New)
5212        << PrevTypedef->getUnderlyingType();
5213      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
5214      Invalid = true;
5215    }
5216  }
5217
5218  // If this is a specialization of a member class (of a class template),
5219  // check the specialization.
5220  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5221    Invalid = true;
5222
5223  if (Invalid)
5224    New->setInvalidDecl();
5225
5226  if (Attr)
5227    ProcessDeclAttributeList(S, New, Attr);
5228
5229  // If we're declaring or defining a tag in function prototype scope
5230  // in C, note that this type can only be used within the function.
5231  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5232    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5233
5234  // Set the lexical context. If the tag has a C++ scope specifier, the
5235  // lexical context will be different from the semantic context.
5236  New->setLexicalDeclContext(CurContext);
5237
5238  // Mark this as a friend decl if applicable.
5239  if (TUK == TUK_Friend)
5240    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5241
5242  // Set the access specifier.
5243  if (!Invalid && TUK != TUK_Friend)
5244    SetMemberAccessSpecifier(New, PrevDecl, AS);
5245
5246  if (TUK == TUK_Definition)
5247    New->startDefinition();
5248
5249  // If this has an identifier, add it to the scope stack.
5250  if (TUK == TUK_Friend) {
5251    // We might be replacing an existing declaration in the lookup tables;
5252    // if so, borrow its access specifier.
5253    if (PrevDecl)
5254      New->setAccess(PrevDecl->getAccess());
5255
5256    // Friend tag decls are visible in fairly strange ways.
5257    if (!CurContext->isDependentContext()) {
5258      DeclContext *DC = New->getDeclContext()->getLookupContext();
5259      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5260      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5261        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5262    }
5263  } else if (Name) {
5264    S = getNonFieldDeclScope(S);
5265    PushOnScopeChains(New, S);
5266  } else {
5267    CurContext->addDecl(New);
5268  }
5269
5270  // If this is the C FILE type, notify the AST context.
5271  if (IdentifierInfo *II = New->getIdentifier())
5272    if (!New->isInvalidDecl() &&
5273        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5274        II->isStr("FILE"))
5275      Context.setFILEDecl(New);
5276
5277  OwnedDecl = true;
5278  return DeclPtrTy::make(New);
5279}
5280
5281void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5282  AdjustDeclIfTemplate(TagD);
5283  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5284
5285  // Enter the tag context.
5286  PushDeclContext(S, Tag);
5287}
5288
5289void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5290                                           SourceLocation LBraceLoc) {
5291  AdjustDeclIfTemplate(TagD);
5292  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5293
5294  FieldCollector->StartClass();
5295
5296  if (!Record->getIdentifier())
5297    return;
5298
5299  // C++ [class]p2:
5300  //   [...] The class-name is also inserted into the scope of the
5301  //   class itself; this is known as the injected-class-name. For
5302  //   purposes of access checking, the injected-class-name is treated
5303  //   as if it were a public member name.
5304  CXXRecordDecl *InjectedClassName
5305    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5306                            CurContext, Record->getLocation(),
5307                            Record->getIdentifier(),
5308                            Record->getTagKeywordLoc(),
5309                            Record);
5310  InjectedClassName->setImplicit();
5311  InjectedClassName->setAccess(AS_public);
5312  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5313      InjectedClassName->setDescribedClassTemplate(Template);
5314  PushOnScopeChains(InjectedClassName, S);
5315  assert(InjectedClassName->isInjectedClassName() &&
5316         "Broken injected-class-name");
5317}
5318
5319// Traverses the class and any nested classes, making a note of any
5320// dynamic classes that have no key function so that we can mark all of
5321// their virtual member functions as "used" at the end of the translation
5322// unit. This ensures that all functions needed by the vtable will get
5323// instantiated/synthesized.
5324static void
5325RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
5326                                      SourceLocation Loc) {
5327  // We don't look at dependent or undefined classes.
5328  if (Record->isDependentContext() || !Record->isDefinition())
5329    return;
5330
5331  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
5332    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
5333
5334  for (DeclContext::decl_iterator D = Record->decls_begin(),
5335                               DEnd = Record->decls_end();
5336       D != DEnd; ++D) {
5337    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
5338      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
5339  }
5340}
5341
5342void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5343                                    SourceLocation RBraceLoc) {
5344  AdjustDeclIfTemplate(TagD);
5345  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5346  Tag->setRBraceLoc(RBraceLoc);
5347
5348  if (isa<CXXRecordDecl>(Tag))
5349    FieldCollector->FinishClass();
5350
5351  // Exit this scope of this tag's definition.
5352  PopDeclContext();
5353
5354  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
5355    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
5356                                          RBraceLoc);
5357
5358  // Notify the consumer that we've defined a tag.
5359  Consumer.HandleTagDeclDefinition(Tag);
5360}
5361
5362// Note that FieldName may be null for anonymous bitfields.
