SemaDecl.cpp revision 953d12aabb8cb25f0713a0913c837d2fdf8996b2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool
615DeclHasAttr(const Decl *decl, const Attr *target) {
616  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
617    if (attr->getKind() == target->getKind())
618      return true;
619
620  return false;
621}
622
623/// MergeAttributes - append attributes from the Old decl to the New one.
624static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
625  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
626    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
627      Attr *NewAttr = attr->clone(C);
628      NewAttr->setInherited(true);
629      New->addAttr(NewAttr);
630    }
631  }
632}
633
634/// Used in MergeFunctionDecl to keep track of function parameters in
635/// C.
636struct GNUCompatibleParamWarning {
637  ParmVarDecl *OldParm;
638  ParmVarDecl *NewParm;
639  QualType PromotedType;
640};
641
642/// MergeFunctionDecl - We just parsed a function 'New' from
643/// declarator D which has the same name and scope as a previous
644/// declaration 'Old'.  Figure out how to resolve this situation,
645/// merging decls or emitting diagnostics as appropriate.
646///
647/// In C++, New and Old must be declarations that are not
648/// overloaded. Use IsOverload to determine whether New and Old are
649/// overloaded, and to select the Old declaration that New should be
650/// merged with.
651///
652/// Returns true if there was an error, false otherwise.
653bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
654  assert(!isa<OverloadedFunctionDecl>(OldD) &&
655         "Cannot merge with an overloaded function declaration");
656
657  // Verify the old decl was also a function.
658  FunctionDecl *Old = 0;
659  if (FunctionTemplateDecl *OldFunctionTemplate
660        = dyn_cast<FunctionTemplateDecl>(OldD))
661    Old = OldFunctionTemplate->getTemplatedDecl();
662  else
663    Old = dyn_cast<FunctionDecl>(OldD);
664  if (!Old) {
665    Diag(New->getLocation(), diag::err_redefinition_different_kind)
666      << New->getDeclName();
667    Diag(OldD->getLocation(), diag::note_previous_definition);
668    return true;
669  }
670
671  // Determine whether the previous declaration was a definition,
672  // implicit declaration, or a declaration.
673  diag::kind PrevDiag;
674  if (Old->isThisDeclarationADefinition())
675    PrevDiag = diag::note_previous_definition;
676  else if (Old->isImplicit())
677    PrevDiag = diag::note_previous_implicit_declaration;
678  else
679    PrevDiag = diag::note_previous_declaration;
680
681  QualType OldQType = Context.getCanonicalType(Old->getType());
682  QualType NewQType = Context.getCanonicalType(New->getType());
683
684  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
685      New->getStorageClass() == FunctionDecl::Static &&
686      Old->getStorageClass() != FunctionDecl::Static) {
687    Diag(New->getLocation(), diag::err_static_non_static)
688      << New;
689    Diag(Old->getLocation(), PrevDiag);
690    return true;
691  }
692
693  if (getLangOptions().CPlusPlus) {
694    // (C++98 13.1p2):
695    //   Certain function declarations cannot be overloaded:
696    //     -- Function declarations that differ only in the return type
697    //        cannot be overloaded.
698    QualType OldReturnType
699      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
700    QualType NewReturnType
701      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
702    if (OldReturnType != NewReturnType) {
703      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
704      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
705      return true;
706    }
707
708    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
709    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
710    if (OldMethod && NewMethod &&
711        OldMethod->getLexicalDeclContext() ==
712          NewMethod->getLexicalDeclContext()) {
713      //    -- Member function declarations with the same name and the
714      //       same parameter types cannot be overloaded if any of them
715      //       is a static member function declaration.
716      if (OldMethod->isStatic() || NewMethod->isStatic()) {
717        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
719        return true;
720      }
721
722      // C++ [class.mem]p1:
723      //   [...] A member shall not be declared twice in the
724      //   member-specification, except that a nested class or member
725      //   class template can be declared and then later defined.
726      unsigned NewDiag;
727      if (isa<CXXConstructorDecl>(OldMethod))
728        NewDiag = diag::err_constructor_redeclared;
729      else if (isa<CXXDestructorDecl>(NewMethod))
730        NewDiag = diag::err_destructor_redeclared;
731      else if (isa<CXXConversionDecl>(NewMethod))
732        NewDiag = diag::err_conv_function_redeclared;
733      else
734        NewDiag = diag::err_member_redeclared;
735
736      Diag(New->getLocation(), NewDiag);
737      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
738    }
739
740    // (C++98 8.3.5p3):
741    //   All declarations for a function shall agree exactly in both the
742    //   return type and the parameter-type-list.
743    if (OldQType == NewQType)
744      return MergeCompatibleFunctionDecls(New, Old);
745
746    // Fall through for conflicting redeclarations and redefinitions.
747  }
748
749  // C: Function types need to be compatible, not identical. This handles
750  // duplicate function decls like "void f(int); void f(enum X);" properly.
751  if (!getLangOptions().CPlusPlus &&
752      Context.typesAreCompatible(OldQType, NewQType)) {
753    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
754    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
755    const FunctionProtoType *OldProto = 0;
756    if (isa<FunctionNoProtoType>(NewFuncType) &&
757        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
758      // The old declaration provided a function prototype, but the
759      // new declaration does not. Merge in the prototype.
760      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
761      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
762                                                 OldProto->arg_type_end());
763      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
764                                         ParamTypes.data(), ParamTypes.size(),
765                                         OldProto->isVariadic(),
766                                         OldProto->getTypeQuals());
767      New->setType(NewQType);
768      New->setHasInheritedPrototype();
769
770      // Synthesize a parameter for each argument type.
771      llvm::SmallVector<ParmVarDecl*, 16> Params;
772      for (FunctionProtoType::arg_type_iterator
773             ParamType = OldProto->arg_type_begin(),
774             ParamEnd = OldProto->arg_type_end();
775           ParamType != ParamEnd; ++ParamType) {
776        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
777                                                 SourceLocation(), 0,
778                                                 *ParamType, VarDecl::None,
779                                                 0);
780        Param->setImplicit();
781        Params.push_back(Param);
782      }
783
784      New->setParams(Context, Params.data(), Params.size());
785    }
786
787    return MergeCompatibleFunctionDecls(New, Old);
788  }
789
790  // GNU C permits a K&R definition to follow a prototype declaration
791  // if the declared types of the parameters in the K&R definition
792  // match the types in the prototype declaration, even when the
793  // promoted types of the parameters from the K&R definition differ
794  // from the types in the prototype. GCC then keeps the types from
795  // the prototype.
796  //
797  // If a variadic prototype is followed by a non-variadic K&R definition,
798  // the K&R definition becomes variadic.  This is sort of an edge case, but
799  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
800  // C99 6.9.1p8.
801  if (!getLangOptions().CPlusPlus &&
802      Old->hasPrototype() && !New->hasPrototype() &&
803      New->getType()->getAsFunctionProtoType() &&
804      Old->getNumParams() == New->getNumParams()) {
805    llvm::SmallVector<QualType, 16> ArgTypes;
806    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
807    const FunctionProtoType *OldProto
808      = Old->getType()->getAsFunctionProtoType();
809    const FunctionProtoType *NewProto
810      = New->getType()->getAsFunctionProtoType();
811
812    // Determine whether this is the GNU C extension.
813    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
814                                               NewProto->getResultType());
815    bool LooseCompatible = !MergedReturn.isNull();
816    for (unsigned Idx = 0, End = Old->getNumParams();
817         LooseCompatible && Idx != End; ++Idx) {
818      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
819      ParmVarDecl *NewParm = New->getParamDecl(Idx);
820      if (Context.typesAreCompatible(OldParm->getType(),
821                                     NewProto->getArgType(Idx))) {
822        ArgTypes.push_back(NewParm->getType());
823      } else if (Context.typesAreCompatible(OldParm->getType(),
824                                            NewParm->getType())) {
825        GNUCompatibleParamWarning Warn
826          = { OldParm, NewParm, NewProto->getArgType(Idx) };
827        Warnings.push_back(Warn);
828        ArgTypes.push_back(NewParm->getType());
829      } else
830        LooseCompatible = false;
831    }
832
833    if (LooseCompatible) {
834      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
835        Diag(Warnings[Warn].NewParm->getLocation(),
836             diag::ext_param_promoted_not_compatible_with_prototype)
837          << Warnings[Warn].PromotedType
838          << Warnings[Warn].OldParm->getType();
839        Diag(Warnings[Warn].OldParm->getLocation(),
840             diag::note_previous_declaration);
841      }
842
843      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
844                                           ArgTypes.size(),
845                                           OldProto->isVariadic(), 0));
846      return MergeCompatibleFunctionDecls(New, Old);
847    }
848
849    // Fall through to diagnose conflicting types.
850  }
851
852  // A function that has already been declared has been redeclared or defined
853  // with a different type- show appropriate diagnostic
854  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
855    // The user has declared a builtin function with an incompatible
856    // signature.
857    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
858      // The function the user is redeclaring is a library-defined
859      // function like 'malloc' or 'printf'. Warn about the
860      // redeclaration, then pretend that we don't know about this
861      // library built-in.
862      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
863      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
864        << Old << Old->getType();
865      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
866      Old->setInvalidDecl();
867      return false;
868    }
869
870    PrevDiag = diag::note_previous_builtin_declaration;
871  }
872
873  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
874  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
875  return true;
876}
877
878/// \brief Completes the merge of two function declarations that are
879/// known to be compatible.
880///
881/// This routine handles the merging of attributes and other
882/// properties of function declarations form the old declaration to
883/// the new declaration, once we know that New is in fact a
884/// redeclaration of Old.
885///
886/// \returns false
887bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
888  // Merge the attributes
889  MergeAttributes(New, Old, Context);
890
891  // Merge the storage class.
892  if (Old->getStorageClass() != FunctionDecl::Extern)
893    New->setStorageClass(Old->getStorageClass());
894
895  // Merge "inline"
896  if (Old->isInline())
897    New->setInline(true);
898
899  // If this function declaration by itself qualifies as a C99 inline
900  // definition (C99 6.7.4p6), but the previous definition did not,
901  // then the function is not a C99 inline definition.
902  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
903    New->setC99InlineDefinition(false);
904  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
905    // Mark all preceding definitions as not being C99 inline definitions.
906    for (const FunctionDecl *Prev = Old; Prev;
907         Prev = Prev->getPreviousDeclaration())
908      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
909  }
910
911  // Merge "pure" flag.
912  if (Old->isPure())
913    New->setPure();
914
915  // Merge the "deleted" flag.
916  if (Old->isDeleted())
917    New->setDeleted();
918
919  if (getLangOptions().CPlusPlus)
920    return MergeCXXFunctionDecl(New, Old);
921
922  return false;
923}
924
925/// MergeVarDecl - We just parsed a variable 'New' which has the same name
926/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
927/// situation, merging decls or emitting diagnostics as appropriate.
928///
929/// Tentative definition rules (C99 6.9.2p2) are checked by
930/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
931/// definitions here, since the initializer hasn't been attached.
932///
933void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
934  // If either decl is invalid, make sure the new one is marked invalid and
935  // don't do any other checking.
936  if (New->isInvalidDecl() || OldD->isInvalidDecl())
937    return New->setInvalidDecl();
938
939  // Verify the old decl was also a variable.
940  VarDecl *Old = dyn_cast<VarDecl>(OldD);
941  if (!Old) {
942    Diag(New->getLocation(), diag::err_redefinition_different_kind)
943      << New->getDeclName();
944    Diag(OldD->getLocation(), diag::note_previous_definition);
945    return New->setInvalidDecl();
946  }
947
948  MergeAttributes(New, Old, Context);
949
950  // Merge the types
951  QualType MergedT;
952  if (getLangOptions().CPlusPlus) {
953    if (Context.hasSameType(New->getType(), Old->getType()))
954      MergedT = New->getType();
955  } else {
956    MergedT = Context.mergeTypes(New->getType(), Old->getType());
957  }
958  if (MergedT.isNull()) {
959    Diag(New->getLocation(), diag::err_redefinition_different_type)
960      << New->getDeclName();
961    Diag(Old->getLocation(), diag::note_previous_definition);
962    return New->setInvalidDecl();
963  }
964  New->setType(MergedT);
965
966  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
967  if (New->getStorageClass() == VarDecl::Static &&
968      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
969    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
970    Diag(Old->getLocation(), diag::note_previous_definition);
971    return New->setInvalidDecl();
972  }
973  // C99 6.2.2p4:
974  //   For an identifier declared with the storage-class specifier
975  //   extern in a scope in which a prior declaration of that
976  //   identifier is visible,23) if the prior declaration specifies
977  //   internal or external linkage, the linkage of the identifier at
978  //   the later declaration is the same as the linkage specified at
979  //   the prior declaration. If no prior declaration is visible, or
980  //   if the prior declaration specifies no linkage, then the
981  //   identifier has external linkage.
982  if (New->hasExternalStorage() && Old->hasLinkage())
983    /* Okay */;
984  else if (New->getStorageClass() != VarDecl::Static &&
985           Old->getStorageClass() == VarDecl::Static) {
986    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
987    Diag(Old->getLocation(), diag::note_previous_definition);
988    return New->setInvalidDecl();
989  }
990
991  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
992
993  // FIXME: The test for external storage here seems wrong? We still
994  // need to check for mismatches.
995  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
996      // Don't complain about out-of-line definitions of static members.
997      !(Old->getLexicalDeclContext()->isRecord() &&
998        !New->getLexicalDeclContext()->isRecord())) {
999    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1000    Diag(Old->getLocation(), diag::note_previous_definition);
1001    return New->setInvalidDecl();
1002  }
1003
1004  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1005    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1006    Diag(Old->getLocation(), diag::note_previous_definition);
1007  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1008    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1009    Diag(Old->getLocation(), diag::note_previous_definition);
1010  }
1011
1012  // Keep a chain of previous declarations.
