SemaDecl.cpp revision 947be1941e9a1d4233116f51a45799d3904d4231
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo) {
74  // Determine where we will perform name lookup.
75  DeclContext *LookupCtx = 0;
76  if (ObjectTypePtr) {
77    QualType ObjectType = ObjectTypePtr.get();
78    if (ObjectType->isRecordType())
79      LookupCtx = computeDeclContext(ObjectType);
80  } else if (SS && SS->isNotEmpty()) {
81    LookupCtx = computeDeclContext(*SS, false);
82
83    if (!LookupCtx) {
84      if (isDependentScopeSpecifier(*SS)) {
85        // C++ [temp.res]p3:
86        //   A qualified-id that refers to a type and in which the
87        //   nested-name-specifier depends on a template-parameter (14.6.2)
88        //   shall be prefixed by the keyword typename to indicate that the
89        //   qualified-id denotes a type, forming an
90        //   elaborated-type-specifier (7.1.5.3).
91        //
92        // We therefore do not perform any name lookup if the result would
93        // refer to a member of an unknown specialization.
94        if (!isClassName)
95          return ParsedType();
96
97        // We know from the grammar that this name refers to a type,
98        // so build a dependent node to describe the type.
99        if (WantNontrivialTypeSourceInfo)
100          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
101
102        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
103        QualType T =
104          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
105                            II, NameLoc);
106
107          return ParsedType::make(T);
108      }
109
110      return ParsedType();
111    }
112
113    if (!LookupCtx->isDependentContext() &&
114        RequireCompleteDeclContext(*SS, LookupCtx))
115      return ParsedType();
116  }
117
118  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
119  // lookup for class-names.
120  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
121                                      LookupOrdinaryName;
122  LookupResult Result(*this, &II, NameLoc, Kind);
123  if (LookupCtx) {
124    // Perform "qualified" name lookup into the declaration context we
125    // computed, which is either the type of the base of a member access
126    // expression or the declaration context associated with a prior
127    // nested-name-specifier.
128    LookupQualifiedName(Result, LookupCtx);
129
130    if (ObjectTypePtr && Result.empty()) {
131      // C++ [basic.lookup.classref]p3:
132      //   If the unqualified-id is ~type-name, the type-name is looked up
133      //   in the context of the entire postfix-expression. If the type T of
134      //   the object expression is of a class type C, the type-name is also
135      //   looked up in the scope of class C. At least one of the lookups shall
136      //   find a name that refers to (possibly cv-qualified) T.
137      LookupName(Result, S);
138    }
139  } else {
140    // Perform unqualified name lookup.
141    LookupName(Result, S);
142  }
143
144  NamedDecl *IIDecl = 0;
145  switch (Result.getResultKind()) {
146  case LookupResult::NotFound:
147  case LookupResult::NotFoundInCurrentInstantiation:
148  case LookupResult::FoundOverloaded:
149  case LookupResult::FoundUnresolvedValue:
150    Result.suppressDiagnostics();
151    return ParsedType();
152
153  case LookupResult::Ambiguous:
154    // Recover from type-hiding ambiguities by hiding the type.  We'll
155    // do the lookup again when looking for an object, and we can
156    // diagnose the error then.  If we don't do this, then the error
157    // about hiding the type will be immediately followed by an error
158    // that only makes sense if the identifier was treated like a type.
159    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
160      Result.suppressDiagnostics();
161      return ParsedType();
162    }
163
164    // Look to see if we have a type anywhere in the list of results.
165    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
166         Res != ResEnd; ++Res) {
167      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
168        if (!IIDecl ||
169            (*Res)->getLocation().getRawEncoding() <
170              IIDecl->getLocation().getRawEncoding())
171          IIDecl = *Res;
172      }
173    }
174
175    if (!IIDecl) {
176      // None of the entities we found is a type, so there is no way
177      // to even assume that the result is a type. In this case, don't
178      // complain about the ambiguity. The parser will either try to
179      // perform this lookup again (e.g., as an object name), which
180      // will produce the ambiguity, or will complain that it expected
181      // a type name.
182      Result.suppressDiagnostics();
183      return ParsedType();
184    }
185
186    // We found a type within the ambiguous lookup; diagnose the
187    // ambiguity and then return that type. This might be the right
188    // answer, or it might not be, but it suppresses any attempt to
189    // perform the name lookup again.
190    break;
191
192  case LookupResult::Found:
193    IIDecl = Result.getFoundDecl();
194    break;
195  }
196
197  assert(IIDecl && "Didn't find decl");
198
199  QualType T;
200  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
201    DiagnoseUseOfDecl(IIDecl, NameLoc);
202
203    if (T.isNull())
204      T = Context.getTypeDeclType(TD);
205
206    if (SS && SS->isNotEmpty()) {
207      if (WantNontrivialTypeSourceInfo) {
208        // Construct a type with type-source information.
209        TypeLocBuilder Builder;
210        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
211
212        T = getElaboratedType(ETK_None, *SS, T);
213        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
214        ElabTL.setKeywordLoc(SourceLocation());
215        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
216        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
217      } else {
218        T = getElaboratedType(ETK_None, *SS, T);
219      }
220    }
221  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
222    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
223    if (!HasTrailingDot)
224      T = Context.getObjCInterfaceType(IDecl);
225  }
226
227  if (T.isNull()) {
228    // If it's not plausibly a type, suppress diagnostics.
229    Result.suppressDiagnostics();
230    return ParsedType();
231  }
232  return ParsedType::make(T);
233}
234
235/// isTagName() - This method is called *for error recovery purposes only*
236/// to determine if the specified name is a valid tag name ("struct foo").  If
237/// so, this returns the TST for the tag corresponding to it (TST_enum,
238/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
239/// where the user forgot to specify the tag.
240DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
241  // Do a tag name lookup in this scope.
242  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
243  LookupName(R, S, false);
244  R.suppressDiagnostics();
245  if (R.getResultKind() == LookupResult::Found)
246    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
247      switch (TD->getTagKind()) {
248      default:         return DeclSpec::TST_unspecified;
249      case TTK_Struct: return DeclSpec::TST_struct;
250      case TTK_Union:  return DeclSpec::TST_union;
251      case TTK_Class:  return DeclSpec::TST_class;
252      case TTK_Enum:   return DeclSpec::TST_enum;
253      }
254    }
255
256  return DeclSpec::TST_unspecified;
257}
258
259/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
260/// if a CXXScopeSpec's type is equal to the type of one of the base classes
261/// then downgrade the missing typename error to a warning.
262/// This is needed for MSVC compatibility; Example:
263/// @code
264/// template<class T> class A {
265/// public:
266///   typedef int TYPE;
267/// };
268/// template<class T> class B : public A<T> {
269/// public:
270///   A<T>::TYPE a; // no typename required because A<T> is a base class.
271/// };
272/// @endcode
273bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
274  if (CurContext->isRecord()) {
275    const Type *Ty = SS->getScopeRep()->getAsType();
276
277    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
278    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
279          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
280      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
281        return true;
282  }
283  return CurContext->isFunctionOrMethod();
284}
285
286bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
287                                   SourceLocation IILoc,
288                                   Scope *S,
289                                   CXXScopeSpec *SS,
290                                   ParsedType &SuggestedType) {
291  // We don't have anything to suggest (yet).
292  SuggestedType = ParsedType();
293
294  // There may have been a typo in the name of the type. Look up typo
295  // results, in case we have something that we can suggest.
296  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
297                                             LookupOrdinaryName, S, SS, NULL,
298                                             false, CTC_Type)) {
299    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
300    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
301
302    if (Corrected.isKeyword()) {
303      // We corrected to a keyword.
304      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
305      Diag(IILoc, diag::err_unknown_typename_suggest)
306        << &II << CorrectedQuotedStr;
307      return true;
308    } else {
309      NamedDecl *Result = Corrected.getCorrectionDecl();
310      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
311          !Result->isInvalidDecl()) {
312        // We found a similarly-named type or interface; suggest that.
313        if (!SS || !SS->isSet())
314          Diag(IILoc, diag::err_unknown_typename_suggest)
315            << &II << CorrectedQuotedStr
316            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
317        else if (DeclContext *DC = computeDeclContext(*SS, false))
318          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
319            << &II << DC << CorrectedQuotedStr << SS->getRange()
320            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
321        else
322          llvm_unreachable("could not have corrected a typo here");
323
324        Diag(Result->getLocation(), diag::note_previous_decl)
325          << CorrectedQuotedStr;
326
327        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
328                                    false, false, ParsedType(),
329                                    /*NonTrivialTypeSourceInfo=*/true);
330        return true;
331      }
332    }
333  }
334
335  if (getLangOptions().CPlusPlus) {
336    // See if II is a class template that the user forgot to pass arguments to.
337    UnqualifiedId Name;
338    Name.setIdentifier(&II, IILoc);
339    CXXScopeSpec EmptySS;
340    TemplateTy TemplateResult;
341    bool MemberOfUnknownSpecialization;
342    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
343                       Name, ParsedType(), true, TemplateResult,
344                       MemberOfUnknownSpecialization) == TNK_Type_template) {
345      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
346      Diag(IILoc, diag::err_template_missing_args) << TplName;
347      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
348        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
349          << TplDecl->getTemplateParameters()->getSourceRange();
350      }
351      return true;
352    }
353  }
354
355  // FIXME: Should we move the logic that tries to recover from a missing tag
356  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
357
358  if (!SS || (!SS->isSet() && !SS->isInvalid()))
359    Diag(IILoc, diag::err_unknown_typename) << &II;
360  else if (DeclContext *DC = computeDeclContext(*SS, false))
361    Diag(IILoc, diag::err_typename_nested_not_found)
362      << &II << DC << SS->getRange();
363  else if (isDependentScopeSpecifier(*SS)) {
364    unsigned DiagID = diag::err_typename_missing;
365    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
366      DiagID = diag::warn_typename_missing;
367
368    Diag(SS->getRange().getBegin(), DiagID)
369      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
370      << SourceRange(SS->getRange().getBegin(), IILoc)
371      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
372    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
373  } else {
374    assert(SS && SS->isInvalid() &&
375           "Invalid scope specifier has already been diagnosed");
376  }
377
378  return true;
379}
380
381/// \brief Determine whether the given result set contains either a type name
382/// or
383static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
384  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
385                       NextToken.is(tok::less);
386
387  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
388    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
389      return true;
390
391    if (CheckTemplate && isa<TemplateDecl>(*I))
392      return true;
393  }
394
395  return false;
396}
397
398Sema::NameClassification Sema::ClassifyName(Scope *S,
399                                            CXXScopeSpec &SS,
400                                            IdentifierInfo *&Name,
401                                            SourceLocation NameLoc,
402                                            const Token &NextToken) {
403  DeclarationNameInfo NameInfo(Name, NameLoc);
404  ObjCMethodDecl *CurMethod = getCurMethodDecl();
405
406  if (NextToken.is(tok::coloncolon)) {
407    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
408                                QualType(), false, SS, 0, false);
409
410  }
411
412  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
413  LookupParsedName(Result, S, &SS, !CurMethod);
414
415  // Perform lookup for Objective-C instance variables (including automatically
416  // synthesized instance variables), if we're in an Objective-C method.
417  // FIXME: This lookup really, really needs to be folded in to the normal
418  // unqualified lookup mechanism.
419  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
420    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
421    if (E.get() || E.isInvalid())
422      return E;
423  }
424
425  bool SecondTry = false;
426  bool IsFilteredTemplateName = false;
427
428Corrected:
429  switch (Result.getResultKind()) {
430  case LookupResult::NotFound:
431    // If an unqualified-id is followed by a '(', then we have a function
432    // call.
433    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
434      // In C++, this is an ADL-only call.
435      // FIXME: Reference?
436      if (getLangOptions().CPlusPlus)
437        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
438
439      // C90 6.3.2.2:
440      //   If the expression that precedes the parenthesized argument list in a
441      //   function call consists solely of an identifier, and if no
442      //   declaration is visible for this identifier, the identifier is
443      //   implicitly declared exactly as if, in the innermost block containing
444      //   the function call, the declaration
445      //
446      //     extern int identifier ();
447      //
448      //   appeared.
449      //
450      // We also allow this in C99 as an extension.
451      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
452        Result.addDecl(D);
453        Result.resolveKind();
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
455      }
456    }
457
458    // In C, we first see whether there is a tag type by the same name, in
459    // which case it's likely that the user just forget to write "enum",
460    // "struct", or "union".
461    if (!getLangOptions().CPlusPlus && !SecondTry) {
462      Result.clear(LookupTagName);
463      LookupParsedName(Result, S, &SS);
464      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
465        const char *TagName = 0;
466        const char *FixItTagName = 0;
467        switch (Tag->getTagKind()) {
468          case TTK_Class:
469            TagName = "class";
470            FixItTagName = "class ";
471            break;
472
473          case TTK_Enum:
474            TagName = "enum";
475            FixItTagName = "enum ";
476            break;
477
478          case TTK_Struct:
479            TagName = "struct";
480            FixItTagName = "struct ";
481            break;
482
483          case TTK_Union:
484            TagName = "union";
485            FixItTagName = "union ";
486            break;
487        }
488
489        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
490          << Name << TagName << getLangOptions().CPlusPlus
491          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
492        break;
493      }
494
495      Result.clear(LookupOrdinaryName);
496    }
497
498    // Perform typo correction to determine if there is another name that is
499    // close to this name.
500    if (!SecondTry) {
501      SecondTry = true;
502      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
503                                                 Result.getLookupKind(), S, &SS)) {
504        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
505        unsigned QualifiedDiag = diag::err_no_member_suggest;
506        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
507        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
508
509        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
510        NamedDecl *UnderlyingFirstDecl
511          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
512        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
513            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
514          UnqualifiedDiag = diag::err_no_template_suggest;
515          QualifiedDiag = diag::err_no_member_template_suggest;
516        } else if (UnderlyingFirstDecl &&
517                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
518                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
520           UnqualifiedDiag = diag::err_unknown_typename_suggest;
521           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
522         }
523
524        if (SS.isEmpty())
525          Diag(NameLoc, UnqualifiedDiag)
526            << Name << CorrectedQuotedStr
527            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
528        else
529          Diag(NameLoc, QualifiedDiag)
530            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
531            << SS.getRange()
532            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
533
534        // Update the name, so that the caller has the new name.
535        Name = Corrected.getCorrectionAsIdentifierInfo();
536
537        // Also update the LookupResult...
538        // FIXME: This should probably go away at some point
539        Result.clear();
540        Result.setLookupName(Corrected.getCorrection());
541        if (FirstDecl) Result.addDecl(FirstDecl);
542
543        // Typo correction corrected to a keyword.
544        if (Corrected.isKeyword())
545          return Corrected.getCorrectionAsIdentifierInfo();
546
547        if (FirstDecl)
548          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549            << CorrectedQuotedStr;
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  return DC->getLexicalParent();
724}
725
726void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
727  assert(getContainingDC(DC) == CurContext &&
728      "The next DeclContext should be lexically contained in the current one.");
729  CurContext = DC;
730  S->setEntity(DC);
731}
732
733void Sema::PopDeclContext() {
734  assert(CurContext && "DeclContext imbalance!");
735
736  CurContext = getContainingDC(CurContext);
737  assert(CurContext && "Popped translation unit!");
738}
739
740/// EnterDeclaratorContext - Used when we must lookup names in the context
741/// of a declarator's nested name specifier.
742///
743void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
744  // C++0x [basic.lookup.unqual]p13:
745  //   A name used in the definition of a static data member of class
746  //   X (after the qualified-id of the static member) is looked up as
747  //   if the name was used in a member function of X.
748  // C++0x [basic.lookup.unqual]p14:
749  //   If a variable member of a namespace is defined outside of the
750  //   scope of its namespace then any name used in the definition of
751  //   the variable member (after the declarator-id) is looked up as
752  //   if the definition of the variable member occurred in its
753  //   namespace.
754  // Both of these imply that we should push a scope whose context
755  // is the semantic context of the declaration.  We can't use
756  // PushDeclContext here because that context is not necessarily
757  // lexically contained in the current context.  Fortunately,
758  // the containing scope should have the appropriate information.
759
760  assert(!S->getEntity() && "scope already has entity");
761
762#ifndef NDEBUG
763  Scope *Ancestor = S->getParent();
764  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
765  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
766#endif
767
768  CurContext = DC;
769  S->setEntity(DC);
770}
771
772void Sema::ExitDeclaratorContext(Scope *S) {
773  assert(S->getEntity() == CurContext && "Context imbalance!");
774
775  // Switch back to the lexical context.  The safety of this is
776  // enforced by an assert in EnterDeclaratorContext.
777  Scope *Ancestor = S->getParent();
778  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
779  CurContext = (DeclContext*) Ancestor->getEntity();
780
781  // We don't need to do anything with the scope, which is going to
782  // disappear.
783}
784
785
786void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
787  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
788  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
789    // We assume that the caller has already called
790    // ActOnReenterTemplateScope
791    FD = TFD->getTemplatedDecl();
792  }
793  if (!FD)
794    return;
795
796  PushDeclContext(S, FD);
797  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
798    ParmVarDecl *Param = FD->getParamDecl(P);
799    // If the parameter has an identifier, then add it to the scope
800    if (Param->getIdentifier()) {
801      S->AddDecl(Param);
802      IdResolver.AddDecl(Param);
803    }
804  }
805}
806
807
808/// \brief Determine whether we allow overloading of the function
809/// PrevDecl with another declaration.
810///
811/// This routine determines whether overloading is possible, not
812/// whether some new function is actually an overload. It will return
813/// true in C++ (where we can always provide overloads) or, as an
814/// extension, in C when the previous function is already an
815/// overloaded function declaration or has the "overloadable"
816/// attribute.
817static bool AllowOverloadingOfFunction(LookupResult &Previous,
818                                       ASTContext &Context) {
819  if (Context.getLangOptions().CPlusPlus)
820    return true;
821
822  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
823    return true;
824
825  return (Previous.getResultKind() == LookupResult::Found
826          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
827}
828
829/// Add this decl to the scope shadowed decl chains.
830void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
831  // Move up the scope chain until we find the nearest enclosing
832  // non-transparent context. The declaration will be introduced into this
833  // scope.
834  while (S->getEntity() &&
835         ((DeclContext *)S->getEntity())->isTransparentContext())
836    S = S->getParent();
837
838  // Add scoped declarations into their context, so that they can be
839  // found later. Declarations without a context won't be inserted
840  // into any context.
841  if (AddToContext)
842    CurContext->addDecl(D);
843
844  // Out-of-line definitions shouldn't be pushed into scope in C++.
845  // Out-of-line variable and function definitions shouldn't even in C.
846  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
847      D->isOutOfLine())
848    return;
849
850  // Template instantiations should also not be pushed into scope.
851  if (isa<FunctionDecl>(D) &&
852      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
853    return;
854
855  // If this replaces anything in the current scope,
856  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
857                               IEnd = IdResolver.end();
858  for (; I != IEnd; ++I) {
859    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
860      S->RemoveDecl(*I);
861      IdResolver.RemoveDecl(*I);
862
863      // Should only need to replace one decl.
864      break;
865    }
866  }
867
868  S->AddDecl(D);
869
870  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
871    // Implicitly-generated labels may end up getting generated in an order that
872    // isn't strictly lexical, which breaks name lookup. Be careful to insert
873    // the label at the appropriate place in the identifier chain.
874    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
875      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
876      if (IDC == CurContext) {
877        if (!S->isDeclScope(*I))
878          continue;
879      } else if (IDC->Encloses(CurContext))
880        break;
881    }
882
883    IdResolver.InsertDeclAfter(I, D);
884  } else {
885    IdResolver.AddDecl(D);
886  }
887}
888
889bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
890                         bool ExplicitInstantiationOrSpecialization) {
891  return IdResolver.isDeclInScope(D, Ctx, Context, S,
892                                  ExplicitInstantiationOrSpecialization);
893}
894
895Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
896  DeclContext *TargetDC = DC->getPrimaryContext();
897  do {
898    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
899      if (ScopeDC->getPrimaryContext() == TargetDC)
900        return S;
901  } while ((S = S->getParent()));
902
903  return 0;
904}
905
906static bool isOutOfScopePreviousDeclaration(NamedDecl *,
907                                            DeclContext*,
908                                            ASTContext&);
909
910/// Filters out lookup results that don't fall within the given scope
911/// as determined by isDeclInScope.
912void Sema::FilterLookupForScope(LookupResult &R,
913                                DeclContext *Ctx, Scope *S,
914                                bool ConsiderLinkage,
915                                bool ExplicitInstantiationOrSpecialization) {
916  LookupResult::Filter F = R.makeFilter();
917  while (F.hasNext()) {
918    NamedDecl *D = F.next();
919
920    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
921      continue;
922
923    if (ConsiderLinkage &&
924        isOutOfScopePreviousDeclaration(D, Ctx, Context))
925      continue;
926
927    F.erase();
928  }
929
930  F.done();
931}
932
933static bool isUsingDecl(NamedDecl *D) {
934  return isa<UsingShadowDecl>(D) ||
935         isa<UnresolvedUsingTypenameDecl>(D) ||
936         isa<UnresolvedUsingValueDecl>(D);
937}
938
939/// Removes using shadow declarations from the lookup results.
940static void RemoveUsingDecls(LookupResult &R) {
941  LookupResult::Filter F = R.makeFilter();
942  while (F.hasNext())
943    if (isUsingDecl(F.next()))
944      F.erase();
945
946  F.done();
947}
948
949/// \brief Check for this common pattern:
950/// @code
951/// class S {
952///   S(const S&); // DO NOT IMPLEMENT
953///   void operator=(const S&); // DO NOT IMPLEMENT
954/// };
955/// @endcode
956static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
957  // FIXME: Should check for private access too but access is set after we get
958  // the decl here.
959  if (D->doesThisDeclarationHaveABody())
960    return false;
961
962  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
963    return CD->isCopyConstructor();
964  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
965    return Method->isCopyAssignmentOperator();
966  return false;
967}
968
969bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
970  assert(D);
971
972  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
973    return false;
974
975  // Ignore class templates.
976  if (D->getDeclContext()->isDependentContext() ||
977      D->getLexicalDeclContext()->isDependentContext())
978    return false;
979
980  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
981    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
982      return false;
983
984    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
985      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
986        return false;
987    } else {
988      // 'static inline' functions are used in headers; don't warn.
989      if (FD->getStorageClass() == SC_Static &&
990          FD->isInlineSpecified())
991        return false;
992    }
993
994    if (FD->doesThisDeclarationHaveABody() &&
995        Context.DeclMustBeEmitted(FD))
996      return false;
997  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
998    if (!VD->isFileVarDecl() ||
999        VD->getType().isConstant(Context) ||
1000        Context.DeclMustBeEmitted(VD))
1001      return false;
1002
1003    if (VD->isStaticDataMember() &&
1004        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1005      return false;
1006
1007  } else {
1008    return false;
1009  }
1010
1011  // Only warn for unused decls internal to the translation unit.
1012  if (D->getLinkage() == ExternalLinkage)
1013    return false;
1014
1015  return true;
1016}
1017
1018void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1019  if (!D)
1020    return;
1021
1022  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1023    const FunctionDecl *First = FD->getFirstDeclaration();
1024    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1029    const VarDecl *First = VD->getFirstDeclaration();
1030    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1031      return; // First should already be in the vector.
1032  }
1033
1034   if (ShouldWarnIfUnusedFileScopedDecl(D))
1035     UnusedFileScopedDecls.push_back(D);
1036 }
1037
1038static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1039  if (D->isInvalidDecl())
1040    return false;
1041
1042  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1043    return false;
1044
1045  if (isa<LabelDecl>(D))
1046    return true;
1047
1048  // White-list anything that isn't a local variable.
1049  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1050      !D->getDeclContext()->isFunctionOrMethod())
1051    return false;
1052
1053  // Types of valid local variables should be complete, so this should succeed.
1054  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1055
1056    // White-list anything with an __attribute__((unused)) type.
1057    QualType Ty = VD->getType();
1058
1059    // Only look at the outermost level of typedef.
1060    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1061      if (TT->getDecl()->hasAttr<UnusedAttr>())
1062        return false;
1063    }
1064
1065    // If we failed to complete the type for some reason, or if the type is
1066    // dependent, don't diagnose the variable.
1067    if (Ty->isIncompleteType() || Ty->isDependentType())
1068      return false;
1069
1070    if (const TagType *TT = Ty->getAs<TagType>()) {
1071      const TagDecl *Tag = TT->getDecl();
1072      if (Tag->hasAttr<UnusedAttr>())
1073        return false;
1074
1075      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1076        // FIXME: Checking for the presence of a user-declared constructor
1077        // isn't completely accurate; we'd prefer to check that the initializer
1078        // has no side effects.
1079        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1080          return false;
1081      }
1082    }
1083
1084    // TODO: __attribute__((unused)) templates?
1085  }
1086
1087  return true;
1088}
1089
1090static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1091                                     FixItHint &Hint) {
1092  if (isa<LabelDecl>(D)) {
1093    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1094                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1095    if (AfterColon.isInvalid())
1096      return;
1097    Hint = FixItHint::CreateRemoval(CharSourceRange::
1098                                    getCharRange(D->getLocStart(), AfterColon));
1099  }
1100  return;
1101}
1102
1103/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1104/// unless they are marked attr(unused).
1105void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1106  FixItHint Hint;
1107  if (!ShouldDiagnoseUnusedDecl(D))
1108    return;
1109
1110  GenerateFixForUnusedDecl(D, Context, Hint);
1111
1112  unsigned DiagID;
1113  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1114    DiagID = diag::warn_unused_exception_param;
1115  else if (isa<LabelDecl>(D))
1116    DiagID = diag::warn_unused_label;
1117  else
1118    DiagID = diag::warn_unused_variable;
1119
1120  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1121}
1122
1123static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1124  // Verify that we have no forward references left.  If so, there was a goto
1125  // or address of a label taken, but no definition of it.  Label fwd
1126  // definitions are indicated with a null substmt.
1127  if (L->getStmt() == 0)
1128    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1129}
1130
1131void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1132  if (S->decl_empty()) return;
1133  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1134         "Scope shouldn't contain decls!");
1135
1136  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1137       I != E; ++I) {
1138    Decl *TmpD = (*I);
1139    assert(TmpD && "This decl didn't get pushed??");
1140
1141    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1142    NamedDecl *D = cast<NamedDecl>(TmpD);
1143
1144    if (!D->getDeclName()) continue;
1145
1146    // Diagnose unused variables in this scope.
1147    if (!S->hasErrorOccurred())
1148      DiagnoseUnusedDecl(D);
1149
1150    // If this was a forward reference to a label, verify it was defined.
1151    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1152      CheckPoppedLabel(LD, *this);
1153
1154    // Remove this name from our lexical scope.
1155    IdResolver.RemoveDecl(D);
1156  }
1157}
1158
1159/// \brief Look for an Objective-C class in the translation unit.
1160///
1161/// \param Id The name of the Objective-C class we're looking for. If
1162/// typo-correction fixes this name, the Id will be updated
1163/// to the fixed name.
1164///
1165/// \param IdLoc The location of the name in the translation unit.
1166///
1167/// \param TypoCorrection If true, this routine will attempt typo correction
1168/// if there is no class with the given name.
1169///
1170/// \returns The declaration of the named Objective-C class, or NULL if the
1171/// class could not be found.
1172ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1173                                              SourceLocation IdLoc,
1174                                              bool DoTypoCorrection) {
1175  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1176  // creation from this context.
1177  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1178
1179  if (!IDecl && DoTypoCorrection) {
1180    // Perform typo correction at the given location, but only if we
1181    // find an Objective-C class name.
1182    TypoCorrection C;
1183    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1184                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1185        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1186      Diag(IdLoc, diag::err_undef_interface_suggest)
1187        << Id << IDecl->getDeclName()
1188        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1189      Diag(IDecl->getLocation(), diag::note_previous_decl)
1190        << IDecl->getDeclName();
1191
1192      Id = IDecl->getIdentifier();
1193    }
1194  }
1195
1196  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1197}
1198
1199/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1200/// from S, where a non-field would be declared. This routine copes
1201/// with the difference between C and C++ scoping rules in structs and
1202/// unions. For example, the following code is well-formed in C but
1203/// ill-formed in C++:
1204/// @code
1205/// struct S6 {
1206///   enum { BAR } e;
1207/// };
1208///
1209/// void test_S6() {
1210///   struct S6 a;
1211///   a.e = BAR;
1212/// }
1213/// @endcode
1214/// For the declaration of BAR, this routine will return a different
1215/// scope. The scope S will be the scope of the unnamed enumeration
1216/// within S6. In C++, this routine will return the scope associated
1217/// with S6, because the enumeration's scope is a transparent
1218/// context but structures can contain non-field names. In C, this
1219/// routine will return the translation unit scope, since the
1220/// enumeration's scope is a transparent context and structures cannot
1221/// contain non-field names.
1222Scope *Sema::getNonFieldDeclScope(Scope *S) {
1223  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1224         (S->getEntity() &&
1225          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1226         (S->isClassScope() && !getLangOptions().CPlusPlus))
1227    S = S->getParent();
1228  return S;
1229}
1230
1231/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1232/// file scope.  lazily create a decl for it. ForRedeclaration is true
1233/// if we're creating this built-in in anticipation of redeclaring the
1234/// built-in.
1235NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1236                                     Scope *S, bool ForRedeclaration,
1237                                     SourceLocation Loc) {
1238  Builtin::ID BID = (Builtin::ID)bid;
1239
1240  ASTContext::GetBuiltinTypeError Error;
1241  QualType R = Context.GetBuiltinType(BID, Error);
1242  switch (Error) {
1243  case ASTContext::GE_None:
1244    // Okay
1245    break;
1246
1247  case ASTContext::GE_Missing_stdio:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252
1253  case ASTContext::GE_Missing_setjmp:
1254    if (ForRedeclaration)
1255      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1256        << Context.BuiltinInfo.GetName(BID);
1257    return 0;
1258  }
1259
1260  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1261    Diag(Loc, diag::ext_implicit_lib_function_decl)
1262      << Context.BuiltinInfo.GetName(BID)
1263      << R;
1264    if (Context.BuiltinInfo.getHeaderName(BID) &&
1265        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1266          != DiagnosticsEngine::Ignored)
1267      Diag(Loc, diag::note_please_include_header)
1268        << Context.BuiltinInfo.getHeaderName(BID)
1269        << Context.BuiltinInfo.GetName(BID);
1270  }
1271
1272  FunctionDecl *New = FunctionDecl::Create(Context,
1273                                           Context.getTranslationUnitDecl(),
1274                                           Loc, Loc, II, R, /*TInfo=*/0,
1275                                           SC_Extern,
1276                                           SC_None, false,
1277                                           /*hasPrototype=*/true);
1278  New->setImplicit();
1279
1280  // Create Decl objects for each parameter, adding them to the
1281  // FunctionDecl.
1282  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1283    SmallVector<ParmVarDecl*, 16> Params;
1284    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1285      ParmVarDecl *parm =
1286        ParmVarDecl::Create(Context, New, SourceLocation(),
1287                            SourceLocation(), 0,
1288                            FT->getArgType(i), /*TInfo=*/0,
1289                            SC_None, SC_None, 0);
1290      parm->setScopeInfo(0, i);
1291      Params.push_back(parm);
1292    }
1293    New->setParams(Params);
1294  }
1295
1296  AddKnownFunctionAttributes(New);
1297
1298  // TUScope is the translation-unit scope to insert this function into.
1299  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1300  // relate Scopes to DeclContexts, and probably eliminate CurContext
1301  // entirely, but we're not there yet.
1302  DeclContext *SavedContext = CurContext;
1303  CurContext = Context.getTranslationUnitDecl();
1304  PushOnScopeChains(New, TUScope);
1305  CurContext = SavedContext;
1306  return New;
1307}
1308
1309/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1310/// same name and scope as a previous declaration 'Old'.  Figure out
1311/// how to resolve this situation, merging decls or emitting
1312/// diagnostics as appropriate. If there was an error, set New to be invalid.
1313///
1314void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1315  // If the new decl is known invalid already, don't bother doing any
1316  // merging checks.
1317  if (New->isInvalidDecl()) return;
1318
1319  // Allow multiple definitions for ObjC built-in typedefs.
1320  // FIXME: Verify the underlying types are equivalent!
1321  if (getLangOptions().ObjC1) {
1322    const IdentifierInfo *TypeID = New->getIdentifier();
1323    switch (TypeID->getLength()) {
1324    default: break;
1325    case 2:
1326      if (!TypeID->isStr("id"))
1327        break;
1328      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1329      // Install the built-in type for 'id', ignoring the current definition.
1330      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1331      return;
1332    case 5:
1333      if (!TypeID->isStr("Class"))
1334        break;
1335      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1336      // Install the built-in type for 'Class', ignoring the current definition.
1337      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1338      return;
1339    case 3:
1340      if (!TypeID->isStr("SEL"))
1341        break;
1342      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1343      // Install the built-in type for 'SEL', ignoring the current definition.
1344      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1345      return;
1346    }
1347    // Fall through - the typedef name was not a builtin type.
1348  }
1349
1350  // Verify the old decl was also a type.
1351  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1352  if (!Old) {
1353    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1354      << New->getDeclName();
1355
1356    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1357    if (OldD->getLocation().isValid())
1358      Diag(OldD->getLocation(), diag::note_previous_definition);
1359
1360    return New->setInvalidDecl();
1361  }
1362
1363  // If the old declaration is invalid, just give up here.
1364  if (Old->isInvalidDecl())
1365    return New->setInvalidDecl();
1366
1367  // Determine the "old" type we'll use for checking and diagnostics.
1368  QualType OldType;
1369  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1370    OldType = OldTypedef->getUnderlyingType();
1371  else
1372    OldType = Context.getTypeDeclType(Old);
1373
1374  // If the typedef types are not identical, reject them in all languages and
1375  // with any extensions enabled.
1376
1377  if (OldType != New->getUnderlyingType() &&
1378      Context.getCanonicalType(OldType) !=
1379      Context.getCanonicalType(New->getUnderlyingType())) {
1380    int Kind = 0;
1381    if (isa<TypeAliasDecl>(Old))
1382      Kind = 1;
1383    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1384      << Kind << New->getUnderlyingType() << OldType;
1385    if (Old->getLocation().isValid())
1386      Diag(Old->getLocation(), diag::note_previous_definition);
1387    return New->setInvalidDecl();
1388  }
1389
1390  // The types match.  Link up the redeclaration chain if the old
1391  // declaration was a typedef.
1392  // FIXME: this is a potential source of weirdness if the type
1393  // spellings don't match exactly.
1394  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1395    New->setPreviousDeclaration(Typedef);
1396
1397  // __module_private__ is propagated to later declarations.
1398  if (Old->isModulePrivate())
1399    New->setModulePrivate();
1400  else if (New->isModulePrivate())
1401    diagnoseModulePrivateRedeclaration(New, Old);
1402
1403  if (getLangOptions().MicrosoftExt)
1404    return;
1405
1406  if (getLangOptions().CPlusPlus) {
1407    // C++ [dcl.typedef]p2:
1408    //   In a given non-class scope, a typedef specifier can be used to
1409    //   redefine the name of any type declared in that scope to refer
1410    //   to the type to which it already refers.
1411    if (!isa<CXXRecordDecl>(CurContext))
1412      return;
1413
1414    // C++0x [dcl.typedef]p4:
1415    //   In a given class scope, a typedef specifier can be used to redefine
1416    //   any class-name declared in that scope that is not also a typedef-name
1417    //   to refer to the type to which it already refers.
1418    //
1419    // This wording came in via DR424, which was a correction to the
1420    // wording in DR56, which accidentally banned code like:
1421    //
1422    //   struct S {
1423    //     typedef struct A { } A;
1424    //   };
1425    //
1426    // in the C++03 standard. We implement the C++0x semantics, which
1427    // allow the above but disallow
1428    //
1429    //   struct S {
1430    //     typedef int I;
1431    //     typedef int I;
1432    //   };
1433    //
1434    // since that was the intent of DR56.
1435    if (!isa<TypedefNameDecl>(Old))
1436      return;
1437
1438    Diag(New->getLocation(), diag::err_redefinition)
1439      << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441    return New->setInvalidDecl();
1442  }
1443
1444  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1445  // is normally mapped to an error, but can be controlled with
1446  // -Wtypedef-redefinition.  If either the original or the redefinition is
1447  // in a system header, don't emit this for compatibility with GCC.
1448  if (getDiagnostics().getSuppressSystemWarnings() &&
1449      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1450       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1451    return;
1452
1453  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1454    << New->getDeclName();
1455  Diag(Old->getLocation(), diag::note_previous_definition);
1456  return;
1457}
1458
1459/// DeclhasAttr - returns true if decl Declaration already has the target
1460/// attribute.
1461static bool
1462DeclHasAttr(const Decl *D, const Attr *A) {
1463  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1464  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1465  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1466    if ((*i)->getKind() == A->getKind()) {
1467      if (Ann) {
1468        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1469          return true;
1470        continue;
1471      }
1472      // FIXME: Don't hardcode this check
1473      if (OA && isa<OwnershipAttr>(*i))
1474        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1475      return true;
1476    }
1477
1478  return false;
1479}
1480
1481/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1482static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1483                                ASTContext &C, bool mergeDeprecation = true) {
1484  if (!oldDecl->hasAttrs())
1485    return;
1486
1487  bool foundAny = newDecl->hasAttrs();
1488
1489  // Ensure that any moving of objects within the allocated map is done before
1490  // we process them.
1491  if (!foundAny) newDecl->setAttrs(AttrVec());
1492
1493  for (specific_attr_iterator<InheritableAttr>
1494       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1495       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1496    // Ignore deprecated/unavailable/availability attributes if requested.
1497    if (!mergeDeprecation &&
1498        (isa<DeprecatedAttr>(*i) ||
1499         isa<UnavailableAttr>(*i) ||
1500         isa<AvailabilityAttr>(*i)))
1501      continue;
1502
1503    if (!DeclHasAttr(newDecl, *i)) {
1504      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1505      newAttr->setInherited(true);
1506      newDecl->addAttr(newAttr);
1507      foundAny = true;
1508    }
1509  }
1510
1511  if (!foundAny) newDecl->dropAttrs();
1512}
1513
1514/// mergeParamDeclAttributes - Copy attributes from the old parameter
1515/// to the new one.
