SemaDecl.cpp revision 9296aebfac203d1bcce33df85ea14a0c84d7cedb
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  return D->isCopyAssignment();
548}
549
550bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
551  assert(D);
552
553  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
554    return false;
555
556  // Ignore class templates.
557  if (D->getDeclContext()->isDependentContext())
558    return false;
559
560  // We warn for unused decls internal to the translation unit.
561  if (D->getLinkage() == ExternalLinkage)
562    return false;
563
564  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
565    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
566      return false;
567
568    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
569      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
570        return false;
571    } else {
572      // 'static inline' functions are used in headers; don't warn.
573      if (FD->getStorageClass() == SC_Static &&
574          FD->isInlineSpecified())
575        return false;
576    }
577
578    if (FD->isThisDeclarationADefinition())
579      return !Context.DeclMustBeEmitted(FD);
580    return true;
581  }
582
583  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
584    if (VD->isStaticDataMember() &&
585        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
586      return false;
587
588    if ( VD->isFileVarDecl() &&
589        !VD->getType().isConstant(Context))
590      return !Context.DeclMustBeEmitted(VD);
591  }
592
593   return false;
594 }
595
596 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
597  if (!D)
598    return;
599
600  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
601    const FunctionDecl *First = FD->getFirstDeclaration();
602    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
603      return; // First should already be in the vector.
604  }
605
606  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
607    const VarDecl *First = VD->getFirstDeclaration();
608    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612   if (ShouldWarnIfUnusedFileScopedDecl(D))
613     UnusedFileScopedDecls.push_back(D);
614 }
615
616static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
617  if (D->isInvalidDecl())
618    return false;
619
620  if (D->isUsed() || D->hasAttr<UnusedAttr>())
621    return false;
622
623  // White-list anything that isn't a local variable.
624  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
625      !D->getDeclContext()->isFunctionOrMethod())
626    return false;
627
628  // Types of valid local variables should be complete, so this should succeed.
629  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
630
631    // White-list anything with an __attribute__((unused)) type.
632    QualType Ty = VD->getType();
633
634    // Only look at the outermost level of typedef.
635    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
636      if (TT->getDecl()->hasAttr<UnusedAttr>())
637        return false;
638    }
639
640    // If we failed to complete the type for some reason, or if the type is
641    // dependent, don't diagnose the variable.
642    if (Ty->isIncompleteType() || Ty->isDependentType())
643      return false;
644
645    if (const TagType *TT = Ty->getAs<TagType>()) {
646      const TagDecl *Tag = TT->getDecl();
647      if (Tag->hasAttr<UnusedAttr>())
648        return false;
649
650      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
651        // FIXME: Checking for the presence of a user-declared constructor
652        // isn't completely accurate; we'd prefer to check that the initializer
653        // has no side effects.
654        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
655          return false;
656      }
657    }
658
659    // TODO: __attribute__((unused)) templates?
660  }
661
662  return true;
663}
664
665void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
666  if (!ShouldDiagnoseUnusedDecl(D))
667    return;
668
669  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
670    Diag(D->getLocation(), diag::warn_unused_exception_param)
671    << D->getDeclName();
672  else
673    Diag(D->getLocation(), diag::warn_unused_variable)
674    << D->getDeclName();
675}
676
677void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
678  if (S->decl_empty()) return;
679  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
680         "Scope shouldn't contain decls!");
681
682  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
683       I != E; ++I) {
684    Decl *TmpD = (*I);
685    assert(TmpD && "This decl didn't get pushed??");
686
687    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
688    NamedDecl *D = cast<NamedDecl>(TmpD);
689
690    if (!D->getDeclName()) continue;
691
692    // Diagnose unused variables in this scope.
693    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
694      DiagnoseUnusedDecl(D);
695
696    // Remove this name from our lexical scope.
697    IdResolver.RemoveDecl(D);
698  }
699}
700
701/// \brief Look for an Objective-C class in the translation unit.
702///
703/// \param Id The name of the Objective-C class we're looking for. If
704/// typo-correction fixes this name, the Id will be updated
705/// to the fixed name.
706///
707/// \param IdLoc The location of the name in the translation unit.
708///
709/// \param TypoCorrection If true, this routine will attempt typo correction
710/// if there is no class with the given name.
711///
712/// \returns The declaration of the named Objective-C class, or NULL if the
713/// class could not be found.
714ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
715                                              SourceLocation IdLoc,
716                                              bool TypoCorrection) {
717  // The third "scope" argument is 0 since we aren't enabling lazy built-in
718  // creation from this context.
719  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
720
721  if (!IDecl && TypoCorrection) {
722    // Perform typo correction at the given location, but only if we
723    // find an Objective-C class name.
724    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
725    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
726        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
727      Diag(IdLoc, diag::err_undef_interface_suggest)
728        << Id << IDecl->getDeclName()
729        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
730      Diag(IDecl->getLocation(), diag::note_previous_decl)
731        << IDecl->getDeclName();
732
733      Id = IDecl->getIdentifier();
734    }
735  }
736
737  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
738}
739
740/// getNonFieldDeclScope - Retrieves the innermost scope, starting
741/// from S, where a non-field would be declared. This routine copes
742/// with the difference between C and C++ scoping rules in structs and
743/// unions. For example, the following code is well-formed in C but
744/// ill-formed in C++:
745/// @code
746/// struct S6 {
747///   enum { BAR } e;
748/// };
749///
750/// void test_S6() {
751///   struct S6 a;
752///   a.e = BAR;
753/// }
754/// @endcode
755/// For the declaration of BAR, this routine will return a different
756/// scope. The scope S will be the scope of the unnamed enumeration
757/// within S6. In C++, this routine will return the scope associated
758/// with S6, because the enumeration's scope is a transparent
759/// context but structures can contain non-field names. In C, this
760/// routine will return the translation unit scope, since the
761/// enumeration's scope is a transparent context and structures cannot
762/// contain non-field names.
763Scope *Sema::getNonFieldDeclScope(Scope *S) {
764  while (((S->getFlags() & Scope::DeclScope) == 0) ||
765         (S->getEntity() &&
766          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
767         (S->isClassScope() && !getLangOptions().CPlusPlus))
768    S = S->getParent();
769  return S;
770}
771
772void Sema::InitBuiltinVaListType() {
773  if (!Context.getBuiltinVaListType().isNull())
774    return;
775
776  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
777  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
778                                       LookupOrdinaryName, ForRedeclaration);
779  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
780  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
781}
782
783/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
784/// file scope.  lazily create a decl for it. ForRedeclaration is true
785/// if we're creating this built-in in anticipation of redeclaring the
786/// built-in.
787NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
788                                     Scope *S, bool ForRedeclaration,
789                                     SourceLocation Loc) {
790  Builtin::ID BID = (Builtin::ID)bid;
791
792  if (Context.BuiltinInfo.hasVAListUse(BID))
793    InitBuiltinVaListType();
794
795  ASTContext::GetBuiltinTypeError Error;
796  QualType R = Context.GetBuiltinType(BID, Error);
797  switch (Error) {
798  case ASTContext::GE_None:
799    // Okay
800    break;
801
802  case ASTContext::GE_Missing_stdio:
803    if (ForRedeclaration)
804      Diag(Loc, diag::err_implicit_decl_requires_stdio)
805        << Context.BuiltinInfo.GetName(BID);
806    return 0;
807
808  case ASTContext::GE_Missing_setjmp:
809    if (ForRedeclaration)
810      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
811        << Context.BuiltinInfo.GetName(BID);
812    return 0;
813  }
814
815  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
816    Diag(Loc, diag::ext_implicit_lib_function_decl)
817      << Context.BuiltinInfo.GetName(BID)
818      << R;
819    if (Context.BuiltinInfo.getHeaderName(BID) &&
820        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
821          != Diagnostic::Ignored)
822      Diag(Loc, diag::note_please_include_header)
823        << Context.BuiltinInfo.getHeaderName(BID)
824        << Context.BuiltinInfo.GetName(BID);
825  }
826
827  FunctionDecl *New = FunctionDecl::Create(Context,
828                                           Context.getTranslationUnitDecl(),
829                                           Loc, II, R, /*TInfo=*/0,
830                                           SC_Extern,
831                                           SC_None, false,
832                                           /*hasPrototype=*/true);
833  New->setImplicit();
834
835  // Create Decl objects for each parameter, adding them to the
836  // FunctionDecl.
837  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
838    llvm::SmallVector<ParmVarDecl*, 16> Params;
839    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
840      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
841                                           FT->getArgType(i), /*TInfo=*/0,
842                                           SC_None, SC_None, 0));
843    New->setParams(Params.data(), Params.size());
844  }
845
846  AddKnownFunctionAttributes(New);
847
848  // TUScope is the translation-unit scope to insert this function into.
849  // FIXME: This is hideous. We need to teach PushOnScopeChains to
850  // relate Scopes to DeclContexts, and probably eliminate CurContext
851  // entirely, but we're not there yet.
852  DeclContext *SavedContext = CurContext;
853  CurContext = Context.getTranslationUnitDecl();
854  PushOnScopeChains(New, TUScope);
855  CurContext = SavedContext;
856  return New;
857}
858
859/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
860/// same name and scope as a previous declaration 'Old'.  Figure out
861/// how to resolve this situation, merging decls or emitting
862/// diagnostics as appropriate. If there was an error, set New to be invalid.
863///
864void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
865  // If the new decl is known invalid already, don't bother doing any
866  // merging checks.
867  if (New->isInvalidDecl()) return;
868
869  // Allow multiple definitions for ObjC built-in typedefs.
870  // FIXME: Verify the underlying types are equivalent!
871  if (getLangOptions().ObjC1) {
872    const IdentifierInfo *TypeID = New->getIdentifier();
873    switch (TypeID->getLength()) {
874    default: break;
875    case 2:
876      if (!TypeID->isStr("id"))
877        break;
878      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
879      // Install the built-in type for 'id', ignoring the current definition.
880      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
881      return;
882    case 5:
883      if (!TypeID->isStr("Class"))
884        break;
885      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
886      // Install the built-in type for 'Class', ignoring the current definition.
887      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
888      return;
889    case 3:
890      if (!TypeID->isStr("SEL"))
891        break;
892      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
893      // Install the built-in type for 'SEL', ignoring the current definition.
894      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
895      return;
896    case 8:
897      if (!TypeID->isStr("Protocol"))
898        break;
899      Context.setObjCProtoType(New->getUnderlyingType());
900      return;
901    }
902    // Fall through - the typedef name was not a builtin type.
903  }
904
905  // Verify the old decl was also a type.
906  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
907  if (!Old) {
908    Diag(New->getLocation(), diag::err_redefinition_different_kind)
909      << New->getDeclName();
910
911    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
912    if (OldD->getLocation().isValid())
913      Diag(OldD->getLocation(), diag::note_previous_definition);
914
915    return New->setInvalidDecl();
916  }
917
918  // If the old declaration is invalid, just give up here.
919  if (Old->isInvalidDecl())
920    return New->setInvalidDecl();
921
922  // Determine the "old" type we'll use for checking and diagnostics.
923  QualType OldType;
924  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
925    OldType = OldTypedef->getUnderlyingType();
926  else
927    OldType = Context.getTypeDeclType(Old);
928
929  // If the typedef types are not identical, reject them in all languages and
930  // with any extensions enabled.
931
932  if (OldType != New->getUnderlyingType() &&
933      Context.getCanonicalType(OldType) !=
934      Context.getCanonicalType(New->getUnderlyingType())) {
935    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
936      << New->getUnderlyingType() << OldType;
937    if (Old->getLocation().isValid())
938      Diag(Old->getLocation(), diag::note_previous_definition);
939    return New->setInvalidDecl();
940  }
941
942  // The types match.  Link up the redeclaration chain if the old
943  // declaration was a typedef.
944  // FIXME: this is a potential source of wierdness if the type
945  // spellings don't match exactly.
946  if (isa<TypedefDecl>(Old))
947    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
948
949  if (getLangOptions().Microsoft)
950    return;
951
952  if (getLangOptions().CPlusPlus) {
953    // C++ [dcl.typedef]p2:
954    //   In a given non-class scope, a typedef specifier can be used to
955    //   redefine the name of any type declared in that scope to refer
956    //   to the type to which it already refers.
957    if (!isa<CXXRecordDecl>(CurContext))
958      return;
959
960    // C++0x [dcl.typedef]p4:
961    //   In a given class scope, a typedef specifier can be used to redefine
962    //   any class-name declared in that scope that is not also a typedef-name
963    //   to refer to the type to which it already refers.
964    //
965    // This wording came in via DR424, which was a correction to the
966    // wording in DR56, which accidentally banned code like:
967    //
968    //   struct S {
969    //     typedef struct A { } A;
970    //   };
971    //
972    // in the C++03 standard. We implement the C++0x semantics, which
973    // allow the above but disallow
974    //
975    //   struct S {
976    //     typedef int I;
977    //     typedef int I;
978    //   };
979    //
980    // since that was the intent of DR56.
981    if (!isa<TypedefDecl >(Old))
982      return;
983
984    Diag(New->getLocation(), diag::err_redefinition)
985      << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989
990  // If we have a redefinition of a typedef in C, emit a warning.  This warning
991  // is normally mapped to an error, but can be controlled with
992  // -Wtypedef-redefinition.  If either the original or the redefinition is
993  // in a system header, don't emit this for compatibility with GCC.
994  if (getDiagnostics().getSuppressSystemWarnings() &&
995      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
996       Context.getSourceManager().isInSystemHeader(New->getLocation())))
997    return;
998
999  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1000    << New->getDeclName();
1001  Diag(Old->getLocation(), diag::note_previous_definition);
1002  return;
1003}
1004
1005/// DeclhasAttr - returns true if decl Declaration already has the target
1006/// attribute.
1007static bool
1008DeclHasAttr(const Decl *D, const Attr *A) {
1009  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1010  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1011    if ((*i)->getKind() == A->getKind()) {
1012      // FIXME: Don't hardcode this check
1013      if (OA && isa<OwnershipAttr>(*i))
1014        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1015      return true;
1016    }
1017
1018  return false;
1019}
1020
1021/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1022static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1023  if (!Old->hasAttrs())
1024    return;
1025  // Ensure that any moving of objects within the allocated map is done before
1026  // we process them.
1027  if (!New->hasAttrs())
1028    New->setAttrs(AttrVec());
1029  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1030       ++i) {
1031    // FIXME: Make this more general than just checking for Overloadable.
1032    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1033      Attr *NewAttr = (*i)->clone(C);
1034      NewAttr->setInherited(true);
1035      New->addAttr(NewAttr);
1036    }
1037  }
1038}
1039
1040namespace {
1041
1042/// Used in MergeFunctionDecl to keep track of function parameters in
1043/// C.
1044struct GNUCompatibleParamWarning {
1045  ParmVarDecl *OldParm;
1046  ParmVarDecl *NewParm;
1047  QualType PromotedType;
1048};
1049
1050}
1051
1052/// getSpecialMember - get the special member enum for a method.
1053Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1054  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1055    if (Ctor->isCopyConstructor())
1056      return Sema::CXXCopyConstructor;
1057
1058    return Sema::CXXConstructor;
1059  }
1060
1061  if (isa<CXXDestructorDecl>(MD))
1062    return Sema::CXXDestructor;
1063
1064  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1065  return Sema::CXXCopyAssignment;
1066}
1067
1068/// canRedefineFunction - checks if a function can be redefined. Currently,
1069/// only extern inline functions can be redefined, and even then only in
1070/// GNU89 mode.
1071static bool canRedefineFunction(const FunctionDecl *FD,
1072                                const LangOptions& LangOpts) {
1073  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1074          FD->isInlineSpecified() &&
1075          FD->getStorageClass() == SC_Extern);
1076}
1077
1078/// MergeFunctionDecl - We just parsed a function 'New' from
1079/// declarator D which has the same name and scope as a previous
1080/// declaration 'Old'.  Figure out how to resolve this situation,
1081/// merging decls or emitting diagnostics as appropriate.
1082///
1083/// In C++, New and Old must be declarations that are not
1084/// overloaded. Use IsOverload to determine whether New and Old are
1085/// overloaded, and to select the Old declaration that New should be
1086/// merged with.
1087///
1088/// Returns true if there was an error, false otherwise.
1089bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1090  // Verify the old decl was also a function.
1091  FunctionDecl *Old = 0;
1092  if (FunctionTemplateDecl *OldFunctionTemplate
1093        = dyn_cast<FunctionTemplateDecl>(OldD))
1094    Old = OldFunctionTemplate->getTemplatedDecl();
1095  else
1096    Old = dyn_cast<FunctionDecl>(OldD);
1097  if (!Old) {
1098    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1099      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1100      Diag(Shadow->getTargetDecl()->getLocation(),
1101           diag::note_using_decl_target);
1102      Diag(Shadow->getUsingDecl()->getLocation(),
1103           diag::note_using_decl) << 0;
1104      return true;
1105    }
1106
1107    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1108      << New->getDeclName();
1109    Diag(OldD->getLocation(), diag::note_previous_definition);
1110    return true;
1111  }
1112
1113  // Determine whether the previous declaration was a definition,
1114  // implicit declaration, or a declaration.
1115  diag::kind PrevDiag;
1116  if (Old->isThisDeclarationADefinition())
1117    PrevDiag = diag::note_previous_definition;
1118  else if (Old->isImplicit())
1119    PrevDiag = diag::note_previous_implicit_declaration;
1120  else
1121    PrevDiag = diag::note_previous_declaration;
1122
1123  QualType OldQType = Context.getCanonicalType(Old->getType());
1124  QualType NewQType = Context.getCanonicalType(New->getType());
1125
1126  // Don't complain about this if we're in GNU89 mode and the old function
1127  // is an extern inline function.
1128  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1129      New->getStorageClass() == SC_Static &&
1130      Old->getStorageClass() != SC_Static &&
1131      !canRedefineFunction(Old, getLangOptions())) {
1132    Diag(New->getLocation(), diag::err_static_non_static)
1133      << New;
1134    Diag(Old->getLocation(), PrevDiag);
1135    return true;
1136  }
1137
1138  // If a function is first declared with a calling convention, but is
1139  // later declared or defined without one, the second decl assumes the
1140  // calling convention of the first.
1141  //
1142  // For the new decl, we have to look at the NON-canonical type to tell the
1143  // difference between a function that really doesn't have a calling
1144  // convention and one that is declared cdecl. That's because in
1145  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1146  // because it is the default calling convention.
1147  //
1148  // Note also that we DO NOT return at this point, because we still have
1149  // other tests to run.
1150  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1151  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1152  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1153  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1154  if (OldTypeInfo.getCC() != CC_Default &&
1155      NewTypeInfo.getCC() == CC_Default) {
1156    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1157    New->setType(NewQType);
1158    NewQType = Context.getCanonicalType(NewQType);
1159  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1160                                     NewTypeInfo.getCC())) {
1161    // Calling conventions really aren't compatible, so complain.
1162    Diag(New->getLocation(), diag::err_cconv_change)
1163      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1164      << (OldTypeInfo.getCC() == CC_Default)
1165      << (OldTypeInfo.getCC() == CC_Default ? "" :
1166          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1167    Diag(Old->getLocation(), diag::note_previous_declaration);
1168    return true;
1169  }
1170
1171  // FIXME: diagnose the other way around?
1172  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1173    NewQType = Context.getNoReturnType(NewQType);
1174    New->setType(NewQType);
1175    assert(NewQType.isCanonical());
1176  }
1177
1178  // Merge regparm attribute.
1179  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1180    if (NewType->getRegParmType()) {
1181      Diag(New->getLocation(), diag::err_regparm_mismatch)
1182        << NewType->getRegParmType()
1183        << OldType->getRegParmType();
1184      Diag(Old->getLocation(), diag::note_previous_declaration);
1185      return true;
1186    }
1187
1188    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1189    New->setType(NewQType);
1190    assert(NewQType.isCanonical());
1191  }
1192
1193  if (getLangOptions().CPlusPlus) {
1194    // (C++98 13.1p2):
1195    //   Certain function declarations cannot be overloaded:
1196    //     -- Function declarations that differ only in the return type
1197    //        cannot be overloaded.
1198    QualType OldReturnType
1199      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1200    QualType NewReturnType
1201      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1202    QualType ResQT;
1203    if (OldReturnType != NewReturnType) {
1204      if (NewReturnType->isObjCObjectPointerType()
1205          && OldReturnType->isObjCObjectPointerType())
1206        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1207      if (ResQT.isNull()) {
1208        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1209        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1210        return true;
1211      }
1212      else
1213        NewQType = ResQT;
1214    }
1215
1216    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1217    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1218    if (OldMethod && NewMethod) {
1219      // Preserve triviality.
1220      NewMethod->setTrivial(OldMethod->isTrivial());
1221
1222      bool isFriend = NewMethod->getFriendObjectKind();
1223
1224      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1225        //    -- Member function declarations with the same name and the
1226        //       same parameter types cannot be overloaded if any of them
1227        //       is a static member function declaration.
1228        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1229          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1230          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1231          return true;
1232        }
1233
1234        // C++ [class.mem]p1:
1235        //   [...] A member shall not be declared twice in the
1236        //   member-specification, except that a nested class or member
1237        //   class template can be declared and then later defined.
1238        unsigned NewDiag;
1239        if (isa<CXXConstructorDecl>(OldMethod))
1240          NewDiag = diag::err_constructor_redeclared;
1241        else if (isa<CXXDestructorDecl>(NewMethod))
1242          NewDiag = diag::err_destructor_redeclared;
1243        else if (isa<CXXConversionDecl>(NewMethod))
1244          NewDiag = diag::err_conv_function_redeclared;
1245        else
1246          NewDiag = diag::err_member_redeclared;
1247
1248        Diag(New->getLocation(), NewDiag);
1249        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1250
1251      // Complain if this is an explicit declaration of a special
1252      // member that was initially declared implicitly.
1253      //
1254      // As an exception, it's okay to befriend such methods in order
1255      // to permit the implicit constructor/destructor/operator calls.
1256      } else if (OldMethod->isImplicit()) {
1257        if (isFriend) {
1258          NewMethod->setImplicit();
1259        } else {
1260          Diag(NewMethod->getLocation(),
1261               diag::err_definition_of_implicitly_declared_member)
1262            << New << getSpecialMember(OldMethod);
1263          return true;
1264        }
1265      }
1266    }
1267
1268    // (C++98 8.3.5p3):
1269    //   All declarations for a function shall agree exactly in both the
1270    //   return type and the parameter-type-list.
1271    // attributes should be ignored when comparing.
1272    if (Context.getNoReturnType(OldQType, false) ==
1273        Context.getNoReturnType(NewQType, false))
1274      return MergeCompatibleFunctionDecls(New, Old);
1275
1276    // Fall through for conflicting redeclarations and redefinitions.
1277  }
1278
1279  // C: Function types need to be compatible, not identical. This handles
1280  // duplicate function decls like "void f(int); void f(enum X);" properly.
1281  if (!getLangOptions().CPlusPlus &&
1282      Context.typesAreCompatible(OldQType, NewQType)) {
1283    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1284    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1285    const FunctionProtoType *OldProto = 0;
1286    if (isa<FunctionNoProtoType>(NewFuncType) &&
1287        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1288      // The old declaration provided a function prototype, but the
1289      // new declaration does not. Merge in the prototype.
1290      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1291      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1292                                                 OldProto->arg_type_end());
1293      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1294                                         ParamTypes.data(), ParamTypes.size(),
1295                                         OldProto->isVariadic(),
1296                                         OldProto->getTypeQuals(),
1297                                         false, false, 0, 0,
1298                                         OldProto->getExtInfo());
1299      New->setType(NewQType);
1300      New->setHasInheritedPrototype();
1301
1302      // Synthesize a parameter for each argument type.
1303      llvm::SmallVector<ParmVarDecl*, 16> Params;
1304      for (FunctionProtoType::arg_type_iterator
1305             ParamType = OldProto->arg_type_begin(),
1306             ParamEnd = OldProto->arg_type_end();
1307           ParamType != ParamEnd; ++ParamType) {
1308        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1309                                                 SourceLocation(), 0,
1310                                                 *ParamType, /*TInfo=*/0,
1311                                                 SC_None, SC_None,
1312                                                 0);
1313        Param->setImplicit();
1314        Params.push_back(Param);
1315      }
1316
1317      New->setParams(Params.data(), Params.size());
1318    }
1319
1320    return MergeCompatibleFunctionDecls(New, Old);
1321  }
1322
1323  // GNU C permits a K&R definition to follow a prototype declaration
1324  // if the declared types of the parameters in the K&R definition
1325  // match the types in the prototype declaration, even when the
1326  // promoted types of the parameters from the K&R definition differ
1327  // from the types in the prototype. GCC then keeps the types from
1328  // the prototype.
1329  //
1330  // If a variadic prototype is followed by a non-variadic K&R definition,
1331  // the K&R definition becomes variadic.  This is sort of an edge case, but
1332  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1333  // C99 6.9.1p8.
1334  if (!getLangOptions().CPlusPlus &&
1335      Old->hasPrototype() && !New->hasPrototype() &&
1336      New->getType()->getAs<FunctionProtoType>() &&
1337      Old->getNumParams() == New->getNumParams()) {
1338    llvm::SmallVector<QualType, 16> ArgTypes;
1339    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1340    const FunctionProtoType *OldProto
1341      = Old->getType()->getAs<FunctionProtoType>();
1342    const FunctionProtoType *NewProto
1343      = New->getType()->getAs<FunctionProtoType>();
1344
1345    // Determine whether this is the GNU C extension.
1346    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1347                                               NewProto->getResultType());
1348    bool LooseCompatible = !MergedReturn.isNull();
1349    for (unsigned Idx = 0, End = Old->getNumParams();
1350         LooseCompatible && Idx != End; ++Idx) {
1351      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1352      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1353      if (Context.typesAreCompatible(OldParm->getType(),
1354                                     NewProto->getArgType(Idx))) {
1355        ArgTypes.push_back(NewParm->getType());
1356      } else if (Context.typesAreCompatible(OldParm->getType(),
1357                                            NewParm->getType(),
1358                                            /*CompareUnqualified=*/true)) {
1359        GNUCompatibleParamWarning Warn
1360          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1361        Warnings.push_back(Warn);
1362        ArgTypes.push_back(NewParm->getType());
1363      } else
1364        LooseCompatible = false;
1365    }
1366
1367    if (LooseCompatible) {
1368      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1369        Diag(Warnings[Warn].NewParm->getLocation(),
1370             diag::ext_param_promoted_not_compatible_with_prototype)
1371          << Warnings[Warn].PromotedType
1372          << Warnings[Warn].OldParm->getType();
1373        if (Warnings[Warn].OldParm->getLocation().isValid())
1374          Diag(Warnings[Warn].OldParm->getLocation(),
1375               diag::note_previous_declaration);
1376      }
1377
1378      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1379                                           ArgTypes.size(),
1380                                           OldProto->isVariadic(), 0,
1381                                           false, false, 0, 0,
1382                                           OldProto->getExtInfo()));
1383      return MergeCompatibleFunctionDecls(New, Old);
1384    }
1385
1386    // Fall through to diagnose conflicting types.
1387  }
1388
1389  // A function that has already been declared has been redeclared or defined
1390  // with a different type- show appropriate diagnostic
1391  if (unsigned BuiltinID = Old->getBuiltinID()) {
1392    // The user has declared a builtin function with an incompatible
1393    // signature.
