SemaDecl.cpp revision 910758ef84473671aa8f63ebef652dd20e81e6e0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27#include "clang/AST/ExprCXX.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/SmallString.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/DenseSet.h"
34using namespace clang;
35
36Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
37  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
38
39  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
40                 isa<ObjCInterfaceDecl>(IIDecl) ||
41                 isa<TagDecl>(IIDecl)))
42    return IIDecl;
43  return 0;
44}
45
46void Sema::PushDeclContext(DeclContext *DC) {
47  assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
48            || DC->getParent() == CurContext ) &&
49      "The next DeclContext should be directly contained in the current one.");
50  CurContext = DC;
51}
52
53void Sema::PopDeclContext() {
54  assert(CurContext && "DeclContext imbalance!");
55  // If CurContext is a ObjC method, getParent() will return NULL.
56  CurContext = isa<ObjCMethodDecl>(CurContext)
57               ? Context.getTranslationUnitDecl()
58                 :  CurContext->getParent();
59}
60
61/// Add this decl to the scope shadowed decl chains.
62void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
63  S->AddDecl(D);
64
65  // C++ [basic.scope]p4:
66  //   -- exactly one declaration shall declare a class name or
67  //   enumeration name that is not a typedef name and the other
68  //   declarations shall all refer to the same object or
69  //   enumerator, or all refer to functions and function templates;
70  //   in this case the class name or enumeration name is hidden.
71  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
72    // We are pushing the name of a tag (enum or class).
73    IdentifierResolver::ctx_iterator
74      CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
75    if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
76        IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
77      // There is already a declaration with the same name in the same
78      // scope. It must be found before we find the new declaration,
79      // so swap the order on the shadowed declaration chain.
80
81      IdResolver.AddShadowedDecl(TD, *CIT);
82      return;
83    }
84  }
85
86  IdResolver.AddDecl(D);
87}
88
89void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
90  if (S->decl_empty()) return;
91  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
92
93  // We only want to remove the decls from the identifier decl chains for local
94  // scopes, when inside a function/method.
95  if (S->getFnParent() == 0)
96    return;
97
98  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
99       I != E; ++I) {
100    Decl *TmpD = static_cast<Decl*>(*I);
101    assert(TmpD && "This decl didn't get pushed??");
102    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
103    assert(D && "This decl isn't a ScopedDecl?");
104
105    IdentifierInfo *II = D->getIdentifier();
106    if (!II) continue;
107
108    // Unlink this decl from the identifier.
109    IdResolver.RemoveDecl(D);
110
111    // This will have to be revisited for C++: there we want to nest stuff in
112    // namespace decls etc.  Even for C, we might want a top-level translation
113    // unit decl or something.
114    if (!CurFunctionDecl)
115      continue;
116
117    // Chain this decl to the containing function, it now owns the memory for
118    // the decl.
119    D->setNext(CurFunctionDecl->getDeclChain());
120    CurFunctionDecl->setDeclChain(D);
121  }
122}
123
124/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
125/// return 0 if one not found.
126ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
127  // The third "scope" argument is 0 since we aren't enabling lazy built-in
128  // creation from this context.
129  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
130
131  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
132}
133
134/// LookupDecl - Look up the inner-most declaration in the specified
135/// namespace.
136Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
137                       Scope *S, bool enableLazyBuiltinCreation) {
138  if (II == 0) return 0;
139  unsigned NS = NSI;
140  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
141    NS |= Decl::IDNS_Tag;
142
143  // Scan up the scope chain looking for a decl that matches this identifier
144  // that is in the appropriate namespace.  This search should not take long, as
145  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
146  for (IdentifierResolver::iterator
147       I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
148    if ((*I)->getIdentifierNamespace() & NS)
149      return *I;
150
151  // If we didn't find a use of this identifier, and if the identifier
152  // corresponds to a compiler builtin, create the decl object for the builtin
153  // now, injecting it into translation unit scope, and return it.
154  if (NS & Decl::IDNS_Ordinary) {
155    if (enableLazyBuiltinCreation) {
156      // If this is a builtin on this (or all) targets, create the decl.
157      if (unsigned BuiltinID = II->getBuiltinID())
158        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
159    }
160    if (getLangOptions().ObjC1) {
161      // @interface and @compatibility_alias introduce typedef-like names.
162      // Unlike typedef's, they can only be introduced at file-scope (and are
163      // therefore not scoped decls). They can, however, be shadowed by
164      // other names in IDNS_Ordinary.
165      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
166      if (IDI != ObjCInterfaceDecls.end())
167        return IDI->second;
168      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
169      if (I != ObjCAliasDecls.end())
170        return I->second->getClassInterface();
171    }
172  }
173  return 0;
174}
175
176void Sema::InitBuiltinVaListType() {
177  if (!Context.getBuiltinVaListType().isNull())
178    return;
179
180  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
181  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
182  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
183  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
184}
185
186/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
187/// lazily create a decl for it.
188ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
189                                      Scope *S) {
190  Builtin::ID BID = (Builtin::ID)bid;
191
192  if (BID == Builtin::BI__builtin_va_start ||
193      BID == Builtin::BI__builtin_va_copy ||
194      BID == Builtin::BI__builtin_va_end)
195    InitBuiltinVaListType();
196
197  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
198  FunctionDecl *New = FunctionDecl::Create(Context,
199                                           Context.getTranslationUnitDecl(),
200                                           SourceLocation(), II, R,
201                                           FunctionDecl::Extern, false, 0);
202
203  // Create Decl objects for each parameter, adding them to the
204  // FunctionDecl.
205  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
206    llvm::SmallVector<ParmVarDecl*, 16> Params;
207    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
208      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
209                                           FT->getArgType(i), VarDecl::None, 0,
210                                           0));
211    New->setParams(&Params[0], Params.size());
212  }
213
214
215
216  // TUScope is the translation-unit scope to insert this function into.
217  PushOnScopeChains(New, TUScope);
218  return New;
219}
220
221/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
222/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
223/// situation, merging decls or emitting diagnostics as appropriate.
224///
225TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
226  // Verify the old decl was also a typedef.
227  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
228  if (!Old) {
229    Diag(New->getLocation(), diag::err_redefinition_different_kind,
230         New->getName());
231    Diag(OldD->getLocation(), diag::err_previous_definition);
232    return New;
233  }
234
235  // Allow multiple definitions for ObjC built-in typedefs.
236  // FIXME: Verify the underlying types are equivalent!
237  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
238    return Old;
239
240  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
241  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
242  // *either* declaration is in a system header. The code below implements
243  // this adhoc compatibility rule. FIXME: The following code will not
244  // work properly when compiling ".i" files (containing preprocessed output).
245  SourceManager &SrcMgr = Context.getSourceManager();
246  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
247  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
248  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
249  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
250  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
251
252  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
253  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
254       NewDirType != DirectoryLookup::NormalHeaderDir) ||
255      getLangOptions().Microsoft)
256    return New;
257
258  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
259  // TODO: This is totally simplistic.  It should handle merging functions
260  // together etc, merging extern int X; int X; ...
261  Diag(New->getLocation(), diag::err_redefinition, New->getName());
262  Diag(Old->getLocation(), diag::err_previous_definition);
263  return New;
264}
265
266/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
267static bool DeclHasAttr(const Decl *decl, const Attr *target) {
268  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
269    if (attr->getKind() == target->getKind())
270      return true;
271
272  return false;
273}
274
275/// MergeAttributes - append attributes from the Old decl to the New one.
276static void MergeAttributes(Decl *New, Decl *Old) {
277  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
278
279// FIXME: fix this code to cleanup the Old attrs correctly
280  while (attr) {
281     tmp = attr;
282     attr = attr->getNext();
283
284    if (!DeclHasAttr(New, tmp)) {
285       New->addAttr(tmp);
286    } else {
287       tmp->setNext(0);
288       delete(tmp);
289    }
290  }
291}
292
293/// MergeFunctionDecl - We just parsed a function 'New' from
294/// declarator D which has the same name and scope as a previous
295/// declaration 'Old'.  Figure out how to resolve this situation,
296/// merging decls or emitting diagnostics as appropriate.
297/// Redeclaration will be set true if thisNew is a redeclaration OldD.
298FunctionDecl *
299Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
300  Redeclaration = false;
301  // Verify the old decl was also a function.
302  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
303  if (!Old) {
304    Diag(New->getLocation(), diag::err_redefinition_different_kind,
305         New->getName());
306    Diag(OldD->getLocation(), diag::err_previous_definition);
307    return New;
308  }
309
310  QualType OldQType = Context.getCanonicalType(Old->getType());
311  QualType NewQType = Context.getCanonicalType(New->getType());
312
313  // C++ [dcl.fct]p3:
314  //   All declarations for a function shall agree exactly in both the
315  //   return type and the parameter-type-list.
316  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
317    MergeAttributes(New, Old);
318    Redeclaration = true;
319    return MergeCXXFunctionDecl(New, Old);
320  }
321
322  // C: Function types need to be compatible, not identical. This handles
323  // duplicate function decls like "void f(int); void f(enum X);" properly.
324  if (!getLangOptions().CPlusPlus &&
325      Context.functionTypesAreCompatible(OldQType, NewQType)) {
326    MergeAttributes(New, Old);
327    Redeclaration = true;
328    return New;
329  }
330
331  // A function that has already been declared has been redeclared or defined
332  // with a different type- show appropriate diagnostic
333  diag::kind PrevDiag;
334  if (Old->isThisDeclarationADefinition())
335    PrevDiag = diag::err_previous_definition;
336  else if (Old->isImplicit())
337    PrevDiag = diag::err_previous_implicit_declaration;
338  else
339    PrevDiag = diag::err_previous_declaration;
340
341  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
342  // TODO: This is totally simplistic.  It should handle merging functions
343  // together etc, merging extern int X; int X; ...
344  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
345  Diag(Old->getLocation(), PrevDiag);
346  return New;
347}
348
349/// equivalentArrayTypes - Used to determine whether two array types are
350/// equivalent.
351/// We need to check this explicitly as an incomplete array definition is
352/// considered a VariableArrayType, so will not match a complete array
353/// definition that would be otherwise equivalent.
354static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
355  const ArrayType *NewAT = NewQType->getAsArrayType();
356  const ArrayType *OldAT = OldQType->getAsArrayType();
357
358  if (!NewAT || !OldAT)
359    return false;
360
361  // If either (or both) array types in incomplete we need to strip off the
362  // outer VariableArrayType.  Once the outer VAT is removed the remaining
363  // types must be identical if the array types are to be considered
364  // equivalent.
365  // eg. int[][1] and int[1][1] become
366  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
367  // removing the outermost VAT gives
368  //     CAT(1, int) and CAT(1, int)
369  // which are equal, therefore the array types are equivalent.
370  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
371    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
372      return false;
373    NewQType = NewAT->getElementType().getCanonicalType();
374    OldQType = OldAT->getElementType().getCanonicalType();
375  }
376
377  return NewQType == OldQType;
378}
379
380/// MergeVarDecl - We just parsed a variable 'New' which has the same name
381/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
382/// situation, merging decls or emitting diagnostics as appropriate.
383///
384/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
385/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
386///
387VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
388  // Verify the old decl was also a variable.
389  VarDecl *Old = dyn_cast<VarDecl>(OldD);
390  if (!Old) {
391    Diag(New->getLocation(), diag::err_redefinition_different_kind,
392         New->getName());
393    Diag(OldD->getLocation(), diag::err_previous_definition);
394    return New;
395  }
396
397  MergeAttributes(New, Old);
398
399  // Verify the types match.
