SemaDecl.cpp revision 939837f67e0558668be9afec67f2e51eb40d86f0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/DiagnosticSema.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  LookupResult Result = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC);
43
44  Decl *IIDecl = 0;
45  switch (Result.getKind()) {
46  case LookupResult::NotFound:
47  case LookupResult::FoundOverloaded:
48  case LookupResult::AmbiguousBaseSubobjectTypes:
49  case LookupResult::AmbiguousBaseSubobjects:
50    // FIXME: In the event of an ambiguous lookup, we could visit all of
51    // the entities found to determine whether they are all types. This
52    // might provide better diagnostics.
53    return 0;
54
55  case LookupResult::Found:
56    IIDecl = Result.getAsDecl();
57    break;
58  }
59
60  if (isa<TypedefDecl>(IIDecl) ||
61      isa<ObjCInterfaceDecl>(IIDecl) ||
62      isa<TagDecl>(IIDecl) ||
63      isa<TemplateTypeParmDecl>(IIDecl))
64    return IIDecl;
65  return 0;
66}
67
68DeclContext *Sema::getContainingDC(DeclContext *DC) {
69  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
70    // A C++ out-of-line method will return to the file declaration context.
71    if (MD->isOutOfLineDefinition())
72      return MD->getLexicalDeclContext();
73
74    // A C++ inline method is parsed *after* the topmost class it was declared in
75    // is fully parsed (it's "complete").
76    // The parsing of a C++ inline method happens at the declaration context of
77    // the topmost (non-nested) class it is lexically declared in.
78    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
79    DC = MD->getParent();
80    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
81      DC = RD;
82
83    // Return the declaration context of the topmost class the inline method is
84    // declared in.
85    return DC;
86  }
87
88  if (isa<ObjCMethodDecl>(DC))
89    return Context.getTranslationUnitDecl();
90
91  if (Decl *D = dyn_cast<Decl>(DC))
92    return D->getLexicalDeclContext();
93
94  return DC->getLexicalParent();
95}
96
97void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
98  assert(getContainingDC(DC) == CurContext &&
99      "The next DeclContext should be lexically contained in the current one.");
100  CurContext = DC;
101  S->setEntity(DC);
102}
103
104void Sema::PopDeclContext() {
105  assert(CurContext && "DeclContext imbalance!");
106
107  CurContext = getContainingDC(CurContext);
108}
109
110/// Add this decl to the scope shadowed decl chains.
111void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
112  // Move up the scope chain until we find the nearest enclosing
113  // non-transparent context. The declaration will be introduced into this
114  // scope.
115  while (S->getEntity() &&
116         ((DeclContext *)S->getEntity())->isTransparentContext())
117    S = S->getParent();
118
119  S->AddDecl(D);
120
121  // Add scoped declarations into their context, so that they can be
122  // found later. Declarations without a context won't be inserted
123  // into any context.
124  CurContext->addDecl(D);
125
126  // C++ [basic.scope]p4:
127  //   -- exactly one declaration shall declare a class name or
128  //   enumeration name that is not a typedef name and the other
129  //   declarations shall all refer to the same object or
130  //   enumerator, or all refer to functions and function templates;
131  //   in this case the class name or enumeration name is hidden.
132  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
133    // We are pushing the name of a tag (enum or class).
134    if (CurContext->getLookupContext()
135          == TD->getDeclContext()->getLookupContext()) {
136      // We're pushing the tag into the current context, which might
137      // require some reshuffling in the identifier resolver.
138      IdentifierResolver::iterator
139        I = IdResolver.begin(TD->getDeclName(), CurContext,
140                             false/*LookInParentCtx*/),
141        IEnd = IdResolver.end();
142      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
143        NamedDecl *PrevDecl = *I;
144        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
145             PrevDecl = *I, ++I) {
146          if (TD->declarationReplaces(*I)) {
147            // This is a redeclaration. Remove it from the chain and
148            // break out, so that we'll add in the shadowed
149            // declaration.
150            S->RemoveDecl(*I);
151            if (PrevDecl == *I) {
152              IdResolver.RemoveDecl(*I);
153              IdResolver.AddDecl(TD);
154              return;
155            } else {
156              IdResolver.RemoveDecl(*I);
157              break;
158            }
159          }
160        }
161
162        // There is already a declaration with the same name in the same
163        // scope, which is not a tag declaration. It must be found
164        // before we find the new declaration, so insert the new
165        // declaration at the end of the chain.
166        IdResolver.AddShadowedDecl(TD, PrevDecl);
167
168        return;
169      }
170    }
171  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
172    // We are pushing the name of a function, which might be an
173    // overloaded name.
174    FunctionDecl *FD = cast<FunctionDecl>(D);
175    DeclContext *DC = FD->getDeclContext()->getLookupContext();
176    IdentifierResolver::iterator Redecl
177      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
178                                      false/*LookInParentCtx*/),
179                     IdResolver.end(),
180                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
181                                  FD));
182    if (Redecl != IdResolver.end()) {
183      // There is already a declaration of a function on our
184      // IdResolver chain. Replace it with this declaration.
185      S->RemoveDecl(*Redecl);
186      IdResolver.RemoveDecl(*Redecl);
187    }
188  }
189
190  IdResolver.AddDecl(D);
191}
192
193void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
194  if (S->decl_empty()) return;
195  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
196	 "Scope shouldn't contain decls!");
197
198  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
199       I != E; ++I) {
200    Decl *TmpD = static_cast<Decl*>(*I);
201    assert(TmpD && "This decl didn't get pushed??");
202
203    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
204    NamedDecl *D = cast<NamedDecl>(TmpD);
205
206    if (!D->getDeclName()) continue;
207
208    // Remove this name from our lexical scope.
209    IdResolver.RemoveDecl(D);
210  }
211}
212
213/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
214/// return 0 if one not found.
215ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
216  // The third "scope" argument is 0 since we aren't enabling lazy built-in
217  // creation from this context.
218  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
219
220  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
221}
222
223/// getNonFieldDeclScope - Retrieves the innermost scope, starting
224/// from S, where a non-field would be declared. This routine copes
225/// with the difference between C and C++ scoping rules in structs and
226/// unions. For example, the following code is well-formed in C but
227/// ill-formed in C++:
228/// @code
229/// struct S6 {
230///   enum { BAR } e;
231/// };
232///
233/// void test_S6() {
234///   struct S6 a;
235///   a.e = BAR;
236/// }
237/// @endcode
238/// For the declaration of BAR, this routine will return a different
239/// scope. The scope S will be the scope of the unnamed enumeration
240/// within S6. In C++, this routine will return the scope associated
241/// with S6, because the enumeration's scope is a transparent
242/// context but structures can contain non-field names. In C, this
243/// routine will return the translation unit scope, since the
244/// enumeration's scope is a transparent context and structures cannot
245/// contain non-field names.
246Scope *Sema::getNonFieldDeclScope(Scope *S) {
247  while (((S->getFlags() & Scope::DeclScope) == 0) ||
248         (S->getEntity() &&
249          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
250         (S->isClassScope() && !getLangOptions().CPlusPlus))
251    S = S->getParent();
252  return S;
253}
254
255/// LookupDecl - Look up the inner-most declaration in the specified
256/// namespace. NamespaceNameOnly - during lookup only namespace names
257/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
258/// 'When looking up a namespace-name in a using-directive or
259/// namespace-alias-definition, only namespace names are considered.'
260///
261/// Note: The use of this routine is deprecated. Please use
262/// LookupName, LookupQualifiedName, or LookupParsedName instead.
263Sema::LookupResult
264Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
265                 const DeclContext *LookupCtx,
266                 bool LookInParent,
267                 bool NamespaceNameOnly) {
268  LookupCriteria::NameKind Kind;
269  if (NSI == Decl::IDNS_Ordinary) {
270    if (NamespaceNameOnly)
271      Kind = LookupCriteria::Namespace;
272    else
273      Kind = LookupCriteria::Ordinary;
274  } else if (NSI == Decl::IDNS_Tag)
275    Kind = LookupCriteria::Tag;
276  else {
277    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
278    Kind = LookupCriteria::Member;
279  }
280
281  if (LookupCtx)
282    return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
283                               LookupCriteria(Kind, !LookInParent,
284                                              getLangOptions().CPlusPlus));
285
286  // Unqualified lookup
287  return LookupName(S, Name,
288                    LookupCriteria(Kind, !LookInParent,
289                                   getLangOptions().CPlusPlus));
290}
291
292void Sema::InitBuiltinVaListType() {
293  if (!Context.getBuiltinVaListType().isNull())
294    return;
295
296  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
297  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
298  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
299  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
300}
301
302/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
303/// lazily create a decl for it.
304NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
305                                     Scope *S) {
306  Builtin::ID BID = (Builtin::ID)bid;
307
308  if (Context.BuiltinInfo.hasVAListUse(BID))
309    InitBuiltinVaListType();
310
311  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
312  FunctionDecl *New = FunctionDecl::Create(Context,
313                                           Context.getTranslationUnitDecl(),
314                                           SourceLocation(), II, R,
315                                           FunctionDecl::Extern, false);
316
317  // Create Decl objects for each parameter, adding them to the
318  // FunctionDecl.
319  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
320    llvm::SmallVector<ParmVarDecl*, 16> Params;
321    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
322      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
323                                           FT->getArgType(i), VarDecl::None, 0));
324    New->setParams(Context, &Params[0], Params.size());
325  }
326
327
328
329  // TUScope is the translation-unit scope to insert this function into.
330  // FIXME: This is hideous. We need to teach PushOnScopeChains to
331  // relate Scopes to DeclContexts, and probably eliminate CurContext
332  // entirely, but we're not there yet.
333  DeclContext *SavedContext = CurContext;
334  CurContext = Context.getTranslationUnitDecl();
335  PushOnScopeChains(New, TUScope);
336  CurContext = SavedContext;
337  return New;
338}
339
340/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
341/// everything from the standard library is defined.
342NamespaceDecl *Sema::GetStdNamespace() {
343  if (!StdNamespace) {
344    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
345    DeclContext *Global = Context.getTranslationUnitDecl();
346    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Ordinary, 0, Global);
347    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
348  }
349  return StdNamespace;
350}
351
352/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
353/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
354/// situation, merging decls or emitting diagnostics as appropriate.
355///
356TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
357  bool objc_types = false;
358  // Allow multiple definitions for ObjC built-in typedefs.
359  // FIXME: Verify the underlying types are equivalent!
360  if (getLangOptions().ObjC1) {
361    const IdentifierInfo *TypeID = New->getIdentifier();
362    switch (TypeID->getLength()) {
363    default: break;
364    case 2:
365      if (!TypeID->isStr("id"))
366        break;
367      Context.setObjCIdType(New);
368      objc_types = true;
369      break;
370    case 5:
371      if (!TypeID->isStr("Class"))
372        break;
373      Context.setObjCClassType(New);
374      objc_types = true;
375      return New;
376    case 3:
377      if (!TypeID->isStr("SEL"))
378        break;
379      Context.setObjCSelType(New);
380      objc_types = true;
381      return New;
382    case 8:
383      if (!TypeID->isStr("Protocol"))
384        break;
385      Context.setObjCProtoType(New->getUnderlyingType());
386      objc_types = true;
387      return New;
388    }
389    // Fall through - the typedef name was not a builtin type.
390  }
391  // Verify the old decl was also a typedef.
392  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
393  if (!Old) {
394    Diag(New->getLocation(), diag::err_redefinition_different_kind)
395      << New->getDeclName();
396    if (!objc_types)
397      Diag(OldD->getLocation(), diag::note_previous_definition);
398    return New;
399  }
400
401  // If the typedef types are not identical, reject them in all languages and
402  // with any extensions enabled.
403  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
404      Context.getCanonicalType(Old->getUnderlyingType()) !=
405      Context.getCanonicalType(New->getUnderlyingType())) {
406    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
407      << New->getUnderlyingType() << Old->getUnderlyingType();
408    if (!objc_types)
409      Diag(Old->getLocation(), diag::note_previous_definition);
410    return New;
411  }
412  if (objc_types) return New;
413  if (getLangOptions().Microsoft) return New;
414
415  // C++ [dcl.typedef]p2:
416  //   In a given non-class scope, a typedef specifier can be used to
417  //   redefine the name of any type declared in that scope to refer
418  //   to the type to which it already refers.
419  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
420    return New;
421
422  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
423  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
424  // *either* declaration is in a system header. The code below implements
425  // this adhoc compatibility rule. FIXME: The following code will not
426  // work properly when compiling ".i" files (containing preprocessed output).
427  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
428    SourceManager &SrcMgr = Context.getSourceManager();
429    if (SrcMgr.isInSystemHeader(Old->getLocation()))
430      return New;
431    if (SrcMgr.isInSystemHeader(New->getLocation()))
432      return New;
433  }
434
435  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
436  Diag(Old->getLocation(), diag::note_previous_definition);
437  return New;
438}
439
440/// DeclhasAttr - returns true if decl Declaration already has the target
441/// attribute.
442static bool DeclHasAttr(const Decl *decl, const Attr *target) {
443  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
444    if (attr->getKind() == target->getKind())
445      return true;
446
447  return false;
448}
449
450/// MergeAttributes - append attributes from the Old decl to the New one.
451static void MergeAttributes(Decl *New, Decl *Old) {
452  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
453
454  while (attr) {
455     tmp = attr;
456     attr = attr->getNext();
457
458    if (!DeclHasAttr(New, tmp)) {
459       tmp->setInherited(true);
460       New->addAttr(tmp);
461    } else {
462       tmp->setNext(0);
463       delete(tmp);
464    }
465  }
466
467  Old->invalidateAttrs();
468}
469
470/// MergeFunctionDecl - We just parsed a function 'New' from
471/// declarator D which has the same name and scope as a previous
472/// declaration 'Old'.  Figure out how to resolve this situation,
473/// merging decls or emitting diagnostics as appropriate.
474/// Redeclaration will be set true if this New is a redeclaration OldD.
475///
476/// In C++, New and Old must be declarations that are not
477/// overloaded. Use IsOverload to determine whether New and Old are
478/// overloaded, and to select the Old declaration that New should be
479/// merged with.
480FunctionDecl *
481Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
482  assert(!isa<OverloadedFunctionDecl>(OldD) &&
483         "Cannot merge with an overloaded function declaration");
484
485  Redeclaration = false;
486  // Verify the old decl was also a function.
487  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
488  if (!Old) {
489    Diag(New->getLocation(), diag::err_redefinition_different_kind)
490      << New->getDeclName();
491    Diag(OldD->getLocation(), diag::note_previous_definition);
492    return New;
493  }
494
495  // Determine whether the previous declaration was a definition,
496  // implicit declaration, or a declaration.
497  diag::kind PrevDiag;
498  if (Old->isThisDeclarationADefinition())
499    PrevDiag = diag::note_previous_definition;
500  else if (Old->isImplicit())
501    PrevDiag = diag::note_previous_implicit_declaration;
502  else
503    PrevDiag = diag::note_previous_declaration;
504
505  QualType OldQType = Context.getCanonicalType(Old->getType());
506  QualType NewQType = Context.getCanonicalType(New->getType());
507
508  if (getLangOptions().CPlusPlus) {
509    // (C++98 13.1p2):
510    //   Certain function declarations cannot be overloaded:
511    //     -- Function declarations that differ only in the return type
512    //        cannot be overloaded.