1516static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1517                                     const ParmVarDecl *oldDecl,
1518                                     ASTContext &C) {
1519  if (!oldDecl->hasAttrs())
1520    return;
1521
1522  bool foundAny = newDecl->hasAttrs();
1523
1524  // Ensure that any moving of objects within the allocated map is
1525  // done before we process them.
1526  if (!foundAny) newDecl->setAttrs(AttrVec());
1527
1528  for (specific_attr_iterator<InheritableParamAttr>
1529       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1530       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1531    if (!DeclHasAttr(newDecl, *i)) {
1532      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1533      newAttr->setInherited(true);
1534      newDecl->addAttr(newAttr);
1535      foundAny = true;
1536    }
1537  }
1538
1539  if (!foundAny) newDecl->dropAttrs();
1540}
1541
1542namespace {
1543
1544/// Used in MergeFunctionDecl to keep track of function parameters in
1545/// C.
1546struct GNUCompatibleParamWarning {
1547  ParmVarDecl *OldParm;
1548  ParmVarDecl *NewParm;
1549  QualType PromotedType;
1550};
1551
1552}
1553
1554/// getSpecialMember - get the special member enum for a method.
1555Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1556  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1557    if (Ctor->isDefaultConstructor())
1558      return Sema::CXXDefaultConstructor;
1559
1560    if (Ctor->isCopyConstructor())
1561      return Sema::CXXCopyConstructor;
1562
1563    if (Ctor->isMoveConstructor())
1564      return Sema::CXXMoveConstructor;
1565  } else if (isa<CXXDestructorDecl>(MD)) {
1566    return Sema::CXXDestructor;
1567  } else if (MD->isCopyAssignmentOperator()) {
1568    return Sema::CXXCopyAssignment;
1569  } else if (MD->isMoveAssignmentOperator()) {
1570    return Sema::CXXMoveAssignment;
1571  }
1572
1573  return Sema::CXXInvalid;
1574}
1575
1576/// canRedefineFunction - checks if a function can be redefined. Currently,
1577/// only extern inline functions can be redefined, and even then only in
1578/// GNU89 mode.
1579static bool canRedefineFunction(const FunctionDecl *FD,
1580                                const LangOptions& LangOpts) {
1581  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1582          !LangOpts.CPlusPlus &&
1583          FD->isInlineSpecified() &&
1584          FD->getStorageClass() == SC_Extern);
1585}
1586
1587/// MergeFunctionDecl - We just parsed a function 'New' from
1588/// declarator D which has the same name and scope as a previous
1589/// declaration 'Old'.  Figure out how to resolve this situation,
1590/// merging decls or emitting diagnostics as appropriate.
1591///
1592/// In C++, New and Old must be declarations that are not
1593/// overloaded. Use IsOverload to determine whether New and Old are
1594/// overloaded, and to select the Old declaration that New should be
1595/// merged with.
1596///
1597/// Returns true if there was an error, false otherwise.
1598bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1599  // Verify the old decl was also a function.
1600  FunctionDecl *Old = 0;
1601  if (FunctionTemplateDecl *OldFunctionTemplate
1602        = dyn_cast<FunctionTemplateDecl>(OldD))
1603    Old = OldFunctionTemplate->getTemplatedDecl();
1604  else
1605    Old = dyn_cast<FunctionDecl>(OldD);
1606  if (!Old) {
1607    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1608      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1609      Diag(Shadow->getTargetDecl()->getLocation(),
1610           diag::note_using_decl_target);
1611      Diag(Shadow->getUsingDecl()->getLocation(),
1612           diag::note_using_decl) << 0;
1613      return true;
1614    }
1615
1616    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1617      << New->getDeclName();
1618    Diag(OldD->getLocation(), diag::note_previous_definition);
1619    return true;
1620  }
1621
1622  // Determine whether the previous declaration was a definition,
1623  // implicit declaration, or a declaration.
1624  diag::kind PrevDiag;
1625  if (Old->isThisDeclarationADefinition())
1626    PrevDiag = diag::note_previous_definition;
1627  else if (Old->isImplicit())
1628    PrevDiag = diag::note_previous_implicit_declaration;
1629  else
1630    PrevDiag = diag::note_previous_declaration;
1631
1632  QualType OldQType = Context.getCanonicalType(Old->getType());
1633  QualType NewQType = Context.getCanonicalType(New->getType());
1634
1635  // Don't complain about this if we're in GNU89 mode and the old function
1636  // is an extern inline function.
1637  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1638      New->getStorageClass() == SC_Static &&
1639      Old->getStorageClass() != SC_Static &&
1640      !canRedefineFunction(Old, getLangOptions())) {
1641    if (getLangOptions().MicrosoftExt) {
1642      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1643      Diag(Old->getLocation(), PrevDiag);
1644    } else {
1645      Diag(New->getLocation(), diag::err_static_non_static) << New;
1646      Diag(Old->getLocation(), PrevDiag);
1647      return true;
1648    }
1649  }
1650
1651  // If a function is first declared with a calling convention, but is
1652  // later declared or defined without one, the second decl assumes the
1653  // calling convention of the first.
1654  //
1655  // For the new decl, we have to look at the NON-canonical type to tell the
1656  // difference between a function that really doesn't have a calling
1657  // convention and one that is declared cdecl. That's because in
1658  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1659  // because it is the default calling convention.
1660  //
1661  // Note also that we DO NOT return at this point, because we still have
1662  // other tests to run.
1663  const FunctionType *OldType = cast<FunctionType>(OldQType);
1664  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1665  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1666  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1667  bool RequiresAdjustment = false;
1668  if (OldTypeInfo.getCC() != CC_Default &&
1669      NewTypeInfo.getCC() == CC_Default) {
1670    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1671    RequiresAdjustment = true;
1672  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1673                                     NewTypeInfo.getCC())) {
1674    // Calling conventions really aren't compatible, so complain.
1675    Diag(New->getLocation(), diag::err_cconv_change)
1676      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1677      << (OldTypeInfo.getCC() == CC_Default)
1678      << (OldTypeInfo.getCC() == CC_Default ? "" :
1679          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1680    Diag(Old->getLocation(), diag::note_previous_declaration);
1681    return true;
1682  }
1683
1684  // FIXME: diagnose the other way around?
1685  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1686    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1687    RequiresAdjustment = true;
1688  }
1689
1690  // Merge regparm attribute.
1691  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1692      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1693    if (NewTypeInfo.getHasRegParm()) {
1694      Diag(New->getLocation(), diag::err_regparm_mismatch)
1695        << NewType->getRegParmType()
1696        << OldType->getRegParmType();
1697      Diag(Old->getLocation(), diag::note_previous_declaration);
1698      return true;
1699    }
1700
1701    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1702    RequiresAdjustment = true;
1703  }
1704
1705  if (RequiresAdjustment) {
1706    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1707    New->setType(QualType(NewType, 0));
1708    NewQType = Context.getCanonicalType(New->getType());
1709  }
1710
1711  if (getLangOptions().CPlusPlus) {
1712    // (C++98 13.1p2):
1713    //   Certain function declarations cannot be overloaded:
1714    //     -- Function declarations that differ only in the return type
1715    //        cannot be overloaded.
1716    QualType OldReturnType = OldType->getResultType();
1717    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1718    QualType ResQT;
1719    if (OldReturnType != NewReturnType) {
1720      if (NewReturnType->isObjCObjectPointerType()
1721          && OldReturnType->isObjCObjectPointerType())
1722        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1723      if (ResQT.isNull()) {
1724        if (New->isCXXClassMember() && New->isOutOfLine())
1725          Diag(New->getLocation(),
1726               diag::err_member_def_does_not_match_ret_type) << New;
1727        else
1728          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1729        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1730        return true;
1731      }
1732      else
1733        NewQType = ResQT;
1734    }
1735
1736    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1737    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1738    if (OldMethod && NewMethod) {
1739      // Preserve triviality.
1740      NewMethod->setTrivial(OldMethod->isTrivial());
1741
1742      // MSVC allows explicit template specialization at class scope:
1743      // 2 CXMethodDecls referring to the same function will be injected.
1744      // We don't want a redeclartion error.
1745      bool IsClassScopeExplicitSpecialization =
1746                              OldMethod->isFunctionTemplateSpecialization() &&
1747                              NewMethod->isFunctionTemplateSpecialization();
1748      bool isFriend = NewMethod->getFriendObjectKind();
1749
1750      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1751          !IsClassScopeExplicitSpecialization) {
1752        //    -- Member function declarations with the same name and the
1753        //       same parameter types cannot be overloaded if any of them
1754        //       is a static member function declaration.
1755        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1756          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1757          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1758          return true;
1759        }
1760
1761        // C++ [class.mem]p1:
1762        //   [...] A member shall not be declared twice in the
1763        //   member-specification, except that a nested class or member
1764        //   class template can be declared and then later defined.
1765        unsigned NewDiag;
1766        if (isa<CXXConstructorDecl>(OldMethod))
1767          NewDiag = diag::err_constructor_redeclared;
1768        else if (isa<CXXDestructorDecl>(NewMethod))
1769          NewDiag = diag::err_destructor_redeclared;
1770        else if (isa<CXXConversionDecl>(NewMethod))
1771          NewDiag = diag::err_conv_function_redeclared;
1772        else
1773          NewDiag = diag::err_member_redeclared;
1774
1775        Diag(New->getLocation(), NewDiag);
1776        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1777
1778      // Complain if this is an explicit declaration of a special
1779      // member that was initially declared implicitly.
1780      //
1781      // As an exception, it's okay to befriend such methods in order
1782      // to permit the implicit constructor/destructor/operator calls.
1783      } else if (OldMethod->isImplicit()) {
1784        if (isFriend) {
1785          NewMethod->setImplicit();
1786        } else {
1787          Diag(NewMethod->getLocation(),
1788               diag::err_definition_of_implicitly_declared_member)
1789            << New << getSpecialMember(OldMethod);
1790          return true;
1791        }
1792      } else if (OldMethod->isExplicitlyDefaulted()) {
1793        Diag(NewMethod->getLocation(),
1794             diag::err_definition_of_explicitly_defaulted_member)
1795          << getSpecialMember(OldMethod);
1796        return true;
1797      }
1798    }
1799
1800    // (C++98 8.3.5p3):
1801    //   All declarations for a function shall agree exactly in both the
1802    //   return type and the parameter-type-list.
1803    // We also want to respect all the extended bits except noreturn.
1804
1805    // noreturn should now match unless the old type info didn't have it.
1806    QualType OldQTypeForComparison = OldQType;
1807    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1808      assert(OldQType == QualType(OldType, 0));
1809      const FunctionType *OldTypeForComparison
1810        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1811      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1812      assert(OldQTypeForComparison.isCanonical());
1813    }
1814
1815    if (OldQTypeForComparison == NewQType)
1816      return MergeCompatibleFunctionDecls(New, Old);
1817
1818    // Fall through for conflicting redeclarations and redefinitions.
1819  }
1820
1821  // C: Function types need to be compatible, not identical. This handles
1822  // duplicate function decls like "void f(int); void f(enum X);" properly.
1823  if (!getLangOptions().CPlusPlus &&
1824      Context.typesAreCompatible(OldQType, NewQType)) {
1825    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1826    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1827    const FunctionProtoType *OldProto = 0;
1828    if (isa<FunctionNoProtoType>(NewFuncType) &&
1829        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1830      // The old declaration provided a function prototype, but the
1831      // new declaration does not. Merge in the prototype.
1832      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1833      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1834                                                 OldProto->arg_type_end());
1835      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1836                                         ParamTypes.data(), ParamTypes.size(),
1837                                         OldProto->getExtProtoInfo());
1838      New->setType(NewQType);
1839      New->setHasInheritedPrototype();
1840
1841      // Synthesize a parameter for each argument type.
1842      SmallVector<ParmVarDecl*, 16> Params;
1843      for (FunctionProtoType::arg_type_iterator
1844             ParamType = OldProto->arg_type_begin(),
1845             ParamEnd = OldProto->arg_type_end();
1846           ParamType != ParamEnd; ++ParamType) {
1847        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1848                                                 SourceLocation(),
1849                                                 SourceLocation(), 0,
1850                                                 *ParamType, /*TInfo=*/0,
1851                                                 SC_None, SC_None,
1852                                                 0);
1853        Param->setScopeInfo(0, Params.size());
1854        Param->setImplicit();
1855        Params.push_back(Param);
1856      }
1857
1858      New->setParams(Params);
1859    }
1860
1861    return MergeCompatibleFunctionDecls(New, Old);
1862  }
1863
1864  // GNU C permits a K&R definition to follow a prototype declaration
1865  // if the declared types of the parameters in the K&R definition
1866  // match the types in the prototype declaration, even when the
1867  // promoted types of the parameters from the K&R definition differ
1868  // from the types in the prototype. GCC then keeps the types from
1869  // the prototype.
1870  //
1871  // If a variadic prototype is followed by a non-variadic K&R definition,
1872  // the K&R definition becomes variadic.  This is sort of an edge case, but
1873  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1874  // C99 6.9.1p8.
1875  if (!getLangOptions().CPlusPlus &&
1876      Old->hasPrototype() && !New->hasPrototype() &&
1877      New->getType()->getAs<FunctionProtoType>() &&
1878      Old->getNumParams() == New->getNumParams()) {
1879    SmallVector<QualType, 16> ArgTypes;
1880    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1881    const FunctionProtoType *OldProto
1882      = Old->getType()->getAs<FunctionProtoType>();
1883    const FunctionProtoType *NewProto
1884      = New->getType()->getAs<FunctionProtoType>();
1885
1886    // Determine whether this is the GNU C extension.
1887    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1888                                               NewProto->getResultType());
1889    bool LooseCompatible = !MergedReturn.isNull();
1890    for (unsigned Idx = 0, End = Old->getNumParams();
1891         LooseCompatible && Idx != End; ++Idx) {
1892      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1893      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1894      if (Context.typesAreCompatible(OldParm->getType(),
1895                                     NewProto->getArgType(Idx))) {
1896        ArgTypes.push_back(NewParm->getType());
1897      } else if (Context.typesAreCompatible(OldParm->getType(),
1898                                            NewParm->getType(),
1899                                            /*CompareUnqualified=*/true)) {
1900        GNUCompatibleParamWarning Warn
1901          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1902        Warnings.push_back(Warn);
1903        ArgTypes.push_back(NewParm->getType());
1904      } else
1905        LooseCompatible = false;
1906    }
1907
1908    if (LooseCompatible) {
1909      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1910        Diag(Warnings[Warn].NewParm->getLocation(),
1911             diag::ext_param_promoted_not_compatible_with_prototype)
1912          << Warnings[Warn].PromotedType
1913          << Warnings[Warn].OldParm->getType();
1914        if (Warnings[Warn].OldParm->getLocation().isValid())
1915          Diag(Warnings[Warn].OldParm->getLocation(),
1916               diag::note_previous_declaration);
1917      }
1918
1919      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1920                                           ArgTypes.size(),
1921                                           OldProto->getExtProtoInfo()));
1922      return MergeCompatibleFunctionDecls(New, Old);
1923    }
1924
1925    // Fall through to diagnose conflicting types.
1926  }
1927
1928  // A function that has already been declared has been redeclared or defined
1929  // with a different type- show appropriate diagnostic
1930  if (unsigned BuiltinID = Old->getBuiltinID()) {
1931    // The user has declared a builtin function with an incompatible
1932    // signature.
1933    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1934      // The function the user is redeclaring is a library-defined
1935      // function like 'malloc' or 'printf'. Warn about the
1936      // redeclaration, then pretend that we don't know about this
1937      // library built-in.
1938      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1939      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1940        << Old << Old->getType();
1941      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1942      Old->setInvalidDecl();
1943      return false;
1944    }
1945
1946    PrevDiag = diag::note_previous_builtin_declaration;
1947  }
1948
1949  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1950  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1951  return true;
1952}
1953
1954/// \brief Completes the merge of two function declarations that are
1955/// known to be compatible.
1956///
1957/// This routine handles the merging of attributes and other
1958/// properties of function declarations form the old declaration to
1959/// the new declaration, once we know that New is in fact a
1960/// redeclaration of Old.
1961///
1962/// \returns false
1963bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1964  // Merge the attributes
1965  mergeDeclAttributes(New, Old, Context);
1966
1967  // Merge the storage class.
1968  if (Old->getStorageClass() != SC_Extern &&
1969      Old->getStorageClass() != SC_None)
1970    New->setStorageClass(Old->getStorageClass());
1971
1972  // Merge "pure" flag.
1973  if (Old->isPure())
1974    New->setPure();
1975
1976  // __module_private__ is propagated to later declarations.
1977  if (Old->isModulePrivate())
1978    New->setModulePrivate();
1979  else if (New->isModulePrivate())
1980    diagnoseModulePrivateRedeclaration(New, Old);
1981
1982  // Merge attributes from the parameters.  These can mismatch with K&R
1983  // declarations.
1984  if (New->getNumParams() == Old->getNumParams())
1985    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1986      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1987                               Context);
1988
1989  if (getLangOptions().CPlusPlus)
1990    return MergeCXXFunctionDecl(New, Old);
1991
1992  return false;
1993}
1994
1995
1996void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1997                                const ObjCMethodDecl *oldMethod) {
1998  // We don't want to merge unavailable and deprecated attributes
1999  // except from interface to implementation.
2000  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2001
2002  // Merge the attributes.
2003  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2004
2005  // Merge attributes from the parameters.
2006  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
2007         ni = newMethod->param_begin(), ne = newMethod->param_end();
2008       ni != ne; ++ni, ++oi)
2009    mergeParamDeclAttributes(*ni, *oi, Context);
2010
2011  CheckObjCMethodOverride(newMethod, oldMethod, true);
2012}
2013
2014/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2015/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2016/// emitting diagnostics as appropriate.
2017///
2018/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2019/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2020/// check them before the initializer is attached.
2021///
2022void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2023  if (New->isInvalidDecl() || Old->isInvalidDecl())
2024    return;
2025
2026  QualType MergedT;
2027  if (getLangOptions().CPlusPlus) {
2028    AutoType *AT = New->getType()->getContainedAutoType();
2029    if (AT && !AT->isDeduced()) {
2030      // We don't know what the new type is until the initializer is attached.
2031      return;
2032    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2033      // These could still be something that needs exception specs checked.
2034      return MergeVarDeclExceptionSpecs(New, Old);
2035    }
2036    // C++ [basic.link]p10:
2037    //   [...] the types specified by all declarations referring to a given
2038    //   object or function shall be identical, except that declarations for an
2039    //   array object can specify array types that differ by the presence or
2040    //   absence of a major array bound (8.3.4).
2041    else if (Old->getType()->isIncompleteArrayType() &&
2042             New->getType()->isArrayType()) {
2043      CanQual<ArrayType> OldArray
2044        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2045      CanQual<ArrayType> NewArray
2046        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2047      if (OldArray->getElementType() == NewArray->getElementType())
2048        MergedT = New->getType();
2049    } else if (Old->getType()->isArrayType() &&
2050             New->getType()->isIncompleteArrayType()) {
2051      CanQual<ArrayType> OldArray
2052        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2053      CanQual<ArrayType> NewArray
2054        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2055      if (OldArray->getElementType() == NewArray->getElementType())
2056        MergedT = Old->getType();
2057    } else if (New->getType()->isObjCObjectPointerType()
2058               && Old->getType()->isObjCObjectPointerType()) {
2059        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2060                                                        Old->getType());
2061    }
2062  } else {
2063    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2064  }
2065  if (MergedT.isNull()) {
2066    Diag(New->getLocation(), diag::err_redefinition_different_type)
2067      << New->getDeclName();
2068    Diag(Old->getLocation(), diag::note_previous_definition);
2069    return New->setInvalidDecl();
2070  }
2071  New->setType(MergedT);
2072}
2073
2074/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2075/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2076/// situation, merging decls or emitting diagnostics as appropriate.
2077///
2078/// Tentative definition rules (C99 6.9.2p2) are checked by
2079/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2080/// definitions here, since the initializer hasn't been attached.
2081///
2082void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2083  // If the new decl is already invalid, don't do any other checking.
2084  if (New->isInvalidDecl())
2085    return;
2086
2087  // Verify the old decl was also a variable.
2088  VarDecl *Old = 0;
2089  if (!Previous.isSingleResult() ||
2090      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2091    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2092      << New->getDeclName();
2093    Diag(Previous.getRepresentativeDecl()->getLocation(),
2094         diag::note_previous_definition);
2095    return New->setInvalidDecl();
2096  }
2097
2098  // C++ [class.mem]p1:
2099  //   A member shall not be declared twice in the member-specification [...]
2100  //
2101  // Here, we need only consider static data members.
2102  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2103    Diag(New->getLocation(), diag::err_duplicate_member)
2104      << New->getIdentifier();
2105    Diag(Old->getLocation(), diag::note_previous_declaration);
2106    New->setInvalidDecl();
2107  }
2108
2109  mergeDeclAttributes(New, Old, Context);
2110  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2111  if (New->getAttr<WeakImportAttr>() &&
2112      Old->getStorageClass() == SC_None &&
2113      !Old->getAttr<WeakImportAttr>()) {
2114    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2115    Diag(Old->getLocation(), diag::note_previous_definition);
2116    // Remove weak_import attribute on new declaration.
2117    New->dropAttr<WeakImportAttr>();
2118  }
2119
2120  // Merge the types.
2121  MergeVarDeclTypes(New, Old);
2122  if (New->isInvalidDecl())
2123    return;
2124
2125  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2126  if (New->getStorageClass() == SC_Static &&
2127      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2128    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2129    Diag(Old->getLocation(), diag::note_previous_definition);
2130    return New->setInvalidDecl();
2131  }
2132  // C99 6.2.2p4:
2133  //   For an identifier declared with the storage-class specifier
2134  //   extern in a scope in which a prior declaration of that
2135  //   identifier is visible,23) if the prior declaration specifies
2136  //   internal or external linkage, the linkage of the identifier at
2137  //   the later declaration is the same as the linkage specified at
2138  //   the prior declaration. If no prior declaration is visible, or
2139  //   if the prior declaration specifies no linkage, then the
2140  //   identifier has external linkage.
2141  if (New->hasExternalStorage() && Old->hasLinkage())
2142    /* Okay */;
2143  else if (New->getStorageClass() != SC_Static &&
2144           Old->getStorageClass() == SC_Static) {
2145    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2146    Diag(Old->getLocation(), diag::note_previous_definition);
2147    return New->setInvalidDecl();
2148  }
2149
2150  // Check if extern is followed by non-extern and vice-versa.
2151  if (New->hasExternalStorage() &&
2152      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2153    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2154    Diag(Old->getLocation(), diag::note_previous_definition);
2155    return New->setInvalidDecl();
2156  }
2157  if (Old->hasExternalStorage() &&
2158      !New->hasLinkage() && New->isLocalVarDecl()) {
2159    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2160    Diag(Old->getLocation(), diag::note_previous_definition);
2161    return New->setInvalidDecl();
2162  }
2163
2164  // __module_private__ is propagated to later declarations.
2165  if (Old->isModulePrivate())
2166    New->setModulePrivate();
2167  else if (New->isModulePrivate())
2168    diagnoseModulePrivateRedeclaration(New, Old);
2169
2170  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2171
2172  // FIXME: The test for external storage here seems wrong? We still
2173  // need to check for mismatches.
2174  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2175      // Don't complain about out-of-line definitions of static members.
2176      !(Old->getLexicalDeclContext()->isRecord() &&
2177        !New->getLexicalDeclContext()->isRecord())) {
2178    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2179    Diag(Old->getLocation(), diag::note_previous_definition);
2180    return New->setInvalidDecl();
2181  }
2182
2183  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2184    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2185    Diag(Old->getLocation(), diag::note_previous_definition);
2186  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2187    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2188    Diag(Old->getLocation(), diag::note_previous_definition);
2189  }
2190
2191  // C++ doesn't have tentative definitions, so go right ahead and check here.
2192  const VarDecl *Def;
2193  if (getLangOptions().CPlusPlus &&
2194      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2195      (Def = Old->getDefinition())) {
2196    Diag(New->getLocation(), diag::err_redefinition)
2197      << New->getDeclName();
2198    Diag(Def->getLocation(), diag::note_previous_definition);
2199    New->setInvalidDecl();
2200    return;
2201  }
2202  // c99 6.2.2 P4.
2203  // For an identifier declared with the storage-class specifier extern in a
2204  // scope in which a prior declaration of that identifier is visible, if
2205  // the prior declaration specifies internal or external linkage, the linkage
2206  // of the identifier at the later declaration is the same as the linkage
2207  // specified at the prior declaration.
2208  // FIXME. revisit this code.
2209  if (New->hasExternalStorage() &&
2210      Old->getLinkage() == InternalLinkage &&
2211      New->getDeclContext() == Old->getDeclContext())
2212    New->setStorageClass(Old->getStorageClass());
2213
2214  // Keep a chain of previous declarations.
2215  New->setPreviousDeclaration(Old);
2216
2217  // Inherit access appropriately.
2218  New->setAccess(Old->getAccess());
2219}
2220
2221/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2222/// no declarator (e.g. "struct foo;") is parsed.
2223Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2224                                       DeclSpec &DS) {
2225  return ParsedFreeStandingDeclSpec(S, AS, DS,
2226                                    MultiTemplateParamsArg(*this, 0, 0));
2227}
2228
2229/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2230/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2231/// parameters to cope with template friend declarations.
2232Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2233                                       DeclSpec &DS,
2234                                       MultiTemplateParamsArg TemplateParams) {
2235  Decl *TagD = 0;
2236  TagDecl *Tag = 0;
2237  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2238      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2239      DS.getTypeSpecType() == DeclSpec::TST_union ||
2240      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2241    TagD = DS.getRepAsDecl();
2242
2243    if (!TagD) // We probably had an error
2244      return 0;
2245
2246    // Note that the above type specs guarantee that the
2247    // type rep is a Decl, whereas in many of the others
2248    // it's a Type.
2249    Tag = dyn_cast<TagDecl>(TagD);
2250  }
2251
2252  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2253    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2254    // or incomplete types shall not be restrict-qualified."
2255    if (TypeQuals & DeclSpec::TQ_restrict)
2256      Diag(DS.getRestrictSpecLoc(),
2257           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2258           << DS.getSourceRange();
2259  }
2260
2261  if (DS.isConstexprSpecified()) {
2262    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2263    // and definitions of functions and variables.
2264    if (Tag)
2265      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2266        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2267            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2268            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2269    else
2270      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2271    // Don't emit warnings after this error.
2272    return TagD;
2273  }
2274
2275  if (DS.isFriendSpecified()) {
2276    // If we're dealing with a decl but not a TagDecl, assume that
2277    // whatever routines created it handled the friendship aspect.
2278    if (TagD && !Tag)
2279      return 0;
2280    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2281  }
2282
2283  // Track whether we warned about the fact that there aren't any
2284  // declarators.
2285  bool emittedWarning = false;
2286
2287  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2288    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2289
2290    if (!Record->getDeclName() && Record->isDefinition() &&
2291        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2292      if (getLangOptions().CPlusPlus ||
2293          Record->getDeclContext()->isRecord())
2294        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2295
2296      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2297        << DS.getSourceRange();
2298      emittedWarning = true;
2299    }
2300  }
2301
2302  // Check for Microsoft C extension: anonymous struct.
2303  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2304      CurContext->isRecord() &&
2305      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2306    // Handle 2 kinds of anonymous struct:
2307    //   struct STRUCT;
2308    // and
2309    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2310    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2311    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2312        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2313         DS.getRepAsType().get()->isStructureType())) {
2314      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2315        << DS.getSourceRange();
2316      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2317    }
2318  }
2319
2320  if (getLangOptions().CPlusPlus &&
2321      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2322    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2323      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2324          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2325        Diag(Enum->getLocation(), diag::ext_no_declarators)
2326          << DS.getSourceRange();
2327        emittedWarning = true;
2328      }
2329
2330  // Skip all the checks below if we have a type error.
2331  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2332
2333  if (!DS.isMissingDeclaratorOk()) {
2334    // Warn about typedefs of enums without names, since this is an
2335    // extension in both Microsoft and GNU.
2336    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2337        Tag && isa<EnumDecl>(Tag)) {
2338      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2339        << DS.getSourceRange();
2340      return Tag;
2341    }
2342
2343    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2344      << DS.getSourceRange();
2345    emittedWarning = true;
2346  }
2347
2348  // We're going to complain about a bunch of spurious specifiers;
2349  // only do this if we're declaring a tag, because otherwise we
2350  // should be getting diag::ext_no_declarators.
2351  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2352    return TagD;
2353
2354  // Note that a linkage-specification sets a storage class, but
2355  // 'extern "C" struct foo;' is actually valid and not theoretically
2356  // useless.
2357  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2358    if (!DS.isExternInLinkageSpec())
2359      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2360        << DeclSpec::getSpecifierName(scs);
2361
2362  if (DS.isThreadSpecified())
2363    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2364  if (DS.getTypeQualifiers()) {
2365    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2366      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2367    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2368      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2369    // Restrict is covered above.
2370  }
2371  if (DS.isInlineSpecified())
2372    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2373  if (DS.isVirtualSpecified())
2374    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2375  if (DS.isExplicitSpecified())
2376    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2377
2378  if (DS.isModulePrivateSpecified() &&
2379      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2380    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2381      << Tag->getTagKind()
2382      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2383
2384  // FIXME: Warn on useless attributes
2385
2386  return TagD;
2387}
2388
2389/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2390/// builds a statement for it and returns it so it is evaluated.
2391StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2392  StmtResult R;
2393  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2394    Expr *Exp = DS.getRepAsExpr();
2395    QualType Ty = Exp->getType();
2396    if (Ty->isPointerType()) {
2397      do
2398        Ty = Ty->getAs<PointerType>()->getPointeeType();
2399      while (Ty->isPointerType());
2400    }
2401    if (Ty->isVariableArrayType()) {
2402      R = ActOnExprStmt(MakeFullExpr(Exp));
2403    }
2404  }
2405  return R;
2406}
2407
2408/// We are trying to inject an anonymous member into the given scope;
2409/// check if there's an existing declaration that can't be overloaded.
2410///
2411/// \return true if this is a forbidden redeclaration
2412static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2413                                         Scope *S,
2414                                         DeclContext *Owner,
2415                                         DeclarationName Name,
2416                                         SourceLocation NameLoc,
2417                                         unsigned diagnostic) {
2418  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2419                 Sema::ForRedeclaration);
2420  if (!SemaRef.LookupName(R, S)) return false;
2421
2422  if (R.getAsSingle<TagDecl>())
2423    return false;
2424
2425  // Pick a representative declaration.
2426  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2427  assert(PrevDecl && "Expected a non-null Decl");
2428
2429  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2430    return false;
2431
2432  SemaRef.Diag(NameLoc, diagnostic) << Name;
2433  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2434
2435  return true;
2436}
2437
2438/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2439/// anonymous struct or union AnonRecord into the owning context Owner
2440/// and scope S. This routine will be invoked just after we realize
2441/// that an unnamed union or struct is actually an anonymous union or
2442/// struct, e.g.,
2443///
2444/// @code
2445/// union {
2446///   int i;
2447///   float f;
2448/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2449///    // f into the surrounding scope.x
2450/// @endcode
2451///
2452/// This routine is recursive, injecting the names of nested anonymous
2453/// structs/unions into the owning context and scope as well.
2454static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2455                                                DeclContext *Owner,
2456                                                RecordDecl *AnonRecord,
2457                                                AccessSpecifier AS,
2458                              SmallVector<NamedDecl*, 2> &Chaining,
2459                                                      bool MSAnonStruct) {
2460  unsigned diagKind
2461    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2462                            : diag::err_anonymous_struct_member_redecl;
2463
2464  bool Invalid = false;
2465
2466  // Look every FieldDecl and IndirectFieldDecl with a name.
2467  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2468                               DEnd = AnonRecord->decls_end();
2469       D != DEnd; ++D) {
2470    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2471        cast<NamedDecl>(*D)->getDeclName()) {
2472      ValueDecl *VD = cast<ValueDecl>(*D);
2473      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2474                                       VD->getLocation(), diagKind)) {
2475        // C++ [class.union]p2:
2476        //   The names of the members of an anonymous union shall be
2477        //   distinct from the names of any other entity in the
2478        //   scope in which the anonymous union is declared.
2479        Invalid = true;
2480      } else {
2481        // C++ [class.union]p2:
2482        //   For the purpose of name lookup, after the anonymous union
2483        //   definition, the members of the anonymous union are
2484        //   considered to have been defined in the scope in which the
2485        //   anonymous union is declared.
2486        unsigned OldChainingSize = Chaining.size();
2487        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2488          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2489               PE = IF->chain_end(); PI != PE; ++PI)
2490            Chaining.push_back(*PI);
2491        else
2492          Chaining.push_back(VD);
2493
2494        assert(Chaining.size() >= 2);
2495        NamedDecl **NamedChain =
2496          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2497        for (unsigned i = 0; i < Chaining.size(); i++)
2498          NamedChain[i] = Chaining[i];
2499
2500        IndirectFieldDecl* IndirectField =
2501          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2502                                    VD->getIdentifier(), VD->getType(),
2503                                    NamedChain, Chaining.size());
2504
2505        IndirectField->setAccess(AS);
2506        IndirectField->setImplicit();
2507        SemaRef.PushOnScopeChains(IndirectField, S);
2508
2509        // That includes picking up the appropriate access specifier.
2510        if (AS != AS_none) IndirectField->setAccess(AS);
2511
2512        Chaining.resize(OldChainingSize);
2513      }
2514    }
2515  }
2516
2517  return Invalid;
2518}
2519
2520/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2521/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2522/// illegal input values are mapped to SC_None.
2523static StorageClass
2524StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2525  switch (StorageClassSpec) {
2526  case DeclSpec::SCS_unspecified:    return SC_None;
2527  case DeclSpec::SCS_extern:         return SC_Extern;
2528  case DeclSpec::SCS_static:         return SC_Static;
2529  case DeclSpec::SCS_auto:           return SC_Auto;
2530  case DeclSpec::SCS_register:       return SC_Register;
2531  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2532    // Illegal SCSs map to None: error reporting is up to the caller.
2533  case DeclSpec::SCS_mutable:        // Fall through.
2534  case DeclSpec::SCS_typedef:        return SC_None;
2535  }
2536  llvm_unreachable("unknown storage class specifier");
2537}
2538
2539/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2540/// a StorageClass. Any error reporting is up to the caller:
2541/// illegal input values are mapped to SC_None.
2542static StorageClass
2543StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2544  switch (StorageClassSpec) {
2545  case DeclSpec::SCS_unspecified:    return SC_None;
2546  case DeclSpec::SCS_extern:         return SC_Extern;
2547  case DeclSpec::SCS_static:         return SC_Static;
2548  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2549    // Illegal SCSs map to None: error reporting is up to the caller.
2550  case DeclSpec::SCS_auto:           // Fall through.
2551  case DeclSpec::SCS_mutable:        // Fall through.
2552  case DeclSpec::SCS_register:       // Fall through.
2553  case DeclSpec::SCS_typedef:        return SC_None;
2554  }
2555  llvm_unreachable("unknown storage class specifier");
2556}
2557
2558/// BuildAnonymousStructOrUnion - Handle the declaration of an
2559/// anonymous structure or union. Anonymous unions are a C++ feature
2560/// (C++ [class.union]) and a GNU C extension; anonymous structures
2561/// are a GNU C and GNU C++ extension.
2562Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2563                                             AccessSpecifier AS,
2564                                             RecordDecl *Record) {
2565  DeclContext *Owner = Record->getDeclContext();
2566
2567  // Diagnose whether this anonymous struct/union is an extension.
2568  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2569    Diag(Record->getLocation(), diag::ext_anonymous_union);
2570  else if (!Record->isUnion())
2571    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2572
2573  // C and C++ require different kinds of checks for anonymous
2574  // structs/unions.
2575  bool Invalid = false;
2576  if (getLangOptions().CPlusPlus) {
2577    const char* PrevSpec = 0;
2578    unsigned DiagID;
2579    // C++ [class.union]p3:
2580    //   Anonymous unions declared in a named namespace or in the
2581    //   global namespace shall be declared static.
2582    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2583        (isa<TranslationUnitDecl>(Owner) ||
2584         (isa<NamespaceDecl>(Owner) &&
2585          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2586      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2587      Invalid = true;
2588
2589      // Recover by adding 'static'.
2590      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2591                             PrevSpec, DiagID, getLangOptions());
2592    }
2593    // C++ [class.union]p3:
2594    //   A storage class is not allowed in a declaration of an
2595    //   anonymous union in a class scope.
2596    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2597             isa<RecordDecl>(Owner)) {
2598      Diag(DS.getStorageClassSpecLoc(),
2599           diag::err_anonymous_union_with_storage_spec);
2600      Invalid = true;
2601
2602      // Recover by removing the storage specifier.
2603      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2604                             PrevSpec, DiagID, getLangOptions());
2605    }
2606
2607    // Ignore const/volatile/restrict qualifiers.
2608    if (DS.getTypeQualifiers()) {
2609      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2610        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2611          << Record->isUnion() << 0
2612          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2613      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2614        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2615          << Record->isUnion() << 1
2616          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2617      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2618        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2619          << Record->isUnion() << 2
2620          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2621
2622      DS.ClearTypeQualifiers();
2623    }
2624
2625    // C++ [class.union]p2:
2626    //   The member-specification of an anonymous union shall only
2627    //   define non-static data members. [Note: nested types and
2628    //   functions cannot be declared within an anonymous union. ]
2629    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2630                                 MemEnd = Record->decls_end();
2631         Mem != MemEnd; ++Mem) {
2632      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2633        // C++ [class.union]p3:
2634        //   An anonymous union shall not have private or protected
2635        //   members (clause 11).