400  QualType OldCType = Context.getCanonicalType(Old->getType());
401  QualType NewCType = Context.getCanonicalType(New->getType());
402  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
403    Diag(New->getLocation(), diag::err_redefinition, New->getName());
404    Diag(Old->getLocation(), diag::err_previous_definition);
405    return New;
406  }
407  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
408  if (New->getStorageClass() == VarDecl::Static &&
409      (Old->getStorageClass() == VarDecl::None ||
410       Old->getStorageClass() == VarDecl::Extern)) {
411    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
412    Diag(Old->getLocation(), diag::err_previous_definition);
413    return New;
414  }
415  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
416  if (New->getStorageClass() != VarDecl::Static &&
417      Old->getStorageClass() == VarDecl::Static) {
418    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
419    Diag(Old->getLocation(), diag::err_previous_definition);
420    return New;
421  }
422  // We've verified the types match, now handle "tentative" definitions.
423  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
424    // Handle C "tentative" external object definitions (C99 6.9.2).
425    bool OldIsTentative = false;
426    bool NewIsTentative = false;
427
428    if (!Old->getInit() &&
429        (Old->getStorageClass() == VarDecl::None ||
430         Old->getStorageClass() == VarDecl::Static))
431      OldIsTentative = true;
432
433    // FIXME: this check doesn't work (since the initializer hasn't been
434    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
435    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
436    // thrown out the old decl.
437    if (!New->getInit() &&
438        (New->getStorageClass() == VarDecl::None ||
439         New->getStorageClass() == VarDecl::Static))
440      ; // change to NewIsTentative = true; once the code is moved.
441
442    if (NewIsTentative || OldIsTentative)
443      return New;
444  }
445  // Handle __private_extern__ just like extern.
446  if (Old->getStorageClass() != VarDecl::Extern &&
447      Old->getStorageClass() != VarDecl::PrivateExtern &&
448      New->getStorageClass() != VarDecl::Extern &&
449      New->getStorageClass() != VarDecl::PrivateExtern) {
450    Diag(New->getLocation(), diag::err_redefinition, New->getName());
451    Diag(Old->getLocation(), diag::err_previous_definition);
452  }
453  return New;
454}
455
456/// CheckParmsForFunctionDef - Check that the parameters of the given
457/// function are appropriate for the definition of a function. This
458/// takes care of any checks that cannot be performed on the
459/// declaration itself, e.g., that the types of each of the function
460/// parameters are complete.
461bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
462  bool HasInvalidParm = false;
463  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
464    ParmVarDecl *Param = FD->getParamDecl(p);
465
466    // C99 6.7.5.3p4: the parameters in a parameter type list in a
467    // function declarator that is part of a function definition of
468    // that function shall not have incomplete type.
469    if (Param->getType()->isIncompleteType() &&
470        !Param->isInvalidDecl()) {
471      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
472           Param->getType().getAsString());
473      Param->setInvalidDecl();
474      HasInvalidParm = true;
475    }
476  }
477
478  return HasInvalidParm;
479}
480
481/// CreateImplicitParameter - Creates an implicit function parameter
482/// in the scope S and with the given type. This routine is used, for
483/// example, to create the implicit "self" parameter in an Objective-C
484/// method.
485ParmVarDecl *
486Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
487                              SourceLocation IdLoc, QualType Type) {
488  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
489                                         VarDecl::None, 0, 0);
490  if (Id)
491    PushOnScopeChains(New, S);
492
493  return New;
494}
495
496/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
497/// no declarator (e.g. "struct foo;") is parsed.
498Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
499  // TODO: emit error on 'int;' or 'const enum foo;'.
500  // TODO: emit error on 'typedef int;'
501  // if (!DS.isMissingDeclaratorOk()) Diag(...);
502
503  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
504}
505
506bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
507  // Get the type before calling CheckSingleAssignmentConstraints(), since
508  // it can promote the expression.
509  QualType InitType = Init->getType();
510
511  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
512  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
513                                  InitType, Init, "initializing");
514}
515
516bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
517                         QualType ElementType) {
518  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
519  if (CheckSingleInitializer(expr, ElementType))
520    return true; // types weren't compatible.
521
522  if (savExpr != expr) // The type was promoted, update initializer list.
523    IList->setInit(slot, expr);
524  return false;
525}
526
527bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
528  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
529    // C99 6.7.8p14. We have an array of character type with unknown size
530    // being initialized to a string literal.
531    llvm::APSInt ConstVal(32);
532    ConstVal = strLiteral->getByteLength() + 1;
533    // Return a new array type (C99 6.7.8p22).
534    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
535                                         ArrayType::Normal, 0);
536  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
537    // C99 6.7.8p14. We have an array of character type with known size.
538    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
539      Diag(strLiteral->getSourceRange().getBegin(),
540           diag::warn_initializer_string_for_char_array_too_long,
541           strLiteral->getSourceRange());
542  } else {
543    assert(0 && "HandleStringLiteralInit(): Invalid array type");
544  }
545  // Set type from "char *" to "constant array of char".
546  strLiteral->setType(DeclT);
547  // For now, we always return false (meaning success).
548  return false;
549}
550
551StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
552  const ArrayType *AT = DeclType->getAsArrayType();
553  if (AT && AT->getElementType()->isCharType()) {
554    return dyn_cast<StringLiteral>(Init);
555  }
556  return 0;
557}
558
559// CheckInitializerListTypes - Checks the types of elements of an initializer
560// list. This function is recursive: it calls itself to initialize subelements
561// of aggregate types.  Note that the topLevel parameter essentially refers to
562// whether this expression "owns" the initializer list passed in, or if this
563// initialization is taking elements out of a parent initializer.  Each
564// call to this function adds zero or more to startIndex, reports any errors,
565// and returns true if it found any inconsistent types.
566bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
567                                     bool topLevel, unsigned& startIndex) {
568  bool hadError = false;
569
570  if (DeclType->isScalarType()) {
571    // The simplest case: initializing a single scalar
572    if (topLevel) {
573      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
574           IList->getSourceRange());
575    }
576    if (startIndex < IList->getNumInits()) {
577      Expr* expr = IList->getInit(startIndex);
578      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
579        // FIXME: Should an error be reported here instead?
580        unsigned newIndex = 0;
581        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
582      } else {
583        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
584      }
585      ++startIndex;
586    }
587    // FIXME: Should an error be reported for empty initializer list + scalar?
588  } else if (DeclType->isVectorType()) {
589    if (startIndex < IList->getNumInits()) {
590      const VectorType *VT = DeclType->getAsVectorType();
591      int maxElements = VT->getNumElements();
592      QualType elementType = VT->getElementType();
593
594      for (int i = 0; i < maxElements; ++i) {
595        // Don't attempt to go past the end of the init list
596        if (startIndex >= IList->getNumInits())
597          break;
598        Expr* expr = IList->getInit(startIndex);
599        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
600          unsigned newIndex = 0;
601          hadError |= CheckInitializerListTypes(SubInitList, elementType,
602                                                true, newIndex);
603          ++startIndex;
604        } else {
605          hadError |= CheckInitializerListTypes(IList, elementType,
606                                                false, startIndex);
607        }
608      }
609    }
610  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
611    if (DeclType->isStructureType() || DeclType->isUnionType()) {
612      if (startIndex < IList->getNumInits() && !topLevel &&
613          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
614                                     DeclType)) {
615        // We found a compatible struct; per the standard, this initializes the
616        // struct.  (The C standard technically says that this only applies for
617        // initializers for declarations with automatic scope; however, this
618        // construct is unambiguous anyway because a struct cannot contain
619        // a type compatible with itself. We'll output an error when we check
620        // if the initializer is constant.)
621        // FIXME: Is a call to CheckSingleInitializer required here?
622        ++startIndex;
623      } else {
624        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
625
626        // If the record is invalid, some of it's members are invalid. To avoid
627        // confusion, we forgo checking the intializer for the entire record.
628        if (structDecl->isInvalidDecl())
629          return true;
630
631        // If structDecl is a forward declaration, this loop won't do anything;
632        // That's okay, because an error should get printed out elsewhere. It
633        // might be worthwhile to skip over the rest of the initializer, though.
634        int numMembers = structDecl->getNumMembers() -
635                         structDecl->hasFlexibleArrayMember();
636        for (int i = 0; i < numMembers; i++) {
637          // Don't attempt to go past the end of the init list
638          if (startIndex >= IList->getNumInits())
639            break;
640          FieldDecl * curField = structDecl->getMember(i);
641          if (!curField->getIdentifier()) {
642            // Don't initialize unnamed fields, e.g. "int : 20;"
643            continue;
644          }
645          QualType fieldType = curField->getType();
646          Expr* expr = IList->getInit(startIndex);
647          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
648            unsigned newStart = 0;
649            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
650                                                  true, newStart);
651            ++startIndex;
652          } else {
653            hadError |= CheckInitializerListTypes(IList, fieldType,
654                                                  false, startIndex);
655          }
656          if (DeclType->isUnionType())
657            break;
658        }
659        // FIXME: Implement flexible array initialization GCC extension (it's a
660        // really messy extension to implement, unfortunately...the necessary
661        // information isn't actually even here!)
662      }
663    } else if (DeclType->isArrayType()) {
664      // Check for the special-case of initializing an array with a string.
665      if (startIndex < IList->getNumInits()) {
666        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
667                                                     DeclType)) {
668          CheckStringLiteralInit(lit, DeclType);
669          ++startIndex;
670          if (topLevel && startIndex < IList->getNumInits()) {
671            // We have leftover initializers; warn
672            Diag(IList->getInit(startIndex)->getLocStart(),
673                 diag::err_excess_initializers_in_char_array_initializer,
674                 IList->getInit(startIndex)->getSourceRange());
675          }
676          return false;
677        }
678      }
679      int maxElements;
680      if (DeclType->isIncompleteArrayType()) {
681        // FIXME: use a proper constant
682        maxElements = 0x7FFFFFFF;
683      } else if (const VariableArrayType *VAT =
684                                DeclType->getAsVariableArrayType()) {
685        // Check for VLAs; in standard C it would be possible to check this
686        // earlier, but I don't know where clang accepts VLAs (gcc accepts
687        // them in all sorts of strange places).
688        Diag(VAT->getSizeExpr()->getLocStart(),
689             diag::err_variable_object_no_init,
690             VAT->getSizeExpr()->getSourceRange());
691        hadError = true;
692        maxElements = 0x7FFFFFFF;
693      } else {
694        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
695        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
696      }
697      QualType elementType = DeclType->getAsArrayType()->getElementType();
698      int numElements = 0;
699      for (int i = 0; i < maxElements; ++i, ++numElements) {
700        // Don't attempt to go past the end of the init list
701        if (startIndex >= IList->getNumInits())
702          break;
703        Expr* expr = IList->getInit(startIndex);
704        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
705          unsigned newIndex = 0;
706          hadError |= CheckInitializerListTypes(SubInitList, elementType,
707                                                true, newIndex);
708          ++startIndex;
709        } else {
710          hadError |= CheckInitializerListTypes(IList, elementType,
711                                                false, startIndex);
712        }
713      }
714      if (DeclType->isIncompleteArrayType()) {
715        // If this is an incomplete array type, the actual type needs to
716        // be calculated here
717        if (numElements == 0) {
718          // Sizing an array implicitly to zero is not allowed
719          // (It could in theory be allowed, but it doesn't really matter.)
720          Diag(IList->getLocStart(),
721               diag::err_at_least_one_initializer_needed_to_size_array);
722          hadError = true;
723        } else {
724          llvm::APSInt ConstVal(32);
725          ConstVal = numElements;
726          DeclType = Context.getConstantArrayType(elementType, ConstVal,
727                                                  ArrayType::Normal, 0);
728        }
729      }
730    } else {
731      assert(0 && "Aggregate that isn't a function or array?!");
732    }
733  } else {
734    // In C, all types are either scalars or aggregates, but
735    // additional handling is needed here for C++ (and possibly others?).