1394    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1395      // The function the user is redeclaring is a library-defined
1396      // function like 'malloc' or 'printf'. Warn about the
1397      // redeclaration, then pretend that we don't know about this
1398      // library built-in.
1399      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1400      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1401        << Old << Old->getType();
1402      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1403      Old->setInvalidDecl();
1404      return false;
1405    }
1406
1407    PrevDiag = diag::note_previous_builtin_declaration;
1408  }
1409
1410  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1411  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1412  return true;
1413}
1414
1415/// \brief Completes the merge of two function declarations that are
1416/// known to be compatible.
1417///
1418/// This routine handles the merging of attributes and other
1419/// properties of function declarations form the old declaration to
1420/// the new declaration, once we know that New is in fact a
1421/// redeclaration of Old.
1422///
1423/// \returns false
1424bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1425  // Merge the attributes
1426  MergeDeclAttributes(New, Old, Context);
1427
1428  // Merge the storage class.
1429  if (Old->getStorageClass() != SC_Extern &&
1430      Old->getStorageClass() != SC_None)
1431    New->setStorageClass(Old->getStorageClass());
1432
1433  // Merge "pure" flag.
1434  if (Old->isPure())
1435    New->setPure();
1436
1437  // Merge the "deleted" flag.
1438  if (Old->isDeleted())
1439    New->setDeleted();
1440
1441  if (getLangOptions().CPlusPlus)
1442    return MergeCXXFunctionDecl(New, Old);
1443
1444  return false;
1445}
1446
1447/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1448/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1449/// situation, merging decls or emitting diagnostics as appropriate.
1450///
1451/// Tentative definition rules (C99 6.9.2p2) are checked by
1452/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1453/// definitions here, since the initializer hasn't been attached.
1454///
1455void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1456  // If the new decl is already invalid, don't do any other checking.
1457  if (New->isInvalidDecl())
1458    return;
1459
1460  // Verify the old decl was also a variable.
1461  VarDecl *Old = 0;
1462  if (!Previous.isSingleResult() ||
1463      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1464    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1465      << New->getDeclName();
1466    Diag(Previous.getRepresentativeDecl()->getLocation(),
1467         diag::note_previous_definition);
1468    return New->setInvalidDecl();
1469  }
1470
1471  // C++ [class.mem]p1:
1472  //   A member shall not be declared twice in the member-specification [...]
1473  //
1474  // Here, we need only consider static data members.
1475  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1476    Diag(New->getLocation(), diag::err_duplicate_member)
1477      << New->getIdentifier();
1478    Diag(Old->getLocation(), diag::note_previous_declaration);
1479    New->setInvalidDecl();
1480  }
1481
1482  MergeDeclAttributes(New, Old, Context);
1483
1484  // Merge the types
1485  QualType MergedT;
1486  if (getLangOptions().CPlusPlus) {
1487    if (Context.hasSameType(New->getType(), Old->getType()))
1488      MergedT = New->getType();
1489    // C++ [basic.link]p10:
1490    //   [...] the types specified by all declarations referring to a given
1491    //   object or function shall be identical, except that declarations for an
1492    //   array object can specify array types that differ by the presence or
1493    //   absence of a major array bound (8.3.4).
1494    else if (Old->getType()->isIncompleteArrayType() &&
1495             New->getType()->isArrayType()) {
1496      CanQual<ArrayType> OldArray
1497        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1498      CanQual<ArrayType> NewArray
1499        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1500      if (OldArray->getElementType() == NewArray->getElementType())
1501        MergedT = New->getType();
1502    } else if (Old->getType()->isArrayType() &&
1503             New->getType()->isIncompleteArrayType()) {
1504      CanQual<ArrayType> OldArray
1505        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1506      CanQual<ArrayType> NewArray
1507        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1508      if (OldArray->getElementType() == NewArray->getElementType())
1509        MergedT = Old->getType();
1510    } else if (New->getType()->isObjCObjectPointerType()
1511               && Old->getType()->isObjCObjectPointerType()) {
1512        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1513    }
1514  } else {
1515    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1516  }
1517  if (MergedT.isNull()) {
1518    Diag(New->getLocation(), diag::err_redefinition_different_type)
1519      << New->getDeclName();
1520    Diag(Old->getLocation(), diag::note_previous_definition);
1521    return New->setInvalidDecl();
1522  }
1523  New->setType(MergedT);
1524
1525  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1526  if (New->getStorageClass() == SC_Static &&
1527      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1528    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1529    Diag(Old->getLocation(), diag::note_previous_definition);
1530    return New->setInvalidDecl();
1531  }
1532  // C99 6.2.2p4:
1533  //   For an identifier declared with the storage-class specifier
1534  //   extern in a scope in which a prior declaration of that
1535  //   identifier is visible,23) if the prior declaration specifies
1536  //   internal or external linkage, the linkage of the identifier at
1537  //   the later declaration is the same as the linkage specified at
1538  //   the prior declaration. If no prior declaration is visible, or
1539  //   if the prior declaration specifies no linkage, then the
1540  //   identifier has external linkage.
1541  if (New->hasExternalStorage() && Old->hasLinkage())
1542    /* Okay */;
1543  else if (New->getStorageClass() != SC_Static &&
1544           Old->getStorageClass() == SC_Static) {
1545    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1546    Diag(Old->getLocation(), diag::note_previous_definition);
1547    return New->setInvalidDecl();
1548  }
1549
1550  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1551
1552  // FIXME: The test for external storage here seems wrong? We still
1553  // need to check for mismatches.
1554  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1555      // Don't complain about out-of-line definitions of static members.
1556      !(Old->getLexicalDeclContext()->isRecord() &&
1557        !New->getLexicalDeclContext()->isRecord())) {
1558    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1559    Diag(Old->getLocation(), diag::note_previous_definition);
1560    return New->setInvalidDecl();
1561  }
1562
1563  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1564    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1565    Diag(Old->getLocation(), diag::note_previous_definition);
1566  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1567    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1568    Diag(Old->getLocation(), diag::note_previous_definition);
1569  }
1570
1571  // C++ doesn't have tentative definitions, so go right ahead and check here.
1572  const VarDecl *Def;
1573  if (getLangOptions().CPlusPlus &&
1574      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1575      (Def = Old->getDefinition())) {
1576    Diag(New->getLocation(), diag::err_redefinition)
1577      << New->getDeclName();
1578    Diag(Def->getLocation(), diag::note_previous_definition);
1579    New->setInvalidDecl();
1580    return;
1581  }
1582  // c99 6.2.2 P4.
1583  // For an identifier declared with the storage-class specifier extern in a
1584  // scope in which a prior declaration of that identifier is visible, if
1585  // the prior declaration specifies internal or external linkage, the linkage
1586  // of the identifier at the later declaration is the same as the linkage
1587  // specified at the prior declaration.
1588  // FIXME. revisit this code.
1589  if (New->hasExternalStorage() &&
1590      Old->getLinkage() == InternalLinkage &&
1591      New->getDeclContext() == Old->getDeclContext())
1592    New->setStorageClass(Old->getStorageClass());
1593
1594  // Keep a chain of previous declarations.
1595  New->setPreviousDeclaration(Old);
1596
1597  // Inherit access appropriately.
1598  New->setAccess(Old->getAccess());
1599}
1600
1601/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1602/// no declarator (e.g. "struct foo;") is parsed.
1603Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1604                                            DeclSpec &DS) {
1605  // FIXME: Error on auto/register at file scope
1606  // FIXME: Error on inline/virtual/explicit
1607  // FIXME: Warn on useless __thread
1608  // FIXME: Warn on useless const/volatile
1609  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1610  // FIXME: Warn on useless attributes
1611  Decl *TagD = 0;
1612  TagDecl *Tag = 0;
1613  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1614      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1615      DS.getTypeSpecType() == DeclSpec::TST_union ||
1616      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1617    TagD = DS.getRepAsDecl();
1618
1619    if (!TagD) // We probably had an error
1620      return 0;
1621
1622    // Note that the above type specs guarantee that the
1623    // type rep is a Decl, whereas in many of the others
1624    // it's a Type.
1625    Tag = dyn_cast<TagDecl>(TagD);
1626  }
1627
1628  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1629    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1630    // or incomplete types shall not be restrict-qualified."
1631    if (TypeQuals & DeclSpec::TQ_restrict)
1632      Diag(DS.getRestrictSpecLoc(),
1633           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1634           << DS.getSourceRange();
1635  }
1636
1637  if (DS.isFriendSpecified()) {
1638    // If we're dealing with a class template decl, assume that the
1639    // template routines are handling it.
1640    if (TagD && isa<ClassTemplateDecl>(TagD))
1641      return 0;
1642    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1643  }
1644
1645  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1646    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1647
1648    if (!Record->getDeclName() && Record->isDefinition() &&
1649        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1650      if (getLangOptions().CPlusPlus ||
1651          Record->getDeclContext()->isRecord())
1652        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1653
1654      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1655        << DS.getSourceRange();
1656    }
1657
1658    // Microsoft allows unnamed struct/union fields. Don't complain
1659    // about them.
1660    // FIXME: Should we support Microsoft's extensions in this area?
1661    if (Record->getDeclName() && getLangOptions().Microsoft)
1662      return Tag;
1663  }
1664
1665  if (getLangOptions().CPlusPlus &&
1666      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1667    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1668      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1669          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1670        Diag(Enum->getLocation(), diag::ext_no_declarators)
1671          << DS.getSourceRange();
1672
1673  if (!DS.isMissingDeclaratorOk() &&
1674      DS.getTypeSpecType() != DeclSpec::TST_error) {
1675    // Warn about typedefs of enums without names, since this is an
1676    // extension in both Microsoft and GNU.
1677    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1678        Tag && isa<EnumDecl>(Tag)) {
1679      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1680        << DS.getSourceRange();
1681      return Tag;
1682    }
1683
1684    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1685      << DS.getSourceRange();
1686  }
1687
1688  return TagD;
1689}
1690
1691/// We are trying to inject an anonymous member into the given scope;
1692/// check if there's an existing declaration that can't be overloaded.
1693///
1694/// \return true if this is a forbidden redeclaration
1695static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1696                                         Scope *S,
1697                                         DeclContext *Owner,
1698                                         DeclarationName Name,
1699                                         SourceLocation NameLoc,
1700                                         unsigned diagnostic) {
1701  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1702                 Sema::ForRedeclaration);
1703  if (!SemaRef.LookupName(R, S)) return false;
1704
1705  if (R.getAsSingle<TagDecl>())
1706    return false;
1707
1708  // Pick a representative declaration.
1709  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1710  if (PrevDecl && Owner->isRecord()) {
1711    RecordDecl *Record = cast<RecordDecl>(Owner);
1712    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1713      return false;
1714  }
1715
1716  SemaRef.Diag(NameLoc, diagnostic) << Name;
1717  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1718
1719  return true;
1720}
1721
1722/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1723/// anonymous struct or union AnonRecord into the owning context Owner
1724/// and scope S. This routine will be invoked just after we realize
1725/// that an unnamed union or struct is actually an anonymous union or
1726/// struct, e.g.,
1727///
1728/// @code
1729/// union {
1730///   int i;
1731///   float f;
1732/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1733///    // f into the surrounding scope.x
1734/// @endcode
1735///
1736/// This routine is recursive, injecting the names of nested anonymous
1737/// structs/unions into the owning context and scope as well.
1738static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1739                                                DeclContext *Owner,
1740                                                RecordDecl *AnonRecord,
1741                                                AccessSpecifier AS) {
1742  unsigned diagKind
1743    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1744                            : diag::err_anonymous_struct_member_redecl;
1745
1746  bool Invalid = false;
1747  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1748                               FEnd = AnonRecord->field_end();
1749       F != FEnd; ++F) {
1750    if ((*F)->getDeclName()) {
1751      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1752                                       (*F)->getLocation(), diagKind)) {
1753        // C++ [class.union]p2:
1754        //   The names of the members of an anonymous union shall be
1755        //   distinct from the names of any other entity in the
1756        //   scope in which the anonymous union is declared.
1757        Invalid = true;
1758      } else {
1759        // C++ [class.union]p2:
1760        //   For the purpose of name lookup, after the anonymous union
1761        //   definition, the members of the anonymous union are
1762        //   considered to have been defined in the scope in which the
1763        //   anonymous union is declared.
1764        Owner->makeDeclVisibleInContext(*F);
1765        S->AddDecl(*F);
1766        SemaRef.IdResolver.AddDecl(*F);
1767
1768        // That includes picking up the appropriate access specifier.
1769        if (AS != AS_none) (*F)->setAccess(AS);
1770      }
1771    } else if (const RecordType *InnerRecordType
1772                 = (*F)->getType()->getAs<RecordType>()) {
1773      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1774      if (InnerRecord->isAnonymousStructOrUnion())
1775        Invalid = Invalid ||
1776          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1777                                              InnerRecord, AS);
1778    }
1779  }
1780
1781  return Invalid;
1782}
1783
1784/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1785/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1786/// illegal input values are mapped to SC_None.
1787static StorageClass
1788StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1789  switch (StorageClassSpec) {
1790  case DeclSpec::SCS_unspecified:    return SC_None;
1791  case DeclSpec::SCS_extern:         return SC_Extern;
1792  case DeclSpec::SCS_static:         return SC_Static;
1793  case DeclSpec::SCS_auto:           return SC_Auto;
1794  case DeclSpec::SCS_register:       return SC_Register;
1795  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1796    // Illegal SCSs map to None: error reporting is up to the caller.
1797  case DeclSpec::SCS_mutable:        // Fall through.
1798  case DeclSpec::SCS_typedef:        return SC_None;
1799  }
1800  llvm_unreachable("unknown storage class specifier");
1801}
1802
1803/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1804/// a StorageClass. Any error reporting is up to the caller:
1805/// illegal input values are mapped to SC_None.
1806static StorageClass
1807StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1808  switch (StorageClassSpec) {
1809  case DeclSpec::SCS_unspecified:    return SC_None;
1810  case DeclSpec::SCS_extern:         return SC_Extern;
1811  case DeclSpec::SCS_static:         return SC_Static;
1812  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1813    // Illegal SCSs map to None: error reporting is up to the caller.
1814  case DeclSpec::SCS_auto:           // Fall through.
1815  case DeclSpec::SCS_mutable:        // Fall through.
1816  case DeclSpec::SCS_register:       // Fall through.
1817  case DeclSpec::SCS_typedef:        return SC_None;
1818  }
1819  llvm_unreachable("unknown storage class specifier");
1820}
1821
1822/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1823/// anonymous structure or union. Anonymous unions are a C++ feature
1824/// (C++ [class.union]) and a GNU C extension; anonymous structures
1825/// are a GNU C and GNU C++ extension.
1826Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1827                                             AccessSpecifier AS,
1828                                             RecordDecl *Record) {
1829  DeclContext *Owner = Record->getDeclContext();
1830
1831  // Diagnose whether this anonymous struct/union is an extension.
1832  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1833    Diag(Record->getLocation(), diag::ext_anonymous_union);
1834  else if (!Record->isUnion())
1835    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1836
1837  // C and C++ require different kinds of checks for anonymous
1838  // structs/unions.
1839  bool Invalid = false;
1840  if (getLangOptions().CPlusPlus) {
1841    const char* PrevSpec = 0;
1842    unsigned DiagID;
1843    // C++ [class.union]p3:
1844    //   Anonymous unions declared in a named namespace or in the
1845    //   global namespace shall be declared static.
1846    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1847        (isa<TranslationUnitDecl>(Owner) ||
1848         (isa<NamespaceDecl>(Owner) &&
1849          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1850      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1851      Invalid = true;
1852
1853      // Recover by adding 'static'.
1854      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1855                             PrevSpec, DiagID);
1856    }
1857    // C++ [class.union]p3:
1858    //   A storage class is not allowed in a declaration of an
1859    //   anonymous union in a class scope.
1860    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1861             isa<RecordDecl>(Owner)) {
1862      Diag(DS.getStorageClassSpecLoc(),
1863           diag::err_anonymous_union_with_storage_spec);
1864      Invalid = true;
1865
1866      // Recover by removing the storage specifier.
1867      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1868                             PrevSpec, DiagID);
1869    }
1870
1871    // C++ [class.union]p2:
1872    //   The member-specification of an anonymous union shall only
1873    //   define non-static data members. [Note: nested types and
1874    //   functions cannot be declared within an anonymous union. ]
1875    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1876                                 MemEnd = Record->decls_end();
1877         Mem != MemEnd; ++Mem) {
1878      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1879        // C++ [class.union]p3:
1880        //   An anonymous union shall not have private or protected
1881        //   members (clause 11).
1882        assert(FD->getAccess() != AS_none);
1883        if (FD->getAccess() != AS_public) {
1884          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1885            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1886          Invalid = true;
1887        }
1888
1889        if (CheckNontrivialField(FD))
1890          Invalid = true;
1891      } else if ((*Mem)->isImplicit()) {
1892        // Any implicit members are fine.
1893      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1894        // This is a type that showed up in an
1895        // elaborated-type-specifier inside the anonymous struct or
1896        // union, but which actually declares a type outside of the
1897        // anonymous struct or union. It's okay.
1898      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1899        if (!MemRecord->isAnonymousStructOrUnion() &&
1900            MemRecord->getDeclName()) {
1901          // Visual C++ allows type definition in anonymous struct or union.
1902          if (getLangOptions().Microsoft)
1903            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1904              << (int)Record->isUnion();
1905          else {
1906            // This is a nested type declaration.
1907            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1908              << (int)Record->isUnion();
1909            Invalid = true;
1910          }
1911        }
1912      } else if (isa<AccessSpecDecl>(*Mem)) {
1913        // Any access specifier is fine.
1914      } else {
1915        // We have something that isn't a non-static data
1916        // member. Complain about it.
1917        unsigned DK = diag::err_anonymous_record_bad_member;
1918        if (isa<TypeDecl>(*Mem))
1919          DK = diag::err_anonymous_record_with_type;
1920        else if (isa<FunctionDecl>(*Mem))
1921          DK = diag::err_anonymous_record_with_function;
1922        else if (isa<VarDecl>(*Mem))
1923          DK = diag::err_anonymous_record_with_static;
1924
1925        // Visual C++ allows type definition in anonymous struct or union.
1926        if (getLangOptions().Microsoft &&
1927            DK == diag::err_anonymous_record_with_type)
1928          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1929            << (int)Record->isUnion();
1930        else {
1931          Diag((*Mem)->getLocation(), DK)
1932              << (int)Record->isUnion();
1933          Invalid = true;
1934        }
1935      }
1936    }
1937  }
1938
1939  if (!Record->isUnion() && !Owner->isRecord()) {
1940    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1941      << (int)getLangOptions().CPlusPlus;
1942    Invalid = true;
1943  }
1944
1945  // Mock up a declarator.
1946  Declarator Dc(DS, Declarator::TypeNameContext);
1947  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1948  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1949
1950  // Create a declaration for this anonymous struct/union.
1951  NamedDecl *Anon = 0;
1952  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1953    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1954                             /*IdentifierInfo=*/0,
1955                             Context.getTypeDeclType(Record),
1956                             TInfo,
1957                             /*BitWidth=*/0, /*Mutable=*/false);
1958    Anon->setAccess(AS);
1959    if (getLangOptions().CPlusPlus) {
1960      FieldCollector->Add(cast<FieldDecl>(Anon));
1961      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1962        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1963    }
1964  } else {
1965    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1966    assert(SCSpec != DeclSpec::SCS_typedef &&
1967           "Parser allowed 'typedef' as storage class VarDecl.");
1968    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1969    if (SCSpec == DeclSpec::SCS_mutable) {
1970      // mutable can only appear on non-static class members, so it's always
1971      // an error here
1972      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1973      Invalid = true;
1974      SC = SC_None;
1975    }
1976    SCSpec = DS.getStorageClassSpecAsWritten();
1977    VarDecl::StorageClass SCAsWritten
1978      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1979
1980    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1981                           /*IdentifierInfo=*/0,
1982                           Context.getTypeDeclType(Record),
1983                           TInfo, SC, SCAsWritten);
1984  }
1985  Anon->setImplicit();
1986
1987  // Add the anonymous struct/union object to the current
1988  // context. We'll be referencing this object when we refer to one of
1989  // its members.
1990  Owner->addDecl(Anon);
1991
1992  // Inject the members of the anonymous struct/union into the owning
1993  // context and into the identifier resolver chain for name lookup
1994  // purposes.
1995  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1996    Invalid = true;
1997
1998  // Mark this as an anonymous struct/union type. Note that we do not
1999  // do this until after we have already checked and injected the
2000  // members of this anonymous struct/union type, because otherwise
2001  // the members could be injected twice: once by DeclContext when it
2002  // builds its lookup table, and once by
2003  // InjectAnonymousStructOrUnionMembers.
2004  Record->setAnonymousStructOrUnion(true);
2005
2006  if (Invalid)
2007    Anon->setInvalidDecl();
2008
2009  return Anon;
2010}
2011
2012
2013/// GetNameForDeclarator - Determine the full declaration name for the
2014/// given Declarator.
2015DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2016  return GetNameFromUnqualifiedId(D.getName());
2017}
2018
2019/// \brief Retrieves the declaration name from a parsed unqualified-id.
2020DeclarationNameInfo
2021Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2022  DeclarationNameInfo NameInfo;
2023  NameInfo.setLoc(Name.StartLocation);
2024
2025  switch (Name.getKind()) {
2026
2027  case UnqualifiedId::IK_Identifier:
2028    NameInfo.setName(Name.Identifier);
2029    NameInfo.setLoc(Name.StartLocation);
2030    return NameInfo;
2031
2032  case UnqualifiedId::IK_OperatorFunctionId:
2033    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2034                                           Name.OperatorFunctionId.Operator));
2035    NameInfo.setLoc(Name.StartLocation);
2036    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2037      = Name.OperatorFunctionId.SymbolLocations[0];
2038    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2039      = Name.EndLocation.getRawEncoding();
2040    return NameInfo;
2041
2042  case UnqualifiedId::IK_LiteralOperatorId:
2043    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2044                                                           Name.Identifier));
2045    NameInfo.setLoc(Name.StartLocation);
2046    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2047    return NameInfo;
2048
2049  case UnqualifiedId::IK_ConversionFunctionId: {
2050    TypeSourceInfo *TInfo;
2051    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2052    if (Ty.isNull())
2053      return DeclarationNameInfo();
2054    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2055                                               Context.getCanonicalType(Ty)));
2056    NameInfo.setLoc(Name.StartLocation);
2057    NameInfo.setNamedTypeInfo(TInfo);
2058    return NameInfo;
2059  }
2060
2061  case UnqualifiedId::IK_ConstructorName: {
2062    TypeSourceInfo *TInfo;
2063    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2064    if (Ty.isNull())
2065      return DeclarationNameInfo();
2066    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2067                                              Context.getCanonicalType(Ty)));
2068    NameInfo.setLoc(Name.StartLocation);
2069    NameInfo.setNamedTypeInfo(TInfo);
2070    return NameInfo;
2071  }
2072
2073  case UnqualifiedId::IK_ConstructorTemplateId: {
2074    // In well-formed code, we can only have a constructor
2075    // template-id that refers to the current context, so go there
2076    // to find the actual type being constructed.
2077    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2078    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2079      return DeclarationNameInfo();
2080
2081    // Determine the type of the class being constructed.
2082    QualType CurClassType = Context.getTypeDeclType(CurClass);
2083
2084    // FIXME: Check two things: that the template-id names the same type as
2085    // CurClassType, and that the template-id does not occur when the name
2086    // was qualified.
2087
2088    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2089                                    Context.getCanonicalType(CurClassType)));
2090    NameInfo.setLoc(Name.StartLocation);
2091    // FIXME: should we retrieve TypeSourceInfo?
2092    NameInfo.setNamedTypeInfo(0);
2093    return NameInfo;
2094  }
2095
2096  case UnqualifiedId::IK_DestructorName: {
2097    TypeSourceInfo *TInfo;
2098    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2099    if (Ty.isNull())
2100      return DeclarationNameInfo();
2101    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2102                                              Context.getCanonicalType(Ty)));
2103    NameInfo.setLoc(Name.StartLocation);
2104    NameInfo.setNamedTypeInfo(TInfo);
2105    return NameInfo;
2106  }
2107
2108  case UnqualifiedId::IK_TemplateId: {
2109    TemplateName TName = Name.TemplateId->Template.get();
2110    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2111    return Context.getNameForTemplate(TName, TNameLoc);
2112  }
2113
2114  } // switch (Name.getKind())
2115
2116  assert(false && "Unknown name kind");
2117  return DeclarationNameInfo();
2118}
2119
2120/// isNearlyMatchingFunction - Determine whether the C++ functions
2121/// Declaration and Definition are "nearly" matching. This heuristic
2122/// is used to improve diagnostics in the case where an out-of-line
2123/// function definition doesn't match any declaration within
2124/// the class or namespace.
2125static bool isNearlyMatchingFunction(ASTContext &Context,
2126                                     FunctionDecl *Declaration,
2127                                     FunctionDecl *Definition) {
2128  if (Declaration->param_size() != Definition->param_size())
2129    return false;
2130  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2131    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2132    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2133
2134    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2135                                        DefParamTy.getNonReferenceType()))
2136      return false;
2137  }
2138
2139  return true;
2140}
2141
2142/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2143/// declarator needs to be rebuilt in the current instantiation.
2144/// Any bits of declarator which appear before the name are valid for
2145/// consideration here.  That's specifically the type in the decl spec
2146/// and the base type in any member-pointer chunks.
2147static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2148                                                    DeclarationName Name) {
2149  // The types we specifically need to rebuild are:
2150  //   - typenames, typeofs, and decltypes
2151  //   - types which will become injected class names
2152  // Of course, we also need to rebuild any type referencing such a
2153  // type.  It's safest to just say "dependent", but we call out a
2154  // few cases here.
2155
2156  DeclSpec &DS = D.getMutableDeclSpec();
2157  switch (DS.getTypeSpecType()) {
2158  case DeclSpec::TST_typename:
2159  case DeclSpec::TST_typeofType:
2160  case DeclSpec::TST_decltype: {
2161    // Grab the type from the parser.
2162    TypeSourceInfo *TSI = 0;
2163    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2164    if (T.isNull() || !T->isDependentType()) break;
2165
2166    // Make sure there's a type source info.  This isn't really much
2167    // of a waste; most dependent types should have type source info
2168    // attached already.
2169    if (!TSI)
2170      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2171
2172    // Rebuild the type in the current instantiation.
2173    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2174    if (!TSI) return true;
2175
2176    // Store the new type back in the decl spec.
2177    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2178    DS.UpdateTypeRep(LocType);
2179    break;
2180  }
2181
2182  case DeclSpec::TST_typeofExpr: {
2183    Expr *E = DS.getRepAsExpr();
2184    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2185    if (Result.isInvalid()) return true;
2186    DS.UpdateExprRep(Result.get());
2187    break;
2188  }
2189
2190  default:
2191    // Nothing to do for these decl specs.
2192    break;
2193  }
2194
2195  // It doesn't matter what order we do this in.