2636        assert(FD->getAccess() != AS_none);
2637        if (FD->getAccess() != AS_public) {
2638          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2639            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2640          Invalid = true;
2641        }
2642
2643        // C++ [class.union]p1
2644        //   An object of a class with a non-trivial constructor, a non-trivial
2645        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2646        //   assignment operator cannot be a member of a union, nor can an
2647        //   array of such objects.
2648        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2649          Invalid = true;
2650      } else if ((*Mem)->isImplicit()) {
2651        // Any implicit members are fine.
2652      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2653        // This is a type that showed up in an
2654        // elaborated-type-specifier inside the anonymous struct or
2655        // union, but which actually declares a type outside of the
2656        // anonymous struct or union. It's okay.
2657      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2658        if (!MemRecord->isAnonymousStructOrUnion() &&
2659            MemRecord->getDeclName()) {
2660          // Visual C++ allows type definition in anonymous struct or union.
2661          if (getLangOptions().MicrosoftExt)
2662            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2663              << (int)Record->isUnion();
2664          else {
2665            // This is a nested type declaration.
2666            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2667              << (int)Record->isUnion();
2668            Invalid = true;
2669          }
2670        }
2671      } else if (isa<AccessSpecDecl>(*Mem)) {
2672        // Any access specifier is fine.
2673      } else {
2674        // We have something that isn't a non-static data
2675        // member. Complain about it.
2676        unsigned DK = diag::err_anonymous_record_bad_member;
2677        if (isa<TypeDecl>(*Mem))
2678          DK = diag::err_anonymous_record_with_type;
2679        else if (isa<FunctionDecl>(*Mem))
2680          DK = diag::err_anonymous_record_with_function;
2681        else if (isa<VarDecl>(*Mem))
2682          DK = diag::err_anonymous_record_with_static;
2683
2684        // Visual C++ allows type definition in anonymous struct or union.
2685        if (getLangOptions().MicrosoftExt &&
2686            DK == diag::err_anonymous_record_with_type)
2687          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2688            << (int)Record->isUnion();
2689        else {
2690          Diag((*Mem)->getLocation(), DK)
2691              << (int)Record->isUnion();
2692          Invalid = true;
2693        }
2694      }
2695    }
2696  }
2697
2698  if (!Record->isUnion() && !Owner->isRecord()) {
2699    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2700      << (int)getLangOptions().CPlusPlus;
2701    Invalid = true;
2702  }
2703
2704  // Mock up a declarator.
2705  Declarator Dc(DS, Declarator::MemberContext);
2706  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2707  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2708
2709  // Create a declaration for this anonymous struct/union.
2710  NamedDecl *Anon = 0;
2711  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2712    Anon = FieldDecl::Create(Context, OwningClass,
2713                             DS.getSourceRange().getBegin(),
2714                             Record->getLocation(),
2715                             /*IdentifierInfo=*/0,
2716                             Context.getTypeDeclType(Record),
2717                             TInfo,
2718                             /*BitWidth=*/0, /*Mutable=*/false,
2719                             /*HasInit=*/false);
2720    Anon->setAccess(AS);
2721    if (getLangOptions().CPlusPlus)
2722      FieldCollector->Add(cast<FieldDecl>(Anon));
2723  } else {
2724    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2725    assert(SCSpec != DeclSpec::SCS_typedef &&
2726           "Parser allowed 'typedef' as storage class VarDecl.");
2727    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2728    if (SCSpec == DeclSpec::SCS_mutable) {
2729      // mutable can only appear on non-static class members, so it's always
2730      // an error here
2731      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2732      Invalid = true;
2733      SC = SC_None;
2734    }
2735    SCSpec = DS.getStorageClassSpecAsWritten();
2736    VarDecl::StorageClass SCAsWritten
2737      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2738
2739    Anon = VarDecl::Create(Context, Owner,
2740                           DS.getSourceRange().getBegin(),
2741                           Record->getLocation(), /*IdentifierInfo=*/0,
2742                           Context.getTypeDeclType(Record),
2743                           TInfo, SC, SCAsWritten);
2744
2745    // Default-initialize the implicit variable. This initialization will be
2746    // trivial in almost all cases, except if a union member has an in-class
2747    // initializer:
2748    //   union { int n = 0; };
2749    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2750  }
2751  Anon->setImplicit();
2752
2753  // Add the anonymous struct/union object to the current
2754  // context. We'll be referencing this object when we refer to one of
2755  // its members.
2756  Owner->addDecl(Anon);
2757
2758  // Inject the members of the anonymous struct/union into the owning
2759  // context and into the identifier resolver chain for name lookup
2760  // purposes.
2761  SmallVector<NamedDecl*, 2> Chain;
2762  Chain.push_back(Anon);
2763
2764  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2765                                          Chain, false))
2766    Invalid = true;
2767
2768  // Mark this as an anonymous struct/union type. Note that we do not
2769  // do this until after we have already checked and injected the
2770  // members of this anonymous struct/union type, because otherwise
2771  // the members could be injected twice: once by DeclContext when it
2772  // builds its lookup table, and once by
2773  // InjectAnonymousStructOrUnionMembers.
2774  Record->setAnonymousStructOrUnion(true);
2775
2776  if (Invalid)
2777    Anon->setInvalidDecl();
2778
2779  return Anon;
2780}
2781
2782/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2783/// Microsoft C anonymous structure.
2784/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2785/// Example:
2786///
2787/// struct A { int a; };
2788/// struct B { struct A; int b; };
2789///
2790/// void foo() {
2791///   B var;
2792///   var.a = 3;
2793/// }
2794///
2795Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2796                                           RecordDecl *Record) {
2797
2798  // If there is no Record, get the record via the typedef.
2799  if (!Record)
2800    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2801
2802  // Mock up a declarator.
2803  Declarator Dc(DS, Declarator::TypeNameContext);
2804  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2805  assert(TInfo && "couldn't build declarator info for anonymous struct");
2806
2807  // Create a declaration for this anonymous struct.
2808  NamedDecl* Anon = FieldDecl::Create(Context,
2809                             cast<RecordDecl>(CurContext),
2810                             DS.getSourceRange().getBegin(),
2811                             DS.getSourceRange().getBegin(),
2812                             /*IdentifierInfo=*/0,
2813                             Context.getTypeDeclType(Record),
2814                             TInfo,
2815                             /*BitWidth=*/0, /*Mutable=*/false,
2816                             /*HasInit=*/false);
2817  Anon->setImplicit();
2818
2819  // Add the anonymous struct object to the current context.
2820  CurContext->addDecl(Anon);
2821
2822  // Inject the members of the anonymous struct into the current
2823  // context and into the identifier resolver chain for name lookup
2824  // purposes.
2825  SmallVector<NamedDecl*, 2> Chain;
2826  Chain.push_back(Anon);
2827
2828  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2829                                          Record->getDefinition(),
2830                                          AS_none, Chain, true))
2831    Anon->setInvalidDecl();
2832
2833  return Anon;
2834}
2835
2836/// GetNameForDeclarator - Determine the full declaration name for the
2837/// given Declarator.
2838DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2839  return GetNameFromUnqualifiedId(D.getName());
2840}
2841
2842/// \brief Retrieves the declaration name from a parsed unqualified-id.
2843DeclarationNameInfo
2844Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2845  DeclarationNameInfo NameInfo;
2846  NameInfo.setLoc(Name.StartLocation);
2847
2848  switch (Name.getKind()) {
2849
2850  case UnqualifiedId::IK_ImplicitSelfParam:
2851  case UnqualifiedId::IK_Identifier:
2852    NameInfo.setName(Name.Identifier);
2853    NameInfo.setLoc(Name.StartLocation);
2854    return NameInfo;
2855
2856  case UnqualifiedId::IK_OperatorFunctionId:
2857    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2858                                           Name.OperatorFunctionId.Operator));
2859    NameInfo.setLoc(Name.StartLocation);
2860    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2861      = Name.OperatorFunctionId.SymbolLocations[0];
2862    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2863      = Name.EndLocation.getRawEncoding();
2864    return NameInfo;
2865
2866  case UnqualifiedId::IK_LiteralOperatorId:
2867    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2868                                                           Name.Identifier));
2869    NameInfo.setLoc(Name.StartLocation);
2870    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2871    return NameInfo;
2872
2873  case UnqualifiedId::IK_ConversionFunctionId: {
2874    TypeSourceInfo *TInfo;
2875    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2876    if (Ty.isNull())
2877      return DeclarationNameInfo();
2878    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2879                                               Context.getCanonicalType(Ty)));
2880    NameInfo.setLoc(Name.StartLocation);
2881    NameInfo.setNamedTypeInfo(TInfo);
2882    return NameInfo;
2883  }
2884
2885  case UnqualifiedId::IK_ConstructorName: {
2886    TypeSourceInfo *TInfo;
2887    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2888    if (Ty.isNull())
2889      return DeclarationNameInfo();
2890    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2891                                              Context.getCanonicalType(Ty)));
2892    NameInfo.setLoc(Name.StartLocation);
2893    NameInfo.setNamedTypeInfo(TInfo);
2894    return NameInfo;
2895  }
2896
2897  case UnqualifiedId::IK_ConstructorTemplateId: {
2898    // In well-formed code, we can only have a constructor
2899    // template-id that refers to the current context, so go there
2900    // to find the actual type being constructed.
2901    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2902    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2903      return DeclarationNameInfo();
2904
2905    // Determine the type of the class being constructed.
2906    QualType CurClassType = Context.getTypeDeclType(CurClass);
2907
2908    // FIXME: Check two things: that the template-id names the same type as
2909    // CurClassType, and that the template-id does not occur when the name
2910    // was qualified.
2911
2912    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2913                                    Context.getCanonicalType(CurClassType)));
2914    NameInfo.setLoc(Name.StartLocation);
2915    // FIXME: should we retrieve TypeSourceInfo?
2916    NameInfo.setNamedTypeInfo(0);
2917    return NameInfo;
2918  }
2919
2920  case UnqualifiedId::IK_DestructorName: {
2921    TypeSourceInfo *TInfo;
2922    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2923    if (Ty.isNull())
2924      return DeclarationNameInfo();
2925    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2926                                              Context.getCanonicalType(Ty)));
2927    NameInfo.setLoc(Name.StartLocation);
2928    NameInfo.setNamedTypeInfo(TInfo);
2929    return NameInfo;
2930  }
2931
2932  case UnqualifiedId::IK_TemplateId: {
2933    TemplateName TName = Name.TemplateId->Template.get();
2934    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2935    return Context.getNameForTemplate(TName, TNameLoc);
2936  }
2937
2938  } // switch (Name.getKind())
2939
2940  llvm_unreachable("Unknown name kind");
2941}
2942
2943static QualType getCoreType(QualType Ty) {
2944  do {
2945    if (Ty->isPointerType() || Ty->isReferenceType())
2946      Ty = Ty->getPointeeType();
2947    else if (Ty->isArrayType())
2948      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2949    else
2950      return Ty.withoutLocalFastQualifiers();
2951  } while (true);
2952}
2953
2954/// isNearlyMatchingFunction - Determine whether the C++ functions
2955/// Declaration and Definition are "nearly" matching. This heuristic
2956/// is used to improve diagnostics in the case where an out-of-line
2957/// function definition doesn't match any declaration within the class
2958/// or namespace. Also sets Params to the list of indices to the
2959/// parameters that differ between the declaration and the definition.
2960static bool isNearlyMatchingFunction(ASTContext &Context,
2961                                     FunctionDecl *Declaration,
2962                                     FunctionDecl *Definition,
2963                                     llvm::SmallVectorImpl<unsigned> &Params) {
2964  Params.clear();
2965  if (Declaration->param_size() != Definition->param_size())
2966    return false;
2967  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2968    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2969    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2970
2971    // The parameter types are identical
2972    if (Context.hasSameType(DefParamTy, DeclParamTy))
2973      continue;
2974
2975    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2976    QualType DefParamBaseTy = getCoreType(DefParamTy);
2977    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2978    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2979
2980    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2981        (DeclTyName && DeclTyName == DefTyName))
2982      Params.push_back(Idx);
2983    else  // The two parameters aren't even close
2984      return false;
2985  }
2986
2987  return true;
2988}
2989
2990/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2991/// declarator needs to be rebuilt in the current instantiation.
2992/// Any bits of declarator which appear before the name are valid for
2993/// consideration here.  That's specifically the type in the decl spec
2994/// and the base type in any member-pointer chunks.
2995static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2996                                                    DeclarationName Name) {
2997  // The types we specifically need to rebuild are:
2998  //   - typenames, typeofs, and decltypes
2999  //   - types which will become injected class names
3000  // Of course, we also need to rebuild any type referencing such a
3001  // type.  It's safest to just say "dependent", but we call out a
3002  // few cases here.
3003
3004  DeclSpec &DS = D.getMutableDeclSpec();
3005  switch (DS.getTypeSpecType()) {
3006  case DeclSpec::TST_typename:
3007  case DeclSpec::TST_typeofType:
3008  case DeclSpec::TST_decltype:
3009  case DeclSpec::TST_underlyingType: {
3010    // Grab the type from the parser.
3011    TypeSourceInfo *TSI = 0;
3012    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3013    if (T.isNull() || !T->isDependentType()) break;
3014
3015    // Make sure there's a type source info.  This isn't really much
3016    // of a waste; most dependent types should have type source info
3017    // attached already.
3018    if (!TSI)
3019      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3020
3021    // Rebuild the type in the current instantiation.
3022    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3023    if (!TSI) return true;
3024
3025    // Store the new type back in the decl spec.
3026    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3027    DS.UpdateTypeRep(LocType);
3028    break;
3029  }
3030
3031  case DeclSpec::TST_typeofExpr: {
3032    Expr *E = DS.getRepAsExpr();
3033    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3034    if (Result.isInvalid()) return true;
3035    DS.UpdateExprRep(Result.get());
3036    break;
3037  }
3038
3039  default:
3040    // Nothing to do for these decl specs.
3041    break;
3042  }
3043
3044  // It doesn't matter what order we do this in.
3045  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3046    DeclaratorChunk &Chunk = D.getTypeObject(I);
3047
3048    // The only type information in the declarator which can come
3049    // before the declaration name is the base type of a member
3050    // pointer.
3051    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3052      continue;
3053
3054    // Rebuild the scope specifier in-place.
3055    CXXScopeSpec &SS = Chunk.Mem.Scope();
3056    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3057      return true;
3058  }
3059
3060  return false;
3061}
3062
3063Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3064  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3065                          /*IsFunctionDefinition=*/false);
3066}
3067
3068/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3069///   If T is the name of a class, then each of the following shall have a
3070///   name different from T:
3071///     - every static data member of class T;
3072///     - every member function of class T
3073///     - every member of class T that is itself a type;
3074/// \returns true if the declaration name violates these rules.
3075bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3076                                   DeclarationNameInfo NameInfo) {
3077  DeclarationName Name = NameInfo.getName();
3078
3079  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3080    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3081      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3082      return true;
3083    }
3084
3085  return false;
3086}
3087
3088Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3089                             MultiTemplateParamsArg TemplateParamLists,
3090                             bool IsFunctionDefinition) {
3091  // TODO: consider using NameInfo for diagnostic.
3092  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3093  DeclarationName Name = NameInfo.getName();
3094
3095  // All of these full declarators require an identifier.  If it doesn't have
3096  // one, the ParsedFreeStandingDeclSpec action should be used.
3097  if (!Name) {
3098    if (!D.isInvalidType())  // Reject this if we think it is valid.
3099      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3100           diag::err_declarator_need_ident)
3101        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3102    return 0;
3103  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3104    return 0;
3105
3106  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3107  // we find one that is.
3108  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3109         (S->getFlags() & Scope::TemplateParamScope) != 0)
3110    S = S->getParent();
3111
3112  DeclContext *DC = CurContext;
3113  if (D.getCXXScopeSpec().isInvalid())
3114    D.setInvalidType();
3115  else if (D.getCXXScopeSpec().isSet()) {
3116    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3117                                        UPPC_DeclarationQualifier))
3118      return 0;
3119
3120    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3121    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3122    if (!DC) {
3123      // If we could not compute the declaration context, it's because the
3124      // declaration context is dependent but does not refer to a class,
3125      // class template, or class template partial specialization. Complain
3126      // and return early, to avoid the coming semantic disaster.
3127      Diag(D.getIdentifierLoc(),
3128           diag::err_template_qualified_declarator_no_match)
3129        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3130        << D.getCXXScopeSpec().getRange();
3131      return 0;
3132    }
3133    bool IsDependentContext = DC->isDependentContext();
3134
3135    if (!IsDependentContext &&
3136        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3137      return 0;
3138
3139    if (isa<CXXRecordDecl>(DC)) {
3140      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3141        Diag(D.getIdentifierLoc(),
3142             diag::err_member_def_undefined_record)
3143          << Name << DC << D.getCXXScopeSpec().getRange();
3144        D.setInvalidType();
3145      } else if (isa<CXXRecordDecl>(CurContext) &&
3146                 !D.getDeclSpec().isFriendSpecified()) {
3147        // The user provided a superfluous scope specifier inside a class
3148        // definition:
3149        //
3150        // class X {
3151        //   void X::f();
3152        // };
3153        if (CurContext->Equals(DC))
3154          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3155            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3156        else
3157          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3158            << Name << D.getCXXScopeSpec().getRange();
3159
3160        // Pretend that this qualifier was not here.
3161        D.getCXXScopeSpec().clear();
3162      }
3163    }
3164
3165    // Check whether we need to rebuild the type of the given
3166    // declaration in the current instantiation.
3167    if (EnteringContext && IsDependentContext &&
3168        TemplateParamLists.size() != 0) {
3169      ContextRAII SavedContext(*this, DC);
3170      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3171        D.setInvalidType();
3172    }
3173  }
3174
3175  if (DiagnoseClassNameShadow(DC, NameInfo))
3176    // If this is a typedef, we'll end up spewing multiple diagnostics.
3177    // Just return early; it's safer.
3178    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3179      return 0;
3180
3181  NamedDecl *New;
3182
3183  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3184  QualType R = TInfo->getType();
3185
3186  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3187                                      UPPC_DeclarationType))
3188    D.setInvalidType();
3189
3190  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3191                        ForRedeclaration);
3192
3193  // See if this is a redefinition of a variable in the same scope.
3194  if (!D.getCXXScopeSpec().isSet()) {
3195    bool IsLinkageLookup = false;
3196
3197    // If the declaration we're planning to build will be a function
3198    // or object with linkage, then look for another declaration with
3199    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3200    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3201      /* Do nothing*/;
3202    else if (R->isFunctionType()) {
3203      if (CurContext->isFunctionOrMethod() ||
3204          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3205        IsLinkageLookup = true;
3206    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3207      IsLinkageLookup = true;
3208    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3209             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3210      IsLinkageLookup = true;
3211
3212    if (IsLinkageLookup)
3213      Previous.clear(LookupRedeclarationWithLinkage);
3214
3215    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3216  } else { // Something like "int foo::x;"
3217    LookupQualifiedName(Previous, DC);
3218
3219    // Don't consider using declarations as previous declarations for
3220    // out-of-line members.
3221    RemoveUsingDecls(Previous);
3222
3223    // C++ 7.3.1.2p2:
3224    // Members (including explicit specializations of templates) of a named
3225    // namespace can also be defined outside that namespace by explicit
3226    // qualification of the name being defined, provided that the entity being
3227    // defined was already declared in the namespace and the definition appears
3228    // after the point of declaration in a namespace that encloses the
3229    // declarations namespace.
3230    //
3231    // Note that we only check the context at this point. We don't yet
3232    // have enough information to make sure that PrevDecl is actually
3233    // the declaration we want to match. For example, given:
3234    //
3235    //   class X {
3236    //     void f();
3237    //     void f(float);
3238    //   };
3239    //
3240    //   void X::f(int) { } // ill-formed
3241    //
3242    // In this case, PrevDecl will point to the overload set
3243    // containing the two f's declared in X, but neither of them
3244    // matches.
3245
3246    // First check whether we named the global scope.
3247    if (isa<TranslationUnitDecl>(DC)) {
3248      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3249        << Name << D.getCXXScopeSpec().getRange();
3250    } else {
3251      DeclContext *Cur = CurContext;
3252      while (isa<LinkageSpecDecl>(Cur))
3253        Cur = Cur->getParent();
3254      if (!Cur->Encloses(DC)) {
3255        // The qualifying scope doesn't enclose the original declaration.
3256        // Emit diagnostic based on current scope.
3257        SourceLocation L = D.getIdentifierLoc();
3258        SourceRange R = D.getCXXScopeSpec().getRange();
3259        if (isa<FunctionDecl>(Cur))
3260          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3261        else
3262          Diag(L, diag::err_invalid_declarator_scope)
3263            << Name << cast<NamedDecl>(DC) << R;
3264        D.setInvalidType();
3265      }
3266    }
3267  }
3268
3269  if (Previous.isSingleResult() &&
3270      Previous.getFoundDecl()->isTemplateParameter()) {
3271    // Maybe we will complain about the shadowed template parameter.
3272    if (!D.isInvalidType())
3273      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3274                                          Previous.getFoundDecl()))
3275        D.setInvalidType();
3276
3277    // Just pretend that we didn't see the previous declaration.
3278    Previous.clear();
3279  }
3280
3281  // In C++, the previous declaration we find might be a tag type
3282  // (class or enum). In this case, the new declaration will hide the
3283  // tag type. Note that this does does not apply if we're declaring a
3284  // typedef (C++ [dcl.typedef]p4).
3285  if (Previous.isSingleTagDecl() &&
3286      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3287    Previous.clear();
3288
3289  bool Redeclaration = false;
3290  bool AddToScope = true;
3291  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3292    if (TemplateParamLists.size()) {
3293      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3294      return 0;
3295    }
3296
3297    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3298  } else if (R->isFunctionType()) {
3299    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3300                                  move(TemplateParamLists),
3301                                  IsFunctionDefinition, Redeclaration,
3302                                  AddToScope);
3303  } else {
3304    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3305                                  move(TemplateParamLists),
3306                                  Redeclaration);
3307  }
3308
3309  if (New == 0)
3310    return 0;
3311
3312  // If this has an identifier and is not an invalid redeclaration or
3313  // function template specialization, add it to the scope stack.
3314  if (New->getDeclName() && AddToScope &&
3315       !(Redeclaration && New->isInvalidDecl()))
3316    PushOnScopeChains(New, S);
3317
3318  return New;
3319}
3320
3321/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3322/// types into constant array types in certain situations which would otherwise
3323/// be errors (for GCC compatibility).
3324static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3325                                                    ASTContext &Context,
3326                                                    bool &SizeIsNegative,
3327                                                    llvm::APSInt &Oversized) {
3328  // This method tries to turn a variable array into a constant
3329  // array even when the size isn't an ICE.  This is necessary
3330  // for compatibility with code that depends on gcc's buggy
3331  // constant expression folding, like struct {char x[(int)(char*)2];}
3332  SizeIsNegative = false;
3333  Oversized = 0;
3334
3335  if (T->isDependentType())
3336    return QualType();
3337
3338  QualifierCollector Qs;
3339  const Type *Ty = Qs.strip(T);
3340
3341  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3342    QualType Pointee = PTy->getPointeeType();
3343    QualType FixedType =
3344        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3345                                            Oversized);
3346    if (FixedType.isNull()) return FixedType;
3347    FixedType = Context.getPointerType(FixedType);
3348    return Qs.apply(Context, FixedType);
3349  }
3350  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3351    QualType Inner = PTy->getInnerType();
3352    QualType FixedType =
3353        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3354                                            Oversized);
3355    if (FixedType.isNull()) return FixedType;
3356    FixedType = Context.getParenType(FixedType);
3357    return Qs.apply(Context, FixedType);
3358  }
3359
3360  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3361  if (!VLATy)
3362    return QualType();
3363  // FIXME: We should probably handle this case
3364  if (VLATy->getElementType()->isVariablyModifiedType())
3365    return QualType();
3366
3367  Expr::EvalResult EvalResult;
3368  if (!VLATy->getSizeExpr() ||
3369      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3370      !EvalResult.Val.isInt())
3371    return QualType();
3372
3373  // Check whether the array size is negative.
3374  llvm::APSInt &Res = EvalResult.Val.getInt();
3375  if (Res.isSigned() && Res.isNegative()) {
3376    SizeIsNegative = true;
3377    return QualType();
3378  }
3379
3380  // Check whether the array is too large to be addressed.
3381  unsigned ActiveSizeBits
3382    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3383                                              Res);
3384  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3385    Oversized = Res;
3386    return QualType();
3387  }
3388
3389  return Context.getConstantArrayType(VLATy->getElementType(),
3390                                      Res, ArrayType::Normal, 0);
3391}
3392
3393/// \brief Register the given locally-scoped external C declaration so
3394/// that it can be found later for redeclarations
3395void
3396Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3397                                       const LookupResult &Previous,
3398                                       Scope *S) {
3399  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3400         "Decl is not a locally-scoped decl!");
3401  // Note that we have a locally-scoped external with this name.
3402  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3403
3404  if (!Previous.isSingleResult())
3405    return;
3406
3407  NamedDecl *PrevDecl = Previous.getFoundDecl();
3408
3409  // If there was a previous declaration of this variable, it may be
3410  // in our identifier chain. Update the identifier chain with the new
3411  // declaration.
3412  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3413    // The previous declaration was found on the identifer resolver
3414    // chain, so remove it from its scope.
3415
3416    if (S->isDeclScope(PrevDecl)) {
3417      // Special case for redeclarations in the SAME scope.
3418      // Because this declaration is going to be added to the identifier chain
3419      // later, we should temporarily take it OFF the chain.
3420      IdResolver.RemoveDecl(ND);
3421
3422    } else {
3423      // Find the scope for the original declaration.
3424      while (S && !S->isDeclScope(PrevDecl))
3425        S = S->getParent();
3426    }
3427
3428    if (S)
3429      S->RemoveDecl(PrevDecl);
3430  }
3431}
3432
3433llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3434Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3435  if (ExternalSource) {
3436    // Load locally-scoped external decls from the external source.
3437    SmallVector<NamedDecl *, 4> Decls;
3438    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3439    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3440      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3441        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3442      if (Pos == LocallyScopedExternalDecls.end())
3443        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3444    }
3445  }
3446
3447  return LocallyScopedExternalDecls.find(Name);
3448}
3449
3450/// \brief Diagnose function specifiers on a declaration of an identifier that
3451/// does not identify a function.
3452void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3453  // FIXME: We should probably indicate the identifier in question to avoid
3454  // confusion for constructs like "inline int a(), b;"
3455  if (D.getDeclSpec().isInlineSpecified())
3456    Diag(D.getDeclSpec().getInlineSpecLoc(),
3457         diag::err_inline_non_function);
3458
3459  if (D.getDeclSpec().isVirtualSpecified())
3460    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3461         diag::err_virtual_non_function);
3462
3463  if (D.getDeclSpec().isExplicitSpecified())
3464    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3465         diag::err_explicit_non_function);
3466}
3467
3468NamedDecl*
3469Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3470                             QualType R,  TypeSourceInfo *TInfo,
3471                             LookupResult &Previous, bool &Redeclaration) {
3472  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3473  if (D.getCXXScopeSpec().isSet()) {
3474    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3475      << D.getCXXScopeSpec().getRange();
3476    D.setInvalidType();
3477    // Pretend we didn't see the scope specifier.
3478    DC = CurContext;
3479    Previous.clear();
3480  }
3481
3482  if (getLangOptions().CPlusPlus) {
3483    // Check that there are no default arguments (C++ only).
3484    CheckExtraCXXDefaultArguments(D);
3485  }
3486
3487  DiagnoseFunctionSpecifiers(D);
3488
3489  if (D.getDeclSpec().isThreadSpecified())
3490    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3491  if (D.getDeclSpec().isConstexprSpecified())
3492    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3493      << 1;
3494
3495  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3496    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3497      << D.getName().getSourceRange();
3498    return 0;
3499  }
3500
3501  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3502  if (!NewTD) return 0;
3503
3504  // Handle attributes prior to checking for duplicates in MergeVarDecl
3505  ProcessDeclAttributes(S, NewTD, D);
3506
3507  CheckTypedefForVariablyModifiedType(S, NewTD);
3508
3509  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3510}
3511
3512void
3513Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3514  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3515  // then it shall have block scope.
3516  // Note that variably modified types must be fixed before merging the decl so
3517  // that redeclarations will match.
3518  QualType T = NewTD->getUnderlyingType();
3519  if (T->isVariablyModifiedType()) {
3520    getCurFunction()->setHasBranchProtectedScope();
3521
3522    if (S->getFnParent() == 0) {
3523      bool SizeIsNegative;
3524      llvm::APSInt Oversized;
3525      QualType FixedTy =
3526          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3527                                              Oversized);
3528      if (!FixedTy.isNull()) {
3529        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3530        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3531      } else {
3532        if (SizeIsNegative)
3533          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3534        else if (T->isVariableArrayType())
3535          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3536        else if (Oversized.getBoolValue())
3537          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3538        else
3539          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3540        NewTD->setInvalidDecl();
3541      }
3542    }
3543  }
3544}
3545
3546
3547/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3548/// declares a typedef-name, either using the 'typedef' type specifier or via
3549/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3550NamedDecl*
3551Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3552                           LookupResult &Previous, bool &Redeclaration) {
3553  // Merge the decl with the existing one if appropriate. If the decl is
3554  // in an outer scope, it isn't the same thing.
3555  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3556                       /*ExplicitInstantiationOrSpecialization=*/false);
3557  if (!Previous.empty()) {
3558    Redeclaration = true;
3559    MergeTypedefNameDecl(NewTD, Previous);
3560  }
3561
3562  // If this is the C FILE type, notify the AST context.
3563  if (IdentifierInfo *II = NewTD->getIdentifier())
3564    if (!NewTD->isInvalidDecl() &&
3565        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3566      if (II->isStr("FILE"))
3567        Context.setFILEDecl(NewTD);
3568      else if (II->isStr("jmp_buf"))
3569        Context.setjmp_bufDecl(NewTD);
3570      else if (II->isStr("sigjmp_buf"))
3571        Context.setsigjmp_bufDecl(NewTD);
3572      else if (II->isStr("__builtin_va_list"))
3573        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3574    }
3575
3576  return NewTD;
3577}
3578
3579/// \brief Determines whether the given declaration is an out-of-scope
3580/// previous declaration.
3581///
3582/// This routine should be invoked when name lookup has found a
3583/// previous declaration (PrevDecl) that is not in the scope where a
3584/// new declaration by the same name is being introduced. If the new
3585/// declaration occurs in a local scope, previous declarations with
3586/// linkage may still be considered previous declarations (C99
3587/// 6.2.2p4-5, C++ [basic.link]p6).
3588///
3589/// \param PrevDecl the previous declaration found by name
3590/// lookup
3591///
3592/// \param DC the context in which the new declaration is being
3593/// declared.
3594///
3595/// \returns true if PrevDecl is an out-of-scope previous declaration
3596/// for a new delcaration with the same name.
3597static bool
3598isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3599                                ASTContext &Context) {
3600  if (!PrevDecl)
3601    return false;
3602
3603  if (!PrevDecl->hasLinkage())
3604    return false;
3605
3606  if (Context.getLangOptions().CPlusPlus) {
3607    // C++ [basic.link]p6:
3608    //   If there is a visible declaration of an entity with linkage
3609    //   having the same name and type, ignoring entities declared
3610    //   outside the innermost enclosing namespace scope, the block
3611    //   scope declaration declares that same entity and receives the
3612    //   linkage of the previous declaration.
3613    DeclContext *OuterContext = DC->getRedeclContext();
3614    if (!OuterContext->isFunctionOrMethod())
3615      // This rule only applies to block-scope declarations.
3616      return false;
3617
3618    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3619    if (PrevOuterContext->isRecord())
3620      // We found a member function: ignore it.
3621      return false;
3622
3623    // Find the innermost enclosing namespace for the new and
3624    // previous declarations.
3625    OuterContext = OuterContext->getEnclosingNamespaceContext();
3626    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3627
3628    // The previous declaration is in a different namespace, so it
3629    // isn't the same function.
3630    if (!OuterContext->Equals(PrevOuterContext))
3631      return false;
3632  }
3633
3634  return true;
3635}
3636
3637static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3638  CXXScopeSpec &SS = D.getCXXScopeSpec();
3639  if (!SS.isSet()) return;
3640  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3641}
3642
3643bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3644  QualType type = decl->getType();
3645  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3646  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3647    // Various kinds of declaration aren't allowed to be __autoreleasing.
3648    unsigned kind = -1U;
3649    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3650      if (var->hasAttr<BlocksAttr>())
3651        kind = 0; // __block
3652      else if (!var->hasLocalStorage())
3653        kind = 1; // global
3654    } else if (isa<ObjCIvarDecl>(decl)) {
3655      kind = 3; // ivar
3656    } else if (isa<FieldDecl>(decl)) {
3657      kind = 2; // field
3658    }
3659
3660    if (kind != -1U) {
3661      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3662        << kind;
3663    }
3664  } else if (lifetime == Qualifiers::OCL_None) {
3665    // Try to infer lifetime.
3666    if (!type->isObjCLifetimeType())
3667      return false;
3668
3669    lifetime = type->getObjCARCImplicitLifetime();
3670    type = Context.getLifetimeQualifiedType(type, lifetime);
3671    decl->setType(type);
3672  }
3673
3674  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3675    // Thread-local variables cannot have lifetime.
3676    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3677        var->isThreadSpecified()) {
3678      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3679        << var->getType();
3680      return true;
3681    }
3682  }
3683
3684  return false;
3685}
3686
3687NamedDecl*
3688Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3689                              QualType R, TypeSourceInfo *TInfo,
3690                              LookupResult &Previous,
3691                              MultiTemplateParamsArg TemplateParamLists,
3692                              bool &Redeclaration) {
3693  DeclarationName Name = GetNameForDeclarator(D).getName();
3694
3695  // Check that there are no default arguments (C++ only).
3696  if (getLangOptions().CPlusPlus)
3697    CheckExtraCXXDefaultArguments(D);
3698
3699  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3700  assert(SCSpec != DeclSpec::SCS_typedef &&
3701         "Parser allowed 'typedef' as storage class VarDecl.");
3702  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3703  if (SCSpec == DeclSpec::SCS_mutable) {
3704    // mutable can only appear on non-static class members, so it's always
3705    // an error here
3706    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3707    D.setInvalidType();
3708    SC = SC_None;
3709  }
3710  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3711  VarDecl::StorageClass SCAsWritten
3712    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3713
3714  IdentifierInfo *II = Name.getAsIdentifierInfo();
3715  if (!II) {
3716    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3717      << Name.getAsString();
3718    return 0;
3719  }
3720
3721  DiagnoseFunctionSpecifiers(D);
3722
3723  if (!DC->isRecord() && S->getFnParent() == 0) {
3724    // C99 6.9p2: The storage-class specifiers auto and register shall not
3725    // appear in the declaration specifiers in an external declaration.
3726    if (SC == SC_Auto || SC == SC_Register) {
3727
3728      // If this is a register variable with an asm label specified, then this
3729      // is a GNU extension.
3730      if (SC == SC_Register && D.getAsmLabel())
3731        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3732      else
3733        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3734      D.setInvalidType();
3735    }
3736  }
3737
3738  if (getLangOptions().OpenCL) {
3739    // Set up the special work-group-local storage class for variables in the
3740    // OpenCL __local address space.
3741    if (R.getAddressSpace() == LangAS::opencl_local)
3742      SC = SC_OpenCLWorkGroupLocal;
3743  }
3744
3745  bool isExplicitSpecialization = false;
3746  VarDecl *NewVD;
3747  if (!getLangOptions().CPlusPlus) {
3748    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3749                            D.getIdentifierLoc(), II,
3750                            R, TInfo, SC, SCAsWritten);
3751
3752    if (D.isInvalidType())
3753      NewVD->setInvalidDecl();
3754  } else {
3755    if (DC->isRecord() && !CurContext->isRecord()) {
3756      // This is an out-of-line definition of a static data member.
3757      if (SC == SC_Static) {
3758        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3759             diag::err_static_out_of_line)
3760          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3761      } else if (SC == SC_None)
3762        SC = SC_Static;
3763    }
3764    if (SC == SC_Static) {
3765      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3766        if (RD->isLocalClass())
3767          Diag(D.getIdentifierLoc(),
3768               diag::err_static_data_member_not_allowed_in_local_class)
3769            << Name << RD->getDeclName();
3770
3771        // C++ [class.union]p1: If a union contains a static data member,
3772        // the program is ill-formed.
3773        //
3774        // We also disallow static data members in anonymous structs.
3775        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3776          Diag(D.getIdentifierLoc(),
3777               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3778            << Name << RD->isUnion();
3779      }
3780    }
3781
3782    // Match up the template parameter lists with the scope specifier, then
3783    // determine whether we have a template or a template specialization.
3784    isExplicitSpecialization = false;
3785    bool Invalid = false;
3786    if (TemplateParameterList *TemplateParams
3787        = MatchTemplateParametersToScopeSpecifier(
3788                                  D.getDeclSpec().getSourceRange().getBegin(),
3789                                                  D.getIdentifierLoc(),
3790                                                  D.getCXXScopeSpec(),
3791                                                  TemplateParamLists.get(),
3792                                                  TemplateParamLists.size(),
3793                                                  /*never a friend*/ false,
3794                                                  isExplicitSpecialization,
3795                                                  Invalid)) {
3796      if (TemplateParams->size() > 0) {
3797        // There is no such thing as a variable template.
3798        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3799          << II
3800          << SourceRange(TemplateParams->getTemplateLoc(),
3801                         TemplateParams->getRAngleLoc());
3802        return 0;
3803      } else {
3804        // There is an extraneous 'template<>' for this variable. Complain
3805        // about it, but allow the declaration of the variable.
3806        Diag(TemplateParams->getTemplateLoc(),
3807             diag::err_template_variable_noparams)
3808          << II
3809          << SourceRange(TemplateParams->getTemplateLoc(),
3810                         TemplateParams->getRAngleLoc());
3811      }
3812    }
3813
3814    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3815                            D.getIdentifierLoc(), II,
3816                            R, TInfo, SC, SCAsWritten);
3817
3818    // If this decl has an auto type in need of deduction, make a note of the
3819    // Decl so we can diagnose uses of it in its own initializer.