736    assert(0 && "Unsupported initializer type");
737  }
738
739  // If this init list is a base list, we set the type; an initializer doesn't
740  // fundamentally have a type, but this makes the ASTs a bit easier to read
741  if (topLevel)
742    IList->setType(DeclType);
743
744  if (topLevel && startIndex < IList->getNumInits()) {
745    // We have leftover initializers; warn
746    Diag(IList->getInit(startIndex)->getLocStart(),
747         diag::warn_excess_initializers,
748         IList->getInit(startIndex)->getSourceRange());
749  }
750  return hadError;
751}
752
753bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
754  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
755  // of unknown size ("[]") or an object type that is not a variable array type.
756  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
757    return Diag(VAT->getSizeExpr()->getLocStart(),
758                diag::err_variable_object_no_init,
759                VAT->getSizeExpr()->getSourceRange());
760
761  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
762  if (!InitList) {
763    // FIXME: Handle wide strings
764    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
765      return CheckStringLiteralInit(strLiteral, DeclType);
766
767    if (DeclType->isArrayType())
768      return Diag(Init->getLocStart(),
769                  diag::err_array_init_list_required,
770                  Init->getSourceRange());
771
772    return CheckSingleInitializer(Init, DeclType);
773  }
774#if 0
775  unsigned newIndex = 0;
776  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
777#else
778  InitListChecker CheckInitList(this, InitList, DeclType);
779  return CheckInitList.HadError();
780#endif
781}
782
783Sema::DeclTy *
784Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
785  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
786  IdentifierInfo *II = D.getIdentifier();
787
788  // All of these full declarators require an identifier.  If it doesn't have
789  // one, the ParsedFreeStandingDeclSpec action should be used.
790  if (II == 0) {
791    Diag(D.getDeclSpec().getSourceRange().getBegin(),
792         diag::err_declarator_need_ident,
793         D.getDeclSpec().getSourceRange(), D.getSourceRange());
794    return 0;
795  }
796
797  // The scope passed in may not be a decl scope.  Zip up the scope tree until
798  // we find one that is.
799  while ((S->getFlags() & Scope::DeclScope) == 0)
800    S = S->getParent();
801
802  // See if this is a redefinition of a variable in the same scope.
803  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
804  ScopedDecl *New;
805  bool InvalidDecl = false;
806
807  // In C++, the previous declaration we find might be a tag type
808  // (class or enum). In this case, the new declaration will hide the
809  // tag type.
810  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
811    PrevDecl = 0;
812
813  QualType R = GetTypeForDeclarator(D, S);
814  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
815
816  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
817    // Check that there are no default arguments (C++ only).
818    if (getLangOptions().CPlusPlus)
819      CheckExtraCXXDefaultArguments(D);
820
821    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
822    if (!NewTD) return 0;
823
824    // Handle attributes prior to checking for duplicates in MergeVarDecl
825    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
826                         D.getAttributes());
827    // Merge the decl with the existing one if appropriate. If the decl is
828    // in an outer scope, it isn't the same thing.
829    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
830      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
831      if (NewTD == 0) return 0;
832    }
833    New = NewTD;
834    if (S->getFnParent() == 0) {
835      // C99 6.7.7p2: If a typedef name specifies a variably modified type
836      // then it shall have block scope.
837      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
838        // FIXME: Diagnostic needs to be fixed.
839        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
840        InvalidDecl = true;
841      }
842    }
843  } else if (R.getTypePtr()->isFunctionType()) {
844    FunctionDecl::StorageClass SC = FunctionDecl::None;
845    switch (D.getDeclSpec().getStorageClassSpec()) {
846      default: assert(0 && "Unknown storage class!");
847      case DeclSpec::SCS_auto:
848      case DeclSpec::SCS_register:
849        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
850             R.getAsString());
851        InvalidDecl = true;
852        break;
853      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
854      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
855      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
856      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
857    }
858
859    bool isInline = D.getDeclSpec().isInlineSpecified();
860    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
861                                               D.getIdentifierLoc(),
862                                               II, R, SC, isInline,
863                                               LastDeclarator);
864    // Handle attributes.
865    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
866                         D.getAttributes());
867
868    // Copy the parameter declarations from the declarator D to
869    // the function declaration NewFD, if they are available.
870    if (D.getNumTypeObjects() > 0 &&
871        D.getTypeObject(0).Fun.hasPrototype) {
872      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
873
874      // Create Decl objects for each parameter, adding them to the
875      // FunctionDecl.
876      llvm::SmallVector<ParmVarDecl*, 16> Params;
877
878      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
879      // function that takes no arguments, not a function that takes a
880      // single void argument.
881      // We let through "const void" here because Sema::GetTypeForDeclarator
882      // already checks for that case.
883      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
884          FTI.ArgInfo[0].Param &&
885          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
886        // empty arg list, don't push any params.
887        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
888
889        // In C++, the empty parameter-type-list must be spelled "void"; a
890        // typedef of void is not permitted.
891        if (getLangOptions().CPlusPlus &&
892            Param->getType().getUnqualifiedType() != Context.VoidTy) {
893          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
894        }
895
896      } else {
897        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
898          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
899      }
900
901      NewFD->setParams(&Params[0], Params.size());
902    }
903
904    // Merge the decl with the existing one if appropriate. Since C functions
905    // are in a flat namespace, make sure we consider decls in outer scopes.
906    if (PrevDecl &&
907        (!getLangOptions().CPlusPlus ||
908         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
909      bool Redeclaration = false;
910      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
911      if (NewFD == 0) return 0;
912      if (Redeclaration) {
913        // Note that the new declaration is a redeclaration of the
914        // older declaration. Then return the older declaration: the
915        // new one is only kept within the set of previous
916        // declarations for this function.
917        FunctionDecl *OldFD = (FunctionDecl *)PrevDecl;
918        OldFD->AddRedeclaration(NewFD);
919        return OldFD;
920      }
921    }
922    New = NewFD;
923
924    // In C++, check default arguments now that we have merged decls.
925    if (getLangOptions().CPlusPlus)
926      CheckCXXDefaultArguments(NewFD);
927  } else {
928    // Check that there are no default arguments (C++ only).
929    if (getLangOptions().CPlusPlus)
930      CheckExtraCXXDefaultArguments(D);
931
932    if (R.getTypePtr()->isObjCInterfaceType()) {
933      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
934           D.getIdentifier()->getName());
935      InvalidDecl = true;
936    }
937
938    VarDecl *NewVD;
939    VarDecl::StorageClass SC;
940    switch (D.getDeclSpec().getStorageClassSpec()) {
941    default: assert(0 && "Unknown storage class!");
942    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
943    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
944    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
945    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
946    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
947    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
948    }
949    if (S->getFnParent() == 0) {
950      // C99 6.9p2: The storage-class specifiers auto and register shall not
951      // appear in the declaration specifiers in an external declaration.
952      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
953        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
954             R.getAsString());
955        InvalidDecl = true;
956      }
957      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
958                              II, R, SC, LastDeclarator);
959    } else {
960      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
961                              II, R, SC, LastDeclarator);
962    }
963    // Handle attributes prior to checking for duplicates in MergeVarDecl
964    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
965                         D.getAttributes());
966
967    // Emit an error if an address space was applied to decl with local storage.
968    // This includes arrays of objects with address space qualifiers, but not
969    // automatic variables that point to other address spaces.
970    // ISO/IEC TR 18037 S5.1.2
971    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
972      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
973      InvalidDecl = true;
974    }
975    // Merge the decl with the existing one if appropriate. If the decl is
976    // in an outer scope, it isn't the same thing.
977    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
978      NewVD = MergeVarDecl(NewVD, PrevDecl);
979      if (NewVD == 0) return 0;
980    }
981    New = NewVD;
982  }
983
984  // If this has an identifier, add it to the scope stack.
985  if (II)
986    PushOnScopeChains(New, S);
987  // If any semantic error occurred, mark the decl as invalid.
988  if (D.getInvalidType() || InvalidDecl)
989    New->setInvalidDecl();
990
991  return New;
992}
993
994bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
995  switch (Init->getStmtClass()) {
996  default:
997    Diag(Init->getExprLoc(),
998         diag::err_init_element_not_constant, Init->getSourceRange());
999    return true;
1000  case Expr::ParenExprClass: {
1001    const ParenExpr* PE = cast<ParenExpr>(Init);
1002    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1003  }
1004  case Expr::CompoundLiteralExprClass:
1005    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1006  case Expr::DeclRefExprClass: {
1007    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1008    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1009      if (VD->hasGlobalStorage())
1010        return false;
1011      Diag(Init->getExprLoc(),
1012           diag::err_init_element_not_constant, Init->getSourceRange());
1013      return true;
1014    }
1015    if (isa<FunctionDecl>(D))
1016      return false;
1017    Diag(Init->getExprLoc(),
1018         diag::err_init_element_not_constant, Init->getSourceRange());
1019    return true;
1020  }
1021  case Expr::MemberExprClass: {
1022    const MemberExpr *M = cast<MemberExpr>(Init);
1023    if (M->isArrow())
1024      return CheckAddressConstantExpression(M->getBase());
1025    return CheckAddressConstantExpressionLValue(M->getBase());
1026  }
1027  case Expr::ArraySubscriptExprClass: {
1028    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1029    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1030    return CheckAddressConstantExpression(ASE->getBase()) ||
1031           CheckArithmeticConstantExpression(ASE->getIdx());
1032  }
1033  case Expr::StringLiteralClass:
1034  case Expr::PreDefinedExprClass:
1035    return false;
1036  case Expr::UnaryOperatorClass: {
1037    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1038
1039    // C99 6.6p9
1040    if (Exp->getOpcode() == UnaryOperator::Deref)
1041      return CheckAddressConstantExpression(Exp->getSubExpr());
1042
1043    Diag(Init->getExprLoc(),
1044         diag::err_init_element_not_constant, Init->getSourceRange());
1045    return true;
1046  }
1047  }
1048}
1049
1050bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1051  switch (Init->getStmtClass()) {
1052  default:
1053    Diag(Init->getExprLoc(),
1054         diag::err_init_element_not_constant, Init->getSourceRange());
1055    return true;
1056  case Expr::ParenExprClass: {
1057    const ParenExpr* PE = cast<ParenExpr>(Init);
1058    return CheckAddressConstantExpression(PE->getSubExpr());
1059  }
1060  case Expr::StringLiteralClass:
1061  case Expr::ObjCStringLiteralClass:
1062    return false;
1063  case Expr::CallExprClass: {
1064    const CallExpr *CE = cast<CallExpr>(Init);
1065    if (CE->isBuiltinConstantExpr())
1066      return false;
1067    Diag(Init->getExprLoc(),
1068         diag::err_init_element_not_constant, Init->getSourceRange());
1069    return true;
1070  }
1071  case Expr::UnaryOperatorClass: {
1072    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1073
1074    // C99 6.6p9
1075    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1076      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1077
1078    if (Exp->getOpcode() == UnaryOperator::Extension)
1079      return CheckAddressConstantExpression(Exp->getSubExpr());
1080
1081    Diag(Init->getExprLoc(),
1082         diag::err_init_element_not_constant, Init->getSourceRange());
1083    return true;
1084  }
1085  case Expr::BinaryOperatorClass: {
1086    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1087    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1088
1089    Expr *PExp = Exp->getLHS();
1090    Expr *IExp = Exp->getRHS();
1091    if (IExp->getType()->isPointerType())
1092      std::swap(PExp, IExp);
1093
1094    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1095    return CheckAddressConstantExpression(PExp) ||
1096           CheckArithmeticConstantExpression(IExp);
1097  }
1098  case Expr::ImplicitCastExprClass: {
1099    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1100
1101    // Check for implicit promotion
1102    if (SubExpr->getType()->isFunctionType() ||
1103        SubExpr->getType()->isArrayType())
1104      return CheckAddressConstantExpressionLValue(SubExpr);
1105
1106    // Check for pointer->pointer cast
1107    if (SubExpr->getType()->isPointerType())
1108      return CheckAddressConstantExpression(SubExpr);
1109
1110    if (SubExpr->getType()->isArithmeticType())
1111      return CheckArithmeticConstantExpression(SubExpr);
1112
1113    Diag(Init->getExprLoc(),
1114         diag::err_init_element_not_constant, Init->getSourceRange());
1115    return true;
1116  }
1117  case Expr::CastExprClass: {
1118    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1119
1120    // Check for pointer->pointer cast
1121    if (SubExpr->getType()->isPointerType())
1122      return CheckAddressConstantExpression(SubExpr);
1123
1124    // FIXME: Should we pedwarn for (int*)(0+0)?