2196  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2197    DeclaratorChunk &Chunk = D.getTypeObject(I);
2198
2199    // The only type information in the declarator which can come
2200    // before the declaration name is the base type of a member
2201    // pointer.
2202    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2203      continue;
2204
2205    // Rebuild the scope specifier in-place.
2206    CXXScopeSpec &SS = Chunk.Mem.Scope();
2207    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2208      return true;
2209  }
2210
2211  return false;
2212}
2213
2214Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2215  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2216}
2217
2218Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2219                             MultiTemplateParamsArg TemplateParamLists,
2220                             bool IsFunctionDefinition) {
2221  // TODO: consider using NameInfo for diagnostic.
2222  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2223  DeclarationName Name = NameInfo.getName();
2224
2225  // All of these full declarators require an identifier.  If it doesn't have
2226  // one, the ParsedFreeStandingDeclSpec action should be used.
2227  if (!Name) {
2228    if (!D.isInvalidType())  // Reject this if we think it is valid.
2229      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2230           diag::err_declarator_need_ident)
2231        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2232    return 0;
2233  }
2234
2235  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2236  // we find one that is.
2237  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2238         (S->getFlags() & Scope::TemplateParamScope) != 0)
2239    S = S->getParent();
2240
2241  DeclContext *DC = CurContext;
2242  if (D.getCXXScopeSpec().isInvalid())
2243    D.setInvalidType();
2244  else if (D.getCXXScopeSpec().isSet()) {
2245    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2246    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2247    if (!DC) {
2248      // If we could not compute the declaration context, it's because the
2249      // declaration context is dependent but does not refer to a class,
2250      // class template, or class template partial specialization. Complain
2251      // and return early, to avoid the coming semantic disaster.
2252      Diag(D.getIdentifierLoc(),
2253           diag::err_template_qualified_declarator_no_match)
2254        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2255        << D.getCXXScopeSpec().getRange();
2256      return 0;
2257    }
2258
2259    bool IsDependentContext = DC->isDependentContext();
2260
2261    if (!IsDependentContext &&
2262        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2263      return 0;
2264
2265    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2266      Diag(D.getIdentifierLoc(),
2267           diag::err_member_def_undefined_record)
2268        << Name << DC << D.getCXXScopeSpec().getRange();
2269      D.setInvalidType();
2270    }
2271
2272    // Check whether we need to rebuild the type of the given
2273    // declaration in the current instantiation.
2274    if (EnteringContext && IsDependentContext &&
2275        TemplateParamLists.size() != 0) {
2276      ContextRAII SavedContext(*this, DC);
2277      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2278        D.setInvalidType();
2279    }
2280  }
2281
2282  NamedDecl *New;
2283
2284  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2285  QualType R = TInfo->getType();
2286
2287  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2288                        ForRedeclaration);
2289
2290  // See if this is a redefinition of a variable in the same scope.
2291  if (!D.getCXXScopeSpec().isSet()) {
2292    bool IsLinkageLookup = false;
2293
2294    // If the declaration we're planning to build will be a function
2295    // or object with linkage, then look for another declaration with
2296    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2297    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2298      /* Do nothing*/;
2299    else if (R->isFunctionType()) {
2300      if (CurContext->isFunctionOrMethod() ||
2301          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2302        IsLinkageLookup = true;
2303    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2304      IsLinkageLookup = true;
2305    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2306             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2307      IsLinkageLookup = true;
2308
2309    if (IsLinkageLookup)
2310      Previous.clear(LookupRedeclarationWithLinkage);
2311
2312    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2313  } else { // Something like "int foo::x;"
2314    LookupQualifiedName(Previous, DC);
2315
2316    // Don't consider using declarations as previous declarations for
2317    // out-of-line members.
2318    RemoveUsingDecls(Previous);
2319
2320    // C++ 7.3.1.2p2:
2321    // Members (including explicit specializations of templates) of a named
2322    // namespace can also be defined outside that namespace by explicit
2323    // qualification of the name being defined, provided that the entity being
2324    // defined was already declared in the namespace and the definition appears
2325    // after the point of declaration in a namespace that encloses the
2326    // declarations namespace.
2327    //
2328    // Note that we only check the context at this point. We don't yet
2329    // have enough information to make sure that PrevDecl is actually
2330    // the declaration we want to match. For example, given:
2331    //
2332    //   class X {
2333    //     void f();
2334    //     void f(float);
2335    //   };
2336    //
2337    //   void X::f(int) { } // ill-formed
2338    //
2339    // In this case, PrevDecl will point to the overload set
2340    // containing the two f's declared in X, but neither of them
2341    // matches.
2342
2343    // First check whether we named the global scope.
2344    if (isa<TranslationUnitDecl>(DC)) {
2345      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2346        << Name << D.getCXXScopeSpec().getRange();
2347    } else {
2348      DeclContext *Cur = CurContext;
2349      while (isa<LinkageSpecDecl>(Cur))
2350        Cur = Cur->getParent();
2351      if (!Cur->Encloses(DC)) {
2352        // The qualifying scope doesn't enclose the original declaration.
2353        // Emit diagnostic based on current scope.
2354        SourceLocation L = D.getIdentifierLoc();
2355        SourceRange R = D.getCXXScopeSpec().getRange();
2356        if (isa<FunctionDecl>(Cur))
2357          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2358        else
2359          Diag(L, diag::err_invalid_declarator_scope)
2360            << Name << cast<NamedDecl>(DC) << R;
2361        D.setInvalidType();
2362      }
2363    }
2364  }
2365
2366  if (Previous.isSingleResult() &&
2367      Previous.getFoundDecl()->isTemplateParameter()) {
2368    // Maybe we will complain about the shadowed template parameter.
2369    if (!D.isInvalidType())
2370      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2371                                          Previous.getFoundDecl()))
2372        D.setInvalidType();
2373
2374    // Just pretend that we didn't see the previous declaration.
2375    Previous.clear();
2376  }
2377
2378  // In C++, the previous declaration we find might be a tag type
2379  // (class or enum). In this case, the new declaration will hide the
2380  // tag type. Note that this does does not apply if we're declaring a
2381  // typedef (C++ [dcl.typedef]p4).
2382  if (Previous.isSingleTagDecl() &&
2383      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2384    Previous.clear();
2385
2386  bool Redeclaration = false;
2387  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2388    if (TemplateParamLists.size()) {
2389      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2390      return 0;
2391    }
2392
2393    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2394  } else if (R->isFunctionType()) {
2395    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2396                                  move(TemplateParamLists),
2397                                  IsFunctionDefinition, Redeclaration);
2398  } else {
2399    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2400                                  move(TemplateParamLists),
2401                                  Redeclaration);
2402  }
2403
2404  if (New == 0)
2405    return 0;
2406
2407  // If this has an identifier and is not an invalid redeclaration or
2408  // function template specialization, add it to the scope stack.
2409  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2410    PushOnScopeChains(New, S);
2411
2412  return New;
2413}
2414
2415/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2416/// types into constant array types in certain situations which would otherwise
2417/// be errors (for GCC compatibility).
2418static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2419                                                    ASTContext &Context,
2420                                                    bool &SizeIsNegative,
2421                                                    llvm::APSInt &Oversized) {
2422  // This method tries to turn a variable array into a constant
2423  // array even when the size isn't an ICE.  This is necessary
2424  // for compatibility with code that depends on gcc's buggy
2425  // constant expression folding, like struct {char x[(int)(char*)2];}
2426  SizeIsNegative = false;
2427  Oversized = 0;
2428
2429  if (T->isDependentType())
2430    return QualType();
2431
2432  QualifierCollector Qs;
2433  const Type *Ty = Qs.strip(T);
2434
2435  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2436    QualType Pointee = PTy->getPointeeType();
2437    QualType FixedType =
2438        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2439                                            Oversized);
2440    if (FixedType.isNull()) return FixedType;
2441    FixedType = Context.getPointerType(FixedType);
2442    return Qs.apply(FixedType);
2443  }
2444
2445  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2446  if (!VLATy)
2447    return QualType();
2448  // FIXME: We should probably handle this case
2449  if (VLATy->getElementType()->isVariablyModifiedType())
2450    return QualType();
2451
2452  Expr::EvalResult EvalResult;
2453  if (!VLATy->getSizeExpr() ||
2454      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2455      !EvalResult.Val.isInt())
2456    return QualType();
2457
2458  // Check whether the array size is negative.
2459  llvm::APSInt &Res = EvalResult.Val.getInt();
2460  if (Res.isSigned() && Res.isNegative()) {
2461    SizeIsNegative = true;
2462    return QualType();
2463  }
2464
2465  // Check whether the array is too large to be addressed.
2466  unsigned ActiveSizeBits
2467    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2468                                              Res);
2469  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2470    Oversized = Res;
2471    return QualType();
2472  }
2473
2474  return Context.getConstantArrayType(VLATy->getElementType(),
2475                                      Res, ArrayType::Normal, 0);
2476}
2477
2478/// \brief Register the given locally-scoped external C declaration so
2479/// that it can be found later for redeclarations
2480void
2481Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2482                                       const LookupResult &Previous,
2483                                       Scope *S) {
2484  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2485         "Decl is not a locally-scoped decl!");
2486  // Note that we have a locally-scoped external with this name.
2487  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2488
2489  if (!Previous.isSingleResult())
2490    return;
2491
2492  NamedDecl *PrevDecl = Previous.getFoundDecl();
2493
2494  // If there was a previous declaration of this variable, it may be
2495  // in our identifier chain. Update the identifier chain with the new
2496  // declaration.
2497  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2498    // The previous declaration was found on the identifer resolver
2499    // chain, so remove it from its scope.
2500    while (S && !S->isDeclScope(PrevDecl))
2501      S = S->getParent();
2502
2503    if (S)
2504      S->RemoveDecl(PrevDecl);
2505  }
2506}
2507
2508/// \brief Diagnose function specifiers on a declaration of an identifier that
2509/// does not identify a function.
2510void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2511  // FIXME: We should probably indicate the identifier in question to avoid
2512  // confusion for constructs like "inline int a(), b;"
2513  if (D.getDeclSpec().isInlineSpecified())
2514    Diag(D.getDeclSpec().getInlineSpecLoc(),
2515         diag::err_inline_non_function);
2516
2517  if (D.getDeclSpec().isVirtualSpecified())
2518    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2519         diag::err_virtual_non_function);
2520
2521  if (D.getDeclSpec().isExplicitSpecified())
2522    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2523         diag::err_explicit_non_function);
2524}
2525
2526NamedDecl*
2527Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2528                             QualType R,  TypeSourceInfo *TInfo,
2529                             LookupResult &Previous, bool &Redeclaration) {
2530  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2531  if (D.getCXXScopeSpec().isSet()) {
2532    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2533      << D.getCXXScopeSpec().getRange();
2534    D.setInvalidType();
2535    // Pretend we didn't see the scope specifier.
2536    DC = CurContext;
2537    Previous.clear();
2538  }
2539
2540  if (getLangOptions().CPlusPlus) {
2541    // Check that there are no default arguments (C++ only).
2542    CheckExtraCXXDefaultArguments(D);
2543  }
2544
2545  DiagnoseFunctionSpecifiers(D);
2546
2547  if (D.getDeclSpec().isThreadSpecified())
2548    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2549
2550  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2551    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2552      << D.getName().getSourceRange();
2553    return 0;
2554  }
2555
2556  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2557  if (!NewTD) return 0;
2558
2559  // Handle attributes prior to checking for duplicates in MergeVarDecl
2560  ProcessDeclAttributes(S, NewTD, D);
2561
2562  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2563  // then it shall have block scope.
2564  // Note that variably modified types must be fixed before merging the decl so
2565  // that redeclarations will match.
2566  QualType T = NewTD->getUnderlyingType();
2567  if (T->isVariablyModifiedType()) {
2568    getCurFunction()->setHasBranchProtectedScope();
2569
2570    if (S->getFnParent() == 0) {
2571      bool SizeIsNegative;
2572      llvm::APSInt Oversized;
2573      QualType FixedTy =
2574          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2575                                              Oversized);
2576      if (!FixedTy.isNull()) {
2577        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2578        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2579      } else {
2580        if (SizeIsNegative)
2581          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2582        else if (T->isVariableArrayType())
2583          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2584        else if (Oversized.getBoolValue())
2585          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2586            << Oversized.toString(10);
2587        else
2588          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2589        NewTD->setInvalidDecl();
2590      }
2591    }
2592  }
2593
2594  // Merge the decl with the existing one if appropriate. If the decl is
2595  // in an outer scope, it isn't the same thing.
2596  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2597  if (!Previous.empty()) {
2598    Redeclaration = true;
2599    MergeTypeDefDecl(NewTD, Previous);
2600  }
2601
2602  // If this is the C FILE type, notify the AST context.
2603  if (IdentifierInfo *II = NewTD->getIdentifier())
2604    if (!NewTD->isInvalidDecl() &&
2605        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2606      if (II->isStr("FILE"))
2607        Context.setFILEDecl(NewTD);
2608      else if (II->isStr("jmp_buf"))
2609        Context.setjmp_bufDecl(NewTD);
2610      else if (II->isStr("sigjmp_buf"))
2611        Context.setsigjmp_bufDecl(NewTD);
2612    }
2613
2614  return NewTD;
2615}
2616
2617/// \brief Determines whether the given declaration is an out-of-scope
2618/// previous declaration.
2619///
2620/// This routine should be invoked when name lookup has found a
2621/// previous declaration (PrevDecl) that is not in the scope where a
2622/// new declaration by the same name is being introduced. If the new
2623/// declaration occurs in a local scope, previous declarations with
2624/// linkage may still be considered previous declarations (C99
2625/// 6.2.2p4-5, C++ [basic.link]p6).
2626///
2627/// \param PrevDecl the previous declaration found by name
2628/// lookup
2629///
2630/// \param DC the context in which the new declaration is being
2631/// declared.
2632///
2633/// \returns true if PrevDecl is an out-of-scope previous declaration
2634/// for a new delcaration with the same name.
2635static bool
2636isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2637                                ASTContext &Context) {
2638  if (!PrevDecl)
2639    return false;
2640
2641  if (!PrevDecl->hasLinkage())
2642    return false;
2643
2644  if (Context.getLangOptions().CPlusPlus) {
2645    // C++ [basic.link]p6:
2646    //   If there is a visible declaration of an entity with linkage
2647    //   having the same name and type, ignoring entities declared
2648    //   outside the innermost enclosing namespace scope, the block
2649    //   scope declaration declares that same entity and receives the
2650    //   linkage of the previous declaration.
2651    DeclContext *OuterContext = DC->getRedeclContext();
2652    if (!OuterContext->isFunctionOrMethod())
2653      // This rule only applies to block-scope declarations.
2654      return false;
2655
2656    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2657    if (PrevOuterContext->isRecord())
2658      // We found a member function: ignore it.
2659      return false;
2660
2661    // Find the innermost enclosing namespace for the new and
2662    // previous declarations.
2663    OuterContext = OuterContext->getEnclosingNamespaceContext();
2664    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2665
2666    // The previous declaration is in a different namespace, so it
2667    // isn't the same function.
2668    if (!OuterContext->Equals(PrevOuterContext))
2669      return false;
2670  }
2671
2672  return true;
2673}
2674
2675static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2676  CXXScopeSpec &SS = D.getCXXScopeSpec();
2677  if (!SS.isSet()) return;
2678  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2679                       SS.getRange());
2680}
2681
2682NamedDecl*
2683Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2684                              QualType R, TypeSourceInfo *TInfo,
2685                              LookupResult &Previous,
2686                              MultiTemplateParamsArg TemplateParamLists,
2687                              bool &Redeclaration) {
2688  DeclarationName Name = GetNameForDeclarator(D).getName();
2689
2690  // Check that there are no default arguments (C++ only).
2691  if (getLangOptions().CPlusPlus)
2692    CheckExtraCXXDefaultArguments(D);
2693
2694  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2695  assert(SCSpec != DeclSpec::SCS_typedef &&
2696         "Parser allowed 'typedef' as storage class VarDecl.");
2697  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2698  if (SCSpec == DeclSpec::SCS_mutable) {
2699    // mutable can only appear on non-static class members, so it's always
2700    // an error here
2701    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2702    D.setInvalidType();
2703    SC = SC_None;
2704  }
2705  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2706  VarDecl::StorageClass SCAsWritten
2707    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2708
2709  IdentifierInfo *II = Name.getAsIdentifierInfo();
2710  if (!II) {
2711    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2712      << Name.getAsString();
2713    return 0;
2714  }
2715
2716  DiagnoseFunctionSpecifiers(D);
2717
2718  if (!DC->isRecord() && S->getFnParent() == 0) {
2719    // C99 6.9p2: The storage-class specifiers auto and register shall not
2720    // appear in the declaration specifiers in an external declaration.
2721    if (SC == SC_Auto || SC == SC_Register) {
2722
2723      // If this is a register variable with an asm label specified, then this
2724      // is a GNU extension.
2725      if (SC == SC_Register && D.getAsmLabel())
2726        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2727      else
2728        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2729      D.setInvalidType();
2730    }
2731  }
2732  if (DC->isRecord() && !CurContext->isRecord()) {
2733    // This is an out-of-line definition of a static data member.
2734    if (SC == SC_Static) {
2735      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2736           diag::err_static_out_of_line)
2737        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2738    } else if (SC == SC_None)
2739      SC = SC_Static;
2740  }
2741  if (SC == SC_Static) {
2742    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2743      if (RD->isLocalClass())
2744        Diag(D.getIdentifierLoc(),
2745             diag::err_static_data_member_not_allowed_in_local_class)
2746          << Name << RD->getDeclName();
2747    }
2748  }
2749
2750  // Match up the template parameter lists with the scope specifier, then
2751  // determine whether we have a template or a template specialization.
2752  bool isExplicitSpecialization = false;
2753  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2754  bool Invalid = false;
2755  if (TemplateParameterList *TemplateParams
2756        = MatchTemplateParametersToScopeSpecifier(
2757                                  D.getDeclSpec().getSourceRange().getBegin(),
2758                                                  D.getCXXScopeSpec(),
2759                        (TemplateParameterList**)TemplateParamLists.get(),
2760                                                   TemplateParamLists.size(),
2761                                                  /*never a friend*/ false,
2762                                                  isExplicitSpecialization,
2763                                                  Invalid)) {
2764    // All but one template parameter lists have been matching.
2765    --NumMatchedTemplateParamLists;
2766
2767    if (TemplateParams->size() > 0) {
2768      // There is no such thing as a variable template.
2769      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2770        << II
2771        << SourceRange(TemplateParams->getTemplateLoc(),
2772                       TemplateParams->getRAngleLoc());
2773      return 0;
2774    } else {
2775      // There is an extraneous 'template<>' for this variable. Complain
2776      // about it, but allow the declaration of the variable.
2777      Diag(TemplateParams->getTemplateLoc(),
2778           diag::err_template_variable_noparams)
2779        << II
2780        << SourceRange(TemplateParams->getTemplateLoc(),
2781                       TemplateParams->getRAngleLoc());
2782
2783      isExplicitSpecialization = true;
2784    }
2785  }
2786
2787  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2788                                   II, R, TInfo, SC, SCAsWritten);
2789
2790  if (D.isInvalidType() || Invalid)
2791    NewVD->setInvalidDecl();
2792
2793  SetNestedNameSpecifier(NewVD, D);
2794
2795  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2796    NewVD->setTemplateParameterListsInfo(Context,
2797                                         NumMatchedTemplateParamLists,
2798                        (TemplateParameterList**)TemplateParamLists.release());
2799  }
2800
2801  if (D.getDeclSpec().isThreadSpecified()) {
2802    if (NewVD->hasLocalStorage())
2803      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2804    else if (!Context.Target.isTLSSupported())
2805      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2806    else
2807      NewVD->setThreadSpecified(true);
2808  }
2809
2810  // Set the lexical context. If the declarator has a C++ scope specifier, the
2811  // lexical context will be different from the semantic context.
2812  NewVD->setLexicalDeclContext(CurContext);
2813
2814  // Handle attributes prior to checking for duplicates in MergeVarDecl
2815  ProcessDeclAttributes(S, NewVD, D);
2816
2817  // Handle GNU asm-label extension (encoded as an attribute).
2818  if (Expr *E = (Expr*) D.getAsmLabel()) {
2819    // The parser guarantees this is a string.
2820    StringLiteral *SE = cast<StringLiteral>(E);
2821    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2822                                                Context, SE->getString()));
2823  }
2824
2825  // Diagnose shadowed variables before filtering for scope.
2826  if (!D.getCXXScopeSpec().isSet())
2827    CheckShadow(S, NewVD, Previous);
2828
2829  // Don't consider existing declarations that are in a different
2830  // scope and are out-of-semantic-context declarations (if the new
2831  // declaration has linkage).
2832  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2833
2834  // Merge the decl with the existing one if appropriate.
2835  if (!Previous.empty()) {
2836    if (Previous.isSingleResult() &&
2837        isa<FieldDecl>(Previous.getFoundDecl()) &&
2838        D.getCXXScopeSpec().isSet()) {
2839      // The user tried to define a non-static data member
2840      // out-of-line (C++ [dcl.meaning]p1).
2841      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2842        << D.getCXXScopeSpec().getRange();
2843      Previous.clear();
2844      NewVD->setInvalidDecl();
2845    }
2846  } else if (D.getCXXScopeSpec().isSet()) {
2847    // No previous declaration in the qualifying scope.
2848    Diag(D.getIdentifierLoc(), diag::err_no_member)
2849      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2850      << D.getCXXScopeSpec().getRange();
2851    NewVD->setInvalidDecl();
2852  }
2853
2854  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2855
2856  // This is an explicit specialization of a static data member. Check it.
2857  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2858      CheckMemberSpecialization(NewVD, Previous))
2859    NewVD->setInvalidDecl();
2860
2861  // attributes declared post-definition are currently ignored
2862  // FIXME: This should be handled in attribute merging, not
2863  // here.
2864  if (Previous.isSingleResult()) {
2865    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2866    if (Def && (Def = Def->getDefinition()) &&
2867        Def != NewVD && D.hasAttributes()) {
2868      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2869      Diag(Def->getLocation(), diag::note_previous_definition);
2870    }
2871  }
2872
2873  // If this is a locally-scoped extern C variable, update the map of
2874  // such variables.
2875  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2876      !NewVD->isInvalidDecl())
2877    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2878
2879  // If there's a #pragma GCC visibility in scope, and this isn't a class
2880  // member, set the visibility of this variable.
2881  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2882    AddPushedVisibilityAttribute(NewVD);
2883
2884  MarkUnusedFileScopedDecl(NewVD);
2885
2886  return NewVD;
2887}
2888
2889/// \brief Diagnose variable or built-in function shadowing.  Implements
2890/// -Wshadow.
2891///
2892/// This method is called whenever a VarDecl is added to a "useful"
2893/// scope.
2894///
2895/// \param S the scope in which the shadowing name is being declared
2896/// \param R the lookup of the name
2897///
2898void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2899  // Return if warning is ignored.
2900  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2901    return;
2902
2903  // Don't diagnose declarations at file scope.  The scope might not
2904  // have a DeclContext if (e.g.) we're parsing a function prototype.
2905  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2906  if (NewDC && NewDC->isFileContext())
2907    return;
2908
2909  // Only diagnose if we're shadowing an unambiguous field or variable.
2910  if (R.getResultKind() != LookupResult::Found)
2911    return;
2912
2913  NamedDecl* ShadowedDecl = R.getFoundDecl();
2914  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2915    return;
2916
2917  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2918
2919  // Only warn about certain kinds of shadowing for class members.
2920  if (NewDC && NewDC->isRecord()) {
2921    // In particular, don't warn about shadowing non-class members.
2922    if (!OldDC->isRecord())
2923      return;
2924
2925    // TODO: should we warn about static data members shadowing
2926    // static data members from base classes?
2927
2928    // TODO: don't diagnose for inaccessible shadowed members.
2929    // This is hard to do perfectly because we might friend the
2930    // shadowing context, but that's just a false negative.
2931  }
2932
2933  // Determine what kind of declaration we're shadowing.
2934  unsigned Kind;
2935  if (isa<RecordDecl>(OldDC)) {
2936    if (isa<FieldDecl>(ShadowedDecl))
2937      Kind = 3; // field
2938    else
2939      Kind = 2; // static data member
2940  } else if (OldDC->isFileContext())
2941    Kind = 1; // global
2942  else
2943    Kind = 0; // local
2944
2945  DeclarationName Name = R.getLookupName();
2946
2947  // Emit warning and note.
2948  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2949  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2950}
2951
2952/// \brief Check -Wshadow without the advantage of a previous lookup.
2953void Sema::CheckShadow(Scope *S, VarDecl *D) {
2954  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2955                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2956  LookupName(R, S);
2957  CheckShadow(S, D, R);
2958}
2959
2960/// \brief Perform semantic checking on a newly-created variable
2961/// declaration.
2962///
2963/// This routine performs all of the type-checking required for a
2964/// variable declaration once it has been built. It is used both to
2965/// check variables after they have been parsed and their declarators
2966/// have been translated into a declaration, and to check variables
2967/// that have been instantiated from a template.
2968///
2969/// Sets NewVD->isInvalidDecl() if an error was encountered.
2970void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2971                                    LookupResult &Previous,
2972                                    bool &Redeclaration) {
2973  // If the decl is already known invalid, don't check it.
2974  if (NewVD->isInvalidDecl())
2975    return;
2976
2977  QualType T = NewVD->getType();
2978
2979  if (T->isObjCObjectType()) {
2980    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2981    return NewVD->setInvalidDecl();
2982  }
2983
2984  // Emit an error if an address space was applied to decl with local storage.
2985  // This includes arrays of objects with address space qualifiers, but not
2986  // automatic variables that point to other address spaces.
2987  // ISO/IEC TR 18037 S5.1.2
2988  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2989    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2990    return NewVD->setInvalidDecl();
2991  }
2992
2993  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2994      && !NewVD->hasAttr<BlocksAttr>())
2995    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2996
2997  bool isVM = T->isVariablyModifiedType();
2998  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2999      NewVD->hasAttr<BlocksAttr>())
3000    getCurFunction()->setHasBranchProtectedScope();
3001
3002  if ((isVM && NewVD->hasLinkage()) ||
3003      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3004    bool SizeIsNegative;
3005    llvm::APSInt Oversized;
3006    QualType FixedTy =
3007        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3008                                            Oversized);
3009
3010    if (FixedTy.isNull() && T->isVariableArrayType()) {
3011      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3012      // FIXME: This won't give the correct result for
3013      // int a[10][n];
3014      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3015
3016      if (NewVD->isFileVarDecl())
3017        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3018        << SizeRange;
3019      else if (NewVD->getStorageClass() == SC_Static)
3020        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3021        << SizeRange;
3022      else
3023        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3024        << SizeRange;
3025      return NewVD->setInvalidDecl();
3026    }
3027
3028    if (FixedTy.isNull()) {
3029      if (NewVD->isFileVarDecl())
3030        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3031      else
3032        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3033      return NewVD->setInvalidDecl();
3034    }
3035
3036    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3037    NewVD->setType(FixedTy);
3038  }
3039
3040  if (Previous.empty() && NewVD->isExternC()) {
3041    // Since we did not find anything by this name and we're declaring
3042    // an extern "C" variable, look for a non-visible extern "C"
3043    // declaration with the same name.