5363bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5364                          QualType FieldTy, const Expr *BitWidth,
5365                          bool *ZeroWidth) {
5366  // Default to true; that shouldn't confuse checks for emptiness
5367  if (ZeroWidth)
5368    *ZeroWidth = true;
5369
5370  // C99 6.7.2.1p4 - verify the field type.
5371  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5372  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5373    // Handle incomplete types with specific error.
5374    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5375      return true;
5376    if (FieldName)
5377      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5378        << FieldName << FieldTy << BitWidth->getSourceRange();
5379    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5380      << FieldTy << BitWidth->getSourceRange();
5381  }
5382
5383  // If the bit-width is type- or value-dependent, don't try to check
5384  // it now.
5385  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5386    return false;
5387
5388  llvm::APSInt Value;
5389  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5390    return true;
5391
5392  if (Value != 0 && ZeroWidth)
5393    *ZeroWidth = false;
5394
5395  // Zero-width bitfield is ok for anonymous field.
5396  if (Value == 0 && FieldName)
5397    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5398
5399  if (Value.isSigned() && Value.isNegative()) {
5400    if (FieldName)
5401      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5402               << FieldName << Value.toString(10);
5403    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5404      << Value.toString(10);
5405  }
5406
5407  if (!FieldTy->isDependentType()) {
5408    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5409    if (Value.getZExtValue() > TypeSize) {
5410      if (FieldName)
5411        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5412          << FieldName << (unsigned)TypeSize;
5413      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5414        << (unsigned)TypeSize;
5415    }
5416  }
5417
5418  return false;
5419}
5420
5421/// ActOnField - Each field of a struct/union/class is passed into this in order
5422/// to create a FieldDecl object for it.
5423Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5424                                 SourceLocation DeclStart,
5425                                 Declarator &D, ExprTy *BitfieldWidth) {
5426  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5427                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5428                               AS_public);
5429  return DeclPtrTy::make(Res);
5430}
5431
5432/// HandleField - Analyze a field of a C struct or a C++ data member.
5433///
5434FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5435                             SourceLocation DeclStart,
5436                             Declarator &D, Expr *BitWidth,
5437                             AccessSpecifier AS) {
5438  IdentifierInfo *II = D.getIdentifier();
5439  SourceLocation Loc = DeclStart;
5440  if (II) Loc = D.getIdentifierLoc();
5441
5442  TypeSourceInfo *TInfo = 0;
5443  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5444  if (getLangOptions().CPlusPlus)
5445    CheckExtraCXXDefaultArguments(D);
5446
5447  DiagnoseFunctionSpecifiers(D);
5448
5449  if (D.getDeclSpec().isThreadSpecified())
5450    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5451
5452  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5453                                         ForRedeclaration);
5454
5455  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5456    // Maybe we will complain about the shadowed template parameter.
5457    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5458    // Just pretend that we didn't see the previous declaration.
5459    PrevDecl = 0;
5460  }
5461
5462  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5463    PrevDecl = 0;
5464
5465  bool Mutable
5466    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5467  SourceLocation TSSL = D.getSourceRange().getBegin();
5468  FieldDecl *NewFD
5469    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5470                     AS, PrevDecl, &D);
5471  if (NewFD->isInvalidDecl() && PrevDecl) {
5472    // Don't introduce NewFD into scope; there's already something
5473    // with the same name in the same scope.
5474  } else if (II) {
5475    PushOnScopeChains(NewFD, S);
5476  } else
5477    Record->addDecl(NewFD);
5478
5479  return NewFD;
5480}
5481
5482/// \brief Build a new FieldDecl and check its well-formedness.
5483///
5484/// This routine builds a new FieldDecl given the fields name, type,
5485/// record, etc. \p PrevDecl should refer to any previous declaration
5486/// with the same name and in the same scope as the field to be
5487/// created.
5488///
5489/// \returns a new FieldDecl.
5490///
5491/// \todo The Declarator argument is a hack. It will be removed once
5492FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5493                                TypeSourceInfo *TInfo,
5494                                RecordDecl *Record, SourceLocation Loc,
5495                                bool Mutable, Expr *BitWidth,
5496                                SourceLocation TSSL,
5497                                AccessSpecifier AS, NamedDecl *PrevDecl,
5498                                Declarator *D) {
5499  IdentifierInfo *II = Name.getAsIdentifierInfo();
5500  bool InvalidDecl = false;
5501  if (D) InvalidDecl = D->isInvalidType();
5502
5503  // If we receive a broken type, recover by assuming 'int' and
5504  // marking this declaration as invalid.
5505  if (T.isNull()) {
5506    InvalidDecl = true;
5507    T = Context.IntTy;
5508  }
5509
5510  QualType EltTy = Context.getBaseElementType(T);
5511  if (!EltTy->isDependentType() &&
5512      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5513    InvalidDecl = true;
5514
5515  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5516  // than a variably modified type.