1125    if (SubExpr->getType()->isArithmeticType())
1126      return CheckArithmeticConstantExpression(SubExpr);
1127
1128    Diag(Init->getExprLoc(),
1129         diag::err_init_element_not_constant, Init->getSourceRange());
1130    return true;
1131  }
1132  case Expr::ConditionalOperatorClass: {
1133    // FIXME: Should we pedwarn here?
1134    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1135    if (!Exp->getCond()->getType()->isArithmeticType()) {
1136      Diag(Init->getExprLoc(),
1137           diag::err_init_element_not_constant, Init->getSourceRange());
1138      return true;
1139    }
1140    if (CheckArithmeticConstantExpression(Exp->getCond()))
1141      return true;
1142    if (Exp->getLHS() &&
1143        CheckAddressConstantExpression(Exp->getLHS()))
1144      return true;
1145    return CheckAddressConstantExpression(Exp->getRHS());
1146  }
1147  case Expr::AddrLabelExprClass:
1148    return false;
1149  }
1150}
1151
1152bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1153  switch (Init->getStmtClass()) {
1154  default:
1155    Diag(Init->getExprLoc(),
1156         diag::err_init_element_not_constant, Init->getSourceRange());
1157    return true;
1158  case Expr::ParenExprClass: {
1159    const ParenExpr* PE = cast<ParenExpr>(Init);
1160    return CheckArithmeticConstantExpression(PE->getSubExpr());
1161  }
1162  case Expr::FloatingLiteralClass:
1163  case Expr::IntegerLiteralClass:
1164  case Expr::CharacterLiteralClass:
1165  case Expr::ImaginaryLiteralClass:
1166  case Expr::TypesCompatibleExprClass:
1167  case Expr::CXXBoolLiteralExprClass:
1168    return false;
1169  case Expr::CallExprClass: {
1170    const CallExpr *CE = cast<CallExpr>(Init);
1171    if (CE->isBuiltinConstantExpr())
1172      return false;
1173    Diag(Init->getExprLoc(),
1174         diag::err_init_element_not_constant, Init->getSourceRange());
1175    return true;
1176  }
1177  case Expr::DeclRefExprClass: {
1178    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1179    if (isa<EnumConstantDecl>(D))
1180      return false;
1181    Diag(Init->getExprLoc(),
1182         diag::err_init_element_not_constant, Init->getSourceRange());
1183    return true;
1184  }
1185  case Expr::CompoundLiteralExprClass:
1186    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1187    // but vectors are allowed to be magic.
1188    if (Init->getType()->isVectorType())
1189      return false;
1190    Diag(Init->getExprLoc(),
1191         diag::err_init_element_not_constant, Init->getSourceRange());
1192    return true;
1193  case Expr::UnaryOperatorClass: {
1194    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1195
1196    switch (Exp->getOpcode()) {
1197    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1198    // See C99 6.6p3.
1199    default:
1200      Diag(Init->getExprLoc(),
1201           diag::err_init_element_not_constant, Init->getSourceRange());
1202      return true;
1203    case UnaryOperator::SizeOf:
1204    case UnaryOperator::AlignOf:
1205    case UnaryOperator::OffsetOf:
1206      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1207      // See C99 6.5.3.4p2 and 6.6p3.
1208      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1209        return false;
1210      Diag(Init->getExprLoc(),
1211           diag::err_init_element_not_constant, Init->getSourceRange());
1212      return true;
1213    case UnaryOperator::Extension:
1214    case UnaryOperator::LNot:
1215    case UnaryOperator::Plus:
1216    case UnaryOperator::Minus:
1217    case UnaryOperator::Not:
1218      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1219    }
1220  }
1221  case Expr::SizeOfAlignOfTypeExprClass: {
1222    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1223    // Special check for void types, which are allowed as an extension
1224    if (Exp->getArgumentType()->isVoidType())
1225      return false;
1226    // alignof always evaluates to a constant.
1227    // FIXME: is sizeof(int[3.0]) a constant expression?
1228    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1229      Diag(Init->getExprLoc(),
1230           diag::err_init_element_not_constant, Init->getSourceRange());
1231      return true;
1232    }
1233    return false;
1234  }
1235  case Expr::BinaryOperatorClass: {
1236    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1237
1238    if (Exp->getLHS()->getType()->isArithmeticType() &&
1239        Exp->getRHS()->getType()->isArithmeticType()) {
1240      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1241             CheckArithmeticConstantExpression(Exp->getRHS());
1242    }
1243
1244    Diag(Init->getExprLoc(),
1245         diag::err_init_element_not_constant, Init->getSourceRange());
1246    return true;
1247  }
1248  case Expr::ImplicitCastExprClass:
1249  case Expr::CastExprClass: {
1250    const Expr *SubExpr;
1251    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1252      SubExpr = C->getSubExpr();
1253    } else {
1254      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1255    }
1256
1257    if (SubExpr->getType()->isArithmeticType())
1258      return CheckArithmeticConstantExpression(SubExpr);
1259
1260    Diag(Init->getExprLoc(),
1261         diag::err_init_element_not_constant, Init->getSourceRange());
1262    return true;
1263  }
1264  case Expr::ConditionalOperatorClass: {
1265    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1266    if (CheckArithmeticConstantExpression(Exp->getCond()))
1267      return true;
1268    if (Exp->getLHS() &&
1269        CheckArithmeticConstantExpression(Exp->getLHS()))
1270      return true;
1271    return CheckArithmeticConstantExpression(Exp->getRHS());
1272  }
1273  }
1274}
1275
1276bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1277  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1278  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1279    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1280
1281  if (Init->getType()->isReferenceType()) {
1282    // FIXME: Work out how the heck reference types work
1283    return false;
1284#if 0
1285    // A reference is constant if the address of the expression
1286    // is constant
1287    // We look through initlists here to simplify
1288    // CheckAddressConstantExpressionLValue.
1289    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1290      assert(Exp->getNumInits() > 0 &&
1291             "Refernce initializer cannot be empty");
1292      Init = Exp->getInit(0);
1293    }
1294    return CheckAddressConstantExpressionLValue(Init);
1295#endif
1296  }
1297
1298  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1299    unsigned numInits = Exp->getNumInits();
1300    for (unsigned i = 0; i < numInits; i++) {
1301      // FIXME: Need to get the type of the declaration for C++,
1302      // because it could be a reference?
1303      if (CheckForConstantInitializer(Exp->getInit(i),
1304                                      Exp->getInit(i)->getType()))
1305        return true;
1306    }
1307    return false;
1308  }
1309
1310  if (Init->isNullPointerConstant(Context))
1311    return false;
1312  if (Init->getType()->isArithmeticType()) {
1313    // Special check for pointer cast to int; we allow
1314    // an address constant cast to an integer if the integer
1315    // is of an appropriate width (this sort of code is apparently used
1316    // in some places).
1317    // FIXME: Add pedwarn?
1318    Expr* SubE = 0;
1319    if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1320      SubE = ICE->getSubExpr();
1321    else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1322      SubE = CE->getSubExpr();
1323    if (SubE && (SubE->getType()->isPointerType() ||
1324                 SubE->getType()->isArrayType() ||
1325                 SubE->getType()->isFunctionType())) {
1326      unsigned IntWidth = Context.getTypeSize(Init->getType());
1327      unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1328      if (IntWidth >= PointerWidth)
1329        return CheckAddressConstantExpression(Init);
1330    }
1331
1332    return CheckArithmeticConstantExpression(Init);
1333  }
1334
1335  if (Init->getType()->isPointerType())
1336    return CheckAddressConstantExpression(Init);
1337
1338  if (Init->getType()->isArrayType())
1339    return false;
1340
1341  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1342       Init->getSourceRange());
1343  return true;
1344}
1345
1346void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1347  Decl *RealDecl = static_cast<Decl *>(dcl);
1348  Expr *Init = static_cast<Expr *>(init);
1349  assert(Init && "missing initializer");
1350
1351  // If there is no declaration, there was an error parsing it.  Just ignore
1352  // the initializer.
1353  if (RealDecl == 0) {
1354    delete Init;
1355    return;
1356  }
1357
1358  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1359  if (!VDecl) {
1360    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1361         diag::err_illegal_initializer);
1362    RealDecl->setInvalidDecl();
1363    return;
1364  }
1365  // Get the decls type and save a reference for later, since
1366  // CheckInitializerTypes may change it.
1367  QualType DclT = VDecl->getType(), SavT = DclT;
1368  if (VDecl->isBlockVarDecl()) {
1369    VarDecl::StorageClass SC = VDecl->getStorageClass();
1370    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1371      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1372      VDecl->setInvalidDecl();
1373    } else if (!VDecl->isInvalidDecl()) {
1374      if (CheckInitializerTypes(Init, DclT))
1375        VDecl->setInvalidDecl();
1376      if (SC == VarDecl::Static) // C99 6.7.8p4.
1377        CheckForConstantInitializer(Init, DclT);
1378    }
1379  } else if (VDecl->isFileVarDecl()) {
1380    if (VDecl->getStorageClass() == VarDecl::Extern)
1381      Diag(VDecl->getLocation(), diag::warn_extern_init);
1382    if (!VDecl->isInvalidDecl())
1383      if (CheckInitializerTypes(Init, DclT))
1384        VDecl->setInvalidDecl();
1385
1386    // C99 6.7.8p4. All file scoped initializers need to be constant.
1387    CheckForConstantInitializer(Init, DclT);
1388  }
1389  // If the type changed, it means we had an incomplete type that was
1390  // completed by the initializer. For example:
1391  //   int ary[] = { 1, 3, 5 };
1392  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1393  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1394    VDecl->setType(DclT);
1395    Init->setType(DclT);
1396  }
1397
1398  // Attach the initializer to the decl.
1399  VDecl->setInit(Init);
1400  return;
1401}
1402
1403/// The declarators are chained together backwards, reverse the list.
1404Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1405  // Often we have single declarators, handle them quickly.
1406  Decl *GroupDecl = static_cast<Decl*>(group);
1407  if (GroupDecl == 0)
1408    return 0;
1409
1410  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1411  ScopedDecl *NewGroup = 0;
1412  if (Group->getNextDeclarator() == 0)
1413    NewGroup = Group;
1414  else { // reverse the list.
1415    while (Group) {
1416      ScopedDecl *Next = Group->getNextDeclarator();
1417      Group->setNextDeclarator(NewGroup);
1418      NewGroup = Group;
1419      Group = Next;
1420    }
1421  }
1422  // Perform semantic analysis that depends on having fully processed both
1423  // the declarator and initializer.