3044    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3045      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3046    if (Pos != LocallyScopedExternalDecls.end())
3047      Previous.addDecl(Pos->second);
3048  }
3049
3050  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3051    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3052      << T;
3053    return NewVD->setInvalidDecl();
3054  }
3055
3056  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3057    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3058    return NewVD->setInvalidDecl();
3059  }
3060
3061  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3062    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3063    return NewVD->setInvalidDecl();
3064  }
3065
3066  // Function pointers and references cannot have qualified function type, only
3067  // function pointer-to-members can do that.
3068  QualType Pointee;
3069  unsigned PtrOrRef = 0;
3070  if (const PointerType *Ptr = T->getAs<PointerType>())
3071    Pointee = Ptr->getPointeeType();
3072  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3073    Pointee = Ref->getPointeeType();
3074    PtrOrRef = 1;
3075  }
3076  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3077      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3078    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3079        << PtrOrRef;
3080    return NewVD->setInvalidDecl();
3081  }
3082
3083  if (!Previous.empty()) {
3084    Redeclaration = true;
3085    MergeVarDecl(NewVD, Previous);
3086  }
3087}
3088
3089/// \brief Data used with FindOverriddenMethod
3090struct FindOverriddenMethodData {
3091  Sema *S;
3092  CXXMethodDecl *Method;
3093};
3094
3095/// \brief Member lookup function that determines whether a given C++
3096/// method overrides a method in a base class, to be used with
3097/// CXXRecordDecl::lookupInBases().
3098static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3099                                 CXXBasePath &Path,
3100                                 void *UserData) {
3101  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3102
3103  FindOverriddenMethodData *Data
3104    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3105
3106  DeclarationName Name = Data->Method->getDeclName();
3107
3108  // FIXME: Do we care about other names here too?
3109  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3110    // We really want to find the base class destructor here.
3111    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3112    CanQualType CT = Data->S->Context.getCanonicalType(T);
3113
3114    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3115  }
3116
3117  for (Path.Decls = BaseRecord->lookup(Name);
3118       Path.Decls.first != Path.Decls.second;
3119       ++Path.Decls.first) {
3120    NamedDecl *D = *Path.Decls.first;
3121    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3122      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3123        return true;
3124    }
3125  }
3126
3127  return false;
3128}
3129
3130/// AddOverriddenMethods - See if a method overrides any in the base classes,
3131/// and if so, check that it's a valid override and remember it.
3132void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3133  // Look for virtual methods in base classes that this method might override.
3134  CXXBasePaths Paths;
3135  FindOverriddenMethodData Data;
3136  Data.Method = MD;
3137  Data.S = this;
3138  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3139    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3140         E = Paths.found_decls_end(); I != E; ++I) {
3141      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3142        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3143            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3144            !CheckOverridingFunctionAttributes(MD, OldMD))
3145          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3146      }
3147    }
3148  }
3149}
3150
3151NamedDecl*
3152Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3153                              QualType R, TypeSourceInfo *TInfo,
3154                              LookupResult &Previous,
3155                              MultiTemplateParamsArg TemplateParamLists,
3156                              bool IsFunctionDefinition, bool &Redeclaration) {
3157  assert(R.getTypePtr()->isFunctionType());
3158
3159  // TODO: consider using NameInfo for diagnostic.
3160  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3161  DeclarationName Name = NameInfo.getName();
3162  FunctionDecl::StorageClass SC = SC_None;
3163  switch (D.getDeclSpec().getStorageClassSpec()) {
3164  default: assert(0 && "Unknown storage class!");
3165  case DeclSpec::SCS_auto:
3166  case DeclSpec::SCS_register:
3167  case DeclSpec::SCS_mutable:
3168    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3169         diag::err_typecheck_sclass_func);
3170    D.setInvalidType();
3171    break;
3172  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3173  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3174  case DeclSpec::SCS_static: {
3175    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3176      // C99 6.7.1p5:
3177      //   The declaration of an identifier for a function that has
3178      //   block scope shall have no explicit storage-class specifier
3179      //   other than extern
3180      // See also (C++ [dcl.stc]p4).
3181      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3182           diag::err_static_block_func);
3183      SC = SC_None;
3184    } else
3185      SC = SC_Static;
3186    break;
3187  }
3188  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3189  }
3190
3191  if (D.getDeclSpec().isThreadSpecified())
3192    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3193
3194  bool isFriend = D.getDeclSpec().isFriendSpecified();
3195  bool isInline = D.getDeclSpec().isInlineSpecified();
3196  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3197  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3198
3199  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3200  FunctionDecl::StorageClass SCAsWritten
3201    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3202
3203  // Check that the return type is not an abstract class type.
3204  // For record types, this is done by the AbstractClassUsageDiagnoser once
3205  // the class has been completely parsed.
3206  if (!DC->isRecord() &&
3207      RequireNonAbstractType(D.getIdentifierLoc(),
3208                             R->getAs<FunctionType>()->getResultType(),
3209                             diag::err_abstract_type_in_decl,
3210                             AbstractReturnType))
3211    D.setInvalidType();
3212
3213  // Do not allow returning a objc interface by-value.
3214  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3215    Diag(D.getIdentifierLoc(),
3216         diag::err_object_cannot_be_passed_returned_by_value) << 0
3217      << R->getAs<FunctionType>()->getResultType();
3218    D.setInvalidType();
3219  }
3220
3221  bool isVirtualOkay = false;
3222  FunctionDecl *NewFD;
3223
3224  if (isFriend) {
3225    // C++ [class.friend]p5
3226    //   A function can be defined in a friend declaration of a
3227    //   class . . . . Such a function is implicitly inline.
3228    isInline |= IsFunctionDefinition;
3229  }
3230
3231  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3232    // This is a C++ constructor declaration.
3233    assert(DC->isRecord() &&
3234           "Constructors can only be declared in a member context");
3235
3236    R = CheckConstructorDeclarator(D, R, SC);
3237
3238    // Create the new declaration
3239    NewFD = CXXConstructorDecl::Create(Context,
3240                                       cast<CXXRecordDecl>(DC),
3241                                       NameInfo, R, TInfo,
3242                                       isExplicit, isInline,
3243                                       /*isImplicitlyDeclared=*/false);
3244  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3245    // This is a C++ destructor declaration.
3246    if (DC->isRecord()) {
3247      R = CheckDestructorDeclarator(D, R, SC);
3248
3249      NewFD = CXXDestructorDecl::Create(Context,
3250                                        cast<CXXRecordDecl>(DC),
3251                                        NameInfo, R,
3252                                        isInline,
3253                                        /*isImplicitlyDeclared=*/false);
3254      NewFD->setTypeSourceInfo(TInfo);
3255
3256      isVirtualOkay = true;
3257    } else {
3258      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3259
3260      // Create a FunctionDecl to satisfy the function definition parsing
3261      // code path.
3262      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3263                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3264                                   /*hasPrototype=*/true);
3265      D.setInvalidType();
3266    }
3267  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3268    if (!DC->isRecord()) {
3269      Diag(D.getIdentifierLoc(),
3270           diag::err_conv_function_not_member);
3271      return 0;
3272    }
3273
3274    CheckConversionDeclarator(D, R, SC);
3275    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3276                                      NameInfo, R, TInfo,
3277                                      isInline, isExplicit);
3278
3279    isVirtualOkay = true;
3280  } else if (DC->isRecord()) {
3281    // If the of the function is the same as the name of the record, then this
3282    // must be an invalid constructor that has a return type.
3283    // (The parser checks for a return type and makes the declarator a
3284    // constructor if it has no return type).
3285    // must have an invalid constructor that has a return type
3286    if (Name.getAsIdentifierInfo() &&
3287        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3288      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3289        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3290        << SourceRange(D.getIdentifierLoc());
3291      return 0;
3292    }
3293
3294    bool isStatic = SC == SC_Static;
3295
3296    // [class.free]p1:
3297    // Any allocation function for a class T is a static member
3298    // (even if not explicitly declared static).
3299    if (Name.getCXXOverloadedOperator() == OO_New ||
3300        Name.getCXXOverloadedOperator() == OO_Array_New)
3301      isStatic = true;
3302
3303    // [class.free]p6 Any deallocation function for a class X is a static member
3304    // (even if not explicitly declared static).
3305    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3306        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3307      isStatic = true;
3308
3309    // This is a C++ method declaration.
3310    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3311                                  NameInfo, R, TInfo,
3312                                  isStatic, SCAsWritten, isInline);
3313
3314    isVirtualOkay = !isStatic;
3315  } else {
3316    // Determine whether the function was written with a
3317    // prototype. This true when:
3318    //   - we're in C++ (where every function has a prototype),
3319    //   - there is a prototype in the declarator, or
3320    //   - the type R of the function is some kind of typedef or other reference
3321    //     to a type name (which eventually refers to a function type).
3322    bool HasPrototype =
3323       getLangOptions().CPlusPlus ||
3324       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3325       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3326
3327    NewFD = FunctionDecl::Create(Context, DC,
3328                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3329                                 HasPrototype);
3330  }
3331
3332  if (D.isInvalidType())
3333    NewFD->setInvalidDecl();
3334
3335  SetNestedNameSpecifier(NewFD, D);
3336
3337  // Set the lexical context. If the declarator has a C++
3338  // scope specifier, or is the object of a friend declaration, the
3339  // lexical context will be different from the semantic context.
3340  NewFD->setLexicalDeclContext(CurContext);
3341
3342  // Match up the template parameter lists with the scope specifier, then
3343  // determine whether we have a template or a template specialization.
3344  FunctionTemplateDecl *FunctionTemplate = 0;
3345  bool isExplicitSpecialization = false;
3346  bool isFunctionTemplateSpecialization = false;
3347  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3348  bool Invalid = false;
3349  if (TemplateParameterList *TemplateParams
3350        = MatchTemplateParametersToScopeSpecifier(
3351                                  D.getDeclSpec().getSourceRange().getBegin(),
3352                                  D.getCXXScopeSpec(),
3353                           (TemplateParameterList**)TemplateParamLists.get(),
3354                                                  TemplateParamLists.size(),
3355                                                  isFriend,
3356                                                  isExplicitSpecialization,
3357                                                  Invalid)) {
3358    // All but one template parameter lists have been matching.
3359    --NumMatchedTemplateParamLists;
3360
3361    if (TemplateParams->size() > 0) {
3362      // This is a function template
3363
3364      // Check that we can declare a template here.
3365      if (CheckTemplateDeclScope(S, TemplateParams))
3366        return 0;
3367
3368      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3369                                                      NewFD->getLocation(),
3370                                                      Name, TemplateParams,
3371                                                      NewFD);
3372      FunctionTemplate->setLexicalDeclContext(CurContext);
3373      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3374    } else {
3375      // This is a function template specialization.
3376      isFunctionTemplateSpecialization = true;
3377
3378      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3379      if (isFriend && isFunctionTemplateSpecialization) {
3380        // We want to remove the "template<>", found here.
3381        SourceRange RemoveRange = TemplateParams->getSourceRange();
3382
3383        // If we remove the template<> and the name is not a
3384        // template-id, we're actually silently creating a problem:
3385        // the friend declaration will refer to an untemplated decl,
3386        // and clearly the user wants a template specialization.  So
3387        // we need to insert '<>' after the name.
3388        SourceLocation InsertLoc;
3389        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3390          InsertLoc = D.getName().getSourceRange().getEnd();
3391          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3392        }
3393
3394        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3395          << Name << RemoveRange
3396          << FixItHint::CreateRemoval(RemoveRange)
3397          << FixItHint::CreateInsertion(InsertLoc, "<>");
3398      }
3399    }
3400  }
3401
3402  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3403    NewFD->setTemplateParameterListsInfo(Context,
3404                                         NumMatchedTemplateParamLists,
3405                        (TemplateParameterList**)TemplateParamLists.release());
3406  }
3407
3408  if (Invalid) {
3409    NewFD->setInvalidDecl();
3410    if (FunctionTemplate)
3411      FunctionTemplate->setInvalidDecl();
3412  }
3413
3414  // C++ [dcl.fct.spec]p5:
3415  //   The virtual specifier shall only be used in declarations of
3416  //   nonstatic class member functions that appear within a
3417  //   member-specification of a class declaration; see 10.3.
3418  //
3419  if (isVirtual && !NewFD->isInvalidDecl()) {
3420    if (!isVirtualOkay) {
3421       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3422           diag::err_virtual_non_function);
3423    } else if (!CurContext->isRecord()) {
3424      // 'virtual' was specified outside of the class.
3425      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3426        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3427    } else {
3428      // Okay: Add virtual to the method.
3429      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3430      CurClass->setMethodAsVirtual(NewFD);
3431    }
3432  }
3433
3434  // C++ [dcl.fct.spec]p3:
3435  //  The inline specifier shall not appear on a block scope function declaration.
3436  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3437    if (CurContext->isFunctionOrMethod()) {
3438      // 'inline' is not allowed on block scope function declaration.
3439      Diag(D.getDeclSpec().getInlineSpecLoc(),
3440           diag::err_inline_declaration_block_scope) << Name
3441        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3442    }
3443  }
3444
3445  // C++ [dcl.fct.spec]p6:
3446  //  The explicit specifier shall be used only in the declaration of a
3447  //  constructor or conversion function within its class definition; see 12.3.1
3448  //  and 12.3.2.
3449  if (isExplicit && !NewFD->isInvalidDecl()) {
3450    if (!CurContext->isRecord()) {
3451      // 'explicit' was specified outside of the class.
3452      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3453           diag::err_explicit_out_of_class)
3454        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3455    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3456               !isa<CXXConversionDecl>(NewFD)) {
3457      // 'explicit' was specified on a function that wasn't a constructor
3458      // or conversion function.
3459      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3460           diag::err_explicit_non_ctor_or_conv_function)
3461        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3462    }
3463  }
3464
3465  // Filter out previous declarations that don't match the scope.
3466  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3467
3468  if (isFriend) {
3469    // DC is the namespace in which the function is being declared.
3470    assert((DC->isFileContext() || !Previous.empty()) &&
3471           "previously-undeclared friend function being created "
3472           "in a non-namespace context");
3473
3474    // For now, claim that the objects have no previous declaration.
3475    if (FunctionTemplate) {
3476      FunctionTemplate->setObjectOfFriendDecl(false);
3477      FunctionTemplate->setAccess(AS_public);
3478    }
3479    NewFD->setObjectOfFriendDecl(false);
3480    NewFD->setAccess(AS_public);
3481  }
3482
3483  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3484      !CurContext->isRecord()) {
3485    // C++ [class.static]p1:
3486    //   A data or function member of a class may be declared static
3487    //   in a class definition, in which case it is a static member of
3488    //   the class.
3489
3490    // Complain about the 'static' specifier if it's on an out-of-line
3491    // member function definition.
3492    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3493         diag::err_static_out_of_line)
3494      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3495  }
3496
3497  // Handle GNU asm-label extension (encoded as an attribute).
3498  if (Expr *E = (Expr*) D.getAsmLabel()) {
3499    // The parser guarantees this is a string.
3500    StringLiteral *SE = cast<StringLiteral>(E);
3501    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3502                                                SE->getString()));
3503  }
3504
3505  // Copy the parameter declarations from the declarator D to the function
3506  // declaration NewFD, if they are available.  First scavenge them into Params.
3507  llvm::SmallVector<ParmVarDecl*, 16> Params;
3508  if (D.getNumTypeObjects() > 0) {
3509    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3510
3511    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3512    // function that takes no arguments, not a function that takes a
3513    // single void argument.
3514    // We let through "const void" here because Sema::GetTypeForDeclarator
3515    // already checks for that case.
3516    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3517        FTI.ArgInfo[0].Param &&
3518        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3519      // Empty arg list, don't push any params.
3520      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3521
3522      // In C++, the empty parameter-type-list must be spelled "void"; a
3523      // typedef of void is not permitted.
3524      if (getLangOptions().CPlusPlus &&
3525          Param->getType().getUnqualifiedType() != Context.VoidTy)
3526        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3527      // FIXME: Leaks decl?
3528    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3529      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3530        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3531        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3532        Param->setDeclContext(NewFD);
3533        Params.push_back(Param);
3534
3535        if (Param->isInvalidDecl())
3536          NewFD->setInvalidDecl();
3537      }
3538    }
3539
3540  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3541    // When we're declaring a function with a typedef, typeof, etc as in the
3542    // following example, we'll need to synthesize (unnamed)
3543    // parameters for use in the declaration.
3544    //
3545    // @code
3546    // typedef void fn(int);
3547    // fn f;
3548    // @endcode
3549
3550    // Synthesize a parameter for each argument type.
3551    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3552         AE = FT->arg_type_end(); AI != AE; ++AI) {
3553      ParmVarDecl *Param =
3554        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3555      Params.push_back(Param);
3556    }
3557  } else {
3558    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3559           "Should not need args for typedef of non-prototype fn");
3560  }
3561  // Finally, we know we have the right number of parameters, install them.
3562  NewFD->setParams(Params.data(), Params.size());
3563
3564  // If the declarator is a template-id, translate the parser's template
3565  // argument list into our AST format.
3566  bool HasExplicitTemplateArgs = false;
3567  TemplateArgumentListInfo TemplateArgs;
3568  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3569    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3570    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3571    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3572    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3573                                       TemplateId->getTemplateArgs(),
3574                                       TemplateId->NumArgs);
3575    translateTemplateArguments(TemplateArgsPtr,
3576                               TemplateArgs);
3577    TemplateArgsPtr.release();
3578
3579    HasExplicitTemplateArgs = true;
3580
3581    if (FunctionTemplate) {
3582      // FIXME: Diagnose function template with explicit template
3583      // arguments.
3584      HasExplicitTemplateArgs = false;
3585    } else if (!isFunctionTemplateSpecialization &&
3586               !D.getDeclSpec().isFriendSpecified()) {
3587      // We have encountered something that the user meant to be a
3588      // specialization (because it has explicitly-specified template
3589      // arguments) but that was not introduced with a "template<>" (or had
3590      // too few of them).
3591      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3592        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3593        << FixItHint::CreateInsertion(
3594                                   D.getDeclSpec().getSourceRange().getBegin(),
3595                                                 "template<> ");
3596      isFunctionTemplateSpecialization = true;
3597    } else {
3598      // "friend void foo<>(int);" is an implicit specialization decl.
3599      isFunctionTemplateSpecialization = true;
3600    }
3601  } else if (isFriend && isFunctionTemplateSpecialization) {
3602    // This combination is only possible in a recovery case;  the user
3603    // wrote something like:
3604    //   template <> friend void foo(int);
3605    // which we're recovering from as if the user had written:
3606    //   friend void foo<>(int);
3607    // Go ahead and fake up a template id.
3608    HasExplicitTemplateArgs = true;
3609    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3610    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3611  }
3612
3613  // If it's a friend (and only if it's a friend), it's possible
3614  // that either the specialized function type or the specialized
3615  // template is dependent, and therefore matching will fail.  In
3616  // this case, don't check the specialization yet.
3617  if (isFunctionTemplateSpecialization && isFriend &&
3618      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3619    assert(HasExplicitTemplateArgs &&
3620           "friend function specialization without template args");
3621    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3622                                                     Previous))
3623      NewFD->setInvalidDecl();
3624  } else if (isFunctionTemplateSpecialization) {
3625    if (CheckFunctionTemplateSpecialization(NewFD,
3626                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3627                                            Previous))
3628      NewFD->setInvalidDecl();
3629  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3630    if (CheckMemberSpecialization(NewFD, Previous))
3631      NewFD->setInvalidDecl();
3632  }
3633
3634  // Perform semantic checking on the function declaration.
3635  bool OverloadableAttrRequired = false; // FIXME: HACK!
3636  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3637                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3638
3639  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3640          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3641         "previous declaration set still overloaded");
3642
3643  NamedDecl *PrincipalDecl = (FunctionTemplate
3644                              ? cast<NamedDecl>(FunctionTemplate)
3645                              : NewFD);
3646
3647  if (isFriend && Redeclaration) {
3648    AccessSpecifier Access = AS_public;
3649    if (!NewFD->isInvalidDecl())
3650      Access = NewFD->getPreviousDeclaration()->getAccess();
3651
3652    NewFD->setAccess(Access);
3653    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3654
3655    PrincipalDecl->setObjectOfFriendDecl(true);
3656  }
3657
3658  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3659      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3660    PrincipalDecl->setNonMemberOperator();
3661
3662  // If we have a function template, check the template parameter
3663  // list. This will check and merge default template arguments.
3664  if (FunctionTemplate) {
3665    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3666    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3667                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3668             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3669                                                : TPC_FunctionTemplate);
3670  }
3671
3672  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3673    // Fake up an access specifier if it's supposed to be a class member.
3674    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3675      NewFD->setAccess(AS_public);
3676
3677    // An out-of-line member function declaration must also be a
3678    // definition (C++ [dcl.meaning]p1).
3679    // Note that this is not the case for explicit specializations of
3680    // function templates or member functions of class templates, per
3681    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3682    // for compatibility with old SWIG code which likes to generate them.
3683    if (!IsFunctionDefinition && !isFriend &&
3684        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3685      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3686        << D.getCXXScopeSpec().getRange();
3687    }
3688    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3689      // The user tried to provide an out-of-line definition for a
3690      // function that is a member of a class or namespace, but there
3691      // was no such member function declared (C++ [class.mfct]p2,
3692      // C++ [namespace.memdef]p2). For example:
3693      //
3694      // class X {
3695      //   void f() const;
3696      // };
3697      //
3698      // void X::f() { } // ill-formed
3699      //
3700      // Complain about this problem, and attempt to suggest close
3701      // matches (e.g., those that differ only in cv-qualifiers and
3702      // whether the parameter types are references).
3703      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3704        << Name << DC << D.getCXXScopeSpec().getRange();
3705      NewFD->setInvalidDecl();
3706
3707      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3708                        ForRedeclaration);
3709      LookupQualifiedName(Prev, DC);
3710      assert(!Prev.isAmbiguous() &&
3711             "Cannot have an ambiguity in previous-declaration lookup");
3712      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3713           Func != FuncEnd; ++Func) {
3714        if (isa<FunctionDecl>(*Func) &&
3715            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3716          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3717      }
3718    }
3719  }
3720
3721  // Handle attributes. We need to have merged decls when handling attributes
3722  // (for example to check for conflicts, etc).
3723  // FIXME: This needs to happen before we merge declarations. Then,
3724  // let attribute merging cope with attribute conflicts.
3725  ProcessDeclAttributes(S, NewFD, D);
3726
3727  // attributes declared post-definition are currently ignored
3728  // FIXME: This should happen during attribute merging
3729  if (Redeclaration && Previous.isSingleResult()) {
3730    const FunctionDecl *Def;
3731    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3732    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3733      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3734      Diag(Def->getLocation(), diag::note_previous_definition);
3735    }
3736  }
3737
3738  AddKnownFunctionAttributes(NewFD);
3739
3740  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3741    // If a function name is overloadable in C, then every function
3742    // with that name must be marked "overloadable".
3743    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3744      << Redeclaration << NewFD;
3745    if (!Previous.empty())
3746      Diag(Previous.getRepresentativeDecl()->getLocation(),
3747           diag::note_attribute_overloadable_prev_overload);
3748    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3749  }
3750
3751  if (NewFD->hasAttr<OverloadableAttr>() &&
3752      !NewFD->getType()->getAs<FunctionProtoType>()) {
3753    Diag(NewFD->getLocation(),
3754         diag::err_attribute_overloadable_no_prototype)
3755      << NewFD;
3756
3757    // Turn this into a variadic function with no parameters.
3758    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3759    QualType R = Context.getFunctionType(FT->getResultType(),
3760                                         0, 0, true, 0, false, false, 0, 0,
3761                                         FT->getExtInfo());
3762    NewFD->setType(R);
3763  }
3764
3765  // If there's a #pragma GCC visibility in scope, and this isn't a class
3766  // member, set the visibility of this function.
3767  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3768    AddPushedVisibilityAttribute(NewFD);
3769
3770  // If this is a locally-scoped extern C function, update the
3771  // map of such names.
3772  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3773      && !NewFD->isInvalidDecl())
3774    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3775
3776  // Set this FunctionDecl's range up to the right paren.
3777  NewFD->setLocEnd(D.getSourceRange().getEnd());
3778
3779  if (FunctionTemplate && NewFD->isInvalidDecl())
3780    FunctionTemplate->setInvalidDecl();
3781
3782  if (FunctionTemplate)
3783    return FunctionTemplate;
3784
3785  MarkUnusedFileScopedDecl(NewFD);
3786
3787  return NewFD;
3788}
3789
3790/// \brief Perform semantic checking of a new function declaration.
3791///
3792/// Performs semantic analysis of the new function declaration
3793/// NewFD. This routine performs all semantic checking that does not
3794/// require the actual declarator involved in the declaration, and is
3795/// used both for the declaration of functions as they are parsed
3796/// (called via ActOnDeclarator) and for the declaration of functions
3797/// that have been instantiated via C++ template instantiation (called
3798/// via InstantiateDecl).
3799///
3800/// \param IsExplicitSpecialiation whether this new function declaration is
3801/// an explicit specialization of the previous declaration.
3802///
3803/// This sets NewFD->isInvalidDecl() to true if there was an error.
3804void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3805                                    LookupResult &Previous,
3806                                    bool IsExplicitSpecialization,
3807                                    bool &Redeclaration,
3808                                    bool &OverloadableAttrRequired) {
3809  // If NewFD is already known erroneous, don't do any of this checking.
3810  if (NewFD->isInvalidDecl()) {
3811    // If this is a class member, mark the class invalid immediately.
3812    // This avoids some consistency errors later.
3813    if (isa<CXXMethodDecl>(NewFD))
3814      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3815
3816    return;
3817  }
3818
3819  if (NewFD->getResultType()->isVariablyModifiedType()) {
3820    // Functions returning a variably modified type violate C99 6.7.5.2p2
3821    // because all functions have linkage.
3822    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3823    return NewFD->setInvalidDecl();
3824  }
3825
3826  if (NewFD->isMain())
3827    CheckMain(NewFD);
3828
3829  // Check for a previous declaration of this name.
3830  if (Previous.empty() && NewFD->isExternC()) {
3831    // Since we did not find anything by this name and we're declaring
3832    // an extern "C" function, look for a non-visible extern "C"
3833    // declaration with the same name.
3834    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3835      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3836    if (Pos != LocallyScopedExternalDecls.end())
3837      Previous.addDecl(Pos->second);
3838  }
3839
3840  // Merge or overload the declaration with an existing declaration of
3841  // the same name, if appropriate.
3842  if (!Previous.empty()) {
3843    // Determine whether NewFD is an overload of PrevDecl or
3844    // a declaration that requires merging. If it's an overload,
3845    // there's no more work to do here; we'll just add the new
3846    // function to the scope.
3847
3848    NamedDecl *OldDecl = 0;
3849    if (!AllowOverloadingOfFunction(Previous, Context)) {
3850      Redeclaration = true;
3851      OldDecl = Previous.getFoundDecl();
3852    } else {
3853      if (!getLangOptions().CPlusPlus)
3854        OverloadableAttrRequired = true;
3855
3856      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3857                            /*NewIsUsingDecl*/ false)) {
3858      case Ovl_Match:
3859        Redeclaration = true;
3860        break;
3861
3862      case Ovl_NonFunction:
3863        Redeclaration = true;
3864        break;
3865
3866      case Ovl_Overload:
3867        Redeclaration = false;
3868        break;
3869      }
3870    }
3871
3872    if (Redeclaration) {
3873      // NewFD and OldDecl represent declarations that need to be
3874      // merged.