5517  if (!InvalidDecl && T->isVariablyModifiedType()) {
5518    bool SizeIsNegative;
5519    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5520                                                           SizeIsNegative);
5521    if (!FixedTy.isNull()) {
5522      Diag(Loc, diag::warn_illegal_constant_array_size);
5523      T = FixedTy;
5524    } else {
5525      if (SizeIsNegative)
5526        Diag(Loc, diag::err_typecheck_negative_array_size);
5527      else
5528        Diag(Loc, diag::err_typecheck_field_variable_size);
5529      InvalidDecl = true;
5530    }
5531  }
5532
5533  // Fields can not have abstract class types
5534  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5535                                             diag::err_abstract_type_in_decl,
5536                                             AbstractFieldType))
5537    InvalidDecl = true;
5538
5539  bool ZeroWidth = false;
5540  // If this is declared as a bit-field, check the bit-field.
5541  if (!InvalidDecl && BitWidth &&
5542      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5543    InvalidDecl = true;
5544    DeleteExpr(BitWidth);
5545    BitWidth = 0;
5546    ZeroWidth = false;
5547  }
5548
5549  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5550                                       BitWidth, Mutable);
5551  if (InvalidDecl)
5552    NewFD->setInvalidDecl();
5553
5554  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5555    Diag(Loc, diag::err_duplicate_member) << II;
5556    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5557    NewFD->setInvalidDecl();
5558  }
5559
5560  if (getLangOptions().CPlusPlus) {
5561    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5562
5563    if (!T->isPODType())
5564      CXXRecord->setPOD(false);
5565    if (!ZeroWidth)
5566      CXXRecord->setEmpty(false);
5567
5568    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5569      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5570
5571      if (!RDecl->hasTrivialConstructor())
5572        CXXRecord->setHasTrivialConstructor(false);
5573      if (!RDecl->hasTrivialCopyConstructor())
5574        CXXRecord->setHasTrivialCopyConstructor(false);
5575      if (!RDecl->hasTrivialCopyAssignment())
5576        CXXRecord->setHasTrivialCopyAssignment(false);
5577      if (!RDecl->hasTrivialDestructor())
5578        CXXRecord->setHasTrivialDestructor(false);
5579
5580      // C++ 9.5p1: An object of a class with a non-trivial
5581      // constructor, a non-trivial copy constructor, a non-trivial
5582      // destructor, or a non-trivial copy assignment operator
5583      // cannot be a member of a union, nor can an array of such
5584      // objects.
5585      // TODO: C++0x alters this restriction significantly.
5586      if (Record->isUnion()) {
5587        // We check for copy constructors before constructors
5588        // because otherwise we'll never get complaints about
5589        // copy constructors.
5590
5591        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5592
5593        CXXSpecialMember member;
5594        if (!RDecl->hasTrivialCopyConstructor())
5595          member = CXXCopyConstructor;
5596        else if (!RDecl->hasTrivialConstructor())
5597          member = CXXDefaultConstructor;
5598        else if (!RDecl->hasTrivialCopyAssignment())
5599          member = CXXCopyAssignment;
5600        else if (!RDecl->hasTrivialDestructor())
5601          member = CXXDestructor;
5602        else
5603          member = invalid;
5604
5605        if (member != invalid) {
5606          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5607          DiagnoseNontrivial(RT, member);
5608          NewFD->setInvalidDecl();
5609        }
5610      }
5611    }
5612  }
5613
5614  // FIXME: We need to pass in the attributes given an AST
5615  // representation, not a parser representation.
5616  if (D)
5617    // FIXME: What to pass instead of TUScope?
5618    ProcessDeclAttributes(TUScope, NewFD, *D);
5619
5620  if (T.isObjCGCWeak())
5621    Diag(Loc, diag::warn_attribute_weak_on_field);
5622
5623  NewFD->setAccess(AS);
5624
5625  // C++ [dcl.init.aggr]p1:
5626  //   An aggregate is an array or a class (clause 9) with [...] no
5627  //   private or protected non-static data members (clause 11).
5628  // A POD must be an aggregate.
5629  if (getLangOptions().CPlusPlus &&
5630      (AS == AS_private || AS == AS_protected)) {
5631    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5632    CXXRecord->setAggregate(false);
5633    CXXRecord->setPOD(false);
5634  }
5635
5636  return NewFD;
5637}
5638
5639/// DiagnoseNontrivial - Given that a class has a non-trivial
5640/// special member, figure out why.
5641void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5642  QualType QT(T, 0U);
5643  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5644
5645  // Check whether the member was user-declared.
5646  switch (member) {
5647  case CXXDefaultConstructor:
5648    if (RD->hasUserDeclaredConstructor()) {
5649      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5650      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5651        const FunctionDecl *body = 0;
5652        ci->getBody(body);
5653        if (!body ||
5654            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5655          SourceLocation CtorLoc = ci->getLocation();
5656          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5657          return;
5658        }
5659      }
5660
5661      assert(0 && "found no user-declared constructors");
5662      return;
5663    }
5664    break;
5665
5666  case CXXCopyConstructor:
5667    if (RD->hasUserDeclaredCopyConstructor()) {
5668      SourceLocation CtorLoc =
5669        RD->getCopyConstructor(Context, 0)->getLocation();
5670      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5671      return;
5672    }
5673    break;
5674
5675  case CXXCopyAssignment:
5676    if (RD->hasUserDeclaredCopyAssignment()) {
5677      // FIXME: this should use the location of the copy
5678      // assignment, not the type.