1424  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1425    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1426    if (!IDecl)
1427      continue;
1428    QualType T = IDecl->getType();
1429
1430    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1431    // static storage duration, it shall not have a variable length array.
1432    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1433        IDecl->getStorageClass() == VarDecl::Static) {
1434      if (T->getAsVariableArrayType()) {
1435        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1436        IDecl->setInvalidDecl();
1437      }
1438    }
1439    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1440    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1441    if (IDecl->isBlockVarDecl() &&
1442        IDecl->getStorageClass() != VarDecl::Extern) {
1443      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1444        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1445             T.getAsString());
1446        IDecl->setInvalidDecl();
1447      }
1448    }
1449    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1450    // object that has file scope without an initializer, and without a
1451    // storage-class specifier or with the storage-class specifier "static",
1452    // constitutes a tentative definition. Note: A tentative definition with
1453    // external linkage is valid (C99 6.2.2p5).
1454    if (IDecl && !IDecl->getInit() &&
1455        (IDecl->getStorageClass() == VarDecl::Static ||
1456         IDecl->getStorageClass() == VarDecl::None)) {
1457      if (T->isIncompleteArrayType()) {
1458        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1459        // array to be completed. Don't issue a diagnostic.
1460      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1461        // C99 6.9.2p3: If the declaration of an identifier for an object is
1462        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1463        // declared type shall not be an incomplete type.
1464        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1465             T.getAsString());
1466        IDecl->setInvalidDecl();
1467      }
1468    }
1469  }
1470  return NewGroup;
1471}
1472
1473/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1474/// to introduce parameters into function prototype scope.
1475Sema::DeclTy *
1476Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1477  DeclSpec &DS = D.getDeclSpec();
1478
1479  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1480  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1481      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1482    Diag(DS.getStorageClassSpecLoc(),
1483         diag::err_invalid_storage_class_in_func_decl);
1484    DS.ClearStorageClassSpecs();
1485  }
1486  if (DS.isThreadSpecified()) {
1487    Diag(DS.getThreadSpecLoc(),
1488         diag::err_invalid_storage_class_in_func_decl);
1489    DS.ClearStorageClassSpecs();
1490  }
1491
1492  // Check that there are no default arguments inside the type of this
1493  // parameter (C++ only).
1494  if (getLangOptions().CPlusPlus)
1495    CheckExtraCXXDefaultArguments(D);
1496
1497  // In this context, we *do not* check D.getInvalidType(). If the declarator
1498  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1499  // though it will not reflect the user specified type.
1500  QualType parmDeclType = GetTypeForDeclarator(D, S);
1501
1502  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1503
1504  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1505  // Can this happen for params?  We already checked that they don't conflict
1506  // among each other.  Here they can only shadow globals, which is ok.
1507  IdentifierInfo *II = D.getIdentifier();
1508  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1509    if (S->isDeclScope(PrevDecl)) {
1510      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1511           dyn_cast<NamedDecl>(PrevDecl)->getName());
1512
1513      // Recover by removing the name
1514      II = 0;
1515      D.SetIdentifier(0, D.getIdentifierLoc());
1516    }
1517  }
1518
1519  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1520  // Doing the promotion here has a win and a loss. The win is the type for
1521  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1522  // code generator). The loss is the orginal type isn't preserved. For example:
1523  //
1524  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1525  //    int blockvardecl[5];
1526  //    sizeof(parmvardecl);  // size == 4
1527  //    sizeof(blockvardecl); // size == 20
1528  // }
1529  //
1530  // For expressions, all implicit conversions are captured using the
1531  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1532  //
1533  // FIXME: If a source translation tool needs to see the original type, then
1534  // we need to consider storing both types (in ParmVarDecl)...
1535  //
1536  if (parmDeclType->isArrayType()) {
1537    // int x[restrict 4] ->  int *restrict
1538    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1539  } else if (parmDeclType->isFunctionType())
1540    parmDeclType = Context.getPointerType(parmDeclType);
1541
1542  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1543                                         D.getIdentifierLoc(), II,
1544                                         parmDeclType, VarDecl::None,
1545                                         0, 0);
1546
1547  if (D.getInvalidType())
1548    New->setInvalidDecl();
1549
1550  if (II)
1551    PushOnScopeChains(New, S);
1552
1553  HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
1554                       D.getAttributes());
1555  return New;
1556
1557}
1558
1559Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1560  assert(CurFunctionDecl == 0 && "Function parsing confused");
1561  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1562         "Not a function declarator!");
1563  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1564
1565  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1566  // for a K&R function.
1567  if (!FTI.hasPrototype) {
1568    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1569      if (FTI.ArgInfo[i].Param == 0) {
1570        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1571             FTI.ArgInfo[i].Ident->getName());
1572        // Implicitly declare the argument as type 'int' for lack of a better
1573        // type.
1574        DeclSpec DS;
1575        const char* PrevSpec; // unused
1576        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1577                           PrevSpec);
1578        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1579        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1580        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1581      }
1582    }
1583
1584    // Since this is a function definition, act as though we have information
1585    // about the arguments.
1586    if (FTI.NumArgs)
1587      FTI.hasPrototype = true;
1588  } else {
1589    // FIXME: Diagnose arguments without names in C.
1590  }
1591
1592  Scope *GlobalScope = FnBodyScope->getParent();
1593
1594  // See if this is a redefinition.
1595  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1596                             GlobalScope);
1597  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1598    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1599      const FunctionDecl *Definition;
1600      if (FD->getBody(Definition)) {
1601        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1602             D.getIdentifier()->getName());
1603        Diag(Definition->getLocation(), diag::err_previous_definition);
1604      }
1605    }
1606  }
1607  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1608  FunctionDecl *FD = cast<FunctionDecl>(decl);
1609  CurFunctionDecl = FD;
1610  PushDeclContext(FD);
1611
1612  // Check the validity of our function parameters
1613  CheckParmsForFunctionDef(FD);
1614
1615  // Introduce our parameters into the function scope
1616  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1617    ParmVarDecl *Param = FD->getParamDecl(p);
1618    // If this has an identifier, add it to the scope stack.
1619    if (Param->getIdentifier())
1620      PushOnScopeChains(Param, FnBodyScope);
1621  }
1622
1623  return FD;
1624}
1625
1626Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1627  Decl *dcl = static_cast<Decl *>(D);
1628  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1629    FD->setBody((Stmt*)Body);
1630    assert(FD == CurFunctionDecl && "Function parsing confused");
1631    CurFunctionDecl = 0;
1632  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1633    MD->setBody((Stmt*)Body);
1634    CurMethodDecl = 0;
1635  }
1636  PopDeclContext();
1637  // Verify and clean out per-function state.
1638
1639  // Check goto/label use.
1640  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1641       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1642    // Verify that we have no forward references left.  If so, there was a goto
1643    // or address of a label taken, but no definition of it.  Label fwd
1644    // definitions are indicated with a null substmt.
1645    if (I->second->getSubStmt() == 0) {
1646      LabelStmt *L = I->second;
1647      // Emit error.
1648      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1649
1650      // At this point, we have gotos that use the bogus label.  Stitch it into
1651      // the function body so that they aren't leaked and that the AST is well
1652      // formed.
1653      if (Body) {
1654        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1655        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1656      } else {
1657        // The whole function wasn't parsed correctly, just delete this.
1658        delete L;
1659      }
1660    }
1661  }
1662  LabelMap.clear();
1663
1664  return D;
1665}
1666
1667/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1668/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1669ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1670                                           IdentifierInfo &II, Scope *S) {
1671  // Extension in C99.  Legal in C90, but warn about it.
1672  if (getLangOptions().C99)
1673    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1674  else
1675    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1676
1677  // FIXME: handle stuff like:
1678  // void foo() { extern float X(); }
1679  // void bar() { X(); }  <-- implicit decl for X in another scope.
1680
1681  // Set a Declarator for the implicit definition: int foo();
1682  const char *Dummy;
1683  DeclSpec DS;
1684  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1685  Error = Error; // Silence warning.
1686  assert(!Error && "Error setting up implicit decl!");
1687  Declarator D(DS, Declarator::BlockContext);
1688  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1689  D.SetIdentifier(&II, Loc);
1690
1691  // Insert this function into translation-unit scope.
1692
1693  DeclContext *PrevDC = CurContext;
1694  CurContext = Context.getTranslationUnitDecl();
1695
1696  FunctionDecl *FD =
1697    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1698  FD->setImplicit();
1699
1700  CurContext = PrevDC;
1701
1702  return FD;
1703}
1704
1705
1706TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1707                                    ScopedDecl *LastDeclarator) {
1708  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1709  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1710
1711  // Scope manipulation handled by caller.
1712  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1713                                           D.getIdentifierLoc(),
1714                                           D.getIdentifier(),
1715                                           T, LastDeclarator);
1716  if (D.getInvalidType())
1717    NewTD->setInvalidDecl();
1718  return NewTD;
1719}
1720
1721/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1722/// former case, Name will be non-null.  In the later case, Name will be null.
1723/// TagType indicates what kind of tag this is. TK indicates whether this is a
1724/// reference/declaration/definition of a tag.
1725Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1726                             SourceLocation KWLoc, IdentifierInfo *Name,
1727                             SourceLocation NameLoc, AttributeList *Attr) {
1728  // If this is a use of an existing tag, it must have a name.
1729  assert((Name != 0 || TK == TK_Definition) &&
1730         "Nameless record must be a definition!");
1731
1732  Decl::Kind Kind;
1733  switch (TagType) {
1734  default: assert(0 && "Unknown tag type!");
1735  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1736  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1737  case DeclSpec::TST_class:  Kind = Decl::Class; break;
1738  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1739  }
1740
1741  // If this is a named struct, check to see if there was a previous forward
1742  // declaration or definition.
1743  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1744  if (ScopedDecl *PrevDecl =
1745          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1746
1747    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1748            "unexpected Decl type");
1749    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1750      // If this is a use of a previous tag, or if the tag is already declared in
1751      // the same scope (so that the definition/declaration completes or
1752      // rementions the tag), reuse the decl.
1753      if (TK == TK_Reference ||
1754          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1755        // Make sure that this wasn't declared as an enum and now used as a struct
1756        // or something similar.
1757        if (PrevDecl->getKind() != Kind) {
1758          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1759          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1760        }
1761
1762        // If this is a use or a forward declaration, we're good.
1763        if (TK != TK_Definition)
1764          return PrevDecl;
1765
1766        // Diagnose attempts to redefine a tag.
1767        if (PrevTagDecl->isDefinition()) {
1768          Diag(NameLoc, diag::err_redefinition, Name->getName());
1769          Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1770          // If this is a redefinition, recover by making this struct be
1771          // anonymous, which will make any later references get the previous
1772          // definition.
1773          Name = 0;
1774        } else {
1775          // Okay, this is definition of a previously declared or referenced tag.
1776          // Move the location of the decl to be the definition site.
1777          PrevDecl->setLocation(NameLoc);
1778          return PrevDecl;
1779        }
1780      }
1781      // If we get here, this is a definition of a new struct type in a nested
1782      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1783      // type.
1784    } else {
1785      // The tag name clashes with a namespace name, issue an error and recover
1786      // by making this tag be anonymous.
1787      Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1788      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1789      Name = 0;
1790    }
1791  }
1792
1793  // If there is an identifier, use the location of the identifier as the
1794  // location of the decl, otherwise use the location of the struct/union
1795  // keyword.
1796  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1797
1798  // Otherwise, if this is the first time we've seen this tag, create the decl.