513    QualType OldReturnType
514      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
515    QualType NewReturnType
516      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
517    if (OldReturnType != NewReturnType) {
518      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
519      Diag(Old->getLocation(), PrevDiag);
520      Redeclaration = true;
521      return New;
522    }
523
524    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
525    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
526    if (OldMethod && NewMethod) {
527      //    -- Member function declarations with the same name and the
528      //       same parameter types cannot be overloaded if any of them
529      //       is a static member function declaration.
530      if (OldMethod->isStatic() || NewMethod->isStatic()) {
531        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
532        Diag(Old->getLocation(), PrevDiag);
533        return New;
534      }
535
536      // C++ [class.mem]p1:
537      //   [...] A member shall not be declared twice in the
538      //   member-specification, except that a nested class or member
539      //   class template can be declared and then later defined.
540      if (OldMethod->getLexicalDeclContext() ==
541            NewMethod->getLexicalDeclContext()) {
542        unsigned NewDiag;
543        if (isa<CXXConstructorDecl>(OldMethod))
544          NewDiag = diag::err_constructor_redeclared;
545        else if (isa<CXXDestructorDecl>(NewMethod))
546          NewDiag = diag::err_destructor_redeclared;
547        else if (isa<CXXConversionDecl>(NewMethod))
548          NewDiag = diag::err_conv_function_redeclared;
549        else
550          NewDiag = diag::err_member_redeclared;
551
552        Diag(New->getLocation(), NewDiag);
553        Diag(Old->getLocation(), PrevDiag);
554      }
555    }
556
557    // (C++98 8.3.5p3):
558    //   All declarations for a function shall agree exactly in both the
559    //   return type and the parameter-type-list.
560    if (OldQType == NewQType) {
561      // We have a redeclaration.
562      MergeAttributes(New, Old);
563      Redeclaration = true;
564      return MergeCXXFunctionDecl(New, Old);
565    }
566
567    // Fall through for conflicting redeclarations and redefinitions.
568  }
569
570  // C: Function types need to be compatible, not identical. This handles
571  // duplicate function decls like "void f(int); void f(enum X);" properly.
572  if (!getLangOptions().CPlusPlus &&
573      Context.typesAreCompatible(OldQType, NewQType)) {
574    MergeAttributes(New, Old);
575    Redeclaration = true;
576    return New;
577  }
578
579  // A function that has already been declared has been redeclared or defined
580  // with a different type- show appropriate diagnostic
581
582  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
583  // TODO: This is totally simplistic.  It should handle merging functions
584  // together etc, merging extern int X; int X; ...
585  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
586  Diag(Old->getLocation(), PrevDiag);
587  return New;
588}
589
590/// Predicate for C "tentative" external object definitions (C99 6.9.2).
591static bool isTentativeDefinition(VarDecl *VD) {
592  if (VD->isFileVarDecl())
593    return (!VD->getInit() &&
594            (VD->getStorageClass() == VarDecl::None ||
595             VD->getStorageClass() == VarDecl::Static));
596  return false;
597}
598
599/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
600/// when dealing with C "tentative" external object definitions (C99 6.9.2).
601void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
602  bool VDIsTentative = isTentativeDefinition(VD);
603  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
604
605  // FIXME: I don't think this will actually see all of the
606  // redefinitions. Can't we check this property on-the-fly?
607  for (IdentifierResolver::iterator
608       I = IdResolver.begin(VD->getIdentifier(),
609                            VD->getDeclContext(), false/*LookInParentCtx*/),
610       E = IdResolver.end(); I != E; ++I) {
611    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
612      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
613
614      // Handle the following case:
615      //   int a[10];
616      //   int a[];   - the code below makes sure we set the correct type.
617      //   int a[11]; - this is an error, size isn't 10.
618      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
619          OldDecl->getType()->isConstantArrayType())
620        VD->setType(OldDecl->getType());
621
622      // Check for "tentative" definitions. We can't accomplish this in
623      // MergeVarDecl since the initializer hasn't been attached.
624      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
625        continue;
626
627      // Handle __private_extern__ just like extern.
628      if (OldDecl->getStorageClass() != VarDecl::Extern &&
629          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
630          VD->getStorageClass() != VarDecl::Extern &&
631          VD->getStorageClass() != VarDecl::PrivateExtern) {
632        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
633        Diag(OldDecl->getLocation(), diag::note_previous_definition);
634      }
635    }
636  }
637}
638
639/// MergeVarDecl - We just parsed a variable 'New' which has the same name
640/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
641/// situation, merging decls or emitting diagnostics as appropriate.
642///
643/// Tentative definition rules (C99 6.9.2p2) are checked by
644/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
645/// definitions here, since the initializer hasn't been attached.
646///
647VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
648  // Verify the old decl was also a variable.
649  VarDecl *Old = dyn_cast<VarDecl>(OldD);
650  if (!Old) {
651    Diag(New->getLocation(), diag::err_redefinition_different_kind)
652      << New->getDeclName();
653    Diag(OldD->getLocation(), diag::note_previous_definition);
654    return New;
655  }
656
657  MergeAttributes(New, Old);
658
659  // Merge the types
660  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
661  if (MergedT.isNull()) {
662    Diag(New->getLocation(), diag::err_redefinition_different_type)
663      << New->getDeclName();
664    Diag(Old->getLocation(), diag::note_previous_definition);
665    return New;
666  }
667  New->setType(MergedT);
668  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
669  if (New->getStorageClass() == VarDecl::Static &&
670      (Old->getStorageClass() == VarDecl::None ||
671       Old->getStorageClass() == VarDecl::Extern)) {
672    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
673    Diag(Old->getLocation(), diag::note_previous_definition);
674    return New;
675  }
676  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
677  if (New->getStorageClass() != VarDecl::Static &&
678      Old->getStorageClass() == VarDecl::Static) {
679    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
680    Diag(Old->getLocation(), diag::note_previous_definition);
681    return New;
682  }
683  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
684  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
685    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
686    Diag(Old->getLocation(), diag::note_previous_definition);
687  }
688  return New;
689}
690
691/// CheckParmsForFunctionDef - Check that the parameters of the given
692/// function are appropriate for the definition of a function. This
693/// takes care of any checks that cannot be performed on the
694/// declaration itself, e.g., that the types of each of the function
695/// parameters are complete.
696bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
697  bool HasInvalidParm = false;
698  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
699    ParmVarDecl *Param = FD->getParamDecl(p);
700
701    // C99 6.7.5.3p4: the parameters in a parameter type list in a
702    // function declarator that is part of a function definition of
703    // that function shall not have incomplete type.
704    if (!Param->isInvalidDecl() &&
705        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
706                               diag::err_typecheck_decl_incomplete_type)) {
707      Param->setInvalidDecl();
708      HasInvalidParm = true;
709    }
710
711    // C99 6.9.1p5: If the declarator includes a parameter type list, the
712    // declaration of each parameter shall include an identifier.
713    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
714      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
715  }
716
717  return HasInvalidParm;
718}
719
720/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
721/// no declarator (e.g. "struct foo;") is parsed.
722Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
723  TagDecl *Tag
724    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
725  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
726    if (!Record->getDeclName() && Record->isDefinition() &&
727        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
728      return BuildAnonymousStructOrUnion(S, DS, Record);
729
730    // Microsoft allows unnamed struct/union fields. Don't complain
731    // about them.
732    // FIXME: Should we support Microsoft's extensions in this area?
733    if (Record->getDeclName() && getLangOptions().Microsoft)
734      return Tag;
735  }
736
737  if (!DS.isMissingDeclaratorOk()) {
738    // Warn about typedefs of enums without names, since this is an
739    // extension in both Microsoft an GNU.
740    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
741        Tag && isa<EnumDecl>(Tag)) {
742      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
743        << DS.getSourceRange();
744      return Tag;
745    }
746
747    // FIXME: This diagnostic is emitted even when various previous
748    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
749    // DeclSpec has no means of communicating this information, and the
750    // responsible parser functions are quite far apart.
751    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
752      << DS.getSourceRange();
753    return 0;
754  }
755
756  return Tag;
757}
758
759/// InjectAnonymousStructOrUnionMembers - Inject the members of the
760/// anonymous struct or union AnonRecord into the owning context Owner
761/// and scope S. This routine will be invoked just after we realize
762/// that an unnamed union or struct is actually an anonymous union or
763/// struct, e.g.,
764///
765/// @code
766/// union {
767///   int i;
768///   float f;
769/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
770///    // f into the surrounding scope.x
771/// @endcode
772///
773/// This routine is recursive, injecting the names of nested anonymous
774/// structs/unions into the owning context and scope as well.
775bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
776                                               RecordDecl *AnonRecord) {
777  bool Invalid = false;
778  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
779                               FEnd = AnonRecord->field_end();
780       F != FEnd; ++F) {
781    if ((*F)->getDeclName()) {
782      Decl *PrevDecl = LookupDecl((*F)->getDeclName(), Decl::IDNS_Ordinary,
783                                  S, Owner, false, false);
784      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
785        // C++ [class.union]p2:
786        //   The names of the members of an anonymous union shall be
787        //   distinct from the names of any other entity in the
788        //   scope in which the anonymous union is declared.
789        unsigned diagKind
790          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
791                                 : diag::err_anonymous_struct_member_redecl;
792        Diag((*F)->getLocation(), diagKind)
793          << (*F)->getDeclName();
794        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
795        Invalid = true;
796      } else {
797        // C++ [class.union]p2:
798        //   For the purpose of name lookup, after the anonymous union
799        //   definition, the members of the anonymous union are
800        //   considered to have been defined in the scope in which the
801        //   anonymous union is declared.
802        Owner->makeDeclVisibleInContext(*F);
803        S->AddDecl(*F);
804        IdResolver.AddDecl(*F);
805      }
806    } else if (const RecordType *InnerRecordType
807                 = (*F)->getType()->getAsRecordType()) {
808      RecordDecl *InnerRecord = InnerRecordType->getDecl();
809      if (InnerRecord->isAnonymousStructOrUnion())
810        Invalid = Invalid ||
811          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
812    }
813  }
814
815  return Invalid;
816}
817
818/// ActOnAnonymousStructOrUnion - Handle the declaration of an
819/// anonymous structure or union. Anonymous unions are a C++ feature
820/// (C++ [class.union]) and a GNU C extension; anonymous structures
821/// are a GNU C and GNU C++ extension.
822Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
823                                                RecordDecl *Record) {
824  DeclContext *Owner = Record->getDeclContext();
825
826  // Diagnose whether this anonymous struct/union is an extension.
827  if (Record->isUnion() && !getLangOptions().CPlusPlus)
828    Diag(Record->getLocation(), diag::ext_anonymous_union);
829  else if (!Record->isUnion())
830    Diag(Record->getLocation(), diag::ext_anonymous_struct);
831
832  // C and C++ require different kinds of checks for anonymous
833  // structs/unions.
834  bool Invalid = false;
835  if (getLangOptions().CPlusPlus) {
836    const char* PrevSpec = 0;
837    // C++ [class.union]p3:
838    //   Anonymous unions declared in a named namespace or in the
839    //   global namespace shall be declared static.
840    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
841        (isa<TranslationUnitDecl>(Owner) ||
842         (isa<NamespaceDecl>(Owner) &&
843          cast<NamespaceDecl>(Owner)->getDeclName()))) {
844      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
845      Invalid = true;
846
847      // Recover by adding 'static'.
848      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
849    }
850    // C++ [class.union]p3:
851    //   A storage class is not allowed in a declaration of an
852    //   anonymous union in a class scope.
853    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
854             isa<RecordDecl>(Owner)) {
855      Diag(DS.getStorageClassSpecLoc(),
856           diag::err_anonymous_union_with_storage_spec);
857      Invalid = true;
858
859      // Recover by removing the storage specifier.
860      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
861                             PrevSpec);
862    }
863
864    // C++ [class.union]p2:
865    //   The member-specification of an anonymous union shall only
866    //   define non-static data members. [Note: nested types and
867    //   functions cannot be declared within an anonymous union. ]
868    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
869                                 MemEnd = Record->decls_end();
870         Mem != MemEnd; ++Mem) {
871      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
872        // C++ [class.union]p3:
873        //   An anonymous union shall not have private or protected
874        //   members (clause 11).
875        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
876          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
877            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
878          Invalid = true;
879        }
880      } else if ((*Mem)->isImplicit()) {
881        // Any implicit members are fine.
882      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
883        if (!MemRecord->isAnonymousStructOrUnion() &&
884            MemRecord->getDeclName()) {
885          // This is a nested type declaration.
886          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
887            << (int)Record->isUnion();
888          Invalid = true;
889        }
890      } else {
891        // We have something that isn't a non-static data
892        // member. Complain about it.
893        unsigned DK = diag::err_anonymous_record_bad_member;
894        if (isa<TypeDecl>(*Mem))
895          DK = diag::err_anonymous_record_with_type;
896        else if (isa<FunctionDecl>(*Mem))
897          DK = diag::err_anonymous_record_with_function;
898        else if (isa<VarDecl>(*Mem))
899          DK = diag::err_anonymous_record_with_static;
900        Diag((*Mem)->getLocation(), DK)
901            << (int)Record->isUnion();
902          Invalid = true;
903      }
904    }
905  } else {
906    // FIXME: Check GNU C semantics
907    if (Record->isUnion() && !Owner->isRecord()) {
908      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
909        << (int)getLangOptions().CPlusPlus;
910      Invalid = true;
911    }
912  }
913
914  if (!Record->isUnion() && !Owner->isRecord()) {
915    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
916      << (int)getLangOptions().CPlusPlus;
917    Invalid = true;
918  }
919
920  // Create a declaration for this anonymous struct/union.
921  NamedDecl *Anon = 0;
922  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
923    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
924                             /*IdentifierInfo=*/0,
925                             Context.getTypeDeclType(Record),
926                             /*BitWidth=*/0, /*Mutable=*/false);
927    Anon->setAccess(AS_public);
928    if (getLangOptions().CPlusPlus)
929      FieldCollector->Add(cast<FieldDecl>(Anon));
930  } else {
931    VarDecl::StorageClass SC;
932    switch (DS.getStorageClassSpec()) {
933    default: assert(0 && "Unknown storage class!");
934    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
935    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
936    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
937    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
938    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
939    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
940    case DeclSpec::SCS_mutable:
941      // mutable can only appear on non-static class members, so it's always
942      // an error here
943      Diag(Record->getLocation(), diag::err_mutable_nonmember);
944      Invalid = true;
945      SC = VarDecl::None;
946      break;
947    }
948
949    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
950                           /*IdentifierInfo=*/0,
951                           Context.getTypeDeclType(Record),
952                           SC, DS.getSourceRange().getBegin());
953  }
954  Anon->setImplicit();
955
956  // Add the anonymous struct/union object to the current
957  // context. We'll be referencing this object when we refer to one of
958  // its members.
959  Owner->addDecl(Anon);
960
961  // Inject the members of the anonymous struct/union into the owning
962  // context and into the identifier resolver chain for name lookup
963  // purposes.
964  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
965    Invalid = true;
966
967  // Mark this as an anonymous struct/union type. Note that we do not
968  // do this until after we have already checked and injected the
969  // members of this anonymous struct/union type, because otherwise
970  // the members could be injected twice: once by DeclContext when it
971  // builds its lookup table, and once by
972  // InjectAnonymousStructOrUnionMembers.
973  Record->setAnonymousStructOrUnion(true);
974
975  if (Invalid)
976    Anon->setInvalidDecl();
977
978  return Anon;
979}
980
981bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
982                                  bool DirectInit) {
983  // Get the type before calling CheckSingleAssignmentConstraints(), since
984  // it can promote the expression.
985  QualType InitType = Init->getType();
986
987  if (getLangOptions().CPlusPlus) {
988    // FIXME: I dislike this error message. A lot.