3875      if (MergeFunctionDecl(NewFD, OldDecl))
3876        return NewFD->setInvalidDecl();
3877
3878      Previous.clear();
3879      Previous.addDecl(OldDecl);
3880
3881      if (FunctionTemplateDecl *OldTemplateDecl
3882                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3883        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3884        FunctionTemplateDecl *NewTemplateDecl
3885          = NewFD->getDescribedFunctionTemplate();
3886        assert(NewTemplateDecl && "Template/non-template mismatch");
3887        if (CXXMethodDecl *Method
3888              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3889          Method->setAccess(OldTemplateDecl->getAccess());
3890          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3891        }
3892
3893        // If this is an explicit specialization of a member that is a function
3894        // template, mark it as a member specialization.
3895        if (IsExplicitSpecialization &&
3896            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3897          NewTemplateDecl->setMemberSpecialization();
3898          assert(OldTemplateDecl->isMemberSpecialization());
3899        }
3900      } else {
3901        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3902          NewFD->setAccess(OldDecl->getAccess());
3903        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3904      }
3905    }
3906  }
3907
3908  // Semantic checking for this function declaration (in isolation).
3909  if (getLangOptions().CPlusPlus) {
3910    // C++-specific checks.
3911    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3912      CheckConstructor(Constructor);
3913    } else if (CXXDestructorDecl *Destructor =
3914                dyn_cast<CXXDestructorDecl>(NewFD)) {
3915      CXXRecordDecl *Record = Destructor->getParent();
3916      QualType ClassType = Context.getTypeDeclType(Record);
3917
3918      // FIXME: Shouldn't we be able to perform this check even when the class
3919      // type is dependent? Both gcc and edg can handle that.
3920      if (!ClassType->isDependentType()) {
3921        DeclarationName Name
3922          = Context.DeclarationNames.getCXXDestructorName(
3923                                        Context.getCanonicalType(ClassType));
3924//         NewFD->getDeclName().dump();
3925//         Name.dump();
3926        if (NewFD->getDeclName() != Name) {
3927          Diag(NewFD->getLocation(), diag::err_destructor_name);
3928          return NewFD->setInvalidDecl();
3929        }
3930      }
3931
3932      Record->setUserDeclaredDestructor(true);
3933      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3934      // user-defined destructor.
3935      Record->setPOD(false);
3936
3937      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3938      // declared destructor.
3939      // FIXME: C++0x: don't do this for "= default" destructors
3940      Record->setHasTrivialDestructor(false);
3941    } else if (CXXConversionDecl *Conversion
3942               = dyn_cast<CXXConversionDecl>(NewFD)) {
3943      ActOnConversionDeclarator(Conversion);
3944    }
3945
3946    // Find any virtual functions that this function overrides.
3947    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3948      if (!Method->isFunctionTemplateSpecialization() &&
3949          !Method->getDescribedFunctionTemplate())
3950        AddOverriddenMethods(Method->getParent(), Method);
3951    }
3952
3953    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3954    if (NewFD->isOverloadedOperator() &&
3955        CheckOverloadedOperatorDeclaration(NewFD))
3956      return NewFD->setInvalidDecl();
3957
3958    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3959    if (NewFD->getLiteralIdentifier() &&
3960        CheckLiteralOperatorDeclaration(NewFD))
3961      return NewFD->setInvalidDecl();
3962
3963    // In C++, check default arguments now that we have merged decls. Unless
3964    // the lexical context is the class, because in this case this is done
3965    // during delayed parsing anyway.
3966    if (!CurContext->isRecord())
3967      CheckCXXDefaultArguments(NewFD);
3968  }
3969}
3970
3971void Sema::CheckMain(FunctionDecl* FD) {
3972  // C++ [basic.start.main]p3:  A program that declares main to be inline
3973  //   or static is ill-formed.
3974  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3975  //   shall not appear in a declaration of main.
3976  // static main is not an error under C99, but we should warn about it.
3977  bool isInline = FD->isInlineSpecified();
3978  bool isStatic = FD->getStorageClass() == SC_Static;
3979  if (isInline || isStatic) {
3980    unsigned diagID = diag::warn_unusual_main_decl;
3981    if (isInline || getLangOptions().CPlusPlus)
3982      diagID = diag::err_unusual_main_decl;
3983
3984    int which = isStatic + (isInline << 1) - 1;
3985    Diag(FD->getLocation(), diagID) << which;
3986  }
3987
3988  QualType T = FD->getType();
3989  assert(T->isFunctionType() && "function decl is not of function type");
3990  const FunctionType* FT = T->getAs<FunctionType>();
3991
3992  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3993    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3994    TypeLoc TL = TSI->getTypeLoc();
3995    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
3996                                          diag::err_main_returns_nonint);
3997    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
3998      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
3999                                        "int");
4000    }
4001    FD->setInvalidDecl(true);
4002  }
4003
4004  // Treat protoless main() as nullary.
4005  if (isa<FunctionNoProtoType>(FT)) return;
4006
4007  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4008  unsigned nparams = FTP->getNumArgs();
4009  assert(FD->getNumParams() == nparams);
4010
4011  bool HasExtraParameters = (nparams > 3);
4012
4013  // Darwin passes an undocumented fourth argument of type char**.  If
4014  // other platforms start sprouting these, the logic below will start
4015  // getting shifty.
4016  if (nparams == 4 &&
4017      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4018    HasExtraParameters = false;
4019
4020  if (HasExtraParameters) {
4021    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4022    FD->setInvalidDecl(true);
4023    nparams = 3;
4024  }
4025
4026  // FIXME: a lot of the following diagnostics would be improved
4027  // if we had some location information about types.
4028
4029  QualType CharPP =
4030    Context.getPointerType(Context.getPointerType(Context.CharTy));
4031  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4032
4033  for (unsigned i = 0; i < nparams; ++i) {
4034    QualType AT = FTP->getArgType(i);
4035
4036    bool mismatch = true;
4037
4038    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4039      mismatch = false;
4040    else if (Expected[i] == CharPP) {
4041      // As an extension, the following forms are okay:
4042      //   char const **
4043      //   char const * const *
4044      //   char * const *
4045
4046      QualifierCollector qs;
4047      const PointerType* PT;
4048      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4049          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4050          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4051        qs.removeConst();
4052        mismatch = !qs.empty();
4053      }
4054    }
4055
4056    if (mismatch) {
4057      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4058      // TODO: suggest replacing given type with expected type
4059      FD->setInvalidDecl(true);
4060    }
4061  }
4062
4063  if (nparams == 1 && !FD->isInvalidDecl()) {
4064    Diag(FD->getLocation(), diag::warn_main_one_arg);
4065  }
4066}
4067
4068bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4069  // FIXME: Need strict checking.  In C89, we need to check for
4070  // any assignment, increment, decrement, function-calls, or
4071  // commas outside of a sizeof.  In C99, it's the same list,
4072  // except that the aforementioned are allowed in unevaluated
4073  // expressions.  Everything else falls under the
4074  // "may accept other forms of constant expressions" exception.
4075  // (We never end up here for C++, so the constant expression
4076  // rules there don't matter.)
4077  if (Init->isConstantInitializer(Context, false))
4078    return false;
4079  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4080    << Init->getSourceRange();
4081  return true;
4082}
4083
4084void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4085  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4086}
4087
4088/// AddInitializerToDecl - Adds the initializer Init to the
4089/// declaration dcl. If DirectInit is true, this is C++ direct
4090/// initialization rather than copy initialization.
4091void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4092  // If there is no declaration, there was an error parsing it.  Just ignore
4093  // the initializer.
4094  if (RealDecl == 0)
4095    return;
4096
4097  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4098    // With declarators parsed the way they are, the parser cannot
4099    // distinguish between a normal initializer and a pure-specifier.
4100    // Thus this grotesque test.
4101    IntegerLiteral *IL;
4102    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4103        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4104      CheckPureMethod(Method, Init->getSourceRange());
4105    else {
4106      Diag(Method->getLocation(), diag::err_member_function_initialization)
4107        << Method->getDeclName() << Init->getSourceRange();
4108      Method->setInvalidDecl();
4109    }
4110    return;
4111  }
4112
4113  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4114  if (!VDecl) {
4115    if (getLangOptions().CPlusPlus &&
4116        RealDecl->getLexicalDeclContext()->isRecord() &&
4117        isa<NamedDecl>(RealDecl))
4118      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4119    else
4120      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4121    RealDecl->setInvalidDecl();
4122    return;
4123  }
4124
4125
4126
4127  // A definition must end up with a complete type, which means it must be
4128  // complete with the restriction that an array type might be completed by the
4129  // initializer; note that later code assumes this restriction.
4130  QualType BaseDeclType = VDecl->getType();
4131  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4132    BaseDeclType = Array->getElementType();
4133  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4134                          diag::err_typecheck_decl_incomplete_type)) {
4135    RealDecl->setInvalidDecl();
4136    return;
4137  }
4138
4139  // The variable can not have an abstract class type.
4140  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4141                             diag::err_abstract_type_in_decl,
4142                             AbstractVariableType))
4143    VDecl->setInvalidDecl();
4144
4145  const VarDecl *Def;
4146  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4147    Diag(VDecl->getLocation(), diag::err_redefinition)
4148      << VDecl->getDeclName();
4149    Diag(Def->getLocation(), diag::note_previous_definition);
4150    VDecl->setInvalidDecl();
4151    return;
4152  }
4153
4154  // C++ [class.static.data]p4
4155  //   If a static data member is of const integral or const
4156  //   enumeration type, its declaration in the class definition can
4157  //   specify a constant-initializer which shall be an integral
4158  //   constant expression (5.19). In that case, the member can appear
4159  //   in integral constant expressions. The member shall still be
4160  //   defined in a namespace scope if it is used in the program and the
4161  //   namespace scope definition shall not contain an initializer.
4162  //
4163  // We already performed a redefinition check above, but for static
4164  // data members we also need to check whether there was an in-class
4165  // declaration with an initializer.
4166  const VarDecl* PrevInit = 0;
4167  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4168    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4169    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4170    return;
4171  }
4172
4173  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4174    getCurFunction()->setHasBranchProtectedScope();
4175
4176  // Capture the variable that is being initialized and the style of
4177  // initialization.
4178  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4179
4180  // FIXME: Poor source location information.
4181  InitializationKind Kind
4182    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4183                                                   Init->getLocStart(),
4184                                                   Init->getLocEnd())
4185                : InitializationKind::CreateCopy(VDecl->getLocation(),
4186                                                 Init->getLocStart());
4187
4188  // Get the decls type and save a reference for later, since
4189  // CheckInitializerTypes may change it.
4190  QualType DclT = VDecl->getType(), SavT = DclT;
4191  if (VDecl->isBlockVarDecl()) {
4192    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4193      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4194      VDecl->setInvalidDecl();
4195    } else if (!VDecl->isInvalidDecl()) {
4196      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4197      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4198                                                MultiExprArg(*this, &Init, 1),
4199                                                &DclT);
4200      if (Result.isInvalid()) {
4201        VDecl->setInvalidDecl();
4202        return;
4203      }
4204
4205      Init = Result.takeAs<Expr>();
4206
4207      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4208      // Don't check invalid declarations to avoid emitting useless diagnostics.
4209      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4210        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4211          CheckForConstantInitializer(Init, DclT);
4212      }
4213    }
4214  } else if (VDecl->isStaticDataMember() &&
4215             VDecl->getLexicalDeclContext()->isRecord()) {
4216    // This is an in-class initialization for a static data member, e.g.,
4217    //
4218    // struct S {
4219    //   static const int value = 17;
4220    // };
4221
4222    // Try to perform the initialization regardless.
4223    if (!VDecl->isInvalidDecl()) {
4224      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4225      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4226                                          MultiExprArg(*this, &Init, 1),
4227                                          &DclT);
4228      if (Result.isInvalid()) {
4229        VDecl->setInvalidDecl();
4230        return;
4231      }
4232
4233      Init = Result.takeAs<Expr>();
4234    }
4235
4236    // C++ [class.mem]p4:
4237    //   A member-declarator can contain a constant-initializer only
4238    //   if it declares a static member (9.4) of const integral or
4239    //   const enumeration type, see 9.4.2.
4240    QualType T = VDecl->getType();
4241
4242    // Do nothing on dependent types.
4243    if (T->isDependentType()) {
4244
4245    // Require constness.
4246    } else if (!T.isConstQualified()) {
4247      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4248        << Init->getSourceRange();
4249      VDecl->setInvalidDecl();
4250
4251    // We allow integer constant expressions in all cases.
4252    } else if (T->isIntegralOrEnumerationType()) {
4253      if (!Init->isValueDependent()) {
4254        // Check whether the expression is a constant expression.
4255        llvm::APSInt Value;
4256        SourceLocation Loc;
4257        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4258          Diag(Loc, diag::err_in_class_initializer_non_constant)
4259            << Init->getSourceRange();
4260          VDecl->setInvalidDecl();
4261        }
4262      }
4263
4264    // We allow floating-point constants as an extension in C++03, and
4265    // C++0x has far more complicated rules that we don't really
4266    // implement fully.
4267    } else {
4268      bool Allowed = false;
4269      if (getLangOptions().CPlusPlus0x) {
4270        Allowed = T->isLiteralType();
4271      } else if (T->isFloatingType()) { // also permits complex, which is ok
4272        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4273          << T << Init->getSourceRange();
4274        Allowed = true;
4275      }
4276
4277      if (!Allowed) {
4278        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4279          << T << Init->getSourceRange();
4280        VDecl->setInvalidDecl();
4281
4282      // TODO: there are probably expressions that pass here that shouldn't.
4283      } else if (!Init->isValueDependent() &&
4284                 !Init->isConstantInitializer(Context, false)) {
4285        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4286          << Init->getSourceRange();
4287        VDecl->setInvalidDecl();
4288      }
4289    }
4290  } else if (VDecl->isFileVarDecl()) {
4291    if (VDecl->getStorageClass() == SC_Extern &&
4292        (!getLangOptions().CPlusPlus ||
4293         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4294      Diag(VDecl->getLocation(), diag::warn_extern_init);
4295    if (!VDecl->isInvalidDecl()) {
4296      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4297      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4298                                                MultiExprArg(*this, &Init, 1),
4299                                                &DclT);
4300      if (Result.isInvalid()) {
4301        VDecl->setInvalidDecl();
4302        return;
4303      }
4304
4305      Init = Result.takeAs<Expr>();
4306    }
4307
4308    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4309    // Don't check invalid declarations to avoid emitting useless diagnostics.
4310    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4311      // C99 6.7.8p4. All file scoped initializers need to be constant.
4312      CheckForConstantInitializer(Init, DclT);
4313    }
4314  }
4315  // If the type changed, it means we had an incomplete type that was
4316  // completed by the initializer. For example:
4317  //   int ary[] = { 1, 3, 5 };
4318  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4319  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4320    VDecl->setType(DclT);
4321    Init->setType(DclT);
4322  }
4323
4324  Init = MaybeCreateCXXExprWithTemporaries(Init);
4325  // Attach the initializer to the decl.
4326  VDecl->setInit(Init);
4327
4328  if (getLangOptions().CPlusPlus) {
4329    if (!VDecl->isInvalidDecl() &&
4330        !VDecl->getDeclContext()->isDependentContext() &&
4331        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4332        !Init->isConstantInitializer(Context,
4333                                     VDecl->getType()->isReferenceType()))
4334      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4335        << Init->getSourceRange();
4336
4337    // Make sure we mark the destructor as used if necessary.
4338    QualType InitType = VDecl->getType();
4339    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4340      InitType = Context.getBaseElementType(Array);
4341    if (const RecordType *Record = InitType->getAs<RecordType>())
4342      FinalizeVarWithDestructor(VDecl, Record);
4343  }
4344
4345  return;
4346}
4347
4348/// ActOnInitializerError - Given that there was an error parsing an
4349/// initializer for the given declaration, try to return to some form
4350/// of sanity.
4351void Sema::ActOnInitializerError(Decl *D) {
4352  // Our main concern here is re-establishing invariants like "a
4353  // variable's type is either dependent or complete".
4354  if (!D || D->isInvalidDecl()) return;
4355
4356  VarDecl *VD = dyn_cast<VarDecl>(D);
4357  if (!VD) return;
4358
4359  QualType Ty = VD->getType();
4360  if (Ty->isDependentType()) return;
4361
4362  // Require a complete type.
4363  if (RequireCompleteType(VD->getLocation(),
4364                          Context.getBaseElementType(Ty),
4365                          diag::err_typecheck_decl_incomplete_type)) {
4366    VD->setInvalidDecl();
4367    return;
4368  }
4369
4370  // Require an abstract type.
4371  if (RequireNonAbstractType(VD->getLocation(), Ty,
4372                             diag::err_abstract_type_in_decl,
4373                             AbstractVariableType)) {
4374    VD->setInvalidDecl();
4375    return;
4376  }
4377
4378  // Don't bother complaining about constructors or destructors,
4379  // though.
4380}
4381
4382void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4383                                  bool TypeContainsUndeducedAuto) {
4384  // If there is no declaration, there was an error parsing it. Just ignore it.
4385  if (RealDecl == 0)
4386    return;
4387
4388  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4389    QualType Type = Var->getType();
4390
4391    // C++0x [dcl.spec.auto]p3
4392    if (TypeContainsUndeducedAuto) {
4393      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4394        << Var->getDeclName() << Type;
4395      Var->setInvalidDecl();
4396      return;
4397    }
4398
4399    switch (Var->isThisDeclarationADefinition()) {
4400    case VarDecl::Definition:
4401      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4402        break;
4403
4404      // We have an out-of-line definition of a static data member
4405      // that has an in-class initializer, so we type-check this like
4406      // a declaration.
4407      //
4408      // Fall through
4409
4410    case VarDecl::DeclarationOnly:
4411      // It's only a declaration.
4412
4413      // Block scope. C99 6.7p7: If an identifier for an object is
4414      // declared with no linkage (C99 6.2.2p6), the type for the
4415      // object shall be complete.
4416      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4417          !Var->getLinkage() && !Var->isInvalidDecl() &&
4418          RequireCompleteType(Var->getLocation(), Type,
4419                              diag::err_typecheck_decl_incomplete_type))
4420        Var->setInvalidDecl();
4421
4422      // Make sure that the type is not abstract.
4423      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4424          RequireNonAbstractType(Var->getLocation(), Type,
4425                                 diag::err_abstract_type_in_decl,
4426                                 AbstractVariableType))
4427        Var->setInvalidDecl();
4428      return;
4429
4430    case VarDecl::TentativeDefinition:
4431      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4432      // object that has file scope without an initializer, and without a
4433      // storage-class specifier or with the storage-class specifier "static",
4434      // constitutes a tentative definition. Note: A tentative definition with
4435      // external linkage is valid (C99 6.2.2p5).
4436      if (!Var->isInvalidDecl()) {
4437        if (const IncompleteArrayType *ArrayT
4438                                    = Context.getAsIncompleteArrayType(Type)) {
4439          if (RequireCompleteType(Var->getLocation(),
4440                                  ArrayT->getElementType(),
4441                                  diag::err_illegal_decl_array_incomplete_type))
4442            Var->setInvalidDecl();
4443        } else if (Var->getStorageClass() == SC_Static) {
4444          // C99 6.9.2p3: If the declaration of an identifier for an object is
4445          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4446          // declared type shall not be an incomplete type.
4447          // NOTE: code such as the following
4448          //     static struct s;
4449          //     struct s { int a; };
4450          // is accepted by gcc. Hence here we issue a warning instead of
4451          // an error and we do not invalidate the static declaration.
4452          // NOTE: to avoid multiple warnings, only check the first declaration.
4453          if (Var->getPreviousDeclaration() == 0)
4454            RequireCompleteType(Var->getLocation(), Type,
4455                                diag::ext_typecheck_decl_incomplete_type);
4456        }
4457      }
4458
4459      // Record the tentative definition; we're done.
4460      if (!Var->isInvalidDecl())
4461        TentativeDefinitions.push_back(Var);
4462      return;
4463    }
4464
4465    // Provide a specific diagnostic for uninitialized variable
4466    // definitions with incomplete array type.
4467    if (Type->isIncompleteArrayType()) {
4468      Diag(Var->getLocation(),
4469           diag::err_typecheck_incomplete_array_needs_initializer);
4470      Var->setInvalidDecl();
4471      return;
4472    }
4473
4474    // Provide a specific diagnostic for uninitialized variable
4475    // definitions with reference type.
4476    if (Type->isReferenceType()) {
4477      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4478        << Var->getDeclName()
4479        << SourceRange(Var->getLocation(), Var->getLocation());
4480      Var->setInvalidDecl();
4481      return;
4482    }
4483
4484    // Do not attempt to type-check the default initializer for a
4485    // variable with dependent type.
4486    if (Type->isDependentType())
4487      return;
4488
4489    if (Var->isInvalidDecl())
4490      return;
4491
4492    if (RequireCompleteType(Var->getLocation(),
4493                            Context.getBaseElementType(Type),
4494                            diag::err_typecheck_decl_incomplete_type)) {
4495      Var->setInvalidDecl();
4496      return;
4497    }
4498
4499    // The variable can not have an abstract class type.
4500    if (RequireNonAbstractType(Var->getLocation(), Type,
4501                               diag::err_abstract_type_in_decl,
4502                               AbstractVariableType)) {
4503      Var->setInvalidDecl();
4504      return;
4505    }
4506
4507    const RecordType *Record
4508      = Context.getBaseElementType(Type)->getAs<RecordType>();
4509    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4510        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4511      // C++03 [dcl.init]p9:
4512      //   If no initializer is specified for an object, and the
4513      //   object is of (possibly cv-qualified) non-POD class type (or
4514      //   array thereof), the object shall be default-initialized; if
4515      //   the object is of const-qualified type, the underlying class
4516      //   type shall have a user-declared default
4517      //   constructor. Otherwise, if no initializer is specified for
4518      //   a non- static object, the object and its subobjects, if
4519      //   any, have an indeterminate initial value); if the object
4520      //   or any of its subobjects are of const-qualified type, the
4521      //   program is ill-formed.
4522      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4523    } else {
4524      // Check for jumps past the implicit initializer.  C++0x
4525      // clarifies that this applies to a "variable with automatic
4526      // storage duration", not a "local variable".
4527      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4528        getCurFunction()->setHasBranchProtectedScope();
4529
4530      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4531      InitializationKind Kind
4532        = InitializationKind::CreateDefault(Var->getLocation());
4533
4534      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4535      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4536                                        MultiExprArg(*this, 0, 0));
4537      if (Init.isInvalid())
4538        Var->setInvalidDecl();
4539      else if (Init.get()) {
4540        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4541
4542        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4543            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4544            !Var->getDeclContext()->isDependentContext() &&
4545            !Var->getInit()->isConstantInitializer(Context, false))
4546          Diag(Var->getLocation(), diag::warn_global_constructor);
4547      }
4548    }
4549
4550    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4551      FinalizeVarWithDestructor(Var, Record);
4552  }
4553}
4554
4555Sema::DeclGroupPtrTy
4556Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4557                              Decl **Group, unsigned NumDecls) {
4558  llvm::SmallVector<Decl*, 8> Decls;
4559
4560  if (DS.isTypeSpecOwned())
4561    Decls.push_back(DS.getRepAsDecl());
4562
4563  for (unsigned i = 0; i != NumDecls; ++i)
4564    if (Decl *D = Group[i])
4565      Decls.push_back(D);
4566
4567  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4568                                                   Decls.data(), Decls.size()));
4569}
4570
4571
4572/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4573/// to introduce parameters into function prototype scope.
4574Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4575  const DeclSpec &DS = D.getDeclSpec();
4576
4577  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4578  VarDecl::StorageClass StorageClass = SC_None;
4579  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4580  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4581    StorageClass = SC_Register;
4582    StorageClassAsWritten = SC_Register;
4583  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4584    Diag(DS.getStorageClassSpecLoc(),
4585         diag::err_invalid_storage_class_in_func_decl);
4586    D.getMutableDeclSpec().ClearStorageClassSpecs();
4587  }
4588
4589  if (D.getDeclSpec().isThreadSpecified())
4590    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4591
4592  DiagnoseFunctionSpecifiers(D);
4593
4594  // Check that there are no default arguments inside the type of this
4595  // parameter (C++ only).
4596  if (getLangOptions().CPlusPlus)
4597    CheckExtraCXXDefaultArguments(D);
4598
4599  TagDecl *OwnedDecl = 0;
4600  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4601  QualType parmDeclType = TInfo->getType();
4602
4603  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4604    // C++ [dcl.fct]p6:
4605    //   Types shall not be defined in return or parameter types.
4606    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4607      << Context.getTypeDeclType(OwnedDecl);
4608  }
4609
4610  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4611  IdentifierInfo *II = D.getIdentifier();
4612  if (II) {
4613    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4614                   ForRedeclaration);
4615    LookupName(R, S);
4616    if (R.isSingleResult()) {
4617      NamedDecl *PrevDecl = R.getFoundDecl();
4618      if (PrevDecl->isTemplateParameter()) {
4619        // Maybe we will complain about the shadowed template parameter.
4620        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4621        // Just pretend that we didn't see the previous declaration.
4622        PrevDecl = 0;
4623      } else if (S->isDeclScope(PrevDecl)) {
4624        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4625        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4626
4627        // Recover by removing the name
4628        II = 0;
4629        D.SetIdentifier(0, D.getIdentifierLoc());
4630        D.setInvalidType(true);
4631      }
4632    }
4633  }
4634
4635  // Temporarily put parameter variables in the translation unit, not
4636  // the enclosing context.  This prevents them from accidentally
4637  // looking like class members in C++.
4638  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4639                                    TInfo, parmDeclType, II,
4640                                    D.getIdentifierLoc(),
4641                                    StorageClass, StorageClassAsWritten);
4642
4643  if (D.isInvalidType())
4644    New->setInvalidDecl();
4645
4646  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4647  if (D.getCXXScopeSpec().isSet()) {
4648    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4649      << D.getCXXScopeSpec().getRange();
4650    New->setInvalidDecl();
4651  }
4652
4653  // Add the parameter declaration into this scope.
4654  S->AddDecl(New);
4655  if (II)
4656    IdResolver.AddDecl(New);
4657
4658  ProcessDeclAttributes(S, New, D);
4659
4660  if (New->hasAttr<BlocksAttr>()) {
4661    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4662  }
4663  return New;
4664}
4665
4666/// \brief Synthesizes a variable for a parameter arising from a
4667/// typedef.
4668ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4669                                              SourceLocation Loc,
4670                                              QualType T) {
4671  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4672                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4673                                           SC_None, SC_None, 0);
4674  Param->setImplicit();
4675  return Param;
4676}
4677
4678void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4679                                    ParmVarDecl * const *ParamEnd) {
4680  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4681        Diagnostic::Ignored)
4682    return;
4683
4684  // Don't diagnose unused-parameter errors in template instantiations; we
4685  // will already have done so in the template itself.