1799  TagDecl *New;
1800  switch (Kind) {
1801  default: assert(0 && "Unknown tag kind!");
1802  case Decl::Enum:
1803    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1804    // enum X { A, B, C } D;    D should chain to X.
1805    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1806    // If this is an undefined enum, warn.
1807    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1808    break;
1809  case Decl::Union:
1810  case Decl::Struct:
1811  case Decl::Class:
1812    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1813    // struct X { int A; } D;    D should chain to X.
1814    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1815    break;
1816  }
1817
1818  // If this has an identifier, add it to the scope stack.
1819  if (Name) {
1820    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1821    // we find one that is.
1822    while ((S->getFlags() & Scope::DeclScope) == 0)
1823      S = S->getParent();
1824
1825    // Add it to the decl chain.
1826    PushOnScopeChains(New, S);
1827  }
1828
1829  HandleDeclAttributes(New, Attr, 0);
1830  return New;
1831}
1832
1833/// ActOnField - Each field of a struct/union/class is passed into this in order
1834/// to create a FieldDecl object for it.
1835Sema::DeclTy *Sema::ActOnField(Scope *S,
1836                               SourceLocation DeclStart,
1837                               Declarator &D, ExprTy *BitfieldWidth) {
1838  IdentifierInfo *II = D.getIdentifier();
1839  Expr *BitWidth = (Expr*)BitfieldWidth;
1840  SourceLocation Loc = DeclStart;
1841  if (II) Loc = D.getIdentifierLoc();
1842
1843  // FIXME: Unnamed fields can be handled in various different ways, for
1844  // example, unnamed unions inject all members into the struct namespace!
1845
1846
1847  if (BitWidth) {
1848    // TODO: Validate.
1849    //printf("WARNING: BITFIELDS IGNORED!\n");
1850
1851    // 6.7.2.1p3
1852    // 6.7.2.1p4
1853
1854  } else {
1855    // Not a bitfield.
1856
1857    // validate II.
1858
1859  }
1860
1861  QualType T = GetTypeForDeclarator(D, S);
1862  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1863  bool InvalidDecl = false;
1864
1865  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1866  // than a variably modified type.
1867  if (T->isVariablyModifiedType()) {
1868    // FIXME: This diagnostic needs work
1869    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1870    InvalidDecl = true;
1871  }
1872  // FIXME: Chain fielddecls together.
1873  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1874
1875  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1876                       D.getAttributes());
1877
1878  if (D.getInvalidType() || InvalidDecl)
1879    NewFD->setInvalidDecl();
1880  return NewFD;
1881}
1882
1883/// TranslateIvarVisibility - Translate visibility from a token ID to an
1884///  AST enum value.
1885static ObjCIvarDecl::AccessControl
1886TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1887  switch (ivarVisibility) {
1888    case tok::objc_private: return ObjCIvarDecl::Private;
1889    case tok::objc_public: return ObjCIvarDecl::Public;
1890    case tok::objc_protected: return ObjCIvarDecl::Protected;
1891    case tok::objc_package: return ObjCIvarDecl::Package;
1892    default: assert(false && "Unknown visitibility kind");
1893  }
1894}
1895
1896/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1897/// in order to create an IvarDecl object for it.
1898Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1899                              SourceLocation DeclStart,
1900                              Declarator &D, ExprTy *BitfieldWidth,
1901                              tok::ObjCKeywordKind Visibility) {
1902  IdentifierInfo *II = D.getIdentifier();
1903  Expr *BitWidth = (Expr*)BitfieldWidth;
1904  SourceLocation Loc = DeclStart;
1905  if (II) Loc = D.getIdentifierLoc();
1906
1907  // FIXME: Unnamed fields can be handled in various different ways, for
1908  // example, unnamed unions inject all members into the struct namespace!
1909
1910
1911  if (BitWidth) {
1912    // TODO: Validate.
1913    //printf("WARNING: BITFIELDS IGNORED!\n");
1914
1915    // 6.7.2.1p3
1916    // 6.7.2.1p4
1917
1918  } else {
1919    // Not a bitfield.
1920
1921    // validate II.
1922
1923  }
1924
1925  QualType T = GetTypeForDeclarator(D, S);
1926  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1927  bool InvalidDecl = false;
1928
1929  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1930  // than a variably modified type.
1931  if (T->isVariablyModifiedType()) {
1932    // FIXME: This diagnostic needs work
1933    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1934    InvalidDecl = true;
1935  }
1936
1937  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1938
1939  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1940                       D.getAttributes());
1941
1942  if (D.getInvalidType() || InvalidDecl)
1943    NewID->setInvalidDecl();
1944  // If we have visibility info, make sure the AST is set accordingly.
1945  if (Visibility != tok::objc_not_keyword)
1946    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1947  return NewID;
1948}
1949
1950void Sema::ActOnFields(Scope* S,
1951                       SourceLocation RecLoc, DeclTy *RecDecl,
1952                       DeclTy **Fields, unsigned NumFields,
1953                       SourceLocation LBrac, SourceLocation RBrac) {
1954  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1955  assert(EnclosingDecl && "missing record or interface decl");
1956  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1957
1958  if (Record && Record->isDefinition()) {
1959    // Diagnose code like:
1960    //     struct S { struct S {} X; };
1961    // We discover this when we complete the outer S.  Reject and ignore the
1962    // outer S.
1963    Diag(Record->getLocation(), diag::err_nested_redefinition,
1964         Record->getKindName());
1965    Diag(RecLoc, diag::err_previous_definition);
1966    Record->setInvalidDecl();
1967    return;
1968  }
1969  // Verify that all the fields are okay.
1970  unsigned NumNamedMembers = 0;
1971  llvm::SmallVector<FieldDecl*, 32> RecFields;
1972  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1973
1974  for (unsigned i = 0; i != NumFields; ++i) {
1975
1976    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1977    assert(FD && "missing field decl");
1978
1979    // Remember all fields.
1980    RecFields.push_back(FD);
1981
1982    // Get the type for the field.
1983    Type *FDTy = FD->getType().getTypePtr();
1984
1985    // C99 6.7.2.1p2 - A field may not be a function type.
1986    if (FDTy->isFunctionType()) {
1987      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1988           FD->getName());
1989      FD->setInvalidDecl();
1990      EnclosingDecl->setInvalidDecl();
1991      continue;
1992    }
1993    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1994    if (FDTy->isIncompleteType()) {
1995      if (!Record) {  // Incomplete ivar type is always an error.
1996        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1997        FD->setInvalidDecl();
1998        EnclosingDecl->setInvalidDecl();
1999        continue;
2000      }
2001      if (i != NumFields-1 ||                   // ... that the last member ...
2002          Record->getKind() != Decl::Struct ||  // ... of a structure ...
2003          !FDTy->isArrayType()) {         //... may have incomplete array type.
2004        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2005        FD->setInvalidDecl();
2006        EnclosingDecl->setInvalidDecl();
2007        continue;
2008      }
2009      if (NumNamedMembers < 1) {  //... must have more than named member ...
2010        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2011             FD->getName());
2012        FD->setInvalidDecl();
2013        EnclosingDecl->setInvalidDecl();
2014        continue;
2015      }
2016      // Okay, we have a legal flexible array member at the end of the struct.
2017      if (Record)
2018        Record->setHasFlexibleArrayMember(true);
2019    }
2020    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2021    /// field of another structure or the element of an array.
2022    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2023      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2024        // If this is a member of a union, then entire union becomes "flexible".
2025        if (Record && Record->getKind() == Decl::Union) {
2026          Record->setHasFlexibleArrayMember(true);
2027        } else {
2028          // If this is a struct/class and this is not the last element, reject
2029          // it.  Note that GCC supports variable sized arrays in the middle of
2030          // structures.
2031          if (i != NumFields-1) {
2032            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2033                 FD->getName());
2034            FD->setInvalidDecl();
2035            EnclosingDecl->setInvalidDecl();
2036            continue;
2037          }
2038          // We support flexible arrays at the end of structs in other structs
2039          // as an extension.
2040          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2041               FD->getName());
2042          if (Record)
2043            Record->setHasFlexibleArrayMember(true);
2044        }
2045      }
2046    }
2047    /// A field cannot be an Objective-c object
2048    if (FDTy->isObjCInterfaceType()) {
2049      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2050           FD->getName());
2051      FD->setInvalidDecl();
2052      EnclosingDecl->setInvalidDecl();
2053      continue;
2054    }
2055    // Keep track of the number of named members.
2056    if (IdentifierInfo *II = FD->getIdentifier()) {
2057      // Detect duplicate member names.
2058      if (!FieldIDs.insert(II)) {
2059        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2060        // Find the previous decl.
2061        SourceLocation PrevLoc;
2062        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2063          assert(i != e && "Didn't find previous def!");
2064          if (RecFields[i]->getIdentifier() == II) {
2065            PrevLoc = RecFields[i]->getLocation();
2066            break;
2067          }
2068        }
2069        Diag(PrevLoc, diag::err_previous_definition);
2070        FD->setInvalidDecl();
2071        EnclosingDecl->setInvalidDecl();
2072        continue;
2073      }
2074      ++NumNamedMembers;
2075    }
2076  }
2077
2078  // Okay, we successfully defined 'Record'.
2079  if (Record) {
2080    Record->defineBody(&RecFields[0], RecFields.size());
2081    Consumer.HandleTagDeclDefinition(Record);
2082  } else {
2083    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2084    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2085      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2086    else if (ObjCImplementationDecl *IMPDecl =
2087               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2088      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2089      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2090      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2091    }
2092  }
2093}
2094
2095Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2096                                      DeclTy *lastEnumConst,
2097                                      SourceLocation IdLoc, IdentifierInfo *Id,
2098                                      SourceLocation EqualLoc, ExprTy *val) {
2099  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2100  EnumConstantDecl *LastEnumConst =
2101    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2102  Expr *Val = static_cast<Expr*>(val);
2103
2104  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2105  // we find one that is.
2106  while ((S->getFlags() & Scope::DeclScope) == 0)
2107    S = S->getParent();
2108
2109  // Verify that there isn't already something declared with this name in this
2110  // scope.
2111  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2112    if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2113      if (isa<EnumConstantDecl>(PrevDecl))
2114        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2115      else
2116        Diag(IdLoc, diag::err_redefinition, Id->getName());
2117      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2118      delete Val;
2119      return 0;
2120    }
2121  }
2122
2123  llvm::APSInt EnumVal(32);
2124  QualType EltTy;
2125  if (Val) {
2126    // Make sure to promote the operand type to int.
2127    UsualUnaryConversions(Val);
2128
2129    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2130    SourceLocation ExpLoc;
2131    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2132      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2133           Id->getName());
2134      delete Val;
2135      Val = 0;  // Just forget about it.
2136    } else {
2137      EltTy = Val->getType();
2138    }
2139  }
2140
2141  if (!Val) {
2142    if (LastEnumConst) {
2143      // Assign the last value + 1.
2144      EnumVal = LastEnumConst->getInitVal();
2145      ++EnumVal;
2146
2147      // Check for overflow on increment.
2148      if (EnumVal < LastEnumConst->getInitVal())
2149        Diag(IdLoc, diag::warn_enum_value_overflow);
2150
2151      EltTy = LastEnumConst->getType();
2152    } else {
2153      // First value, set to zero.
2154      EltTy = Context.IntTy;
2155      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2156    }
2157  }
2158
2159  EnumConstantDecl *New =
2160    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2161                             Val, EnumVal,
2162                             LastEnumConst);
2163
2164  // Register this decl in the current scope stack.
2165  PushOnScopeChains(New, S);
2166  return New;
2167}
2168
2169void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2170                         DeclTy **Elements, unsigned NumElements) {
2171  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2172  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2173
2174  // TODO: If the result value doesn't fit in an int, it must be a long or long
2175  // long value.  ISO C does not support this, but GCC does as an extension,
2176  // emit a warning.