5679      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5680      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5681      return;
5682    }
5683    break;
5684
5685  case CXXDestructor:
5686    if (RD->hasUserDeclaredDestructor()) {
5687      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5688      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5689      return;
5690    }
5691    break;
5692  }
5693
5694  typedef CXXRecordDecl::base_class_iterator base_iter;
5695
5696  // Virtual bases and members inhibit trivial copying/construction,
5697  // but not trivial destruction.
5698  if (member != CXXDestructor) {
5699    // Check for virtual bases.  vbases includes indirect virtual bases,
5700    // so we just iterate through the direct bases.
5701    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5702      if (bi->isVirtual()) {
5703        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5704        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5705        return;
5706      }
5707
5708    // Check for virtual methods.
5709    typedef CXXRecordDecl::method_iterator meth_iter;
5710    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5711         ++mi) {
5712      if (mi->isVirtual()) {
5713        SourceLocation MLoc = mi->getSourceRange().getBegin();
5714        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5715        return;
5716      }
5717    }
5718  }
5719
5720  bool (CXXRecordDecl::*hasTrivial)() const;
5721  switch (member) {
5722  case CXXDefaultConstructor:
5723    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5724  case CXXCopyConstructor:
5725    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5726  case CXXCopyAssignment:
5727    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5728  case CXXDestructor:
5729    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5730  default:
5731    assert(0 && "unexpected special member"); return;
5732  }
5733
5734  // Check for nontrivial bases (and recurse).
5735  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5736    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5737    assert(BaseRT && "Don't know how to handle dependent bases");
5738    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5739    if (!(BaseRecTy->*hasTrivial)()) {
5740      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5741      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5742      DiagnoseNontrivial(BaseRT, member);
5743      return;
5744    }
5745  }
5746
5747  // Check for nontrivial members (and recurse).
5748  typedef RecordDecl::field_iterator field_iter;
5749  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5750       ++fi) {
5751    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5752    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5753      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5754
5755      if (!(EltRD->*hasTrivial)()) {
5756        SourceLocation FLoc = (*fi)->getLocation();
5757        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5758        DiagnoseNontrivial(EltRT, member);
5759        return;
5760      }
5761    }
5762  }
5763
5764  assert(0 && "found no explanation for non-trivial member");
5765}
5766
5767/// TranslateIvarVisibility - Translate visibility from a token ID to an
5768///  AST enum value.
5769static ObjCIvarDecl::AccessControl
5770TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5771  switch (ivarVisibility) {
5772  default: assert(0 && "Unknown visitibility kind");
5773  case tok::objc_private: return ObjCIvarDecl::Private;
5774  case tok::objc_public: return ObjCIvarDecl::Public;
5775  case tok::objc_protected: return ObjCIvarDecl::Protected;
5776  case tok::objc_package: return ObjCIvarDecl::Package;
5777  }
5778}
5779
5780/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5781/// in order to create an IvarDecl object for it.
5782Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5783                                SourceLocation DeclStart,
5784                                DeclPtrTy IntfDecl,
5785                                Declarator &D, ExprTy *BitfieldWidth,
5786                                tok::ObjCKeywordKind Visibility) {
5787
5788  IdentifierInfo *II = D.getIdentifier();
5789  Expr *BitWidth = (Expr*)BitfieldWidth;
5790  SourceLocation Loc = DeclStart;
5791  if (II) Loc = D.getIdentifierLoc();
5792
5793  // FIXME: Unnamed fields can be handled in various different ways, for
5794  // example, unnamed unions inject all members into the struct namespace!
5795
5796  TypeSourceInfo *TInfo = 0;
5797  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5798
5799  if (BitWidth) {
5800    // 6.7.2.1p3, 6.7.2.1p4
5801    if (VerifyBitField(Loc, II, T, BitWidth)) {
5802      D.setInvalidType();
5803      DeleteExpr(BitWidth);
5804      BitWidth = 0;
5805    }
5806  } else {
5807    // Not a bitfield.
5808
5809    // validate II.
5810
5811  }
5812
5813  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5814  // than a variably modified type.
5815  if (T->isVariablyModifiedType()) {
5816    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5817    D.setInvalidType();
5818  }
5819
5820  // Get the visibility (access control) for this ivar.
5821  ObjCIvarDecl::AccessControl ac =
5822    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5823                                        : ObjCIvarDecl::None;
5824  // Must set ivar's DeclContext to its enclosing interface.
5825  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5826  DeclContext *EnclosingContext;
5827  if (ObjCImplementationDecl *IMPDecl =
5828      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5829    // Case of ivar declared in an implementation. Context is that of its class.
5830    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5831    assert(IDecl && "No class- ActOnIvar");
5832    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5833  } else
5834    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5835  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5836
5837  // Construct the decl.