4686  if (!ActiveTemplateInstantiations.empty())
4687    return;
4688
4689  for (; Param != ParamEnd; ++Param) {
4690    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4691        !(*Param)->hasAttr<UnusedAttr>()) {
4692      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4693        << (*Param)->getDeclName();
4694    }
4695  }
4696}
4697
4698ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4699                                  TypeSourceInfo *TSInfo, QualType T,
4700                                  IdentifierInfo *Name,
4701                                  SourceLocation NameLoc,
4702                                  VarDecl::StorageClass StorageClass,
4703                                  VarDecl::StorageClass StorageClassAsWritten) {
4704  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4705                                         adjustParameterType(T), TSInfo,
4706                                         StorageClass, StorageClassAsWritten,
4707                                         0);
4708
4709  // Parameters can not be abstract class types.
4710  // For record types, this is done by the AbstractClassUsageDiagnoser once
4711  // the class has been completely parsed.
4712  if (!CurContext->isRecord() &&
4713      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4714                             AbstractParamType))
4715    New->setInvalidDecl();
4716
4717  // Parameter declarators cannot be interface types. All ObjC objects are
4718  // passed by reference.
4719  if (T->isObjCObjectType()) {
4720    Diag(NameLoc,
4721         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4722    New->setInvalidDecl();
4723  }
4724
4725  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4726  // duration shall not be qualified by an address-space qualifier."
4727  // Since all parameters have automatic store duration, they can not have
4728  // an address space.
4729  if (T.getAddressSpace() != 0) {
4730    Diag(NameLoc, diag::err_arg_with_address_space);
4731    New->setInvalidDecl();
4732  }
4733
4734  return New;
4735}
4736
4737void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4738                                           SourceLocation LocAfterDecls) {
4739  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4740         "Not a function declarator!");
4741  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4742
4743  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4744  // for a K&R function.
4745  if (!FTI.hasPrototype) {
4746    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4747      --i;
4748      if (FTI.ArgInfo[i].Param == 0) {
4749        llvm::SmallString<256> Code;
4750        llvm::raw_svector_ostream(Code) << "  int "
4751                                        << FTI.ArgInfo[i].Ident->getName()
4752                                        << ";\n";
4753        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4754          << FTI.ArgInfo[i].Ident
4755          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4756
4757        // Implicitly declare the argument as type 'int' for lack of a better
4758        // type.
4759        DeclSpec DS;
4760        const char* PrevSpec; // unused
4761        unsigned DiagID; // unused
4762        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4763                           PrevSpec, DiagID);
4764        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4765        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4766        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4767      }
4768    }
4769  }
4770}
4771
4772Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4773                                         Declarator &D) {
4774  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4775  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4776         "Not a function declarator!");
4777  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4778
4779  if (FTI.hasPrototype) {
4780    // FIXME: Diagnose arguments without names in C.
4781  }
4782
4783  Scope *ParentScope = FnBodyScope->getParent();
4784
4785  Decl *DP = HandleDeclarator(ParentScope, D,
4786                              MultiTemplateParamsArg(*this),
4787                              /*IsFunctionDefinition=*/true);
4788  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4789}
4790
4791static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4792  // Don't warn about invalid declarations.
4793  if (FD->isInvalidDecl())
4794    return false;
4795
4796  // Or declarations that aren't global.
4797  if (!FD->isGlobal())
4798    return false;
4799
4800  // Don't warn about C++ member functions.
4801  if (isa<CXXMethodDecl>(FD))
4802    return false;
4803
4804  // Don't warn about 'main'.
4805  if (FD->isMain())
4806    return false;
4807
4808  // Don't warn about inline functions.
4809  if (FD->isInlineSpecified())
4810    return false;
4811
4812  // Don't warn about function templates.
4813  if (FD->getDescribedFunctionTemplate())
4814    return false;
4815
4816  // Don't warn about function template specializations.
4817  if (FD->isFunctionTemplateSpecialization())
4818    return false;
4819
4820  bool MissingPrototype = true;
4821  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4822       Prev; Prev = Prev->getPreviousDeclaration()) {
4823    // Ignore any declarations that occur in function or method
4824    // scope, because they aren't visible from the header.
4825    if (Prev->getDeclContext()->isFunctionOrMethod())
4826      continue;
4827
4828    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4829    break;
4830  }
4831
4832  return MissingPrototype;
4833}
4834
4835Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4836  // Clear the last template instantiation error context.
4837  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4838
4839  if (!D)
4840    return D;
4841  FunctionDecl *FD = 0;
4842
4843  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4844    FD = FunTmpl->getTemplatedDecl();
4845  else
4846    FD = cast<FunctionDecl>(D);
4847
4848  // Enter a new function scope
4849  PushFunctionScope();
4850
4851  // See if this is a redefinition.
4852  // But don't complain if we're in GNU89 mode and the previous definition
4853  // was an extern inline function.
4854  const FunctionDecl *Definition;
4855  if (FD->hasBody(Definition) &&
4856      !canRedefineFunction(Definition, getLangOptions())) {
4857    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4858        Definition->getStorageClass() == SC_Extern)
4859      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4860        << FD->getDeclName() << getLangOptions().CPlusPlus;
4861    else
4862      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4863    Diag(Definition->getLocation(), diag::note_previous_definition);
4864  }
4865
4866  // Builtin functions cannot be defined.
4867  if (unsigned BuiltinID = FD->getBuiltinID()) {
4868    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4869      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4870      FD->setInvalidDecl();
4871    }
4872  }
4873
4874  // The return type of a function definition must be complete
4875  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4876  QualType ResultType = FD->getResultType();
4877  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4878      !FD->isInvalidDecl() &&
4879      RequireCompleteType(FD->getLocation(), ResultType,
4880                          diag::err_func_def_incomplete_result))
4881    FD->setInvalidDecl();
4882
4883  // GNU warning -Wmissing-prototypes:
4884  //   Warn if a global function is defined without a previous
4885  //   prototype declaration. This warning is issued even if the
4886  //   definition itself provides a prototype. The aim is to detect
4887  //   global functions that fail to be declared in header files.
4888  if (ShouldWarnAboutMissingPrototype(FD))
4889    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4890
4891  if (FnBodyScope)
4892    PushDeclContext(FnBodyScope, FD);
4893
4894  // Check the validity of our function parameters
4895  CheckParmsForFunctionDef(FD);
4896
4897  bool ShouldCheckShadow =
4898    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4899
4900  // Introduce our parameters into the function scope
4901  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4902    ParmVarDecl *Param = FD->getParamDecl(p);
4903    Param->setOwningFunction(FD);
4904
4905    // If this has an identifier, add it to the scope stack.
4906    if (Param->getIdentifier() && FnBodyScope) {
4907      if (ShouldCheckShadow)
4908        CheckShadow(FnBodyScope, Param);
4909
4910      PushOnScopeChains(Param, FnBodyScope);
4911    }
4912  }
4913
4914  // Checking attributes of current function definition
4915  // dllimport attribute.
4916  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4917  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4918    // dllimport attribute cannot be directly applied to definition.
4919    if (!DA->isInherited()) {
4920      Diag(FD->getLocation(),
4921           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4922        << "dllimport";
4923      FD->setInvalidDecl();
4924      return FD;
4925    }
4926
4927    // Visual C++ appears to not think this is an issue, so only issue
4928    // a warning when Microsoft extensions are disabled.
4929    if (!LangOpts.Microsoft) {
4930      // If a symbol previously declared dllimport is later defined, the
4931      // attribute is ignored in subsequent references, and a warning is
4932      // emitted.
4933      Diag(FD->getLocation(),
4934           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4935        << FD->getName() << "dllimport";
4936    }
4937  }
4938  return FD;
4939}
4940
4941/// \brief Given the set of return statements within a function body,
4942/// compute the variables that are subject to the named return value
4943/// optimization.
4944///
4945/// Each of the variables that is subject to the named return value
4946/// optimization will be marked as NRVO variables in the AST, and any
4947/// return statement that has a marked NRVO variable as its NRVO candidate can
4948/// use the named return value optimization.
4949///
4950/// This function applies a very simplistic algorithm for NRVO: if every return
4951/// statement in the function has the same NRVO candidate, that candidate is
4952/// the NRVO variable.
4953///
4954/// FIXME: Employ a smarter algorithm that accounts for multiple return
4955/// statements and the lifetimes of the NRVO candidates. We should be able to
4956/// find a maximal set of NRVO variables.
4957static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4958  ReturnStmt **Returns = Scope->Returns.data();
4959
4960  const VarDecl *NRVOCandidate = 0;
4961  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4962    if (!Returns[I]->getNRVOCandidate())
4963      return;
4964
4965    if (!NRVOCandidate)
4966      NRVOCandidate = Returns[I]->getNRVOCandidate();
4967    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4968      return;
4969  }
4970
4971  if (NRVOCandidate)
4972    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4973}
4974
4975Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4976  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4977}
4978
4979Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4980                                    bool IsInstantiation) {
4981  FunctionDecl *FD = 0;
4982  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4983  if (FunTmpl)
4984    FD = FunTmpl->getTemplatedDecl();
4985  else
4986    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4987
4988  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4989
4990  if (FD) {
4991    FD->setBody(Body);
4992    if (FD->isMain()) {
4993      // C and C++ allow for main to automagically return 0.
4994      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4995      FD->setHasImplicitReturnZero(true);
4996      WP.disableCheckFallThrough();
4997    }
4998
4999    if (!FD->isInvalidDecl()) {
5000      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5001
5002      // If this is a constructor, we need a vtable.
5003      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5004        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5005
5006      ComputeNRVO(Body, getCurFunction());
5007    }
5008
5009    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5010  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5011    assert(MD == getCurMethodDecl() && "Method parsing confused");
5012    MD->setBody(Body);
5013    MD->setEndLoc(Body->getLocEnd());
5014    if (!MD->isInvalidDecl())
5015      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5016  } else {
5017    return 0;
5018  }
5019
5020  // Verify and clean out per-function state.
5021
5022  // Check goto/label use.
5023  FunctionScopeInfo *CurFn = getCurFunction();
5024  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5025         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5026    LabelStmt *L = I->second;
5027
5028    // Verify that we have no forward references left.  If so, there was a goto
5029    // or address of a label taken, but no definition of it.  Label fwd
5030    // definitions are indicated with a null substmt.
5031    if (L->getSubStmt() != 0)
5032      continue;
5033
5034    // Emit error.
5035    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5036
5037    // At this point, we have gotos that use the bogus label.  Stitch it into
5038    // the function body so that they aren't leaked and that the AST is well
5039    // formed.
5040    if (Body == 0) {
5041      // The whole function wasn't parsed correctly.
5042      continue;
5043    }
5044
5045    // Otherwise, the body is valid: we want to stitch the label decl into the
5046    // function somewhere so that it is properly owned and so that the goto
5047    // has a valid target.  Do this by creating a new compound stmt with the
5048    // label in it.
5049
5050    // Give the label a sub-statement.
5051    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5052
5053    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5054                               cast<CXXTryStmt>(Body)->getTryBlock() :
5055                               cast<CompoundStmt>(Body);
5056    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5057                                          Compound->body_end());
5058    Elements.push_back(L);
5059    Compound->setStmts(Context, Elements.data(), Elements.size());
5060  }
5061
5062  if (Body) {
5063    // C++ constructors that have function-try-blocks can't have return
5064    // statements in the handlers of that block. (C++ [except.handle]p14)
5065    // Verify this.
5066    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5067      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5068
5069    // Verify that that gotos and switch cases don't jump into scopes illegally.
5070    // Verify that that gotos and switch cases don't jump into scopes illegally.
5071    if (getCurFunction()->NeedsScopeChecking() &&
5072        !dcl->isInvalidDecl() &&
5073        !hasAnyErrorsInThisFunction())
5074      DiagnoseInvalidJumps(Body);
5075
5076    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5077      if (!Destructor->getParent()->isDependentType())
5078        CheckDestructor(Destructor);
5079
5080      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5081                                             Destructor->getParent());
5082    }
5083
5084    // If any errors have occurred, clear out any temporaries that may have
5085    // been leftover. This ensures that these temporaries won't be picked up for
5086    // deletion in some later function.
5087    if (PP.getDiagnostics().hasErrorOccurred())
5088      ExprTemporaries.clear();
5089    else if (!isa<FunctionTemplateDecl>(dcl)) {
5090      // Since the body is valid, issue any analysis-based warnings that are
5091      // enabled.
5092      QualType ResultType;
5093      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5094        AnalysisWarnings.IssueWarnings(WP, FD);
5095      } else {
5096        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5097        AnalysisWarnings.IssueWarnings(WP, MD);
5098      }
5099    }
5100
5101    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5102  }
5103
5104  if (!IsInstantiation)
5105    PopDeclContext();
5106
5107  PopFunctionOrBlockScope();
5108
5109  // If any errors have occurred, clear out any temporaries that may have
5110  // been leftover. This ensures that these temporaries won't be picked up for
5111  // deletion in some later function.
5112  if (getDiagnostics().hasErrorOccurred())
5113    ExprTemporaries.clear();
5114
5115  return dcl;
5116}
5117
5118/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5119/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5120NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5121                                          IdentifierInfo &II, Scope *S) {
5122  // Before we produce a declaration for an implicitly defined
5123  // function, see whether there was a locally-scoped declaration of
5124  // this name as a function or variable. If so, use that
5125  // (non-visible) declaration, and complain about it.
5126  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5127    = LocallyScopedExternalDecls.find(&II);
5128  if (Pos != LocallyScopedExternalDecls.end()) {
5129    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5130    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5131    return Pos->second;
5132  }
5133
5134  // Extension in C99.  Legal in C90, but warn about it.
5135  if (II.getName().startswith("__builtin_"))
5136    Diag(Loc, diag::warn_builtin_unknown) << &II;
5137  else if (getLangOptions().C99)
5138    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5139  else
5140    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5141
5142  // Set a Declarator for the implicit definition: int foo();
5143  const char *Dummy;
5144  DeclSpec DS;
5145  unsigned DiagID;
5146  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5147  Error = Error; // Silence warning.
5148  assert(!Error && "Error setting up implicit decl!");
5149  Declarator D(DS, Declarator::BlockContext);
5150  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5151                                             0, 0, false, SourceLocation(),
5152                                             false, 0,0,0, Loc, Loc, D),
5153                SourceLocation());
5154  D.SetIdentifier(&II, Loc);
5155
5156  // Insert this function into translation-unit scope.
5157
5158  DeclContext *PrevDC = CurContext;
5159  CurContext = Context.getTranslationUnitDecl();
5160
5161  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5162  FD->setImplicit();
5163
5164  CurContext = PrevDC;
5165
5166  AddKnownFunctionAttributes(FD);
5167
5168  return FD;
5169}
5170
5171/// \brief Adds any function attributes that we know a priori based on
5172/// the declaration of this function.
5173///
5174/// These attributes can apply both to implicitly-declared builtins
5175/// (like __builtin___printf_chk) or to library-declared functions
5176/// like NSLog or printf.
5177void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5178  if (FD->isInvalidDecl())
5179    return;
5180
5181  // If this is a built-in function, map its builtin attributes to
5182  // actual attributes.
5183  if (unsigned BuiltinID = FD->getBuiltinID()) {
5184    // Handle printf-formatting attributes.
5185    unsigned FormatIdx;
5186    bool HasVAListArg;
5187    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5188      if (!FD->getAttr<FormatAttr>())
5189        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5190                                                "printf", FormatIdx+1,
5191                                               HasVAListArg ? 0 : FormatIdx+2));
5192    }
5193    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5194                                             HasVAListArg)) {
5195     if (!FD->getAttr<FormatAttr>())
5196       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5197                                              "scanf", FormatIdx+1,
5198                                              HasVAListArg ? 0 : FormatIdx+2));
5199    }
5200
5201    // Mark const if we don't care about errno and that is the only
5202    // thing preventing the function from being const. This allows
5203    // IRgen to use LLVM intrinsics for such functions.
5204    if (!getLangOptions().MathErrno &&
5205        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5206      if (!FD->getAttr<ConstAttr>())
5207        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5208    }
5209
5210    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5211      FD->setType(Context.getNoReturnType(FD->getType()));
5212    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5213      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5214    if (Context.BuiltinInfo.isConst(BuiltinID))
5215      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5216  }
5217
5218  IdentifierInfo *Name = FD->getIdentifier();
5219  if (!Name)
5220    return;
5221  if ((!getLangOptions().CPlusPlus &&
5222       FD->getDeclContext()->isTranslationUnit()) ||
5223      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5224       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5225       LinkageSpecDecl::lang_c)) {
5226    // Okay: this could be a libc/libm/Objective-C function we know
5227    // about.
5228  } else
5229    return;
5230
5231  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5232    // FIXME: NSLog and NSLogv should be target specific
5233    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5234      // FIXME: We known better than our headers.
5235      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5236    } else
5237      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5238                                             "printf", 1,
5239                                             Name->isStr("NSLogv") ? 0 : 2));
5240  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5241    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5242    // target-specific builtins, perhaps?
5243    if (!FD->getAttr<FormatAttr>())
5244      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5245                                             "printf", 2,
5246                                             Name->isStr("vasprintf") ? 0 : 3));
5247  }
5248}
5249
5250TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5251                                    TypeSourceInfo *TInfo) {
5252  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5253  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5254
5255  if (!TInfo) {
5256    assert(D.isInvalidType() && "no declarator info for valid type");
5257    TInfo = Context.getTrivialTypeSourceInfo(T);
5258  }
5259
5260  // Scope manipulation handled by caller.
5261  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5262                                           D.getIdentifierLoc(),
5263                                           D.getIdentifier(),
5264                                           TInfo);
5265
5266  if (const TagType *TT = T->getAs<TagType>()) {
5267    TagDecl *TD = TT->getDecl();
5268
5269    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5270    // keep track of the TypedefDecl.
5271    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5272      TD->setTypedefForAnonDecl(NewTD);
5273  }
5274
5275  if (D.isInvalidType())
5276    NewTD->setInvalidDecl();
5277  return NewTD;
5278}
5279
5280
5281/// \brief Determine whether a tag with a given kind is acceptable
5282/// as a redeclaration of the given tag declaration.
5283///
5284/// \returns true if the new tag kind is acceptable, false otherwise.
5285bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5286                                        TagTypeKind NewTag,
5287                                        SourceLocation NewTagLoc,
5288                                        const IdentifierInfo &Name) {
5289  // C++ [dcl.type.elab]p3:
5290  //   The class-key or enum keyword present in the
5291  //   elaborated-type-specifier shall agree in kind with the
5292  //   declaration to which the name in the elaborated-type-specifier
5293  //   refers. This rule also applies to the form of
5294  //   elaborated-type-specifier that declares a class-name or
5295  //   friend class since it can be construed as referring to the
5296  //   definition of the class. Thus, in any
5297  //   elaborated-type-specifier, the enum keyword shall be used to
5298  //   refer to an enumeration (7.2), the union class-key shall be
5299  //   used to refer to a union (clause 9), and either the class or
5300  //   struct class-key shall be used to refer to a class (clause 9)
5301  //   declared using the class or struct class-key.
5302  TagTypeKind OldTag = Previous->getTagKind();
5303  if (OldTag == NewTag)
5304    return true;
5305
5306  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5307      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5308    // Warn about the struct/class tag mismatch.
5309    bool isTemplate = false;
5310    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5311      isTemplate = Record->getDescribedClassTemplate();
5312
5313    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5314      << (NewTag == TTK_Class)
5315      << isTemplate << &Name
5316      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5317                              OldTag == TTK_Class? "class" : "struct");
5318    Diag(Previous->getLocation(), diag::note_previous_use);
5319    return true;
5320  }
5321  return false;
5322}
5323
5324/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5325/// former case, Name will be non-null.  In the later case, Name will be null.
5326/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5327/// reference/declaration/definition of a tag.
5328Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5329                               SourceLocation KWLoc, CXXScopeSpec &SS,
5330                               IdentifierInfo *Name, SourceLocation NameLoc,
5331                               AttributeList *Attr, AccessSpecifier AS,
5332                               MultiTemplateParamsArg TemplateParameterLists,
5333                               bool &OwnedDecl, bool &IsDependent) {
5334  // If this is not a definition, it must have a name.
5335  assert((Name != 0 || TUK == TUK_Definition) &&
5336         "Nameless record must be a definition!");
5337
5338  OwnedDecl = false;
5339  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5340
5341  // FIXME: Check explicit specializations more carefully.
5342  bool isExplicitSpecialization = false;
5343  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5344  bool Invalid = false;
5345  if (TUK != TUK_Reference) {
5346    if (TemplateParameterList *TemplateParams
5347          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5348                        (TemplateParameterList**)TemplateParameterLists.get(),
5349                                              TemplateParameterLists.size(),
5350                                                    TUK == TUK_Friend,
5351                                                    isExplicitSpecialization,
5352                                                    Invalid)) {
5353      // All but one template parameter lists have been matching.
5354      --NumMatchedTemplateParamLists;
5355
5356      if (TemplateParams->size() > 0) {
5357        // This is a declaration or definition of a class template (which may
5358        // be a member of another template).
5359        if (Invalid)
5360          return 0;
5361
5362        OwnedDecl = false;
5363        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5364                                               SS, Name, NameLoc, Attr,
5365                                               TemplateParams,
5366                                               AS);
5367        TemplateParameterLists.release();
5368        return Result.get();
5369      } else {
5370        // The "template<>" header is extraneous.
5371        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5372          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5373        isExplicitSpecialization = true;
5374      }
5375    }
5376  }
5377
5378  DeclContext *SearchDC = CurContext;
5379  DeclContext *DC = CurContext;
5380  bool isStdBadAlloc = false;
5381
5382  RedeclarationKind Redecl = ForRedeclaration;
5383  if (TUK == TUK_Friend || TUK == TUK_Reference)
5384    Redecl = NotForRedeclaration;
5385
5386  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5387
5388  if (Name && SS.isNotEmpty()) {
5389    // We have a nested-name tag ('struct foo::bar').
5390
5391    // Check for invalid 'foo::'.
5392    if (SS.isInvalid()) {
5393      Name = 0;
5394      goto CreateNewDecl;
5395    }
5396
5397    // If this is a friend or a reference to a class in a dependent
5398    // context, don't try to make a decl for it.
5399    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5400      DC = computeDeclContext(SS, false);
5401      if (!DC) {
5402        IsDependent = true;
5403        return 0;
5404      }
5405    } else {
5406      DC = computeDeclContext(SS, true);
5407      if (!DC) {
5408        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5409          << SS.getRange();
5410        return 0;
5411      }
5412    }
5413
5414    if (RequireCompleteDeclContext(SS, DC))
5415      return 0;
5416
5417    SearchDC = DC;
5418    // Look-up name inside 'foo::'.
5419    LookupQualifiedName(Previous, DC);
5420
5421    if (Previous.isAmbiguous())
5422      return 0;
5423
5424    if (Previous.empty()) {
5425      // Name lookup did not find anything. However, if the
5426      // nested-name-specifier refers to the current instantiation,
5427      // and that current instantiation has any dependent base
5428      // classes, we might find something at instantiation time: treat
5429      // this as a dependent elaborated-type-specifier.
5430      if (Previous.wasNotFoundInCurrentInstantiation()) {
5431        IsDependent = true;
5432        return 0;
5433      }
5434
5435      // A tag 'foo::bar' must already exist.
5436      Diag(NameLoc, diag::err_not_tag_in_scope)
5437        << Kind << Name << DC << SS.getRange();
5438      Name = 0;
5439      Invalid = true;
5440      goto CreateNewDecl;
5441    }
5442  } else if (Name) {
5443    // If this is a named struct, check to see if there was a previous forward
5444    // declaration or definition.
5445    // FIXME: We're looking into outer scopes here, even when we
5446    // shouldn't be. Doing so can result in ambiguities that we
5447    // shouldn't be diagnosing.
5448    LookupName(Previous, S);
5449
5450    // Note:  there used to be some attempt at recovery here.
5451    if (Previous.isAmbiguous())
5452      return 0;
5453
5454    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5455      // FIXME: This makes sure that we ignore the contexts associated
5456      // with C structs, unions, and enums when looking for a matching
5457      // tag declaration or definition. See the similar lookup tweak
5458      // in Sema::LookupName; is there a better way to deal with this?
5459      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5460        SearchDC = SearchDC->getParent();
5461    }
5462  }
5463
5464  if (Previous.isSingleResult() &&
5465      Previous.getFoundDecl()->isTemplateParameter()) {
5466    // Maybe we will complain about the shadowed template parameter.
5467    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5468    // Just pretend that we didn't see the previous declaration.
5469    Previous.clear();
5470  }
5471
5472  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5473      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5474    // This is a declaration of or a reference to "std::bad_alloc".
5475    isStdBadAlloc = true;
5476
5477    if (Previous.empty() && StdBadAlloc) {
5478      // std::bad_alloc has been implicitly declared (but made invisible to
5479      // name lookup). Fill in this implicit declaration as the previous
5480      // declaration, so that the declarations get chained appropriately.
5481      Previous.addDecl(getStdBadAlloc());
5482    }
5483  }
5484
5485  // If we didn't find a previous declaration, and this is a reference
5486  // (or friend reference), move to the correct scope.  In C++, we
5487  // also need to do a redeclaration lookup there, just in case
5488  // there's a shadow friend decl.
5489  if (Name && Previous.empty() &&
5490      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5491    if (Invalid) goto CreateNewDecl;
5492    assert(SS.isEmpty());
5493
5494    if (TUK == TUK_Reference) {
5495      // C++ [basic.scope.pdecl]p5:
5496      //   -- for an elaborated-type-specifier of the form
5497      //
5498      //          class-key identifier
5499      //
5500      //      if the elaborated-type-specifier is used in the
5501      //      decl-specifier-seq or parameter-declaration-clause of a
5502      //      function defined in namespace scope, the identifier is
5503      //      declared as a class-name in the namespace that contains
5504      //      the declaration; otherwise, except as a friend
5505      //      declaration, the identifier is declared in the smallest
5506      //      non-class, non-function-prototype scope that contains the
5507      //      declaration.
5508      //
5509      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5510      // C structs and unions.
5511      //
5512      // It is an error in C++ to declare (rather than define) an enum
5513      // type, including via an elaborated type specifier.  We'll
5514      // diagnose that later; for now, declare the enum in the same
5515      // scope as we would have picked for any other tag type.
5516      //
5517      // GNU C also supports this behavior as part of its incomplete
5518      // enum types extension, while GNU C++ does not.
5519      //
5520      // Find the context where we'll be declaring the tag.
5521      // FIXME: We would like to maintain the current DeclContext as the
5522      // lexical context,
5523      while (SearchDC->isRecord())
5524        SearchDC = SearchDC->getParent();
5525
5526      // Find the scope where we'll be declaring the tag.
5527      while (S->isClassScope() ||
5528             (getLangOptions().CPlusPlus &&
5529              S->isFunctionPrototypeScope()) ||
5530             ((S->getFlags() & Scope::DeclScope) == 0) ||
5531             (S->getEntity() &&
5532              ((DeclContext *)S->getEntity())->isTransparentContext()))
5533        S = S->getParent();
5534    } else {
5535      assert(TUK == TUK_Friend);
5536      // C++ [namespace.memdef]p3:
5537      //   If a friend declaration in a non-local class first declares a
5538      //   class or function, the friend class or function is a member of
5539      //   the innermost enclosing namespace.