2177  unsigned IntWidth = Context.Target.getIntWidth();
2178
2179  // Verify that all the values are okay, compute the size of the values, and
2180  // reverse the list.
2181  unsigned NumNegativeBits = 0;
2182  unsigned NumPositiveBits = 0;
2183
2184  // Keep track of whether all elements have type int.
2185  bool AllElementsInt = true;
2186
2187  EnumConstantDecl *EltList = 0;
2188  for (unsigned i = 0; i != NumElements; ++i) {
2189    EnumConstantDecl *ECD =
2190      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2191    if (!ECD) continue;  // Already issued a diagnostic.
2192
2193    // If the enum value doesn't fit in an int, emit an extension warning.
2194    const llvm::APSInt &InitVal = ECD->getInitVal();
2195    assert(InitVal.getBitWidth() >= IntWidth &&
2196           "Should have promoted value to int");
2197    if (InitVal.getBitWidth() > IntWidth) {
2198      llvm::APSInt V(InitVal);
2199      V.trunc(IntWidth);
2200      V.extend(InitVal.getBitWidth());
2201      if (V != InitVal)
2202        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2203             InitVal.toString());
2204    }
2205
2206    // Keep track of the size of positive and negative values.
2207    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2208      NumPositiveBits = std::max(NumPositiveBits,
2209                                 (unsigned)InitVal.getActiveBits());
2210    else
2211      NumNegativeBits = std::max(NumNegativeBits,
2212                                 (unsigned)InitVal.getMinSignedBits());
2213
2214    // Keep track of whether every enum element has type int (very commmon).
2215    if (AllElementsInt)
2216      AllElementsInt = ECD->getType() == Context.IntTy;
2217
2218    ECD->setNextDeclarator(EltList);
2219    EltList = ECD;
2220  }
2221
2222  // Figure out the type that should be used for this enum.
2223  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2224  QualType BestType;
2225  unsigned BestWidth;
2226
2227  if (NumNegativeBits) {
2228    // If there is a negative value, figure out the smallest integer type (of
2229    // int/long/longlong) that fits.
2230    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2231      BestType = Context.IntTy;
2232      BestWidth = IntWidth;
2233    } else {
2234      BestWidth = Context.Target.getLongWidth();
2235
2236      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2237        BestType = Context.LongTy;
2238      else {
2239        BestWidth = Context.Target.getLongLongWidth();
2240
2241        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2242          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2243        BestType = Context.LongLongTy;
2244      }
2245    }
2246  } else {
2247    // If there is no negative value, figure out which of uint, ulong, ulonglong
2248    // fits.
2249    if (NumPositiveBits <= IntWidth) {
2250      BestType = Context.UnsignedIntTy;
2251      BestWidth = IntWidth;
2252    } else if (NumPositiveBits <=
2253               (BestWidth = Context.Target.getLongWidth())) {
2254      BestType = Context.UnsignedLongTy;
2255    } else {
2256      BestWidth = Context.Target.getLongLongWidth();
2257      assert(NumPositiveBits <= BestWidth &&
2258             "How could an initializer get larger than ULL?");
2259      BestType = Context.UnsignedLongLongTy;
2260    }
2261  }
2262
2263  // Loop over all of the enumerator constants, changing their types to match
2264  // the type of the enum if needed.
2265  for (unsigned i = 0; i != NumElements; ++i) {
2266    EnumConstantDecl *ECD =
2267      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2268    if (!ECD) continue;  // Already issued a diagnostic.
2269
2270    // Standard C says the enumerators have int type, but we allow, as an
2271    // extension, the enumerators to be larger than int size.  If each
2272    // enumerator value fits in an int, type it as an int, otherwise type it the
2273    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2274    // that X has type 'int', not 'unsigned'.
2275    if (ECD->getType() == Context.IntTy) {
2276      // Make sure the init value is signed.
2277      llvm::APSInt IV = ECD->getInitVal();
2278      IV.setIsSigned(true);
2279      ECD->setInitVal(IV);
2280      continue;  // Already int type.
2281    }
2282
2283    // Determine whether the value fits into an int.
2284    llvm::APSInt InitVal = ECD->getInitVal();
2285    bool FitsInInt;
2286    if (InitVal.isUnsigned() || !InitVal.isNegative())
2287      FitsInInt = InitVal.getActiveBits() < IntWidth;
2288    else
2289      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2290
2291    // If it fits into an integer type, force it.  Otherwise force it to match
2292    // the enum decl type.
2293    QualType NewTy;
2294    unsigned NewWidth;
2295    bool NewSign;
2296    if (FitsInInt) {
2297      NewTy = Context.IntTy;
2298      NewWidth = IntWidth;
2299      NewSign = true;
2300    } else if (ECD->getType() == BestType) {
2301      // Already the right type!
2302      continue;
2303    } else {
2304      NewTy = BestType;
2305      NewWidth = BestWidth;
2306      NewSign = BestType->isSignedIntegerType();
2307    }
2308
2309    // Adjust the APSInt value.
2310    InitVal.extOrTrunc(NewWidth);
2311    InitVal.setIsSigned(NewSign);
2312    ECD->setInitVal(InitVal);
2313
2314    // Adjust the Expr initializer and type.
2315    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2316    ECD->setType(NewTy);
2317  }
2318
2319  Enum->defineElements(EltList, BestType);
2320  Consumer.HandleTagDeclDefinition(Enum);
2321}
2322
2323Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2324                                          ExprTy *expr) {
2325  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2326
2327  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2328}
2329
2330Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2331                                     SourceLocation LBrace,
2332                                     SourceLocation RBrace,
2333                                     const char *Lang,
2334                                     unsigned StrSize,
2335                                     DeclTy *D) {
2336  LinkageSpecDecl::LanguageIDs Language;
2337  Decl *dcl = static_cast<Decl *>(D);
2338  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2339    Language = LinkageSpecDecl::lang_c;
2340  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2341    Language = LinkageSpecDecl::lang_cxx;
2342  else {
2343    Diag(Loc, diag::err_bad_language);
2344    return 0;
2345  }
2346
2347  // FIXME: Add all the various semantics of linkage specifications
2348  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2349}
2350
2351void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
2352
2353  switch (Attr->getKind()) {
2354  case AttributeList::AT_vector_size:
2355    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2356      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
2357      if (!newType.isNull()) // install the new vector type into the decl
2358        vDecl->setType(newType);
2359    }
2360    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2361      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
2362                                                   Attr);
2363      if (!newType.isNull()) // install the new vector type into the decl
2364        tDecl->setUnderlyingType(newType);
2365    }
2366    break;
2367  case AttributeList::AT_ext_vector_type:
2368    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
2369      HandleExtVectorTypeAttribute(tDecl, Attr);
2370    else
2371      Diag(Attr->getLoc(),
2372           diag::err_typecheck_ext_vector_not_typedef);
2373    break;
2374  case AttributeList::AT_address_space:
2375    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2376      QualType newType = HandleAddressSpaceTypeAttribute(
2377                                                  tDecl->getUnderlyingType(),
2378                                                  Attr);
2379      tDecl->setUnderlyingType(newType);
2380    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2381      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
2382                                                         Attr);
2383      // install the new addr spaced type into the decl
2384      vDecl->setType(newType);
2385    }
2386    break;
2387  case AttributeList::AT_deprecated:
2388    HandleDeprecatedAttribute(New, Attr);
2389    break;
2390  case AttributeList::AT_visibility:
2391    HandleVisibilityAttribute(New, Attr);
2392    break;
2393  case AttributeList::AT_weak:
2394    HandleWeakAttribute(New, Attr);
2395    break;
2396  case AttributeList::AT_dllimport:
2397    HandleDLLImportAttribute(New, Attr);
2398    break;
2399  case AttributeList::AT_dllexport:
2400    HandleDLLExportAttribute(New, Attr);
2401    break;
2402  case AttributeList::AT_nothrow:
2403    HandleNothrowAttribute(New, Attr);
2404    break;
2405  case AttributeList::AT_stdcall:
2406    HandleStdCallAttribute(New, Attr);
2407    break;
2408  case AttributeList::AT_fastcall:
2409    HandleFastCallAttribute(New, Attr);
2410    break;
2411  case AttributeList::AT_aligned:
2412    HandleAlignedAttribute(New, Attr);
2413    break;
2414  case AttributeList::AT_packed:
2415    HandlePackedAttribute(New, Attr);
2416    break;
2417  case AttributeList::AT_annotate:
2418    HandleAnnotateAttribute(New, Attr);
2419    break;
2420  case AttributeList::AT_noreturn:
2421    HandleNoReturnAttribute(New, Attr);
2422    break;
2423  case AttributeList::AT_format:
2424    HandleFormatAttribute(New, Attr);
2425    break;
2426  case AttributeList::AT_transparent_union:
2427    HandleTransparentUnionAttribute(New, Attr);
2428    break;
2429  default:
2430#if 0
2431    // TODO: when we have the full set of attributes, warn about unknown ones.
2432    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2433         Attr->getName()->getName());
2434#endif
2435    break;
2436  }
2437}
2438
2439void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2440                                AttributeList *declarator_postfix) {
2441  while (declspec_prefix) {
2442    HandleDeclAttribute(New, declspec_prefix);
2443    declspec_prefix = declspec_prefix->getNext();
2444  }
2445  while (declarator_postfix) {
2446    HandleDeclAttribute(New, declarator_postfix);
2447    declarator_postfix = declarator_postfix->getNext();
2448  }
2449}
2450
2451void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
2452                                        AttributeList *rawAttr) {
2453  QualType curType = tDecl->getUnderlyingType();
2454  // check the attribute arguments.
2455  if (rawAttr->getNumArgs() != 1) {
2456    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2457         std::string("1"));
2458    return;
2459  }
2460  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2461  llvm::APSInt vecSize(32);
2462  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2463    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2464         "ext_vector_type", sizeExpr->getSourceRange());
2465    return;
2466  }
2467  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2468  // in conjunction with complex types (pointers, arrays, functions, etc.).
2469  Type *canonType = curType.getCanonicalType().getTypePtr();
2470  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2471    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2472         curType.getCanonicalType().getAsString());
2473    return;
2474  }
2475  // unlike gcc's vector_size attribute, the size is specified as the
2476  // number of elements, not the number of bytes.
2477  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2478
2479  if (vectorSize == 0) {
2480    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2481         sizeExpr->getSourceRange());
2482    return;
2483  }
2484  // Instantiate/Install the vector type, the number of elements is > 0.
2485  tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
2486  // Remember this typedef decl, we will need it later for diagnostics.
2487  ExtVectorDecls.push_back(tDecl);
2488}
2489
2490QualType Sema::HandleVectorTypeAttribute(QualType curType,
2491                                         AttributeList *rawAttr) {
2492  // check the attribute arugments.
2493  if (rawAttr->getNumArgs() != 1) {
2494    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2495         std::string("1"));
2496    return QualType();
2497  }
2498  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2499  llvm::APSInt vecSize(32);
2500  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2501    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2502         "vector_size", sizeExpr->getSourceRange());
2503    return QualType();
2504  }
2505  // navigate to the base type - we need to provide for vector pointers,
2506  // vector arrays, and functions returning vectors.