5838  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5839                                             EnclosingContext, Loc, II, T,
5840                                             TInfo, ac, (Expr *)BitfieldWidth);
5841
5842  if (II) {
5843    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5844                                           ForRedeclaration);
5845    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5846        && !isa<TagDecl>(PrevDecl)) {
5847      Diag(Loc, diag::err_duplicate_member) << II;
5848      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5849      NewID->setInvalidDecl();
5850    }
5851  }
5852
5853  // Process attributes attached to the ivar.
5854  ProcessDeclAttributes(S, NewID, D);
5855
5856  if (D.isInvalidType())
5857    NewID->setInvalidDecl();
5858
5859  if (II) {
5860    // FIXME: When interfaces are DeclContexts, we'll need to add
5861    // these to the interface.
5862    S->AddDecl(DeclPtrTy::make(NewID));
5863    IdResolver.AddDecl(NewID);
5864  }
5865
5866  return DeclPtrTy::make(NewID);
5867}
5868
5869void Sema::ActOnFields(Scope* S,
5870                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5871                       DeclPtrTy *Fields, unsigned NumFields,
5872                       SourceLocation LBrac, SourceLocation RBrac,
5873                       AttributeList *Attr) {
5874  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5875  assert(EnclosingDecl && "missing record or interface decl");
5876
5877  // If the decl this is being inserted into is invalid, then it may be a
5878  // redeclaration or some other bogus case.  Don't try to add fields to it.
5879  if (EnclosingDecl->isInvalidDecl()) {
5880    // FIXME: Deallocate fields?
5881    return;
5882  }
5883
5884
5885  // Verify that all the fields are okay.
5886  unsigned NumNamedMembers = 0;
5887  llvm::SmallVector<FieldDecl*, 32> RecFields;
5888
5889  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5890  for (unsigned i = 0; i != NumFields; ++i) {
5891    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5892
5893    // Get the type for the field.
5894    Type *FDTy = FD->getType().getTypePtr();
5895
5896    if (!FD->isAnonymousStructOrUnion()) {
5897      // Remember all fields written by the user.
5898      RecFields.push_back(FD);
5899    }
5900
5901    // If the field is already invalid for some reason, don't emit more
5902    // diagnostics about it.
5903    if (FD->isInvalidDecl()) {
5904      EnclosingDecl->setInvalidDecl();
5905      continue;
5906    }
5907
5908    // C99 6.7.2.1p2:
5909    //   A structure or union shall not contain a member with
5910    //   incomplete or function type (hence, a structure shall not
5911    //   contain an instance of itself, but may contain a pointer to
5912    //   an instance of itself), except that the last member of a
5913    //   structure with more than one named member may have incomplete
5914    //   array type; such a structure (and any union containing,
5915    //   possibly recursively, a member that is such a structure)
5916    //   shall not be a member of a structure or an element of an
5917    //   array.
5918    if (FDTy->isFunctionType()) {
5919      // Field declared as a function.
5920      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5921        << FD->getDeclName();
5922      FD->setInvalidDecl();
5923      EnclosingDecl->setInvalidDecl();
5924      continue;
5925    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5926               Record && Record->isStruct()) {
5927      // Flexible array member.
5928      if (NumNamedMembers < 1) {
5929        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5930          << FD->getDeclName();
5931        FD->setInvalidDecl();
5932        EnclosingDecl->setInvalidDecl();
5933        continue;
5934      }
5935      // Okay, we have a legal flexible array member at the end of the struct.
5936      if (Record)
5937        Record->setHasFlexibleArrayMember(true);
5938    } else if (!FDTy->isDependentType() &&
5939               RequireCompleteType(FD->getLocation(), FD->getType(),
5940                                   diag::err_field_incomplete)) {
5941      // Incomplete type
5942      FD->setInvalidDecl();
5943      EnclosingDecl->setInvalidDecl();
5944      continue;
5945    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5946      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5947        // If this is a member of a union, then entire union becomes "flexible".
5948        if (Record && Record->isUnion()) {
5949          Record->setHasFlexibleArrayMember(true);
5950        } else {
5951          // If this is a struct/class and this is not the last element, reject
5952          // it.  Note that GCC supports variable sized arrays in the middle of
5953          // structures.
5954          if (i != NumFields-1)
5955            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5956              << FD->getDeclName() << FD->getType();
5957          else {
5958            // We support flexible arrays at the end of structs in
5959            // other structs as an extension.
5960            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5961              << FD->getDeclName();
5962            if (Record)
5963              Record->setHasFlexibleArrayMember(true);
5964          }
5965        }
5966      }
5967      if (Record && FDTTy->getDecl()->hasObjectMember())
5968        Record->setHasObjectMember(true);
5969    } else if (FDTy->isObjCInterfaceType()) {
5970      /// A field cannot be an Objective-c object
5971      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5972      FD->setInvalidDecl();
5973      EnclosingDecl->setInvalidDecl();
5974      continue;
5975    } else if (getLangOptions().ObjC1 &&
5976               getLangOptions().getGCMode() != LangOptions::NonGC &&
5977               Record &&
5978               (FD->getType()->isObjCObjectPointerType() ||
5979                FD->getType().isObjCGCStrong()))
5980      Record->setHasObjectMember(true);
5981    // Keep track of the number of named members.