989    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
990      return Diag(Init->getSourceRange().getBegin(),
991                  diag::err_typecheck_convert_incompatible)
992        << DeclType << Init->getType() << "initializing"
993        << Init->getSourceRange();
994
995    return false;
996  }
997
998  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
999  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1000                                  InitType, Init, "initializing");
1001}
1002
1003bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1004  const ArrayType *AT = Context.getAsArrayType(DeclT);
1005
1006  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1007    // C99 6.7.8p14. We have an array of character type with unknown size
1008    // being initialized to a string literal.
1009    llvm::APSInt ConstVal(32);
1010    ConstVal = strLiteral->getByteLength() + 1;
1011    // Return a new array type (C99 6.7.8p22).
1012    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1013                                         ArrayType::Normal, 0);
1014  } else {
1015    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1016    // C99 6.7.8p14. We have an array of character type with known size.
1017    // FIXME: Avoid truncation for 64-bit length strings.
1018    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1019      Diag(strLiteral->getSourceRange().getBegin(),
1020           diag::warn_initializer_string_for_char_array_too_long)
1021        << strLiteral->getSourceRange();
1022  }
1023  // Set type from "char *" to "constant array of char".
1024  strLiteral->setType(DeclT);
1025  // For now, we always return false (meaning success).
1026  return false;
1027}
1028
1029StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1030  const ArrayType *AT = Context.getAsArrayType(DeclType);
1031  if (AT && AT->getElementType()->isCharType()) {
1032    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1033  }
1034  return 0;
1035}
1036
1037bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1038                                 SourceLocation InitLoc,
1039                                 DeclarationName InitEntity,
1040                                 bool DirectInit) {
1041  if (DeclType->isDependentType() || Init->isTypeDependent())
1042    return false;
1043
1044  // C++ [dcl.init.ref]p1:
1045  //   A variable declared to be a T&, that is "reference to type T"
1046  //   (8.3.2), shall be initialized by an object, or function, of
1047  //   type T or by an object that can be converted into a T.
1048  if (DeclType->isReferenceType())
1049    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1050
1051  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1052  // of unknown size ("[]") or an object type that is not a variable array type.
1053  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1054    return Diag(InitLoc,  diag::err_variable_object_no_init)
1055      << VAT->getSizeExpr()->getSourceRange();
1056
1057  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1058  if (!InitList) {
1059    // FIXME: Handle wide strings
1060    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1061      return CheckStringLiteralInit(strLiteral, DeclType);
1062
1063    // C++ [dcl.init]p14:
1064    //   -- If the destination type is a (possibly cv-qualified) class
1065    //      type:
1066    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1067      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1068      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1069
1070      //   -- If the initialization is direct-initialization, or if it is
1071      //      copy-initialization where the cv-unqualified version of the
1072      //      source type is the same class as, or a derived class of, the
1073      //      class of the destination, constructors are considered.
1074      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1075          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1076        CXXConstructorDecl *Constructor
1077          = PerformInitializationByConstructor(DeclType, &Init, 1,
1078                                               InitLoc, Init->getSourceRange(),
1079                                               InitEntity,
1080                                               DirectInit? IK_Direct : IK_Copy);
1081        return Constructor == 0;
1082      }
1083
1084      //   -- Otherwise (i.e., for the remaining copy-initialization
1085      //      cases), user-defined conversion sequences that can
1086      //      convert from the source type to the destination type or
1087      //      (when a conversion function is used) to a derived class
1088      //      thereof are enumerated as described in 13.3.1.4, and the
1089      //      best one is chosen through overload resolution
1090      //      (13.3). If the conversion cannot be done or is
1091      //      ambiguous, the initialization is ill-formed. The
1092      //      function selected is called with the initializer
1093      //      expression as its argument; if the function is a
1094      //      constructor, the call initializes a temporary of the
1095      //      destination type.
1096      // FIXME: We're pretending to do copy elision here; return to
1097      // this when we have ASTs for such things.
1098      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1099        return false;
1100
1101      if (InitEntity)
1102        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1103          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1104          << Init->getType() << Init->getSourceRange();
1105      else
1106        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1107          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1108          << Init->getType() << Init->getSourceRange();
1109    }
1110
1111    // C99 6.7.8p16.
1112    if (DeclType->isArrayType())
1113      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1114        << Init->getSourceRange();
1115
1116    return CheckSingleInitializer(Init, DeclType, DirectInit);
1117  } else if (getLangOptions().CPlusPlus) {
1118    // C++ [dcl.init]p14:
1119    //   [...] If the class is an aggregate (8.5.1), and the initializer
1120    //   is a brace-enclosed list, see 8.5.1.
1121    //
1122    // Note: 8.5.1 is handled below; here, we diagnose the case where
1123    // we have an initializer list and a destination type that is not
1124    // an aggregate.
1125    // FIXME: In C++0x, this is yet another form of initialization.
1126    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1127      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1128      if (!ClassDecl->isAggregate())
1129        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1130           << DeclType << Init->getSourceRange();
1131    }
1132  }
1133
1134  InitListChecker CheckInitList(this, InitList, DeclType);
1135  return CheckInitList.HadError();
1136}
1137
1138/// GetNameForDeclarator - Determine the full declaration name for the
1139/// given Declarator.
1140DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1141  switch (D.getKind()) {
1142  case Declarator::DK_Abstract:
1143    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1144    return DeclarationName();
1145
1146  case Declarator::DK_Normal:
1147    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1148    return DeclarationName(D.getIdentifier());
1149
1150  case Declarator::DK_Constructor: {
1151    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1152    Ty = Context.getCanonicalType(Ty);
1153    return Context.DeclarationNames.getCXXConstructorName(Ty);
1154  }
1155
1156  case Declarator::DK_Destructor: {
1157    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1158    Ty = Context.getCanonicalType(Ty);
1159    return Context.DeclarationNames.getCXXDestructorName(Ty);
1160  }
1161
1162  case Declarator::DK_Conversion: {
1163    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1164    Ty = Context.getCanonicalType(Ty);
1165    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1166  }
1167
1168  case Declarator::DK_Operator:
1169    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1170    return Context.DeclarationNames.getCXXOperatorName(
1171                                                D.getOverloadedOperator());
1172  }
1173
1174  assert(false && "Unknown name kind");
1175  return DeclarationName();
1176}
1177
1178/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1179/// functions Declaration and Definition are "nearly" matching. This
1180/// heuristic is used to improve diagnostics in the case where an
1181/// out-of-line member function definition doesn't match any
1182/// declaration within the class.
1183static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1184                                           FunctionDecl *Declaration,
1185                                           FunctionDecl *Definition) {
1186  if (Declaration->param_size() != Definition->param_size())
1187    return false;
1188  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1189    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1190    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1191
1192    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1193    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1194    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1195      return false;
1196  }
1197
1198  return true;
1199}
1200
1201Sema::DeclTy *
1202Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1203                      bool IsFunctionDefinition) {
1204  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1205  DeclarationName Name = GetNameForDeclarator(D);
1206
1207  // All of these full declarators require an identifier.  If it doesn't have
1208  // one, the ParsedFreeStandingDeclSpec action should be used.
1209  if (!Name) {
1210    if (!D.getInvalidType())  // Reject this if we think it is valid.
1211      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1212           diag::err_declarator_need_ident)
1213        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1214    return 0;
1215  }
1216
1217  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1218  // we find one that is.
1219  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1220        (S->getFlags() & Scope::TemplateParamScope) != 0)
1221    S = S->getParent();
1222
1223  DeclContext *DC;
1224  Decl *PrevDecl;
1225  NamedDecl *New;
1226  bool InvalidDecl = false;
1227
1228  // See if this is a redefinition of a variable in the same scope.
1229  if (!D.getCXXScopeSpec().isSet()) {
1230    DC = CurContext;
1231    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1232  } else { // Something like "int foo::x;"
1233    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1234    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1235
1236    // C++ 7.3.1.2p2:
1237    // Members (including explicit specializations of templates) of a named
1238    // namespace can also be defined outside that namespace by explicit
1239    // qualification of the name being defined, provided that the entity being
1240    // defined was already declared in the namespace and the definition appears
1241    // after the point of declaration in a namespace that encloses the
1242    // declarations namespace.
1243    //
1244    // Note that we only check the context at this point. We don't yet
1245    // have enough information to make sure that PrevDecl is actually
1246    // the declaration we want to match. For example, given:
1247    //
1248    //   class X {
1249    //     void f();
1250    //     void f(float);
1251    //   };
1252    //
1253    //   void X::f(int) { } // ill-formed
1254    //
1255    // In this case, PrevDecl will point to the overload set
1256    // containing the two f's declared in X, but neither of them
1257    // matches.
1258    if (!CurContext->Encloses(DC)) {
1259      // The qualifying scope doesn't enclose the original declaration.
1260      // Emit diagnostic based on current scope.
1261      SourceLocation L = D.getIdentifierLoc();
1262      SourceRange R = D.getCXXScopeSpec().getRange();
1263      if (isa<FunctionDecl>(CurContext)) {
1264        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1265      } else {
1266        Diag(L, diag::err_invalid_declarator_scope)
1267          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1268      }
1269      InvalidDecl = true;
1270    }
1271  }
1272
1273  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1274    // Maybe we will complain about the shadowed template parameter.
1275    InvalidDecl = InvalidDecl
1276      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1277    // Just pretend that we didn't see the previous declaration.
1278    PrevDecl = 0;
1279  }
1280
1281  // In C++, the previous declaration we find might be a tag type
1282  // (class or enum). In this case, the new declaration will hide the
1283  // tag type.
1284  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1285    PrevDecl = 0;
1286
1287  QualType R = GetTypeForDeclarator(D, S);
1288  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1289
1290  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1291    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1292                                 InvalidDecl);
1293  } else if (R.getTypePtr()->isFunctionType()) {
1294    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1295                                  IsFunctionDefinition, InvalidDecl);
1296  } else {
1297    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1298                                  InvalidDecl);
1299  }
1300
1301  if (New == 0)
1302    return 0;
1303
1304  // Set the lexical context. If the declarator has a C++ scope specifier, the
1305  // lexical context will be different from the semantic context.
1306  New->setLexicalDeclContext(CurContext);
1307
1308  // If this has an identifier, add it to the scope stack.
1309  if (Name)
1310    PushOnScopeChains(New, S);
1311  // If any semantic error occurred, mark the decl as invalid.
1312  if (D.getInvalidType() || InvalidDecl)
1313    New->setInvalidDecl();
1314
1315  return New;
1316}
1317
1318NamedDecl*
1319Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1320                             QualType R, Decl* LastDeclarator,
1321                             Decl* PrevDecl, bool& InvalidDecl) {
1322  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1323  if (D.getCXXScopeSpec().isSet()) {
1324    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1325      << D.getCXXScopeSpec().getRange();
1326    InvalidDecl = true;
1327    // Pretend we didn't see the scope specifier.
1328    DC = 0;
1329  }
1330
1331  // Check that there are no default arguments (C++ only).
1332  if (getLangOptions().CPlusPlus)
1333    CheckExtraCXXDefaultArguments(D);
1334
1335  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1336  if (!NewTD) return 0;
1337
1338  // Handle attributes prior to checking for duplicates in MergeVarDecl
1339  ProcessDeclAttributes(NewTD, D);
1340  // Merge the decl with the existing one if appropriate. If the decl is
1341  // in an outer scope, it isn't the same thing.
1342  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1343    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1344    if (NewTD == 0) return 0;
1345  }
1346
1347  if (S->getFnParent() == 0) {
1348    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1349    // then it shall have block scope.
1350    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1351      if (NewTD->getUnderlyingType()->isVariableArrayType())
1352        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1353      else
1354        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1355
1356      InvalidDecl = true;
1357    }
1358  }
1359  return NewTD;
1360}
1361
1362NamedDecl*
1363Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1364                              QualType R, Decl* LastDeclarator,
1365                              Decl* PrevDecl, bool& InvalidDecl) {
1366  DeclarationName Name = GetNameForDeclarator(D);
1367
1368  // Check that there are no default arguments (C++ only).
1369  if (getLangOptions().CPlusPlus)
1370    CheckExtraCXXDefaultArguments(D);
1371
1372  if (R.getTypePtr()->isObjCInterfaceType()) {
1373    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1374      << D.getIdentifier();
1375    InvalidDecl = true;
1376  }
1377
1378  VarDecl *NewVD;
1379  VarDecl::StorageClass SC;
1380  switch (D.getDeclSpec().getStorageClassSpec()) {
1381  default: assert(0 && "Unknown storage class!");
1382  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1383  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1384  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1385  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1386  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1387  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1388  case DeclSpec::SCS_mutable:
1389    // mutable can only appear on non-static class members, so it's always
1390    // an error here
1391    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1392    InvalidDecl = true;
1393    SC = VarDecl::None;
1394    break;
1395  }
1396
1397  IdentifierInfo *II = Name.getAsIdentifierInfo();
1398  if (!II) {
1399    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1400      << Name.getAsString();
1401    return 0;
1402  }
1403
1404  if (DC->isRecord()) {
1405    // This is a static data member for a C++ class.
1406    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1407                                    D.getIdentifierLoc(), II,
1408                                    R);
1409  } else {
1410    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1411    if (S->getFnParent() == 0) {
1412      // C99 6.9p2: The storage-class specifiers auto and register shall not
1413      // appear in the declaration specifiers in an external declaration.
1414      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1415        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1416        InvalidDecl = true;
1417      }
1418    }
1419    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1420                            II, R, SC,
1421                            // FIXME: Move to DeclGroup...
1422                            D.getDeclSpec().getSourceRange().getBegin());
1423    NewVD->setThreadSpecified(ThreadSpecified);
1424  }
1425  NewVD->setNextDeclarator(LastDeclarator);
1426
1427  // Handle attributes prior to checking for duplicates in MergeVarDecl
1428  ProcessDeclAttributes(NewVD, D);
1429
1430  // Handle GNU asm-label extension (encoded as an attribute).
1431  if (Expr *E = (Expr*) D.getAsmLabel()) {
1432    // The parser guarantees this is a string.
1433    StringLiteral *SE = cast<StringLiteral>(E);
1434    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1435                                                SE->getByteLength())));
1436  }
1437
1438  // Emit an error if an address space was applied to decl with local storage.
1439  // This includes arrays of objects with address space qualifiers, but not
1440  // automatic variables that point to other address spaces.
1441  // ISO/IEC TR 18037 S5.1.2
1442  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1443    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1444    InvalidDecl = true;
1445  }
1446  // Merge the decl with the existing one if appropriate. If the decl is
1447  // in an outer scope, it isn't the same thing.
1448  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1449    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1450      // The user tried to define a non-static data member
1451      // out-of-line (C++ [dcl.meaning]p1).
1452      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1453        << D.getCXXScopeSpec().getRange();
1454      NewVD->Destroy(Context);
1455      return 0;
1456    }
1457
1458    NewVD = MergeVarDecl(NewVD, PrevDecl);
1459    if (NewVD == 0) return 0;
1460
1461    if (D.getCXXScopeSpec().isSet()) {
1462      // No previous declaration in the qualifying scope.