1013  New->setPreviousDeclaration(Old);
1014}
1015
1016/// CheckParmsForFunctionDef - Check that the parameters of the given
1017/// function are appropriate for the definition of a function. This
1018/// takes care of any checks that cannot be performed on the
1019/// declaration itself, e.g., that the types of each of the function
1020/// parameters are complete.
1021bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1022  bool HasInvalidParm = false;
1023  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1024    ParmVarDecl *Param = FD->getParamDecl(p);
1025
1026    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1027    // function declarator that is part of a function definition of
1028    // that function shall not have incomplete type.
1029    //
1030    // This is also C++ [dcl.fct]p6.
1031    if (!Param->isInvalidDecl() &&
1032        RequireCompleteType(Param->getLocation(), Param->getType(),
1033                               diag::err_typecheck_decl_incomplete_type)) {
1034      Param->setInvalidDecl();
1035      HasInvalidParm = true;
1036    }
1037
1038    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1039    // declaration of each parameter shall include an identifier.
1040    if (Param->getIdentifier() == 0 &&
1041        !Param->isImplicit() &&
1042        !getLangOptions().CPlusPlus)
1043      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1044  }
1045
1046  return HasInvalidParm;
1047}
1048
1049/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1050/// no declarator (e.g. "struct foo;") is parsed.
1051Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1052  // FIXME: Error on auto/register at file scope
1053  // FIXME: Error on inline/virtual/explicit
1054  // FIXME: Error on invalid restrict
1055  // FIXME: Warn on useless __thread
1056  // FIXME: Warn on useless const/volatile
1057  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1058  // FIXME: Warn on useless attributes
1059  TagDecl *Tag = 0;
1060  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1061      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1062      DS.getTypeSpecType() == DeclSpec::TST_union ||
1063      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1064    if (!DS.getTypeRep()) // We probably had an error
1065      return DeclPtrTy();
1066
1067    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1068  }
1069
1070  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1071    if (!Record->getDeclName() && Record->isDefinition() &&
1072        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1073      if (getLangOptions().CPlusPlus ||
1074          Record->getDeclContext()->isRecord())
1075        return BuildAnonymousStructOrUnion(S, DS, Record);
1076
1077      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1078        << DS.getSourceRange();
1079    }
1080
1081    // Microsoft allows unnamed struct/union fields. Don't complain
1082    // about them.
1083    // FIXME: Should we support Microsoft's extensions in this area?
1084    if (Record->getDeclName() && getLangOptions().Microsoft)
1085      return DeclPtrTy::make(Tag);
1086  }
1087
1088  if (!DS.isMissingDeclaratorOk() &&
1089      DS.getTypeSpecType() != DeclSpec::TST_error) {
1090    // Warn about typedefs of enums without names, since this is an
1091    // extension in both Microsoft an GNU.
1092    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1093        Tag && isa<EnumDecl>(Tag)) {
1094      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1095        << DS.getSourceRange();
1096      return DeclPtrTy::make(Tag);
1097    }
1098
1099    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1100      << DS.getSourceRange();
1101    return DeclPtrTy();
1102  }
1103
1104  return DeclPtrTy::make(Tag);
1105}
1106
1107/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1108/// anonymous struct or union AnonRecord into the owning context Owner
1109/// and scope S. This routine will be invoked just after we realize
1110/// that an unnamed union or struct is actually an anonymous union or
1111/// struct, e.g.,
1112///
1113/// @code
1114/// union {
1115///   int i;
1116///   float f;
1117/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1118///    // f into the surrounding scope.x
1119/// @endcode
1120///
1121/// This routine is recursive, injecting the names of nested anonymous
1122/// structs/unions into the owning context and scope as well.
1123bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1124                                               RecordDecl *AnonRecord) {
1125  bool Invalid = false;
1126  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1127                               FEnd = AnonRecord->field_end();
1128       F != FEnd; ++F) {
1129    if ((*F)->getDeclName()) {
1130      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1131                                                LookupOrdinaryName, true);
1132      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1133        // C++ [class.union]p2:
1134        //   The names of the members of an anonymous union shall be
1135        //   distinct from the names of any other entity in the
1136        //   scope in which the anonymous union is declared.
1137        unsigned diagKind
1138          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1139                                 : diag::err_anonymous_struct_member_redecl;
1140        Diag((*F)->getLocation(), diagKind)
1141          << (*F)->getDeclName();
1142        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1143        Invalid = true;
1144      } else {
1145        // C++ [class.union]p2:
1146        //   For the purpose of name lookup, after the anonymous union
1147        //   definition, the members of the anonymous union are
1148        //   considered to have been defined in the scope in which the
1149        //   anonymous union is declared.
1150        Owner->makeDeclVisibleInContext(*F);
1151        S->AddDecl(DeclPtrTy::make(*F));
1152        IdResolver.AddDecl(*F);
1153      }
1154    } else if (const RecordType *InnerRecordType
1155                 = (*F)->getType()->getAsRecordType()) {
1156      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1157      if (InnerRecord->isAnonymousStructOrUnion())
1158        Invalid = Invalid ||
1159          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1160    }
1161  }
1162
1163  return Invalid;
1164}
1165
1166/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1167/// anonymous structure or union. Anonymous unions are a C++ feature
1168/// (C++ [class.union]) and a GNU C extension; anonymous structures
1169/// are a GNU C and GNU C++ extension.
1170Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1171                                                  RecordDecl *Record) {
1172  DeclContext *Owner = Record->getDeclContext();
1173
1174  // Diagnose whether this anonymous struct/union is an extension.
1175  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1176    Diag(Record->getLocation(), diag::ext_anonymous_union);
1177  else if (!Record->isUnion())
1178    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1179
1180  // C and C++ require different kinds of checks for anonymous
1181  // structs/unions.
1182  bool Invalid = false;
1183  if (getLangOptions().CPlusPlus) {
1184    const char* PrevSpec = 0;
1185    // C++ [class.union]p3:
1186    //   Anonymous unions declared in a named namespace or in the
1187    //   global namespace shall be declared static.
1188    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1189        (isa<TranslationUnitDecl>(Owner) ||
1190         (isa<NamespaceDecl>(Owner) &&
1191          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1192      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1193      Invalid = true;
1194
1195      // Recover by adding 'static'.
1196      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1197    }
1198    // C++ [class.union]p3:
1199    //   A storage class is not allowed in a declaration of an
1200    //   anonymous union in a class scope.
1201    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1202             isa<RecordDecl>(Owner)) {
1203      Diag(DS.getStorageClassSpecLoc(),
1204           diag::err_anonymous_union_with_storage_spec);
1205      Invalid = true;
1206
1207      // Recover by removing the storage specifier.
1208      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1209                             PrevSpec);
1210    }
1211
1212    // C++ [class.union]p2:
1213    //   The member-specification of an anonymous union shall only
1214    //   define non-static data members. [Note: nested types and
1215    //   functions cannot be declared within an anonymous union. ]
1216    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1217                                 MemEnd = Record->decls_end();
1218         Mem != MemEnd; ++Mem) {
1219      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1220        // C++ [class.union]p3:
1221        //   An anonymous union shall not have private or protected
1222        //   members (clause 11).
1223        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1224          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1225            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1226          Invalid = true;
1227        }
1228      } else if ((*Mem)->isImplicit()) {
1229        // Any implicit members are fine.
1230      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1231        // This is a type that showed up in an
1232        // elaborated-type-specifier inside the anonymous struct or
1233        // union, but which actually declares a type outside of the
1234        // anonymous struct or union. It's okay.
1235      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1236        if (!MemRecord->isAnonymousStructOrUnion() &&
1237            MemRecord->getDeclName()) {
1238          // This is a nested type declaration.
1239          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1240            << (int)Record->isUnion();
1241          Invalid = true;
1242        }
1243      } else {
1244        // We have something that isn't a non-static data
1245        // member. Complain about it.
1246        unsigned DK = diag::err_anonymous_record_bad_member;
1247        if (isa<TypeDecl>(*Mem))
1248          DK = diag::err_anonymous_record_with_type;
1249        else if (isa<FunctionDecl>(*Mem))
1250          DK = diag::err_anonymous_record_with_function;
1251        else if (isa<VarDecl>(*Mem))
1252          DK = diag::err_anonymous_record_with_static;
1253        Diag((*Mem)->getLocation(), DK)
1254            << (int)Record->isUnion();
1255          Invalid = true;
1256      }
1257    }
1258  }
1259
1260  if (!Record->isUnion() && !Owner->isRecord()) {
1261    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1262      << (int)getLangOptions().CPlusPlus;
1263    Invalid = true;
1264  }
1265
1266  // Create a declaration for this anonymous struct/union.
1267  NamedDecl *Anon = 0;
1268  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1269    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1270                             /*IdentifierInfo=*/0,
1271                             Context.getTypeDeclType(Record),
1272                             /*BitWidth=*/0, /*Mutable=*/false);
1273    Anon->setAccess(AS_public);
1274    if (getLangOptions().CPlusPlus)
1275      FieldCollector->Add(cast<FieldDecl>(Anon));
1276  } else {
1277    VarDecl::StorageClass SC;
1278    switch (DS.getStorageClassSpec()) {
1279    default: assert(0 && "Unknown storage class!");
1280    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1281    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1282    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1283    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1284    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1285    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1286    case DeclSpec::SCS_mutable:
1287      // mutable can only appear on non-static class members, so it's always
1288      // an error here
1289      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1290      Invalid = true;
1291      SC = VarDecl::None;
1292      break;
1293    }
1294
1295    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1296                           /*IdentifierInfo=*/0,
1297                           Context.getTypeDeclType(Record),
1298                           SC, DS.getSourceRange().getBegin());
1299  }
1300  Anon->setImplicit();
1301
1302  // Add the anonymous struct/union object to the current
1303  // context. We'll be referencing this object when we refer to one of
1304  // its members.
1305  Owner->addDecl(Anon);
1306
1307  // Inject the members of the anonymous struct/union into the owning
1308  // context and into the identifier resolver chain for name lookup
1309  // purposes.
1310  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1311    Invalid = true;
1312
1313  // Mark this as an anonymous struct/union type. Note that we do not
1314  // do this until after we have already checked and injected the
1315  // members of this anonymous struct/union type, because otherwise
1316  // the members could be injected twice: once by DeclContext when it
1317  // builds its lookup table, and once by
1318  // InjectAnonymousStructOrUnionMembers.
1319  Record->setAnonymousStructOrUnion(true);
1320
1321  if (Invalid)
1322    Anon->setInvalidDecl();
1323
1324  return DeclPtrTy::make(Anon);
1325}
1326
1327
1328/// GetNameForDeclarator - Determine the full declaration name for the
1329/// given Declarator.
1330DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1331  switch (D.getKind()) {
1332  case Declarator::DK_Abstract:
1333    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1334    return DeclarationName();
1335
1336  case Declarator::DK_Normal:
1337    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1338    return DeclarationName(D.getIdentifier());
1339
1340  case Declarator::DK_Constructor: {
1341    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1342    Ty = Context.getCanonicalType(Ty);
1343    return Context.DeclarationNames.getCXXConstructorName(Ty);
1344  }
1345
1346  case Declarator::DK_Destructor: {
1347    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1348    Ty = Context.getCanonicalType(Ty);
1349    return Context.DeclarationNames.getCXXDestructorName(Ty);
1350  }
1351
1352  case Declarator::DK_Conversion: {
1353    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1354    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1355    Ty = Context.getCanonicalType(Ty);
1356    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1357  }
1358
1359  case Declarator::DK_Operator:
1360    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1361    return Context.DeclarationNames.getCXXOperatorName(
1362                                                D.getOverloadedOperator());
1363  }
1364
1365  assert(false && "Unknown name kind");
1366  return DeclarationName();
1367}
1368
1369/// isNearlyMatchingFunction - Determine whether the C++ functions
1370/// Declaration and Definition are "nearly" matching. This heuristic
1371/// is used to improve diagnostics in the case where an out-of-line
1372/// function definition doesn't match any declaration within
1373/// the class or namespace.
1374static bool isNearlyMatchingFunction(ASTContext &Context,
1375                                     FunctionDecl *Declaration,
1376                                     FunctionDecl *Definition) {
1377  if (Declaration->param_size() != Definition->param_size())
1378    return false;
1379  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1380    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1381    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1382
1383    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1384    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1385    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1386      return false;
1387  }
1388
1389  return true;
1390}
1391
1392Sema::DeclPtrTy
1393Sema::HandleDeclarator(Scope *S, Declarator &D,
1394                       MultiTemplateParamsArg TemplateParamLists,
1395                       bool IsFunctionDefinition) {
1396  DeclarationName Name = GetNameForDeclarator(D);
1397
1398  // All of these full declarators require an identifier.  If it doesn't have
1399  // one, the ParsedFreeStandingDeclSpec action should be used.
1400  if (!Name) {
1401    if (!D.isInvalidType())  // Reject this if we think it is valid.
1402      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1403           diag::err_declarator_need_ident)
1404        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1405    return DeclPtrTy();
1406  }
1407
1408  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1409  // we find one that is.
1410  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1411         (S->getFlags() & Scope::TemplateParamScope) != 0)
1412    S = S->getParent();
1413
1414  DeclContext *DC;
1415  NamedDecl *PrevDecl;
1416  NamedDecl *New;
1417
1418  QualType R = GetTypeForDeclarator(D, S);
1419
1420  // See if this is a redefinition of a variable in the same scope.