5982    if (FD->getIdentifier())
5983      ++NumNamedMembers;
5984  }
5985
5986  // Okay, we successfully defined 'Record'.
5987  if (Record) {
5988    Record->completeDefinition(Context);
5989  } else {
5990    ObjCIvarDecl **ClsFields =
5991      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5992    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5993      ID->setIVarList(ClsFields, RecFields.size(), Context);
5994      ID->setLocEnd(RBrac);
5995      // Add ivar's to class's DeclContext.
5996      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5997        ClsFields[i]->setLexicalDeclContext(ID);
5998        ID->addDecl(ClsFields[i]);
5999      }
6000      // Must enforce the rule that ivars in the base classes may not be
6001      // duplicates.
6002      if (ID->getSuperClass()) {
6003        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
6004             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
6005          ObjCIvarDecl* Ivar = (*IVI);
6006
6007          if (IdentifierInfo *II = Ivar->getIdentifier()) {
6008            ObjCIvarDecl* prevIvar =
6009              ID->getSuperClass()->lookupInstanceVariable(II);
6010            if (prevIvar) {
6011              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
6012              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
6013            }
6014          }
6015        }
6016      }
6017    } else if (ObjCImplementationDecl *IMPDecl =
6018                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6019      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6020      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6021        // Ivar declared in @implementation never belongs to the implementation.
6022        // Only it is in implementation's lexical context.
6023        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6024      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6025    }
6026  }
6027
6028  if (Attr)
6029    ProcessDeclAttributeList(S, Record, Attr);
6030}
6031
6032EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6033                                          EnumConstantDecl *LastEnumConst,
6034                                          SourceLocation IdLoc,
6035                                          IdentifierInfo *Id,
6036                                          ExprArg val) {
6037  Expr *Val = (Expr *)val.get();
6038
6039  llvm::APSInt EnumVal(32);
6040  QualType EltTy;
6041  if (Val) {
6042    if (Enum->isDependentType())
6043      EltTy = Context.DependentTy;
6044    else {
6045      // Make sure to promote the operand type to int.
6046      UsualUnaryConversions(Val);
6047      if (Val != val.get()) {
6048        val.release();
6049        val = Val;
6050      }
6051
6052      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6053      SourceLocation ExpLoc;
6054      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
6055        Val = 0;
6056      } else {
6057        EltTy = Val->getType();
6058      }
6059    }
6060  }
6061
6062  if (!Val) {
6063    if (Enum->isDependentType())
6064      EltTy = Context.DependentTy;
6065    else if (LastEnumConst) {
6066      // Assign the last value + 1.
6067      EnumVal = LastEnumConst->getInitVal();
6068      ++EnumVal;
6069
6070      // Check for overflow on increment.
6071      if (EnumVal < LastEnumConst->getInitVal())
6072        Diag(IdLoc, diag::warn_enum_value_overflow);
6073
6074      EltTy = LastEnumConst->getType();
6075    } else {
6076      // First value, set to zero.
6077      EltTy = Context.IntTy;
6078      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
6079      EnumVal.setIsSigned(true);
6080    }
6081  }
6082
6083  assert(!EltTy.isNull() && "Enum constant with NULL type");
6084
6085  val.release();
6086  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6087                                  Val, EnumVal);
6088}
6089
6090
6091Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6092                                        DeclPtrTy lastEnumConst,
6093                                        SourceLocation IdLoc,
6094                                        IdentifierInfo *Id,
6095                                        SourceLocation EqualLoc, ExprTy *val) {
6096  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6097  EnumConstantDecl *LastEnumConst =
6098    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6099  Expr *Val = static_cast<Expr*>(val);
6100
6101  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6102  // we find one that is.
6103  S = getNonFieldDeclScope(S);
6104
6105  // Verify that there isn't already something declared with this name in this
6106  // scope.
6107  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
6108                                         ForRedeclaration);
6109  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6110    // Maybe we will complain about the shadowed template parameter.
6111    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6112    // Just pretend that we didn't see the previous declaration.
6113    PrevDecl = 0;
6114  }
6115
6116  if (PrevDecl) {
6117    // When in C++, we may get a TagDecl with the same name; in this case the
6118    // enum constant will 'hide' the tag.
6119    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6120           "Received TagDecl when not in C++!");
6121    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6122      if (isa<EnumConstantDecl>(PrevDecl))
6123        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6124      else
6125        Diag(IdLoc, diag::err_redefinition) << Id;
6126      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6127      if (Val) Val->Destroy(Context);
6128      return DeclPtrTy();
6129    }
6130  }
6131
6132  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6133                                            IdLoc, Id, Owned(Val));
6134
6135  // Register this decl in the current scope stack.