1463      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1464        << Name << D.getCXXScopeSpec().getRange();
1465      InvalidDecl = true;
1466    }
1467  }
1468  return NewVD;
1469}
1470
1471NamedDecl*
1472Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1473                              QualType R, Decl *LastDeclarator,
1474                              Decl* PrevDecl, bool IsFunctionDefinition,
1475                              bool& InvalidDecl) {
1476  assert(R.getTypePtr()->isFunctionType());
1477
1478  DeclarationName Name = GetNameForDeclarator(D);
1479  FunctionDecl::StorageClass SC = FunctionDecl::None;
1480  switch (D.getDeclSpec().getStorageClassSpec()) {
1481  default: assert(0 && "Unknown storage class!");
1482  case DeclSpec::SCS_auto:
1483  case DeclSpec::SCS_register:
1484  case DeclSpec::SCS_mutable:
1485    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1486    InvalidDecl = true;
1487    break;
1488  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1489  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1490  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1491  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1492  }
1493
1494  bool isInline = D.getDeclSpec().isInlineSpecified();
1495  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1496  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1497
1498  FunctionDecl *NewFD;
1499  if (D.getKind() == Declarator::DK_Constructor) {
1500    // This is a C++ constructor declaration.
1501    assert(DC->isRecord() &&
1502           "Constructors can only be declared in a member context");
1503
1504    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1505
1506    // Create the new declaration
1507    NewFD = CXXConstructorDecl::Create(Context,
1508                                       cast<CXXRecordDecl>(DC),
1509                                       D.getIdentifierLoc(), Name, R,
1510                                       isExplicit, isInline,
1511                                       /*isImplicitlyDeclared=*/false);
1512
1513    if (InvalidDecl)
1514      NewFD->setInvalidDecl();
1515  } else if (D.getKind() == Declarator::DK_Destructor) {
1516    // This is a C++ destructor declaration.
1517    if (DC->isRecord()) {
1518      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1519
1520      NewFD = CXXDestructorDecl::Create(Context,
1521                                        cast<CXXRecordDecl>(DC),
1522                                        D.getIdentifierLoc(), Name, R,
1523                                        isInline,
1524                                        /*isImplicitlyDeclared=*/false);
1525
1526      if (InvalidDecl)
1527        NewFD->setInvalidDecl();
1528    } else {
1529      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1530
1531      // Create a FunctionDecl to satisfy the function definition parsing
1532      // code path.
1533      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1534                                   Name, R, SC, isInline,
1535                                   // FIXME: Move to DeclGroup...
1536                                   D.getDeclSpec().getSourceRange().getBegin());
1537      InvalidDecl = true;
1538      NewFD->setInvalidDecl();
1539    }
1540  } else if (D.getKind() == Declarator::DK_Conversion) {
1541    if (!DC->isRecord()) {
1542      Diag(D.getIdentifierLoc(),
1543           diag::err_conv_function_not_member);
1544      return 0;
1545    } else {
1546      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1547
1548      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1549                                        D.getIdentifierLoc(), Name, R,
1550                                        isInline, isExplicit);
1551
1552      if (InvalidDecl)
1553        NewFD->setInvalidDecl();
1554    }
1555  } else if (DC->isRecord()) {
1556    // This is a C++ method declaration.
1557    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1558                                  D.getIdentifierLoc(), Name, R,
1559                                  (SC == FunctionDecl::Static), isInline);
1560  } else {
1561    NewFD = FunctionDecl::Create(Context, DC,
1562                                 D.getIdentifierLoc(),
1563                                 Name, R, SC, isInline,
1564                                 // FIXME: Move to DeclGroup...
1565                                 D.getDeclSpec().getSourceRange().getBegin());
1566  }
1567  NewFD->setNextDeclarator(LastDeclarator);
1568
1569  // Set the lexical context. If the declarator has a C++
1570  // scope specifier, the lexical context will be different
1571  // from the semantic context.
1572  NewFD->setLexicalDeclContext(CurContext);
1573
1574  // Handle GNU asm-label extension (encoded as an attribute).
1575  if (Expr *E = (Expr*) D.getAsmLabel()) {
1576    // The parser guarantees this is a string.
1577    StringLiteral *SE = cast<StringLiteral>(E);
1578    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1579                                                SE->getByteLength())));
1580  }
1581
1582  // Copy the parameter declarations from the declarator D to
1583  // the function declaration NewFD, if they are available.
1584  if (D.getNumTypeObjects() > 0) {
1585    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1586
1587    // Create Decl objects for each parameter, adding them to the
1588    // FunctionDecl.
1589    llvm::SmallVector<ParmVarDecl*, 16> Params;
1590
1591    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1592    // function that takes no arguments, not a function that takes a
1593    // single void argument.
1594    // We let through "const void" here because Sema::GetTypeForDeclarator
1595    // already checks for that case.
1596    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1597        FTI.ArgInfo[0].Param &&
1598        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1599      // empty arg list, don't push any params.
1600      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1601
1602      // In C++, the empty parameter-type-list must be spelled "void"; a
1603      // typedef of void is not permitted.
1604      if (getLangOptions().CPlusPlus &&
1605          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1606        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1607      }
1608    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1609      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1610        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1611    }
1612
1613    NewFD->setParams(Context, &Params[0], Params.size());
1614  } else if (R->getAsTypedefType()) {
1615    // When we're declaring a function with a typedef, as in the
1616    // following example, we'll need to synthesize (unnamed)
1617    // parameters for use in the declaration.
1618    //
1619    // @code
1620    // typedef void fn(int);
1621    // fn f;
1622    // @endcode
1623    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1624    if (!FT) {
1625      // This is a typedef of a function with no prototype, so we
1626      // don't need to do anything.
1627    } else if ((FT->getNumArgs() == 0) ||
1628               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1629                FT->getArgType(0)->isVoidType())) {
1630      // This is a zero-argument function. We don't need to do anything.
1631    } else {
1632      // Synthesize a parameter for each argument type.
1633      llvm::SmallVector<ParmVarDecl*, 16> Params;
1634      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1635           ArgType != FT->arg_type_end(); ++ArgType) {
1636        Params.push_back(ParmVarDecl::Create(Context, DC,
1637                                             SourceLocation(), 0,
1638                                             *ArgType, VarDecl::None,
1639                                             0));
1640      }
1641
1642      NewFD->setParams(Context, &Params[0], Params.size());
1643    }
1644  }
1645
1646  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1647    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1648  else if (isa<CXXDestructorDecl>(NewFD)) {
1649    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1650    Record->setUserDeclaredDestructor(true);
1651    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1652    // user-defined destructor.
1653    Record->setPOD(false);
1654  } else if (CXXConversionDecl *Conversion =
1655             dyn_cast<CXXConversionDecl>(NewFD))
1656    ActOnConversionDeclarator(Conversion);
1657
1658  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1659  if (NewFD->isOverloadedOperator() &&
1660      CheckOverloadedOperatorDeclaration(NewFD))
1661    NewFD->setInvalidDecl();
1662
1663  // Merge the decl with the existing one if appropriate. Since C functions
1664  // are in a flat namespace, make sure we consider decls in outer scopes.
1665  if (PrevDecl &&
1666      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1667    bool Redeclaration = false;
1668
1669    // If C++, determine whether NewFD is an overload of PrevDecl or
1670    // a declaration that requires merging. If it's an overload,
1671    // there's no more work to do here; we'll just add the new
1672    // function to the scope.
1673    OverloadedFunctionDecl::function_iterator MatchedDecl;
1674    if (!getLangOptions().CPlusPlus ||
1675        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1676      Decl *OldDecl = PrevDecl;
1677
1678      // If PrevDecl was an overloaded function, extract the
1679      // FunctionDecl that matched.
1680      if (isa<OverloadedFunctionDecl>(PrevDecl))
1681        OldDecl = *MatchedDecl;
1682
1683      // NewFD and PrevDecl represent declarations that need to be
1684      // merged.
1685      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1686
1687      if (NewFD == 0) return 0;
1688      if (Redeclaration) {
1689        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1690
1691        // An out-of-line member function declaration must also be a
1692        // definition (C++ [dcl.meaning]p1).
1693        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1694            !InvalidDecl) {
1695          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1696            << D.getCXXScopeSpec().getRange();
1697          NewFD->setInvalidDecl();
1698        }
1699      }
1700    }
1701
1702    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1703      // The user tried to provide an out-of-line definition for a
1704      // member function, but there was no such member function
1705      // declared (C++ [class.mfct]p2). For example:
1706      //
1707      // class X {
1708      //   void f() const;
1709      // };
1710      //
1711      // void X::f() { } // ill-formed
1712      //
1713      // Complain about this problem, and attempt to suggest close
1714      // matches (e.g., those that differ only in cv-qualifiers and
1715      // whether the parameter types are references).
1716      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1717        << cast<CXXRecordDecl>(DC)->getDeclName()
1718        << D.getCXXScopeSpec().getRange();
1719      InvalidDecl = true;
1720
1721      PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1722      if (!PrevDecl) {
1723        // Nothing to suggest.
1724      } else if (OverloadedFunctionDecl *Ovl
1725                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1726        for (OverloadedFunctionDecl::function_iterator
1727               Func = Ovl->function_begin(),
1728               FuncEnd = Ovl->function_end();
1729             Func != FuncEnd; ++Func) {
1730          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1731            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1732
1733        }
1734      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1735        // Suggest this no matter how mismatched it is; it's the only
1736        // thing we have.
1737        unsigned diag;
1738        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1739          diag = diag::note_member_def_close_match;
1740        else if (Method->getBody())
1741          diag = diag::note_previous_definition;
1742        else
1743          diag = diag::note_previous_declaration;
1744        Diag(Method->getLocation(), diag);
1745      }
1746
1747      PrevDecl = 0;
1748    }
1749  }
1750  // Handle attributes. We need to have merged decls when handling attributes
1751  // (for example to check for conflicts, etc).
1752  ProcessDeclAttributes(NewFD, D);
1753
1754  if (getLangOptions().CPlusPlus) {
1755    // In C++, check default arguments now that we have merged decls.
1756    CheckCXXDefaultArguments(NewFD);
1757
1758    // An out-of-line member function declaration must also be a
1759    // definition (C++ [dcl.meaning]p1).
1760    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1761      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1762        << D.getCXXScopeSpec().getRange();
1763      InvalidDecl = true;
1764    }
1765  }
1766  return NewFD;
1767}
1768
1769void Sema::InitializerElementNotConstant(const Expr *Init) {
1770  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1771    << Init->getSourceRange();
1772}
1773
1774bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1775  switch (Init->getStmtClass()) {
1776  default:
1777    InitializerElementNotConstant(Init);
1778    return true;
1779  case Expr::ParenExprClass: {
1780    const ParenExpr* PE = cast<ParenExpr>(Init);
1781    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1782  }
1783  case Expr::CompoundLiteralExprClass:
1784    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1785  case Expr::DeclRefExprClass:
1786  case Expr::QualifiedDeclRefExprClass: {
1787    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1788    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1789      if (VD->hasGlobalStorage())
1790        return false;
1791      InitializerElementNotConstant(Init);
1792      return true;
1793    }
1794    if (isa<FunctionDecl>(D))
1795      return false;
1796    InitializerElementNotConstant(Init);
1797    return true;
1798  }
1799  case Expr::MemberExprClass: {
1800    const MemberExpr *M = cast<MemberExpr>(Init);
1801    if (M->isArrow())
1802      return CheckAddressConstantExpression(M->getBase());
1803    return CheckAddressConstantExpressionLValue(M->getBase());
1804  }
1805  case Expr::ArraySubscriptExprClass: {
1806    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1807    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1808    return CheckAddressConstantExpression(ASE->getBase()) ||
1809           CheckArithmeticConstantExpression(ASE->getIdx());
1810  }
1811  case Expr::StringLiteralClass:
1812  case Expr::PredefinedExprClass:
1813    return false;
1814  case Expr::UnaryOperatorClass: {
1815    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1816
1817    // C99 6.6p9
1818    if (Exp->getOpcode() == UnaryOperator::Deref)
1819      return CheckAddressConstantExpression(Exp->getSubExpr());
1820
1821    InitializerElementNotConstant(Init);
1822    return true;
1823  }
1824  }
1825}
1826
1827bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1828  switch (Init->getStmtClass()) {
1829  default:
1830    InitializerElementNotConstant(Init);
1831    return true;
1832  case Expr::ParenExprClass:
1833    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1834  case Expr::StringLiteralClass:
1835  case Expr::ObjCStringLiteralClass:
1836    return false;
1837  case Expr::CallExprClass:
1838  case Expr::CXXOperatorCallExprClass:
1839    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1840    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1841           Builtin::BI__builtin___CFStringMakeConstantString)
1842      return false;
1843
1844    InitializerElementNotConstant(Init);
1845    return true;
1846
1847  case Expr::UnaryOperatorClass: {
1848    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1849
1850    // C99 6.6p9
1851    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1852      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1853
1854    if (Exp->getOpcode() == UnaryOperator::Extension)
1855      return CheckAddressConstantExpression(Exp->getSubExpr());
1856
1857    InitializerElementNotConstant(Init);
1858    return true;
1859  }
1860  case Expr::BinaryOperatorClass: {
1861    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1862    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1863
1864    Expr *PExp = Exp->getLHS();
1865    Expr *IExp = Exp->getRHS();
1866    if (IExp->getType()->isPointerType())
1867      std::swap(PExp, IExp);
1868
1869    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1870    return CheckAddressConstantExpression(PExp) ||
1871           CheckArithmeticConstantExpression(IExp);
1872  }
1873  case Expr::ImplicitCastExprClass:
1874  case Expr::CStyleCastExprClass: {
1875    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1876    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1877      // Check for implicit promotion
1878      if (SubExpr->getType()->isFunctionType() ||
1879          SubExpr->getType()->isArrayType())
1880        return CheckAddressConstantExpressionLValue(SubExpr);
1881    }
1882
1883    // Check for pointer->pointer cast
1884    if (SubExpr->getType()->isPointerType())
1885      return CheckAddressConstantExpression(SubExpr);
1886
1887    if (SubExpr->getType()->isIntegralType()) {
1888      // Check for the special-case of a pointer->int->pointer cast;
1889      // this isn't standard, but some code requires it. See
1890      // PR2720 for an example.
1891      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1892        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1893          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1894          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1895          if (IntWidth >= PointerWidth) {
1896            return CheckAddressConstantExpression(SubCast->getSubExpr());
1897          }
1898        }
1899      }
1900    }
1901    if (SubExpr->getType()->isArithmeticType()) {
1902      return CheckArithmeticConstantExpression(SubExpr);
1903    }
1904
1905    InitializerElementNotConstant(Init);
1906    return true;
1907  }
1908  case Expr::ConditionalOperatorClass: {
1909    // FIXME: Should we pedwarn here?