1421  if (D.getCXXScopeSpec().isInvalid()) {
1422    DC = CurContext;
1423    PrevDecl = 0;
1424    D.setInvalidType();
1425  } else if (!D.getCXXScopeSpec().isSet()) {
1426    LookupNameKind NameKind = LookupOrdinaryName;
1427
1428    // If the declaration we're planning to build will be a function
1429    // or object with linkage, then look for another declaration with
1430    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1431    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1432      /* Do nothing*/;
1433    else if (R->isFunctionType()) {
1434      if (CurContext->isFunctionOrMethod() ||
1435          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1436        NameKind = LookupRedeclarationWithLinkage;
1437    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1438      NameKind = LookupRedeclarationWithLinkage;
1439    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1440             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1441      NameKind = LookupRedeclarationWithLinkage;
1442
1443    DC = CurContext;
1444    PrevDecl = LookupName(S, Name, NameKind, true,
1445                          NameKind == LookupRedeclarationWithLinkage,
1446                          D.getIdentifierLoc());
1447  } else { // Something like "int foo::x;"
1448    DC = computeDeclContext(D.getCXXScopeSpec());
1449    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1450    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1451
1452    // C++ 7.3.1.2p2:
1453    // Members (including explicit specializations of templates) of a named
1454    // namespace can also be defined outside that namespace by explicit
1455    // qualification of the name being defined, provided that the entity being
1456    // defined was already declared in the namespace and the definition appears
1457    // after the point of declaration in a namespace that encloses the
1458    // declarations namespace.
1459    //
1460    // Note that we only check the context at this point. We don't yet
1461    // have enough information to make sure that PrevDecl is actually
1462    // the declaration we want to match. For example, given:
1463    //
1464    //   class X {
1465    //     void f();
1466    //     void f(float);
1467    //   };
1468    //
1469    //   void X::f(int) { } // ill-formed
1470    //
1471    // In this case, PrevDecl will point to the overload set
1472    // containing the two f's declared in X, but neither of them
1473    // matches.
1474
1475    // First check whether we named the global scope.
1476    if (isa<TranslationUnitDecl>(DC)) {
1477      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1478        << Name << D.getCXXScopeSpec().getRange();
1479    } else if (!CurContext->Encloses(DC)) {
1480      // The qualifying scope doesn't enclose the original declaration.
1481      // Emit diagnostic based on current scope.
1482      SourceLocation L = D.getIdentifierLoc();
1483      SourceRange R = D.getCXXScopeSpec().getRange();
1484      if (isa<FunctionDecl>(CurContext))
1485        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1486      else
1487        Diag(L, diag::err_invalid_declarator_scope)
1488          << Name << cast<NamedDecl>(DC) << R;
1489      D.setInvalidType();
1490    }
1491  }
1492
1493  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1494    // Maybe we will complain about the shadowed template parameter.
1495    if (!D.isInvalidType())
1496      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1497        D.setInvalidType();
1498
1499    // Just pretend that we didn't see the previous declaration.
1500    PrevDecl = 0;
1501  }
1502
1503  // In C++, the previous declaration we find might be a tag type
1504  // (class or enum). In this case, the new declaration will hide the
1505  // tag type. Note that this does does not apply if we're declaring a
1506  // typedef (C++ [dcl.typedef]p4).
1507  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1508      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1509    PrevDecl = 0;
1510
1511  bool Redeclaration = false;
1512  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1513    if (TemplateParamLists.size()) {
1514      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1515      return DeclPtrTy();
1516    }
1517
1518    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1519  } else if (R->isFunctionType()) {
1520    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1521                                  move(TemplateParamLists),
1522                                  IsFunctionDefinition, Redeclaration);
1523  } else {
1524    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1525  }
1526
1527  if (New == 0)
1528    return DeclPtrTy();
1529
1530  // If this has an identifier and is not an invalid redeclaration,
1531  // add it to the scope stack.
1532  if (Name && !(Redeclaration && New->isInvalidDecl()))
1533    PushOnScopeChains(New, S);
1534
1535  return DeclPtrTy::make(New);
1536}
1537
1538/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1539/// types into constant array types in certain situations which would otherwise
1540/// be errors (for GCC compatibility).
1541static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1542                                                    ASTContext &Context,
1543                                                    bool &SizeIsNegative) {
1544  // This method tries to turn a variable array into a constant
1545  // array even when the size isn't an ICE.  This is necessary
1546  // for compatibility with code that depends on gcc's buggy
1547  // constant expression folding, like struct {char x[(int)(char*)2];}
1548  SizeIsNegative = false;
1549
1550  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1551    QualType Pointee = PTy->getPointeeType();
1552    QualType FixedType =
1553        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1554    if (FixedType.isNull()) return FixedType;
1555    FixedType = Context.getPointerType(FixedType);
1556    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1557    return FixedType;
1558  }
1559
1560  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1561  if (!VLATy)
1562    return QualType();
1563  // FIXME: We should probably handle this case
1564  if (VLATy->getElementType()->isVariablyModifiedType())
1565    return QualType();
1566
1567  Expr::EvalResult EvalResult;
1568  if (!VLATy->getSizeExpr() ||
1569      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1570      !EvalResult.Val.isInt())
1571    return QualType();
1572
1573  llvm::APSInt &Res = EvalResult.Val.getInt();
1574  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1575    Expr* ArySizeExpr = VLATy->getSizeExpr();
1576    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1577    // so as to transfer ownership to the ConstantArrayWithExpr.
1578    // Alternatively, we could "clone" it (how?).
1579    // Since we don't know how to do things above, we just use the
1580    // very same Expr*.
1581    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1582                                                Res, ArySizeExpr,
1583                                                ArrayType::Normal, 0,
1584                                                VLATy->getBracketsRange());
1585  }
1586
1587  SizeIsNegative = true;
1588  return QualType();
1589}
1590
1591/// \brief Register the given locally-scoped external C declaration so
1592/// that it can be found later for redeclarations
1593void
1594Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1595                                       Scope *S) {
1596  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1597         "Decl is not a locally-scoped decl!");
1598  // Note that we have a locally-scoped external with this name.
1599  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1600
1601  if (!PrevDecl)
1602    return;
1603
1604  // If there was a previous declaration of this variable, it may be
1605  // in our identifier chain. Update the identifier chain with the new
1606  // declaration.
1607  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1608    // The previous declaration was found on the identifer resolver
1609    // chain, so remove it from its scope.
1610    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1611      S = S->getParent();
1612
1613    if (S)
1614      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1615  }
1616}
1617
1618/// \brief Diagnose function specifiers on a declaration of an identifier that
1619/// does not identify a function.
1620void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1621  // FIXME: We should probably indicate the identifier in question to avoid
1622  // confusion for constructs like "inline int a(), b;"
1623  if (D.getDeclSpec().isInlineSpecified())
1624    Diag(D.getDeclSpec().getInlineSpecLoc(),
1625         diag::err_inline_non_function);
1626
1627  if (D.getDeclSpec().isVirtualSpecified())
1628    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1629         diag::err_virtual_non_function);
1630
1631  if (D.getDeclSpec().isExplicitSpecified())
1632    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1633         diag::err_explicit_non_function);
1634}
1635
1636NamedDecl*
1637Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1638                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1639  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1640  if (D.getCXXScopeSpec().isSet()) {
1641    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1642      << D.getCXXScopeSpec().getRange();
1643    D.setInvalidType();
1644    // Pretend we didn't see the scope specifier.
1645    DC = 0;
1646  }
1647
1648  if (getLangOptions().CPlusPlus) {
1649    // Check that there are no default arguments (C++ only).
1650    CheckExtraCXXDefaultArguments(D);
1651  }
1652
1653  DiagnoseFunctionSpecifiers(D);
1654
1655  if (D.getDeclSpec().isThreadSpecified())
1656    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1657
1658  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1659  if (!NewTD) return 0;
1660
1661  if (D.isInvalidType())
1662    NewTD->setInvalidDecl();
1663
1664  // Handle attributes prior to checking for duplicates in MergeVarDecl
1665  ProcessDeclAttributes(S, NewTD, D);
1666  // Merge the decl with the existing one if appropriate. If the decl is
1667  // in an outer scope, it isn't the same thing.
1668  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1669    Redeclaration = true;
1670    MergeTypeDefDecl(NewTD, PrevDecl);
1671  }
1672
1673  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1674  // then it shall have block scope.
1675  QualType T = NewTD->getUnderlyingType();
1676  if (T->isVariablyModifiedType()) {
1677    CurFunctionNeedsScopeChecking = true;
1678
1679    if (S->getFnParent() == 0) {
1680      bool SizeIsNegative;
1681      QualType FixedTy =
1682          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1683      if (!FixedTy.isNull()) {
1684        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1685        NewTD->setUnderlyingType(FixedTy);
1686      } else {
1687        if (SizeIsNegative)
1688          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1689        else if (T->isVariableArrayType())
1690          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1691        else
1692          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1693        NewTD->setInvalidDecl();
1694      }
1695    }
1696  }
1697
1698  // If this is the C FILE type, notify the AST context.
1699  if (IdentifierInfo *II = NewTD->getIdentifier())
1700    if (!NewTD->isInvalidDecl() &&
1701        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1702        II->isStr("FILE"))
1703      Context.setFILEDecl(NewTD);
1704
1705  return NewTD;
1706}
1707
1708/// \brief Determines whether the given declaration is an out-of-scope
1709/// previous declaration.
1710///
1711/// This routine should be invoked when name lookup has found a
1712/// previous declaration (PrevDecl) that is not in the scope where a
1713/// new declaration by the same name is being introduced. If the new
1714/// declaration occurs in a local scope, previous declarations with
1715/// linkage may still be considered previous declarations (C99
1716/// 6.2.2p4-5, C++ [basic.link]p6).
1717///
1718/// \param PrevDecl the previous declaration found by name
1719/// lookup
1720///
1721/// \param DC the context in which the new declaration is being
1722/// declared.
1723///
1724/// \returns true if PrevDecl is an out-of-scope previous declaration
1725/// for a new delcaration with the same name.
1726static bool
1727isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1728                                ASTContext &Context) {
1729  if (!PrevDecl)
1730    return 0;
1731
1732  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1733  // case we need to check each of the overloaded functions.
1734  if (!PrevDecl->hasLinkage())
1735    return false;
1736
1737  if (Context.getLangOptions().CPlusPlus) {
1738    // C++ [basic.link]p6:
1739    //   If there is a visible declaration of an entity with linkage
1740    //   having the same name and type, ignoring entities declared
1741    //   outside the innermost enclosing namespace scope, the block
1742    //   scope declaration declares that same entity and receives the
1743    //   linkage of the previous declaration.
1744    DeclContext *OuterContext = DC->getLookupContext();
1745    if (!OuterContext->isFunctionOrMethod())
1746      // This rule only applies to block-scope declarations.
1747      return false;
1748    else {
1749      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1750      if (PrevOuterContext->isRecord())
1751        // We found a member function: ignore it.
1752        return false;
1753      else {
1754        // Find the innermost enclosing namespace for the new and
1755        // previous declarations.
1756        while (!OuterContext->isFileContext())
1757          OuterContext = OuterContext->getParent();
1758        while (!PrevOuterContext->isFileContext())
1759          PrevOuterContext = PrevOuterContext->getParent();
1760
1761        // The previous declaration is in a different namespace, so it
1762        // isn't the same function.
1763        if (OuterContext->getPrimaryContext() !=
1764            PrevOuterContext->getPrimaryContext())
1765          return false;
1766      }
1767    }
1768  }
1769
1770  return true;
1771}
1772
1773NamedDecl*
1774Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1775                              QualType R,NamedDecl* PrevDecl,
1776                              bool &Redeclaration) {
1777  DeclarationName Name = GetNameForDeclarator(D);
1778
1779  // Check that there are no default arguments (C++ only).
1780  if (getLangOptions().CPlusPlus)
1781    CheckExtraCXXDefaultArguments(D);
1782
1783  VarDecl *NewVD;
1784  VarDecl::StorageClass SC;
1785  switch (D.getDeclSpec().getStorageClassSpec()) {
1786  default: assert(0 && "Unknown storage class!");
1787  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1788  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1789  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1790  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1791  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1792  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1793  case DeclSpec::SCS_mutable:
1794    // mutable can only appear on non-static class members, so it's always
1795    // an error here
1796    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1797    D.setInvalidType();
1798    SC = VarDecl::None;
1799    break;
1800  }
1801
1802  IdentifierInfo *II = Name.getAsIdentifierInfo();
1803  if (!II) {
1804    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1805      << Name.getAsString();
1806    return 0;
1807  }
1808
1809  DiagnoseFunctionSpecifiers(D);
1810
1811  if (!DC->isRecord() && S->getFnParent() == 0) {
1812    // C99 6.9p2: The storage-class specifiers auto and register shall not
1813    // appear in the declaration specifiers in an external declaration.
1814    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1815
1816      // If this is a register variable with an asm label specified, then this
1817      // is a GNU extension.
1818      if (SC == VarDecl::Register && D.getAsmLabel())
1819        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1820      else
1821        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1822      D.setInvalidType();
1823    }
1824  }
1825  if (DC->isRecord() && !CurContext->isRecord()) {
1826    // This is an out-of-line definition of a static data member.
1827    if (SC == VarDecl::Static) {
1828      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1829           diag::err_static_out_of_line)
1830        << CodeModificationHint::CreateRemoval(
1831                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1832    } else if (SC == VarDecl::None)
1833      SC = VarDecl::Static;
1834  }
1835  if (SC == VarDecl::Static) {
1836    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1837      if (RD->isLocalClass())
1838        Diag(D.getIdentifierLoc(),
1839             diag::err_static_data_member_not_allowed_in_local_class)
1840          << Name << RD->getDeclName();
1841    }
1842  }
1843
1844
1845  // The variable can not
1846  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1847                          II, R, SC,
1848                          // FIXME: Move to DeclGroup...
1849                          D.getDeclSpec().getSourceRange().getBegin());
1850
1851  if (D.isInvalidType())
1852    NewVD->setInvalidDecl();
1853
1854  if (D.getDeclSpec().isThreadSpecified()) {
1855    if (NewVD->hasLocalStorage())
1856      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1857    else if (!Context.Target.isTLSSupported())
1858      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1859    else
1860      NewVD->setThreadSpecified(true);
1861  }
1862
1863  // Set the lexical context. If the declarator has a C++ scope specifier, the
1864  // lexical context will be different from the semantic context.
1865  NewVD->setLexicalDeclContext(CurContext);
1866
1867  // Handle attributes prior to checking for duplicates in MergeVarDecl
1868  ProcessDeclAttributes(S, NewVD, D);
1869
1870  // Handle GNU asm-label extension (encoded as an attribute).