5540      SearchDC = SearchDC->getEnclosingNamespaceContext();
5541    }
5542
5543    // In C++, we need to do a redeclaration lookup to properly
5544    // diagnose some problems.
5545    if (getLangOptions().CPlusPlus) {
5546      Previous.setRedeclarationKind(ForRedeclaration);
5547      LookupQualifiedName(Previous, SearchDC);
5548    }
5549  }
5550
5551  if (!Previous.empty()) {
5552    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5553
5554    // It's okay to have a tag decl in the same scope as a typedef
5555    // which hides a tag decl in the same scope.  Finding this
5556    // insanity with a redeclaration lookup can only actually happen
5557    // in C++.
5558    //
5559    // This is also okay for elaborated-type-specifiers, which is
5560    // technically forbidden by the current standard but which is
5561    // okay according to the likely resolution of an open issue;
5562    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5563    if (getLangOptions().CPlusPlus) {
5564      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5565        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5566          TagDecl *Tag = TT->getDecl();
5567          if (Tag->getDeclName() == Name &&
5568              Tag->getDeclContext()->getRedeclContext()
5569                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5570            PrevDecl = Tag;
5571            Previous.clear();
5572            Previous.addDecl(Tag);
5573            Previous.resolveKind();
5574          }
5575        }
5576      }
5577    }
5578
5579    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5580      // If this is a use of a previous tag, or if the tag is already declared
5581      // in the same scope (so that the definition/declaration completes or
5582      // rementions the tag), reuse the decl.
5583      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5584          isDeclInScope(PrevDecl, SearchDC, S)) {
5585        // Make sure that this wasn't declared as an enum and now used as a
5586        // struct or something similar.
5587        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5588          bool SafeToContinue
5589            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5590               Kind != TTK_Enum);
5591          if (SafeToContinue)
5592            Diag(KWLoc, diag::err_use_with_wrong_tag)
5593              << Name
5594              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5595                                              PrevTagDecl->getKindName());
5596          else
5597            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5598          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5599
5600          if (SafeToContinue)
5601            Kind = PrevTagDecl->getTagKind();
5602          else {
5603            // Recover by making this an anonymous redefinition.
5604            Name = 0;
5605            Previous.clear();
5606            Invalid = true;
5607          }
5608        }
5609
5610        if (!Invalid) {
5611          // If this is a use, just return the declaration we found.
5612
5613          // FIXME: In the future, return a variant or some other clue
5614          // for the consumer of this Decl to know it doesn't own it.
5615          // For our current ASTs this shouldn't be a problem, but will
5616          // need to be changed with DeclGroups.
5617          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5618              TUK == TUK_Friend)
5619            return PrevTagDecl;
5620
5621          // Diagnose attempts to redefine a tag.
5622          if (TUK == TUK_Definition) {
5623            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5624              // If we're defining a specialization and the previous definition
5625              // is from an implicit instantiation, don't emit an error
5626              // here; we'll catch this in the general case below.
5627              if (!isExplicitSpecialization ||
5628                  !isa<CXXRecordDecl>(Def) ||
5629                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5630                                               == TSK_ExplicitSpecialization) {
5631                Diag(NameLoc, diag::err_redefinition) << Name;
5632                Diag(Def->getLocation(), diag::note_previous_definition);
5633                // If this is a redefinition, recover by making this
5634                // struct be anonymous, which will make any later
5635                // references get the previous definition.
5636                Name = 0;
5637                Previous.clear();
5638                Invalid = true;
5639              }
5640            } else {
5641              // If the type is currently being defined, complain
5642              // about a nested redefinition.
5643              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5644              if (Tag->isBeingDefined()) {
5645                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5646                Diag(PrevTagDecl->getLocation(),
5647                     diag::note_previous_definition);
5648                Name = 0;
5649                Previous.clear();
5650                Invalid = true;
5651              }
5652            }
5653
5654            // Okay, this is definition of a previously declared or referenced
5655            // tag PrevDecl. We're going to create a new Decl for it.
5656          }
5657        }
5658        // If we get here we have (another) forward declaration or we
5659        // have a definition.  Just create a new decl.
5660
5661      } else {
5662        // If we get here, this is a definition of a new tag type in a nested
5663        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5664        // new decl/type.  We set PrevDecl to NULL so that the entities
5665        // have distinct types.
5666        Previous.clear();
5667      }
5668      // If we get here, we're going to create a new Decl. If PrevDecl
5669      // is non-NULL, it's a definition of the tag declared by
5670      // PrevDecl. If it's NULL, we have a new definition.
5671
5672
5673    // Otherwise, PrevDecl is not a tag, but was found with tag
5674    // lookup.  This is only actually possible in C++, where a few
5675    // things like templates still live in the tag namespace.
5676    } else {
5677      assert(getLangOptions().CPlusPlus);
5678
5679      // Use a better diagnostic if an elaborated-type-specifier
5680      // found the wrong kind of type on the first
5681      // (non-redeclaration) lookup.
5682      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5683          !Previous.isForRedeclaration()) {
5684        unsigned Kind = 0;
5685        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5686        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5687        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5688        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5689        Invalid = true;
5690
5691      // Otherwise, only diagnose if the declaration is in scope.
5692      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5693        // do nothing
5694
5695      // Diagnose implicit declarations introduced by elaborated types.
5696      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5697        unsigned Kind = 0;
5698        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5699        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5700        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5701        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5702        Invalid = true;
5703
5704      // Otherwise it's a declaration.  Call out a particularly common
5705      // case here.
5706      } else if (isa<TypedefDecl>(PrevDecl)) {
5707        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5708          << Name
5709          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5710        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5711        Invalid = true;
5712
5713      // Otherwise, diagnose.
5714      } else {
5715        // The tag name clashes with something else in the target scope,
5716        // issue an error and recover by making this tag be anonymous.
5717        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5718        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5719        Name = 0;
5720        Invalid = true;
5721      }
5722
5723      // The existing declaration isn't relevant to us; we're in a
5724      // new scope, so clear out the previous declaration.
5725      Previous.clear();
5726    }
5727  }
5728
5729CreateNewDecl:
5730
5731  TagDecl *PrevDecl = 0;
5732  if (Previous.isSingleResult())
5733    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5734
5735  // If there is an identifier, use the location of the identifier as the
5736  // location of the decl, otherwise use the location of the struct/union
5737  // keyword.
5738  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5739
5740  // Otherwise, create a new declaration. If there is a previous
5741  // declaration of the same entity, the two will be linked via
5742  // PrevDecl.
5743  TagDecl *New;
5744
5745  if (Kind == TTK_Enum) {
5746    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5747    // enum X { A, B, C } D;    D should chain to X.
5748    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5749                           cast_or_null<EnumDecl>(PrevDecl));
5750    // If this is an undefined enum, warn.
5751    if (TUK != TUK_Definition && !Invalid) {
5752      TagDecl *Def;
5753      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5754        Diag(Loc, diag::ext_forward_ref_enum_def)
5755          << New;
5756        Diag(Def->getLocation(), diag::note_previous_definition);
5757      } else {
5758        unsigned DiagID = diag::ext_forward_ref_enum;
5759        if (getLangOptions().Microsoft)
5760          DiagID = diag::ext_ms_forward_ref_enum;
5761        else if (getLangOptions().CPlusPlus)
5762          DiagID = diag::err_forward_ref_enum;
5763        Diag(Loc, DiagID);
5764      }
5765    }
5766  } else {
5767    // struct/union/class
5768
5769    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5770    // struct X { int A; } D;    D should chain to X.
5771    if (getLangOptions().CPlusPlus) {
5772      // FIXME: Look for a way to use RecordDecl for simple structs.
5773      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5774                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5775
5776      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5777        StdBadAlloc = cast<CXXRecordDecl>(New);
5778    } else
5779      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5780                               cast_or_null<RecordDecl>(PrevDecl));
5781  }
5782
5783  // Maybe add qualifier info.
5784  if (SS.isNotEmpty()) {
5785    if (SS.isSet()) {
5786      NestedNameSpecifier *NNS
5787        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5788      New->setQualifierInfo(NNS, SS.getRange());
5789      if (NumMatchedTemplateParamLists > 0) {
5790        New->setTemplateParameterListsInfo(Context,
5791                                           NumMatchedTemplateParamLists,
5792                    (TemplateParameterList**) TemplateParameterLists.release());
5793      }
5794    }
5795    else
5796      Invalid = true;
5797  }
5798
5799  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5800    // Add alignment attributes if necessary; these attributes are checked when
5801    // the ASTContext lays out the structure.
5802    //
5803    // It is important for implementing the correct semantics that this
5804    // happen here (in act on tag decl). The #pragma pack stack is
5805    // maintained as a result of parser callbacks which can occur at
5806    // many points during the parsing of a struct declaration (because
5807    // the #pragma tokens are effectively skipped over during the
5808    // parsing of the struct).
5809    AddAlignmentAttributesForRecord(RD);
5810  }
5811
5812  // If this is a specialization of a member class (of a class template),
5813  // check the specialization.
5814  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5815    Invalid = true;
5816
5817  if (Invalid)
5818    New->setInvalidDecl();
5819
5820  if (Attr)
5821    ProcessDeclAttributeList(S, New, Attr);
5822
5823  // If we're declaring or defining a tag in function prototype scope
5824  // in C, note that this type can only be used within the function.
5825  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5826    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5827
5828  // Set the lexical context. If the tag has a C++ scope specifier, the
5829  // lexical context will be different from the semantic context.
5830  New->setLexicalDeclContext(CurContext);
5831
5832  // Mark this as a friend decl if applicable.
5833  if (TUK == TUK_Friend)
5834    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5835
5836  // Set the access specifier.
5837  if (!Invalid && SearchDC->isRecord())
5838    SetMemberAccessSpecifier(New, PrevDecl, AS);
5839
5840  if (TUK == TUK_Definition)
5841    New->startDefinition();
5842
5843  // If this has an identifier, add it to the scope stack.
5844  if (TUK == TUK_Friend) {
5845    // We might be replacing an existing declaration in the lookup tables;
5846    // if so, borrow its access specifier.
5847    if (PrevDecl)
5848      New->setAccess(PrevDecl->getAccess());
5849
5850    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5851    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5852    if (Name) // can be null along some error paths
5853      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5854        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5855  } else if (Name) {
5856    S = getNonFieldDeclScope(S);
5857    PushOnScopeChains(New, S);
5858  } else {
5859    CurContext->addDecl(New);
5860  }
5861
5862  // If this is the C FILE type, notify the AST context.
5863  if (IdentifierInfo *II = New->getIdentifier())
5864    if (!New->isInvalidDecl() &&
5865        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5866        II->isStr("FILE"))
5867      Context.setFILEDecl(New);
5868
5869  OwnedDecl = true;
5870  return New;
5871}
5872
5873void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5874  AdjustDeclIfTemplate(TagD);
5875  TagDecl *Tag = cast<TagDecl>(TagD);
5876
5877  // Enter the tag context.
5878  PushDeclContext(S, Tag);
5879}
5880
5881void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5882                                           SourceLocation LBraceLoc) {
5883  AdjustDeclIfTemplate(TagD);
5884  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5885
5886  FieldCollector->StartClass();
5887
5888  if (!Record->getIdentifier())
5889    return;
5890
5891  // C++ [class]p2:
5892  //   [...] The class-name is also inserted into the scope of the
5893  //   class itself; this is known as the injected-class-name. For
5894  //   purposes of access checking, the injected-class-name is treated
5895  //   as if it were a public member name.
5896  CXXRecordDecl *InjectedClassName
5897    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5898                            CurContext, Record->getLocation(),
5899                            Record->getIdentifier(),
5900                            Record->getTagKeywordLoc(),
5901                            Record);
5902  InjectedClassName->setImplicit();
5903  InjectedClassName->setAccess(AS_public);
5904  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5905      InjectedClassName->setDescribedClassTemplate(Template);
5906  PushOnScopeChains(InjectedClassName, S);
5907  assert(InjectedClassName->isInjectedClassName() &&
5908         "Broken injected-class-name");
5909}
5910
5911void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5912                                    SourceLocation RBraceLoc) {
5913  AdjustDeclIfTemplate(TagD);
5914  TagDecl *Tag = cast<TagDecl>(TagD);
5915  Tag->setRBraceLoc(RBraceLoc);
5916
5917  if (isa<CXXRecordDecl>(Tag))
5918    FieldCollector->FinishClass();
5919
5920  // Exit this scope of this tag's definition.
5921  PopDeclContext();
5922
5923  // Notify the consumer that we've defined a tag.
5924  Consumer.HandleTagDeclDefinition(Tag);
5925}
5926
5927void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5928  AdjustDeclIfTemplate(TagD);
5929  TagDecl *Tag = cast<TagDecl>(TagD);
5930  Tag->setInvalidDecl();
5931
5932  // We're undoing ActOnTagStartDefinition here, not
5933  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5934  // the FieldCollector.
5935
5936  PopDeclContext();
5937}
5938
5939// Note that FieldName may be null for anonymous bitfields.
5940bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5941                          QualType FieldTy, const Expr *BitWidth,
5942                          bool *ZeroWidth) {
5943  // Default to true; that shouldn't confuse checks for emptiness
5944  if (ZeroWidth)
5945    *ZeroWidth = true;
5946
5947  // C99 6.7.2.1p4 - verify the field type.
5948  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5949  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5950    // Handle incomplete types with specific error.
5951    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5952      return true;
5953    if (FieldName)
5954      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5955        << FieldName << FieldTy << BitWidth->getSourceRange();
5956    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5957      << FieldTy << BitWidth->getSourceRange();
5958  }
5959
5960  // If the bit-width is type- or value-dependent, don't try to check
5961  // it now.
5962  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5963    return false;
5964
5965  llvm::APSInt Value;
5966  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5967    return true;
5968
5969  if (Value != 0 && ZeroWidth)
5970    *ZeroWidth = false;
5971
5972  // Zero-width bitfield is ok for anonymous field.
5973  if (Value == 0 && FieldName)
5974    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5975
5976  if (Value.isSigned() && Value.isNegative()) {
5977    if (FieldName)
5978      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5979               << FieldName << Value.toString(10);
5980    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5981      << Value.toString(10);
5982  }
5983
5984  if (!FieldTy->isDependentType()) {
5985    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5986    if (Value.getZExtValue() > TypeSize) {
5987      if (!getLangOptions().CPlusPlus) {
5988        if (FieldName)
5989          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5990            << FieldName << (unsigned)Value.getZExtValue()
5991            << (unsigned)TypeSize;
5992
5993        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5994          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5995      }
5996
5997      if (FieldName)
5998        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5999          << FieldName << (unsigned)Value.getZExtValue()
6000          << (unsigned)TypeSize;
6001      else
6002        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6003          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6004    }
6005  }
6006
6007  return false;
6008}
6009
6010/// ActOnField - Each field of a struct/union/class is passed into this in order
6011/// to create a FieldDecl object for it.
6012Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6013                                 SourceLocation DeclStart,
6014                                 Declarator &D, ExprTy *BitfieldWidth) {
6015  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6016                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6017                               AS_public);
6018  return Res;
6019}
6020
6021/// HandleField - Analyze a field of a C struct or a C++ data member.
6022///
6023FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6024                             SourceLocation DeclStart,
6025                             Declarator &D, Expr *BitWidth,
6026                             AccessSpecifier AS) {
6027  IdentifierInfo *II = D.getIdentifier();
6028  SourceLocation Loc = DeclStart;
6029  if (II) Loc = D.getIdentifierLoc();
6030
6031  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6032  QualType T = TInfo->getType();
6033  if (getLangOptions().CPlusPlus)
6034    CheckExtraCXXDefaultArguments(D);
6035
6036  DiagnoseFunctionSpecifiers(D);
6037
6038  if (D.getDeclSpec().isThreadSpecified())
6039    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6040
6041  // Check to see if this name was declared as a member previously
6042  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6043  LookupName(Previous, S);
6044  assert((Previous.empty() || Previous.isOverloadedResult() ||
6045          Previous.isSingleResult())
6046    && "Lookup of member name should be either overloaded, single or null");
6047
6048  // If the name is overloaded then get any declaration else get the single result
6049  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6050    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6051
6052  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6053    // Maybe we will complain about the shadowed template parameter.
6054    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6055    // Just pretend that we didn't see the previous declaration.
6056    PrevDecl = 0;
6057  }
6058
6059  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6060    PrevDecl = 0;
6061
6062  bool Mutable
6063    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6064  SourceLocation TSSL = D.getSourceRange().getBegin();
6065  FieldDecl *NewFD
6066    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6067                     AS, PrevDecl, &D);
6068
6069  if (NewFD->isInvalidDecl())
6070    Record->setInvalidDecl();
6071
6072  if (NewFD->isInvalidDecl() && PrevDecl) {
6073    // Don't introduce NewFD into scope; there's already something
6074    // with the same name in the same scope.
6075  } else if (II) {
6076    PushOnScopeChains(NewFD, S);
6077  } else
6078    Record->addDecl(NewFD);
6079
6080  return NewFD;
6081}
6082
6083/// \brief Build a new FieldDecl and check its well-formedness.
6084///
6085/// This routine builds a new FieldDecl given the fields name, type,
6086/// record, etc. \p PrevDecl should refer to any previous declaration
6087/// with the same name and in the same scope as the field to be
6088/// created.
6089///
6090/// \returns a new FieldDecl.
6091///
6092/// \todo The Declarator argument is a hack. It will be removed once
6093FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6094                                TypeSourceInfo *TInfo,
6095                                RecordDecl *Record, SourceLocation Loc,
6096                                bool Mutable, Expr *BitWidth,
6097                                SourceLocation TSSL,
6098                                AccessSpecifier AS, NamedDecl *PrevDecl,
6099                                Declarator *D) {
6100  IdentifierInfo *II = Name.getAsIdentifierInfo();
6101  bool InvalidDecl = false;
6102  if (D) InvalidDecl = D->isInvalidType();
6103
6104  // If we receive a broken type, recover by assuming 'int' and
6105  // marking this declaration as invalid.
6106  if (T.isNull()) {
6107    InvalidDecl = true;
6108    T = Context.IntTy;
6109  }
6110
6111  QualType EltTy = Context.getBaseElementType(T);
6112  if (!EltTy->isDependentType() &&
6113      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6114    // Fields of incomplete type force their record to be invalid.
6115    Record->setInvalidDecl();
6116    InvalidDecl = true;
6117  }
6118
6119  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6120  // than a variably modified type.
6121  if (!InvalidDecl && T->isVariablyModifiedType()) {
6122    bool SizeIsNegative;
6123    llvm::APSInt Oversized;
6124    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6125                                                           SizeIsNegative,
6126                                                           Oversized);
6127    if (!FixedTy.isNull()) {
6128      Diag(Loc, diag::warn_illegal_constant_array_size);
6129      T = FixedTy;
6130    } else {
6131      if (SizeIsNegative)
6132        Diag(Loc, diag::err_typecheck_negative_array_size);
6133      else if (Oversized.getBoolValue())
6134        Diag(Loc, diag::err_array_too_large)
6135          << Oversized.toString(10);
6136      else
6137        Diag(Loc, diag::err_typecheck_field_variable_size);
6138      InvalidDecl = true;
6139    }
6140  }
6141
6142  // Fields can not have abstract class types
6143  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6144                                             diag::err_abstract_type_in_decl,
6145                                             AbstractFieldType))
6146    InvalidDecl = true;
6147
6148  bool ZeroWidth = false;
6149  // If this is declared as a bit-field, check the bit-field.
6150  if (!InvalidDecl && BitWidth &&
6151      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6152    InvalidDecl = true;
6153    BitWidth = 0;
6154    ZeroWidth = false;
6155  }
6156
6157  // Check that 'mutable' is consistent with the type of the declaration.
6158  if (!InvalidDecl && Mutable) {
6159    unsigned DiagID = 0;
6160    if (T->isReferenceType())
6161      DiagID = diag::err_mutable_reference;
6162    else if (T.isConstQualified())
6163      DiagID = diag::err_mutable_const;
6164
6165    if (DiagID) {
6166      SourceLocation ErrLoc = Loc;
6167      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6168        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6169      Diag(ErrLoc, DiagID);
6170      Mutable = false;
6171      InvalidDecl = true;
6172    }
6173  }
6174
6175  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6176                                       BitWidth, Mutable);
6177  if (InvalidDecl)
6178    NewFD->setInvalidDecl();
6179
6180  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6181    Diag(Loc, diag::err_duplicate_member) << II;
6182    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6183    NewFD->setInvalidDecl();
6184  }
6185
6186  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6187    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6188
6189    if (!T->isPODType())
6190      CXXRecord->setPOD(false);
6191    if (!ZeroWidth)
6192      CXXRecord->setEmpty(false);
6193    if (T->isReferenceType())
6194      CXXRecord->setHasTrivialConstructor(false);
6195
6196    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6197      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6198      if (RDecl->getDefinition()) {
6199        if (!RDecl->hasTrivialConstructor())
6200          CXXRecord->setHasTrivialConstructor(false);
6201        if (!RDecl->hasTrivialCopyConstructor())
6202          CXXRecord->setHasTrivialCopyConstructor(false);
6203        if (!RDecl->hasTrivialCopyAssignment())
6204          CXXRecord->setHasTrivialCopyAssignment(false);
6205        if (!RDecl->hasTrivialDestructor())
6206          CXXRecord->setHasTrivialDestructor(false);
6207
6208        // C++ 9.5p1: An object of a class with a non-trivial
6209        // constructor, a non-trivial copy constructor, a non-trivial
6210        // destructor, or a non-trivial copy assignment operator
6211        // cannot be a member of a union, nor can an array of such
6212        // objects.
6213        // TODO: C++0x alters this restriction significantly.
6214        if (Record->isUnion() && CheckNontrivialField(NewFD))
6215          NewFD->setInvalidDecl();
6216      }
6217    }
6218  }
6219
6220  // FIXME: We need to pass in the attributes given an AST
6221  // representation, not a parser representation.
6222  if (D)
6223    // FIXME: What to pass instead of TUScope?
6224    ProcessDeclAttributes(TUScope, NewFD, *D);
6225
6226  if (T.isObjCGCWeak())
6227    Diag(Loc, diag::warn_attribute_weak_on_field);
6228
6229  NewFD->setAccess(AS);
6230
6231  // C++ [dcl.init.aggr]p1:
6232  //   An aggregate is an array or a class (clause 9) with [...] no
6233  //   private or protected non-static data members (clause 11).
6234  // A POD must be an aggregate.
6235  if (getLangOptions().CPlusPlus &&
6236      (AS == AS_private || AS == AS_protected)) {
6237    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6238    CXXRecord->setAggregate(false);
6239    CXXRecord->setPOD(false);
6240  }
6241
6242  return NewFD;
6243}
6244
6245bool Sema::CheckNontrivialField(FieldDecl *FD) {
6246  assert(FD);
6247  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6248
6249  if (FD->isInvalidDecl())
6250    return true;
6251
6252  QualType EltTy = Context.getBaseElementType(FD->getType());
6253  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6254    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6255    if (RDecl->getDefinition()) {
6256      // We check for copy constructors before constructors
6257      // because otherwise we'll never get complaints about
6258      // copy constructors.
6259
6260      CXXSpecialMember member = CXXInvalid;
6261      if (!RDecl->hasTrivialCopyConstructor())
6262        member = CXXCopyConstructor;
6263      else if (!RDecl->hasTrivialConstructor())
6264        member = CXXConstructor;
6265      else if (!RDecl->hasTrivialCopyAssignment())
6266        member = CXXCopyAssignment;
6267      else if (!RDecl->hasTrivialDestructor())
6268        member = CXXDestructor;
6269
6270      if (member != CXXInvalid) {
6271        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6272              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6273        DiagnoseNontrivial(RT, member);
6274        return true;
6275      }
6276    }
6277  }
6278
6279  return false;
6280}
6281
6282/// DiagnoseNontrivial - Given that a class has a non-trivial
6283/// special member, figure out why.
6284void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6285  QualType QT(T, 0U);
6286  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6287
6288  // Check whether the member was user-declared.
6289  switch (member) {
6290  case CXXInvalid:
6291    break;
6292
6293  case CXXConstructor:
6294    if (RD->hasUserDeclaredConstructor()) {
6295      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6296      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6297        const FunctionDecl *body = 0;
6298        ci->hasBody(body);
6299        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6300          SourceLocation CtorLoc = ci->getLocation();
6301          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6302          return;
6303        }
6304      }
6305
6306      assert(0 && "found no user-declared constructors");
6307      return;
6308    }
6309    break;
6310
6311  case CXXCopyConstructor:
6312    if (RD->hasUserDeclaredCopyConstructor()) {
6313      SourceLocation CtorLoc =
6314        RD->getCopyConstructor(Context, 0)->getLocation();
6315      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6316      return;
6317    }
6318    break;
6319
6320  case CXXCopyAssignment:
6321    if (RD->hasUserDeclaredCopyAssignment()) {
6322      // FIXME: this should use the location of the copy
6323      // assignment, not the type.
6324      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6325      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6326      return;
6327    }
6328    break;
6329
6330  case CXXDestructor:
6331    if (RD->hasUserDeclaredDestructor()) {
6332      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6333      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6334      return;
6335    }
6336    break;
6337  }
6338
6339  typedef CXXRecordDecl::base_class_iterator base_iter;
6340
6341  // Virtual bases and members inhibit trivial copying/construction,
6342  // but not trivial destruction.
6343  if (member != CXXDestructor) {
6344    // Check for virtual bases.  vbases includes indirect virtual bases,
6345    // so we just iterate through the direct bases.
6346    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6347      if (bi->isVirtual()) {
6348        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6349        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6350        return;
6351      }
6352
6353    // Check for virtual methods.
6354    typedef CXXRecordDecl::method_iterator meth_iter;
6355    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6356         ++mi) {
6357      if (mi->isVirtual()) {
6358        SourceLocation MLoc = mi->getSourceRange().getBegin();
6359        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6360        return;
6361      }
6362    }
6363  }
6364
6365  bool (CXXRecordDecl::*hasTrivial)() const;
6366  switch (member) {
6367  case CXXConstructor:
6368    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6369  case CXXCopyConstructor:
6370    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6371  case CXXCopyAssignment:
6372    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6373  case CXXDestructor:
6374    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6375  default:
6376    assert(0 && "unexpected special member"); return;
6377  }
6378
6379  // Check for nontrivial bases (and recurse).
6380  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6381    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6382    assert(BaseRT && "Don't know how to handle dependent bases");
6383    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6384    if (!(BaseRecTy->*hasTrivial)()) {
6385      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6386      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6387      DiagnoseNontrivial(BaseRT, member);
6388      return;
6389    }
6390  }
6391
6392  // Check for nontrivial members (and recurse).
6393  typedef RecordDecl::field_iterator field_iter;
6394  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6395       ++fi) {
6396    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6397    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6398      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6399
6400      if (!(EltRD->*hasTrivial)()) {
6401        SourceLocation FLoc = (*fi)->getLocation();
6402        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6403        DiagnoseNontrivial(EltRT, member);
6404        return;
6405      }
6406    }
6407  }
6408
6409  assert(0 && "found no explanation for non-trivial member");
6410}
6411
6412/// TranslateIvarVisibility - Translate visibility from a token ID to an
6413///  AST enum value.