1910    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1911    if (!Exp->getCond()->getType()->isArithmeticType()) {
1912      InitializerElementNotConstant(Init);
1913      return true;
1914    }
1915    if (CheckArithmeticConstantExpression(Exp->getCond()))
1916      return true;
1917    if (Exp->getLHS() &&
1918        CheckAddressConstantExpression(Exp->getLHS()))
1919      return true;
1920    return CheckAddressConstantExpression(Exp->getRHS());
1921  }
1922  case Expr::AddrLabelExprClass:
1923    return false;
1924  }
1925}
1926
1927static const Expr* FindExpressionBaseAddress(const Expr* E);
1928
1929static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1930  switch (E->getStmtClass()) {
1931  default:
1932    return E;
1933  case Expr::ParenExprClass: {
1934    const ParenExpr* PE = cast<ParenExpr>(E);
1935    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1936  }
1937  case Expr::MemberExprClass: {
1938    const MemberExpr *M = cast<MemberExpr>(E);
1939    if (M->isArrow())
1940      return FindExpressionBaseAddress(M->getBase());
1941    return FindExpressionBaseAddressLValue(M->getBase());
1942  }
1943  case Expr::ArraySubscriptExprClass: {
1944    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1945    return FindExpressionBaseAddress(ASE->getBase());
1946  }
1947  case Expr::UnaryOperatorClass: {
1948    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1949
1950    if (Exp->getOpcode() == UnaryOperator::Deref)
1951      return FindExpressionBaseAddress(Exp->getSubExpr());
1952
1953    return E;
1954  }
1955  }
1956}
1957
1958static const Expr* FindExpressionBaseAddress(const Expr* E) {
1959  switch (E->getStmtClass()) {
1960  default:
1961    return E;
1962  case Expr::ParenExprClass: {
1963    const ParenExpr* PE = cast<ParenExpr>(E);
1964    return FindExpressionBaseAddress(PE->getSubExpr());
1965  }
1966  case Expr::UnaryOperatorClass: {
1967    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1968
1969    // C99 6.6p9
1970    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1971      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1972
1973    if (Exp->getOpcode() == UnaryOperator::Extension)
1974      return FindExpressionBaseAddress(Exp->getSubExpr());
1975
1976    return E;
1977  }
1978  case Expr::BinaryOperatorClass: {
1979    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1980
1981    Expr *PExp = Exp->getLHS();
1982    Expr *IExp = Exp->getRHS();
1983    if (IExp->getType()->isPointerType())
1984      std::swap(PExp, IExp);
1985
1986    return FindExpressionBaseAddress(PExp);
1987  }
1988  case Expr::ImplicitCastExprClass: {
1989    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1990
1991    // Check for implicit promotion
1992    if (SubExpr->getType()->isFunctionType() ||
1993        SubExpr->getType()->isArrayType())
1994      return FindExpressionBaseAddressLValue(SubExpr);
1995
1996    // Check for pointer->pointer cast
1997    if (SubExpr->getType()->isPointerType())
1998      return FindExpressionBaseAddress(SubExpr);
1999
2000    // We assume that we have an arithmetic expression here;
2001    // if we don't, we'll figure it out later
2002    return 0;
2003  }
2004  case Expr::CStyleCastExprClass: {
2005    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2006
2007    // Check for pointer->pointer cast
2008    if (SubExpr->getType()->isPointerType())
2009      return FindExpressionBaseAddress(SubExpr);
2010
2011    // We assume that we have an arithmetic expression here;
2012    // if we don't, we'll figure it out later
2013    return 0;
2014  }
2015  }
2016}
2017
2018bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2019  switch (Init->getStmtClass()) {
2020  default:
2021    InitializerElementNotConstant(Init);
2022    return true;
2023  case Expr::ParenExprClass: {
2024    const ParenExpr* PE = cast<ParenExpr>(Init);
2025    return CheckArithmeticConstantExpression(PE->getSubExpr());
2026  }
2027  case Expr::FloatingLiteralClass:
2028  case Expr::IntegerLiteralClass:
2029  case Expr::CharacterLiteralClass:
2030  case Expr::ImaginaryLiteralClass:
2031  case Expr::TypesCompatibleExprClass:
2032  case Expr::CXXBoolLiteralExprClass:
2033    return false;
2034  case Expr::CallExprClass:
2035  case Expr::CXXOperatorCallExprClass: {
2036    const CallExpr *CE = cast<CallExpr>(Init);
2037
2038    // Allow any constant foldable calls to builtins.
2039    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2040      return false;
2041
2042    InitializerElementNotConstant(Init);
2043    return true;
2044  }
2045  case Expr::DeclRefExprClass:
2046  case Expr::QualifiedDeclRefExprClass: {
2047    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2048    if (isa<EnumConstantDecl>(D))
2049      return false;
2050    InitializerElementNotConstant(Init);
2051    return true;
2052  }
2053  case Expr::CompoundLiteralExprClass:
2054    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2055    // but vectors are allowed to be magic.
2056    if (Init->getType()->isVectorType())
2057      return false;
2058    InitializerElementNotConstant(Init);
2059    return true;
2060  case Expr::UnaryOperatorClass: {
2061    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2062
2063    switch (Exp->getOpcode()) {
2064    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2065    // See C99 6.6p3.
2066    default:
2067      InitializerElementNotConstant(Init);
2068      return true;
2069    case UnaryOperator::OffsetOf:
2070      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2071        return false;
2072      InitializerElementNotConstant(Init);
2073      return true;
2074    case UnaryOperator::Extension:
2075    case UnaryOperator::LNot:
2076    case UnaryOperator::Plus:
2077    case UnaryOperator::Minus:
2078    case UnaryOperator::Not:
2079      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2080    }
2081  }
2082  case Expr::SizeOfAlignOfExprClass: {
2083    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2084    // Special check for void types, which are allowed as an extension
2085    if (Exp->getTypeOfArgument()->isVoidType())
2086      return false;
2087    // alignof always evaluates to a constant.
2088    // FIXME: is sizeof(int[3.0]) a constant expression?
2089    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2090      InitializerElementNotConstant(Init);
2091      return true;
2092    }
2093    return false;
2094  }
2095  case Expr::BinaryOperatorClass: {
2096    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2097
2098    if (Exp->getLHS()->getType()->isArithmeticType() &&
2099        Exp->getRHS()->getType()->isArithmeticType()) {
2100      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2101             CheckArithmeticConstantExpression(Exp->getRHS());
2102    }
2103
2104    if (Exp->getLHS()->getType()->isPointerType() &&
2105        Exp->getRHS()->getType()->isPointerType()) {
2106      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2107      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2108
2109      // Only allow a null (constant integer) base; we could
2110      // allow some additional cases if necessary, but this
2111      // is sufficient to cover offsetof-like constructs.
2112      if (!LHSBase && !RHSBase) {
2113        return CheckAddressConstantExpression(Exp->getLHS()) ||
2114               CheckAddressConstantExpression(Exp->getRHS());
2115      }
2116    }
2117
2118    InitializerElementNotConstant(Init);
2119    return true;
2120  }
2121  case Expr::ImplicitCastExprClass:
2122  case Expr::CStyleCastExprClass: {
2123    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2124    if (SubExpr->getType()->isArithmeticType())
2125      return CheckArithmeticConstantExpression(SubExpr);
2126
2127    if (SubExpr->getType()->isPointerType()) {
2128      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2129      // If the pointer has a null base, this is an offsetof-like construct
2130      if (!Base)
2131        return CheckAddressConstantExpression(SubExpr);
2132    }
2133
2134    InitializerElementNotConstant(Init);
2135    return true;
2136  }
2137  case Expr::ConditionalOperatorClass: {
2138    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2139
2140    // If GNU extensions are disabled, we require all operands to be arithmetic
2141    // constant expressions.
2142    if (getLangOptions().NoExtensions) {
2143      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2144          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2145             CheckArithmeticConstantExpression(Exp->getRHS());
2146    }
2147
2148    // Otherwise, we have to emulate some of the behavior of fold here.
2149    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2150    // because it can constant fold things away.  To retain compatibility with
2151    // GCC code, we see if we can fold the condition to a constant (which we
2152    // should always be able to do in theory).  If so, we only require the
2153    // specified arm of the conditional to be a constant.  This is a horrible
2154    // hack, but is require by real world code that uses __builtin_constant_p.
2155    Expr::EvalResult EvalResult;
2156    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2157        EvalResult.HasSideEffects) {
2158      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2159      // won't be able to either.  Use it to emit the diagnostic though.
2160      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2161      assert(Res && "Evaluate couldn't evaluate this constant?");
2162      return Res;
2163    }
2164
2165    // Verify that the side following the condition is also a constant.
2166    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2167    if (EvalResult.Val.getInt() == 0)
2168      std::swap(TrueSide, FalseSide);
2169
2170    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2171      return true;
2172
2173    // Okay, the evaluated side evaluates to a constant, so we accept this.
2174    // Check to see if the other side is obviously not a constant.  If so,
2175    // emit a warning that this is a GNU extension.
2176    if (FalseSide && !FalseSide->isEvaluatable(Context))
2177      Diag(Init->getExprLoc(),
2178           diag::ext_typecheck_expression_not_constant_but_accepted)
2179        << FalseSide->getSourceRange();
2180    return false;
2181  }
2182  }
2183}
2184
2185bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2186  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2187    Init = DIE->getInit();
2188
2189  Init = Init->IgnoreParens();
2190
2191  if (Init->isEvaluatable(Context))
2192    return false;
2193
2194  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2195  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2196    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2197
2198  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2199    return CheckForConstantInitializer(e->getInitializer(), DclT);
2200
2201  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2202    unsigned numInits = Exp->getNumInits();
2203    for (unsigned i = 0; i < numInits; i++) {
2204      // FIXME: Need to get the type of the declaration for C++,
2205      // because it could be a reference?
2206      if (CheckForConstantInitializer(Exp->getInit(i),
2207                                      Exp->getInit(i)->getType()))
2208        return true;
2209    }
2210    return false;
2211  }
2212
2213  // FIXME: We can probably remove some of this code below, now that
2214  // Expr::Evaluate is doing the heavy lifting for scalars.
2215
2216  if (Init->isNullPointerConstant(Context))
2217    return false;
2218  if (Init->getType()->isArithmeticType()) {
2219    QualType InitTy = Context.getCanonicalType(Init->getType())
2220                             .getUnqualifiedType();
2221    if (InitTy == Context.BoolTy) {
2222      // Special handling for pointers implicitly cast to bool;
2223      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2224      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2225        Expr* SubE = ICE->getSubExpr();
2226        if (SubE->getType()->isPointerType() ||
2227            SubE->getType()->isArrayType() ||
2228            SubE->getType()->isFunctionType()) {
2229          return CheckAddressConstantExpression(Init);
2230        }
2231      }
2232    } else if (InitTy->isIntegralType()) {
2233      Expr* SubE = 0;
2234      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2235        SubE = CE->getSubExpr();
2236      // Special check for pointer cast to int; we allow as an extension
2237      // an address constant cast to an integer if the integer
2238      // is of an appropriate width (this sort of code is apparently used
2239      // in some places).
2240      // FIXME: Add pedwarn?
2241      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2242      if (SubE && (SubE->getType()->isPointerType() ||
2243                   SubE->getType()->isArrayType() ||
2244                   SubE->getType()->isFunctionType())) {
2245        unsigned IntWidth = Context.getTypeSize(Init->getType());
2246        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2247        if (IntWidth >= PointerWidth)
2248          return CheckAddressConstantExpression(Init);
2249      }
2250    }
2251
2252    return CheckArithmeticConstantExpression(Init);
2253  }
2254
2255  if (Init->getType()->isPointerType())
2256    return CheckAddressConstantExpression(Init);
2257
2258  // An array type at the top level that isn't an init-list must
2259  // be a string literal
2260  if (Init->getType()->isArrayType())
2261    return false;
2262
2263  if (Init->getType()->isFunctionType())
2264    return false;
2265
2266  // Allow block exprs at top level.
2267  if (Init->getType()->isBlockPointerType())
2268    return false;
2269
2270  // GCC cast to union extension
2271  // note: the validity of the cast expr is checked by CheckCastTypes()
2272  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2273    QualType T = C->getType();
2274    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2275  }
2276
2277  InitializerElementNotConstant(Init);
2278  return true;
2279}
2280
2281void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2282  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2283}
2284
2285/// AddInitializerToDecl - Adds the initializer Init to the
2286/// declaration dcl. If DirectInit is true, this is C++ direct
2287/// initialization rather than copy initialization.
2288void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2289  Decl *RealDecl = static_cast<Decl *>(dcl);
2290  Expr *Init = static_cast<Expr *>(init.release());
2291  assert(Init && "missing initializer");
2292
2293  // If there is no declaration, there was an error parsing it.  Just ignore
2294  // the initializer.
2295  if (RealDecl == 0) {
2296    delete Init;
2297    return;
2298  }
2299
2300  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2301  if (!VDecl) {
2302    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2303    RealDecl->setInvalidDecl();
2304    return;
2305  }
2306  // Get the decls type and save a reference for later, since
2307  // CheckInitializerTypes may change it.
2308  QualType DclT = VDecl->getType(), SavT = DclT;
2309  if (VDecl->isBlockVarDecl()) {
2310    VarDecl::StorageClass SC = VDecl->getStorageClass();
2311    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2312      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2313      VDecl->setInvalidDecl();
2314    } else if (!VDecl->isInvalidDecl()) {
2315      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2316                                VDecl->getDeclName(), DirectInit))
2317        VDecl->setInvalidDecl();
2318
2319      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2320      if (!getLangOptions().CPlusPlus) {
2321        if (SC == VarDecl::Static) // C99 6.7.8p4.
2322          CheckForConstantInitializer(Init, DclT);
2323      }
2324    }
2325  } else if (VDecl->isFileVarDecl()) {
2326    if (VDecl->getStorageClass() == VarDecl::Extern)
2327      Diag(VDecl->getLocation(), diag::warn_extern_init);
2328    if (!VDecl->isInvalidDecl())
2329      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2330                                VDecl->getDeclName(), DirectInit))
2331        VDecl->setInvalidDecl();
2332
2333    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2334    if (!getLangOptions().CPlusPlus) {
2335      // C99 6.7.8p4. All file scoped initializers need to be constant.
2336      CheckForConstantInitializer(Init, DclT);
2337    }
2338  }
2339  // If the type changed, it means we had an incomplete type that was
2340  // completed by the initializer. For example:
2341  //   int ary[] = { 1, 3, 5 };
2342  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2343  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2344    VDecl->setType(DclT);
2345    Init->setType(DclT);
2346  }
2347
2348  // Attach the initializer to the decl.
2349  VDecl->setInit(Init);
2350  return;
2351}
2352
2353void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2354  Decl *RealDecl = static_cast<Decl *>(dcl);
2355
2356  // If there is no declaration, there was an error parsing it. Just ignore it.
2357  if (RealDecl == 0)
2358    return;
2359
2360  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2361    QualType Type = Var->getType();
2362    // C++ [dcl.init.ref]p3:
2363    //   The initializer can be omitted for a reference only in a
2364    //   parameter declaration (8.3.5), in the declaration of a
2365    //   function return type, in the declaration of a class member
2366    //   within its class declaration (9.2), and where the extern
2367    //   specifier is explicitly used.
2368    if (Type->isReferenceType() &&
2369        Var->getStorageClass() != VarDecl::Extern &&
2370        Var->getStorageClass() != VarDecl::PrivateExtern) {
2371      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2372        << Var->getDeclName()
2373        << SourceRange(Var->getLocation(), Var->getLocation());
2374      Var->setInvalidDecl();
2375      return;
2376    }
2377
2378    // C++ [dcl.init]p9:
2379    //
2380    //   If no initializer is specified for an object, and the object
2381    //   is of (possibly cv-qualified) non-POD class type (or array
2382    //   thereof), the object shall be default-initialized; if the
2383    //   object is of const-qualified type, the underlying class type
2384    //   shall have a user-declared default constructor.