3820    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3821        R->getContainedAutoType())
3822      ParsingInitForAutoVars.insert(NewVD);
3823
3824    if (D.isInvalidType() || Invalid)
3825      NewVD->setInvalidDecl();
3826
3827    SetNestedNameSpecifier(NewVD, D);
3828
3829    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3830      NewVD->setTemplateParameterListsInfo(Context,
3831                                           TemplateParamLists.size(),
3832                                           TemplateParamLists.release());
3833    }
3834
3835    if (D.getDeclSpec().isConstexprSpecified()) {
3836      // FIXME: once we know whether there's an initializer, apply this to
3837      // static data members too.
3838      if (!NewVD->isStaticDataMember() &&
3839          !NewVD->isThisDeclarationADefinition()) {
3840        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3841        // of a variable. Suggest replacing it with 'const' if appropriate.
3842        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3843        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3844        // If the declarator is complex, we need to move the keyword to the
3845        // innermost chunk as we switch it from 'constexpr' to 'const'.
3846        int Kind = DeclaratorChunk::Paren;
3847        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3848          Kind = D.getTypeObject(I).Kind;
3849          if (Kind != DeclaratorChunk::Paren)
3850            break;
3851        }
3852        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3853            Kind == DeclaratorChunk::Reference)
3854          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3855            << FixItHint::CreateRemoval(ConstexprRange);
3856        else if (Kind == DeclaratorChunk::Paren)
3857          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3858            << FixItHint::CreateReplacement(ConstexprRange, "const");
3859        else
3860          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3861            << FixItHint::CreateRemoval(ConstexprRange)
3862            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3863      } else {
3864        NewVD->setConstexpr(true);
3865      }
3866    }
3867  }
3868
3869  // Set the lexical context. If the declarator has a C++ scope specifier, the
3870  // lexical context will be different from the semantic context.
3871  NewVD->setLexicalDeclContext(CurContext);
3872
3873  if (D.getDeclSpec().isThreadSpecified()) {
3874    if (NewVD->hasLocalStorage())
3875      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3876    else if (!Context.getTargetInfo().isTLSSupported())
3877      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3878    else
3879      NewVD->setThreadSpecified(true);
3880  }
3881
3882  if (D.getDeclSpec().isModulePrivateSpecified()) {
3883    if (isExplicitSpecialization)
3884      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3885        << 2
3886        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3887    else if (NewVD->hasLocalStorage())
3888      Diag(NewVD->getLocation(), diag::err_module_private_local)
3889        << 0 << NewVD->getDeclName()
3890        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3891        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3892    else
3893      NewVD->setModulePrivate();
3894  }
3895
3896  // Handle attributes prior to checking for duplicates in MergeVarDecl
3897  ProcessDeclAttributes(S, NewVD, D);
3898
3899  // In auto-retain/release, infer strong retension for variables of
3900  // retainable type.
3901  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3902    NewVD->setInvalidDecl();
3903
3904  // Handle GNU asm-label extension (encoded as an attribute).
3905  if (Expr *E = (Expr*)D.getAsmLabel()) {
3906    // The parser guarantees this is a string.
3907    StringLiteral *SE = cast<StringLiteral>(E);
3908    StringRef Label = SE->getString();
3909    if (S->getFnParent() != 0) {
3910      switch (SC) {
3911      case SC_None:
3912      case SC_Auto:
3913        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3914        break;
3915      case SC_Register:
3916        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3917          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3918        break;
3919      case SC_Static:
3920      case SC_Extern:
3921      case SC_PrivateExtern:
3922      case SC_OpenCLWorkGroupLocal:
3923        break;
3924      }
3925    }
3926
3927    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3928                                                Context, Label));
3929  }
3930
3931  // Diagnose shadowed variables before filtering for scope.
3932  if (!D.getCXXScopeSpec().isSet())
3933    CheckShadow(S, NewVD, Previous);
3934
3935  // Don't consider existing declarations that are in a different
3936  // scope and are out-of-semantic-context declarations (if the new
3937  // declaration has linkage).
3938  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3939                       isExplicitSpecialization);
3940
3941  if (!getLangOptions().CPlusPlus)
3942    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3943  else {
3944    // Merge the decl with the existing one if appropriate.
3945    if (!Previous.empty()) {
3946      if (Previous.isSingleResult() &&
3947          isa<FieldDecl>(Previous.getFoundDecl()) &&
3948          D.getCXXScopeSpec().isSet()) {
3949        // The user tried to define a non-static data member
3950        // out-of-line (C++ [dcl.meaning]p1).
3951        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3952          << D.getCXXScopeSpec().getRange();
3953        Previous.clear();
3954        NewVD->setInvalidDecl();
3955      }
3956    } else if (D.getCXXScopeSpec().isSet()) {
3957      // No previous declaration in the qualifying scope.
3958      Diag(D.getIdentifierLoc(), diag::err_no_member)
3959        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3960        << D.getCXXScopeSpec().getRange();
3961      NewVD->setInvalidDecl();
3962    }
3963
3964    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3965
3966    // This is an explicit specialization of a static data member. Check it.
3967    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3968        CheckMemberSpecialization(NewVD, Previous))
3969      NewVD->setInvalidDecl();
3970  }
3971
3972  // attributes declared post-definition are currently ignored
3973  // FIXME: This should be handled in attribute merging, not
3974  // here.
3975  if (Previous.isSingleResult()) {
3976    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3977    if (Def && (Def = Def->getDefinition()) &&
3978        Def != NewVD && D.hasAttributes()) {
3979      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3980      Diag(Def->getLocation(), diag::note_previous_definition);
3981    }
3982  }
3983
3984  // If this is a locally-scoped extern C variable, update the map of
3985  // such variables.
3986  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3987      !NewVD->isInvalidDecl())
3988    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3989
3990  // If there's a #pragma GCC visibility in scope, and this isn't a class
3991  // member, set the visibility of this variable.
3992  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3993    AddPushedVisibilityAttribute(NewVD);
3994
3995  MarkUnusedFileScopedDecl(NewVD);
3996
3997  return NewVD;
3998}
3999
4000/// \brief Diagnose variable or built-in function shadowing.  Implements
4001/// -Wshadow.
4002///
4003/// This method is called whenever a VarDecl is added to a "useful"
4004/// scope.
4005///
4006/// \param S the scope in which the shadowing name is being declared
4007/// \param R the lookup of the name
4008///
4009void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4010  // Return if warning is ignored.
4011  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4012        DiagnosticsEngine::Ignored)
4013    return;
4014
4015  // Don't diagnose declarations at file scope.
4016  if (D->hasGlobalStorage())
4017    return;
4018
4019  DeclContext *NewDC = D->getDeclContext();
4020
4021  // Only diagnose if we're shadowing an unambiguous field or variable.
4022  if (R.getResultKind() != LookupResult::Found)
4023    return;
4024
4025  NamedDecl* ShadowedDecl = R.getFoundDecl();
4026  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4027    return;
4028
4029  // Fields are not shadowed by variables in C++ static methods.
4030  if (isa<FieldDecl>(ShadowedDecl))
4031    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4032      if (MD->isStatic())
4033        return;
4034
4035  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4036    if (shadowedVar->isExternC()) {
4037      // For shadowing external vars, make sure that we point to the global
4038      // declaration, not a locally scoped extern declaration.
4039      for (VarDecl::redecl_iterator
4040             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4041           I != E; ++I)
4042        if (I->isFileVarDecl()) {
4043          ShadowedDecl = *I;
4044          break;
4045        }
4046    }
4047
4048  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4049
4050  // Only warn about certain kinds of shadowing for class members.
4051  if (NewDC && NewDC->isRecord()) {
4052    // In particular, don't warn about shadowing non-class members.
4053    if (!OldDC->isRecord())
4054      return;
4055
4056    // TODO: should we warn about static data members shadowing
4057    // static data members from base classes?
4058
4059    // TODO: don't diagnose for inaccessible shadowed members.
4060    // This is hard to do perfectly because we might friend the
4061    // shadowing context, but that's just a false negative.
4062  }
4063
4064  // Determine what kind of declaration we're shadowing.
4065  unsigned Kind;
4066  if (isa<RecordDecl>(OldDC)) {
4067    if (isa<FieldDecl>(ShadowedDecl))
4068      Kind = 3; // field
4069    else
4070      Kind = 2; // static data member
4071  } else if (OldDC->isFileContext())
4072    Kind = 1; // global
4073  else
4074    Kind = 0; // local
4075
4076  DeclarationName Name = R.getLookupName();
4077
4078  // Emit warning and note.
4079  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4080  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4081}
4082
4083/// \brief Check -Wshadow without the advantage of a previous lookup.
4084void Sema::CheckShadow(Scope *S, VarDecl *D) {
4085  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4086        DiagnosticsEngine::Ignored)
4087    return;
4088
4089  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4090                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4091  LookupName(R, S);
4092  CheckShadow(S, D, R);
4093}
4094
4095/// \brief Perform semantic checking on a newly-created variable
4096/// declaration.
4097///
4098/// This routine performs all of the type-checking required for a
4099/// variable declaration once it has been built. It is used both to
4100/// check variables after they have been parsed and their declarators
4101/// have been translated into a declaration, and to check variables
4102/// that have been instantiated from a template.
4103///
4104/// Sets NewVD->isInvalidDecl() if an error was encountered.
4105void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4106                                    LookupResult &Previous,
4107                                    bool &Redeclaration) {
4108  // If the decl is already known invalid, don't check it.
4109  if (NewVD->isInvalidDecl())
4110    return;
4111
4112  QualType T = NewVD->getType();
4113
4114  if (T->isObjCObjectType()) {
4115    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4116      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4117    T = Context.getObjCObjectPointerType(T);
4118    NewVD->setType(T);
4119  }
4120
4121  // Emit an error if an address space was applied to decl with local storage.
4122  // This includes arrays of objects with address space qualifiers, but not
4123  // automatic variables that point to other address spaces.
4124  // ISO/IEC TR 18037 S5.1.2
4125  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4126    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4127    return NewVD->setInvalidDecl();
4128  }
4129
4130  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4131      && !NewVD->hasAttr<BlocksAttr>()) {
4132    if (getLangOptions().getGC() != LangOptions::NonGC)
4133      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4134    else
4135      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4136  }
4137
4138  bool isVM = T->isVariablyModifiedType();
4139  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4140      NewVD->hasAttr<BlocksAttr>())
4141    getCurFunction()->setHasBranchProtectedScope();
4142
4143  if ((isVM && NewVD->hasLinkage()) ||
4144      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4145    bool SizeIsNegative;
4146    llvm::APSInt Oversized;
4147    QualType FixedTy =
4148        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4149                                            Oversized);
4150
4151    if (FixedTy.isNull() && T->isVariableArrayType()) {
4152      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4153      // FIXME: This won't give the correct result for
4154      // int a[10][n];
4155      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4156
4157      if (NewVD->isFileVarDecl())
4158        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4159        << SizeRange;
4160      else if (NewVD->getStorageClass() == SC_Static)
4161        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4162        << SizeRange;
4163      else
4164        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4165        << SizeRange;
4166      return NewVD->setInvalidDecl();
4167    }
4168
4169    if (FixedTy.isNull()) {
4170      if (NewVD->isFileVarDecl())
4171        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4172      else
4173        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4174      return NewVD->setInvalidDecl();
4175    }
4176
4177    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4178    NewVD->setType(FixedTy);
4179  }
4180
4181  if (Previous.empty() && NewVD->isExternC()) {
4182    // Since we did not find anything by this name and we're declaring
4183    // an extern "C" variable, look for a non-visible extern "C"
4184    // declaration with the same name.
4185    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4186      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4187    if (Pos != LocallyScopedExternalDecls.end())
4188      Previous.addDecl(Pos->second);
4189  }
4190
4191  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4192    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4193      << T;
4194    return NewVD->setInvalidDecl();
4195  }
4196
4197  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4198    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4199    return NewVD->setInvalidDecl();
4200  }
4201
4202  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4203    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4204    return NewVD->setInvalidDecl();
4205  }
4206
4207  // Function pointers and references cannot have qualified function type, only
4208  // function pointer-to-members can do that.
4209  QualType Pointee;
4210  unsigned PtrOrRef = 0;
4211  if (const PointerType *Ptr = T->getAs<PointerType>())
4212    Pointee = Ptr->getPointeeType();
4213  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4214    Pointee = Ref->getPointeeType();
4215    PtrOrRef = 1;
4216  }
4217  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4218      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4219    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4220        << PtrOrRef;
4221    return NewVD->setInvalidDecl();
4222  }
4223
4224  if (!Previous.empty()) {
4225    Redeclaration = true;
4226    MergeVarDecl(NewVD, Previous);
4227  }
4228}
4229
4230/// \brief Data used with FindOverriddenMethod
4231struct FindOverriddenMethodData {
4232  Sema *S;
4233  CXXMethodDecl *Method;
4234};
4235
4236/// \brief Member lookup function that determines whether a given C++
4237/// method overrides a method in a base class, to be used with
4238/// CXXRecordDecl::lookupInBases().
4239static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4240                                 CXXBasePath &Path,
4241                                 void *UserData) {
4242  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4243
4244  FindOverriddenMethodData *Data
4245    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4246
4247  DeclarationName Name = Data->Method->getDeclName();
4248
4249  // FIXME: Do we care about other names here too?
4250  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4251    // We really want to find the base class destructor here.
4252    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4253    CanQualType CT = Data->S->Context.getCanonicalType(T);
4254
4255    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4256  }
4257
4258  for (Path.Decls = BaseRecord->lookup(Name);
4259       Path.Decls.first != Path.Decls.second;
4260       ++Path.Decls.first) {
4261    NamedDecl *D = *Path.Decls.first;
4262    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4263      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4264        return true;
4265    }
4266  }
4267
4268  return false;
4269}
4270
4271/// AddOverriddenMethods - See if a method overrides any in the base classes,
4272/// and if so, check that it's a valid override and remember it.
4273bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4274  // Look for virtual methods in base classes that this method might override.
4275  CXXBasePaths Paths;
4276  FindOverriddenMethodData Data;
4277  Data.Method = MD;
4278  Data.S = this;
4279  bool AddedAny = false;
4280  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4281    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4282         E = Paths.found_decls_end(); I != E; ++I) {
4283      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4284        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4285        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4286            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4287            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4288          AddedAny = true;
4289        }
4290      }
4291    }
4292  }
4293
4294  return AddedAny;
4295}
4296
4297static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4298                                         bool isFriendDecl) {
4299  DeclarationName Name = NewFD->getDeclName();
4300  DeclContext *DC = NewFD->getDeclContext();
4301  LookupResult Prev(S, Name, NewFD->getLocation(),
4302                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4303  llvm::SmallVector<unsigned, 1> MismatchedParams;
4304  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4305  TypoCorrection Correction;
4306  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4307                                  : diag::err_member_def_does_not_match;
4308
4309  NewFD->setInvalidDecl();
4310  S.LookupQualifiedName(Prev, DC);
4311  assert(!Prev.isAmbiguous() &&
4312         "Cannot have an ambiguity in previous-declaration lookup");
4313  if (!Prev.empty()) {
4314    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4315         Func != FuncEnd; ++Func) {
4316      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4317      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4318                                         MismatchedParams)) {
4319        // Add 1 to the index so that 0 can mean the mismatch didn't
4320        // involve a parameter
4321        unsigned ParamNum =
4322            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4323        NearMatches.push_back(std::make_pair(FD, ParamNum));
4324      }
4325    }
4326  // If the qualified name lookup yielded nothing, try typo correction
4327  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4328                                         Prev.getLookupKind(), 0, 0, DC)) &&
4329             Correction.getCorrection() != Name) {
4330    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4331                                    CDeclEnd = Correction.end();
4332         CDecl != CDeclEnd; ++CDecl) {
4333      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4334      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4335                                         MismatchedParams)) {
4336        // Add 1 to the index so that 0 can mean the mismatch didn't
4337        // involve a parameter
4338        unsigned ParamNum =
4339            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4340        NearMatches.push_back(std::make_pair(FD, ParamNum));
4341      }
4342    }
4343    if (!NearMatches.empty())
4344      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4345                             : diag::err_member_def_does_not_match_suggest;
4346  }
4347
4348  // Ignore the correction if it didn't yield any close FunctionDecl matches
4349  if (Correction && NearMatches.empty())
4350    Correction = TypoCorrection();
4351
4352  if (Correction)
4353    S.Diag(NewFD->getLocation(), DiagMsg)
4354        << Name << DC << Correction.getQuoted(S.getLangOptions())
4355        << FixItHint::CreateReplacement(
4356            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4357  else
4358    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4359
4360  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4361       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4362       NearMatch != NearMatchEnd; ++NearMatch) {
4363    FunctionDecl *FD = NearMatch->first;
4364
4365    if (unsigned Idx = NearMatch->second) {
4366      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4367      S.Diag(FDParam->getTypeSpecStartLoc(),
4368             diag::note_member_def_close_param_match)
4369          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4370    } else if (Correction) {
4371      S.Diag(FD->getLocation(), diag::note_previous_decl)
4372        << Correction.getQuoted(S.getLangOptions());
4373    } else
4374      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4375  }
4376}
4377
4378NamedDecl*
4379Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4380                              QualType R, TypeSourceInfo *TInfo,
4381                              LookupResult &Previous,
4382                              MultiTemplateParamsArg TemplateParamLists,
4383                              bool IsFunctionDefinition, bool &Redeclaration,
4384                              bool &AddToScope) {
4385  assert(R.getTypePtr()->isFunctionType());
4386
4387  // TODO: consider using NameInfo for diagnostic.
4388  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4389  DeclarationName Name = NameInfo.getName();
4390  FunctionDecl::StorageClass SC = SC_None;
4391  switch (D.getDeclSpec().getStorageClassSpec()) {
4392  default: llvm_unreachable("Unknown storage class!");
4393  case DeclSpec::SCS_auto:
4394  case DeclSpec::SCS_register:
4395  case DeclSpec::SCS_mutable:
4396    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4397         diag::err_typecheck_sclass_func);
4398    D.setInvalidType();
4399    break;
4400  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4401  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4402  case DeclSpec::SCS_static: {
4403    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4404      // C99 6.7.1p5:
4405      //   The declaration of an identifier for a function that has
4406      //   block scope shall have no explicit storage-class specifier
4407      //   other than extern
4408      // See also (C++ [dcl.stc]p4).
4409      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4410           diag::err_static_block_func);
4411      SC = SC_None;
4412    } else
4413      SC = SC_Static;
4414    break;
4415  }
4416  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4417  }
4418
4419  if (D.getDeclSpec().isThreadSpecified())
4420    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4421
4422  // Do not allow returning a objc interface by-value.
4423  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4424    Diag(D.getIdentifierLoc(),
4425         diag::err_object_cannot_be_passed_returned_by_value) << 0
4426    << R->getAs<FunctionType>()->getResultType()
4427    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4428
4429    QualType T = R->getAs<FunctionType>()->getResultType();
4430    T = Context.getObjCObjectPointerType(T);
4431    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4432      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4433      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4434                                  FPT->getNumArgs(), EPI);
4435    }
4436    else if (isa<FunctionNoProtoType>(R))
4437      R = Context.getFunctionNoProtoType(T);
4438  }
4439
4440  FunctionDecl *NewFD;
4441  bool isInline = D.getDeclSpec().isInlineSpecified();
4442  bool isFriend = false;
4443  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4444  FunctionDecl::StorageClass SCAsWritten
4445    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4446  FunctionTemplateDecl *FunctionTemplate = 0;
4447  bool isExplicitSpecialization = false;
4448  bool isFunctionTemplateSpecialization = false;
4449  bool isDependentClassScopeExplicitSpecialization = false;
4450
4451  if (!getLangOptions().CPlusPlus) {
4452    // Determine whether the function was written with a
4453    // prototype. This true when:
4454    //   - there is a prototype in the declarator, or
4455    //   - the type R of the function is some kind of typedef or other reference
4456    //     to a type name (which eventually refers to a function type).
4457    bool HasPrototype =
4458    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4459    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4460
4461    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4462                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4463                                 HasPrototype);
4464    if (D.isInvalidType())
4465      NewFD->setInvalidDecl();
4466
4467    // Set the lexical context.
4468    NewFD->setLexicalDeclContext(CurContext);
4469    // Filter out previous declarations that don't match the scope.
4470    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4471                         /*ExplicitInstantiationOrSpecialization=*/false);
4472  } else {
4473    isFriend = D.getDeclSpec().isFriendSpecified();
4474    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4475    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4476    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4477    bool isVirtualOkay = false;
4478
4479    // Check that the return type is not an abstract class type.
4480    // For record types, this is done by the AbstractClassUsageDiagnoser once
4481    // the class has been completely parsed.
4482    if (!DC->isRecord() &&
4483      RequireNonAbstractType(D.getIdentifierLoc(),
4484                             R->getAs<FunctionType>()->getResultType(),
4485                             diag::err_abstract_type_in_decl,
4486                             AbstractReturnType))
4487      D.setInvalidType();
4488
4489    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4490      // This is a C++ constructor declaration.
4491      assert(DC->isRecord() &&
4492             "Constructors can only be declared in a member context");
4493
4494      R = CheckConstructorDeclarator(D, R, SC);
4495
4496      // Create the new declaration
4497      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4498                                         Context,
4499                                         cast<CXXRecordDecl>(DC),
4500                                         D.getSourceRange().getBegin(),
4501                                         NameInfo, R, TInfo,
4502                                         isExplicit, isInline,
4503                                         /*isImplicitlyDeclared=*/false,
4504                                         isConstexpr);
4505
4506      NewFD = NewCD;
4507    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4508      // This is a C++ destructor declaration.
4509      if (DC->isRecord()) {
4510        R = CheckDestructorDeclarator(D, R, SC);
4511        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4512
4513        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4514                                          D.getSourceRange().getBegin(),
4515                                          NameInfo, R, TInfo,
4516                                          isInline,
4517                                          /*isImplicitlyDeclared=*/false);
4518        NewFD = NewDD;
4519        isVirtualOkay = true;
4520
4521        // If the class is complete, then we now create the implicit exception
4522        // specification. If the class is incomplete or dependent, we can't do
4523        // it yet.
4524        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4525            Record->getDefinition() && !Record->isBeingDefined() &&
4526            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4527          AdjustDestructorExceptionSpec(Record, NewDD);
4528        }
4529
4530      } else {
4531        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4532
4533        // Create a FunctionDecl to satisfy the function definition parsing
4534        // code path.
4535        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4536                                     D.getIdentifierLoc(), Name, R, TInfo,
4537                                     SC, SCAsWritten, isInline,
4538                                     /*hasPrototype=*/true, isConstexpr);
4539        D.setInvalidType();
4540      }
4541    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4542      if (!DC->isRecord()) {
4543        Diag(D.getIdentifierLoc(),
4544             diag::err_conv_function_not_member);
4545        return 0;
4546      }
4547
4548      CheckConversionDeclarator(D, R, SC);
4549      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4550                                        D.getSourceRange().getBegin(),
4551                                        NameInfo, R, TInfo,
4552                                        isInline, isExplicit, isConstexpr,
4553                                        SourceLocation());
4554
4555      isVirtualOkay = true;
4556    } else if (DC->isRecord()) {
4557      // If the name of the function is the same as the name of the record,
4558      // then this must be an invalid constructor that has a return type.
4559      // (The parser checks for a return type and makes the declarator a
4560      // constructor if it has no return type).
4561      if (Name.getAsIdentifierInfo() &&
4562          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4563        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4564          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4565          << SourceRange(D.getIdentifierLoc());
4566        return 0;
4567      }
4568
4569      bool isStatic = SC == SC_Static;
4570
4571      // [class.free]p1:
4572      // Any allocation function for a class T is a static member
4573      // (even if not explicitly declared static).
4574      if (Name.getCXXOverloadedOperator() == OO_New ||
4575          Name.getCXXOverloadedOperator() == OO_Array_New)
4576        isStatic = true;
4577
4578      // [class.free]p6 Any deallocation function for a class X is a static member
4579      // (even if not explicitly declared static).
4580      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4581          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4582        isStatic = true;
4583
4584      // This is a C++ method declaration.
4585      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4586                                               Context, cast<CXXRecordDecl>(DC),
4587                                               D.getSourceRange().getBegin(),
4588                                               NameInfo, R, TInfo,
4589                                               isStatic, SCAsWritten, isInline,
4590                                               isConstexpr,
4591                                               SourceLocation());
4592      NewFD = NewMD;
4593
4594      isVirtualOkay = !isStatic;
4595    } else {
4596      // Determine whether the function was written with a
4597      // prototype. This true when:
4598      //   - we're in C++ (where every function has a prototype),
4599      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4600                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4601                                   true/*HasPrototype*/, isConstexpr);
4602    }
4603
4604    if (isFriend && !isInline && IsFunctionDefinition) {
4605      // C++ [class.friend]p5
4606      //   A function can be defined in a friend declaration of a
4607      //   class . . . . Such a function is implicitly inline.
4608      NewFD->setImplicitlyInline();
4609    }
4610
4611    SetNestedNameSpecifier(NewFD, D);
4612    isExplicitSpecialization = false;
4613    isFunctionTemplateSpecialization = false;
4614    if (D.isInvalidType())
4615      NewFD->setInvalidDecl();
4616
4617    // Set the lexical context. If the declarator has a C++
4618    // scope specifier, or is the object of a friend declaration, the
4619    // lexical context will be different from the semantic context.
4620    NewFD->setLexicalDeclContext(CurContext);
4621
4622    // Match up the template parameter lists with the scope specifier, then
4623    // determine whether we have a template or a template specialization.
4624    bool Invalid = false;
4625    if (TemplateParameterList *TemplateParams
4626          = MatchTemplateParametersToScopeSpecifier(
4627                                  D.getDeclSpec().getSourceRange().getBegin(),
4628                                  D.getIdentifierLoc(),
4629                                  D.getCXXScopeSpec(),
4630                                  TemplateParamLists.get(),
4631                                  TemplateParamLists.size(),
4632                                  isFriend,
4633                                  isExplicitSpecialization,
4634                                  Invalid)) {
4635      if (TemplateParams->size() > 0) {
4636        // This is a function template
4637
4638        // Check that we can declare a template here.
4639        if (CheckTemplateDeclScope(S, TemplateParams))
4640          return 0;
4641
4642        // A destructor cannot be a template.
4643        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4644          Diag(NewFD->getLocation(), diag::err_destructor_template);
4645          return 0;
4646        }
4647
4648        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4649                                                        NewFD->getLocation(),
4650                                                        Name, TemplateParams,
4651                                                        NewFD);
4652        FunctionTemplate->setLexicalDeclContext(CurContext);
4653        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4654
4655        // For source fidelity, store the other template param lists.
4656        if (TemplateParamLists.size() > 1) {
4657          NewFD->setTemplateParameterListsInfo(Context,
4658                                               TemplateParamLists.size() - 1,
4659                                               TemplateParamLists.release());
4660        }
4661      } else {
4662        // This is a function template specialization.
4663        isFunctionTemplateSpecialization = true;
4664        // For source fidelity, store all the template param lists.
4665        NewFD->setTemplateParameterListsInfo(Context,
4666                                             TemplateParamLists.size(),
4667                                             TemplateParamLists.release());
4668
4669        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4670        if (isFriend) {
4671          // We want to remove the "template<>", found here.
4672          SourceRange RemoveRange = TemplateParams->getSourceRange();
4673
4674          // If we remove the template<> and the name is not a
4675          // template-id, we're actually silently creating a problem:
4676          // the friend declaration will refer to an untemplated decl,
4677          // and clearly the user wants a template specialization.  So
4678          // we need to insert '<>' after the name.
4679          SourceLocation InsertLoc;
4680          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4681            InsertLoc = D.getName().getSourceRange().getEnd();
4682            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4683          }
4684
4685          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4686            << Name << RemoveRange
4687            << FixItHint::CreateRemoval(RemoveRange)
4688            << FixItHint::CreateInsertion(InsertLoc, "<>");
4689        }
4690      }
4691    }
4692    else {
4693      // All template param lists were matched against the scope specifier:
4694      // this is NOT (an explicit specialization of) a template.
4695      if (TemplateParamLists.size() > 0)
4696        // For source fidelity, store all the template param lists.
4697        NewFD->setTemplateParameterListsInfo(Context,
4698                                             TemplateParamLists.size(),
4699                                             TemplateParamLists.release());
4700    }
4701
4702    if (Invalid) {
4703      NewFD->setInvalidDecl();
4704      if (FunctionTemplate)
4705        FunctionTemplate->setInvalidDecl();
4706    }
4707
4708    // C++ [dcl.fct.spec]p5:
4709    //   The virtual specifier shall only be used in declarations of
4710    //   nonstatic class member functions that appear within a
4711    //   member-specification of a class declaration; see 10.3.
4712    //
4713    if (isVirtual && !NewFD->isInvalidDecl()) {
4714      if (!isVirtualOkay) {
4715        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4716             diag::err_virtual_non_function);
4717      } else if (!CurContext->isRecord()) {
4718        // 'virtual' was specified outside of the class.
4719        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4720             diag::err_virtual_out_of_class)
4721          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4722      } else if (NewFD->getDescribedFunctionTemplate()) {
4723        // C++ [temp.mem]p3:
4724        //  A member function template shall not be virtual.
4725        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4726             diag::err_virtual_member_function_template)
4727          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4728      } else {
4729        // Okay: Add virtual to the method.
4730        NewFD->setVirtualAsWritten(true);
4731      }
4732    }
4733
4734    // C++ [dcl.fct.spec]p3:
4735    //  The inline specifier shall not appear on a block scope function declaration.
4736    if (isInline && !NewFD->isInvalidDecl()) {
4737      if (CurContext->isFunctionOrMethod()) {
4738        // 'inline' is not allowed on block scope function declaration.
4739        Diag(D.getDeclSpec().getInlineSpecLoc(),
4740             diag::err_inline_declaration_block_scope) << Name
4741          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4742      }
4743    }
4744
4745    // C++ [dcl.fct.spec]p6:
4746    //  The explicit specifier shall be used only in the declaration of a
4747    //  constructor or conversion function within its class definition; see 12.3.1
4748    //  and 12.3.2.
4749    if (isExplicit && !NewFD->isInvalidDecl()) {
4750      if (!CurContext->isRecord()) {
4751        // 'explicit' was specified outside of the class.
4752        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4753             diag::err_explicit_out_of_class)
4754          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4755      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4756                 !isa<CXXConversionDecl>(NewFD)) {
4757        // 'explicit' was specified on a function that wasn't a constructor
4758        // or conversion function.
4759        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4760             diag::err_explicit_non_ctor_or_conv_function)
4761          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4762      }
4763    }
4764
4765    if (isConstexpr) {
4766      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4767      // are implicitly inline.
4768      NewFD->setImplicitlyInline();
4769
4770      // FIXME: If this is a redeclaration, check the original declaration was
4771      // marked constepr.
4772
4773      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4774      // be either constructors or to return a literal type. Therefore,
4775      // destructors cannot be declared constexpr.
4776      if (isa<CXXDestructorDecl>(NewFD))
4777        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4778             diag::err_constexpr_dtor);
4779    }
4780
4781    // If __module_private__ was specified, mark the function accordingly.
4782    if (D.getDeclSpec().isModulePrivateSpecified()) {
4783      if (isFunctionTemplateSpecialization) {
4784        SourceLocation ModulePrivateLoc
4785          = D.getDeclSpec().getModulePrivateSpecLoc();
4786        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4787          << 0
4788          << FixItHint::CreateRemoval(ModulePrivateLoc);
4789      } else {
4790        NewFD->setModulePrivate();
4791        if (FunctionTemplate)
4792          FunctionTemplate->setModulePrivate();
4793      }
4794    }
4795
4796    // Filter out previous declarations that don't match the scope.
4797    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4798                         isExplicitSpecialization ||
4799                         isFunctionTemplateSpecialization);
4800
4801    if (isFriend) {
4802      // For now, claim that the objects have no previous declaration.
4803      if (FunctionTemplate) {
4804        FunctionTemplate->setObjectOfFriendDecl(false);
4805        FunctionTemplate->setAccess(AS_public);
4806      }
4807      NewFD->setObjectOfFriendDecl(false);
4808      NewFD->setAccess(AS_public);
4809    }
4810
4811    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4812      // A method is implicitly inline if it's defined in its class
4813      // definition.
4814      NewFD->setImplicitlyInline();
4815    }
4816
4817    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4818        !CurContext->isRecord()) {
4819      // C++ [class.static]p1:
4820      //   A data or function member of a class may be declared static
4821      //   in a class definition, in which case it is a static member of
4822      //   the class.
4823
4824      // Complain about the 'static' specifier if it's on an out-of-line
4825      // member function definition.
4826      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4827           diag::err_static_out_of_line)
4828        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4829    }
4830  }
4831
4832  // Handle GNU asm-label extension (encoded as an attribute).
4833  if (Expr *E = (Expr*) D.getAsmLabel()) {
4834    // The parser guarantees this is a string.
4835    StringLiteral *SE = cast<StringLiteral>(E);
4836    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4837                                                SE->getString()));
4838  }
4839
4840  // Copy the parameter declarations from the declarator D to the function
4841  // declaration NewFD, if they are available.  First scavenge them into Params.
4842  SmallVector<ParmVarDecl*, 16> Params;
4843  if (D.isFunctionDeclarator()) {
4844    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4845
4846    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4847    // function that takes no arguments, not a function that takes a
4848    // single void argument.
4849    // We let through "const void" here because Sema::GetTypeForDeclarator
4850    // already checks for that case.
4851    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4852        FTI.ArgInfo[0].Param &&
4853        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4854      // Empty arg list, don't push any params.
4855      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4856
4857      // In C++, the empty parameter-type-list must be spelled "void"; a
4858      // typedef of void is not permitted.
4859      if (getLangOptions().CPlusPlus &&
4860          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4861        bool IsTypeAlias = false;
4862        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4863          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4864        else if (const TemplateSpecializationType *TST =
4865                   Param->getType()->getAs<TemplateSpecializationType>())
4866          IsTypeAlias = TST->isTypeAlias();
4867        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4868          << IsTypeAlias;
4869      }
4870    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4871      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4872        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4873        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4874        Param->setDeclContext(NewFD);
4875        Params.push_back(Param);
4876
4877        if (Param->isInvalidDecl())
4878          NewFD->setInvalidDecl();
4879      }
4880    }
4881
4882  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4883    // When we're declaring a function with a typedef, typeof, etc as in the
4884    // following example, we'll need to synthesize (unnamed)
4885    // parameters for use in the declaration.
4886    //
4887    // @code
4888    // typedef void fn(int);
4889    // fn f;
4890    // @endcode
4891
4892    // Synthesize a parameter for each argument type.
4893    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4894         AE = FT->arg_type_end(); AI != AE; ++AI) {
4895      ParmVarDecl *Param =
4896        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4897      Param->setScopeInfo(0, Params.size());
4898      Params.push_back(Param);
4899    }
4900  } else {
4901    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4902           "Should not need args for typedef of non-prototype fn");
4903  }
4904  // Finally, we know we have the right number of parameters, install them.
4905  NewFD->setParams(Params);
4906
4907  // Process the non-inheritable attributes on this declaration.
4908  ProcessDeclAttributes(S, NewFD, D,
4909                        /*NonInheritable=*/true, /*Inheritable=*/false);
4910
4911  if (!getLangOptions().CPlusPlus) {
4912    // Perform semantic checking on the function declaration.
4913    bool isExplicitSpecialization=false;
4914    if (!NewFD->isInvalidDecl()) {
4915      if (NewFD->getResultType()->isVariablyModifiedType()) {
4916        // Functions returning a variably modified type violate C99 6.7.5.2p2
4917        // because all functions have linkage.
4918        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4919        NewFD->setInvalidDecl();
4920      } else {
4921        if (NewFD->isMain())
4922          CheckMain(NewFD, D.getDeclSpec());
4923        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4924                                 Redeclaration);
4925      }
4926    }
4927    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4928            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4929           "previous declaration set still overloaded");
4930  } else {
4931    // If the declarator is a template-id, translate the parser's template
4932    // argument list into our AST format.
4933    bool HasExplicitTemplateArgs = false;
4934    TemplateArgumentListInfo TemplateArgs;
4935    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4936      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4937      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4938      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4939      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4940                                         TemplateId->getTemplateArgs(),
4941                                         TemplateId->NumArgs);
4942      translateTemplateArguments(TemplateArgsPtr,
4943                                 TemplateArgs);
4944      TemplateArgsPtr.release();
4945
4946      HasExplicitTemplateArgs = true;
4947
4948      if (NewFD->isInvalidDecl()) {
4949        HasExplicitTemplateArgs = false;
4950      } else if (FunctionTemplate) {
4951        // Function template with explicit template arguments.
4952        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4953          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4954
4955        HasExplicitTemplateArgs = false;
4956      } else if (!isFunctionTemplateSpecialization &&
4957                 !D.getDeclSpec().isFriendSpecified()) {
4958        // We have encountered something that the user meant to be a
4959        // specialization (because it has explicitly-specified template
4960        // arguments) but that was not introduced with a "template<>" (or had
4961        // too few of them).
4962        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4963          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4964          << FixItHint::CreateInsertion(
4965                                        D.getDeclSpec().getSourceRange().getBegin(),
4966                                                  "template<> ");
4967        isFunctionTemplateSpecialization = true;
4968      } else {
4969        // "friend void foo<>(int);" is an implicit specialization decl.
4970        isFunctionTemplateSpecialization = true;
4971      }
4972    } else if (isFriend && isFunctionTemplateSpecialization) {
4973      // This combination is only possible in a recovery case;  the user
4974      // wrote something like:
4975      //   template <> friend void foo(int);
4976      // which we're recovering from as if the user had written:
4977      //   friend void foo<>(int);
4978      // Go ahead and fake up a template id.
4979      HasExplicitTemplateArgs = true;
4980        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4981      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4982    }
4983
4984    // If it's a friend (and only if it's a friend), it's possible
4985    // that either the specialized function type or the specialized
4986    // template is dependent, and therefore matching will fail.  In
4987    // this case, don't check the specialization yet.