6136  if (New)
6137    PushOnScopeChains(New, S);
6138
6139  return DeclPtrTy::make(New);
6140}
6141
6142void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6143                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6144                         DeclPtrTy *Elements, unsigned NumElements,
6145                         Scope *S, AttributeList *Attr) {
6146  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6147  QualType EnumType = Context.getTypeDeclType(Enum);
6148
6149  if (Attr)
6150    ProcessDeclAttributeList(S, Enum, Attr);
6151
6152  if (Enum->isDependentType()) {
6153    for (unsigned i = 0; i != NumElements; ++i) {
6154      EnumConstantDecl *ECD =
6155        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6156      if (!ECD) continue;
6157
6158      ECD->setType(EnumType);
6159    }
6160
6161    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
6162    return;
6163  }
6164
6165  // TODO: If the result value doesn't fit in an int, it must be a long or long
6166  // long value.  ISO C does not support this, but GCC does as an extension,
6167  // emit a warning.
6168  unsigned IntWidth = Context.Target.getIntWidth();
6169  unsigned CharWidth = Context.Target.getCharWidth();
6170  unsigned ShortWidth = Context.Target.getShortWidth();
6171
6172  // Verify that all the values are okay, compute the size of the values, and
6173  // reverse the list.
6174  unsigned NumNegativeBits = 0;
6175  unsigned NumPositiveBits = 0;
6176
6177  // Keep track of whether all elements have type int.
6178  bool AllElementsInt = true;
6179
6180  for (unsigned i = 0; i != NumElements; ++i) {
6181    EnumConstantDecl *ECD =
6182      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6183    if (!ECD) continue;  // Already issued a diagnostic.
6184
6185    // If the enum value doesn't fit in an int, emit an extension warning.
6186    const llvm::APSInt &InitVal = ECD->getInitVal();
6187    assert(InitVal.getBitWidth() >= IntWidth &&
6188           "Should have promoted value to int");
6189    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
6190      llvm::APSInt V(InitVal);
6191      V.trunc(IntWidth);
6192      V.extend(InitVal.getBitWidth());
6193      if (V != InitVal)
6194        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
6195          << InitVal.toString(10);
6196    }
6197
6198    // Keep track of the size of positive and negative values.
6199    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6200      NumPositiveBits = std::max(NumPositiveBits,
6201                                 (unsigned)InitVal.getActiveBits());
6202    else
6203      NumNegativeBits = std::max(NumNegativeBits,
6204                                 (unsigned)InitVal.getMinSignedBits());
6205
6206    // Keep track of whether every enum element has type int (very commmon).
6207    if (AllElementsInt)
6208      AllElementsInt = ECD->getType() == Context.IntTy;
6209  }
6210
6211  // Figure out the type that should be used for this enum.
6212  // FIXME: Support -fshort-enums.
6213  QualType BestType;
6214  unsigned BestWidth;
6215
6216  // C++0x N3000 [conv.prom]p3:
6217  //   An rvalue of an unscoped enumeration type whose underlying
6218  //   type is not fixed can be converted to an rvalue of the first
6219  //   of the following types that can represent all the values of
6220  //   the enumeration: int, unsigned int, long int, unsigned long
6221  //   int, long long int, or unsigned long long int.
6222  // C99 6.4.4.3p2:
6223  //   An identifier declared as an enumeration constant has type int.
6224  // The C99 rule is modified by a gcc extension
6225  QualType BestPromotionType;
6226
6227  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6228
6229  if (NumNegativeBits) {
6230    // If there is a negative value, figure out the smallest integer type (of
6231    // int/long/longlong) that fits.
6232    // If it's packed, check also if it fits a char or a short.
6233    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6234      BestType = Context.SignedCharTy;
6235      BestWidth = CharWidth;
6236    } else if (Packed && NumNegativeBits <= ShortWidth &&
6237               NumPositiveBits < ShortWidth) {
6238      BestType = Context.ShortTy;
6239      BestWidth = ShortWidth;
6240    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6241      BestType = Context.IntTy;
6242      BestWidth = IntWidth;
6243    } else {
6244      BestWidth = Context.Target.getLongWidth();
6245
6246      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6247        BestType = Context.LongTy;
6248      } else {
6249        BestWidth = Context.Target.getLongLongWidth();
6250
6251        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6252          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6253        BestType = Context.LongLongTy;
6254      }
6255    }
6256    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6257  } else {
6258    // If there is no negative value, figure out which of uint, ulong, ulonglong
6259    // fits.
6260    // If it's packed, check also if it fits a char or a short.