2385    if (getLangOptions().CPlusPlus) {
2386      QualType InitType = Type;
2387      if (const ArrayType *Array = Context.getAsArrayType(Type))
2388        InitType = Array->getElementType();
2389      if (Var->getStorageClass() != VarDecl::Extern &&
2390          Var->getStorageClass() != VarDecl::PrivateExtern &&
2391          InitType->isRecordType()) {
2392        const CXXConstructorDecl *Constructor
2393          = PerformInitializationByConstructor(InitType, 0, 0,
2394                                               Var->getLocation(),
2395                                               SourceRange(Var->getLocation(),
2396                                                           Var->getLocation()),
2397                                               Var->getDeclName(),
2398                                               IK_Default);
2399        if (!Constructor)
2400          Var->setInvalidDecl();
2401      }
2402    }
2403
2404#if 0
2405    // FIXME: Temporarily disabled because we are not properly parsing
2406    // linkage specifications on declarations, e.g.,
2407    //
2408    //   extern "C" const CGPoint CGPointerZero;
2409    //
2410    // C++ [dcl.init]p9:
2411    //
2412    //     If no initializer is specified for an object, and the
2413    //     object is of (possibly cv-qualified) non-POD class type (or
2414    //     array thereof), the object shall be default-initialized; if
2415    //     the object is of const-qualified type, the underlying class
2416    //     type shall have a user-declared default
2417    //     constructor. Otherwise, if no initializer is specified for
2418    //     an object, the object and its subobjects, if any, have an
2419    //     indeterminate initial value; if the object or any of its
2420    //     subobjects are of const-qualified type, the program is
2421    //     ill-formed.
2422    //
2423    // This isn't technically an error in C, so we don't diagnose it.
2424    //
2425    // FIXME: Actually perform the POD/user-defined default
2426    // constructor check.
2427    if (getLangOptions().CPlusPlus &&
2428        Context.getCanonicalType(Type).isConstQualified() &&
2429        Var->getStorageClass() != VarDecl::Extern)
2430      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2431        << Var->getName()
2432        << SourceRange(Var->getLocation(), Var->getLocation());
2433#endif
2434  }
2435}
2436
2437/// The declarators are chained together backwards, reverse the list.
2438Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2439  // Often we have single declarators, handle them quickly.
2440  Decl *GroupDecl = static_cast<Decl*>(group);
2441  if (GroupDecl == 0)
2442    return 0;
2443
2444  Decl *Group = dyn_cast<Decl>(GroupDecl);
2445  Decl *NewGroup = 0;
2446  if (Group->getNextDeclarator() == 0)
2447    NewGroup = Group;
2448  else { // reverse the list.
2449    while (Group) {
2450      Decl *Next = Group->getNextDeclarator();
2451      Group->setNextDeclarator(NewGroup);
2452      NewGroup = Group;
2453      Group = Next;
2454    }
2455  }
2456  // Perform semantic analysis that depends on having fully processed both
2457  // the declarator and initializer.
2458  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2459    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2460    if (!IDecl)
2461      continue;
2462    QualType T = IDecl->getType();
2463
2464    if (T->isVariableArrayType()) {
2465      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2466
2467      // FIXME: This won't give the correct result for
2468      // int a[10][n];
2469      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2470      if (IDecl->isFileVarDecl()) {
2471        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2472          SizeRange;
2473
2474        IDecl->setInvalidDecl();
2475      } else {
2476        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2477        // static storage duration, it shall not have a variable length array.
2478        if (IDecl->getStorageClass() == VarDecl::Static) {
2479          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2480            << SizeRange;
2481          IDecl->setInvalidDecl();
2482        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2483          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2484            << SizeRange;
2485          IDecl->setInvalidDecl();
2486        }
2487      }
2488    } else if (T->isVariablyModifiedType()) {
2489      if (IDecl->isFileVarDecl()) {
2490        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2491        IDecl->setInvalidDecl();
2492      } else {
2493        if (IDecl->getStorageClass() == VarDecl::Extern) {
2494          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2495          IDecl->setInvalidDecl();
2496        }
2497      }
2498    }
2499
2500    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2501    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2502    if (IDecl->isBlockVarDecl() &&
2503        IDecl->getStorageClass() != VarDecl::Extern) {
2504      if (!IDecl->isInvalidDecl() &&
2505          DiagnoseIncompleteType(IDecl->getLocation(), T,
2506                                 diag::err_typecheck_decl_incomplete_type))
2507        IDecl->setInvalidDecl();
2508    }
2509    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2510    // object that has file scope without an initializer, and without a
2511    // storage-class specifier or with the storage-class specifier "static",
2512    // constitutes a tentative definition. Note: A tentative definition with
2513    // external linkage is valid (C99 6.2.2p5).
2514    if (isTentativeDefinition(IDecl)) {
2515      if (T->isIncompleteArrayType()) {
2516        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2517        // array to be completed. Don't issue a diagnostic.
2518      } else if (!IDecl->isInvalidDecl() &&
2519                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2520                                        diag::err_typecheck_decl_incomplete_type))
2521        // C99 6.9.2p3: If the declaration of an identifier for an object is
2522        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2523        // declared type shall not be an incomplete type.
2524        IDecl->setInvalidDecl();
2525    }
2526    if (IDecl->isFileVarDecl())
2527      CheckForFileScopedRedefinitions(S, IDecl);
2528  }
2529  return NewGroup;
2530}
2531
2532/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2533/// to introduce parameters into function prototype scope.
2534Sema::DeclTy *
2535Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2536  const DeclSpec &DS = D.getDeclSpec();
2537
2538  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2539  VarDecl::StorageClass StorageClass = VarDecl::None;
2540  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2541    StorageClass = VarDecl::Register;
2542  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2543    Diag(DS.getStorageClassSpecLoc(),
2544         diag::err_invalid_storage_class_in_func_decl);
2545    D.getMutableDeclSpec().ClearStorageClassSpecs();
2546  }
2547  if (DS.isThreadSpecified()) {
2548    Diag(DS.getThreadSpecLoc(),
2549         diag::err_invalid_storage_class_in_func_decl);
2550    D.getMutableDeclSpec().ClearStorageClassSpecs();
2551  }
2552
2553  // Check that there are no default arguments inside the type of this
2554  // parameter (C++ only).
2555  if (getLangOptions().CPlusPlus)
2556    CheckExtraCXXDefaultArguments(D);
2557
2558  // In this context, we *do not* check D.getInvalidType(). If the declarator
2559  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2560  // though it will not reflect the user specified type.
2561  QualType parmDeclType = GetTypeForDeclarator(D, S);
2562
2563  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2564
2565  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2566  // Can this happen for params?  We already checked that they don't conflict
2567  // among each other.  Here they can only shadow globals, which is ok.
2568  IdentifierInfo *II = D.getIdentifier();
2569  if (II) {
2570    if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2571      if (PrevDecl->isTemplateParameter()) {
2572        // Maybe we will complain about the shadowed template parameter.
2573        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2574        // Just pretend that we didn't see the previous declaration.
2575        PrevDecl = 0;
2576      } else if (S->isDeclScope(PrevDecl)) {
2577        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2578
2579        // Recover by removing the name
2580        II = 0;
2581        D.SetIdentifier(0, D.getIdentifierLoc());
2582      }
2583    }
2584  }
2585
2586  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2587  // Doing the promotion here has a win and a loss. The win is the type for
2588  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2589  // code generator). The loss is the orginal type isn't preserved. For example:
2590  //
2591  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2592  //    int blockvardecl[5];
2593  //    sizeof(parmvardecl);  // size == 4
2594  //    sizeof(blockvardecl); // size == 20
2595  // }
2596  //
2597  // For expressions, all implicit conversions are captured using the
2598  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2599  //
2600  // FIXME: If a source translation tool needs to see the original type, then
2601  // we need to consider storing both types (in ParmVarDecl)...
2602  //
2603  if (parmDeclType->isArrayType()) {
2604    // int x[restrict 4] ->  int *restrict
2605    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2606  } else if (parmDeclType->isFunctionType())
2607    parmDeclType = Context.getPointerType(parmDeclType);
2608
2609  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2610                                         D.getIdentifierLoc(), II,
2611                                         parmDeclType, StorageClass,
2612                                         0);
2613
2614  if (D.getInvalidType())
2615    New->setInvalidDecl();
2616
2617  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2618  if (D.getCXXScopeSpec().isSet()) {
2619    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2620      << D.getCXXScopeSpec().getRange();
2621    New->setInvalidDecl();
2622  }
2623
2624  // Add the parameter declaration into this scope.
2625  S->AddDecl(New);
2626  if (II)
2627    IdResolver.AddDecl(New);
2628
2629  ProcessDeclAttributes(New, D);
2630  return New;
2631
2632}
2633
2634void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2635  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2636         "Not a function declarator!");
2637  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2638
2639  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2640  // for a K&R function.
2641  if (!FTI.hasPrototype) {
2642    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2643      if (FTI.ArgInfo[i].Param == 0) {
2644        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2645          << FTI.ArgInfo[i].Ident;
2646        // Implicitly declare the argument as type 'int' for lack of a better
2647        // type.
2648        DeclSpec DS;
2649        const char* PrevSpec; // unused
2650        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2651                           PrevSpec);
2652        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2653        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2654        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2655      }
2656    }
2657  }
2658}
2659
2660Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2661  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2662  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2663         "Not a function declarator!");
2664  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2665
2666  if (FTI.hasPrototype) {
2667    // FIXME: Diagnose arguments without names in C.
2668  }
2669
2670  Scope *ParentScope = FnBodyScope->getParent();
2671
2672  return ActOnStartOfFunctionDef(FnBodyScope,
2673                                 ActOnDeclarator(ParentScope, D, 0,
2674                                                 /*IsFunctionDefinition=*/true));
2675}
2676
2677Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2678  Decl *decl = static_cast<Decl*>(D);
2679  FunctionDecl *FD = cast<FunctionDecl>(decl);
2680
2681  // See if this is a redefinition.
2682  const FunctionDecl *Definition;
2683  if (FD->getBody(Definition)) {
2684    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2685    Diag(Definition->getLocation(), diag::note_previous_definition);
2686  }
2687
2688  PushDeclContext(FnBodyScope, FD);
2689
2690  // Check the validity of our function parameters
2691  CheckParmsForFunctionDef(FD);
2692
2693  // Introduce our parameters into the function scope
2694  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2695    ParmVarDecl *Param = FD->getParamDecl(p);
2696    Param->setOwningFunction(FD);
2697
2698    // If this has an identifier, add it to the scope stack.
2699    if (Param->getIdentifier())
2700      PushOnScopeChains(Param, FnBodyScope);
2701  }
2702
2703  // Checking attributes of current function definition
2704  // dllimport attribute.
2705  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2706    // dllimport attribute cannot be applied to definition.
2707    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2708      Diag(FD->getLocation(),
2709           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2710        << "dllimport";
2711      FD->setInvalidDecl();
2712      return FD;
2713    } else {
2714      // If a symbol previously declared dllimport is later defined, the
2715      // attribute is ignored in subsequent references, and a warning is
2716      // emitted.
2717      Diag(FD->getLocation(),
2718           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2719        << FD->getNameAsCString() << "dllimport";
2720    }
2721  }
2722  return FD;
2723}
2724
2725Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2726  Decl *dcl = static_cast<Decl *>(D);
2727  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2728  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2729    FD->setBody(Body);
2730    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2731  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2732    MD->setBody((Stmt*)Body);
2733  } else
2734    return 0;
2735  PopDeclContext();
2736  // Verify and clean out per-function state.
2737
2738  // Check goto/label use.
2739  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2740       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2741    // Verify that we have no forward references left.  If so, there was a goto
2742    // or address of a label taken, but no definition of it.  Label fwd
2743    // definitions are indicated with a null substmt.
2744    if (I->second->getSubStmt() == 0) {
2745      LabelStmt *L = I->second;
2746      // Emit error.
2747      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2748
2749      // At this point, we have gotos that use the bogus label.  Stitch it into
2750      // the function body so that they aren't leaked and that the AST is well
2751      // formed.
2752      if (Body) {
2753        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2754        cast<CompoundStmt>(Body)->push_back(L);
2755      } else {
2756        // The whole function wasn't parsed correctly, just delete this.
2757        delete L;
2758      }
2759    }
2760  }
2761  LabelMap.clear();
2762
2763  return D;
2764}
2765
2766/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2767/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2768NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2769                                          IdentifierInfo &II, Scope *S) {
2770  // Extension in C99.  Legal in C90, but warn about it.
2771  if (getLangOptions().C99)
2772    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2773  else
2774    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2775
2776  // FIXME: handle stuff like:
2777  // void foo() { extern float X(); }
2778  // void bar() { X(); }  <-- implicit decl for X in another scope.
2779
2780  // Set a Declarator for the implicit definition: int foo();
2781  const char *Dummy;
2782  DeclSpec DS;
2783  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2784  Error = Error; // Silence warning.
2785  assert(!Error && "Error setting up implicit decl!");
2786  Declarator D(DS, Declarator::BlockContext);
2787  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2788  D.SetIdentifier(&II, Loc);
2789
2790  // Insert this function into translation-unit scope.
2791
2792  DeclContext *PrevDC = CurContext;
2793  CurContext = Context.getTranslationUnitDecl();
2794
2795  FunctionDecl *FD =
2796    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2797  FD->setImplicit();
2798
2799  CurContext = PrevDC;
2800
2801  return FD;
2802}
2803
2804
2805TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2806                                    Decl *LastDeclarator) {
2807  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2808  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2809
2810  // Scope manipulation handled by caller.
2811  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2812                                           D.getIdentifierLoc(),
2813                                           D.getIdentifier(),
2814                                           T);
2815  NewTD->setNextDeclarator(LastDeclarator);
2816  if (D.getInvalidType())
2817    NewTD->setInvalidDecl();
2818  return NewTD;
2819}
2820
2821/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2822/// former case, Name will be non-null.  In the later case, Name will be null.
2823/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2824/// reference/declaration/definition of a tag.
2825Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2826                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2827                             IdentifierInfo *Name, SourceLocation NameLoc,
2828                             AttributeList *Attr,
2829                             MultiTemplateParamsArg TemplateParameterLists) {
2830  // If this is not a definition, it must have a name.
2831  assert((Name != 0 || TK == TK_Definition) &&
2832         "Nameless record must be a definition!");
2833
2834  TagDecl::TagKind Kind;
2835  switch (TagSpec) {
2836  default: assert(0 && "Unknown tag type!");
2837  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2838  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2839  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2840  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2841  }
2842
2843  DeclContext *SearchDC = CurContext;
2844  DeclContext *DC = CurContext;
2845  DeclContext *LexicalContext = CurContext;
2846  Decl *PrevDecl = 0;
2847
2848  bool Invalid = false;
2849
2850  if (Name && SS.isNotEmpty()) {
2851    // We have a nested-name tag ('struct foo::bar').
2852
2853    // Check for invalid 'foo::'.
2854    if (SS.isInvalid()) {
2855      Name = 0;
2856      goto CreateNewDecl;
2857    }
2858
2859    DC = static_cast<DeclContext*>(SS.getScopeRep());
2860    // Look-up name inside 'foo::'.
2861    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC)
2862                                           .getAsDecl());
2863
2864    // A tag 'foo::bar' must already exist.
2865    if (PrevDecl == 0) {
2866      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2867      Name = 0;
2868      goto CreateNewDecl;
2869    }
2870  } else if (Name) {
2871    // If this is a named struct, check to see if there was a previous forward
2872    // declaration or definition.
2873    PrevDecl = dyn_cast_or_null<NamedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S)
2874                                           .getAsDecl());
2875
2876    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2877      // FIXME: This makes sure that we ignore the contexts associated
2878      // with C structs, unions, and enums when looking for a matching
2879      // tag declaration or definition. See the similar lookup tweak
2880      // in Sema::LookupDecl; is there a better way to deal with this?
2881      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2882        SearchDC = SearchDC->getParent();
2883    }
2884  }
2885
2886  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2887    // Maybe we will complain about the shadowed template parameter.
2888    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2889    // Just pretend that we didn't see the previous declaration.
2890    PrevDecl = 0;
2891  }
2892
2893  if (PrevDecl) {
2894    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2895            "unexpected Decl type");
2896    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2897      // If this is a use of a previous tag, or if the tag is already declared
2898      // in the same scope (so that the definition/declaration completes or
2899      // rementions the tag), reuse the decl.