1871  if (Expr *E = (Expr*) D.getAsmLabel()) {
1872    // The parser guarantees this is a string.
1873    StringLiteral *SE = cast<StringLiteral>(E);
1874    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1875                                                        SE->getByteLength())));
1876  }
1877
1878  // If name lookup finds a previous declaration that is not in the
1879  // same scope as the new declaration, this may still be an
1880  // acceptable redeclaration.
1881  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1882      !(NewVD->hasLinkage() &&
1883        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1884    PrevDecl = 0;
1885
1886  // Merge the decl with the existing one if appropriate.
1887  if (PrevDecl) {
1888    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1889      // The user tried to define a non-static data member
1890      // out-of-line (C++ [dcl.meaning]p1).
1891      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1892        << D.getCXXScopeSpec().getRange();
1893      PrevDecl = 0;
1894      NewVD->setInvalidDecl();
1895    }
1896  } else if (D.getCXXScopeSpec().isSet()) {
1897    // No previous declaration in the qualifying scope.
1898    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1899      << Name << D.getCXXScopeSpec().getRange();
1900    NewVD->setInvalidDecl();
1901  }
1902
1903  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1904
1905  // If this is a locally-scoped extern C variable, update the map of
1906  // such variables.
1907  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1908      !NewVD->isInvalidDecl())
1909    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1910
1911  return NewVD;
1912}
1913
1914/// \brief Perform semantic checking on a newly-created variable
1915/// declaration.
1916///
1917/// This routine performs all of the type-checking required for a
1918/// variable declaration once it has been built. It is used both to
1919/// check variables after they have been parsed and their declarators
1920/// have been translated into a declaration, and to check variables
1921/// that have been instantiated from a template.
1922///
1923/// Sets NewVD->isInvalidDecl() if an error was encountered.
1924void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1925                                    bool &Redeclaration) {
1926  // If the decl is already known invalid, don't check it.
1927  if (NewVD->isInvalidDecl())
1928    return;
1929
1930  QualType T = NewVD->getType();
1931
1932  if (T->isObjCInterfaceType()) {
1933    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1934    return NewVD->setInvalidDecl();
1935  }
1936
1937  // The variable can not have an abstract class type.
1938  if (RequireNonAbstractType(NewVD->getLocation(), T,
1939                             diag::err_abstract_type_in_decl,
1940                             AbstractVariableType))
1941    return NewVD->setInvalidDecl();
1942
1943  // Emit an error if an address space was applied to decl with local storage.
1944  // This includes arrays of objects with address space qualifiers, but not
1945  // automatic variables that point to other address spaces.
1946  // ISO/IEC TR 18037 S5.1.2
1947  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1948    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1949    return NewVD->setInvalidDecl();
1950  }
1951
1952  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1953      && !NewVD->hasAttr<BlocksAttr>())
1954    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1955
1956  bool isVM = T->isVariablyModifiedType();
1957  if (isVM || NewVD->hasAttr<CleanupAttr>())
1958    CurFunctionNeedsScopeChecking = true;
1959
1960  if ((isVM && NewVD->hasLinkage()) ||
1961      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1962    bool SizeIsNegative;
1963    QualType FixedTy =
1964        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1965
1966    if (FixedTy.isNull() && T->isVariableArrayType()) {
1967      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1968      // FIXME: This won't give the correct result for
1969      // int a[10][n];
1970      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1971
1972      if (NewVD->isFileVarDecl())
1973        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1974        << SizeRange;
1975      else if (NewVD->getStorageClass() == VarDecl::Static)
1976        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1977        << SizeRange;
1978      else
1979        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1980        << SizeRange;
1981      return NewVD->setInvalidDecl();
1982    }
1983
1984    if (FixedTy.isNull()) {
1985      if (NewVD->isFileVarDecl())
1986        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1987      else
1988        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1989      return NewVD->setInvalidDecl();
1990    }
1991
1992    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1993    NewVD->setType(FixedTy);
1994  }
1995
1996  if (!PrevDecl && NewVD->isExternC(Context)) {
1997    // Since we did not find anything by this name and we're declaring
1998    // an extern "C" variable, look for a non-visible extern "C"
1999    // declaration with the same name.
2000    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2001      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2002    if (Pos != LocallyScopedExternalDecls.end())
2003      PrevDecl = Pos->second;
2004  }
2005
2006  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2007    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2008      << T;
2009    return NewVD->setInvalidDecl();
2010  }
2011
2012  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2013    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2014    return NewVD->setInvalidDecl();
2015  }
2016
2017  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2018    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2019    return NewVD->setInvalidDecl();
2020  }
2021
2022  if (PrevDecl) {
2023    Redeclaration = true;
2024    MergeVarDecl(NewVD, PrevDecl);
2025  }
2026}
2027
2028NamedDecl*
2029Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2030                              QualType R, NamedDecl* PrevDecl,
2031                              MultiTemplateParamsArg TemplateParamLists,
2032                              bool IsFunctionDefinition, bool &Redeclaration) {
2033  assert(R.getTypePtr()->isFunctionType());
2034
2035  DeclarationName Name = GetNameForDeclarator(D);
2036  FunctionDecl::StorageClass SC = FunctionDecl::None;
2037  switch (D.getDeclSpec().getStorageClassSpec()) {
2038  default: assert(0 && "Unknown storage class!");
2039  case DeclSpec::SCS_auto:
2040  case DeclSpec::SCS_register:
2041  case DeclSpec::SCS_mutable:
2042    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2043         diag::err_typecheck_sclass_func);
2044    D.setInvalidType();
2045    break;
2046  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2047  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2048  case DeclSpec::SCS_static: {
2049    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2050      // C99 6.7.1p5:
2051      //   The declaration of an identifier for a function that has
2052      //   block scope shall have no explicit storage-class specifier
2053      //   other than extern
2054      // See also (C++ [dcl.stc]p4).
2055      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2056           diag::err_static_block_func);
2057      SC = FunctionDecl::None;
2058    } else
2059      SC = FunctionDecl::Static;
2060    break;
2061  }
2062  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2063  }
2064
2065  if (D.getDeclSpec().isThreadSpecified())
2066    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2067
2068  bool isInline = D.getDeclSpec().isInlineSpecified();
2069  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2070  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2071
2072  // Check that the return type is not an abstract class type.
2073  // For record types, this is done by the AbstractClassUsageDiagnoser once
2074  // the class has been completely parsed.
2075  if (!DC->isRecord() &&
2076      RequireNonAbstractType(D.getIdentifierLoc(),
2077                             R->getAsFunctionType()->getResultType(),
2078                             diag::err_abstract_type_in_decl,
2079                             AbstractReturnType))
2080    D.setInvalidType();
2081
2082  // Do not allow returning a objc interface by-value.
2083  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2084    Diag(D.getIdentifierLoc(),
2085         diag::err_object_cannot_be_passed_returned_by_value) << 0
2086      << R->getAsFunctionType()->getResultType();
2087    D.setInvalidType();
2088  }
2089
2090  // Check that we can declare a template here.
2091  if (TemplateParamLists.size() &&
2092      CheckTemplateDeclScope(S, TemplateParamLists))
2093    return 0;
2094
2095  bool isVirtualOkay = false;
2096  FunctionDecl *NewFD;
2097  if (D.getKind() == Declarator::DK_Constructor) {
2098    // This is a C++ constructor declaration.
2099    assert(DC->isRecord() &&
2100           "Constructors can only be declared in a member context");
2101
2102    R = CheckConstructorDeclarator(D, R, SC);
2103
2104    // Create the new declaration
2105    NewFD = CXXConstructorDecl::Create(Context,
2106                                       cast<CXXRecordDecl>(DC),
2107                                       D.getIdentifierLoc(), Name, R,
2108                                       isExplicit, isInline,
2109                                       /*isImplicitlyDeclared=*/false);
2110  } else if (D.getKind() == Declarator::DK_Destructor) {
2111    // This is a C++ destructor declaration.
2112    if (DC->isRecord()) {
2113      R = CheckDestructorDeclarator(D, SC);
2114
2115      NewFD = CXXDestructorDecl::Create(Context,
2116                                        cast<CXXRecordDecl>(DC),
2117                                        D.getIdentifierLoc(), Name, R,
2118                                        isInline,
2119                                        /*isImplicitlyDeclared=*/false);
2120
2121      isVirtualOkay = true;
2122    } else {
2123      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2124
2125      // Create a FunctionDecl to satisfy the function definition parsing
2126      // code path.
2127      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2128                                   Name, R, SC, isInline,
2129                                   /*hasPrototype=*/true,
2130                                   // FIXME: Move to DeclGroup...
2131                                   D.getDeclSpec().getSourceRange().getBegin());
2132      D.setInvalidType();
2133    }
2134  } else if (D.getKind() == Declarator::DK_Conversion) {
2135    if (!DC->isRecord()) {
2136      Diag(D.getIdentifierLoc(),
2137           diag::err_conv_function_not_member);
2138      return 0;
2139    }
2140
2141    CheckConversionDeclarator(D, R, SC);
2142    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2143                                      D.getIdentifierLoc(), Name, R,
2144                                      isInline, isExplicit);
2145
2146    isVirtualOkay = true;
2147  } else if (DC->isRecord()) {
2148    // If the of the function is the same as the name of the record, then this
2149    // must be an invalid constructor that has a return type.
2150    // (The parser checks for a return type and makes the declarator a
2151    // constructor if it has no return type).
2152    // must have an invalid constructor that has a return type
2153    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2154      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2155        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2156        << SourceRange(D.getIdentifierLoc());
2157      return 0;
2158    }
2159
2160    // This is a C++ method declaration.
2161    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2162                                  D.getIdentifierLoc(), Name, R,
2163                                  (SC == FunctionDecl::Static), isInline);
2164
2165    isVirtualOkay = (SC != FunctionDecl::Static);
2166  } else {
2167    // Determine whether the function was written with a
2168    // prototype. This true when:
2169    //   - we're in C++ (where every function has a prototype),
2170    //   - there is a prototype in the declarator, or
2171    //   - the type R of the function is some kind of typedef or other reference
2172    //     to a type name (which eventually refers to a function type).
2173    bool HasPrototype =
2174       getLangOptions().CPlusPlus ||
2175       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2176       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2177
2178    NewFD = FunctionDecl::Create(Context, DC,
2179                                 D.getIdentifierLoc(),
2180                                 Name, R, SC, isInline, HasPrototype,
2181                                 // FIXME: Move to DeclGroup...
2182                                 D.getDeclSpec().getSourceRange().getBegin());
2183  }
2184
2185  if (D.isInvalidType())
2186    NewFD->setInvalidDecl();
2187
2188  // Set the lexical context. If the declarator has a C++
2189  // scope specifier, the lexical context will be different
2190  // from the semantic context.
2191  NewFD->setLexicalDeclContext(CurContext);
2192
2193  // If there is a template parameter list, then we are dealing with a
2194  // template declaration or specialization.
2195  FunctionTemplateDecl *FunctionTemplate = 0;
2196  if (TemplateParamLists.size()) {
2197    // FIXME: member templates!
2198    TemplateParameterList *TemplateParams
2199      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2200
2201    if (TemplateParams->size() > 0) {
2202      // This is a function template
2203      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2204                                                      NewFD->getLocation(),
2205                                                      Name, TemplateParams,
2206                                                      NewFD);
2207      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2208    } else {
2209      // FIXME: Handle function template specializations
2210    }
2211  }
2212
2213  // C++ [dcl.fct.spec]p5:
2214  //   The virtual specifier shall only be used in declarations of
2215  //   nonstatic class member functions that appear within a
2216  //   member-specification of a class declaration; see 10.3.
2217  //
2218  if (isVirtual && !NewFD->isInvalidDecl()) {
2219    if (!isVirtualOkay) {
2220       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2221           diag::err_virtual_non_function);
2222    } else if (!CurContext->isRecord()) {
2223      // 'virtual' was specified outside of the class.
2224      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2225        << CodeModificationHint::CreateRemoval(
2226                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2227    } else {
2228      // Okay: Add virtual to the method.
2229      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2230      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2231      CurClass->setAggregate(false);
2232      CurClass->setPOD(false);
2233      CurClass->setPolymorphic(true);
2234      CurClass->setHasTrivialConstructor(false);
2235    }
2236  }
2237
2238  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2239    // Look for virtual methods in base classes that this method might override.
2240
2241    BasePaths Paths;
2242    if (LookupInBases(cast<CXXRecordDecl>(DC),
2243                      MemberLookupCriteria(NewMD), Paths)) {
2244      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2245           E = Paths.found_decls_end(); I != E; ++I) {
2246        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2247          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2248              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2249            NewMD->addOverriddenMethod(OldMD);
2250        }
2251      }
2252    }
2253  }
2254
2255  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2256      !CurContext->isRecord()) {
2257    // C++ [class.static]p1:
2258    //   A data or function member of a class may be declared static
2259    //   in a class definition, in which case it is a static member of
2260    //   the class.
2261
2262    // Complain about the 'static' specifier if it's on an out-of-line
2263    // member function definition.
2264    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2265         diag::err_static_out_of_line)
2266      << CodeModificationHint::CreateRemoval(
2267                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2268  }
2269
2270  // Handle GNU asm-label extension (encoded as an attribute).
2271  if (Expr *E = (Expr*) D.getAsmLabel()) {
2272    // The parser guarantees this is a string.
2273    StringLiteral *SE = cast<StringLiteral>(E);
2274    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2275                                                        SE->getByteLength())));
2276  }
2277
2278  // Copy the parameter declarations from the declarator D to the function
2279  // declaration NewFD, if they are available.  First scavenge them into Params.
2280  llvm::SmallVector<ParmVarDecl*, 16> Params;
2281  if (D.getNumTypeObjects() > 0) {
2282    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2283
2284    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2285    // function that takes no arguments, not a function that takes a
2286    // single void argument.
2287    // We let through "const void" here because Sema::GetTypeForDeclarator
2288    // already checks for that case.
2289    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2290        FTI.ArgInfo[0].Param &&
2291        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2292      // Empty arg list, don't push any params.