4988    if (isFunctionTemplateSpecialization && isFriend &&
4989        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4990      assert(HasExplicitTemplateArgs &&
4991             "friend function specialization without template args");
4992      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4993                                                       Previous))
4994        NewFD->setInvalidDecl();
4995    } else if (isFunctionTemplateSpecialization) {
4996      if (CurContext->isDependentContext() && CurContext->isRecord()
4997          && !isFriend) {
4998        isDependentClassScopeExplicitSpecialization = true;
4999        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5000          diag::ext_function_specialization_in_class :
5001          diag::err_function_specialization_in_class)
5002          << NewFD->getDeclName();
5003      } else if (CheckFunctionTemplateSpecialization(NewFD,
5004                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5005                                                     Previous))
5006        NewFD->setInvalidDecl();
5007
5008      // C++ [dcl.stc]p1:
5009      //   A storage-class-specifier shall not be specified in an explicit
5010      //   specialization (14.7.3)
5011      if (SC != SC_None) {
5012        if (SC != NewFD->getStorageClass())
5013          Diag(NewFD->getLocation(),
5014               diag::err_explicit_specialization_inconsistent_storage_class)
5015            << SC
5016            << FixItHint::CreateRemoval(
5017                                      D.getDeclSpec().getStorageClassSpecLoc());
5018
5019        else
5020          Diag(NewFD->getLocation(),
5021               diag::ext_explicit_specialization_storage_class)
5022            << FixItHint::CreateRemoval(
5023                                      D.getDeclSpec().getStorageClassSpecLoc());
5024      }
5025
5026    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5027      if (CheckMemberSpecialization(NewFD, Previous))
5028          NewFD->setInvalidDecl();
5029    }
5030
5031    // Perform semantic checking on the function declaration.
5032    if (!isDependentClassScopeExplicitSpecialization) {
5033      if (NewFD->isInvalidDecl()) {
5034        // If this is a class member, mark the class invalid immediately.
5035        // This avoids some consistency errors later.
5036        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5037          methodDecl->getParent()->setInvalidDecl();
5038      } else {
5039        if (NewFD->isMain())
5040          CheckMain(NewFD, D.getDeclSpec());
5041        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
5042                                 Redeclaration);
5043      }
5044    }
5045
5046    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5047            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5048           "previous declaration set still overloaded");
5049
5050    NamedDecl *PrincipalDecl = (FunctionTemplate
5051                                ? cast<NamedDecl>(FunctionTemplate)
5052                                : NewFD);
5053
5054    if (isFriend && Redeclaration) {
5055      AccessSpecifier Access = AS_public;
5056      if (!NewFD->isInvalidDecl())
5057        Access = NewFD->getPreviousDeclaration()->getAccess();
5058
5059      NewFD->setAccess(Access);
5060      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5061
5062      PrincipalDecl->setObjectOfFriendDecl(true);
5063    }
5064
5065    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5066        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5067      PrincipalDecl->setNonMemberOperator();
5068
5069    // If we have a function template, check the template parameter
5070    // list. This will check and merge default template arguments.
5071    if (FunctionTemplate) {
5072      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5073      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5074                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5075                            D.getDeclSpec().isFriendSpecified()
5076                              ? (IsFunctionDefinition
5077                                   ? TPC_FriendFunctionTemplateDefinition
5078                                   : TPC_FriendFunctionTemplate)
5079                              : (D.getCXXScopeSpec().isSet() &&
5080                                 DC && DC->isRecord() &&
5081                                 DC->isDependentContext())
5082                                  ? TPC_ClassTemplateMember
5083                                  : TPC_FunctionTemplate);
5084    }
5085
5086    if (NewFD->isInvalidDecl()) {
5087      // Ignore all the rest of this.
5088    } else if (!Redeclaration) {
5089      // Fake up an access specifier if it's supposed to be a class member.
5090      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5091        NewFD->setAccess(AS_public);
5092
5093      // Qualified decls generally require a previous declaration.
5094      if (D.getCXXScopeSpec().isSet()) {
5095        // ...with the major exception of templated-scope or
5096        // dependent-scope friend declarations.
5097
5098        // TODO: we currently also suppress this check in dependent
5099        // contexts because (1) the parameter depth will be off when
5100        // matching friend templates and (2) we might actually be
5101        // selecting a friend based on a dependent factor.  But there
5102        // are situations where these conditions don't apply and we
5103        // can actually do this check immediately.
5104        if (isFriend &&
5105            (TemplateParamLists.size() ||
5106             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5107             CurContext->isDependentContext())) {
5108          // ignore these
5109        } else {
5110          // The user tried to provide an out-of-line definition for a
5111          // function that is a member of a class or namespace, but there
5112          // was no such member function declared (C++ [class.mfct]p2,
5113          // C++ [namespace.memdef]p2). For example:
5114          //
5115          // class X {
5116          //   void f() const;
5117          // };
5118          //
5119          // void X::f() { } // ill-formed
5120          //
5121          // Complain about this problem, and attempt to suggest close
5122          // matches (e.g., those that differ only in cv-qualifiers and
5123          // whether the parameter types are references).
5124
5125          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5126        }
5127
5128        // Unqualified local friend declarations are required to resolve
5129        // to something.
5130      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5131        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5132      }
5133
5134    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5135               !isFriend && !isFunctionTemplateSpecialization &&
5136               !isExplicitSpecialization) {
5137      // An out-of-line member function declaration must also be a
5138      // definition (C++ [dcl.meaning]p1).
5139      // Note that this is not the case for explicit specializations of
5140      // function templates or member functions of class templates, per
5141      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5142      // for compatibility with old SWIG code which likes to generate them.
5143      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5144        << D.getCXXScopeSpec().getRange();
5145    }
5146  }
5147
5148
5149  // Handle attributes. We need to have merged decls when handling attributes
5150  // (for example to check for conflicts, etc).
5151  // FIXME: This needs to happen before we merge declarations. Then,
5152  // let attribute merging cope with attribute conflicts.
5153  ProcessDeclAttributes(S, NewFD, D,
5154                        /*NonInheritable=*/false, /*Inheritable=*/true);
5155
5156  // attributes declared post-definition are currently ignored
5157  // FIXME: This should happen during attribute merging
5158  if (Redeclaration && Previous.isSingleResult()) {
5159    const FunctionDecl *Def;
5160    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5161    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5162      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5163      Diag(Def->getLocation(), diag::note_previous_definition);
5164    }
5165  }
5166
5167  AddKnownFunctionAttributes(NewFD);
5168
5169  if (NewFD->hasAttr<OverloadableAttr>() &&
5170      !NewFD->getType()->getAs<FunctionProtoType>()) {
5171    Diag(NewFD->getLocation(),
5172         diag::err_attribute_overloadable_no_prototype)
5173      << NewFD;
5174
5175    // Turn this into a variadic function with no parameters.
5176    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5177    FunctionProtoType::ExtProtoInfo EPI;
5178    EPI.Variadic = true;
5179    EPI.ExtInfo = FT->getExtInfo();
5180
5181    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5182    NewFD->setType(R);
5183  }
5184
5185  // If there's a #pragma GCC visibility in scope, and this isn't a class
5186  // member, set the visibility of this function.
5187  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5188    AddPushedVisibilityAttribute(NewFD);
5189
5190  // If this is a locally-scoped extern C function, update the
5191  // map of such names.
5192  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5193      && !NewFD->isInvalidDecl())
5194    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5195
5196  // Set this FunctionDecl's range up to the right paren.
5197  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5198
5199  if (getLangOptions().CPlusPlus) {
5200    if (FunctionTemplate) {
5201      if (NewFD->isInvalidDecl())
5202        FunctionTemplate->setInvalidDecl();
5203      return FunctionTemplate;
5204    }
5205  }
5206
5207  MarkUnusedFileScopedDecl(NewFD);
5208
5209  if (getLangOptions().CUDA)
5210    if (IdentifierInfo *II = NewFD->getIdentifier())
5211      if (!NewFD->isInvalidDecl() &&
5212          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5213        if (II->isStr("cudaConfigureCall")) {
5214          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5215            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5216
5217          Context.setcudaConfigureCallDecl(NewFD);
5218        }
5219      }
5220
5221  // Here we have an function template explicit specialization at class scope.
5222  // The actually specialization will be postponed to template instatiation
5223  // time via the ClassScopeFunctionSpecializationDecl node.
5224  if (isDependentClassScopeExplicitSpecialization) {
5225    ClassScopeFunctionSpecializationDecl *NewSpec =
5226                         ClassScopeFunctionSpecializationDecl::Create(
5227                                Context, CurContext,  SourceLocation(),
5228                                cast<CXXMethodDecl>(NewFD));
5229    CurContext->addDecl(NewSpec);
5230    AddToScope = false;
5231  }
5232
5233  return NewFD;
5234}
5235
5236/// \brief Perform semantic checking of a new function declaration.
5237///
5238/// Performs semantic analysis of the new function declaration
5239/// NewFD. This routine performs all semantic checking that does not
5240/// require the actual declarator involved in the declaration, and is
5241/// used both for the declaration of functions as they are parsed
5242/// (called via ActOnDeclarator) and for the declaration of functions
5243/// that have been instantiated via C++ template instantiation (called
5244/// via InstantiateDecl).
5245///
5246/// \param IsExplicitSpecialiation whether this new function declaration is
5247/// an explicit specialization of the previous declaration.
5248///
5249/// This sets NewFD->isInvalidDecl() to true if there was an error.
5250void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5251                                    LookupResult &Previous,
5252                                    bool IsExplicitSpecialization,
5253                                    bool &Redeclaration) {
5254  assert(!NewFD->getResultType()->isVariablyModifiedType()
5255         && "Variably modified return types are not handled here");
5256
5257  // Check for a previous declaration of this name.
5258  if (Previous.empty() && NewFD->isExternC()) {
5259    // Since we did not find anything by this name and we're declaring
5260    // an extern "C" function, look for a non-visible extern "C"
5261    // declaration with the same name.
5262    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5263      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5264    if (Pos != LocallyScopedExternalDecls.end())
5265      Previous.addDecl(Pos->second);
5266  }
5267
5268  // Merge or overload the declaration with an existing declaration of
5269  // the same name, if appropriate.
5270  if (!Previous.empty()) {
5271    // Determine whether NewFD is an overload of PrevDecl or
5272    // a declaration that requires merging. If it's an overload,
5273    // there's no more work to do here; we'll just add the new
5274    // function to the scope.
5275
5276    NamedDecl *OldDecl = 0;
5277    if (!AllowOverloadingOfFunction(Previous, Context)) {
5278      Redeclaration = true;
5279      OldDecl = Previous.getFoundDecl();
5280    } else {
5281      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5282                            /*NewIsUsingDecl*/ false)) {
5283      case Ovl_Match:
5284        Redeclaration = true;
5285        break;
5286
5287      case Ovl_NonFunction:
5288        Redeclaration = true;
5289        break;
5290
5291      case Ovl_Overload:
5292        Redeclaration = false;
5293        break;
5294      }
5295
5296      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5297        // If a function name is overloadable in C, then every function
5298        // with that name must be marked "overloadable".
5299        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5300          << Redeclaration << NewFD;
5301        NamedDecl *OverloadedDecl = 0;
5302        if (Redeclaration)
5303          OverloadedDecl = OldDecl;
5304        else if (!Previous.empty())
5305          OverloadedDecl = Previous.getRepresentativeDecl();
5306        if (OverloadedDecl)
5307          Diag(OverloadedDecl->getLocation(),
5308               diag::note_attribute_overloadable_prev_overload);
5309        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5310                                                        Context));
5311      }
5312    }
5313
5314    if (Redeclaration) {
5315      // NewFD and OldDecl represent declarations that need to be
5316      // merged.
5317      if (MergeFunctionDecl(NewFD, OldDecl))
5318        return NewFD->setInvalidDecl();
5319
5320      Previous.clear();
5321      Previous.addDecl(OldDecl);
5322
5323      if (FunctionTemplateDecl *OldTemplateDecl
5324                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5325        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5326        FunctionTemplateDecl *NewTemplateDecl
5327          = NewFD->getDescribedFunctionTemplate();
5328        assert(NewTemplateDecl && "Template/non-template mismatch");
5329        if (CXXMethodDecl *Method
5330              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5331          Method->setAccess(OldTemplateDecl->getAccess());
5332          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5333        }
5334
5335        // If this is an explicit specialization of a member that is a function
5336        // template, mark it as a member specialization.
5337        if (IsExplicitSpecialization &&
5338            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5339          NewTemplateDecl->setMemberSpecialization();
5340          assert(OldTemplateDecl->isMemberSpecialization());
5341        }
5342
5343        if (OldTemplateDecl->isModulePrivate())
5344          NewTemplateDecl->setModulePrivate();
5345
5346      } else {
5347        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5348          NewFD->setAccess(OldDecl->getAccess());
5349        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5350      }
5351    }
5352  }
5353
5354  // Semantic checking for this function declaration (in isolation).
5355  if (getLangOptions().CPlusPlus) {
5356    // C++-specific checks.
5357    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5358      CheckConstructor(Constructor);
5359    } else if (CXXDestructorDecl *Destructor =
5360                dyn_cast<CXXDestructorDecl>(NewFD)) {
5361      CXXRecordDecl *Record = Destructor->getParent();
5362      QualType ClassType = Context.getTypeDeclType(Record);
5363
5364      // FIXME: Shouldn't we be able to perform this check even when the class
5365      // type is dependent? Both gcc and edg can handle that.
5366      if (!ClassType->isDependentType()) {
5367        DeclarationName Name
5368          = Context.DeclarationNames.getCXXDestructorName(
5369                                        Context.getCanonicalType(ClassType));
5370        if (NewFD->getDeclName() != Name) {
5371          Diag(NewFD->getLocation(), diag::err_destructor_name);
5372          return NewFD->setInvalidDecl();
5373        }
5374      }
5375    } else if (CXXConversionDecl *Conversion
5376               = dyn_cast<CXXConversionDecl>(NewFD)) {
5377      ActOnConversionDeclarator(Conversion);
5378    }
5379
5380    // Find any virtual functions that this function overrides.
5381    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5382      if (!Method->isFunctionTemplateSpecialization() &&
5383          !Method->getDescribedFunctionTemplate()) {
5384        if (AddOverriddenMethods(Method->getParent(), Method)) {
5385          // If the function was marked as "static", we have a problem.
5386          if (NewFD->getStorageClass() == SC_Static) {
5387            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5388              << NewFD->getDeclName();
5389            for (CXXMethodDecl::method_iterator
5390                      Overridden = Method->begin_overridden_methods(),
5391                   OverriddenEnd = Method->end_overridden_methods();
5392                 Overridden != OverriddenEnd;
5393                 ++Overridden) {
5394              Diag((*Overridden)->getLocation(),
5395                   diag::note_overridden_virtual_function);
5396            }
5397          }
5398        }
5399      }
5400    }
5401
5402    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5403    if (NewFD->isOverloadedOperator() &&
5404        CheckOverloadedOperatorDeclaration(NewFD))
5405      return NewFD->setInvalidDecl();
5406
5407    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5408    if (NewFD->getLiteralIdentifier() &&
5409        CheckLiteralOperatorDeclaration(NewFD))
5410      return NewFD->setInvalidDecl();
5411
5412    // In C++, check default arguments now that we have merged decls. Unless
5413    // the lexical context is the class, because in this case this is done
5414    // during delayed parsing anyway.
5415    if (!CurContext->isRecord())
5416      CheckCXXDefaultArguments(NewFD);
5417
5418    // If this function declares a builtin function, check the type of this
5419    // declaration against the expected type for the builtin.
5420    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5421      ASTContext::GetBuiltinTypeError Error;
5422      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5423      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5424        // The type of this function differs from the type of the builtin,
5425        // so forget about the builtin entirely.
5426        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5427      }
5428    }
5429  }
5430}
5431
5432void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5433  // C++ [basic.start.main]p3:  A program that declares main to be inline
5434  //   or static is ill-formed.
5435  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5436  //   shall not appear in a declaration of main.
5437  // static main is not an error under C99, but we should warn about it.
5438  if (FD->getStorageClass() == SC_Static)
5439    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5440         ? diag::err_static_main : diag::warn_static_main)
5441      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5442  if (FD->isInlineSpecified())
5443    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5444      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5445
5446  QualType T = FD->getType();
5447  assert(T->isFunctionType() && "function decl is not of function type");
5448  const FunctionType* FT = T->getAs<FunctionType>();
5449
5450  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5451    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5452    FD->setInvalidDecl(true);
5453  }
5454
5455  // Treat protoless main() as nullary.
5456  if (isa<FunctionNoProtoType>(FT)) return;
5457
5458  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5459  unsigned nparams = FTP->getNumArgs();
5460  assert(FD->getNumParams() == nparams);
5461
5462  bool HasExtraParameters = (nparams > 3);
5463
5464  // Darwin passes an undocumented fourth argument of type char**.  If
5465  // other platforms start sprouting these, the logic below will start
5466  // getting shifty.
5467  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5468    HasExtraParameters = false;
5469
5470  if (HasExtraParameters) {
5471    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5472    FD->setInvalidDecl(true);
5473    nparams = 3;
5474  }
5475
5476  // FIXME: a lot of the following diagnostics would be improved
5477  // if we had some location information about types.
5478
5479  QualType CharPP =
5480    Context.getPointerType(Context.getPointerType(Context.CharTy));
5481  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5482
5483  for (unsigned i = 0; i < nparams; ++i) {
5484    QualType AT = FTP->getArgType(i);
5485
5486    bool mismatch = true;
5487
5488    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5489      mismatch = false;
5490    else if (Expected[i] == CharPP) {
5491      // As an extension, the following forms are okay:
5492      //   char const **
5493      //   char const * const *
5494      //   char * const *
5495
5496      QualifierCollector qs;
5497      const PointerType* PT;
5498      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5499          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5500          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5501        qs.removeConst();
5502        mismatch = !qs.empty();
5503      }
5504    }
5505
5506    if (mismatch) {
5507      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5508      // TODO: suggest replacing given type with expected type
5509      FD->setInvalidDecl(true);
5510    }
5511  }
5512
5513  if (nparams == 1 && !FD->isInvalidDecl()) {
5514    Diag(FD->getLocation(), diag::warn_main_one_arg);
5515  }
5516
5517  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5518    Diag(FD->getLocation(), diag::err_main_template_decl);
5519    FD->setInvalidDecl();
5520  }
5521}
5522
5523bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5524  // FIXME: Need strict checking.  In C89, we need to check for
5525  // any assignment, increment, decrement, function-calls, or
5526  // commas outside of a sizeof.  In C99, it's the same list,
5527  // except that the aforementioned are allowed in unevaluated
5528  // expressions.  Everything else falls under the
5529  // "may accept other forms of constant expressions" exception.
5530  // (We never end up here for C++, so the constant expression
5531  // rules there don't matter.)
5532  if (Init->isConstantInitializer(Context, false))
5533    return false;
5534  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5535    << Init->getSourceRange();
5536  return true;
5537}
5538
5539namespace {
5540  // Visits an initialization expression to see if OrigDecl is evaluated in
5541  // its own initialization and throws a warning if it does.
5542  class SelfReferenceChecker
5543      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5544    Sema &S;
5545    Decl *OrigDecl;
5546    bool isRecordType;
5547    bool isPODType;
5548
5549  public:
5550    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5551
5552    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5553                                                    S(S), OrigDecl(OrigDecl) {
5554      isPODType = false;
5555      isRecordType = false;
5556      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5557        isPODType = VD->getType().isPODType(S.Context);
5558        isRecordType = VD->getType()->isRecordType();
5559      }
5560    }
5561
5562    void VisitExpr(Expr *E) {
5563      if (isa<ObjCMessageExpr>(*E)) return;
5564      if (isRecordType) {
5565        Expr *expr = E;
5566        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5567          ValueDecl *VD = ME->getMemberDecl();
5568          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5569          expr = ME->getBase();
5570        }
5571        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5572          HandleDeclRefExpr(DRE);
5573          return;
5574        }
5575      }
5576      Inherited::VisitExpr(E);
5577    }
5578
5579    void VisitMemberExpr(MemberExpr *E) {
5580      if (E->getType()->canDecayToPointerType()) return;
5581      if (isa<FieldDecl>(E->getMemberDecl()))
5582        if (DeclRefExpr *DRE
5583              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5584          HandleDeclRefExpr(DRE);
5585          return;
5586        }
5587      Inherited::VisitMemberExpr(E);
5588    }
5589
5590    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5591      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5592          (isRecordType && E->getCastKind() == CK_NoOp)) {
5593        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5594        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5595          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5596        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5597          HandleDeclRefExpr(DRE);
5598          return;
5599        }
5600      }
5601      Inherited::VisitImplicitCastExpr(E);
5602    }
5603
5604    void VisitUnaryOperator(UnaryOperator *E) {
5605      // For POD record types, addresses of its own members are well-defined.
5606      if (isRecordType && isPODType) return;
5607      Inherited::VisitUnaryOperator(E);
5608    }
5609
5610    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5611      Decl* ReferenceDecl = DRE->getDecl();
5612      if (OrigDecl != ReferenceDecl) return;
5613      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5614                          Sema::NotForRedeclaration);
5615      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5616                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5617                              << Result.getLookupName()
5618                              << OrigDecl->getLocation()
5619                              << DRE->getSourceRange());
5620    }
5621  };
5622}
5623
5624/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5625void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5626  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5627}
5628
5629/// AddInitializerToDecl - Adds the initializer Init to the
5630/// declaration dcl. If DirectInit is true, this is C++ direct
5631/// initialization rather than copy initialization.
5632void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5633                                bool DirectInit, bool TypeMayContainAuto) {
5634  // If there is no declaration, there was an error parsing it.  Just ignore
5635  // the initializer.
5636  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5637    return;
5638
5639  // Check for self-references within variable initializers.
5640  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5641    // Variables declared within a function/method body are handled
5642    // by a dataflow analysis.
5643    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5644      CheckSelfReference(RealDecl, Init);
5645  }
5646  else {
5647    CheckSelfReference(RealDecl, Init);
5648  }
5649
5650  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5651    // With declarators parsed the way they are, the parser cannot
5652    // distinguish between a normal initializer and a pure-specifier.
5653    // Thus this grotesque test.
5654    IntegerLiteral *IL;
5655    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5656        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5657      CheckPureMethod(Method, Init->getSourceRange());
5658    else {
5659      Diag(Method->getLocation(), diag::err_member_function_initialization)
5660        << Method->getDeclName() << Init->getSourceRange();
5661      Method->setInvalidDecl();
5662    }
5663    return;
5664  }
5665
5666  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5667  if (!VDecl) {
5668    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5669    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5670    RealDecl->setInvalidDecl();
5671    return;
5672  }
5673
5674  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5675  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5676    TypeSourceInfo *DeducedType = 0;
5677    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5678      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5679        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5680        << Init->getSourceRange();
5681    if (!DeducedType) {
5682      RealDecl->setInvalidDecl();
5683      return;
5684    }
5685    VDecl->setTypeSourceInfo(DeducedType);
5686    VDecl->setType(DeducedType->getType());
5687
5688    // In ARC, infer lifetime.
5689    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5690      VDecl->setInvalidDecl();
5691
5692    // If this is a redeclaration, check that the type we just deduced matches
5693    // the previously declared type.
5694    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5695      MergeVarDeclTypes(VDecl, Old);
5696  }
5697
5698
5699  // A definition must end up with a complete type, which means it must be
5700  // complete with the restriction that an array type might be completed by the
5701  // initializer; note that later code assumes this restriction.
5702  QualType BaseDeclType = VDecl->getType();
5703  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5704    BaseDeclType = Array->getElementType();
5705  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5706                          diag::err_typecheck_decl_incomplete_type)) {
5707    RealDecl->setInvalidDecl();
5708    return;
5709  }
5710
5711  // The variable can not have an abstract class type.
5712  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5713                             diag::err_abstract_type_in_decl,
5714                             AbstractVariableType))
5715    VDecl->setInvalidDecl();
5716
5717  const VarDecl *Def;
5718  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5719    Diag(VDecl->getLocation(), diag::err_redefinition)
5720      << VDecl->getDeclName();
5721    Diag(Def->getLocation(), diag::note_previous_definition);
5722    VDecl->setInvalidDecl();
5723    return;
5724  }
5725
5726  const VarDecl* PrevInit = 0;
5727  if (getLangOptions().CPlusPlus) {
5728    // C++ [class.static.data]p4
5729    //   If a static data member is of const integral or const
5730    //   enumeration type, its declaration in the class definition can
5731    //   specify a constant-initializer which shall be an integral
5732    //   constant expression (5.19). In that case, the member can appear
5733    //   in integral constant expressions. The member shall still be
5734    //   defined in a namespace scope if it is used in the program and the
5735    //   namespace scope definition shall not contain an initializer.
5736    //
5737    // We already performed a redefinition check above, but for static
5738    // data members we also need to check whether there was an in-class
5739    // declaration with an initializer.
5740    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5741      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5742      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5743      return;
5744    }
5745
5746    if (VDecl->hasLocalStorage())
5747      getCurFunction()->setHasBranchProtectedScope();
5748
5749    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5750      VDecl->setInvalidDecl();
5751      return;
5752    }
5753  }
5754
5755  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5756  // a kernel function cannot be initialized."
5757  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5758    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5759    VDecl->setInvalidDecl();
5760    return;
5761  }
5762
5763  // Capture the variable that is being initialized and the style of
5764  // initialization.
5765  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5766
5767  // FIXME: Poor source location information.
5768  InitializationKind Kind
5769    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5770                                                   Init->getLocStart(),
5771                                                   Init->getLocEnd())
5772                : InitializationKind::CreateCopy(VDecl->getLocation(),
5773                                                 Init->getLocStart());
5774
5775  // Get the decls type and save a reference for later, since
5776  // CheckInitializerTypes may change it.
5777  QualType DclT = VDecl->getType(), SavT = DclT;
5778  if (VDecl->isLocalVarDecl()) {
5779    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5780      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5781      VDecl->setInvalidDecl();
5782    } else if (!VDecl->isInvalidDecl()) {
5783      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5784      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5785                                                MultiExprArg(*this, &Init, 1),
5786                                                &DclT);
5787      if (Result.isInvalid()) {
5788        VDecl->setInvalidDecl();
5789        return;
5790      }
5791
5792      Init = Result.takeAs<Expr>();
5793
5794      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5795      // Don't check invalid declarations to avoid emitting useless diagnostics.
5796      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5797        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5798          CheckForConstantInitializer(Init, DclT);
5799      }
5800    }
5801  } else if (VDecl->isStaticDataMember() &&
5802             VDecl->getLexicalDeclContext()->isRecord()) {
5803    // This is an in-class initialization for a static data member, e.g.,
5804    //
5805    // struct S {
5806    //   static const int value = 17;
5807    // };
5808
5809    // Try to perform the initialization regardless.
5810    if (!VDecl->isInvalidDecl()) {
5811      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5812      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5813                                          MultiExprArg(*this, &Init, 1),
5814                                          &DclT);
5815      if (Result.isInvalid()) {
5816        VDecl->setInvalidDecl();
5817        return;
5818      }
5819
5820      Init = Result.takeAs<Expr>();
5821    }
5822
5823    // C++ [class.mem]p4:
5824    //   A member-declarator can contain a constant-initializer only
5825    //   if it declares a static member (9.4) of const integral or
5826    //   const enumeration type, see 9.4.2.
5827    //
5828    // C++0x [class.static.data]p3:
5829    //   If a non-volatile const static data member is of integral or
5830    //   enumeration type, its declaration in the class definition can
5831    //   specify a brace-or-equal-initializer in which every initalizer-clause
5832    //   that is an assignment-expression is a constant expression. A static
5833    //   data member of literal type can be declared in the class definition
5834    //   with the constexpr specifier; if so, its declaration shall specify a
5835    //   brace-or-equal-initializer in which every initializer-clause that is
5836    //   an assignment-expression is a constant expression.
5837    QualType T = VDecl->getType();
5838
5839    // Do nothing on dependent types.
5840    if (T->isDependentType()) {
5841
5842    // Allow any 'static constexpr' members, whether or not they are of literal
5843    // type. We separately check that the initializer is a constant expression,
5844    // which implicitly requires the member to be of literal type.
5845    } else if (VDecl->isConstexpr()) {
5846
5847    // Require constness.
5848    } else if (!T.isConstQualified()) {
5849      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5850        << Init->getSourceRange();
5851      VDecl->setInvalidDecl();
5852
5853    // We allow integer constant expressions in all cases.
5854    } else if (T->isIntegralOrEnumerationType()) {
5855      // Check whether the expression is a constant expression.
5856      SourceLocation Loc;
5857      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
5858        // In C++0x, a non-constexpr const static data member with an
5859        // in-class initializer cannot be volatile.
5860        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
5861      else if (Init->isValueDependent())
5862        ; // Nothing to check.
5863      else if (Init->isIntegerConstantExpr(Context, &Loc))
5864        ; // Ok, it's an ICE!
5865      else if (Init->isEvaluatable(Context)) {
5866        // If we can constant fold the initializer through heroics, accept it,
5867        // but report this as a use of an extension for -pedantic.
5868        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5869          << Init->getSourceRange();
5870      } else {
5871        // Otherwise, this is some crazy unknown case.  Report the issue at the
5872        // location provided by the isIntegerConstantExpr failed check.
5873        Diag(Loc, diag::err_in_class_initializer_non_constant)
5874          << Init->getSourceRange();
5875        VDecl->setInvalidDecl();
5876      }
5877
5878    // We allow floating-point constants as an extension.
5879    } else if (T->isFloatingType()) { // also permits complex, which is ok
5880      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5881        << T << Init->getSourceRange();
5882
5883      if (!Init->isValueDependent() &&
5884          !Init->isConstantInitializer(Context, false)) {
5885        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5886          << Init->getSourceRange();
5887        VDecl->setInvalidDecl();
5888      }
5889
5890    // Suggest adding 'constexpr' in C++0x for literal types.
5891    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
5892      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
5893        << T << Init->getSourceRange()
5894        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5895      VDecl->setConstexpr(true);
5896
5897    } else {
5898      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5899        << T << Init->getSourceRange();
5900      VDecl->setInvalidDecl();
5901    }
5902  } else if (VDecl->isFileVarDecl()) {
5903    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5904        (!getLangOptions().CPlusPlus ||
5905         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5906      Diag(VDecl->getLocation(), diag::warn_extern_init);
5907    if (!VDecl->isInvalidDecl()) {
5908      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5909      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5910                                                MultiExprArg(*this, &Init, 1),
5911                                                &DclT);
5912      if (Result.isInvalid()) {
5913        VDecl->setInvalidDecl();
5914        return;
5915      }
5916
5917      Init = Result.takeAs<Expr>();
5918    }
5919
5920    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5921    // Don't check invalid declarations to avoid emitting useless diagnostics.
5922    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5923      // C99 6.7.8p4. All file scoped initializers need to be constant.
5924      CheckForConstantInitializer(Init, DclT);
5925    }
5926  }
5927  // If the type changed, it means we had an incomplete type that was
5928  // completed by the initializer. For example:
5929  //   int ary[] = { 1, 3, 5 };
5930  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5931  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5932    VDecl->setType(DclT);
5933    Init->setType(DclT);
5934  }
5935
5936  // Check any implicit conversions within the expression.
5937  CheckImplicitConversions(Init, VDecl->getLocation());
5938
5939  if (!VDecl->isInvalidDecl())
5940    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5941
5942  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
5943      !VDecl->getType()->isDependentType() &&
5944      !Init->isTypeDependent() && !Init->isValueDependent() &&
5945      !Init->isConstantInitializer(Context,
5946                                   VDecl->getType()->isReferenceType())) {
5947    // FIXME: Improve this diagnostic to explain why the initializer is not
5948    // a constant expression.
5949    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
5950      << VDecl << Init->getSourceRange();
5951  }
5952
5953  Init = MaybeCreateExprWithCleanups(Init);
5954  // Attach the initializer to the decl.
5955  VDecl->setInit(Init);
5956
5957  CheckCompleteVariableDeclaration(VDecl);
5958}
5959
5960/// ActOnInitializerError - Given that there was an error parsing an
5961/// initializer for the given declaration, try to return to some form
5962/// of sanity.
5963void Sema::ActOnInitializerError(Decl *D) {
5964  // Our main concern here is re-establishing invariants like "a
5965  // variable's type is either dependent or complete".
5966  if (!D || D->isInvalidDecl()) return;
5967
5968  VarDecl *VD = dyn_cast<VarDecl>(D);
5969  if (!VD) return;
5970
5971  // Auto types are meaningless if we can't make sense of the initializer.
5972  if (ParsingInitForAutoVars.count(D)) {
5973    D->setInvalidDecl();
5974    return;
5975  }
5976
5977  QualType Ty = VD->getType();
5978  if (Ty->isDependentType()) return;
5979
5980  // Require a complete type.
5981  if (RequireCompleteType(VD->getLocation(),
5982                          Context.getBaseElementType(Ty),
5983                          diag::err_typecheck_decl_incomplete_type)) {
5984    VD->setInvalidDecl();
5985    return;
5986  }
5987
5988  // Require an abstract type.
5989  if (RequireNonAbstractType(VD->getLocation(), Ty,
5990                             diag::err_abstract_type_in_decl,
5991                             AbstractVariableType)) {
5992    VD->setInvalidDecl();
5993    return;
5994  }
5995
5996  // Don't bother complaining about constructors or destructors,
5997  // though.
5998}
5999
6000void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6001                                  bool TypeMayContainAuto) {
6002  // If there is no declaration, there was an error parsing it. Just ignore it.
6003  if (RealDecl == 0)
6004    return;
6005
6006  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6007    QualType Type = Var->getType();
6008
6009    // C++0x [dcl.spec.auto]p3
6010    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6011      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6012        << Var->getDeclName() << Type;
6013      Var->setInvalidDecl();
6014      return;
6015    }
6016
6017    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6018    // have an initializer.
6019    // C++0x [class.static.data]p3: A static data member can be declared with
6020    // the constexpr specifier; if so, its declaration shall specify
6021    // a brace-or-equal-initializer.
6022    if (Var->isConstexpr()) {
6023      // FIXME: Provide fix-its to convert the constexpr to const.
6024      if (Var->isStaticDataMember() && Var->getAnyInitializer()) {
6025        Diag(Var->getLocation(), diag::err_constexpr_initialized_static_member)
6026          << Var->getDeclName();
6027      } else {
6028        Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6029          << Var->getDeclName();
6030      }
6031      Var->setInvalidDecl();
6032      return;
6033    }
6034
6035    switch (Var->isThisDeclarationADefinition()) {
6036    case VarDecl::Definition:
6037      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6038        break;
6039
6040      // We have an out-of-line definition of a static data member
6041      // that has an in-class initializer, so we type-check this like
6042      // a declaration.
6043      //
6044      // Fall through
6045
6046    case VarDecl::DeclarationOnly:
6047      // It's only a declaration.
6048
6049      // Block scope. C99 6.7p7: If an identifier for an object is
6050      // declared with no linkage (C99 6.2.2p6), the type for the
6051      // object shall be complete.
6052      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6053          !Var->getLinkage() && !Var->isInvalidDecl() &&
6054          RequireCompleteType(Var->getLocation(), Type,
6055                              diag::err_typecheck_decl_incomplete_type))
6056        Var->setInvalidDecl();
6057
6058      // Make sure that the type is not abstract.
6059      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6060          RequireNonAbstractType(Var->getLocation(), Type,
6061                                 diag::err_abstract_type_in_decl,
6062                                 AbstractVariableType))
6063        Var->setInvalidDecl();
6064      return;
6065
6066    case VarDecl::TentativeDefinition:
6067      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6068      // object that has file scope without an initializer, and without a
6069      // storage-class specifier or with the storage-class specifier "static",
6070      // constitutes a tentative definition. Note: A tentative definition with
6071      // external linkage is valid (C99 6.2.2p5).
6072      if (!Var->isInvalidDecl()) {
6073        if (const IncompleteArrayType *ArrayT
6074                                    = Context.getAsIncompleteArrayType(Type)) {
6075          if (RequireCompleteType(Var->getLocation(),
6076                                  ArrayT->getElementType(),
6077                                  diag::err_illegal_decl_array_incomplete_type))
6078            Var->setInvalidDecl();
6079        } else if (Var->getStorageClass() == SC_Static) {
6080          // C99 6.9.2p3: If the declaration of an identifier for an object is
6081          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6082          // declared type shall not be an incomplete type.
6083          // NOTE: code such as the following
6084          //     static struct s;
6085          //     struct s { int a; };
6086          // is accepted by gcc. Hence here we issue a warning instead of
6087          // an error and we do not invalidate the static declaration.
6088          // NOTE: to avoid multiple warnings, only check the first declaration.
6089          if (Var->getPreviousDeclaration() == 0)
6090            RequireCompleteType(Var->getLocation(), Type,
6091                                diag::ext_typecheck_decl_incomplete_type);
6092        }
6093      }
6094
6095      // Record the tentative definition; we're done.
6096      if (!Var->isInvalidDecl())
6097        TentativeDefinitions.push_back(Var);
6098      return;
6099    }
6100
6101    // Provide a specific diagnostic for uninitialized variable
6102    // definitions with incomplete array type.
6103    if (Type->isIncompleteArrayType()) {
6104      Diag(Var->getLocation(),
6105           diag::err_typecheck_incomplete_array_needs_initializer);
6106      Var->setInvalidDecl();
6107      return;
6108    }
6109
6110    // Provide a specific diagnostic for uninitialized variable
6111    // definitions with reference type.
6112    if (Type->isReferenceType()) {
6113      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6114        << Var->getDeclName()
6115        << SourceRange(Var->getLocation(), Var->getLocation());
6116      Var->setInvalidDecl();
6117      return;
6118    }
6119
6120    // Do not attempt to type-check the default initializer for a
6121    // variable with dependent type.
6122    if (Type->isDependentType())
6123      return;
6124
6125    if (Var->isInvalidDecl())
6126      return;
6127
6128    if (RequireCompleteType(Var->getLocation(),
6129                            Context.getBaseElementType(Type),
6130                            diag::err_typecheck_decl_incomplete_type)) {
6131      Var->setInvalidDecl();
6132      return;
6133    }
6134
6135    // The variable can not have an abstract class type.