2900      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2901        // Make sure that this wasn't declared as an enum and now used as a
2902        // struct or something similar.
2903        if (PrevTagDecl->getTagKind() != Kind) {
2904          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2905          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2906          // Recover by making this an anonymous redefinition.
2907          Name = 0;
2908          PrevDecl = 0;
2909          Invalid = true;
2910        } else {
2911          // If this is a use, just return the declaration we found.
2912
2913          // FIXME: In the future, return a variant or some other clue
2914          // for the consumer of this Decl to know it doesn't own it.
2915          // For our current ASTs this shouldn't be a problem, but will
2916          // need to be changed with DeclGroups.
2917          if (TK == TK_Reference)
2918            return PrevDecl;
2919
2920          // Diagnose attempts to redefine a tag.
2921          if (TK == TK_Definition) {
2922            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2923              Diag(NameLoc, diag::err_redefinition) << Name;
2924              Diag(Def->getLocation(), diag::note_previous_definition);
2925              // If this is a redefinition, recover by making this
2926              // struct be anonymous, which will make any later
2927              // references get the previous definition.
2928              Name = 0;
2929              PrevDecl = 0;
2930              Invalid = true;
2931            } else {
2932              // If the type is currently being defined, complain
2933              // about a nested redefinition.
2934              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2935              if (Tag->isBeingDefined()) {
2936                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2937                Diag(PrevTagDecl->getLocation(),
2938                     diag::note_previous_definition);
2939                Name = 0;
2940                PrevDecl = 0;
2941                Invalid = true;
2942              }
2943            }
2944
2945            // Okay, this is definition of a previously declared or referenced
2946            // tag PrevDecl. We're going to create a new Decl for it.
2947          }
2948        }
2949        // If we get here we have (another) forward declaration or we
2950        // have a definition.  Just create a new decl.
2951      } else {
2952        // If we get here, this is a definition of a new tag type in a nested
2953        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2954        // new decl/type.  We set PrevDecl to NULL so that the entities
2955        // have distinct types.
2956        PrevDecl = 0;
2957      }
2958      // If we get here, we're going to create a new Decl. If PrevDecl
2959      // is non-NULL, it's a definition of the tag declared by
2960      // PrevDecl. If it's NULL, we have a new definition.
2961    } else {
2962      // PrevDecl is a namespace.
2963      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2964        // The tag name clashes with a namespace name, issue an error and
2965        // recover by making this tag be anonymous.
2966        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2967        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2968        Name = 0;
2969        PrevDecl = 0;
2970        Invalid = true;
2971      } else {
2972        // The existing declaration isn't relevant to us; we're in a
2973        // new scope, so clear out the previous declaration.
2974        PrevDecl = 0;
2975      }
2976    }
2977  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2978             (Kind != TagDecl::TK_enum))  {
2979    // C++ [basic.scope.pdecl]p5:
2980    //   -- for an elaborated-type-specifier of the form
2981    //
2982    //          class-key identifier
2983    //
2984    //      if the elaborated-type-specifier is used in the
2985    //      decl-specifier-seq or parameter-declaration-clause of a
2986    //      function defined in namespace scope, the identifier is
2987    //      declared as a class-name in the namespace that contains
2988    //      the declaration; otherwise, except as a friend
2989    //      declaration, the identifier is declared in the smallest
2990    //      non-class, non-function-prototype scope that contains the
2991    //      declaration.
2992    //
2993    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2994    // C structs and unions.
2995
2996    // Find the context where we'll be declaring the tag.
2997    // FIXME: We would like to maintain the current DeclContext as the
2998    // lexical context,
2999    while (DC->isRecord())
3000      DC = DC->getParent();
3001    LexicalContext = DC;
3002
3003    // Find the scope where we'll be declaring the tag.
3004    while (S->isClassScope() ||
3005           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3006           ((S->getFlags() & Scope::DeclScope) == 0) ||
3007           (S->getEntity() &&
3008            ((DeclContext *)S->getEntity())->isTransparentContext()))
3009      S = S->getParent();
3010  }
3011
3012CreateNewDecl:
3013
3014  // If there is an identifier, use the location of the identifier as the
3015  // location of the decl, otherwise use the location of the struct/union
3016  // keyword.
3017  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3018
3019  // Otherwise, create a new declaration. If there is a previous
3020  // declaration of the same entity, the two will be linked via
3021  // PrevDecl.
3022  TagDecl *New;
3023
3024  if (Kind == TagDecl::TK_enum) {
3025    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3026    // enum X { A, B, C } D;    D should chain to X.
3027    New = EnumDecl::Create(Context, DC, Loc, Name,
3028                           cast_or_null<EnumDecl>(PrevDecl));
3029    // If this is an undefined enum, warn.
3030    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3031  } else {
3032    // struct/union/class
3033
3034    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3035    // struct X { int A; } D;    D should chain to X.
3036    if (getLangOptions().CPlusPlus)
3037      // FIXME: Look for a way to use RecordDecl for simple structs.
3038      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3039                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3040    else
3041      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3042                               cast_or_null<RecordDecl>(PrevDecl));
3043  }
3044
3045  if (Kind != TagDecl::TK_enum) {
3046    // Handle #pragma pack: if the #pragma pack stack has non-default
3047    // alignment, make up a packed attribute for this decl. These
3048    // attributes are checked when the ASTContext lays out the
3049    // structure.
3050    //
3051    // It is important for implementing the correct semantics that this
3052    // happen here (in act on tag decl). The #pragma pack stack is
3053    // maintained as a result of parser callbacks which can occur at
3054    // many points during the parsing of a struct declaration (because
3055    // the #pragma tokens are effectively skipped over during the
3056    // parsing of the struct).
3057    if (unsigned Alignment = PackContext.getAlignment())
3058      New->addAttr(new PackedAttr(Alignment * 8));
3059  }
3060
3061  if (Invalid)
3062    New->setInvalidDecl();
3063
3064  if (Attr)
3065    ProcessDeclAttributeList(New, Attr);
3066
3067  // If we're declaring or defining a tag in function prototype scope
3068  // in C, note that this type can only be used within the function.
3069  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3070    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3071
3072  // Set the lexical context. If the tag has a C++ scope specifier, the
3073  // lexical context will be different from the semantic context.
3074  New->setLexicalDeclContext(LexicalContext);
3075
3076  if (TK == TK_Definition)
3077    New->startDefinition();
3078
3079  // If this has an identifier, add it to the scope stack.
3080  if (Name) {
3081    S = getNonFieldDeclScope(S);
3082
3083    // Add it to the decl chain.
3084    if (LexicalContext != CurContext) {
3085      // FIXME: PushOnScopeChains should not rely on CurContext!
3086      DeclContext *OldContext = CurContext;
3087      CurContext = LexicalContext;
3088      PushOnScopeChains(New, S);
3089      CurContext = OldContext;
3090    } else
3091      PushOnScopeChains(New, S);
3092  } else {
3093    LexicalContext->addDecl(New);
3094  }
3095
3096  return New;
3097}
3098
3099void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3100  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3101
3102  // Enter the tag context.
3103  PushDeclContext(S, Tag);
3104
3105  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3106    FieldCollector->StartClass();
3107
3108    if (Record->getIdentifier()) {
3109      // C++ [class]p2:
3110      //   [...] The class-name is also inserted into the scope of the
3111      //   class itself; this is known as the injected-class-name. For
3112      //   purposes of access checking, the injected-class-name is treated
3113      //   as if it were a public member name.
3114      RecordDecl *InjectedClassName
3115        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3116                                CurContext, Record->getLocation(),
3117                                Record->getIdentifier(), Record);
3118      InjectedClassName->setImplicit();
3119      PushOnScopeChains(InjectedClassName, S);
3120    }
3121  }
3122}
3123
3124void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3125  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3126
3127  if (isa<CXXRecordDecl>(Tag))
3128    FieldCollector->FinishClass();
3129
3130  // Exit this scope of this tag's definition.
3131  PopDeclContext();
3132
3133  // Notify the consumer that we've defined a tag.
3134  Consumer.HandleTagDeclDefinition(Tag);
3135}
3136
3137/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3138/// types into constant array types in certain situations which would otherwise
3139/// be errors (for GCC compatibility).
3140static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3141                                                    ASTContext &Context) {
3142  // This method tries to turn a variable array into a constant
3143  // array even when the size isn't an ICE.  This is necessary
3144  // for compatibility with code that depends on gcc's buggy
3145  // constant expression folding, like struct {char x[(int)(char*)2];}
3146  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3147  if (!VLATy) return QualType();
3148
3149  Expr::EvalResult EvalResult;
3150  if (!VLATy->getSizeExpr() ||
3151      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3152    return QualType();
3153
3154  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3155  llvm::APSInt &Res = EvalResult.Val.getInt();
3156  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3157    return Context.getConstantArrayType(VLATy->getElementType(),
3158                                        Res, ArrayType::Normal, 0);
3159  return QualType();
3160}
3161
3162bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3163                          QualType FieldTy, const Expr *BitWidth) {
3164  // FIXME: 6.7.2.1p4 - verify the field type.
3165
3166  llvm::APSInt Value;
3167  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3168    return true;
3169
3170  // Zero-width bitfield is ok for anonymous field.
3171  if (Value == 0 && FieldName)
3172    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3173
3174  if (Value.isNegative())
3175    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3176
3177  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3178  // FIXME: We won't need the 0 size once we check that the field type is valid.
3179  if (TypeSize && Value.getZExtValue() > TypeSize)
3180    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3181       << FieldName << (unsigned)TypeSize;
3182
3183  return false;
3184}
3185
3186/// ActOnField - Each field of a struct/union/class is passed into this in order
3187/// to create a FieldDecl object for it.
3188Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3189                               SourceLocation DeclStart,
3190                               Declarator &D, ExprTy *BitfieldWidth) {
3191  IdentifierInfo *II = D.getIdentifier();
3192  Expr *BitWidth = (Expr*)BitfieldWidth;
3193  SourceLocation Loc = DeclStart;
3194  RecordDecl *Record = (RecordDecl *)TagD;
3195  if (II) Loc = D.getIdentifierLoc();
3196
3197  // FIXME: Unnamed fields can be handled in various different ways, for
3198  // example, unnamed unions inject all members into the struct namespace!
3199
3200  QualType T = GetTypeForDeclarator(D, S);
3201  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3202  bool InvalidDecl = false;
3203
3204  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3205  // than a variably modified type.
3206  if (T->isVariablyModifiedType()) {
3207    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3208    if (!FixedTy.isNull()) {
3209      Diag(Loc, diag::warn_illegal_constant_array_size);
3210      T = FixedTy;
3211    } else {
3212      Diag(Loc, diag::err_typecheck_field_variable_size);
3213      T = Context.IntTy;
3214      InvalidDecl = true;
3215    }
3216  }
3217
3218  if (BitWidth) {
3219    if (VerifyBitField(Loc, II, T, BitWidth))
3220      InvalidDecl = true;
3221  } else {
3222    // Not a bitfield.
3223
3224    // validate II.
3225
3226  }
3227
3228  // FIXME: Chain fielddecls together.
3229  FieldDecl *NewFD;
3230
3231  NewFD = FieldDecl::Create(Context, Record,
3232                            Loc, II, T, BitWidth,
3233                            D.getDeclSpec().getStorageClassSpec() ==
3234                              DeclSpec::SCS_mutable);
3235
3236  if (II) {
3237    Decl *PrevDecl
3238      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false);
3239    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3240        && !isa<TagDecl>(PrevDecl)) {
3241      Diag(Loc, diag::err_duplicate_member) << II;
3242      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3243      NewFD->setInvalidDecl();
3244      Record->setInvalidDecl();
3245    }
3246  }
3247
3248  if (getLangOptions().CPlusPlus) {
3249    CheckExtraCXXDefaultArguments(D);
3250    if (!T->isPODType())
3251      cast<CXXRecordDecl>(Record)->setPOD(false);
3252  }
3253
3254  ProcessDeclAttributes(NewFD, D);
3255
3256  if (D.getInvalidType() || InvalidDecl)
3257    NewFD->setInvalidDecl();
3258
3259  if (II) {
3260    PushOnScopeChains(NewFD, S);
3261  } else
3262    Record->addDecl(NewFD);
3263
3264  return NewFD;
3265}
3266
3267/// TranslateIvarVisibility - Translate visibility from a token ID to an
3268///  AST enum value.
3269static ObjCIvarDecl::AccessControl
3270TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3271  switch (ivarVisibility) {
3272  default: assert(0 && "Unknown visitibility kind");
3273  case tok::objc_private: return ObjCIvarDecl::Private;
3274  case tok::objc_public: return ObjCIvarDecl::Public;
3275  case tok::objc_protected: return ObjCIvarDecl::Protected;
3276  case tok::objc_package: return ObjCIvarDecl::Package;
3277  }
3278}
3279
3280/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3281/// in order to create an IvarDecl object for it.
3282Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3283                              SourceLocation DeclStart,
3284                              Declarator &D, ExprTy *BitfieldWidth,
3285                              tok::ObjCKeywordKind Visibility) {
3286
3287  IdentifierInfo *II = D.getIdentifier();
3288  Expr *BitWidth = (Expr*)BitfieldWidth;
3289  SourceLocation Loc = DeclStart;
3290  if (II) Loc = D.getIdentifierLoc();
3291
3292  // FIXME: Unnamed fields can be handled in various different ways, for
3293  // example, unnamed unions inject all members into the struct namespace!
3294
3295  QualType T = GetTypeForDeclarator(D, S);
3296  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3297  bool InvalidDecl = false;
3298
3299  if (BitWidth) {
3300    // TODO: Validate.
3301    //printf("WARNING: BITFIELDS IGNORED!\n");
3302
3303    // 6.7.2.1p3
3304    // 6.7.2.1p4
3305
3306  } else {
3307    // Not a bitfield.
3308
3309    // validate II.
3310
3311  }
3312
3313  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3314  // than a variably modified type.
3315  if (T->isVariablyModifiedType()) {
3316    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3317    InvalidDecl = true;
3318  }
3319
3320  // Get the visibility (access control) for this ivar.
3321  ObjCIvarDecl::AccessControl ac =
3322    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3323                                        : ObjCIvarDecl::None;
3324
3325  // Construct the decl.
3326  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3327                                             (Expr *)BitfieldWidth);
3328
3329  if (II) {
3330    Decl *PrevDecl
3331      = LookupDecl(II, Decl::IDNS_Member, S, 0, false, false);
3332    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3333        && !isa<TagDecl>(PrevDecl)) {
3334      Diag(Loc, diag::err_duplicate_member) << II;
3335      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3336      NewID->setInvalidDecl();
3337    }
3338  }
3339
3340  // Process attributes attached to the ivar.
3341  ProcessDeclAttributes(NewID, D);
3342
3343  if (D.getInvalidType() || InvalidDecl)
3344    NewID->setInvalidDecl();
3345
3346  if (II) {
3347    // FIXME: When interfaces are DeclContexts, we'll need to add
3348    // these to the interface.
3349    S->AddDecl(NewID);
3350    IdResolver.AddDecl(NewID);
3351  }
3352
3353  return NewID;
3354}
3355
3356void Sema::ActOnFields(Scope* S,
3357                       SourceLocation RecLoc, DeclTy *RecDecl,
3358                       DeclTy **Fields, unsigned NumFields,
3359                       SourceLocation LBrac, SourceLocation RBrac,
3360                       AttributeList *Attr) {
3361  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3362  assert(EnclosingDecl && "missing record or interface decl");
3363  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3364
3365  // Verify that all the fields are okay.