2293      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2294
2295      // In C++, the empty parameter-type-list must be spelled "void"; a
2296      // typedef of void is not permitted.
2297      if (getLangOptions().CPlusPlus &&
2298          Param->getType().getUnqualifiedType() != Context.VoidTy)
2299        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2300      // FIXME: Leaks decl?
2301    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2302      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2303        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2304    }
2305
2306  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2307    // When we're declaring a function with a typedef, typeof, etc as in the
2308    // following example, we'll need to synthesize (unnamed)
2309    // parameters for use in the declaration.
2310    //
2311    // @code
2312    // typedef void fn(int);
2313    // fn f;
2314    // @endcode
2315
2316    // Synthesize a parameter for each argument type.
2317    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2318         AE = FT->arg_type_end(); AI != AE; ++AI) {
2319      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2320                                               SourceLocation(), 0,
2321                                               *AI, VarDecl::None, 0);
2322      Param->setImplicit();
2323      Params.push_back(Param);
2324    }
2325  } else {
2326    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2327           "Should not need args for typedef of non-prototype fn");
2328  }
2329  // Finally, we know we have the right number of parameters, install them.
2330  NewFD->setParams(Context, Params.data(), Params.size());
2331
2332  // If name lookup finds a previous declaration that is not in the
2333  // same scope as the new declaration, this may still be an
2334  // acceptable redeclaration.
2335  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2336      !(NewFD->hasLinkage() &&
2337        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2338    PrevDecl = 0;
2339
2340  // Perform semantic checking on the function declaration.
2341  bool OverloadableAttrRequired = false; // FIXME: HACK!
2342  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2343                           /*FIXME:*/OverloadableAttrRequired);
2344
2345  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2346    // An out-of-line member function declaration must also be a
2347    // definition (C++ [dcl.meaning]p1).
2348    if (!IsFunctionDefinition) {
2349      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2350        << D.getCXXScopeSpec().getRange();
2351      NewFD->setInvalidDecl();
2352    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2353      // The user tried to provide an out-of-line definition for a
2354      // function that is a member of a class or namespace, but there
2355      // was no such member function declared (C++ [class.mfct]p2,
2356      // C++ [namespace.memdef]p2). For example:
2357      //
2358      // class X {
2359      //   void f() const;
2360      // };
2361      //
2362      // void X::f() { } // ill-formed
2363      //
2364      // Complain about this problem, and attempt to suggest close
2365      // matches (e.g., those that differ only in cv-qualifiers and
2366      // whether the parameter types are references).
2367      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2368        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2369      NewFD->setInvalidDecl();
2370
2371      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2372                                              true);
2373      assert(!Prev.isAmbiguous() &&
2374             "Cannot have an ambiguity in previous-declaration lookup");
2375      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2376           Func != FuncEnd; ++Func) {
2377        if (isa<FunctionDecl>(*Func) &&
2378            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2379          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2380      }
2381
2382      PrevDecl = 0;
2383    }
2384  }
2385
2386  // Handle attributes. We need to have merged decls when handling attributes
2387  // (for example to check for conflicts, etc).
2388  // FIXME: This needs to happen before we merge declarations. Then,
2389  // let attribute merging cope with attribute conflicts.
2390  ProcessDeclAttributes(S, NewFD, D);
2391  AddKnownFunctionAttributes(NewFD);
2392
2393  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2394    // If a function name is overloadable in C, then every function
2395    // with that name must be marked "overloadable".
2396    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2397      << Redeclaration << NewFD;
2398    if (PrevDecl)
2399      Diag(PrevDecl->getLocation(),
2400           diag::note_attribute_overloadable_prev_overload);
2401    NewFD->addAttr(::new (Context) OverloadableAttr());
2402  }
2403
2404  // If this is a locally-scoped extern C function, update the
2405  // map of such names.
2406  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2407      && !NewFD->isInvalidDecl())
2408    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2409
2410  // Set this FunctionDecl's range up to the right paren.
2411  NewFD->setLocEnd(D.getSourceRange().getEnd());
2412
2413  if (FunctionTemplate && NewFD->isInvalidDecl())
2414    FunctionTemplate->setInvalidDecl();
2415
2416  if (FunctionTemplate)
2417    return FunctionTemplate;
2418
2419  return NewFD;
2420}
2421
2422/// \brief Perform semantic checking of a new function declaration.
2423///
2424/// Performs semantic analysis of the new function declaration
2425/// NewFD. This routine performs all semantic checking that does not
2426/// require the actual declarator involved in the declaration, and is
2427/// used both for the declaration of functions as they are parsed
2428/// (called via ActOnDeclarator) and for the declaration of functions
2429/// that have been instantiated via C++ template instantiation (called
2430/// via InstantiateDecl).
2431///
2432/// This sets NewFD->isInvalidDecl() to true if there was an error.
2433void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2434                                    bool &Redeclaration,
2435                                    bool &OverloadableAttrRequired) {
2436  // If NewFD is already known erroneous, don't do any of this checking.
2437  if (NewFD->isInvalidDecl())
2438    return;
2439
2440  if (NewFD->getResultType()->isVariablyModifiedType()) {
2441    // Functions returning a variably modified type violate C99 6.7.5.2p2
2442    // because all functions have linkage.
2443    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2444    return NewFD->setInvalidDecl();
2445  }
2446
2447  // Semantic checking for this function declaration (in isolation).
2448  if (getLangOptions().CPlusPlus) {
2449    // C++-specific checks.
2450    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2451      CheckConstructor(Constructor);
2452    } else if (isa<CXXDestructorDecl>(NewFD)) {
2453      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2454      Record->setUserDeclaredDestructor(true);
2455      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2456      // user-defined destructor.
2457      Record->setPOD(false);
2458
2459      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2460      // declared destructor.
2461      Record->setHasTrivialDestructor(false);
2462    } else if (CXXConversionDecl *Conversion
2463               = dyn_cast<CXXConversionDecl>(NewFD))
2464      ActOnConversionDeclarator(Conversion);
2465
2466    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2467    if (NewFD->isOverloadedOperator() &&
2468        CheckOverloadedOperatorDeclaration(NewFD))
2469      return NewFD->setInvalidDecl();
2470  }
2471
2472  // C99 6.7.4p6:
2473  //   [... ] For a function with external linkage, the following
2474  //   restrictions apply: [...] If all of the file scope declarations
2475  //   for a function in a translation unit include the inline
2476  //   function specifier without extern, then the definition in that
2477  //   translation unit is an inline definition. An inline definition
2478  //   does not provide an external definition for the function, and
2479  //   does not forbid an external definition in another translation
2480  //   unit.
2481  //
2482  // Here we determine whether this function, in isolation, would be a
2483  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2484  // previous declarations.
2485  if (NewFD->isInline() && getLangOptions().C99 &&
2486      NewFD->getStorageClass() == FunctionDecl::None &&
2487      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2488    NewFD->setC99InlineDefinition(true);
2489
2490  // Check for a previous declaration of this name.
2491  if (!PrevDecl && NewFD->isExternC(Context)) {
2492    // Since we did not find anything by this name and we're declaring
2493    // an extern "C" function, look for a non-visible extern "C"
2494    // declaration with the same name.
2495    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2496      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2497    if (Pos != LocallyScopedExternalDecls.end())
2498      PrevDecl = Pos->second;
2499  }
2500
2501  // Merge or overload the declaration with an existing declaration of
2502  // the same name, if appropriate.
2503  if (PrevDecl) {
2504    // Determine whether NewFD is an overload of PrevDecl or
2505    // a declaration that requires merging. If it's an overload,
2506    // there's no more work to do here; we'll just add the new
2507    // function to the scope.
2508    OverloadedFunctionDecl::function_iterator MatchedDecl;
2509
2510    if (!getLangOptions().CPlusPlus &&
2511        AllowOverloadingOfFunction(PrevDecl, Context)) {
2512      OverloadableAttrRequired = true;
2513
2514      // Functions marked "overloadable" must have a prototype (that
2515      // we can't get through declaration merging).
2516      if (!NewFD->getType()->getAsFunctionProtoType()) {
2517        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2518          << NewFD;
2519        Redeclaration = true;
2520
2521        // Turn this into a variadic function with no parameters.
2522        QualType R = Context.getFunctionType(
2523                       NewFD->getType()->getAsFunctionType()->getResultType(),
2524                       0, 0, true, 0);
2525        NewFD->setType(R);
2526        return NewFD->setInvalidDecl();
2527      }
2528    }
2529
2530    if (PrevDecl &&
2531        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2532         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2533        !isa<UsingDecl>(PrevDecl)) {
2534      Redeclaration = true;
2535      Decl *OldDecl = PrevDecl;
2536
2537      // If PrevDecl was an overloaded function, extract the
2538      // FunctionDecl that matched.
2539      if (isa<OverloadedFunctionDecl>(PrevDecl))
2540        OldDecl = *MatchedDecl;
2541
2542      // NewFD and OldDecl represent declarations that need to be
2543      // merged.
2544      if (MergeFunctionDecl(NewFD, OldDecl))
2545        return NewFD->setInvalidDecl();
2546
2547      if (FunctionTemplateDecl *OldTemplateDecl
2548            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2549        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2550      else
2551        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2552    }
2553  }
2554
2555  // In C++, check default arguments now that we have merged decls. Unless
2556  // the lexical context is the class, because in this case this is done
2557  // during delayed parsing anyway.
2558  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2559    CheckCXXDefaultArguments(NewFD);
2560}
2561
2562bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2563  // FIXME: Need strict checking.  In C89, we need to check for
2564  // any assignment, increment, decrement, function-calls, or
2565  // commas outside of a sizeof.  In C99, it's the same list,
2566  // except that the aforementioned are allowed in unevaluated
2567  // expressions.  Everything else falls under the
2568  // "may accept other forms of constant expressions" exception.
2569  // (We never end up here for C++, so the constant expression
2570  // rules there don't matter.)
2571  if (Init->isConstantInitializer(Context))
2572    return false;
2573  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2574    << Init->getSourceRange();
2575  return true;
2576}
2577
2578void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2579  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2580}
2581
2582/// AddInitializerToDecl - Adds the initializer Init to the
2583/// declaration dcl. If DirectInit is true, this is C++ direct
2584/// initialization rather than copy initialization.
2585void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2586  Decl *RealDecl = dcl.getAs<Decl>();
2587  // If there is no declaration, there was an error parsing it.  Just ignore
2588  // the initializer.
2589  if (RealDecl == 0)
2590    return;
2591
2592  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2593    // With declarators parsed the way they are, the parser cannot
2594    // distinguish between a normal initializer and a pure-specifier.
2595    // Thus this grotesque test.
2596    IntegerLiteral *IL;
2597    Expr *Init = static_cast<Expr *>(init.get());
2598    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2599        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2600      if (Method->isVirtualAsWritten()) {
2601        Method->setPure();
2602
2603        // A class is abstract if at least one function is pure virtual.
2604        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2605      } else if (!Method->isInvalidDecl()) {
2606        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2607          << Method->getDeclName() << Init->getSourceRange();
2608        Method->setInvalidDecl();
2609      }
2610    } else {
2611      Diag(Method->getLocation(), diag::err_member_function_initialization)
2612        << Method->getDeclName() << Init->getSourceRange();
2613      Method->setInvalidDecl();
2614    }
2615    return;
2616  }
2617
2618  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2619  if (!VDecl) {
2620    if (getLangOptions().CPlusPlus &&
2621        RealDecl->getLexicalDeclContext()->isRecord() &&
2622        isa<NamedDecl>(RealDecl))
2623      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2624        << cast<NamedDecl>(RealDecl)->getDeclName();
2625    else
2626      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2627    RealDecl->setInvalidDecl();
2628    return;
2629  }
2630
2631  if (!VDecl->getType()->isArrayType() &&
2632      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2633                          diag::err_typecheck_decl_incomplete_type)) {
2634    RealDecl->setInvalidDecl();
2635    return;
2636  }
2637
2638  const VarDecl *Def = 0;
2639  if (VDecl->getDefinition(Def)) {
2640    Diag(VDecl->getLocation(), diag::err_redefinition)
2641      << VDecl->getDeclName();
2642    Diag(Def->getLocation(), diag::note_previous_definition);
2643    VDecl->setInvalidDecl();
2644    return;
2645  }
2646
2647  // Take ownership of the expression, now that we're sure we have somewhere
2648  // to put it.
2649  Expr *Init = init.takeAs<Expr>();
2650  assert(Init && "missing initializer");
2651
2652  // Get the decls type and save a reference for later, since
2653  // CheckInitializerTypes may change it.
2654  QualType DclT = VDecl->getType(), SavT = DclT;
2655  if (VDecl->isBlockVarDecl()) {
2656    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2657      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2658      VDecl->setInvalidDecl();
2659    } else if (!VDecl->isInvalidDecl()) {
2660      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2661                                VDecl->getDeclName(), DirectInit))
2662        VDecl->setInvalidDecl();
2663
2664      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2665      // Don't check invalid declarations to avoid emitting useless diagnostics.
2666      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2667        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2668          CheckForConstantInitializer(Init, DclT);
2669      }
2670    }
2671  } else if (VDecl->isStaticDataMember() &&
2672             VDecl->getLexicalDeclContext()->isRecord()) {
2673    // This is an in-class initialization for a static data member, e.g.,
2674    //
2675    // struct S {
2676    //   static const int value = 17;
2677    // };
2678
2679    // Attach the initializer
2680    VDecl->setInit(Context, Init);
2681
2682    // C++ [class.mem]p4:
2683    //   A member-declarator can contain a constant-initializer only
2684    //   if it declares a static member (9.4) of const integral or
2685    //   const enumeration type, see 9.4.2.
2686    QualType T = VDecl->getType();
2687    if (!T->isDependentType() &&
2688        (!Context.getCanonicalType(T).isConstQualified() ||
2689         !T->isIntegralType())) {
2690      Diag(VDecl->getLocation(), diag::err_member_initialization)
2691        << VDecl->getDeclName() << Init->getSourceRange();
2692      VDecl->setInvalidDecl();
2693    } else {
2694      // C++ [class.static.data]p4:
2695      //   If a static data member is of const integral or const
2696      //   enumeration type, its declaration in the class definition
2697      //   can specify a constant-initializer which shall be an
2698      //   integral constant expression (5.19).