6136    if (RequireNonAbstractType(Var->getLocation(), Type,
6137                               diag::err_abstract_type_in_decl,
6138                               AbstractVariableType)) {
6139      Var->setInvalidDecl();
6140      return;
6141    }
6142
6143    // Check for jumps past the implicit initializer.  C++0x
6144    // clarifies that this applies to a "variable with automatic
6145    // storage duration", not a "local variable".
6146    // C++0x [stmt.dcl]p3
6147    //   A program that jumps from a point where a variable with automatic
6148    //   storage duration is not in scope to a point where it is in scope is
6149    //   ill-formed unless the variable has scalar type, class type with a
6150    //   trivial default constructor and a trivial destructor, a cv-qualified
6151    //   version of one of these types, or an array of one of the preceding
6152    //   types and is declared without an initializer.
6153    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6154      if (const RecordType *Record
6155            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6156        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6157        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6158            (getLangOptions().CPlusPlus0x &&
6159             (!CXXRecord->hasTrivialDefaultConstructor() ||
6160              !CXXRecord->hasTrivialDestructor())))
6161          getCurFunction()->setHasBranchProtectedScope();
6162      }
6163    }
6164
6165    // C++03 [dcl.init]p9:
6166    //   If no initializer is specified for an object, and the
6167    //   object is of (possibly cv-qualified) non-POD class type (or
6168    //   array thereof), the object shall be default-initialized; if
6169    //   the object is of const-qualified type, the underlying class
6170    //   type shall have a user-declared default
6171    //   constructor. Otherwise, if no initializer is specified for
6172    //   a non- static object, the object and its subobjects, if
6173    //   any, have an indeterminate initial value); if the object
6174    //   or any of its subobjects are of const-qualified type, the
6175    //   program is ill-formed.
6176    // C++0x [dcl.init]p11:
6177    //   If no initializer is specified for an object, the object is
6178    //   default-initialized; [...].
6179    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6180    InitializationKind Kind
6181      = InitializationKind::CreateDefault(Var->getLocation());
6182
6183    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6184    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6185                                      MultiExprArg(*this, 0, 0));
6186    if (Init.isInvalid())
6187      Var->setInvalidDecl();
6188    else if (Init.get())
6189      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6190
6191    CheckCompleteVariableDeclaration(Var);
6192  }
6193}
6194
6195void Sema::ActOnCXXForRangeDecl(Decl *D) {
6196  VarDecl *VD = dyn_cast<VarDecl>(D);
6197  if (!VD) {
6198    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6199    D->setInvalidDecl();
6200    return;
6201  }
6202
6203  VD->setCXXForRangeDecl(true);
6204
6205  // for-range-declaration cannot be given a storage class specifier.
6206  int Error = -1;
6207  switch (VD->getStorageClassAsWritten()) {
6208  case SC_None:
6209    break;
6210  case SC_Extern:
6211    Error = 0;
6212    break;
6213  case SC_Static:
6214    Error = 1;
6215    break;
6216  case SC_PrivateExtern:
6217    Error = 2;
6218    break;
6219  case SC_Auto:
6220    Error = 3;
6221    break;
6222  case SC_Register:
6223    Error = 4;
6224    break;
6225  case SC_OpenCLWorkGroupLocal:
6226    llvm_unreachable("Unexpected storage class");
6227  }
6228  if (VD->isConstexpr())
6229    Error = 5;
6230  if (Error != -1) {
6231    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6232      << VD->getDeclName() << Error;
6233    D->setInvalidDecl();
6234  }
6235}
6236
6237void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6238  if (var->isInvalidDecl()) return;
6239
6240  // In ARC, don't allow jumps past the implicit initialization of a
6241  // local retaining variable.
6242  if (getLangOptions().ObjCAutoRefCount &&
6243      var->hasLocalStorage()) {
6244    switch (var->getType().getObjCLifetime()) {
6245    case Qualifiers::OCL_None:
6246    case Qualifiers::OCL_ExplicitNone:
6247    case Qualifiers::OCL_Autoreleasing:
6248      break;
6249
6250    case Qualifiers::OCL_Weak:
6251    case Qualifiers::OCL_Strong:
6252      getCurFunction()->setHasBranchProtectedScope();
6253      break;
6254    }
6255  }
6256
6257  // All the following checks are C++ only.
6258  if (!getLangOptions().CPlusPlus) return;
6259
6260  QualType baseType = Context.getBaseElementType(var->getType());
6261  if (baseType->isDependentType()) return;
6262
6263  // __block variables might require us to capture a copy-initializer.
6264  if (var->hasAttr<BlocksAttr>()) {
6265    // It's currently invalid to ever have a __block variable with an
6266    // array type; should we diagnose that here?
6267
6268    // Regardless, we don't want to ignore array nesting when
6269    // constructing this copy.
6270    QualType type = var->getType();
6271
6272    if (type->isStructureOrClassType()) {
6273      SourceLocation poi = var->getLocation();
6274      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6275      ExprResult result =
6276        PerformCopyInitialization(
6277                        InitializedEntity::InitializeBlock(poi, type, false),
6278                                  poi, Owned(varRef));
6279      if (!result.isInvalid()) {
6280        result = MaybeCreateExprWithCleanups(result);
6281        Expr *init = result.takeAs<Expr>();
6282        Context.setBlockVarCopyInits(var, init);
6283      }
6284    }
6285  }
6286
6287  // Check for global constructors.
6288  if (!var->getDeclContext()->isDependentContext() &&
6289      var->hasGlobalStorage() &&
6290      !var->isStaticLocal() &&
6291      var->getInit() &&
6292      !var->getInit()->isConstantInitializer(Context,
6293                                             baseType->isReferenceType()))
6294    Diag(var->getLocation(), diag::warn_global_constructor)
6295      << var->getInit()->getSourceRange();
6296
6297  // Require the destructor.
6298  if (const RecordType *recordType = baseType->getAs<RecordType>())
6299    FinalizeVarWithDestructor(var, recordType);
6300}
6301
6302/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6303/// any semantic actions necessary after any initializer has been attached.
6304void
6305Sema::FinalizeDeclaration(Decl *ThisDecl) {
6306  // Note that we are no longer parsing the initializer for this declaration.
6307  ParsingInitForAutoVars.erase(ThisDecl);
6308}
6309
6310Sema::DeclGroupPtrTy
6311Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6312                              Decl **Group, unsigned NumDecls) {
6313  SmallVector<Decl*, 8> Decls;
6314
6315  if (DS.isTypeSpecOwned())
6316    Decls.push_back(DS.getRepAsDecl());
6317
6318  for (unsigned i = 0; i != NumDecls; ++i)
6319    if (Decl *D = Group[i])
6320      Decls.push_back(D);
6321
6322  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6323                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6324}
6325
6326/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6327/// group, performing any necessary semantic checking.
6328Sema::DeclGroupPtrTy
6329Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6330                           bool TypeMayContainAuto) {
6331  // C++0x [dcl.spec.auto]p7:
6332  //   If the type deduced for the template parameter U is not the same in each
6333  //   deduction, the program is ill-formed.
6334  // FIXME: When initializer-list support is added, a distinction is needed
6335  // between the deduced type U and the deduced type which 'auto' stands for.
6336  //   auto a = 0, b = { 1, 2, 3 };
6337  // is legal because the deduced type U is 'int' in both cases.
6338  if (TypeMayContainAuto && NumDecls > 1) {
6339    QualType Deduced;
6340    CanQualType DeducedCanon;
6341    VarDecl *DeducedDecl = 0;
6342    for (unsigned i = 0; i != NumDecls; ++i) {
6343      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6344        AutoType *AT = D->getType()->getContainedAutoType();
6345        // Don't reissue diagnostics when instantiating a template.
6346        if (AT && D->isInvalidDecl())
6347          break;
6348        if (AT && AT->isDeduced()) {
6349          QualType U = AT->getDeducedType();
6350          CanQualType UCanon = Context.getCanonicalType(U);
6351          if (Deduced.isNull()) {
6352            Deduced = U;
6353            DeducedCanon = UCanon;
6354            DeducedDecl = D;
6355          } else if (DeducedCanon != UCanon) {
6356            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6357                 diag::err_auto_different_deductions)
6358              << Deduced << DeducedDecl->getDeclName()
6359              << U << D->getDeclName()
6360              << DeducedDecl->getInit()->getSourceRange()
6361              << D->getInit()->getSourceRange();
6362            D->setInvalidDecl();
6363            break;
6364          }
6365        }
6366      }
6367    }
6368  }
6369
6370  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6371}
6372
6373
6374/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6375/// to introduce parameters into function prototype scope.
6376Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6377  const DeclSpec &DS = D.getDeclSpec();
6378
6379  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6380  VarDecl::StorageClass StorageClass = SC_None;
6381  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6382  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6383    StorageClass = SC_Register;
6384    StorageClassAsWritten = SC_Register;
6385  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6386    Diag(DS.getStorageClassSpecLoc(),
6387         diag::err_invalid_storage_class_in_func_decl);
6388    D.getMutableDeclSpec().ClearStorageClassSpecs();
6389  }
6390
6391  if (D.getDeclSpec().isThreadSpecified())
6392    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6393  if (D.getDeclSpec().isConstexprSpecified())
6394    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6395      << 0;
6396
6397  DiagnoseFunctionSpecifiers(D);
6398
6399  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6400  QualType parmDeclType = TInfo->getType();
6401
6402  if (getLangOptions().CPlusPlus) {
6403    // Check that there are no default arguments inside the type of this
6404    // parameter.
6405    CheckExtraCXXDefaultArguments(D);
6406
6407    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6408    if (D.getCXXScopeSpec().isSet()) {
6409      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6410        << D.getCXXScopeSpec().getRange();
6411      D.getCXXScopeSpec().clear();
6412    }
6413  }
6414
6415  // Ensure we have a valid name
6416  IdentifierInfo *II = 0;
6417  if (D.hasName()) {
6418    II = D.getIdentifier();
6419    if (!II) {
6420      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6421        << GetNameForDeclarator(D).getName().getAsString();
6422      D.setInvalidType(true);
6423    }
6424  }
6425
6426  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6427  if (II) {
6428    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6429                   ForRedeclaration);
6430    LookupName(R, S);
6431    if (R.isSingleResult()) {
6432      NamedDecl *PrevDecl = R.getFoundDecl();
6433      if (PrevDecl->isTemplateParameter()) {
6434        // Maybe we will complain about the shadowed template parameter.
6435        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6436        // Just pretend that we didn't see the previous declaration.
6437        PrevDecl = 0;
6438      } else if (S->isDeclScope(PrevDecl)) {
6439        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6440        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6441
6442        // Recover by removing the name
6443        II = 0;
6444        D.SetIdentifier(0, D.getIdentifierLoc());
6445        D.setInvalidType(true);
6446      }
6447    }
6448  }
6449
6450  // Temporarily put parameter variables in the translation unit, not
6451  // the enclosing context.  This prevents them from accidentally
6452  // looking like class members in C++.
6453  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6454                                    D.getSourceRange().getBegin(),
6455                                    D.getIdentifierLoc(), II,
6456                                    parmDeclType, TInfo,
6457                                    StorageClass, StorageClassAsWritten);
6458
6459  if (D.isInvalidType())
6460    New->setInvalidDecl();
6461
6462  assert(S->isFunctionPrototypeScope());
6463  assert(S->getFunctionPrototypeDepth() >= 1);
6464  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6465                    S->getNextFunctionPrototypeIndex());
6466
6467  // Add the parameter declaration into this scope.
6468  S->AddDecl(New);
6469  if (II)
6470    IdResolver.AddDecl(New);
6471
6472  ProcessDeclAttributes(S, New, D);
6473
6474  if (D.getDeclSpec().isModulePrivateSpecified())
6475    Diag(New->getLocation(), diag::err_module_private_local)
6476      << 1 << New->getDeclName()
6477      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6478      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6479
6480  if (New->hasAttr<BlocksAttr>()) {
6481    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6482  }
6483  return New;
6484}
6485
6486/// \brief Synthesizes a variable for a parameter arising from a
6487/// typedef.
6488ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6489                                              SourceLocation Loc,
6490                                              QualType T) {
6491  /* FIXME: setting StartLoc == Loc.
6492     Would it be worth to modify callers so as to provide proper source
6493     location for the unnamed parameters, embedding the parameter's type? */
6494  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6495                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6496                                           SC_None, SC_None, 0);
6497  Param->setImplicit();
6498  return Param;
6499}
6500
6501void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6502                                    ParmVarDecl * const *ParamEnd) {
6503  // Don't diagnose unused-parameter errors in template instantiations; we
6504  // will already have done so in the template itself.
6505  if (!ActiveTemplateInstantiations.empty())
6506    return;
6507
6508  for (; Param != ParamEnd; ++Param) {
6509    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6510        !(*Param)->hasAttr<UnusedAttr>()) {
6511      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6512        << (*Param)->getDeclName();
6513    }
6514  }
6515}
6516
6517void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6518                                                  ParmVarDecl * const *ParamEnd,
6519                                                  QualType ReturnTy,
6520                                                  NamedDecl *D) {
6521  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6522    return;
6523
6524  // Warn if the return value is pass-by-value and larger than the specified
6525  // threshold.
6526  if (ReturnTy.isPODType(Context)) {
6527    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6528    if (Size > LangOpts.NumLargeByValueCopy)
6529      Diag(D->getLocation(), diag::warn_return_value_size)
6530          << D->getDeclName() << Size;
6531  }
6532
6533  // Warn if any parameter is pass-by-value and larger than the specified
6534  // threshold.
6535  for (; Param != ParamEnd; ++Param) {
6536    QualType T = (*Param)->getType();
6537    if (!T.isPODType(Context))
6538      continue;
6539    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6540    if (Size > LangOpts.NumLargeByValueCopy)
6541      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6542          << (*Param)->getDeclName() << Size;
6543  }
6544}
6545
6546ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6547                                  SourceLocation NameLoc, IdentifierInfo *Name,
6548                                  QualType T, TypeSourceInfo *TSInfo,
6549                                  VarDecl::StorageClass StorageClass,
6550                                  VarDecl::StorageClass StorageClassAsWritten) {
6551  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6552  if (getLangOptions().ObjCAutoRefCount &&
6553      T.getObjCLifetime() == Qualifiers::OCL_None &&
6554      T->isObjCLifetimeType()) {
6555
6556    Qualifiers::ObjCLifetime lifetime;
6557
6558    // Special cases for arrays:
6559    //   - if it's const, use __unsafe_unretained
6560    //   - otherwise, it's an error
6561    if (T->isArrayType()) {
6562      if (!T.isConstQualified()) {
6563        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6564          << TSInfo->getTypeLoc().getSourceRange();
6565      }
6566      lifetime = Qualifiers::OCL_ExplicitNone;
6567    } else {
6568      lifetime = T->getObjCARCImplicitLifetime();
6569    }
6570    T = Context.getLifetimeQualifiedType(T, lifetime);
6571  }
6572
6573  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6574                                         Context.getAdjustedParameterType(T),
6575                                         TSInfo,
6576                                         StorageClass, StorageClassAsWritten,
6577                                         0);
6578
6579  // Parameters can not be abstract class types.
6580  // For record types, this is done by the AbstractClassUsageDiagnoser once
6581  // the class has been completely parsed.
6582  if (!CurContext->isRecord() &&
6583      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6584                             AbstractParamType))
6585    New->setInvalidDecl();
6586
6587  // Parameter declarators cannot be interface types. All ObjC objects are
6588  // passed by reference.
6589  if (T->isObjCObjectType()) {
6590    Diag(NameLoc,
6591         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6592      << FixItHint::CreateInsertion(NameLoc, "*");
6593    T = Context.getObjCObjectPointerType(T);
6594    New->setType(T);
6595  }
6596
6597  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6598  // duration shall not be qualified by an address-space qualifier."
6599  // Since all parameters have automatic store duration, they can not have
6600  // an address space.
6601  if (T.getAddressSpace() != 0) {
6602    Diag(NameLoc, diag::err_arg_with_address_space);
6603    New->setInvalidDecl();
6604  }
6605
6606  return New;
6607}
6608
6609void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6610                                           SourceLocation LocAfterDecls) {
6611  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6612
6613  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6614  // for a K&R function.
6615  if (!FTI.hasPrototype) {
6616    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6617      --i;
6618      if (FTI.ArgInfo[i].Param == 0) {
6619        llvm::SmallString<256> Code;
6620        llvm::raw_svector_ostream(Code) << "  int "
6621                                        << FTI.ArgInfo[i].Ident->getName()
6622                                        << ";\n";
6623        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6624          << FTI.ArgInfo[i].Ident
6625          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6626
6627        // Implicitly declare the argument as type 'int' for lack of a better
6628        // type.
6629        AttributeFactory attrs;
6630        DeclSpec DS(attrs);
6631        const char* PrevSpec; // unused
6632        unsigned DiagID; // unused
6633        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6634                           PrevSpec, DiagID);
6635        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6636        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6637        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6638      }
6639    }
6640  }
6641}
6642
6643Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6644                                         Declarator &D) {
6645  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6646  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6647  Scope *ParentScope = FnBodyScope->getParent();
6648
6649  Decl *DP = HandleDeclarator(ParentScope, D,
6650                              MultiTemplateParamsArg(*this),
6651                              /*IsFunctionDefinition=*/true);
6652  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6653}
6654
6655static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6656  // Don't warn about invalid declarations.
6657  if (FD->isInvalidDecl())
6658    return false;
6659
6660  // Or declarations that aren't global.
6661  if (!FD->isGlobal())
6662    return false;
6663
6664  // Don't warn about C++ member functions.
6665  if (isa<CXXMethodDecl>(FD))
6666    return false;
6667
6668  // Don't warn about 'main'.
6669  if (FD->isMain())
6670    return false;
6671
6672  // Don't warn about inline functions.
6673  if (FD->isInlined())
6674    return false;
6675
6676  // Don't warn about function templates.
6677  if (FD->getDescribedFunctionTemplate())
6678    return false;
6679
6680  // Don't warn about function template specializations.
6681  if (FD->isFunctionTemplateSpecialization())
6682    return false;
6683
6684  bool MissingPrototype = true;
6685  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6686       Prev; Prev = Prev->getPreviousDeclaration()) {
6687    // Ignore any declarations that occur in function or method
6688    // scope, because they aren't visible from the header.
6689    if (Prev->getDeclContext()->isFunctionOrMethod())
6690      continue;
6691
6692    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6693    break;
6694  }
6695
6696  return MissingPrototype;
6697}
6698
6699void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6700  // Don't complain if we're in GNU89 mode and the previous definition
6701  // was an extern inline function.
6702  const FunctionDecl *Definition;
6703  if (FD->isDefined(Definition) &&
6704      !canRedefineFunction(Definition, getLangOptions())) {
6705    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6706        Definition->getStorageClass() == SC_Extern)
6707      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6708        << FD->getDeclName() << getLangOptions().CPlusPlus;
6709    else
6710      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6711    Diag(Definition->getLocation(), diag::note_previous_definition);
6712  }
6713}
6714
6715Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6716  // Clear the last template instantiation error context.
6717  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6718
6719  if (!D)
6720    return D;
6721  FunctionDecl *FD = 0;
6722
6723  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6724    FD = FunTmpl->getTemplatedDecl();
6725  else
6726    FD = cast<FunctionDecl>(D);
6727
6728  // Enter a new function scope
6729  PushFunctionScope();
6730
6731  // See if this is a redefinition.
6732  if (!FD->isLateTemplateParsed())
6733    CheckForFunctionRedefinition(FD);
6734
6735  // Builtin functions cannot be defined.
6736  if (unsigned BuiltinID = FD->getBuiltinID()) {
6737    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6738      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6739      FD->setInvalidDecl();
6740    }
6741  }
6742
6743  // The return type of a function definition must be complete
6744  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6745  QualType ResultType = FD->getResultType();
6746  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6747      !FD->isInvalidDecl() &&
6748      RequireCompleteType(FD->getLocation(), ResultType,
6749                          diag::err_func_def_incomplete_result))
6750    FD->setInvalidDecl();
6751
6752  // GNU warning -Wmissing-prototypes:
6753  //   Warn if a global function is defined without a previous
6754  //   prototype declaration. This warning is issued even if the
6755  //   definition itself provides a prototype. The aim is to detect
6756  //   global functions that fail to be declared in header files.
6757  if (ShouldWarnAboutMissingPrototype(FD))
6758    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6759
6760  if (FnBodyScope)
6761    PushDeclContext(FnBodyScope, FD);
6762
6763  // Check the validity of our function parameters
6764  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6765                           /*CheckParameterNames=*/true);
6766
6767  // Introduce our parameters into the function scope
6768  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6769    ParmVarDecl *Param = FD->getParamDecl(p);
6770    Param->setOwningFunction(FD);
6771
6772    // If this has an identifier, add it to the scope stack.
6773    if (Param->getIdentifier() && FnBodyScope) {
6774      CheckShadow(FnBodyScope, Param);
6775
6776      PushOnScopeChains(Param, FnBodyScope);
6777    }
6778  }
6779
6780  // Checking attributes of current function definition
6781  // dllimport attribute.
6782  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6783  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6784    // dllimport attribute cannot be directly applied to definition.
6785    // Microsoft accepts dllimport for functions defined within class scope.
6786    if (!DA->isInherited() &&
6787        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6788      Diag(FD->getLocation(),
6789           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6790        << "dllimport";
6791      FD->setInvalidDecl();
6792      return FD;
6793    }
6794
6795    // Visual C++ appears to not think this is an issue, so only issue
6796    // a warning when Microsoft extensions are disabled.
6797    if (!LangOpts.MicrosoftExt) {
6798      // If a symbol previously declared dllimport is later defined, the
6799      // attribute is ignored in subsequent references, and a warning is
6800      // emitted.
6801      Diag(FD->getLocation(),
6802           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6803        << FD->getName() << "dllimport";
6804    }
6805  }
6806  return FD;
6807}
6808
6809/// \brief Given the set of return statements within a function body,
6810/// compute the variables that are subject to the named return value
6811/// optimization.
6812///
6813/// Each of the variables that is subject to the named return value
6814/// optimization will be marked as NRVO variables in the AST, and any
6815/// return statement that has a marked NRVO variable as its NRVO candidate can
6816/// use the named return value optimization.
6817///
6818/// This function applies a very simplistic algorithm for NRVO: if every return
6819/// statement in the function has the same NRVO candidate, that candidate is
6820/// the NRVO variable.
6821///
6822/// FIXME: Employ a smarter algorithm that accounts for multiple return
6823/// statements and the lifetimes of the NRVO candidates. We should be able to
6824/// find a maximal set of NRVO variables.
6825void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6826  ReturnStmt **Returns = Scope->Returns.data();
6827
6828  const VarDecl *NRVOCandidate = 0;
6829  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6830    if (!Returns[I]->getNRVOCandidate())
6831      return;
6832
6833    if (!NRVOCandidate)
6834      NRVOCandidate = Returns[I]->getNRVOCandidate();
6835    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6836      return;
6837  }
6838
6839  if (NRVOCandidate)
6840    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6841}
6842
6843Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6844  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6845}
6846
6847Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6848                                    bool IsInstantiation) {
6849  FunctionDecl *FD = 0;
6850  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6851  if (FunTmpl)
6852    FD = FunTmpl->getTemplatedDecl();
6853  else
6854    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6855
6856  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6857  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6858
6859  if (FD) {
6860    FD->setBody(Body);
6861    if (FD->isMain()) {
6862      // C and C++ allow for main to automagically return 0.
6863      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6864      FD->setHasImplicitReturnZero(true);
6865      WP.disableCheckFallThrough();
6866    } else if (FD->hasAttr<NakedAttr>()) {
6867      // If the function is marked 'naked', don't complain about missing return
6868      // statements.
6869      WP.disableCheckFallThrough();
6870    }
6871
6872    // MSVC permits the use of pure specifier (=0) on function definition,
6873    // defined at class scope, warn about this non standard construct.
6874    if (getLangOptions().MicrosoftExt && FD->isPure())
6875      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6876
6877    if (!FD->isInvalidDecl()) {
6878      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6879      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6880                                             FD->getResultType(), FD);
6881
6882      // If this is a constructor, we need a vtable.
6883      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6884        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6885
6886      computeNRVO(Body, getCurFunction());
6887    }
6888
6889    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6890  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6891    assert(MD == getCurMethodDecl() && "Method parsing confused");
6892    MD->setBody(Body);
6893    if (Body)
6894      MD->setEndLoc(Body->getLocEnd());
6895    if (!MD->isInvalidDecl()) {
6896      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6897      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6898                                             MD->getResultType(), MD);
6899
6900      if (Body)
6901        computeNRVO(Body, getCurFunction());
6902    }
6903    if (ObjCShouldCallSuperDealloc) {
6904      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6905      ObjCShouldCallSuperDealloc = false;
6906    }
6907    if (ObjCShouldCallSuperFinalize) {
6908      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6909      ObjCShouldCallSuperFinalize = false;
6910    }
6911  } else {
6912    return 0;
6913  }
6914
6915  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6916         "ObjC methods, which should have been handled in the block above.");
6917  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6918         "ObjC methods, which should have been handled in the block above.");
6919
6920  // Verify and clean out per-function state.
6921  if (Body) {
6922    // C++ constructors that have function-try-blocks can't have return
6923    // statements in the handlers of that block. (C++ [except.handle]p14)
6924    // Verify this.
6925    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6926      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6927
6928    // Verify that gotos and switch cases don't jump into scopes illegally.
6929    if (getCurFunction()->NeedsScopeChecking() &&
6930        !dcl->isInvalidDecl() &&
6931        !hasAnyUnrecoverableErrorsInThisFunction())
6932      DiagnoseInvalidJumps(Body);
6933
6934    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6935      if (!Destructor->getParent()->isDependentType())
6936        CheckDestructor(Destructor);
6937
6938      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6939                                             Destructor->getParent());
6940    }
6941
6942    // If any errors have occurred, clear out any temporaries that may have
6943    // been leftover. This ensures that these temporaries won't be picked up for
6944    // deletion in some later function.
6945    if (PP.getDiagnostics().hasErrorOccurred() ||
6946        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6947      ExprTemporaries.clear();
6948      ExprNeedsCleanups = false;
6949    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6950      // Since the body is valid, issue any analysis-based warnings that are
6951      // enabled.
6952      ActivePolicy = &WP;
6953    }
6954
6955    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6956    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6957  }
6958
6959  if (!IsInstantiation)
6960    PopDeclContext();
6961
6962  PopFunctionOrBlockScope(ActivePolicy, dcl);
6963
6964  // If any errors have occurred, clear out any temporaries that may have
6965  // been leftover. This ensures that these temporaries won't be picked up for
6966  // deletion in some later function.
6967  if (getDiagnostics().hasErrorOccurred()) {
6968    ExprTemporaries.clear();
6969    ExprNeedsCleanups = false;
6970  }
6971
6972  return dcl;
6973}
6974
6975
6976/// When we finish delayed parsing of an attribute, we must attach it to the
6977/// relevant Decl.
6978void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6979                                       ParsedAttributes &Attrs) {
6980  ProcessDeclAttributeList(S, D, Attrs.getList());
6981}
6982
6983
6984/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6985/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6986NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6987                                          IdentifierInfo &II, Scope *S) {
6988  // Before we produce a declaration for an implicitly defined
6989  // function, see whether there was a locally-scoped declaration of
6990  // this name as a function or variable. If so, use that
6991  // (non-visible) declaration, and complain about it.
6992  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6993    = findLocallyScopedExternalDecl(&II);
6994  if (Pos != LocallyScopedExternalDecls.end()) {
6995    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6996    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6997    return Pos->second;
6998  }
6999
7000  // Extension in C99.  Legal in C90, but warn about it.
7001  if (II.getName().startswith("__builtin_"))
7002    Diag(Loc, diag::warn_builtin_unknown) << &II;
7003  else if (getLangOptions().C99)
7004    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7005  else
7006    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7007
7008  // Set a Declarator for the implicit definition: int foo();
7009  const char *Dummy;
7010  AttributeFactory attrFactory;
7011  DeclSpec DS(attrFactory);
7012  unsigned DiagID;
7013  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7014  (void)Error; // Silence warning.
7015  assert(!Error && "Error setting up implicit decl!");
7016  Declarator D(DS, Declarator::BlockContext);
7017  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7018                                             0, 0, true, SourceLocation(),
7019                                             SourceLocation(),
7020                                             EST_None, SourceLocation(),
7021                                             0, 0, 0, 0, Loc, Loc, D),
7022                DS.getAttributes(),
7023                SourceLocation());
7024  D.SetIdentifier(&II, Loc);
7025
7026  // Insert this function into translation-unit scope.
7027
7028  DeclContext *PrevDC = CurContext;
7029  CurContext = Context.getTranslationUnitDecl();
7030
7031  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7032  FD->setImplicit();
7033
7034  CurContext = PrevDC;
7035
7036  AddKnownFunctionAttributes(FD);
7037
7038  return FD;
7039}
7040
7041/// \brief Adds any function attributes that we know a priori based on
7042/// the declaration of this function.
7043///
7044/// These attributes can apply both to implicitly-declared builtins
7045/// (like __builtin___printf_chk) or to library-declared functions
7046/// like NSLog or printf.
7047///
7048/// We need to check for duplicate attributes both here and where user-written
7049/// attributes are applied to declarations.
7050void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7051  if (FD->isInvalidDecl())
7052    return;
7053
7054  // If this is a built-in function, map its builtin attributes to
7055  // actual attributes.
7056  if (unsigned BuiltinID = FD->getBuiltinID()) {
7057    // Handle printf-formatting attributes.
7058    unsigned FormatIdx;
7059    bool HasVAListArg;
7060    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7061      if (!FD->getAttr<FormatAttr>())
7062        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7063                                                "printf", FormatIdx+1,
7064                                               HasVAListArg ? 0 : FormatIdx+2));
7065    }
7066    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7067                                             HasVAListArg)) {
7068     if (!FD->getAttr<FormatAttr>())
7069       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7070                                              "scanf", FormatIdx+1,
7071                                              HasVAListArg ? 0 : FormatIdx+2));
7072    }
7073
7074    // Mark const if we don't care about errno and that is the only
7075    // thing preventing the function from being const. This allows
7076    // IRgen to use LLVM intrinsics for such functions.
7077    if (!getLangOptions().MathErrno &&
7078        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7079      if (!FD->getAttr<ConstAttr>())
7080        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7081    }
7082
7083    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7084      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7085    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7086      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7087  }
7088
7089  IdentifierInfo *Name = FD->getIdentifier();
7090  if (!Name)
7091    return;
7092  if ((!getLangOptions().CPlusPlus &&
7093       FD->getDeclContext()->isTranslationUnit()) ||
7094      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7095       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7096       LinkageSpecDecl::lang_c)) {
7097    // Okay: this could be a libc/libm/Objective-C function we know
7098    // about.
7099  } else
7100    return;
7101
7102  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7103    // FIXME: NSLog and NSLogv should be target specific
7104    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7105      // FIXME: We known better than our headers.
7106      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7107    } else
7108      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7109                                             "printf", 1,
7110                                             Name->isStr("NSLogv") ? 0 : 2));
7111  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7112    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7113    // target-specific builtins, perhaps?
7114    if (!FD->getAttr<FormatAttr>())
7115      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7116                                             "printf", 2,
7117                                             Name->isStr("vasprintf") ? 0 : 3));
7118  }
7119}
7120
7121TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7122                                    TypeSourceInfo *TInfo) {
7123  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7124  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7125
7126  if (!TInfo) {
7127    assert(D.isInvalidType() && "no declarator info for valid type");
7128    TInfo = Context.getTrivialTypeSourceInfo(T);
7129  }
7130
7131  // Scope manipulation handled by caller.
7132  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7133                                           D.getSourceRange().getBegin(),
7134                                           D.getIdentifierLoc(),
7135                                           D.getIdentifier(),
7136                                           TInfo);
7137
7138  // Bail out immediately if we have an invalid declaration.
7139  if (D.isInvalidType()) {
7140    NewTD->setInvalidDecl();
7141    return NewTD;
7142  }
7143
7144  if (D.getDeclSpec().isModulePrivateSpecified()) {
7145    if (CurContext->isFunctionOrMethod())
7146      Diag(NewTD->getLocation(), diag::err_module_private_local)
7147        << 2 << NewTD->getDeclName()
7148        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7149        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7150    else
7151      NewTD->setModulePrivate();
7152  }
7153
7154  // C++ [dcl.typedef]p8:
7155  //   If the typedef declaration defines an unnamed class (or
7156  //   enum), the first typedef-name declared by the declaration
7157  //   to be that class type (or enum type) is used to denote the
7158  //   class type (or enum type) for linkage purposes only.
7159  // We need to check whether the type was declared in the declaration.
7160  switch (D.getDeclSpec().getTypeSpecType()) {
7161  case TST_enum:
7162  case TST_struct:
7163  case TST_union:
7164  case TST_class: {
7165    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7166
7167    // Do nothing if the tag is not anonymous or already has an
7168    // associated typedef (from an earlier typedef in this decl group).
7169    if (tagFromDeclSpec->getIdentifier()) break;
7170    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7171
7172    // A well-formed anonymous tag must always be a TUK_Definition.
7173    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7174
7175    // The type must match the tag exactly;  no qualifiers allowed.
7176    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7177      break;
7178
7179    // Otherwise, set this is the anon-decl typedef for the tag.
7180    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7181    break;
7182  }
7183
7184  default:
7185    break;
7186  }
7187
7188  return NewTD;
7189}
7190
7191
7192/// \brief Determine whether a tag with a given kind is acceptable
7193/// as a redeclaration of the given tag declaration.
7194///
7195/// \returns true if the new tag kind is acceptable, false otherwise.
7196bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7197                                        TagTypeKind NewTag, bool isDefinition,
7198                                        SourceLocation NewTagLoc,
7199                                        const IdentifierInfo &Name) {
7200  // C++ [dcl.type.elab]p3:
7201  //   The class-key or enum keyword present in the
7202  //   elaborated-type-specifier shall agree in kind with the
7203  //   declaration to which the name in the elaborated-type-specifier
7204  //   refers. This rule also applies to the form of
7205  //   elaborated-type-specifier that declares a class-name or
7206  //   friend class since it can be construed as referring to the
7207  //   definition of the class. Thus, in any
7208  //   elaborated-type-specifier, the enum keyword shall be used to
7209  //   refer to an enumeration (7.2), the union class-key shall be
7210  //   used to refer to a union (clause 9), and either the class or
7211  //   struct class-key shall be used to refer to a class (clause 9)
7212  //   declared using the class or struct class-key.
7213  TagTypeKind OldTag = Previous->getTagKind();
7214  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7215    if (OldTag == NewTag)
7216      return true;
7217
7218  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7219      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7220    // Warn about the struct/class tag mismatch.
7221    bool isTemplate = false;
7222    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7223      isTemplate = Record->getDescribedClassTemplate();
7224
7225    if (!ActiveTemplateInstantiations.empty()) {
7226      // In a template instantiation, do not offer fix-its for tag mismatches
7227      // since they usually mess up the template instead of fixing the problem.
7228      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7229        << (NewTag == TTK_Class) << isTemplate << &Name;
7230      return true;
7231    }
7232
7233    if (isDefinition) {
7234      // On definitions, check previous tags and issue a fix-it for each
7235      // one that doesn't match the current tag.
7236      if (Previous->getDefinition()) {
7237        // Don't suggest fix-its for redefinitions.
7238        return true;
7239      }
7240
7241      bool previousMismatch = false;
7242      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7243           E(Previous->redecls_end()); I != E; ++I) {
7244        if (I->getTagKind() != NewTag) {
7245          if (!previousMismatch) {
7246            previousMismatch = true;
7247            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7248              << (NewTag == TTK_Class) << isTemplate << &Name;
7249          }
7250          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7251            << (NewTag == TTK_Class)
7252            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7253                                            NewTag == TTK_Class?
7254                                            "class" : "struct");
7255        }
7256      }
7257      return true;
7258    }
7259
7260    // Check for a previous definition.  If current tag and definition
7261    // are same type, do nothing.  If no definition, but disagree with
7262    // with previous tag type, give a warning, but no fix-it.
7263    const TagDecl *Redecl = Previous->getDefinition() ?
7264                            Previous->getDefinition() : Previous;
7265    if (Redecl->getTagKind() == NewTag) {
7266      return true;
7267    }
7268
7269    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7270      << (NewTag == TTK_Class)
7271      << isTemplate << &Name;
7272    Diag(Redecl->getLocation(), diag::note_previous_use);
7273
7274    // If there is a previous defintion, suggest a fix-it.
7275    if (Previous->getDefinition()) {
7276        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7277          << (Redecl->getTagKind() == TTK_Class)
7278          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7279                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7280    }
7281
7282    return true;
7283  }
7284  return false;
7285}
7286
7287/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7288/// former case, Name will be non-null.  In the later case, Name will be null.
7289/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7290/// reference/declaration/definition of a tag.
7291Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7292                     SourceLocation KWLoc, CXXScopeSpec &SS,
7293                     IdentifierInfo *Name, SourceLocation NameLoc,
7294                     AttributeList *Attr, AccessSpecifier AS,
7295                     SourceLocation ModulePrivateLoc,
7296                     MultiTemplateParamsArg TemplateParameterLists,
7297                     bool &OwnedDecl, bool &IsDependent,
7298                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7299                     TypeResult UnderlyingType) {
7300  // If this is not a definition, it must have a name.
7301  assert((Name != 0 || TUK == TUK_Definition) &&
7302         "Nameless record must be a definition!");
7303  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7304
7305  OwnedDecl = false;
7306  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7307
7308  // FIXME: Check explicit specializations more carefully.
7309  bool isExplicitSpecialization = false;
7310  bool Invalid = false;
7311
7312  // We only need to do this matching if we have template parameters
7313  // or a scope specifier, which also conveniently avoids this work
7314  // for non-C++ cases.