2507  Type *canonType = curType.getCanonicalType().getTypePtr();
2508
2509  if (canonType->isPointerType() || canonType->isArrayType() ||
2510      canonType->isFunctionType()) {
2511    assert(0 && "HandleVector(): Complex type construction unimplemented");
2512    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2513        do {
2514          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2515            canonType = PT->getPointeeType().getTypePtr();
2516          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2517            canonType = AT->getElementType().getTypePtr();
2518          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2519            canonType = FT->getResultType().getTypePtr();
2520        } while (canonType->isPointerType() || canonType->isArrayType() ||
2521                 canonType->isFunctionType());
2522    */
2523  }
2524  // the base type must be integer or float.
2525  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2526    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2527         curType.getCanonicalType().getAsString());
2528    return QualType();
2529  }
2530  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2531  // vecSize is specified in bytes - convert to bits.
2532  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2533
2534  // the vector size needs to be an integral multiple of the type size.
2535  if (vectorSize % typeSize) {
2536    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2537         sizeExpr->getSourceRange());
2538    return QualType();
2539  }
2540  if (vectorSize == 0) {
2541    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2542         sizeExpr->getSourceRange());
2543    return QualType();
2544  }
2545  // Instantiate the vector type, the number of elements is > 0, and not
2546  // required to be a power of 2, unlike GCC.
2547  return Context.getVectorType(curType, vectorSize/typeSize);
2548}
2549
2550void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2551  // check the attribute arguments.
2552  if (rawAttr->getNumArgs() > 0) {
2553    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2554         std::string("0"));
2555    return;
2556  }
2557
2558  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2559    TD->addAttr(new PackedAttr);
2560  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2561    // If the alignment is less than or equal to 8 bits, the packed attribute
2562    // has no effect.
2563    if (!FD->getType()->isIncompleteType() &&
2564        Context.getTypeAlign(FD->getType()) <= 8)
2565      Diag(rawAttr->getLoc(),
2566           diag::warn_attribute_ignored_for_field_of_type,
2567           rawAttr->getName()->getName(), FD->getType().getAsString());
2568    else
2569      FD->addAttr(new PackedAttr);
2570  } else
2571    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2572         rawAttr->getName()->getName());
2573}
2574
2575void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2576  // check the attribute arguments.
2577  if (rawAttr->getNumArgs() != 0) {
2578    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2579         std::string("0"));
2580    return;
2581  }
2582
2583  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2584
2585  if (!Fn) {
2586    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2587         "noreturn", "function");
2588    return;
2589  }
2590
2591  d->addAttr(new NoReturnAttr());
2592}
2593
2594void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2595  // check the attribute arguments.
2596  if (rawAttr->getNumArgs() != 0) {
2597    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2598         std::string("0"));
2599    return;
2600  }
2601
2602  d->addAttr(new DeprecatedAttr());
2603}
2604
2605void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2606  // check the attribute arguments.
2607  if (rawAttr->getNumArgs() != 1) {
2608    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2609         std::string("1"));
2610    return;
2611  }
2612
2613  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2614  Arg = Arg->IgnoreParenCasts();
2615  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2616
2617  if (Str == 0 || Str->isWide()) {
2618    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2619         "visibility", std::string("1"));
2620    return;
2621  }
2622
2623  const char *TypeStr = Str->getStrData();
2624  unsigned TypeLen = Str->getByteLength();
2625  VisibilityAttr::VisibilityTypes type;
2626
2627  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2628    type = VisibilityAttr::DefaultVisibility;
2629  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2630    type = VisibilityAttr::HiddenVisibility;
2631  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2632    type = VisibilityAttr::HiddenVisibility; // FIXME
2633  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2634    type = VisibilityAttr::ProtectedVisibility;
2635  else {
2636    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2637           "visibility", TypeStr);
2638    return;
2639  }
2640
2641  d->addAttr(new VisibilityAttr(type));
2642}
2643
2644void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2645  // check the attribute arguments.
2646  if (rawAttr->getNumArgs() != 0) {
2647    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2648         std::string("0"));
2649    return;
2650  }
2651
2652  d->addAttr(new WeakAttr());
2653}
2654
2655void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2656  // check the attribute arguments.
2657  if (rawAttr->getNumArgs() != 0) {
2658    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2659         std::string("0"));
2660    return;
2661  }
2662
2663  d->addAttr(new DLLImportAttr());
2664}
2665
2666void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2667  // check the attribute arguments.
2668  if (rawAttr->getNumArgs() != 0) {
2669    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2670         std::string("0"));
2671    return;
2672  }
2673
2674  d->addAttr(new DLLExportAttr());
2675}
2676
2677void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2678  // check the attribute arguments.
2679  if (rawAttr->getNumArgs() != 0) {
2680    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2681         std::string("0"));
2682    return;
2683  }
2684
2685  d->addAttr(new StdCallAttr());
2686}
2687
2688void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2689  // check the attribute arguments.
2690  if (rawAttr->getNumArgs() != 0) {
2691    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2692         std::string("0"));
2693    return;
2694  }
2695
2696  d->addAttr(new FastCallAttr());
2697}
2698
2699void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2700  // check the attribute arguments.
2701  if (rawAttr->getNumArgs() != 0) {
2702    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2703         std::string("0"));
2704    return;
2705  }
2706
2707  d->addAttr(new NoThrowAttr());
2708}
2709
2710static const FunctionTypeProto *getFunctionProto(Decl *d) {
2711  QualType Ty;
2712
2713  if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
2714    Ty = decl->getType();
2715  else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
2716    Ty = decl->getType();
2717  else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
2718    Ty = decl->getUnderlyingType();
2719  else
2720    return 0;
2721
2722  if (Ty->isFunctionPointerType()) {
2723    const PointerType *PtrTy = Ty->getAsPointerType();
2724    Ty = PtrTy->getPointeeType();
2725  }
2726
2727  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2728    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2729
2730  return 0;
2731}
2732
2733static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
2734  if (!T->isPointerType())
2735    return false;
2736
2737  T = T->getAsPointerType()->getPointeeType().getCanonicalType();
2738  ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
2739
2740  if (!ClsT)
2741    return false;
2742
2743  IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
2744
2745  // FIXME: Should we walk the chain of classes?
2746  return ClsName == &Ctx.Idents.get("NSString") ||
2747         ClsName == &Ctx.Idents.get("NSMutableString");
2748}
2749
2750/// Handle __attribute__((format(type,idx,firstarg))) attributes
2751/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2752void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2753
2754  if (!rawAttr->getParameterName()) {
2755    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2756           "format", std::string("1"));
2757    return;
2758  }
2759
2760  if (rawAttr->getNumArgs() != 2) {
2761    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2762         std::string("3"));
2763    return;
2764  }
2765
2766  // GCC ignores the format attribute on K&R style function
2767  // prototypes, so we ignore it as well
2768  const FunctionTypeProto *proto = getFunctionProto(d);
2769
2770  if (!proto) {
2771    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2772           "format", "function");
2773    return;
2774  }
2775
2776  // FIXME: in C++ the implicit 'this' function parameter also counts.
2777  // this is needed in order to be compatible with GCC
2778  // the index must start in 1 and the limit is numargs+1
2779  unsigned NumArgs  = proto->getNumArgs();
2780  unsigned FirstIdx = 1;
2781
2782  const char *Format = rawAttr->getParameterName()->getName();
2783  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2784
2785  // Normalize the argument, __foo__ becomes foo.
2786  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2787      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2788    Format += 2;
2789    FormatLen -= 4;
2790  }
2791
2792  bool Supported = false;
2793  bool is_NSString = false;
2794  bool is_strftime = false;
2795
2796  switch (FormatLen) {
2797    default: break;
2798    case 5:
2799      Supported = !memcmp(Format, "scanf", 5);
2800      break;
2801    case 6:
2802      Supported = !memcmp(Format, "printf", 6);
2803      break;
2804    case 7:
2805      Supported = !memcmp(Format, "strfmon", 7);
2806      break;
2807    case 8:
2808      Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
2809                  (is_NSString = !memcmp(Format, "NSString", 8));
2810      break;
2811  }
2812
2813  if (!Supported) {
2814    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2815           "format", rawAttr->getParameterName()->getName());
2816    return;
2817  }
2818
2819  // checks for the 2nd argument
2820  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2821  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2822  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2823    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2824           "format", std::string("2"), IdxExpr->getSourceRange());
2825    return;
2826  }
2827
2828  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2829    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2830           "format", std::string("2"), IdxExpr->getSourceRange());
2831    return;
2832  }
2833
2834  // FIXME: Do we need to bounds check?
2835  unsigned ArgIdx = Idx.getZExtValue() - 1;
2836
2837  // make sure the format string is really a string
2838  QualType Ty = proto->getArgType(ArgIdx);
2839
2840  if (is_NSString) {
2841    // FIXME: do we need to check if the type is NSString*?  What are
2842    //  the semantics?
2843    if (!isNSStringType(Ty, Context)) {
2844      // FIXME: Should highlight the actual expression that has the
2845      // wrong type.
2846      Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
2847           IdxExpr->getSourceRange());
2848      return;
2849    }
2850  }
2851  else if (!Ty->isPointerType() ||
2852      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2853    // FIXME: Should highlight the actual expression that has the
2854    // wrong type.
2855    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2856         IdxExpr->getSourceRange());
2857    return;
2858  }
2859
2860  // check the 3rd argument
2861  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2862  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2863  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2864    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2865           "format", std::string("3"), FirstArgExpr->getSourceRange());
2866    return;
2867  }
2868
2869  // check if the function is variadic if the 3rd argument non-zero
2870  if (FirstArg != 0) {
2871    if (proto->isVariadic()) {
2872      ++NumArgs; // +1 for ...
2873    } else {
2874      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2875      return;
2876    }
2877  }
2878
2879  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2880  // the input is just the current time + the format string
2881  if (is_strftime) {
2882    if (FirstArg != 0) {
2883      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2884             FirstArgExpr->getSourceRange());
2885      return;
2886    }
2887  // if 0 it disables parameter checking (to use with e.g. va_list)
2888  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2889    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2890           "format", std::string("3"), FirstArgExpr->getSourceRange());
2891    return;
2892  }
2893
2894  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2895                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2896}
2897
2898void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
2899  // check the attribute arguments.
2900  if (rawAttr->getNumArgs() != 0) {
2901    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2902         std::string("0"));
2903    return;
2904  }
2905
2906  TypeDecl *decl = dyn_cast<TypeDecl>(d);
2907
2908  if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
2909    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2910         "transparent_union", "union");
2911    return;
2912  }
2913
2914  //QualType QTy = Context.getTypeDeclType(decl);
2915  //const RecordType *Ty = QTy->getAsUnionType();
2916
2917// FIXME
2918// Ty->addAttr(new TransparentUnionAttr());
2919}
2920
2921void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2922  // check the attribute arguments.
2923  if (rawAttr->getNumArgs() != 1) {
2924    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2925         std::string("1"));
2926    return;
2927  }
2928  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2929  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2930
2931  // Make sure that there is a string literal as the annotation's single
2932  // argument.
2933  if (!SE) {
2934    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2935    return;
2936  }
2937  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2938                                          SE->getByteLength())));
2939}
2940
2941void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2942{
2943  // check the attribute arguments.
2944  if (rawAttr->getNumArgs() > 1) {
2945    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2946         std::string("1"));
2947    return;
2948  }
2949
2950  unsigned Align = 0;
2951
2952  if (rawAttr->getNumArgs() == 0) {
2953    // FIXME: This should be the target specific maximum alignment.
2954    // (For now we just use 128 bits which is the maximum on X86.
2955    Align = 128;
2956    return;
2957  } else {
2958    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2959    llvm::APSInt alignment(32);
2960    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2961      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2962           "aligned", alignmentExpr->getSourceRange());
2963      return;
2964    }
2965
2966    Align = alignment.getZExtValue() * 8;
2967  }
2968
2969  d->addAttr(new AlignedAttr(Align));
2970}
2971