2699      if (!Init->isTypeDependent() &&
2700          !Init->getType()->isIntegralType()) {
2701        // We have a non-dependent, non-integral or enumeration type.
2702        Diag(Init->getSourceRange().getBegin(),
2703             diag::err_in_class_initializer_non_integral_type)
2704          << Init->getType() << Init->getSourceRange();
2705        VDecl->setInvalidDecl();
2706      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2707        // Check whether the expression is a constant expression.
2708        llvm::APSInt Value;
2709        SourceLocation Loc;
2710        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2711          Diag(Loc, diag::err_in_class_initializer_non_constant)
2712            << Init->getSourceRange();
2713          VDecl->setInvalidDecl();
2714        } else if (!VDecl->getType()->isDependentType())
2715          ImpCastExprToType(Init, VDecl->getType());
2716      }
2717    }
2718  } else if (VDecl->isFileVarDecl()) {
2719    if (VDecl->getStorageClass() == VarDecl::Extern)
2720      Diag(VDecl->getLocation(), diag::warn_extern_init);
2721    if (!VDecl->isInvalidDecl())
2722      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2723                                VDecl->getDeclName(), DirectInit))
2724        VDecl->setInvalidDecl();
2725
2726    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2727    // Don't check invalid declarations to avoid emitting useless diagnostics.
2728    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2729      // C99 6.7.8p4. All file scoped initializers need to be constant.
2730      CheckForConstantInitializer(Init, DclT);
2731    }
2732  }
2733  // If the type changed, it means we had an incomplete type that was
2734  // completed by the initializer. For example:
2735  //   int ary[] = { 1, 3, 5 };
2736  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2737  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2738    VDecl->setType(DclT);
2739    Init->setType(DclT);
2740  }
2741
2742  // Attach the initializer to the decl.
2743  VDecl->setInit(Context, Init);
2744
2745  // If the previous declaration of VDecl was a tentative definition,
2746  // remove it from the set of tentative definitions.
2747  if (VDecl->getPreviousDeclaration() &&
2748      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2749    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2750      = TentativeDefinitions.find(VDecl->getDeclName());
2751    assert(Pos != TentativeDefinitions.end() &&
2752           "Unrecorded tentative definition?");
2753    TentativeDefinitions.erase(Pos);
2754  }
2755
2756  return;
2757}
2758
2759void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2760  Decl *RealDecl = dcl.getAs<Decl>();
2761
2762  // If there is no declaration, there was an error parsing it. Just ignore it.
2763  if (RealDecl == 0)
2764    return;
2765
2766  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2767    QualType Type = Var->getType();
2768
2769    // Record tentative definitions.
2770    if (Var->isTentativeDefinition(Context))
2771      TentativeDefinitions[Var->getDeclName()] = Var;
2772
2773    // C++ [dcl.init.ref]p3:
2774    //   The initializer can be omitted for a reference only in a
2775    //   parameter declaration (8.3.5), in the declaration of a
2776    //   function return type, in the declaration of a class member
2777    //   within its class declaration (9.2), and where the extern
2778    //   specifier is explicitly used.
2779    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2780      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2781        << Var->getDeclName()
2782        << SourceRange(Var->getLocation(), Var->getLocation());
2783      Var->setInvalidDecl();
2784      return;
2785    }
2786
2787    // C++ [dcl.init]p9:
2788    //
2789    //   If no initializer is specified for an object, and the object
2790    //   is of (possibly cv-qualified) non-POD class type (or array
2791    //   thereof), the object shall be default-initialized; if the
2792    //   object is of const-qualified type, the underlying class type
2793    //   shall have a user-declared default constructor.
2794    if (getLangOptions().CPlusPlus) {
2795      QualType InitType = Type;
2796      if (const ArrayType *Array = Context.getAsArrayType(Type))
2797        InitType = Array->getElementType();
2798      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2799          InitType->isRecordType() && !InitType->isDependentType()) {
2800        CXXRecordDecl *RD =
2801          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2802        CXXConstructorDecl *Constructor = 0;
2803        if (!RequireCompleteType(Var->getLocation(), InitType,
2804                                    diag::err_invalid_incomplete_type_use))
2805          Constructor
2806            = PerformInitializationByConstructor(InitType, 0, 0,
2807                                                 Var->getLocation(),
2808                                               SourceRange(Var->getLocation(),
2809                                                           Var->getLocation()),
2810                                                 Var->getDeclName(),
2811                                                 IK_Default);
2812        if (!Constructor)
2813          Var->setInvalidDecl();
2814        else {
2815          if (!RD->hasTrivialConstructor())
2816            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2817          // FIXME. Must do all that is needed to destroy the object
2818          // on scope exit. For now, just mark the destructor as used.
2819          MarkDestructorReferenced(Var->getLocation(), InitType);
2820        }
2821      }
2822    }
2823
2824#if 0
2825    // FIXME: Temporarily disabled because we are not properly parsing
2826    // linkage specifications on declarations, e.g.,
2827    //
2828    //   extern "C" const CGPoint CGPointerZero;
2829    //
2830    // C++ [dcl.init]p9:
2831    //
2832    //     If no initializer is specified for an object, and the
2833    //     object is of (possibly cv-qualified) non-POD class type (or
2834    //     array thereof), the object shall be default-initialized; if
2835    //     the object is of const-qualified type, the underlying class
2836    //     type shall have a user-declared default
2837    //     constructor. Otherwise, if no initializer is specified for
2838    //     an object, the object and its subobjects, if any, have an
2839    //     indeterminate initial value; if the object or any of its
2840    //     subobjects are of const-qualified type, the program is
2841    //     ill-formed.
2842    //
2843    // This isn't technically an error in C, so we don't diagnose it.
2844    //
2845    // FIXME: Actually perform the POD/user-defined default
2846    // constructor check.
2847    if (getLangOptions().CPlusPlus &&
2848        Context.getCanonicalType(Type).isConstQualified() &&
2849        !Var->hasExternalStorage())
2850      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2851        << Var->getName()
2852        << SourceRange(Var->getLocation(), Var->getLocation());
2853#endif
2854  }
2855}
2856
2857Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2858                                                   DeclPtrTy *Group,
2859                                                   unsigned NumDecls) {
2860  llvm::SmallVector<Decl*, 8> Decls;
2861
2862  if (DS.isTypeSpecOwned())
2863    Decls.push_back((Decl*)DS.getTypeRep());
2864
2865  for (unsigned i = 0; i != NumDecls; ++i)
2866    if (Decl *D = Group[i].getAs<Decl>())
2867      Decls.push_back(D);
2868
2869  // Perform semantic analysis that depends on having fully processed both
2870  // the declarator and initializer.
2871  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2872    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2873    if (!IDecl)
2874      continue;
2875    QualType T = IDecl->getType();
2876
2877    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2878    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2879    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2880      if (!IDecl->isInvalidDecl() &&
2881          RequireCompleteType(IDecl->getLocation(), T,
2882                              diag::err_typecheck_decl_incomplete_type))
2883        IDecl->setInvalidDecl();
2884    }
2885    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2886    // object that has file scope without an initializer, and without a
2887    // storage-class specifier or with the storage-class specifier "static",
2888    // constitutes a tentative definition. Note: A tentative definition with
2889    // external linkage is valid (C99 6.2.2p5).
2890    if (IDecl->isTentativeDefinition(Context)) {
2891      QualType CheckType = T;
2892      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2893
2894      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2895      if (ArrayT) {
2896        CheckType = ArrayT->getElementType();
2897        DiagID = diag::err_illegal_decl_array_incomplete_type;
2898      }
2899
2900      if (IDecl->isInvalidDecl()) {
2901        // Do nothing with invalid declarations
2902      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2903                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2904        // C99 6.9.2p3: If the declaration of an identifier for an object is
2905        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2906        // declared type shall not be an incomplete type.
2907        IDecl->setInvalidDecl();
2908      }
2909    }
2910  }
2911  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2912                                                   Decls.data(), Decls.size()));
2913}
2914
2915
2916/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2917/// to introduce parameters into function prototype scope.
2918Sema::DeclPtrTy
2919Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2920  const DeclSpec &DS = D.getDeclSpec();
2921
2922  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2923  VarDecl::StorageClass StorageClass = VarDecl::None;
2924  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2925    StorageClass = VarDecl::Register;
2926  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2927    Diag(DS.getStorageClassSpecLoc(),
2928         diag::err_invalid_storage_class_in_func_decl);
2929    D.getMutableDeclSpec().ClearStorageClassSpecs();
2930  }
2931
2932  if (D.getDeclSpec().isThreadSpecified())
2933    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2934
2935  DiagnoseFunctionSpecifiers(D);
2936
2937  // Check that there are no default arguments inside the type of this
2938  // parameter (C++ only).
2939  if (getLangOptions().CPlusPlus)
2940    CheckExtraCXXDefaultArguments(D);
2941
2942  TagDecl *OwnedDecl = 0;
2943  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2944
2945  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2946    // C++ [dcl.fct]p6:
2947    //   Types shall not be defined in return or parameter types.
2948    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2949      << Context.getTypeDeclType(OwnedDecl);
2950  }
2951
2952  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2953  // Can this happen for params?  We already checked that they don't conflict
2954  // among each other.  Here they can only shadow globals, which is ok.
2955  IdentifierInfo *II = D.getIdentifier();
2956  if (II) {
2957    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2958      if (PrevDecl->isTemplateParameter()) {
2959        // Maybe we will complain about the shadowed template parameter.
2960        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2961        // Just pretend that we didn't see the previous declaration.
2962        PrevDecl = 0;
2963      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2964        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2965
2966        // Recover by removing the name
2967        II = 0;
2968        D.SetIdentifier(0, D.getIdentifierLoc());
2969      }
2970    }
2971  }
2972
2973  // Parameters can not be abstract class types.
2974  // For record types, this is done by the AbstractClassUsageDiagnoser once
2975  // the class has been completely parsed.
2976  if (!CurContext->isRecord() &&
2977      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2978                             diag::err_abstract_type_in_decl,
2979                             AbstractParamType))
2980    D.setInvalidType(true);
2981
2982  QualType T = adjustParameterType(parmDeclType);
2983
2984  ParmVarDecl *New;
2985  if (T == parmDeclType) // parameter type did not need adjustment
2986    New = ParmVarDecl::Create(Context, CurContext,
2987                              D.getIdentifierLoc(), II,
2988                              parmDeclType, StorageClass,
2989                              0);
2990  else // keep track of both the adjusted and unadjusted types
2991    New = OriginalParmVarDecl::Create(Context, CurContext,
2992                                      D.getIdentifierLoc(), II, T,
2993                                      parmDeclType, StorageClass, 0);
2994
2995  if (D.isInvalidType())
2996    New->setInvalidDecl();
2997
2998  // Parameter declarators cannot be interface types. All ObjC objects are
2999  // passed by reference.
3000  if (T->isObjCInterfaceType()) {
3001    Diag(D.getIdentifierLoc(),
3002         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3003    New->setInvalidDecl();
3004  }
3005
3006  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3007  if (D.getCXXScopeSpec().isSet()) {
3008    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3009      << D.getCXXScopeSpec().getRange();
3010    New->setInvalidDecl();
3011  }
3012
3013  // Add the parameter declaration into this scope.
3014  S->AddDecl(DeclPtrTy::make(New));
3015  if (II)
3016    IdResolver.AddDecl(New);
3017
3018  ProcessDeclAttributes(S, New, D);
3019
3020  if (New->hasAttr<BlocksAttr>()) {
3021    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3022  }
3023  return DeclPtrTy::make(New);
3024}
3025
3026void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3027                                           SourceLocation LocAfterDecls) {
3028  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3029         "Not a function declarator!");
3030  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3031
3032  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3033  // for a K&R function.
3034  if (!FTI.hasPrototype) {
3035    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3036      --i;
3037      if (FTI.ArgInfo[i].Param == 0) {
3038        std::string Code = "  int ";
3039        Code += FTI.ArgInfo[i].Ident->getName();
3040        Code += ";\n";
3041        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3042          << FTI.ArgInfo[i].Ident
3043          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3044
3045        // Implicitly declare the argument as type 'int' for lack of a better
3046        // type.
3047        DeclSpec DS;
3048        const char* PrevSpec; // unused
3049        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3050                           PrevSpec);
3051        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3052        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3053        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3054      }
3055    }
3056  }
3057}
3058
3059Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3060                                              Declarator &D) {
3061  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3062  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3063         "Not a function declarator!");
3064  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3065
3066  if (FTI.hasPrototype) {
3067    // FIXME: Diagnose arguments without names in C.
3068  }
3069
3070  Scope *ParentScope = FnBodyScope->getParent();
3071
3072  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3073                                  MultiTemplateParamsArg(*this),
3074                                  /*IsFunctionDefinition=*/true);
3075  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3076}
3077
3078Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3079  if (!D)
3080    return D;
3081  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3082
3083  CurFunctionNeedsScopeChecking = false;
3084
3085  // See if this is a redefinition.
3086  const FunctionDecl *Definition;
3087  if (FD->getBody(Definition)) {
3088    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3089    Diag(Definition->getLocation(), diag::note_previous_definition);
3090  }
3091
3092  // Builtin functions cannot be defined.
3093  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3094    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3095      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3096      FD->setInvalidDecl();
3097    }
3098  }
3099
3100  // The return type of a function definition must be complete
3101  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3102  QualType ResultType = FD->getResultType();
3103  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3104      !FD->isInvalidDecl() &&
3105      RequireCompleteType(FD->getLocation(), ResultType,
3106                          diag::err_func_def_incomplete_result))
3107    FD->setInvalidDecl();
3108
3109  // GNU warning -Wmissing-prototypes:
3110  //   Warn if a global function is defined without a previous
3111  //   prototype declaration. This warning is issued even if the
3112  //   definition itself provides a prototype. The aim is to detect
3113  //   global functions that fail to be declared in header files.