6261    if (Packed && NumPositiveBits <= CharWidth) {
6262      BestType = Context.UnsignedCharTy;
6263      BestPromotionType = Context.IntTy;
6264      BestWidth = CharWidth;
6265    } else if (Packed && NumPositiveBits <= ShortWidth) {
6266      BestType = Context.UnsignedShortTy;
6267      BestPromotionType = Context.IntTy;
6268      BestWidth = ShortWidth;
6269    } else if (NumPositiveBits <= IntWidth) {
6270      BestType = Context.UnsignedIntTy;
6271      BestWidth = IntWidth;
6272      BestPromotionType = (NumPositiveBits == BestWidth
6273                           ? Context.UnsignedIntTy : Context.IntTy);
6274    } else if (NumPositiveBits <=
6275               (BestWidth = Context.Target.getLongWidth())) {
6276      BestType = Context.UnsignedLongTy;
6277      BestPromotionType = (NumPositiveBits == BestWidth
6278                           ? Context.UnsignedLongTy : Context.LongTy);
6279    } else {
6280      BestWidth = Context.Target.getLongLongWidth();
6281      assert(NumPositiveBits <= BestWidth &&
6282             "How could an initializer get larger than ULL?");
6283      BestType = Context.UnsignedLongLongTy;
6284      BestPromotionType = (NumPositiveBits == BestWidth
6285                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
6286    }
6287  }
6288
6289  // If we're in C and the promotion type is larger than an int, just
6290  // use the underlying type, which is generally the unsigned integer
6291  // type of the same rank as the promotion type.  This is how the gcc
6292  // extension works.
6293  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
6294    BestPromotionType = BestType;
6295
6296  // Loop over all of the enumerator constants, changing their types to match
6297  // the type of the enum if needed.
6298  for (unsigned i = 0; i != NumElements; ++i) {
6299    EnumConstantDecl *ECD =
6300      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6301    if (!ECD) continue;  // Already issued a diagnostic.
6302
6303    // Standard C says the enumerators have int type, but we allow, as an
6304    // extension, the enumerators to be larger than int size.  If each
6305    // enumerator value fits in an int, type it as an int, otherwise type it the
6306    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6307    // that X has type 'int', not 'unsigned'.
6308    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
6309      continue;
6310
6311    // Determine whether the value fits into an int.
6312    llvm::APSInt InitVal = ECD->getInitVal();
6313    bool FitsInInt;
6314    if (InitVal.isUnsigned() || !InitVal.isNegative())
6315      FitsInInt = InitVal.getActiveBits() < IntWidth;
6316    else
6317      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
6318
6319    // If it fits into an integer type, force it.  Otherwise force it to match
6320    // the enum decl type.
6321    QualType NewTy;
6322    unsigned NewWidth;
6323    bool NewSign;
6324    if (FitsInInt && !getLangOptions().CPlusPlus) {
6325      NewTy = Context.IntTy;
6326      NewWidth = IntWidth;
6327      NewSign = true;
6328    } else if (ECD->getType() == BestType) {
6329      // Already the right type!
6330      if (getLangOptions().CPlusPlus)
6331        // C++ [dcl.enum]p4: Following the closing brace of an
6332        // enum-specifier, each enumerator has the type of its
6333        // enumeration.
6334        ECD->setType(EnumType);
6335      continue;
6336    } else {
6337      NewTy = BestType;
6338      NewWidth = BestWidth;
6339      NewSign = BestType->isSignedIntegerType();
6340    }
6341
6342    // Adjust the APSInt value.
6343    InitVal.extOrTrunc(NewWidth);
6344    InitVal.setIsSigned(NewSign);
6345    ECD->setInitVal(InitVal);
6346
6347    // Adjust the Expr initializer and type.
6348    if (ECD->getInitExpr())
6349      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6350                                                      CastExpr::CK_IntegralCast,
6351                                                      ECD->getInitExpr(),
6352                                                      /*isLvalue=*/false));
6353    if (getLangOptions().CPlusPlus)
6354      // C++ [dcl.enum]p4: Following the closing brace of an
6355      // enum-specifier, each enumerator has the type of its
6356      // enumeration.
6357      ECD->setType(EnumType);
6358    else
6359      ECD->setType(NewTy);
6360  }
6361
6362  Enum->completeDefinition(Context, BestType, BestPromotionType);
6363}
6364
6365Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6366                                            ExprArg expr) {
6367  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6368
6369  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6370                                                   Loc, AsmString);
6371  CurContext->addDecl(New);
6372  return DeclPtrTy::make(New);
6373}
6374
6375void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6376                             SourceLocation PragmaLoc,
6377                             SourceLocation NameLoc) {
6378  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6379
6380  if (PrevDecl) {
6381    PrevDecl->addAttr(::new (Context) WeakAttr());
6382  } else {
6383    (void)WeakUndeclaredIdentifiers.insert(
6384      std::pair<IdentifierInfo*,WeakInfo>
6385        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6386  }
6387}
6388
6389void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6390                                IdentifierInfo* AliasName,
6391                                SourceLocation PragmaLoc,
6392                                SourceLocation NameLoc,
6393                                SourceLocation AliasNameLoc) {
6394  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6395  WeakInfo W = WeakInfo(Name, NameLoc);
6396
6397  if (PrevDecl) {
6398    if (!PrevDecl->hasAttr<AliasAttr>())
6399      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6400        DeclApplyPragmaWeak(TUScope, ND, W);
6401  } else {
6402    (void)WeakUndeclaredIdentifiers.insert(
6403      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6404  }
6405}
6406