6414static ObjCIvarDecl::AccessControl
6415TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6416  switch (ivarVisibility) {
6417  default: assert(0 && "Unknown visitibility kind");
6418  case tok::objc_private: return ObjCIvarDecl::Private;
6419  case tok::objc_public: return ObjCIvarDecl::Public;
6420  case tok::objc_protected: return ObjCIvarDecl::Protected;
6421  case tok::objc_package: return ObjCIvarDecl::Package;
6422  }
6423}
6424
6425/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6426/// in order to create an IvarDecl object for it.
6427Decl *Sema::ActOnIvar(Scope *S,
6428                                SourceLocation DeclStart,
6429                                Decl *IntfDecl,
6430                                Declarator &D, ExprTy *BitfieldWidth,
6431                                tok::ObjCKeywordKind Visibility) {
6432
6433  IdentifierInfo *II = D.getIdentifier();
6434  Expr *BitWidth = (Expr*)BitfieldWidth;
6435  SourceLocation Loc = DeclStart;
6436  if (II) Loc = D.getIdentifierLoc();
6437
6438  // FIXME: Unnamed fields can be handled in various different ways, for
6439  // example, unnamed unions inject all members into the struct namespace!
6440
6441  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6442  QualType T = TInfo->getType();
6443
6444  if (BitWidth) {
6445    // 6.7.2.1p3, 6.7.2.1p4
6446    if (VerifyBitField(Loc, II, T, BitWidth)) {
6447      D.setInvalidType();
6448      BitWidth = 0;
6449    }
6450  } else {
6451    // Not a bitfield.
6452
6453    // validate II.
6454
6455  }
6456  if (T->isReferenceType()) {
6457    Diag(Loc, diag::err_ivar_reference_type);
6458    D.setInvalidType();
6459  }
6460  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6461  // than a variably modified type.
6462  else if (T->isVariablyModifiedType()) {
6463    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6464    D.setInvalidType();
6465  }
6466
6467  // Get the visibility (access control) for this ivar.
6468  ObjCIvarDecl::AccessControl ac =
6469    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6470                                        : ObjCIvarDecl::None;
6471  // Must set ivar's DeclContext to its enclosing interface.
6472  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6473  ObjCContainerDecl *EnclosingContext;
6474  if (ObjCImplementationDecl *IMPDecl =
6475      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6476    if (!LangOpts.ObjCNonFragileABI2) {
6477    // Case of ivar declared in an implementation. Context is that of its class.
6478      EnclosingContext = IMPDecl->getClassInterface();
6479      assert(EnclosingContext && "Implementation has no class interface!");
6480    }
6481    else
6482      EnclosingContext = EnclosingDecl;
6483  } else {
6484    if (ObjCCategoryDecl *CDecl =
6485        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6486      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6487        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6488        return 0;
6489      }
6490    }
6491    EnclosingContext = EnclosingDecl;
6492  }
6493
6494  // Construct the decl.
6495  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6496                                             EnclosingContext, Loc, II, T,
6497                                             TInfo, ac, (Expr *)BitfieldWidth);
6498
6499  if (II) {
6500    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6501                                           ForRedeclaration);
6502    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6503        && !isa<TagDecl>(PrevDecl)) {
6504      Diag(Loc, diag::err_duplicate_member) << II;
6505      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6506      NewID->setInvalidDecl();
6507    }
6508  }
6509
6510  // Process attributes attached to the ivar.
6511  ProcessDeclAttributes(S, NewID, D);
6512
6513  if (D.isInvalidType())
6514    NewID->setInvalidDecl();
6515
6516  if (II) {
6517    // FIXME: When interfaces are DeclContexts, we'll need to add
6518    // these to the interface.
6519    S->AddDecl(NewID);
6520    IdResolver.AddDecl(NewID);
6521  }
6522
6523  return NewID;
6524}
6525
6526/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6527/// class and class extensions. For every class @interface and class
6528/// extension @interface, if the last ivar is a bitfield of any type,
6529/// then add an implicit `char :0` ivar to the end of that interface.
6530void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6531                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6532  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6533    return;
6534
6535  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6536  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6537
6538  if (!Ivar->isBitField())
6539    return;
6540  uint64_t BitFieldSize =
6541    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6542  if (BitFieldSize == 0)
6543    return;
6544  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6545  if (!ID) {
6546    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6547      if (!CD->IsClassExtension())
6548        return;
6549    }
6550    // No need to add this to end of @implementation.
6551    else
6552      return;
6553  }
6554  // All conditions are met. Add a new bitfield to the tail end of ivars.
6555  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6556  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6557
6558  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6559                              DeclLoc, 0,
6560                              Context.CharTy,
6561                              Context.CreateTypeSourceInfo(Context.CharTy),
6562                              ObjCIvarDecl::Private, BW,
6563                              true);
6564  AllIvarDecls.push_back(Ivar);
6565}
6566
6567void Sema::ActOnFields(Scope* S,
6568                       SourceLocation RecLoc, Decl *EnclosingDecl,
6569                       Decl **Fields, unsigned NumFields,
6570                       SourceLocation LBrac, SourceLocation RBrac,
6571                       AttributeList *Attr) {
6572  assert(EnclosingDecl && "missing record or interface decl");
6573
6574  // If the decl this is being inserted into is invalid, then it may be a
6575  // redeclaration or some other bogus case.  Don't try to add fields to it.
6576  if (EnclosingDecl->isInvalidDecl()) {
6577    // FIXME: Deallocate fields?
6578    return;
6579  }
6580
6581
6582  // Verify that all the fields are okay.
6583  unsigned NumNamedMembers = 0;
6584  llvm::SmallVector<FieldDecl*, 32> RecFields;
6585
6586  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6587  for (unsigned i = 0; i != NumFields; ++i) {
6588    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6589
6590    // Get the type for the field.
6591    Type *FDTy = FD->getType().getTypePtr();
6592
6593    if (!FD->isAnonymousStructOrUnion()) {
6594      // Remember all fields written by the user.
6595      RecFields.push_back(FD);
6596    }
6597
6598    // If the field is already invalid for some reason, don't emit more
6599    // diagnostics about it.
6600    if (FD->isInvalidDecl()) {
6601      EnclosingDecl->setInvalidDecl();
6602      continue;
6603    }
6604
6605    // C99 6.7.2.1p2:
6606    //   A structure or union shall not contain a member with
6607    //   incomplete or function type (hence, a structure shall not
6608    //   contain an instance of itself, but may contain a pointer to
6609    //   an instance of itself), except that the last member of a
6610    //   structure with more than one named member may have incomplete
6611    //   array type; such a structure (and any union containing,
6612    //   possibly recursively, a member that is such a structure)
6613    //   shall not be a member of a structure or an element of an
6614    //   array.
6615    if (FDTy->isFunctionType()) {
6616      // Field declared as a function.
6617      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6618        << FD->getDeclName();
6619      FD->setInvalidDecl();
6620      EnclosingDecl->setInvalidDecl();
6621      continue;
6622    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6623               Record && !Record->isUnion()) {
6624      // Flexible array member.
6625      if (NumNamedMembers < 1) {
6626        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6627          << FD->getDeclName();
6628        FD->setInvalidDecl();
6629        EnclosingDecl->setInvalidDecl();
6630        continue;
6631      }
6632      if (!FD->getType()->isDependentType() &&
6633          !Context.getBaseElementType(FD->getType())->isPODType()) {
6634        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6635          << FD->getDeclName() << FD->getType();
6636        FD->setInvalidDecl();
6637        EnclosingDecl->setInvalidDecl();
6638        continue;
6639      }
6640
6641      // Okay, we have a legal flexible array member at the end of the struct.
6642      if (Record)
6643        Record->setHasFlexibleArrayMember(true);
6644    } else if (!FDTy->isDependentType() &&
6645               RequireCompleteType(FD->getLocation(), FD->getType(),
6646                                   diag::err_field_incomplete)) {
6647      // Incomplete type
6648      FD->setInvalidDecl();
6649      EnclosingDecl->setInvalidDecl();
6650      continue;
6651    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6652      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6653        // If this is a member of a union, then entire union becomes "flexible".
6654        if (Record && Record->isUnion()) {
6655          Record->setHasFlexibleArrayMember(true);
6656        } else {
6657          // If this is a struct/class and this is not the last element, reject
6658          // it.  Note that GCC supports variable sized arrays in the middle of
6659          // structures.
6660          if (i != NumFields-1)
6661            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6662              << FD->getDeclName() << FD->getType();
6663          else {
6664            // We support flexible arrays at the end of structs in
6665            // other structs as an extension.
6666            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6667              << FD->getDeclName();
6668            if (Record)
6669              Record->setHasFlexibleArrayMember(true);
6670          }
6671        }
6672      }
6673      if (Record && FDTTy->getDecl()->hasObjectMember())
6674        Record->setHasObjectMember(true);
6675    } else if (FDTy->isObjCObjectType()) {
6676      /// A field cannot be an Objective-c object
6677      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6678      FD->setInvalidDecl();
6679      EnclosingDecl->setInvalidDecl();
6680      continue;
6681    } else if (getLangOptions().ObjC1 &&
6682               getLangOptions().getGCMode() != LangOptions::NonGC &&
6683               Record &&
6684               (FD->getType()->isObjCObjectPointerType() ||
6685                FD->getType().isObjCGCStrong()))
6686      Record->setHasObjectMember(true);
6687    else if (Context.getAsArrayType(FD->getType())) {
6688      QualType BaseType = Context.getBaseElementType(FD->getType());
6689      if (Record && BaseType->isRecordType() &&
6690          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6691        Record->setHasObjectMember(true);
6692    }
6693    // Keep track of the number of named members.
6694    if (FD->getIdentifier())
6695      ++NumNamedMembers;
6696  }
6697
6698  // Okay, we successfully defined 'Record'.
6699  if (Record) {
6700    Record->completeDefinition();
6701  } else {
6702    ObjCIvarDecl **ClsFields =
6703      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6704    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6705      ID->setLocEnd(RBrac);
6706      // Add ivar's to class's DeclContext.
6707      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6708        ClsFields[i]->setLexicalDeclContext(ID);
6709        ID->addDecl(ClsFields[i]);
6710      }
6711      // Must enforce the rule that ivars in the base classes may not be
6712      // duplicates.
6713      if (ID->getSuperClass())
6714        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6715    } else if (ObjCImplementationDecl *IMPDecl =
6716                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6717      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6718      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6719        // Ivar declared in @implementation never belongs to the implementation.
6720        // Only it is in implementation's lexical context.
6721        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6722      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6723    } else if (ObjCCategoryDecl *CDecl =
6724                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6725      // case of ivars in class extension; all other cases have been
6726      // reported as errors elsewhere.
6727      // FIXME. Class extension does not have a LocEnd field.
6728      // CDecl->setLocEnd(RBrac);
6729      // Add ivar's to class extension's DeclContext.
6730      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6731        ClsFields[i]->setLexicalDeclContext(CDecl);
6732        CDecl->addDecl(ClsFields[i]);
6733      }
6734    }
6735  }
6736
6737  if (Attr)
6738    ProcessDeclAttributeList(S, Record, Attr);
6739
6740  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6741  // set the visibility of this record.
6742  if (Record && !Record->getDeclContext()->isRecord())
6743    AddPushedVisibilityAttribute(Record);
6744}
6745
6746/// \brief Determine whether the given integral value is representable within
6747/// the given type T.
6748static bool isRepresentableIntegerValue(ASTContext &Context,
6749                                        llvm::APSInt &Value,
6750                                        QualType T) {
6751  assert(T->isIntegralType(Context) && "Integral type required!");
6752  unsigned BitWidth = Context.getIntWidth(T);
6753
6754  if (Value.isUnsigned() || Value.isNonNegative())
6755    return Value.getActiveBits() < BitWidth;
6756
6757  return Value.getMinSignedBits() <= BitWidth;
6758}
6759
6760// \brief Given an integral type, return the next larger integral type
6761// (or a NULL type of no such type exists).
6762static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6763  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6764  // enum checking below.
6765  assert(T->isIntegralType(Context) && "Integral type required!");
6766  const unsigned NumTypes = 4;
6767  QualType SignedIntegralTypes[NumTypes] = {
6768    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6769  };
6770  QualType UnsignedIntegralTypes[NumTypes] = {
6771    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6772    Context.UnsignedLongLongTy
6773  };
6774
6775  unsigned BitWidth = Context.getTypeSize(T);
6776  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6777                                            : UnsignedIntegralTypes;
6778  for (unsigned I = 0; I != NumTypes; ++I)
6779    if (Context.getTypeSize(Types[I]) > BitWidth)
6780      return Types[I];
6781
6782  return QualType();
6783}
6784
6785EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6786                                          EnumConstantDecl *LastEnumConst,
6787                                          SourceLocation IdLoc,
6788                                          IdentifierInfo *Id,
6789                                          Expr *Val) {
6790  unsigned IntWidth = Context.Target.getIntWidth();
6791  llvm::APSInt EnumVal(IntWidth);
6792  QualType EltTy;
6793  if (Val) {
6794    if (Enum->isDependentType() || Val->isTypeDependent())
6795      EltTy = Context.DependentTy;
6796    else {
6797      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6798      SourceLocation ExpLoc;
6799      if (!Val->isValueDependent() &&
6800          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6801        Val = 0;
6802      } else {
6803        if (!getLangOptions().CPlusPlus) {
6804          // C99 6.7.2.2p2:
6805          //   The expression that defines the value of an enumeration constant
6806          //   shall be an integer constant expression that has a value
6807          //   representable as an int.
6808
6809          // Complain if the value is not representable in an int.
6810          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6811            Diag(IdLoc, diag::ext_enum_value_not_int)
6812              << EnumVal.toString(10) << Val->getSourceRange()
6813              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6814          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6815            // Force the type of the expression to 'int'.
6816            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6817          }
6818        }
6819
6820        // C++0x [dcl.enum]p5:
6821        //   If the underlying type is not fixed, the type of each enumerator
6822        //   is the type of its initializing value:
6823        //     - If an initializer is specified for an enumerator, the
6824        //       initializing value has the same type as the expression.
6825        EltTy = Val->getType();
6826      }
6827    }
6828  }
6829
6830  if (!Val) {
6831    if (Enum->isDependentType())
6832      EltTy = Context.DependentTy;
6833    else if (!LastEnumConst) {
6834      // C++0x [dcl.enum]p5:
6835      //   If the underlying type is not fixed, the type of each enumerator
6836      //   is the type of its initializing value:
6837      //     - If no initializer is specified for the first enumerator, the
6838      //       initializing value has an unspecified integral type.
6839      //
6840      // GCC uses 'int' for its unspecified integral type, as does
6841      // C99 6.7.2.2p3.
6842      EltTy = Context.IntTy;
6843    } else {
6844      // Assign the last value + 1.
6845      EnumVal = LastEnumConst->getInitVal();
6846      ++EnumVal;
6847      EltTy = LastEnumConst->getType();
6848
6849      // Check for overflow on increment.
6850      if (EnumVal < LastEnumConst->getInitVal()) {
6851        // C++0x [dcl.enum]p5:
6852        //   If the underlying type is not fixed, the type of each enumerator
6853        //   is the type of its initializing value:
6854        //
6855        //     - Otherwise the type of the initializing value is the same as
6856        //       the type of the initializing value of the preceding enumerator
6857        //       unless the incremented value is not representable in that type,
6858        //       in which case the type is an unspecified integral type
6859        //       sufficient to contain the incremented value. If no such type
6860        //       exists, the program is ill-formed.
6861        QualType T = getNextLargerIntegralType(Context, EltTy);
6862        if (T.isNull()) {
6863          // There is no integral type larger enough to represent this
6864          // value. Complain, then allow the value to wrap around.
6865          EnumVal = LastEnumConst->getInitVal();
6866          EnumVal.zext(EnumVal.getBitWidth() * 2);
6867          Diag(IdLoc, diag::warn_enumerator_too_large)
6868            << EnumVal.toString(10);
6869        } else {
6870          EltTy = T;
6871        }
6872
6873        // Retrieve the last enumerator's value, extent that type to the
6874        // type that is supposed to be large enough to represent the incremented
6875        // value, then increment.
6876        EnumVal = LastEnumConst->getInitVal();
6877        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6878        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6879        ++EnumVal;
6880
6881        // If we're not in C++, diagnose the overflow of enumerator values,
6882        // which in C99 means that the enumerator value is not representable in
6883        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6884        // permits enumerator values that are representable in some larger
6885        // integral type.
6886        if (!getLangOptions().CPlusPlus && !T.isNull())
6887          Diag(IdLoc, diag::warn_enum_value_overflow);
6888      } else if (!getLangOptions().CPlusPlus &&
6889                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6890        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6891        Diag(IdLoc, diag::ext_enum_value_not_int)
6892          << EnumVal.toString(10) << 1;
6893      }
6894    }
6895  }
6896
6897  if (!EltTy->isDependentType()) {
6898    // Make the enumerator value match the signedness and size of the
6899    // enumerator's type.
6900    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6901    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6902  }
6903
6904  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6905                                  Val, EnumVal);
6906}
6907
6908
6909Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6910                                        Decl *lastEnumConst,
6911                                        SourceLocation IdLoc,
6912                                        IdentifierInfo *Id,
6913                                        SourceLocation EqualLoc, ExprTy *val) {
6914  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6915  EnumConstantDecl *LastEnumConst =
6916    cast_or_null<EnumConstantDecl>(lastEnumConst);
6917  Expr *Val = static_cast<Expr*>(val);
6918
6919  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6920  // we find one that is.
6921  S = getNonFieldDeclScope(S);
6922
6923  // Verify that there isn't already something declared with this name in this
6924  // scope.
6925  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6926                                         ForRedeclaration);
6927  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6928    // Maybe we will complain about the shadowed template parameter.
6929    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6930    // Just pretend that we didn't see the previous declaration.
6931    PrevDecl = 0;
6932  }
6933
6934  if (PrevDecl) {
6935    // When in C++, we may get a TagDecl with the same name; in this case the
6936    // enum constant will 'hide' the tag.
6937    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6938           "Received TagDecl when not in C++!");
6939    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6940      if (isa<EnumConstantDecl>(PrevDecl))
6941        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6942      else
6943        Diag(IdLoc, diag::err_redefinition) << Id;
6944      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6945      return 0;
6946    }
6947  }
6948
6949  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6950                                            IdLoc, Id, Val);
6951
6952  // Register this decl in the current scope stack.
6953  if (New) {
6954    New->setAccess(TheEnumDecl->getAccess());
6955    PushOnScopeChains(New, S);
6956  }
6957
6958  return New;
6959}
6960
6961void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6962                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6963                         Decl **Elements, unsigned NumElements,
6964                         Scope *S, AttributeList *Attr) {
6965  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6966  QualType EnumType = Context.getTypeDeclType(Enum);
6967
6968  if (Attr)
6969    ProcessDeclAttributeList(S, Enum, Attr);
6970
6971  if (Enum->isDependentType()) {
6972    for (unsigned i = 0; i != NumElements; ++i) {
6973      EnumConstantDecl *ECD =
6974        cast_or_null<EnumConstantDecl>(Elements[i]);
6975      if (!ECD) continue;
6976
6977      ECD->setType(EnumType);
6978    }
6979
6980    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6981    return;
6982  }
6983
6984  // TODO: If the result value doesn't fit in an int, it must be a long or long
6985  // long value.  ISO C does not support this, but GCC does as an extension,
6986  // emit a warning.
6987  unsigned IntWidth = Context.Target.getIntWidth();
6988  unsigned CharWidth = Context.Target.getCharWidth();
6989  unsigned ShortWidth = Context.Target.getShortWidth();
6990
6991  // Verify that all the values are okay, compute the size of the values, and
6992  // reverse the list.
6993  unsigned NumNegativeBits = 0;
6994  unsigned NumPositiveBits = 0;
6995
6996  // Keep track of whether all elements have type int.
6997  bool AllElementsInt = true;
6998
6999  for (unsigned i = 0; i != NumElements; ++i) {
7000    EnumConstantDecl *ECD =
7001      cast_or_null<EnumConstantDecl>(Elements[i]);
7002    if (!ECD) continue;  // Already issued a diagnostic.
7003
7004    const llvm::APSInt &InitVal = ECD->getInitVal();
7005
7006    // Keep track of the size of positive and negative values.
7007    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7008      NumPositiveBits = std::max(NumPositiveBits,
7009                                 (unsigned)InitVal.getActiveBits());
7010    else
7011      NumNegativeBits = std::max(NumNegativeBits,
7012                                 (unsigned)InitVal.getMinSignedBits());
7013
7014    // Keep track of whether every enum element has type int (very commmon).
7015    if (AllElementsInt)
7016      AllElementsInt = ECD->getType() == Context.IntTy;
7017  }
7018
7019  // Figure out the type that should be used for this enum.
7020  // FIXME: Support -fshort-enums.
7021  QualType BestType;
7022  unsigned BestWidth;
7023
7024  // C++0x N3000 [conv.prom]p3:
7025  //   An rvalue of an unscoped enumeration type whose underlying
7026  //   type is not fixed can be converted to an rvalue of the first
7027  //   of the following types that can represent all the values of
7028  //   the enumeration: int, unsigned int, long int, unsigned long
7029  //   int, long long int, or unsigned long long int.
7030  // C99 6.4.4.3p2:
7031  //   An identifier declared as an enumeration constant has type int.
7032  // The C99 rule is modified by a gcc extension
7033  QualType BestPromotionType;
7034
7035  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7036
7037  if (NumNegativeBits) {
7038    // If there is a negative value, figure out the smallest integer type (of
7039    // int/long/longlong) that fits.
7040    // If it's packed, check also if it fits a char or a short.
7041    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7042      BestType = Context.SignedCharTy;
7043      BestWidth = CharWidth;
7044    } else if (Packed && NumNegativeBits <= ShortWidth &&
7045               NumPositiveBits < ShortWidth) {
7046      BestType = Context.ShortTy;
7047      BestWidth = ShortWidth;
7048    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7049      BestType = Context.IntTy;
7050      BestWidth = IntWidth;
7051    } else {
7052      BestWidth = Context.Target.getLongWidth();
7053
7054      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7055        BestType = Context.LongTy;
7056      } else {
7057        BestWidth = Context.Target.getLongLongWidth();
7058
7059        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7060          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7061        BestType = Context.LongLongTy;
7062      }
7063    }
7064    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7065  } else {
7066    // If there is no negative value, figure out the smallest type that fits
7067    // all of the enumerator values.
7068    // If it's packed, check also if it fits a char or a short.
7069    if (Packed && NumPositiveBits <= CharWidth) {
7070      BestType = Context.UnsignedCharTy;
7071      BestPromotionType = Context.IntTy;
7072      BestWidth = CharWidth;
7073    } else if (Packed && NumPositiveBits <= ShortWidth) {
7074      BestType = Context.UnsignedShortTy;
7075      BestPromotionType = Context.IntTy;
7076      BestWidth = ShortWidth;
7077    } else if (NumPositiveBits <= IntWidth) {
7078      BestType = Context.UnsignedIntTy;
7079      BestWidth = IntWidth;
7080      BestPromotionType
7081        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7082                           ? Context.UnsignedIntTy : Context.IntTy;
7083    } else if (NumPositiveBits <=
7084               (BestWidth = Context.Target.getLongWidth())) {
7085      BestType = Context.UnsignedLongTy;
7086      BestPromotionType
7087        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7088                           ? Context.UnsignedLongTy : Context.LongTy;
7089    } else {
7090      BestWidth = Context.Target.getLongLongWidth();
7091      assert(NumPositiveBits <= BestWidth &&
7092             "How could an initializer get larger than ULL?");
7093      BestType = Context.UnsignedLongLongTy;
7094      BestPromotionType
7095        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7096                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7097    }
7098  }
7099
7100  // Loop over all of the enumerator constants, changing their types to match
7101  // the type of the enum if needed.
7102  for (unsigned i = 0; i != NumElements; ++i) {
7103    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7104    if (!ECD) continue;  // Already issued a diagnostic.
7105
7106    // Standard C says the enumerators have int type, but we allow, as an
7107    // extension, the enumerators to be larger than int size.  If each
7108    // enumerator value fits in an int, type it as an int, otherwise type it the
7109    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7110    // that X has type 'int', not 'unsigned'.
7111
7112    // Determine whether the value fits into an int.
7113    llvm::APSInt InitVal = ECD->getInitVal();
7114
7115    // If it fits into an integer type, force it.  Otherwise force it to match
7116    // the enum decl type.
7117    QualType NewTy;
7118    unsigned NewWidth;
7119    bool NewSign;
7120    if (!getLangOptions().CPlusPlus &&
7121        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7122      NewTy = Context.IntTy;
7123      NewWidth = IntWidth;
7124      NewSign = true;
7125    } else if (ECD->getType() == BestType) {
7126      // Already the right type!
7127      if (getLangOptions().CPlusPlus)
7128        // C++ [dcl.enum]p4: Following the closing brace of an
7129        // enum-specifier, each enumerator has the type of its
7130        // enumeration.
7131        ECD->setType(EnumType);
7132      continue;
7133    } else {
7134      NewTy = BestType;
7135      NewWidth = BestWidth;
7136      NewSign = BestType->isSignedIntegerType();
7137    }
7138
7139    // Adjust the APSInt value.
7140    InitVal.extOrTrunc(NewWidth);
7141    InitVal.setIsSigned(NewSign);
7142    ECD->setInitVal(InitVal);
7143
7144    // Adjust the Expr initializer and type.
7145    if (ECD->getInitExpr())
7146      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7147                                                CK_IntegralCast,
7148                                                ECD->getInitExpr(),
7149                                                /*base paths*/ 0,
7150                                                VK_RValue));
7151    if (getLangOptions().CPlusPlus)
7152      // C++ [dcl.enum]p4: Following the closing brace of an
7153      // enum-specifier, each enumerator has the type of its
7154      // enumeration.
7155      ECD->setType(EnumType);
7156    else
7157      ECD->setType(NewTy);
7158  }
7159
7160  Enum->completeDefinition(BestType, BestPromotionType,
7161                           NumPositiveBits, NumNegativeBits);
7162}
7163
7164Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7165  StringLiteral *AsmString = cast<StringLiteral>(expr);
7166
7167  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7168                                                   Loc, AsmString);
7169  CurContext->addDecl(New);
7170  return New;
7171}
7172
7173void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7174                             SourceLocation PragmaLoc,
7175                             SourceLocation NameLoc) {
7176  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7177
7178  if (PrevDecl) {
7179    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7180  } else {
7181    (void)WeakUndeclaredIdentifiers.insert(
7182      std::pair<IdentifierInfo*,WeakInfo>
7183        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7184  }
7185}
7186
7187void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7188                                IdentifierInfo* AliasName,
7189                                SourceLocation PragmaLoc,
7190                                SourceLocation NameLoc,
7191                                SourceLocation AliasNameLoc) {
7192  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7193                                    LookupOrdinaryName);
7194  WeakInfo W = WeakInfo(Name, NameLoc);
7195
7196  if (PrevDecl) {
7197    if (!PrevDecl->hasAttr<AliasAttr>())
7198      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7199        DeclApplyPragmaWeak(TUScope, ND, W);
7200  } else {
7201    (void)WeakUndeclaredIdentifiers.insert(
7202      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7203  }
7204}
7205