7315  if (TemplateParameterLists.size() > 0 ||
7316      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7317    if (TemplateParameterList *TemplateParams
7318          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7319                                                TemplateParameterLists.get(),
7320                                                TemplateParameterLists.size(),
7321                                                    TUK == TUK_Friend,
7322                                                    isExplicitSpecialization,
7323                                                    Invalid)) {
7324      if (TemplateParams->size() > 0) {
7325        // This is a declaration or definition of a class template (which may
7326        // be a member of another template).
7327
7328        if (Invalid)
7329          return 0;
7330
7331        OwnedDecl = false;
7332        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7333                                               SS, Name, NameLoc, Attr,
7334                                               TemplateParams, AS,
7335                                               ModulePrivateLoc,
7336                                           TemplateParameterLists.size() - 1,
7337                 (TemplateParameterList**) TemplateParameterLists.release());
7338        return Result.get();
7339      } else {
7340        // The "template<>" header is extraneous.
7341        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7342          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7343        isExplicitSpecialization = true;
7344      }
7345    }
7346  }
7347
7348  // Figure out the underlying type if this a enum declaration. We need to do
7349  // this early, because it's needed to detect if this is an incompatible
7350  // redeclaration.
7351  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7352
7353  if (Kind == TTK_Enum) {
7354    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7355      // No underlying type explicitly specified, or we failed to parse the
7356      // type, default to int.
7357      EnumUnderlying = Context.IntTy.getTypePtr();
7358    else if (UnderlyingType.get()) {
7359      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7360      // integral type; any cv-qualification is ignored.
7361      TypeSourceInfo *TI = 0;
7362      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7363      EnumUnderlying = TI;
7364
7365      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7366
7367      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7368        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7369          << T;
7370        // Recover by falling back to int.
7371        EnumUnderlying = Context.IntTy.getTypePtr();
7372      }
7373
7374      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7375                                          UPPC_FixedUnderlyingType))
7376        EnumUnderlying = Context.IntTy.getTypePtr();
7377
7378    } else if (getLangOptions().MicrosoftExt)
7379      // Microsoft enums are always of int type.
7380      EnumUnderlying = Context.IntTy.getTypePtr();
7381  }
7382
7383  DeclContext *SearchDC = CurContext;
7384  DeclContext *DC = CurContext;
7385  bool isStdBadAlloc = false;
7386
7387  RedeclarationKind Redecl = ForRedeclaration;
7388  if (TUK == TUK_Friend || TUK == TUK_Reference)
7389    Redecl = NotForRedeclaration;
7390
7391  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7392
7393  if (Name && SS.isNotEmpty()) {
7394    // We have a nested-name tag ('struct foo::bar').
7395
7396    // Check for invalid 'foo::'.
7397    if (SS.isInvalid()) {
7398      Name = 0;
7399      goto CreateNewDecl;
7400    }
7401
7402    // If this is a friend or a reference to a class in a dependent
7403    // context, don't try to make a decl for it.
7404    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7405      DC = computeDeclContext(SS, false);
7406      if (!DC) {
7407        IsDependent = true;
7408        return 0;
7409      }
7410    } else {
7411      DC = computeDeclContext(SS, true);
7412      if (!DC) {
7413        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7414          << SS.getRange();
7415        return 0;
7416      }
7417    }
7418
7419    if (RequireCompleteDeclContext(SS, DC))
7420      return 0;
7421
7422    SearchDC = DC;
7423    // Look-up name inside 'foo::'.
7424    LookupQualifiedName(Previous, DC);
7425
7426    if (Previous.isAmbiguous())
7427      return 0;
7428
7429    if (Previous.empty()) {
7430      // Name lookup did not find anything. However, if the
7431      // nested-name-specifier refers to the current instantiation,
7432      // and that current instantiation has any dependent base
7433      // classes, we might find something at instantiation time: treat
7434      // this as a dependent elaborated-type-specifier.
7435      // But this only makes any sense for reference-like lookups.
7436      if (Previous.wasNotFoundInCurrentInstantiation() &&
7437          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7438        IsDependent = true;
7439        return 0;
7440      }
7441
7442      // A tag 'foo::bar' must already exist.
7443      Diag(NameLoc, diag::err_not_tag_in_scope)
7444        << Kind << Name << DC << SS.getRange();
7445      Name = 0;
7446      Invalid = true;
7447      goto CreateNewDecl;
7448    }
7449  } else if (Name) {
7450    // If this is a named struct, check to see if there was a previous forward
7451    // declaration or definition.
7452    // FIXME: We're looking into outer scopes here, even when we
7453    // shouldn't be. Doing so can result in ambiguities that we
7454    // shouldn't be diagnosing.
7455    LookupName(Previous, S);
7456
7457    if (Previous.isAmbiguous() &&
7458        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7459      LookupResult::Filter F = Previous.makeFilter();
7460      while (F.hasNext()) {
7461        NamedDecl *ND = F.next();
7462        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7463          F.erase();
7464      }
7465      F.done();
7466    }
7467
7468    // Note:  there used to be some attempt at recovery here.
7469    if (Previous.isAmbiguous())
7470      return 0;
7471
7472    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7473      // FIXME: This makes sure that we ignore the contexts associated
7474      // with C structs, unions, and enums when looking for a matching
7475      // tag declaration or definition. See the similar lookup tweak
7476      // in Sema::LookupName; is there a better way to deal with this?
7477      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7478        SearchDC = SearchDC->getParent();
7479    }
7480  } else if (S->isFunctionPrototypeScope()) {
7481    // If this is an enum declaration in function prototype scope, set its
7482    // initial context to the translation unit.
7483    SearchDC = Context.getTranslationUnitDecl();
7484  }
7485
7486  if (Previous.isSingleResult() &&
7487      Previous.getFoundDecl()->isTemplateParameter()) {
7488    // Maybe we will complain about the shadowed template parameter.
7489    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7490    // Just pretend that we didn't see the previous declaration.
7491    Previous.clear();
7492  }
7493
7494  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7495      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7496    // This is a declaration of or a reference to "std::bad_alloc".
7497    isStdBadAlloc = true;
7498
7499    if (Previous.empty() && StdBadAlloc) {
7500      // std::bad_alloc has been implicitly declared (but made invisible to
7501      // name lookup). Fill in this implicit declaration as the previous
7502      // declaration, so that the declarations get chained appropriately.
7503      Previous.addDecl(getStdBadAlloc());
7504    }
7505  }
7506
7507  // If we didn't find a previous declaration, and this is a reference
7508  // (or friend reference), move to the correct scope.  In C++, we
7509  // also need to do a redeclaration lookup there, just in case
7510  // there's a shadow friend decl.
7511  if (Name && Previous.empty() &&
7512      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7513    if (Invalid) goto CreateNewDecl;
7514    assert(SS.isEmpty());
7515
7516    if (TUK == TUK_Reference) {
7517      // C++ [basic.scope.pdecl]p5:
7518      //   -- for an elaborated-type-specifier of the form
7519      //
7520      //          class-key identifier
7521      //
7522      //      if the elaborated-type-specifier is used in the
7523      //      decl-specifier-seq or parameter-declaration-clause of a
7524      //      function defined in namespace scope, the identifier is
7525      //      declared as a class-name in the namespace that contains
7526      //      the declaration; otherwise, except as a friend
7527      //      declaration, the identifier is declared in the smallest
7528      //      non-class, non-function-prototype scope that contains the
7529      //      declaration.
7530      //
7531      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7532      // C structs and unions.
7533      //
7534      // It is an error in C++ to declare (rather than define) an enum
7535      // type, including via an elaborated type specifier.  We'll
7536      // diagnose that later; for now, declare the enum in the same
7537      // scope as we would have picked for any other tag type.
7538      //
7539      // GNU C also supports this behavior as part of its incomplete
7540      // enum types extension, while GNU C++ does not.
7541      //
7542      // Find the context where we'll be declaring the tag.
7543      // FIXME: We would like to maintain the current DeclContext as the
7544      // lexical context,
7545      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7546        SearchDC = SearchDC->getParent();
7547
7548      // Find the scope where we'll be declaring the tag.
7549      while (S->isClassScope() ||
7550             (getLangOptions().CPlusPlus &&
7551              S->isFunctionPrototypeScope()) ||
7552             ((S->getFlags() & Scope::DeclScope) == 0) ||
7553             (S->getEntity() &&
7554              ((DeclContext *)S->getEntity())->isTransparentContext()))
7555        S = S->getParent();
7556    } else {
7557      assert(TUK == TUK_Friend);
7558      // C++ [namespace.memdef]p3:
7559      //   If a friend declaration in a non-local class first declares a
7560      //   class or function, the friend class or function is a member of
7561      //   the innermost enclosing namespace.
7562      SearchDC = SearchDC->getEnclosingNamespaceContext();
7563    }
7564
7565    // In C++, we need to do a redeclaration lookup to properly
7566    // diagnose some problems.
7567    if (getLangOptions().CPlusPlus) {
7568      Previous.setRedeclarationKind(ForRedeclaration);
7569      LookupQualifiedName(Previous, SearchDC);
7570    }
7571  }
7572
7573  if (!Previous.empty()) {
7574    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7575
7576    // It's okay to have a tag decl in the same scope as a typedef
7577    // which hides a tag decl in the same scope.  Finding this
7578    // insanity with a redeclaration lookup can only actually happen
7579    // in C++.
7580    //
7581    // This is also okay for elaborated-type-specifiers, which is
7582    // technically forbidden by the current standard but which is
7583    // okay according to the likely resolution of an open issue;
7584    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7585    if (getLangOptions().CPlusPlus) {
7586      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7587        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7588          TagDecl *Tag = TT->getDecl();
7589          if (Tag->getDeclName() == Name &&
7590              Tag->getDeclContext()->getRedeclContext()
7591                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7592            PrevDecl = Tag;
7593            Previous.clear();
7594            Previous.addDecl(Tag);
7595            Previous.resolveKind();
7596          }
7597        }
7598      }
7599    }
7600
7601    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7602      // If this is a use of a previous tag, or if the tag is already declared
7603      // in the same scope (so that the definition/declaration completes or
7604      // rementions the tag), reuse the decl.
7605      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7606          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7607        // Make sure that this wasn't declared as an enum and now used as a
7608        // struct or something similar.
7609        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7610                                          TUK == TUK_Definition, KWLoc,
7611                                          *Name)) {
7612          bool SafeToContinue
7613            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7614               Kind != TTK_Enum);
7615          if (SafeToContinue)
7616            Diag(KWLoc, diag::err_use_with_wrong_tag)
7617              << Name
7618              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7619                                              PrevTagDecl->getKindName());
7620          else
7621            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7622          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7623
7624          if (SafeToContinue)
7625            Kind = PrevTagDecl->getTagKind();
7626          else {
7627            // Recover by making this an anonymous redefinition.
7628            Name = 0;
7629            Previous.clear();
7630            Invalid = true;
7631          }
7632        }
7633
7634        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7635          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7636
7637          // All conflicts with previous declarations are recovered by
7638          // returning the previous declaration.
7639          if (ScopedEnum != PrevEnum->isScoped()) {
7640            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7641              << PrevEnum->isScoped();
7642            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7643            return PrevTagDecl;
7644          }
7645          else if (EnumUnderlying && PrevEnum->isFixed()) {
7646            QualType T;
7647            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7648                T = TI->getType();
7649            else
7650                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7651
7652            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7653              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7654                   diag::err_enum_redeclare_type_mismatch)
7655                << T
7656                << PrevEnum->getIntegerType();
7657              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7658              return PrevTagDecl;
7659            }
7660          }
7661          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7662            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7663              << PrevEnum->isFixed();
7664            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7665            return PrevTagDecl;
7666          }
7667        }
7668
7669        if (!Invalid) {
7670          // If this is a use, just return the declaration we found.
7671
7672          // FIXME: In the future, return a variant or some other clue
7673          // for the consumer of this Decl to know it doesn't own it.
7674          // For our current ASTs this shouldn't be a problem, but will
7675          // need to be changed with DeclGroups.
7676          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7677               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7678            return PrevTagDecl;
7679
7680          // Diagnose attempts to redefine a tag.
7681          if (TUK == TUK_Definition) {
7682            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7683              // If we're defining a specialization and the previous definition
7684              // is from an implicit instantiation, don't emit an error
7685              // here; we'll catch this in the general case below.
7686              if (!isExplicitSpecialization ||
7687                  !isa<CXXRecordDecl>(Def) ||
7688                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7689                                               == TSK_ExplicitSpecialization) {
7690                Diag(NameLoc, diag::err_redefinition) << Name;
7691                Diag(Def->getLocation(), diag::note_previous_definition);
7692                // If this is a redefinition, recover by making this
7693                // struct be anonymous, which will make any later
7694                // references get the previous definition.
7695                Name = 0;
7696                Previous.clear();
7697                Invalid = true;
7698              }
7699            } else {
7700              // If the type is currently being defined, complain
7701              // about a nested redefinition.
7702              const TagType *Tag
7703                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7704              if (Tag->isBeingDefined()) {
7705                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7706                Diag(PrevTagDecl->getLocation(),
7707                     diag::note_previous_definition);
7708                Name = 0;
7709                Previous.clear();
7710                Invalid = true;
7711              }
7712            }
7713
7714            // Okay, this is definition of a previously declared or referenced
7715            // tag PrevDecl. We're going to create a new Decl for it.
7716          }
7717        }
7718        // If we get here we have (another) forward declaration or we
7719        // have a definition.  Just create a new decl.
7720
7721      } else {
7722        // If we get here, this is a definition of a new tag type in a nested
7723        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7724        // new decl/type.  We set PrevDecl to NULL so that the entities
7725        // have distinct types.
7726        Previous.clear();
7727      }
7728      // If we get here, we're going to create a new Decl. If PrevDecl
7729      // is non-NULL, it's a definition of the tag declared by
7730      // PrevDecl. If it's NULL, we have a new definition.
7731
7732
7733    // Otherwise, PrevDecl is not a tag, but was found with tag
7734    // lookup.  This is only actually possible in C++, where a few
7735    // things like templates still live in the tag namespace.
7736    } else {
7737      assert(getLangOptions().CPlusPlus);
7738
7739      // Use a better diagnostic if an elaborated-type-specifier
7740      // found the wrong kind of type on the first
7741      // (non-redeclaration) lookup.
7742      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7743          !Previous.isForRedeclaration()) {
7744        unsigned Kind = 0;
7745        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7746        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7747        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7748        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7749        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7750        Invalid = true;
7751
7752      // Otherwise, only diagnose if the declaration is in scope.
7753      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7754                                isExplicitSpecialization)) {
7755        // do nothing
7756
7757      // Diagnose implicit declarations introduced by elaborated types.
7758      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7759        unsigned Kind = 0;
7760        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7761        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7762        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7763        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7764        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7765        Invalid = true;
7766
7767      // Otherwise it's a declaration.  Call out a particularly common
7768      // case here.
7769      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7770        unsigned Kind = 0;
7771        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7772        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7773          << Name << Kind << TND->getUnderlyingType();
7774        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7775        Invalid = true;
7776
7777      // Otherwise, diagnose.
7778      } else {
7779        // The tag name clashes with something else in the target scope,
7780        // issue an error and recover by making this tag be anonymous.
7781        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7782        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7783        Name = 0;
7784        Invalid = true;
7785      }
7786
7787      // The existing declaration isn't relevant to us; we're in a
7788      // new scope, so clear out the previous declaration.
7789      Previous.clear();
7790    }
7791  }
7792
7793CreateNewDecl:
7794
7795  TagDecl *PrevDecl = 0;
7796  if (Previous.isSingleResult())
7797    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7798
7799  // If there is an identifier, use the location of the identifier as the
7800  // location of the decl, otherwise use the location of the struct/union
7801  // keyword.
7802  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7803
7804  // Otherwise, create a new declaration. If there is a previous
7805  // declaration of the same entity, the two will be linked via
7806  // PrevDecl.
7807  TagDecl *New;
7808
7809  bool IsForwardReference = false;
7810  if (Kind == TTK_Enum) {
7811    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7812    // enum X { A, B, C } D;    D should chain to X.
7813    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7814                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7815                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7816    // If this is an undefined enum, warn.
7817    if (TUK != TUK_Definition && !Invalid) {
7818      TagDecl *Def;
7819      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7820        // C++0x: 7.2p2: opaque-enum-declaration.
7821        // Conflicts are diagnosed above. Do nothing.
7822      }
7823      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7824        Diag(Loc, diag::ext_forward_ref_enum_def)
7825          << New;
7826        Diag(Def->getLocation(), diag::note_previous_definition);
7827      } else {
7828        unsigned DiagID = diag::ext_forward_ref_enum;
7829        if (getLangOptions().MicrosoftExt)
7830          DiagID = diag::ext_ms_forward_ref_enum;
7831        else if (getLangOptions().CPlusPlus)
7832          DiagID = diag::err_forward_ref_enum;
7833        Diag(Loc, DiagID);
7834
7835        // If this is a forward-declared reference to an enumeration, make a
7836        // note of it; we won't actually be introducing the declaration into
7837        // the declaration context.
7838        if (TUK == TUK_Reference)
7839          IsForwardReference = true;
7840      }
7841    }
7842
7843    if (EnumUnderlying) {
7844      EnumDecl *ED = cast<EnumDecl>(New);
7845      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7846        ED->setIntegerTypeSourceInfo(TI);
7847      else
7848        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7849      ED->setPromotionType(ED->getIntegerType());
7850    }
7851
7852  } else {
7853    // struct/union/class
7854
7855    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7856    // struct X { int A; } D;    D should chain to X.
7857    if (getLangOptions().CPlusPlus) {
7858      // FIXME: Look for a way to use RecordDecl for simple structs.
7859      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7860                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7861
7862      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7863        StdBadAlloc = cast<CXXRecordDecl>(New);
7864    } else
7865      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7866                               cast_or_null<RecordDecl>(PrevDecl));
7867  }
7868
7869  // Maybe add qualifier info.
7870  if (SS.isNotEmpty()) {
7871    if (SS.isSet()) {
7872      New->setQualifierInfo(SS.getWithLocInContext(Context));
7873      if (TemplateParameterLists.size() > 0) {
7874        New->setTemplateParameterListsInfo(Context,
7875                                           TemplateParameterLists.size(),
7876                    (TemplateParameterList**) TemplateParameterLists.release());
7877      }
7878    }
7879    else
7880      Invalid = true;
7881  }
7882
7883  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7884    // Add alignment attributes if necessary; these attributes are checked when
7885    // the ASTContext lays out the structure.
7886    //
7887    // It is important for implementing the correct semantics that this
7888    // happen here (in act on tag decl). The #pragma pack stack is
7889    // maintained as a result of parser callbacks which can occur at
7890    // many points during the parsing of a struct declaration (because
7891    // the #pragma tokens are effectively skipped over during the
7892    // parsing of the struct).
7893    AddAlignmentAttributesForRecord(RD);
7894
7895    AddMsStructLayoutForRecord(RD);
7896  }
7897
7898  if (PrevDecl && PrevDecl->isModulePrivate())
7899    New->setModulePrivate();
7900  else if (ModulePrivateLoc.isValid()) {
7901    if (isExplicitSpecialization)
7902      Diag(New->getLocation(), diag::err_module_private_specialization)
7903        << 2
7904        << FixItHint::CreateRemoval(ModulePrivateLoc);
7905    else if (PrevDecl && !PrevDecl->isModulePrivate())
7906      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7907    // __module_private__ does not apply to local classes. However, we only
7908    // diagnose this as an error when the declaration specifiers are
7909    // freestanding. Here, we just ignore the __module_private__.
7910    // foobar
7911    else if (!SearchDC->isFunctionOrMethod())
7912      New->setModulePrivate();
7913  }
7914
7915  // If this is a specialization of a member class (of a class template),
7916  // check the specialization.
7917  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7918    Invalid = true;
7919
7920  if (Invalid)
7921    New->setInvalidDecl();
7922
7923  if (Attr)
7924    ProcessDeclAttributeList(S, New, Attr);
7925
7926  // If we're declaring or defining a tag in function prototype scope
7927  // in C, note that this type can only be used within the function.
7928  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7929    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7930
7931  // Set the lexical context. If the tag has a C++ scope specifier, the
7932  // lexical context will be different from the semantic context.
7933  New->setLexicalDeclContext(CurContext);
7934
7935  // Mark this as a friend decl if applicable.
7936  // In Microsoft mode, a friend declaration also acts as a forward
7937  // declaration so we always pass true to setObjectOfFriendDecl to make
7938  // the tag name visible.
7939  if (TUK == TUK_Friend)
7940    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7941                               getLangOptions().MicrosoftExt);
7942
7943  // Set the access specifier.
7944  if (!Invalid && SearchDC->isRecord())
7945    SetMemberAccessSpecifier(New, PrevDecl, AS);
7946
7947  if (TUK == TUK_Definition)
7948    New->startDefinition();
7949
7950  // If this has an identifier, add it to the scope stack.
7951  if (TUK == TUK_Friend) {
7952    // We might be replacing an existing declaration in the lookup tables;
7953    // if so, borrow its access specifier.
7954    if (PrevDecl)
7955      New->setAccess(PrevDecl->getAccess());
7956
7957    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7958    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7959    if (Name) // can be null along some error paths
7960      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7961        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7962  } else if (Name) {
7963    S = getNonFieldDeclScope(S);
7964    PushOnScopeChains(New, S, !IsForwardReference);
7965    if (IsForwardReference)
7966      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7967
7968  } else {
7969    CurContext->addDecl(New);
7970  }
7971
7972  // If this is the C FILE type, notify the AST context.
7973  if (IdentifierInfo *II = New->getIdentifier())
7974    if (!New->isInvalidDecl() &&
7975        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7976        II->isStr("FILE"))
7977      Context.setFILEDecl(New);
7978
7979  OwnedDecl = true;
7980  return New;
7981}
7982
7983void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7984  AdjustDeclIfTemplate(TagD);
7985  TagDecl *Tag = cast<TagDecl>(TagD);
7986
7987  // Enter the tag context.
7988  PushDeclContext(S, Tag);
7989}
7990
7991void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7992  assert(isa<ObjCContainerDecl>(IDecl) &&
7993         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7994  DeclContext *OCD = cast<DeclContext>(IDecl);
7995  assert(getContainingDC(OCD) == CurContext &&
7996      "The next DeclContext should be lexically contained in the current one.");
7997  CurContext = OCD;
7998}
7999
8000void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8001                                           SourceLocation FinalLoc,
8002                                           SourceLocation LBraceLoc) {
8003  AdjustDeclIfTemplate(TagD);
8004  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8005
8006  FieldCollector->StartClass();
8007
8008  if (!Record->getIdentifier())
8009    return;
8010
8011  if (FinalLoc.isValid())
8012    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8013
8014  // C++ [class]p2:
8015  //   [...] The class-name is also inserted into the scope of the
8016  //   class itself; this is known as the injected-class-name. For
8017  //   purposes of access checking, the injected-class-name is treated
8018  //   as if it were a public member name.
8019  CXXRecordDecl *InjectedClassName
8020    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8021                            Record->getLocStart(), Record->getLocation(),
8022                            Record->getIdentifier(),
8023                            /*PrevDecl=*/0,
8024                            /*DelayTypeCreation=*/true);
8025  Context.getTypeDeclType(InjectedClassName, Record);
8026  InjectedClassName->setImplicit();
8027  InjectedClassName->setAccess(AS_public);
8028  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8029      InjectedClassName->setDescribedClassTemplate(Template);
8030  PushOnScopeChains(InjectedClassName, S);
8031  assert(InjectedClassName->isInjectedClassName() &&
8032         "Broken injected-class-name");
8033}
8034
8035void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8036                                    SourceLocation RBraceLoc) {
8037  AdjustDeclIfTemplate(TagD);
8038  TagDecl *Tag = cast<TagDecl>(TagD);
8039  Tag->setRBraceLoc(RBraceLoc);
8040
8041  if (isa<CXXRecordDecl>(Tag))
8042    FieldCollector->FinishClass();
8043
8044  // Exit this scope of this tag's definition.
8045  PopDeclContext();
8046
8047  // Notify the consumer that we've defined a tag.
8048  Consumer.HandleTagDeclDefinition(Tag);
8049}
8050
8051void Sema::ActOnObjCContainerFinishDefinition() {
8052  // Exit this scope of this interface definition.
8053  PopDeclContext();
8054}
8055
8056void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8057  AdjustDeclIfTemplate(TagD);
8058  TagDecl *Tag = cast<TagDecl>(TagD);
8059  Tag->setInvalidDecl();
8060
8061  // We're undoing ActOnTagStartDefinition here, not
8062  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8063  // the FieldCollector.
8064
8065  PopDeclContext();
8066}
8067
8068// Note that FieldName may be null for anonymous bitfields.
8069bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8070                          QualType FieldTy, const Expr *BitWidth,
8071                          bool *ZeroWidth) {
8072  // Default to true; that shouldn't confuse checks for emptiness
8073  if (ZeroWidth)
8074    *ZeroWidth = true;
8075
8076  // C99 6.7.2.1p4 - verify the field type.
8077  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8078  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8079    // Handle incomplete types with specific error.
8080    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8081      return true;
8082    if (FieldName)
8083      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8084        << FieldName << FieldTy << BitWidth->getSourceRange();
8085    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8086      << FieldTy << BitWidth->getSourceRange();
8087  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8088                                             UPPC_BitFieldWidth))
8089    return true;
8090
8091  // If the bit-width is type- or value-dependent, don't try to check
8092  // it now.
8093  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8094    return false;
8095
8096  llvm::APSInt Value;
8097  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8098    return true;
8099
8100  if (Value != 0 && ZeroWidth)
8101    *ZeroWidth = false;
8102
8103  // Zero-width bitfield is ok for anonymous field.
8104  if (Value == 0 && FieldName)
8105    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8106
8107  if (Value.isSigned() && Value.isNegative()) {
8108    if (FieldName)
8109      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8110               << FieldName << Value.toString(10);
8111    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8112      << Value.toString(10);
8113  }
8114
8115  if (!FieldTy->isDependentType()) {
8116    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8117    if (Value.getZExtValue() > TypeSize) {
8118      if (!getLangOptions().CPlusPlus) {
8119        if (FieldName)
8120          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8121            << FieldName << (unsigned)Value.getZExtValue()
8122            << (unsigned)TypeSize;
8123
8124        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8125          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8126      }
8127
8128      if (FieldName)
8129        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8130          << FieldName << (unsigned)Value.getZExtValue()
8131          << (unsigned)TypeSize;
8132      else
8133        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8134          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8135    }
8136  }
8137
8138  return false;
8139}
8140
8141/// ActOnField - Each field of a C struct/union is passed into this in order
8142/// to create a FieldDecl object for it.
8143Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8144                       Declarator &D, Expr *BitfieldWidth) {
8145  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8146                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8147                               /*HasInit=*/false, AS_public);
8148  return Res;
8149}
8150
8151/// HandleField - Analyze a field of a C struct or a C++ data member.
8152///
8153FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8154                             SourceLocation DeclStart,
8155                             Declarator &D, Expr *BitWidth, bool HasInit,
8156                             AccessSpecifier AS) {
8157  IdentifierInfo *II = D.getIdentifier();
8158  SourceLocation Loc = DeclStart;
8159  if (II) Loc = D.getIdentifierLoc();
8160
8161  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8162  QualType T = TInfo->getType();
8163  if (getLangOptions().CPlusPlus) {
8164    CheckExtraCXXDefaultArguments(D);
8165
8166    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8167                                        UPPC_DataMemberType)) {
8168      D.setInvalidType();
8169      T = Context.IntTy;
8170      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8171    }
8172  }
8173
8174  DiagnoseFunctionSpecifiers(D);
8175
8176  if (D.getDeclSpec().isThreadSpecified())
8177    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8178  if (D.getDeclSpec().isConstexprSpecified())
8179    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8180      << 2;
8181
8182  // Check to see if this name was declared as a member previously
8183  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8184  LookupName(Previous, S);
8185  assert((Previous.empty() || Previous.isOverloadedResult() ||
8186          Previous.isSingleResult())
8187    && "Lookup of member name should be either overloaded, single or null");
8188
8189  // If the name is overloaded then get any declaration else get the single result
8190  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8191    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8192
8193  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8194    // Maybe we will complain about the shadowed template parameter.
8195    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8196    // Just pretend that we didn't see the previous declaration.
8197    PrevDecl = 0;
8198  }
8199
8200  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8201    PrevDecl = 0;
8202
8203  bool Mutable
8204    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8205  SourceLocation TSSL = D.getSourceRange().getBegin();
8206  FieldDecl *NewFD
8207    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8208                     TSSL, AS, PrevDecl, &D);
8209
8210  if (NewFD->isInvalidDecl())
8211    Record->setInvalidDecl();
8212
8213  if (D.getDeclSpec().isModulePrivateSpecified())
8214    NewFD->setModulePrivate();
8215
8216  if (NewFD->isInvalidDecl() && PrevDecl) {
8217    // Don't introduce NewFD into scope; there's already something
8218    // with the same name in the same scope.
8219  } else if (II) {
8220    PushOnScopeChains(NewFD, S);
8221  } else
8222    Record->addDecl(NewFD);
8223
8224  return NewFD;
8225}
8226
8227/// \brief Build a new FieldDecl and check its well-formedness.
8228///
8229/// This routine builds a new FieldDecl given the fields name, type,
8230/// record, etc. \p PrevDecl should refer to any previous declaration
8231/// with the same name and in the same scope as the field to be
8232/// created.
8233///
8234/// \returns a new FieldDecl.
8235///
8236/// \todo The Declarator argument is a hack. It will be removed once
8237FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8238                                TypeSourceInfo *TInfo,
8239                                RecordDecl *Record, SourceLocation Loc,
8240                                bool Mutable, Expr *BitWidth, bool HasInit,
8241                                SourceLocation TSSL,
8242                                AccessSpecifier AS, NamedDecl *PrevDecl,
8243                                Declarator *D) {
8244  IdentifierInfo *II = Name.getAsIdentifierInfo();
8245  bool InvalidDecl = false;
8246  if (D) InvalidDecl = D->isInvalidType();
8247
8248  // If we receive a broken type, recover by assuming 'int' and
8249  // marking this declaration as invalid.
8250  if (T.isNull()) {
8251    InvalidDecl = true;
8252    T = Context.IntTy;
8253  }
8254
8255  QualType EltTy = Context.getBaseElementType(T);
8256  if (!EltTy->isDependentType() &&
8257      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8258    // Fields of incomplete type force their record to be invalid.
8259    Record->setInvalidDecl();
8260    InvalidDecl = true;
8261  }
8262
8263  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8264  // than a variably modified type.
8265  if (!InvalidDecl && T->isVariablyModifiedType()) {
8266    bool SizeIsNegative;
8267    llvm::APSInt Oversized;
8268    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8269                                                           SizeIsNegative,
8270                                                           Oversized);
8271    if (!FixedTy.isNull()) {
8272      Diag(Loc, diag::warn_illegal_constant_array_size);
8273      T = FixedTy;
8274    } else {
8275      if (SizeIsNegative)
8276        Diag(Loc, diag::err_typecheck_negative_array_size);
8277      else if (Oversized.getBoolValue())
8278        Diag(Loc, diag::err_array_too_large)
8279          << Oversized.toString(10);
8280      else
8281        Diag(Loc, diag::err_typecheck_field_variable_size);
8282      InvalidDecl = true;
8283    }
8284  }
8285
8286  // Fields can not have abstract class types
8287  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8288                                             diag::err_abstract_type_in_decl,
8289                                             AbstractFieldType))
8290    InvalidDecl = true;
8291
8292  bool ZeroWidth = false;
8293  // If this is declared as a bit-field, check the bit-field.
8294  if (!InvalidDecl && BitWidth &&
8295      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8296    InvalidDecl = true;
8297    BitWidth = 0;
8298    ZeroWidth = false;
8299  }
8300
8301  // Check that 'mutable' is consistent with the type of the declaration.
8302  if (!InvalidDecl && Mutable) {
8303    unsigned DiagID = 0;
8304    if (T->isReferenceType())
8305      DiagID = diag::err_mutable_reference;
8306    else if (T.isConstQualified())
8307      DiagID = diag::err_mutable_const;
8308
8309    if (DiagID) {
8310      SourceLocation ErrLoc = Loc;
8311      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8312        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8313      Diag(ErrLoc, DiagID);
8314      Mutable = false;
8315      InvalidDecl = true;
8316    }
8317  }
8318
8319  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8320                                       BitWidth, Mutable, HasInit);
8321  if (InvalidDecl)
8322    NewFD->setInvalidDecl();
8323
8324  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8325    Diag(Loc, diag::err_duplicate_member) << II;
8326    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8327    NewFD->setInvalidDecl();
8328  }
8329
8330  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8331    if (Record->isUnion()) {
8332      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8333        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8334        if (RDecl->getDefinition()) {
8335          // C++ [class.union]p1: An object of a class with a non-trivial
8336          // constructor, a non-trivial copy constructor, a non-trivial
8337          // destructor, or a non-trivial copy assignment operator
8338          // cannot be a member of a union, nor can an array of such
8339          // objects.
8340          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8341            NewFD->setInvalidDecl();
8342        }
8343      }
8344
8345      // C++ [class.union]p1: If a union contains a member of reference type,
8346      // the program is ill-formed.
8347      if (EltTy->isReferenceType()) {
8348        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8349          << NewFD->getDeclName() << EltTy;
8350        NewFD->setInvalidDecl();
8351      }
8352    }
8353  }
8354
8355  // FIXME: We need to pass in the attributes given an AST
8356  // representation, not a parser representation.
8357  if (D)
8358    // FIXME: What to pass instead of TUScope?
8359    ProcessDeclAttributes(TUScope, NewFD, *D);
8360
8361  // In auto-retain/release, infer strong retension for fields of
8362  // retainable type.
8363  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8364    NewFD->setInvalidDecl();
8365
8366  if (T.isObjCGCWeak())
8367    Diag(Loc, diag::warn_attribute_weak_on_field);
8368
8369  NewFD->setAccess(AS);
8370  return NewFD;
8371}
8372
8373bool Sema::CheckNontrivialField(FieldDecl *FD) {
8374  assert(FD);
8375  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8376
8377  if (FD->isInvalidDecl())
8378    return true;
8379
8380  QualType EltTy = Context.getBaseElementType(FD->getType());
8381  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8382    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8383    if (RDecl->getDefinition()) {
8384      // We check for copy constructors before constructors
8385      // because otherwise we'll never get complaints about
8386      // copy constructors.
8387
8388      CXXSpecialMember member = CXXInvalid;
8389      if (!RDecl->hasTrivialCopyConstructor())
8390        member = CXXCopyConstructor;
8391      else if (!RDecl->hasTrivialDefaultConstructor())
8392        member = CXXDefaultConstructor;
8393      else if (!RDecl->hasTrivialCopyAssignment())
8394        member = CXXCopyAssignment;
8395      else if (!RDecl->hasTrivialDestructor())
8396        member = CXXDestructor;
8397
8398      if (member != CXXInvalid) {
8399        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8400          // Objective-C++ ARC: it is an error to have a non-trivial field of
8401          // a union. However, system headers in Objective-C programs
8402          // occasionally have Objective-C lifetime objects within unions,
8403          // and rather than cause the program to fail, we make those
8404          // members unavailable.
8405          SourceLocation Loc = FD->getLocation();
8406          if (getSourceManager().isInSystemHeader(Loc)) {
8407            if (!FD->hasAttr<UnavailableAttr>())
8408              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8409                                  "this system field has retaining ownership"));
8410            return false;
8411          }
8412        }
8413
8414        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8415              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8416        DiagnoseNontrivial(RT, member);
8417        return true;
8418      }
8419    }
8420  }
8421
8422  return false;
8423}
8424
8425/// DiagnoseNontrivial - Given that a class has a non-trivial
8426/// special member, figure out why.
8427void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8428  QualType QT(T, 0U);
8429  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8430
8431  // Check whether the member was user-declared.
8432  switch (member) {
8433  case CXXInvalid:
8434    break;
8435
8436  case CXXDefaultConstructor:
8437    if (RD->hasUserDeclaredConstructor()) {
8438      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8439      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8440        const FunctionDecl *body = 0;
8441        ci->hasBody(body);
8442        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8443          SourceLocation CtorLoc = ci->getLocation();
8444          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8445          return;
8446        }
8447      }
8448
8449      llvm_unreachable("found no user-declared constructors");
8450    }
8451    break;
8452
8453  case CXXCopyConstructor:
8454    if (RD->hasUserDeclaredCopyConstructor()) {
8455      SourceLocation CtorLoc =
8456        RD->getCopyConstructor(0)->getLocation();
8457      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8458      return;
8459    }
8460    break;
8461
8462  case CXXMoveConstructor:
8463    if (RD->hasUserDeclaredMoveConstructor()) {
8464      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8465      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8466      return;
8467    }
8468    break;
8469
8470  case CXXCopyAssignment:
8471    if (RD->hasUserDeclaredCopyAssignment()) {
8472      // FIXME: this should use the location of the copy
8473      // assignment, not the type.
8474      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8475      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8476      return;
8477    }
8478    break;
8479
8480  case CXXMoveAssignment:
8481    if (RD->hasUserDeclaredMoveAssignment()) {
8482      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8483      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8484      return;
8485    }
8486    break;
8487
8488  case CXXDestructor:
8489    if (RD->hasUserDeclaredDestructor()) {
8490      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8491      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8492      return;
8493    }
8494    break;
8495  }
8496
8497  typedef CXXRecordDecl::base_class_iterator base_iter;
8498
8499  // Virtual bases and members inhibit trivial copying/construction,
8500  // but not trivial destruction.
8501  if (member != CXXDestructor) {
8502    // Check for virtual bases.  vbases includes indirect virtual bases,
8503    // so we just iterate through the direct bases.
8504    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8505      if (bi->isVirtual()) {
8506        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8507        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8508        return;
8509      }
8510
8511    // Check for virtual methods.