3114  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3115      !FD->isMain()) {
3116    bool MissingPrototype = true;
3117    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3118         Prev; Prev = Prev->getPreviousDeclaration()) {
3119      // Ignore any declarations that occur in function or method
3120      // scope, because they aren't visible from the header.
3121      if (Prev->getDeclContext()->isFunctionOrMethod())
3122        continue;
3123
3124      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3125      break;
3126    }
3127
3128    if (MissingPrototype)
3129      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3130  }
3131
3132  if (FnBodyScope)
3133    PushDeclContext(FnBodyScope, FD);
3134
3135  // Check the validity of our function parameters
3136  CheckParmsForFunctionDef(FD);
3137
3138  // Introduce our parameters into the function scope
3139  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3140    ParmVarDecl *Param = FD->getParamDecl(p);
3141    Param->setOwningFunction(FD);
3142
3143    // If this has an identifier, add it to the scope stack.
3144    if (Param->getIdentifier() && FnBodyScope)
3145      PushOnScopeChains(Param, FnBodyScope);
3146  }
3147
3148  // Checking attributes of current function definition
3149  // dllimport attribute.
3150  if (FD->getAttr<DLLImportAttr>() &&
3151      (!FD->getAttr<DLLExportAttr>())) {
3152    // dllimport attribute cannot be applied to definition.
3153    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3154      Diag(FD->getLocation(),
3155           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3156        << "dllimport";
3157      FD->setInvalidDecl();
3158      return DeclPtrTy::make(FD);
3159    } else {
3160      // If a symbol previously declared dllimport is later defined, the
3161      // attribute is ignored in subsequent references, and a warning is
3162      // emitted.
3163      Diag(FD->getLocation(),
3164           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3165        << FD->getNameAsCString() << "dllimport";
3166    }
3167  }
3168  return DeclPtrTy::make(FD);
3169}
3170
3171Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3172  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3173}
3174
3175Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3176                                              bool IsInstantiation) {
3177  Decl *dcl = D.getAs<Decl>();
3178  Stmt *Body = BodyArg.takeAs<Stmt>();
3179  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3180    FD->setBody(Body);
3181
3182    if (!FD->isInvalidDecl())
3183      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3184
3185    // C++ [basic.def.odr]p2:
3186    //   [...] A virtual member function is used if it is not pure. [...]
3187    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3188      if (Method->isVirtual() && !Method->isPure())
3189        MarkDeclarationReferenced(Method->getLocation(), Method);
3190
3191    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3192  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3193    assert(MD == getCurMethodDecl() && "Method parsing confused");
3194    MD->setBody(Body);
3195
3196    if (!MD->isInvalidDecl())
3197      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3198  } else {
3199    Body->Destroy(Context);
3200    return DeclPtrTy();
3201  }
3202  if (!IsInstantiation)
3203    PopDeclContext();
3204
3205  // Verify and clean out per-function state.
3206
3207  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3208
3209  // Check goto/label use.
3210  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3211       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3212    LabelStmt *L = I->second;
3213
3214    // Verify that we have no forward references left.  If so, there was a goto
3215    // or address of a label taken, but no definition of it.  Label fwd
3216    // definitions are indicated with a null substmt.
3217    if (L->getSubStmt() != 0)
3218      continue;
3219
3220    // Emit error.
3221    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3222
3223    // At this point, we have gotos that use the bogus label.  Stitch it into
3224    // the function body so that they aren't leaked and that the AST is well
3225    // formed.
3226    if (Body == 0) {
3227      // The whole function wasn't parsed correctly, just delete this.
3228      L->Destroy(Context);
3229      continue;
3230    }
3231
3232    // Otherwise, the body is valid: we want to stitch the label decl into the
3233    // function somewhere so that it is properly owned and so that the goto
3234    // has a valid target.  Do this by creating a new compound stmt with the
3235    // label in it.
3236
3237    // Give the label a sub-statement.
3238    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3239
3240    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3241                               cast<CXXTryStmt>(Body)->getTryBlock() :
3242                               cast<CompoundStmt>(Body);
3243    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3244    Elements.push_back(L);
3245    Compound->setStmts(Context, &Elements[0], Elements.size());
3246  }
3247  FunctionLabelMap.clear();
3248
3249  if (!Body) return D;
3250
3251  // Verify that that gotos and switch cases don't jump into scopes illegally.
3252  if (CurFunctionNeedsScopeChecking)
3253    DiagnoseInvalidJumps(Body);
3254
3255  // C++ constructors that have function-try-blocks can't have return statements
3256  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3257  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3258    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3259
3260  return D;
3261}
3262
3263/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3264/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3265NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3266                                          IdentifierInfo &II, Scope *S) {
3267  // Before we produce a declaration for an implicitly defined
3268  // function, see whether there was a locally-scoped declaration of
3269  // this name as a function or variable. If so, use that
3270  // (non-visible) declaration, and complain about it.
3271  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3272    = LocallyScopedExternalDecls.find(&II);
3273  if (Pos != LocallyScopedExternalDecls.end()) {
3274    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3275    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3276    return Pos->second;
3277  }
3278
3279  // Extension in C99.  Legal in C90, but warn about it.
3280  if (getLangOptions().C99)
3281    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3282  else
3283    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3284
3285  // FIXME: handle stuff like:
3286  // void foo() { extern float X(); }
3287  // void bar() { X(); }  <-- implicit decl for X in another scope.
3288
3289  // Set a Declarator for the implicit definition: int foo();
3290  const char *Dummy;
3291  DeclSpec DS;
3292  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3293  Error = Error; // Silence warning.
3294  assert(!Error && "Error setting up implicit decl!");
3295  Declarator D(DS, Declarator::BlockContext);
3296  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3297                                             0, 0, false, SourceLocation(),
3298                                             false, 0,0,0, Loc, D),
3299                SourceLocation());
3300  D.SetIdentifier(&II, Loc);
3301
3302  // Insert this function into translation-unit scope.
3303
3304  DeclContext *PrevDC = CurContext;
3305  CurContext = Context.getTranslationUnitDecl();
3306
3307  FunctionDecl *FD =
3308 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3309  FD->setImplicit();
3310
3311  CurContext = PrevDC;
3312
3313  AddKnownFunctionAttributes(FD);
3314
3315  return FD;
3316}
3317
3318/// \brief Adds any function attributes that we know a priori based on
3319/// the declaration of this function.
3320///
3321/// These attributes can apply both to implicitly-declared builtins
3322/// (like __builtin___printf_chk) or to library-declared functions
3323/// like NSLog or printf.
3324void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3325  if (FD->isInvalidDecl())
3326    return;
3327
3328  // If this is a built-in function, map its builtin attributes to
3329  // actual attributes.
3330  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3331    // Handle printf-formatting attributes.
3332    unsigned FormatIdx;
3333    bool HasVAListArg;
3334    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3335      if (!FD->getAttr<FormatAttr>())
3336        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3337                                             HasVAListArg ? 0 : FormatIdx + 2));
3338    }
3339
3340    // Mark const if we don't care about errno and that is the only
3341    // thing preventing the function from being const. This allows
3342    // IRgen to use LLVM intrinsics for such functions.
3343    if (!getLangOptions().MathErrno &&
3344        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3345      if (!FD->getAttr<ConstAttr>())
3346        FD->addAttr(::new (Context) ConstAttr());
3347    }
3348  }
3349
3350  IdentifierInfo *Name = FD->getIdentifier();
3351  if (!Name)
3352    return;
3353  if ((!getLangOptions().CPlusPlus &&
3354       FD->getDeclContext()->isTranslationUnit()) ||
3355      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3356       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3357       LinkageSpecDecl::lang_c)) {
3358    // Okay: this could be a libc/libm/Objective-C function we know
3359    // about.
3360  } else
3361    return;
3362
3363  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3364    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3365      // FIXME: We known better than our headers.
3366      const_cast<FormatAttr *>(Format)->setType("printf");
3367    } else
3368      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3369                                             Name->isStr("NSLogv") ? 0 : 2));
3370  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3371    if (!FD->getAttr<FormatAttr>())
3372      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3373                                             Name->isStr("vasprintf") ? 0 : 3));
3374  }
3375}
3376
3377TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3378  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3379  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3380
3381  // Scope manipulation handled by caller.
3382  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3383                                           D.getIdentifierLoc(),
3384                                           D.getIdentifier(),
3385                                           T);
3386
3387  if (TagType *TT = dyn_cast<TagType>(T)) {
3388    TagDecl *TD = TT->getDecl();
3389
3390    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3391    // keep track of the TypedefDecl.
3392    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3393      TD->setTypedefForAnonDecl(NewTD);
3394  }
3395
3396  if (D.isInvalidType())
3397    NewTD->setInvalidDecl();
3398  return NewTD;
3399}
3400
3401
3402/// \brief Determine whether a tag with a given kind is acceptable
3403/// as a redeclaration of the given tag declaration.
3404///
3405/// \returns true if the new tag kind is acceptable, false otherwise.
3406bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3407                                        TagDecl::TagKind NewTag,
3408                                        SourceLocation NewTagLoc,
3409                                        const IdentifierInfo &Name) {
3410  // C++ [dcl.type.elab]p3:
3411  //   The class-key or enum keyword present in the
3412  //   elaborated-type-specifier shall agree in kind with the
3413  //   declaration to which the name in theelaborated-type-specifier
3414  //   refers. This rule also applies to the form of
3415  //   elaborated-type-specifier that declares a class-name or
3416  //   friend class since it can be construed as referring to the
3417  //   definition of the class. Thus, in any
3418  //   elaborated-type-specifier, the enum keyword shall be used to
3419  //   refer to an enumeration (7.2), the union class-keyshall be
3420  //   used to refer to a union (clause 9), and either the class or
3421  //   struct class-key shall be used to refer to a class (clause 9)
3422  //   declared using the class or struct class-key.
3423  TagDecl::TagKind OldTag = Previous->getTagKind();
3424  if (OldTag == NewTag)
3425    return true;
3426
3427  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3428      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3429    // Warn about the struct/class tag mismatch.
3430    bool isTemplate = false;
3431    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3432      isTemplate = Record->getDescribedClassTemplate();
3433
3434    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3435      << (NewTag == TagDecl::TK_class)
3436      << isTemplate << &Name
3437      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3438                              OldTag == TagDecl::TK_class? "class" : "struct");
3439    Diag(Previous->getLocation(), diag::note_previous_use);
3440    return true;
3441  }
3442  return false;
3443}
3444
3445/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3446/// former case, Name will be non-null.  In the later case, Name will be null.
3447/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3448/// reference/declaration/definition of a tag.
3449Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3450                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3451                               IdentifierInfo *Name, SourceLocation NameLoc,
3452                               AttributeList *Attr, AccessSpecifier AS,
3453                               bool &OwnedDecl) {
3454  // If this is not a definition, it must have a name.
3455  assert((Name != 0 || TK == TK_Definition) &&
3456         "Nameless record must be a definition!");
3457
3458  OwnedDecl = false;
3459  TagDecl::TagKind Kind;
3460  switch (TagSpec) {
3461  default: assert(0 && "Unknown tag type!");
3462  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3463  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3464  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3465  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3466  }
3467
3468  DeclContext *SearchDC = CurContext;
3469  DeclContext *DC = CurContext;
3470  NamedDecl *PrevDecl = 0;
3471
3472  bool Invalid = false;
3473
3474  if (Name && SS.isNotEmpty()) {
3475    // We have a nested-name tag ('struct foo::bar').
3476
3477    // Check for invalid 'foo::'.
3478    if (SS.isInvalid()) {
3479      Name = 0;
3480      goto CreateNewDecl;
3481    }
3482
3483    if (RequireCompleteDeclContext(SS))
3484      return DeclPtrTy::make((Decl *)0);
3485
3486    DC = computeDeclContext(SS);
3487    SearchDC = DC;
3488    // Look-up name inside 'foo::'.
3489    PrevDecl
3490      = dyn_cast_or_null<TagDecl>(
3491               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3492
3493    // A tag 'foo::bar' must already exist.
3494    if (PrevDecl == 0) {
3495      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3496      Name = 0;
3497      Invalid = true;
3498      goto CreateNewDecl;
3499    }
3500  } else if (Name) {
3501    // If this is a named struct, check to see if there was a previous forward
3502    // declaration or definition.
3503    // FIXME: We're looking into outer scopes here, even when we
3504    // shouldn't be. Doing so can result in ambiguities that we
3505    // shouldn't be diagnosing.
3506    LookupResult R = LookupName(S, Name, LookupTagName,
3507                                /*RedeclarationOnly=*/(TK != TK_Reference));
3508    if (R.isAmbiguous()) {
3509      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3510      // FIXME: This is not best way to recover from case like:
3511      //
3512      // struct S s;
3513      //
3514      // causes needless "incomplete type" error later.
3515      Name = 0;
3516      PrevDecl = 0;
3517      Invalid = true;
3518    }
3519    else
3520      PrevDecl = R;
3521
3522    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3523      // FIXME: This makes sure that we ignore the contexts associated
3524      // with C structs, unions, and enums when looking for a matching
3525      // tag declaration or definition. See the similar lookup tweak
3526      // in Sema::LookupName; is there a better way to deal with this?
3527      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3528        SearchDC = SearchDC->getParent();
3529    }
3530  }
3531
3532  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3533    // Maybe we will complain about the shadowed template parameter.
3534    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3535    // Just pretend that we didn't see the previous declaration.
3536    PrevDecl = 0;
3537  }
3538
3539  if (PrevDecl) {
3540    // Check whether the previous declaration is usable.
3541    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3542
3543    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3544      // If this is a use of a previous tag, or if the tag is already declared
3545      // in the same scope (so that the definition/declaration completes or
3546      // rementions the tag), reuse the decl.
3547      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3548        // Make sure that this wasn't declared as an enum and now used as a
3549        // struct or something similar.