3366  unsigned NumNamedMembers = 0;
3367  llvm::SmallVector<FieldDecl*, 32> RecFields;
3368
3369  for (unsigned i = 0; i != NumFields; ++i) {
3370    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3371    assert(FD && "missing field decl");
3372
3373    // Get the type for the field.
3374    Type *FDTy = FD->getType().getTypePtr();
3375
3376    if (!FD->isAnonymousStructOrUnion()) {
3377      // Remember all fields written by the user.
3378      RecFields.push_back(FD);
3379    }
3380
3381    // C99 6.7.2.1p2 - A field may not be a function type.
3382    if (FDTy->isFunctionType()) {
3383      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3384        << FD->getDeclName();
3385      FD->setInvalidDecl();
3386      EnclosingDecl->setInvalidDecl();
3387      continue;
3388    }
3389    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3390    if (FDTy->isIncompleteType()) {
3391      if (!Record) {  // Incomplete ivar type is always an error.
3392        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3393                               diag::err_field_incomplete);
3394        FD->setInvalidDecl();
3395        EnclosingDecl->setInvalidDecl();
3396        continue;
3397      }
3398      if (i != NumFields-1 ||                   // ... that the last member ...
3399          !Record->isStruct() ||  // ... of a structure ...
3400          !FDTy->isArrayType()) {         //... may have incomplete array type.
3401        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3402                               diag::err_field_incomplete);
3403        FD->setInvalidDecl();
3404        EnclosingDecl->setInvalidDecl();
3405        continue;
3406      }
3407      if (NumNamedMembers < 1) {  //... must have more than named member ...
3408        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3409          << FD->getDeclName();
3410        FD->setInvalidDecl();
3411        EnclosingDecl->setInvalidDecl();
3412        continue;
3413      }
3414      // Okay, we have a legal flexible array member at the end of the struct.
3415      if (Record)
3416        Record->setHasFlexibleArrayMember(true);
3417    }
3418    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3419    /// field of another structure or the element of an array.
3420    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3421      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3422        // If this is a member of a union, then entire union becomes "flexible".
3423        if (Record && Record->isUnion()) {
3424          Record->setHasFlexibleArrayMember(true);
3425        } else {
3426          // If this is a struct/class and this is not the last element, reject
3427          // it.  Note that GCC supports variable sized arrays in the middle of
3428          // structures.
3429          if (i != NumFields-1) {
3430            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3431              << FD->getDeclName();
3432            FD->setInvalidDecl();
3433            EnclosingDecl->setInvalidDecl();
3434            continue;
3435          }
3436          // We support flexible arrays at the end of structs in other structs
3437          // as an extension.
3438          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3439            << FD->getDeclName();
3440          if (Record)
3441            Record->setHasFlexibleArrayMember(true);
3442        }
3443      }
3444    }
3445    /// A field cannot be an Objective-c object
3446    if (FDTy->isObjCInterfaceType()) {
3447      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3448        << FD->getDeclName();
3449      FD->setInvalidDecl();
3450      EnclosingDecl->setInvalidDecl();
3451      continue;
3452    }
3453    // Keep track of the number of named members.
3454    if (FD->getIdentifier())
3455      ++NumNamedMembers;
3456  }
3457
3458  // Okay, we successfully defined 'Record'.
3459  if (Record) {
3460    Record->completeDefinition(Context);
3461  } else {
3462    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3463    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3464      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3465      // Must enforce the rule that ivars in the base classes may not be
3466      // duplicates.
3467      if (ID->getSuperClass()) {
3468        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3469             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3470          ObjCIvarDecl* Ivar = (*IVI);
3471          IdentifierInfo *II = Ivar->getIdentifier();
3472          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3473          if (prevIvar) {
3474            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3475            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3476          }
3477        }
3478      }
3479    }
3480    else if (ObjCImplementationDecl *IMPDecl =
3481               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3482      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3483      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3484      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3485    }
3486  }
3487
3488  if (Attr)
3489    ProcessDeclAttributeList(Record, Attr);
3490}
3491
3492Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3493                                      DeclTy *lastEnumConst,
3494                                      SourceLocation IdLoc, IdentifierInfo *Id,
3495                                      SourceLocation EqualLoc, ExprTy *val) {
3496  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3497  EnumConstantDecl *LastEnumConst =
3498    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3499  Expr *Val = static_cast<Expr*>(val);
3500
3501  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3502  // we find one that is.
3503  S = getNonFieldDeclScope(S);
3504
3505  // Verify that there isn't already something declared with this name in this
3506  // scope.
3507  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3508  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3509    // Maybe we will complain about the shadowed template parameter.
3510    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3511    // Just pretend that we didn't see the previous declaration.
3512    PrevDecl = 0;
3513  }
3514
3515  if (PrevDecl) {
3516    // When in C++, we may get a TagDecl with the same name; in this case the
3517    // enum constant will 'hide' the tag.
3518    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3519           "Received TagDecl when not in C++!");
3520    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3521      if (isa<EnumConstantDecl>(PrevDecl))
3522        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3523      else
3524        Diag(IdLoc, diag::err_redefinition) << Id;
3525      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3526      delete Val;
3527      return 0;
3528    }
3529  }
3530
3531  llvm::APSInt EnumVal(32);
3532  QualType EltTy;
3533  if (Val) {
3534    // Make sure to promote the operand type to int.
3535    UsualUnaryConversions(Val);
3536
3537    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3538    SourceLocation ExpLoc;
3539    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3540      delete Val;
3541      Val = 0;  // Just forget about it.
3542    } else {
3543      EltTy = Val->getType();
3544    }
3545  }
3546
3547  if (!Val) {
3548    if (LastEnumConst) {
3549      // Assign the last value + 1.
3550      EnumVal = LastEnumConst->getInitVal();
3551      ++EnumVal;
3552
3553      // Check for overflow on increment.
3554      if (EnumVal < LastEnumConst->getInitVal())
3555        Diag(IdLoc, diag::warn_enum_value_overflow);
3556
3557      EltTy = LastEnumConst->getType();
3558    } else {
3559      // First value, set to zero.
3560      EltTy = Context.IntTy;
3561      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3562    }
3563  }
3564
3565  EnumConstantDecl *New =
3566    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3567                             Val, EnumVal);
3568
3569  // Register this decl in the current scope stack.
3570  PushOnScopeChains(New, S);
3571
3572  return New;
3573}
3574
3575// FIXME: For consistency with ActOnFields(), we should have the parser
3576// pass in the source location for the left/right braces.
3577void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3578                         DeclTy **Elements, unsigned NumElements) {
3579  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3580  QualType EnumType = Context.getTypeDeclType(Enum);
3581
3582  // TODO: If the result value doesn't fit in an int, it must be a long or long
3583  // long value.  ISO C does not support this, but GCC does as an extension,
3584  // emit a warning.
3585  unsigned IntWidth = Context.Target.getIntWidth();
3586
3587  // Verify that all the values are okay, compute the size of the values, and
3588  // reverse the list.
3589  unsigned NumNegativeBits = 0;
3590  unsigned NumPositiveBits = 0;
3591
3592  // Keep track of whether all elements have type int.
3593  bool AllElementsInt = true;
3594
3595  for (unsigned i = 0; i != NumElements; ++i) {
3596    EnumConstantDecl *ECD =
3597      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3598    if (!ECD) continue;  // Already issued a diagnostic.
3599
3600    // If the enum value doesn't fit in an int, emit an extension warning.
3601    const llvm::APSInt &InitVal = ECD->getInitVal();
3602    assert(InitVal.getBitWidth() >= IntWidth &&
3603           "Should have promoted value to int");
3604    if (InitVal.getBitWidth() > IntWidth) {
3605      llvm::APSInt V(InitVal);
3606      V.trunc(IntWidth);
3607      V.extend(InitVal.getBitWidth());
3608      if (V != InitVal)
3609        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3610          << InitVal.toString(10);
3611    }
3612
3613    // Keep track of the size of positive and negative values.
3614    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3615      NumPositiveBits = std::max(NumPositiveBits,
3616                                 (unsigned)InitVal.getActiveBits());
3617    else
3618      NumNegativeBits = std::max(NumNegativeBits,
3619                                 (unsigned)InitVal.getMinSignedBits());
3620
3621    // Keep track of whether every enum element has type int (very commmon).
3622    if (AllElementsInt)
3623      AllElementsInt = ECD->getType() == Context.IntTy;
3624  }
3625
3626  // Figure out the type that should be used for this enum.
3627  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3628  QualType BestType;
3629  unsigned BestWidth;
3630
3631  if (NumNegativeBits) {
3632    // If there is a negative value, figure out the smallest integer type (of
3633    // int/long/longlong) that fits.
3634    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3635      BestType = Context.IntTy;
3636      BestWidth = IntWidth;
3637    } else {
3638      BestWidth = Context.Target.getLongWidth();
3639
3640      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3641        BestType = Context.LongTy;
3642      else {
3643        BestWidth = Context.Target.getLongLongWidth();
3644
3645        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3646          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3647        BestType = Context.LongLongTy;
3648      }
3649    }
3650  } else {
3651    // If there is no negative value, figure out which of uint, ulong, ulonglong
3652    // fits.
3653    if (NumPositiveBits <= IntWidth) {
3654      BestType = Context.UnsignedIntTy;
3655      BestWidth = IntWidth;
3656    } else if (NumPositiveBits <=
3657               (BestWidth = Context.Target.getLongWidth())) {
3658      BestType = Context.UnsignedLongTy;
3659    } else {
3660      BestWidth = Context.Target.getLongLongWidth();
3661      assert(NumPositiveBits <= BestWidth &&
3662             "How could an initializer get larger than ULL?");
3663      BestType = Context.UnsignedLongLongTy;
3664    }
3665  }
3666
3667  // Loop over all of the enumerator constants, changing their types to match
3668  // the type of the enum if needed.
3669  for (unsigned i = 0; i != NumElements; ++i) {
3670    EnumConstantDecl *ECD =
3671      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3672    if (!ECD) continue;  // Already issued a diagnostic.
3673
3674    // Standard C says the enumerators have int type, but we allow, as an
3675    // extension, the enumerators to be larger than int size.  If each
3676    // enumerator value fits in an int, type it as an int, otherwise type it the
3677    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3678    // that X has type 'int', not 'unsigned'.
3679    if (ECD->getType() == Context.IntTy) {
3680      // Make sure the init value is signed.
3681      llvm::APSInt IV = ECD->getInitVal();
3682      IV.setIsSigned(true);
3683      ECD->setInitVal(IV);
3684
3685      if (getLangOptions().CPlusPlus)
3686        // C++ [dcl.enum]p4: Following the closing brace of an
3687        // enum-specifier, each enumerator has the type of its
3688        // enumeration.
3689        ECD->setType(EnumType);
3690      continue;  // Already int type.
3691    }
3692
3693    // Determine whether the value fits into an int.
3694    llvm::APSInt InitVal = ECD->getInitVal();
3695    bool FitsInInt;
3696    if (InitVal.isUnsigned() || !InitVal.isNegative())
3697      FitsInInt = InitVal.getActiveBits() < IntWidth;
3698    else
3699      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3700
3701    // If it fits into an integer type, force it.  Otherwise force it to match
3702    // the enum decl type.
3703    QualType NewTy;
3704    unsigned NewWidth;
3705    bool NewSign;
3706    if (FitsInInt) {
3707      NewTy = Context.IntTy;
3708      NewWidth = IntWidth;
3709      NewSign = true;
3710    } else if (ECD->getType() == BestType) {
3711      // Already the right type!
3712      if (getLangOptions().CPlusPlus)
3713        // C++ [dcl.enum]p4: Following the closing brace of an
3714        // enum-specifier, each enumerator has the type of its
3715        // enumeration.
3716        ECD->setType(EnumType);
3717      continue;
3718    } else {
3719      NewTy = BestType;
3720      NewWidth = BestWidth;
3721      NewSign = BestType->isSignedIntegerType();
3722    }
3723
3724    // Adjust the APSInt value.
3725    InitVal.extOrTrunc(NewWidth);
3726    InitVal.setIsSigned(NewSign);
3727    ECD->setInitVal(InitVal);
3728
3729    // Adjust the Expr initializer and type.
3730    if (ECD->getInitExpr())
3731      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3732                                            /*isLvalue=*/false));
3733    if (getLangOptions().CPlusPlus)
3734      // C++ [dcl.enum]p4: Following the closing brace of an
3735      // enum-specifier, each enumerator has the type of its
3736      // enumeration.
3737      ECD->setType(EnumType);
3738    else
3739      ECD->setType(NewTy);
3740  }
3741
3742  Enum->completeDefinition(Context, BestType);
3743}
3744
3745Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3746                                          ExprArg expr) {
3747  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3748
3749  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3750}
3751
3752
3753void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3754                           ExprTy *alignment, SourceLocation PragmaLoc,
3755                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3756  Expr *Alignment = static_cast<Expr *>(alignment);
3757
3758  // If specified then alignment must be a "small" power of two.
3759  unsigned AlignmentVal = 0;
3760  if (Alignment) {
3761    llvm::APSInt Val;
3762    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3763        !Val.isPowerOf2() ||
3764        Val.getZExtValue() > 16) {
3765      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3766      delete Alignment;
3767      return; // Ignore
3768    }
3769
3770    AlignmentVal = (unsigned) Val.getZExtValue();
3771  }
3772
3773  switch (Kind) {
3774  case Action::PPK_Default: // pack([n])
3775    PackContext.setAlignment(AlignmentVal);
3776    break;
3777
3778  case Action::PPK_Show: // pack(show)
3779    // Show the current alignment, making sure to show the right value
3780    // for the default.
3781    AlignmentVal = PackContext.getAlignment();
3782    // FIXME: This should come from the target.
3783    if (AlignmentVal == 0)
3784      AlignmentVal = 8;
3785    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3786    break;
3787
3788  case Action::PPK_Push: // pack(push [, id] [, [n])
3789    PackContext.push(Name);
3790    // Set the new alignment if specified.
3791    if (Alignment)
3792      PackContext.setAlignment(AlignmentVal);
3793    break;
3794
3795  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3796    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3797    // "#pragma pack(pop, identifier, n) is undefined"
3798    if (Alignment && Name)
3799      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3800
3801    // Do the pop.
3802    if (!PackContext.pop(Name)) {
3803      // If a name was specified then failure indicates the name
3804      // wasn't found. Otherwise failure indicates the stack was
3805      // empty.
3806      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3807        << (Name ? "no record matching name" : "stack empty");
3808
3809      // FIXME: Warn about popping named records as MSVC does.
3810    } else {
3811      // Pop succeeded, set the new alignment if specified.
3812      if (Alignment)
3813        PackContext.setAlignment(AlignmentVal);
3814    }
3815    break;
3816
3817  default:
3818    assert(0 && "Invalid #pragma pack kind.");
3819  }
3820}
3821
3822bool PragmaPackStack::pop(IdentifierInfo *Name) {
3823  if (Stack.empty())
3824    return false;
3825
3826  // If name is empty just pop top.
3827  if (!Name) {
3828    Alignment = Stack.back().first;
3829    Stack.pop_back();
3830    return true;
3831  }
3832
3833  // Otherwise, find the named record.
3834  for (unsigned i = Stack.size(); i != 0; ) {
3835    --i;
3836    if (Stack[i].second == Name) {
3837      // Found it, pop up to and including this record.
3838      Alignment = Stack[i].first;
3839      Stack.erase(Stack.begin() + i, Stack.end());
3840      return true;
3841    }
3842  }
3843
3844  return false;
3845}
3846