8512    typedef CXXRecordDecl::method_iterator meth_iter;
8513    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8514         ++mi) {
8515      if (mi->isVirtual()) {
8516        SourceLocation MLoc = mi->getSourceRange().getBegin();
8517        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8518        return;
8519      }
8520    }
8521  }
8522
8523  bool (CXXRecordDecl::*hasTrivial)() const;
8524  switch (member) {
8525  case CXXDefaultConstructor:
8526    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8527  case CXXCopyConstructor:
8528    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8529  case CXXCopyAssignment:
8530    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8531  case CXXDestructor:
8532    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8533  default:
8534    llvm_unreachable("unexpected special member");
8535  }
8536
8537  // Check for nontrivial bases (and recurse).
8538  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8539    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8540    assert(BaseRT && "Don't know how to handle dependent bases");
8541    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8542    if (!(BaseRecTy->*hasTrivial)()) {
8543      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8544      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8545      DiagnoseNontrivial(BaseRT, member);
8546      return;
8547    }
8548  }
8549
8550  // Check for nontrivial members (and recurse).
8551  typedef RecordDecl::field_iterator field_iter;
8552  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8553       ++fi) {
8554    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8555    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8556      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8557
8558      if (!(EltRD->*hasTrivial)()) {
8559        SourceLocation FLoc = (*fi)->getLocation();
8560        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8561        DiagnoseNontrivial(EltRT, member);
8562        return;
8563      }
8564    }
8565
8566    if (EltTy->isObjCLifetimeType()) {
8567      switch (EltTy.getObjCLifetime()) {
8568      case Qualifiers::OCL_None:
8569      case Qualifiers::OCL_ExplicitNone:
8570        break;
8571
8572      case Qualifiers::OCL_Autoreleasing:
8573      case Qualifiers::OCL_Weak:
8574      case Qualifiers::OCL_Strong:
8575        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8576          << QT << EltTy.getObjCLifetime();
8577        return;
8578      }
8579    }
8580  }
8581
8582  llvm_unreachable("found no explanation for non-trivial member");
8583}
8584
8585/// TranslateIvarVisibility - Translate visibility from a token ID to an
8586///  AST enum value.
8587static ObjCIvarDecl::AccessControl
8588TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8589  switch (ivarVisibility) {
8590  default: llvm_unreachable("Unknown visitibility kind");
8591  case tok::objc_private: return ObjCIvarDecl::Private;
8592  case tok::objc_public: return ObjCIvarDecl::Public;
8593  case tok::objc_protected: return ObjCIvarDecl::Protected;
8594  case tok::objc_package: return ObjCIvarDecl::Package;
8595  }
8596}
8597
8598/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8599/// in order to create an IvarDecl object for it.
8600Decl *Sema::ActOnIvar(Scope *S,
8601                                SourceLocation DeclStart,
8602                                Declarator &D, Expr *BitfieldWidth,
8603                                tok::ObjCKeywordKind Visibility) {
8604
8605  IdentifierInfo *II = D.getIdentifier();
8606  Expr *BitWidth = (Expr*)BitfieldWidth;
8607  SourceLocation Loc = DeclStart;
8608  if (II) Loc = D.getIdentifierLoc();
8609
8610  // FIXME: Unnamed fields can be handled in various different ways, for
8611  // example, unnamed unions inject all members into the struct namespace!
8612
8613  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8614  QualType T = TInfo->getType();
8615
8616  if (BitWidth) {
8617    // 6.7.2.1p3, 6.7.2.1p4
8618    if (VerifyBitField(Loc, II, T, BitWidth)) {
8619      D.setInvalidType();
8620      BitWidth = 0;
8621    }
8622  } else {
8623    // Not a bitfield.
8624
8625    // validate II.
8626
8627  }
8628  if (T->isReferenceType()) {
8629    Diag(Loc, diag::err_ivar_reference_type);
8630    D.setInvalidType();
8631  }
8632  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8633  // than a variably modified type.
8634  else if (T->isVariablyModifiedType()) {
8635    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8636    D.setInvalidType();
8637  }
8638
8639  // Get the visibility (access control) for this ivar.
8640  ObjCIvarDecl::AccessControl ac =
8641    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8642                                        : ObjCIvarDecl::None;
8643  // Must set ivar's DeclContext to its enclosing interface.
8644  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8645  ObjCContainerDecl *EnclosingContext;
8646  if (ObjCImplementationDecl *IMPDecl =
8647      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8648    if (!LangOpts.ObjCNonFragileABI2) {
8649    // Case of ivar declared in an implementation. Context is that of its class.
8650      EnclosingContext = IMPDecl->getClassInterface();
8651      assert(EnclosingContext && "Implementation has no class interface!");
8652    }
8653    else
8654      EnclosingContext = EnclosingDecl;
8655  } else {
8656    if (ObjCCategoryDecl *CDecl =
8657        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8658      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8659        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8660        return 0;
8661      }
8662    }
8663    EnclosingContext = EnclosingDecl;
8664  }
8665
8666  // Construct the decl.
8667  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8668                                             DeclStart, Loc, II, T,
8669                                             TInfo, ac, (Expr *)BitfieldWidth);
8670
8671  if (II) {
8672    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8673                                           ForRedeclaration);
8674    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8675        && !isa<TagDecl>(PrevDecl)) {
8676      Diag(Loc, diag::err_duplicate_member) << II;
8677      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8678      NewID->setInvalidDecl();
8679    }
8680  }
8681
8682  // Process attributes attached to the ivar.
8683  ProcessDeclAttributes(S, NewID, D);
8684
8685  if (D.isInvalidType())
8686    NewID->setInvalidDecl();
8687
8688  // In ARC, infer 'retaining' for ivars of retainable type.
8689  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8690    NewID->setInvalidDecl();
8691
8692  if (D.getDeclSpec().isModulePrivateSpecified())
8693    NewID->setModulePrivate();
8694
8695  if (II) {
8696    // FIXME: When interfaces are DeclContexts, we'll need to add
8697    // these to the interface.
8698    S->AddDecl(NewID);
8699    IdResolver.AddDecl(NewID);
8700  }
8701
8702  return NewID;
8703}
8704
8705/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8706/// class and class extensions. For every class @interface and class
8707/// extension @interface, if the last ivar is a bitfield of any type,
8708/// then add an implicit `char :0` ivar to the end of that interface.
8709void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8710                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8711  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8712    return;
8713
8714  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8715  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8716
8717  if (!Ivar->isBitField())
8718    return;
8719  uint64_t BitFieldSize =
8720    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8721  if (BitFieldSize == 0)
8722    return;
8723  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8724  if (!ID) {
8725    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8726      if (!CD->IsClassExtension())
8727        return;
8728    }
8729    // No need to add this to end of @implementation.
8730    else
8731      return;
8732  }
8733  // All conditions are met. Add a new bitfield to the tail end of ivars.
8734  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8735  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8736
8737  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8738                              DeclLoc, DeclLoc, 0,
8739                              Context.CharTy,
8740                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8741                                                               DeclLoc),
8742                              ObjCIvarDecl::Private, BW,
8743                              true);
8744  AllIvarDecls.push_back(Ivar);
8745}
8746
8747void Sema::ActOnFields(Scope* S,
8748                       SourceLocation RecLoc, Decl *EnclosingDecl,
8749                       llvm::ArrayRef<Decl *> Fields,
8750                       SourceLocation LBrac, SourceLocation RBrac,
8751                       AttributeList *Attr) {
8752  assert(EnclosingDecl && "missing record or interface decl");
8753
8754  // If the decl this is being inserted into is invalid, then it may be a
8755  // redeclaration or some other bogus case.  Don't try to add fields to it.
8756  if (EnclosingDecl->isInvalidDecl())
8757    return;
8758
8759  // Verify that all the fields are okay.
8760  unsigned NumNamedMembers = 0;
8761  SmallVector<FieldDecl*, 32> RecFields;
8762
8763  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8764  bool ARCErrReported = false;
8765  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8766       i != end; ++i) {
8767    FieldDecl *FD = cast<FieldDecl>(*i);
8768
8769    // Get the type for the field.
8770    const Type *FDTy = FD->getType().getTypePtr();
8771
8772    if (!FD->isAnonymousStructOrUnion()) {
8773      // Remember all fields written by the user.
8774      RecFields.push_back(FD);
8775    }
8776
8777    // If the field is already invalid for some reason, don't emit more
8778    // diagnostics about it.
8779    if (FD->isInvalidDecl()) {
8780      EnclosingDecl->setInvalidDecl();
8781      continue;
8782    }
8783
8784    // C99 6.7.2.1p2:
8785    //   A structure or union shall not contain a member with
8786    //   incomplete or function type (hence, a structure shall not
8787    //   contain an instance of itself, but may contain a pointer to
8788    //   an instance of itself), except that the last member of a
8789    //   structure with more than one named member may have incomplete
8790    //   array type; such a structure (and any union containing,
8791    //   possibly recursively, a member that is such a structure)
8792    //   shall not be a member of a structure or an element of an
8793    //   array.
8794    if (FDTy->isFunctionType()) {
8795      // Field declared as a function.
8796      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8797        << FD->getDeclName();
8798      FD->setInvalidDecl();
8799      EnclosingDecl->setInvalidDecl();
8800      continue;
8801    } else if (FDTy->isIncompleteArrayType() && Record &&
8802               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8803                ((getLangOptions().MicrosoftExt ||
8804                  getLangOptions().CPlusPlus) &&
8805                 (i + 1 == Fields.end() || Record->isUnion())))) {
8806      // Flexible array member.
8807      // Microsoft and g++ is more permissive regarding flexible array.
8808      // It will accept flexible array in union and also
8809      // as the sole element of a struct/class.
8810      if (getLangOptions().MicrosoftExt) {
8811        if (Record->isUnion())
8812          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8813            << FD->getDeclName();
8814        else if (Fields.size() == 1)
8815          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8816            << FD->getDeclName() << Record->getTagKind();
8817      } else if (getLangOptions().CPlusPlus) {
8818        if (Record->isUnion())
8819          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8820            << FD->getDeclName();
8821        else if (Fields.size() == 1)
8822          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8823            << FD->getDeclName() << Record->getTagKind();
8824      } else if (NumNamedMembers < 1) {
8825        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8826          << FD->getDeclName();
8827        FD->setInvalidDecl();
8828        EnclosingDecl->setInvalidDecl();
8829        continue;
8830      }
8831      if (!FD->getType()->isDependentType() &&
8832          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8833        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8834          << FD->getDeclName() << FD->getType();
8835        FD->setInvalidDecl();
8836        EnclosingDecl->setInvalidDecl();
8837        continue;
8838      }
8839      // Okay, we have a legal flexible array member at the end of the struct.
8840      if (Record)
8841        Record->setHasFlexibleArrayMember(true);
8842    } else if (!FDTy->isDependentType() &&
8843               RequireCompleteType(FD->getLocation(), FD->getType(),
8844                                   diag::err_field_incomplete)) {
8845      // Incomplete type
8846      FD->setInvalidDecl();
8847      EnclosingDecl->setInvalidDecl();
8848      continue;
8849    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8850      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8851        // If this is a member of a union, then entire union becomes "flexible".
8852        if (Record && Record->isUnion()) {
8853          Record->setHasFlexibleArrayMember(true);
8854        } else {
8855          // If this is a struct/class and this is not the last element, reject
8856          // it.  Note that GCC supports variable sized arrays in the middle of
8857          // structures.
8858          if (i + 1 != Fields.end())
8859            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8860              << FD->getDeclName() << FD->getType();
8861          else {
8862            // We support flexible arrays at the end of structs in
8863            // other structs as an extension.
8864            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8865              << FD->getDeclName();
8866            if (Record)
8867              Record->setHasFlexibleArrayMember(true);
8868          }
8869        }
8870      }
8871      if (Record && FDTTy->getDecl()->hasObjectMember())
8872        Record->setHasObjectMember(true);
8873    } else if (FDTy->isObjCObjectType()) {
8874      /// A field cannot be an Objective-c object
8875      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8876        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8877      QualType T = Context.getObjCObjectPointerType(FD->getType());
8878      FD->setType(T);
8879    }
8880    else if (!getLangOptions().CPlusPlus) {
8881      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8882        // It's an error in ARC if a field has lifetime.
8883        // We don't want to report this in a system header, though,
8884        // so we just make the field unavailable.
8885        // FIXME: that's really not sufficient; we need to make the type
8886        // itself invalid to, say, initialize or copy.
8887        QualType T = FD->getType();
8888        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8889        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8890          SourceLocation loc = FD->getLocation();
8891          if (getSourceManager().isInSystemHeader(loc)) {
8892            if (!FD->hasAttr<UnavailableAttr>()) {
8893              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8894                                "this system field has retaining ownership"));
8895            }
8896          } else {
8897            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8898          }
8899          ARCErrReported = true;
8900        }
8901      }
8902      else if (getLangOptions().ObjC1 &&
8903               getLangOptions().getGC() != LangOptions::NonGC &&
8904               Record && !Record->hasObjectMember()) {
8905        if (FD->getType()->isObjCObjectPointerType() ||
8906            FD->getType().isObjCGCStrong())
8907          Record->setHasObjectMember(true);
8908        else if (Context.getAsArrayType(FD->getType())) {
8909          QualType BaseType = Context.getBaseElementType(FD->getType());
8910          if (BaseType->isRecordType() &&
8911              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8912            Record->setHasObjectMember(true);
8913          else if (BaseType->isObjCObjectPointerType() ||
8914                   BaseType.isObjCGCStrong())
8915                 Record->setHasObjectMember(true);
8916        }
8917      }
8918    }
8919    // Keep track of the number of named members.
8920    if (FD->getIdentifier())
8921      ++NumNamedMembers;
8922  }
8923
8924  // Okay, we successfully defined 'Record'.
8925  if (Record) {
8926    bool Completed = false;
8927    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8928      if (!CXXRecord->isInvalidDecl()) {
8929        // Set access bits correctly on the directly-declared conversions.
8930        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8931        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8932             I != E; ++I)
8933          Convs->setAccess(I, (*I)->getAccess());
8934
8935        if (!CXXRecord->isDependentType()) {
8936          // Objective-C Automatic Reference Counting:
8937          //   If a class has a non-static data member of Objective-C pointer
8938          //   type (or array thereof), it is a non-POD type and its
8939          //   default constructor (if any), copy constructor, copy assignment
8940          //   operator, and destructor are non-trivial.
8941          //
8942          // This rule is also handled by CXXRecordDecl::completeDefinition().
8943          // However, here we check whether this particular class is only
8944          // non-POD because of the presence of an Objective-C pointer member.
8945          // If so, objects of this type cannot be shared between code compiled
8946          // with instant objects and code compiled with manual retain/release.
8947          if (getLangOptions().ObjCAutoRefCount &&
8948              CXXRecord->hasObjectMember() &&
8949              CXXRecord->getLinkage() == ExternalLinkage) {
8950            if (CXXRecord->isPOD()) {
8951              Diag(CXXRecord->getLocation(),
8952                   diag::warn_arc_non_pod_class_with_object_member)
8953               << CXXRecord;
8954            } else {
8955              // FIXME: Fix-Its would be nice here, but finding a good location
8956              // for them is going to be tricky.
8957              if (CXXRecord->hasTrivialCopyConstructor())
8958                Diag(CXXRecord->getLocation(),
8959                     diag::warn_arc_trivial_member_function_with_object_member)
8960                  << CXXRecord << 0;
8961              if (CXXRecord->hasTrivialCopyAssignment())
8962                Diag(CXXRecord->getLocation(),
8963                     diag::warn_arc_trivial_member_function_with_object_member)
8964                << CXXRecord << 1;
8965              if (CXXRecord->hasTrivialDestructor())
8966                Diag(CXXRecord->getLocation(),
8967                     diag::warn_arc_trivial_member_function_with_object_member)
8968                << CXXRecord << 2;
8969            }
8970          }
8971
8972          // Adjust user-defined destructor exception spec.
8973          if (getLangOptions().CPlusPlus0x &&
8974              CXXRecord->hasUserDeclaredDestructor())
8975            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8976
8977          // Add any implicitly-declared members to this class.
8978          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8979
8980          // If we have virtual base classes, we may end up finding multiple
8981          // final overriders for a given virtual function. Check for this
8982          // problem now.
8983          if (CXXRecord->getNumVBases()) {
8984            CXXFinalOverriderMap FinalOverriders;
8985            CXXRecord->getFinalOverriders(FinalOverriders);
8986
8987            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8988                                             MEnd = FinalOverriders.end();
8989                 M != MEnd; ++M) {
8990              for (OverridingMethods::iterator SO = M->second.begin(),
8991                                            SOEnd = M->second.end();
8992                   SO != SOEnd; ++SO) {
8993                assert(SO->second.size() > 0 &&
8994                       "Virtual function without overridding functions?");
8995                if (SO->second.size() == 1)
8996                  continue;
8997
8998                // C++ [class.virtual]p2:
8999                //   In a derived class, if a virtual member function of a base
9000                //   class subobject has more than one final overrider the
9001                //   program is ill-formed.
9002                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9003                  << (NamedDecl *)M->first << Record;
9004                Diag(M->first->getLocation(),
9005                     diag::note_overridden_virtual_function);
9006                for (OverridingMethods::overriding_iterator
9007                          OM = SO->second.begin(),
9008                       OMEnd = SO->second.end();
9009                     OM != OMEnd; ++OM)
9010                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9011                    << (NamedDecl *)M->first << OM->Method->getParent();
9012
9013                Record->setInvalidDecl();
9014              }
9015            }
9016            CXXRecord->completeDefinition(&FinalOverriders);
9017            Completed = true;
9018          }
9019        }
9020      }
9021    }
9022
9023    if (!Completed)
9024      Record->completeDefinition();
9025
9026    // Now that the record is complete, do any delayed exception spec checks
9027    // we were missing.
9028    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9029      const CXXDestructorDecl *Dtor =
9030              DelayedDestructorExceptionSpecChecks.back().first;
9031      if (Dtor->getParent() != Record)
9032        break;
9033
9034      assert(!Dtor->getParent()->isDependentType() &&
9035          "Should not ever add destructors of templates into the list.");
9036      CheckOverridingFunctionExceptionSpec(Dtor,
9037          DelayedDestructorExceptionSpecChecks.back().second);
9038      DelayedDestructorExceptionSpecChecks.pop_back();
9039    }
9040
9041  } else {
9042    ObjCIvarDecl **ClsFields =
9043      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9044    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9045      ID->setLocEnd(RBrac);
9046      // Add ivar's to class's DeclContext.
9047      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9048        ClsFields[i]->setLexicalDeclContext(ID);
9049        ID->addDecl(ClsFields[i]);
9050      }
9051      // Must enforce the rule that ivars in the base classes may not be
9052      // duplicates.
9053      if (ID->getSuperClass())
9054        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9055    } else if (ObjCImplementationDecl *IMPDecl =
9056                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9057      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9058      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9059        // Ivar declared in @implementation never belongs to the implementation.
9060        // Only it is in implementation's lexical context.
9061        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9062      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9063    } else if (ObjCCategoryDecl *CDecl =
9064                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9065      // case of ivars in class extension; all other cases have been
9066      // reported as errors elsewhere.
9067      // FIXME. Class extension does not have a LocEnd field.
9068      // CDecl->setLocEnd(RBrac);
9069      // Add ivar's to class extension's DeclContext.
9070      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9071        ClsFields[i]->setLexicalDeclContext(CDecl);
9072        CDecl->addDecl(ClsFields[i]);
9073      }
9074    }
9075  }
9076
9077  if (Attr)
9078    ProcessDeclAttributeList(S, Record, Attr);
9079
9080  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9081  // set the visibility of this record.
9082  if (Record && !Record->getDeclContext()->isRecord())
9083    AddPushedVisibilityAttribute(Record);
9084}
9085
9086/// \brief Determine whether the given integral value is representable within
9087/// the given type T.
9088static bool isRepresentableIntegerValue(ASTContext &Context,
9089                                        llvm::APSInt &Value,
9090                                        QualType T) {
9091  assert(T->isIntegralType(Context) && "Integral type required!");
9092  unsigned BitWidth = Context.getIntWidth(T);
9093
9094  if (Value.isUnsigned() || Value.isNonNegative()) {
9095    if (T->isSignedIntegerOrEnumerationType())
9096      --BitWidth;
9097    return Value.getActiveBits() <= BitWidth;
9098  }
9099  return Value.getMinSignedBits() <= BitWidth;
9100}
9101
9102// \brief Given an integral type, return the next larger integral type
9103// (or a NULL type of no such type exists).
9104static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9105  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9106  // enum checking below.
9107  assert(T->isIntegralType(Context) && "Integral type required!");
9108  const unsigned NumTypes = 4;
9109  QualType SignedIntegralTypes[NumTypes] = {
9110    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9111  };
9112  QualType UnsignedIntegralTypes[NumTypes] = {
9113    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9114    Context.UnsignedLongLongTy
9115  };
9116
9117  unsigned BitWidth = Context.getTypeSize(T);
9118  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9119                                                        : UnsignedIntegralTypes;
9120  for (unsigned I = 0; I != NumTypes; ++I)
9121    if (Context.getTypeSize(Types[I]) > BitWidth)
9122      return Types[I];
9123
9124  return QualType();
9125}
9126
9127EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9128                                          EnumConstantDecl *LastEnumConst,
9129                                          SourceLocation IdLoc,
9130                                          IdentifierInfo *Id,
9131                                          Expr *Val) {
9132  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9133  llvm::APSInt EnumVal(IntWidth);
9134  QualType EltTy;
9135
9136  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9137    Val = 0;
9138
9139  if (Val) {
9140    if (Enum->isDependentType() || Val->isTypeDependent())
9141      EltTy = Context.DependentTy;
9142    else {
9143      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9144      SourceLocation ExpLoc;
9145      if (!Val->isValueDependent() &&
9146          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9147        Val = 0;
9148      } else {
9149        if (!getLangOptions().CPlusPlus) {
9150          // C99 6.7.2.2p2:
9151          //   The expression that defines the value of an enumeration constant
9152          //   shall be an integer constant expression that has a value
9153          //   representable as an int.
9154
9155          // Complain if the value is not representable in an int.
9156          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9157            Diag(IdLoc, diag::ext_enum_value_not_int)
9158              << EnumVal.toString(10) << Val->getSourceRange()
9159              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9160          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9161            // Force the type of the expression to 'int'.
9162            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9163          }
9164        }
9165
9166        if (Enum->isFixed()) {
9167          EltTy = Enum->getIntegerType();
9168
9169          // C++0x [dcl.enum]p5:
9170          //   ... if the initializing value of an enumerator cannot be
9171          //   represented by the underlying type, the program is ill-formed.
9172          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9173            if (getLangOptions().MicrosoftExt) {
9174              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9175              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9176            } else
9177              Diag(IdLoc, diag::err_enumerator_too_large)
9178                << EltTy;
9179          } else
9180            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9181        }
9182        else {
9183          // C++0x [dcl.enum]p5:
9184          //   If the underlying type is not fixed, the type of each enumerator
9185          //   is the type of its initializing value:
9186          //     - If an initializer is specified for an enumerator, the
9187          //       initializing value has the same type as the expression.
9188          EltTy = Val->getType();
9189        }
9190      }
9191    }
9192  }
9193
9194  if (!Val) {
9195    if (Enum->isDependentType())
9196      EltTy = Context.DependentTy;
9197    else if (!LastEnumConst) {
9198      // C++0x [dcl.enum]p5:
9199      //   If the underlying type is not fixed, the type of each enumerator
9200      //   is the type of its initializing value:
9201      //     - If no initializer is specified for the first enumerator, the
9202      //       initializing value has an unspecified integral type.
9203      //
9204      // GCC uses 'int' for its unspecified integral type, as does
9205      // C99 6.7.2.2p3.
9206      if (Enum->isFixed()) {
9207        EltTy = Enum->getIntegerType();
9208      }
9209      else {
9210        EltTy = Context.IntTy;
9211      }
9212    } else {
9213      // Assign the last value + 1.
9214      EnumVal = LastEnumConst->getInitVal();
9215      ++EnumVal;
9216      EltTy = LastEnumConst->getType();
9217
9218      // Check for overflow on increment.
9219      if (EnumVal < LastEnumConst->getInitVal()) {
9220        // C++0x [dcl.enum]p5:
9221        //   If the underlying type is not fixed, the type of each enumerator
9222        //   is the type of its initializing value:
9223        //
9224        //     - Otherwise the type of the initializing value is the same as
9225        //       the type of the initializing value of the preceding enumerator
9226        //       unless the incremented value is not representable in that type,
9227        //       in which case the type is an unspecified integral type
9228        //       sufficient to contain the incremented value. If no such type
9229        //       exists, the program is ill-formed.
9230        QualType T = getNextLargerIntegralType(Context, EltTy);
9231        if (T.isNull() || Enum->isFixed()) {
9232          // There is no integral type larger enough to represent this
9233          // value. Complain, then allow the value to wrap around.
9234          EnumVal = LastEnumConst->getInitVal();
9235          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9236          ++EnumVal;
9237          if (Enum->isFixed())
9238            // When the underlying type is fixed, this is ill-formed.
9239            Diag(IdLoc, diag::err_enumerator_wrapped)
9240              << EnumVal.toString(10)
9241              << EltTy;
9242          else
9243            Diag(IdLoc, diag::warn_enumerator_too_large)
9244              << EnumVal.toString(10);
9245        } else {
9246          EltTy = T;
9247        }
9248
9249        // Retrieve the last enumerator's value, extent that type to the
9250        // type that is supposed to be large enough to represent the incremented
9251        // value, then increment.
9252        EnumVal = LastEnumConst->getInitVal();
9253        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9254        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9255        ++EnumVal;
9256
9257        // If we're not in C++, diagnose the overflow of enumerator values,
9258        // which in C99 means that the enumerator value is not representable in
9259        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9260        // permits enumerator values that are representable in some larger
9261        // integral type.
9262        if (!getLangOptions().CPlusPlus && !T.isNull())
9263          Diag(IdLoc, diag::warn_enum_value_overflow);
9264      } else if (!getLangOptions().CPlusPlus &&
9265                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9266        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9267        Diag(IdLoc, diag::ext_enum_value_not_int)
9268          << EnumVal.toString(10) << 1;
9269      }
9270    }
9271  }
9272
9273  if (!EltTy->isDependentType()) {
9274    // Make the enumerator value match the signedness and size of the
9275    // enumerator's type.
9276    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9277    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9278  }
9279
9280  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9281                                  Val, EnumVal);
9282}
9283
9284
9285Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9286                              SourceLocation IdLoc, IdentifierInfo *Id,
9287                              AttributeList *Attr,
9288                              SourceLocation EqualLoc, Expr *val) {
9289  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9290  EnumConstantDecl *LastEnumConst =
9291    cast_or_null<EnumConstantDecl>(lastEnumConst);
9292  Expr *Val = static_cast<Expr*>(val);
9293
9294  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9295  // we find one that is.
9296  S = getNonFieldDeclScope(S);
9297
9298  // Verify that there isn't already something declared with this name in this
9299  // scope.
9300  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9301                                         ForRedeclaration);
9302  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9303    // Maybe we will complain about the shadowed template parameter.
9304    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9305    // Just pretend that we didn't see the previous declaration.
9306    PrevDecl = 0;
9307  }
9308
9309  if (PrevDecl) {
9310    // When in C++, we may get a TagDecl with the same name; in this case the
9311    // enum constant will 'hide' the tag.
9312    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9313           "Received TagDecl when not in C++!");
9314    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9315      if (isa<EnumConstantDecl>(PrevDecl))
9316        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9317      else
9318        Diag(IdLoc, diag::err_redefinition) << Id;
9319      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9320      return 0;
9321    }
9322  }
9323
9324  // C++ [class.mem]p13:
9325  //   If T is the name of a class, then each of the following shall have a
9326  //   name different from T:
9327  //     - every enumerator of every member of class T that is an enumerated
9328  //       type
9329  if (CXXRecordDecl *Record
9330                      = dyn_cast<CXXRecordDecl>(
9331                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9332    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9333      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9334
9335  EnumConstantDecl *New =
9336    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9337
9338  if (New) {
9339    // Process attributes.
9340    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9341
9342    // Register this decl in the current scope stack.
9343    New->setAccess(TheEnumDecl->getAccess());
9344    PushOnScopeChains(New, S);
9345  }
9346
9347  return New;
9348}
9349
9350void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9351                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9352                         Decl **Elements, unsigned NumElements,
9353                         Scope *S, AttributeList *Attr) {
9354  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9355  QualType EnumType = Context.getTypeDeclType(Enum);
9356
9357  if (Attr)
9358    ProcessDeclAttributeList(S, Enum, Attr);
9359
9360  if (Enum->isDependentType()) {
9361    for (unsigned i = 0; i != NumElements; ++i) {
9362      EnumConstantDecl *ECD =
9363        cast_or_null<EnumConstantDecl>(Elements[i]);
9364      if (!ECD) continue;
9365
9366      ECD->setType(EnumType);
9367    }
9368
9369    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9370    return;
9371  }
9372
9373  // TODO: If the result value doesn't fit in an int, it must be a long or long
9374  // long value.  ISO C does not support this, but GCC does as an extension,
9375  // emit a warning.
9376  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9377  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9378  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9379
9380  // Verify that all the values are okay, compute the size of the values, and
9381  // reverse the list.
9382  unsigned NumNegativeBits = 0;
9383  unsigned NumPositiveBits = 0;
9384
9385  // Keep track of whether all elements have type int.
9386  bool AllElementsInt = true;
9387
9388  for (unsigned i = 0; i != NumElements; ++i) {
9389    EnumConstantDecl *ECD =
9390      cast_or_null<EnumConstantDecl>(Elements[i]);
9391    if (!ECD) continue;  // Already issued a diagnostic.
9392
9393    const llvm::APSInt &InitVal = ECD->getInitVal();
9394
9395    // Keep track of the size of positive and negative values.
9396    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9397      NumPositiveBits = std::max(NumPositiveBits,
9398                                 (unsigned)InitVal.getActiveBits());
9399    else
9400      NumNegativeBits = std::max(NumNegativeBits,
9401                                 (unsigned)InitVal.getMinSignedBits());
9402
9403    // Keep track of whether every enum element has type int (very commmon).
9404    if (AllElementsInt)
9405      AllElementsInt = ECD->getType() == Context.IntTy;
9406  }
9407
9408  // Figure out the type that should be used for this enum.
9409  QualType BestType;
9410  unsigned BestWidth;
9411
9412  // C++0x N3000 [conv.prom]p3:
9413  //   An rvalue of an unscoped enumeration type whose underlying
9414  //   type is not fixed can be converted to an rvalue of the first
9415  //   of the following types that can represent all the values of
9416  //   the enumeration: int, unsigned int, long int, unsigned long
9417  //   int, long long int, or unsigned long long int.
9418  // C99 6.4.4.3p2:
9419  //   An identifier declared as an enumeration constant has type int.
9420  // The C99 rule is modified by a gcc extension
9421  QualType BestPromotionType;
9422
9423  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9424  // -fshort-enums is the equivalent to specifying the packed attribute on all
9425  // enum definitions.
9426  if (LangOpts.ShortEnums)
9427    Packed = true;
9428
9429  if (Enum->isFixed()) {
9430    BestType = BestPromotionType = Enum->getIntegerType();
9431    // We don't need to set BestWidth, because BestType is going to be the type
9432    // of the enumerators, but we do anyway because otherwise some compilers
9433    // warn that it might be used uninitialized.
9434    BestWidth = CharWidth;
9435  }
9436  else if (NumNegativeBits) {
9437    // If there is a negative value, figure out the smallest integer type (of
9438    // int/long/longlong) that fits.
9439    // If it's packed, check also if it fits a char or a short.
9440    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9441      BestType = Context.SignedCharTy;
9442      BestWidth = CharWidth;
9443    } else if (Packed && NumNegativeBits <= ShortWidth &&
9444               NumPositiveBits < ShortWidth) {
9445      BestType = Context.ShortTy;
9446      BestWidth = ShortWidth;
9447    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9448      BestType = Context.IntTy;
9449      BestWidth = IntWidth;
9450    } else {
9451      BestWidth = Context.getTargetInfo().getLongWidth();
9452
9453      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9454        BestType = Context.LongTy;
9455      } else {
9456        BestWidth = Context.getTargetInfo().getLongLongWidth();
9457
9458        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9459          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9460        BestType = Context.LongLongTy;
9461      }
9462    }
9463    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9464  } else {
9465    // If there is no negative value, figure out the smallest type that fits
9466    // all of the enumerator values.
9467    // If it's packed, check also if it fits a char or a short.
9468    if (Packed && NumPositiveBits <= CharWidth) {
9469      BestType = Context.UnsignedCharTy;
9470      BestPromotionType = Context.IntTy;
9471      BestWidth = CharWidth;
9472    } else if (Packed && NumPositiveBits <= ShortWidth) {
9473      BestType = Context.UnsignedShortTy;
9474      BestPromotionType = Context.IntTy;
9475      BestWidth = ShortWidth;
9476    } else if (NumPositiveBits <= IntWidth) {
9477      BestType = Context.UnsignedIntTy;
9478      BestWidth = IntWidth;
9479      BestPromotionType
9480        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9481                           ? Context.UnsignedIntTy : Context.IntTy;
9482    } else if (NumPositiveBits <=
9483               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9484      BestType = Context.UnsignedLongTy;
9485      BestPromotionType
9486        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9487                           ? Context.UnsignedLongTy : Context.LongTy;
9488    } else {
9489      BestWidth = Context.getTargetInfo().getLongLongWidth();
9490      assert(NumPositiveBits <= BestWidth &&
9491             "How could an initializer get larger than ULL?");
9492      BestType = Context.UnsignedLongLongTy;
9493      BestPromotionType
9494        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9495                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9496    }
9497  }
9498
9499  // Loop over all of the enumerator constants, changing their types to match
9500  // the type of the enum if needed.
9501  for (unsigned i = 0; i != NumElements; ++i) {
9502    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9503    if (!ECD) continue;  // Already issued a diagnostic.
9504
9505    // Standard C says the enumerators have int type, but we allow, as an
9506    // extension, the enumerators to be larger than int size.  If each
9507    // enumerator value fits in an int, type it as an int, otherwise type it the
9508    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9509    // that X has type 'int', not 'unsigned'.
9510
9511    // Determine whether the value fits into an int.
9512    llvm::APSInt InitVal = ECD->getInitVal();
9513
9514    // If it fits into an integer type, force it.  Otherwise force it to match
9515    // the enum decl type.
9516    QualType NewTy;
9517    unsigned NewWidth;
9518    bool NewSign;
9519    if (!getLangOptions().CPlusPlus &&
9520        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9521      NewTy = Context.IntTy;
9522      NewWidth = IntWidth;
9523      NewSign = true;
9524    } else if (ECD->getType() == BestType) {
9525      // Already the right type!
9526      if (getLangOptions().CPlusPlus)
9527        // C++ [dcl.enum]p4: Following the closing brace of an
9528        // enum-specifier, each enumerator has the type of its
9529        // enumeration.
9530        ECD->setType(EnumType);
9531      continue;
9532    } else {
9533      NewTy = BestType;
9534      NewWidth = BestWidth;
9535      NewSign = BestType->isSignedIntegerOrEnumerationType();
9536    }
9537
9538    // Adjust the APSInt value.
9539    InitVal = InitVal.extOrTrunc(NewWidth);
9540    InitVal.setIsSigned(NewSign);
9541    ECD->setInitVal(InitVal);
9542
9543    // Adjust the Expr initializer and type.
9544    if (ECD->getInitExpr() &&
9545        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9546      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9547                                                CK_IntegralCast,
9548                                                ECD->getInitExpr(),
9549                                                /*base paths*/ 0,
9550                                                VK_RValue));
9551    if (getLangOptions().CPlusPlus)
9552      // C++ [dcl.enum]p4: Following the closing brace of an
9553      // enum-specifier, each enumerator has the type of its
9554      // enumeration.
9555      ECD->setType(EnumType);
9556    else
9557      ECD->setType(NewTy);
9558  }
9559
9560  Enum->completeDefinition(BestType, BestPromotionType,
9561                           NumPositiveBits, NumNegativeBits);
9562}
9563
9564Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9565                                  SourceLocation StartLoc,
9566                                  SourceLocation EndLoc) {
9567  StringLiteral *AsmString = cast<StringLiteral>(expr);
9568
9569  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9570                                                   AsmString, StartLoc,
9571                                                   EndLoc);
9572  CurContext->addDecl(New);
9573  return New;
9574}
9575
9576DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9577                                   IdentifierInfo &ModuleName,
9578                                   SourceLocation ModuleNameLoc) {
9579  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9580                                                     ModuleName, ModuleNameLoc);
9581  if (!Module)
9582    return true;
9583
9584  // FIXME: Actually create a declaration to describe the module import.
9585  (void)Module;
9586  return DeclResult((Decl *)0);
9587}
9588
9589void
9590Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9591                                         SourceLocation ModulePrivateKeyword) {
9592  assert(!Old->isModulePrivate() && "Old is module-private!");
9593
9594  Diag(New->getLocation(), diag::err_module_private_follows_public)
9595    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9596  Diag(Old->getLocation(), diag::note_previous_declaration)
9597    << Old->getDeclName();
9598
9599  // Drop the __module_private__ from the new declaration, since it's invalid.
9600  New->setModulePrivate(false);
9601}
9602
9603void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9604                             SourceLocation PragmaLoc,
9605                             SourceLocation NameLoc) {
9606  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9607
9608  if (PrevDecl) {
9609    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9610  } else {
9611    (void)WeakUndeclaredIdentifiers.insert(
9612      std::pair<IdentifierInfo*,WeakInfo>
9613        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9614  }
9615}
9616
9617void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9618                                IdentifierInfo* AliasName,
9619                                SourceLocation PragmaLoc,
9620                                SourceLocation NameLoc,
9621                                SourceLocation AliasNameLoc) {
9622  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9623                                    LookupOrdinaryName);
9624  WeakInfo W = WeakInfo(Name, NameLoc);
9625
9626  if (PrevDecl) {
9627    if (!PrevDecl->hasAttr<AliasAttr>())
9628      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9629        DeclApplyPragmaWeak(TUScope, ND, W);
9630  } else {
9631    (void)WeakUndeclaredIdentifiers.insert(
9632      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9633  }
9634}
9635
9636Decl *Sema::getObjCDeclContext() const {
9637  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9638}
9639