3550        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3551          bool SafeToContinue
3552            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3553               Kind != TagDecl::TK_enum);
3554          if (SafeToContinue)
3555            Diag(KWLoc, diag::err_use_with_wrong_tag)
3556              << Name
3557              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3558                                                  PrevTagDecl->getKindName());
3559          else
3560            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3561          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3562
3563          if (SafeToContinue)
3564            Kind = PrevTagDecl->getTagKind();
3565          else {
3566            // Recover by making this an anonymous redefinition.
3567            Name = 0;
3568            PrevDecl = 0;
3569            Invalid = true;
3570          }
3571        }
3572
3573        if (!Invalid) {
3574          // If this is a use, just return the declaration we found.
3575
3576          // FIXME: In the future, return a variant or some other clue
3577          // for the consumer of this Decl to know it doesn't own it.
3578          // For our current ASTs this shouldn't be a problem, but will
3579          // need to be changed with DeclGroups.
3580          if (TK == TK_Reference)
3581            return DeclPtrTy::make(PrevDecl);
3582
3583          // Diagnose attempts to redefine a tag.
3584          if (TK == TK_Definition) {
3585            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3586              Diag(NameLoc, diag::err_redefinition) << Name;
3587              Diag(Def->getLocation(), diag::note_previous_definition);
3588              // If this is a redefinition, recover by making this
3589              // struct be anonymous, which will make any later
3590              // references get the previous definition.
3591              Name = 0;
3592              PrevDecl = 0;
3593              Invalid = true;
3594            } else {
3595              // If the type is currently being defined, complain
3596              // about a nested redefinition.
3597              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3598              if (Tag->isBeingDefined()) {
3599                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3600                Diag(PrevTagDecl->getLocation(),
3601                     diag::note_previous_definition);
3602                Name = 0;
3603                PrevDecl = 0;
3604                Invalid = true;
3605              }
3606            }
3607
3608            // Okay, this is definition of a previously declared or referenced
3609            // tag PrevDecl. We're going to create a new Decl for it.
3610          }
3611        }
3612        // If we get here we have (another) forward declaration or we
3613        // have a definition.  Just create a new decl.
3614      } else {
3615        // If we get here, this is a definition of a new tag type in a nested
3616        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3617        // new decl/type.  We set PrevDecl to NULL so that the entities
3618        // have distinct types.
3619        PrevDecl = 0;
3620      }
3621      // If we get here, we're going to create a new Decl. If PrevDecl
3622      // is non-NULL, it's a definition of the tag declared by
3623      // PrevDecl. If it's NULL, we have a new definition.
3624    } else {
3625      // PrevDecl is a namespace, template, or anything else
3626      // that lives in the IDNS_Tag identifier namespace.
3627      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3628        // The tag name clashes with a namespace name, issue an error and
3629        // recover by making this tag be anonymous.
3630        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3631        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3632        Name = 0;
3633        PrevDecl = 0;
3634        Invalid = true;
3635      } else {
3636        // The existing declaration isn't relevant to us; we're in a
3637        // new scope, so clear out the previous declaration.
3638        PrevDecl = 0;
3639      }
3640    }
3641  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3642             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3643    // C++ [basic.scope.pdecl]p5:
3644    //   -- for an elaborated-type-specifier of the form
3645    //
3646    //          class-key identifier
3647    //
3648    //      if the elaborated-type-specifier is used in the
3649    //      decl-specifier-seq or parameter-declaration-clause of a
3650    //      function defined in namespace scope, the identifier is
3651    //      declared as a class-name in the namespace that contains
3652    //      the declaration; otherwise, except as a friend
3653    //      declaration, the identifier is declared in the smallest
3654    //      non-class, non-function-prototype scope that contains the
3655    //      declaration.
3656    //
3657    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3658    // C structs and unions.
3659    //
3660    // GNU C also supports this behavior as part of its incomplete
3661    // enum types extension, while GNU C++ does not.
3662    //
3663    // Find the context where we'll be declaring the tag.
3664    // FIXME: We would like to maintain the current DeclContext as the
3665    // lexical context,
3666    while (SearchDC->isRecord())
3667      SearchDC = SearchDC->getParent();
3668
3669    // Find the scope where we'll be declaring the tag.
3670    while (S->isClassScope() ||
3671           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3672           ((S->getFlags() & Scope::DeclScope) == 0) ||
3673           (S->getEntity() &&
3674            ((DeclContext *)S->getEntity())->isTransparentContext()))
3675      S = S->getParent();
3676  }
3677
3678CreateNewDecl:
3679
3680  // If there is an identifier, use the location of the identifier as the
3681  // location of the decl, otherwise use the location of the struct/union
3682  // keyword.
3683  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3684
3685  // Otherwise, create a new declaration. If there is a previous
3686  // declaration of the same entity, the two will be linked via
3687  // PrevDecl.
3688  TagDecl *New;
3689
3690  if (Kind == TagDecl::TK_enum) {
3691    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3692    // enum X { A, B, C } D;    D should chain to X.
3693    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3694                           cast_or_null<EnumDecl>(PrevDecl));
3695    // If this is an undefined enum, warn.
3696    if (TK != TK_Definition && !Invalid)  {
3697      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3698                                              : diag::ext_forward_ref_enum;
3699      Diag(Loc, DK);
3700    }
3701  } else {
3702    // struct/union/class
3703
3704    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3705    // struct X { int A; } D;    D should chain to X.
3706    if (getLangOptions().CPlusPlus)
3707      // FIXME: Look for a way to use RecordDecl for simple structs.
3708      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3709                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3710    else
3711      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3712                               cast_or_null<RecordDecl>(PrevDecl));
3713  }
3714
3715  if (Kind != TagDecl::TK_enum) {
3716    // Handle #pragma pack: if the #pragma pack stack has non-default
3717    // alignment, make up a packed attribute for this decl. These
3718    // attributes are checked when the ASTContext lays out the
3719    // structure.
3720    //
3721    // It is important for implementing the correct semantics that this
3722    // happen here (in act on tag decl). The #pragma pack stack is
3723    // maintained as a result of parser callbacks which can occur at
3724    // many points during the parsing of a struct declaration (because
3725    // the #pragma tokens are effectively skipped over during the
3726    // parsing of the struct).
3727    if (unsigned Alignment = getPragmaPackAlignment())
3728      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3729  }
3730
3731  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3732    // C++ [dcl.typedef]p3:
3733    //   [...] Similarly, in a given scope, a class or enumeration
3734    //   shall not be declared with the same name as a typedef-name
3735    //   that is declared in that scope and refers to a type other
3736    //   than the class or enumeration itself.
3737    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3738    TypedefDecl *PrevTypedef = 0;
3739    if (Lookup.getKind() == LookupResult::Found)
3740      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3741
3742    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3743        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3744          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3745      Diag(Loc, diag::err_tag_definition_of_typedef)
3746        << Context.getTypeDeclType(New)
3747        << PrevTypedef->getUnderlyingType();
3748      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3749      Invalid = true;
3750    }
3751  }
3752
3753  if (Invalid)
3754    New->setInvalidDecl();
3755
3756  if (Attr)
3757    ProcessDeclAttributeList(S, New, Attr);
3758
3759  // If we're declaring or defining a tag in function prototype scope
3760  // in C, note that this type can only be used within the function.
3761  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3762    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3763
3764  // Set the lexical context. If the tag has a C++ scope specifier, the
3765  // lexical context will be different from the semantic context.
3766  New->setLexicalDeclContext(CurContext);
3767
3768  // Set the access specifier.
3769  if (!Invalid)
3770    SetMemberAccessSpecifier(New, PrevDecl, AS);
3771
3772  if (TK == TK_Definition)
3773    New->startDefinition();
3774
3775  // If this has an identifier, add it to the scope stack.
3776  if (Name) {
3777    S = getNonFieldDeclScope(S);
3778    PushOnScopeChains(New, S);
3779  } else {
3780    CurContext->addDecl(New);
3781  }
3782
3783  // If this is the C FILE type, notify the AST context.
3784  if (IdentifierInfo *II = New->getIdentifier())
3785    if (!New->isInvalidDecl() &&
3786        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3787        II->isStr("FILE"))
3788      Context.setFILEDecl(New);
3789
3790  OwnedDecl = true;
3791  return DeclPtrTy::make(New);
3792}
3793
3794void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3795  AdjustDeclIfTemplate(TagD);
3796  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3797
3798  // Enter the tag context.
3799  PushDeclContext(S, Tag);
3800
3801  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3802    FieldCollector->StartClass();
3803
3804    if (Record->getIdentifier()) {
3805      // C++ [class]p2:
3806      //   [...] The class-name is also inserted into the scope of the
3807      //   class itself; this is known as the injected-class-name. For
3808      //   purposes of access checking, the injected-class-name is treated
3809      //   as if it were a public member name.
3810      CXXRecordDecl *InjectedClassName
3811        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3812                                CurContext, Record->getLocation(),
3813                                Record->getIdentifier(), Record);
3814      InjectedClassName->setImplicit();
3815      InjectedClassName->setAccess(AS_public);
3816      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3817        InjectedClassName->setDescribedClassTemplate(Template);
3818      PushOnScopeChains(InjectedClassName, S);
3819      assert(InjectedClassName->isInjectedClassName() &&
3820             "Broken injected-class-name");
3821    }
3822  }
3823}
3824
3825void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3826  AdjustDeclIfTemplate(TagD);
3827  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3828
3829  if (isa<CXXRecordDecl>(Tag))
3830    FieldCollector->FinishClass();
3831
3832  // Exit this scope of this tag's definition.
3833  PopDeclContext();
3834
3835  // Notify the consumer that we've defined a tag.
3836  Consumer.HandleTagDeclDefinition(Tag);
3837}
3838
3839// Note that FieldName may be null for anonymous bitfields.
3840bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3841                          QualType FieldTy, const Expr *BitWidth) {
3842
3843  // C99 6.7.2.1p4 - verify the field type.
3844  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3845  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3846    // Handle incomplete types with specific error.
3847    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3848      return true;
3849    if (FieldName)
3850      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3851        << FieldName << FieldTy << BitWidth->getSourceRange();
3852    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3853      << FieldTy << BitWidth->getSourceRange();
3854  }
3855
3856  // If the bit-width is type- or value-dependent, don't try to check
3857  // it now.
3858  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3859    return false;
3860
3861  llvm::APSInt Value;
3862  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3863    return true;
3864
3865  // Zero-width bitfield is ok for anonymous field.
3866  if (Value == 0 && FieldName)
3867    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3868
3869  if (Value.isSigned() && Value.isNegative()) {
3870    if (FieldName)
3871      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3872               << FieldName << Value.toString(10);
3873    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3874      << Value.toString(10);
3875  }
3876
3877  if (!FieldTy->isDependentType()) {
3878    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3879    if (Value.getZExtValue() > TypeSize) {
3880      if (FieldName)
3881        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3882          << FieldName << (unsigned)TypeSize;
3883      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3884        << (unsigned)TypeSize;
3885    }
3886  }
3887
3888  return false;
3889}
3890
3891/// ActOnField - Each field of a struct/union/class is passed into this in order
3892/// to create a FieldDecl object for it.
3893Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3894                                 SourceLocation DeclStart,
3895                                 Declarator &D, ExprTy *BitfieldWidth) {
3896  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3897                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3898                               AS_public);
3899  return DeclPtrTy::make(Res);
3900}
3901
3902/// HandleField - Analyze a field of a C struct or a C++ data member.
3903///
3904FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3905                             SourceLocation DeclStart,
3906                             Declarator &D, Expr *BitWidth,
3907                             AccessSpecifier AS) {
3908  IdentifierInfo *II = D.getIdentifier();
3909  SourceLocation Loc = DeclStart;
3910  if (II) Loc = D.getIdentifierLoc();
3911
3912  QualType T = GetTypeForDeclarator(D, S);
3913  if (getLangOptions().CPlusPlus)
3914    CheckExtraCXXDefaultArguments(D);
3915
3916  DiagnoseFunctionSpecifiers(D);
3917
3918  if (D.getDeclSpec().isThreadSpecified())
3919    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3920
3921  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3922
3923  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3924    // Maybe we will complain about the shadowed template parameter.
3925    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3926    // Just pretend that we didn't see the previous declaration.
3927    PrevDecl = 0;
3928  }
3929
3930  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3931    PrevDecl = 0;
3932
3933  FieldDecl *NewFD
3934    = CheckFieldDecl(II, T, Record, Loc,
3935               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3936                     BitWidth, AS, PrevDecl, &D);
3937  if (NewFD->isInvalidDecl() && PrevDecl) {
3938    // Don't introduce NewFD into scope; there's already something
3939    // with the same name in the same scope.
3940  } else if (II) {
3941    PushOnScopeChains(NewFD, S);
3942  } else
3943    Record->addDecl(NewFD);
3944
3945  return NewFD;
3946}
3947
3948/// \brief Build a new FieldDecl and check its well-formedness.
3949///
3950/// This routine builds a new FieldDecl given the fields name, type,
3951/// record, etc. \p PrevDecl should refer to any previous declaration
3952/// with the same name and in the same scope as the field to be
3953/// created.
3954///
3955/// \returns a new FieldDecl.
3956///
3957/// \todo The Declarator argument is a hack. It will be removed once
3958FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3959                                RecordDecl *Record, SourceLocation Loc,
3960                                bool Mutable, Expr *BitWidth,
3961                                AccessSpecifier AS, NamedDecl *PrevDecl,
3962                                Declarator *D) {
3963  IdentifierInfo *II = Name.getAsIdentifierInfo();
3964  bool InvalidDecl = false;
3965  if (D) InvalidDecl = D->isInvalidType();
3966
3967  // If we receive a broken type, recover by assuming 'int' and
3968  // marking this declaration as invalid.
3969  if (T.isNull()) {
3970    InvalidDecl = true;
3971    T = Context.IntTy;
3972  }
3973
3974  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3975  // than a variably modified type.
3976  if (T->isVariablyModifiedType()) {
3977    bool SizeIsNegative;
3978    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3979                                                           SizeIsNegative);
3980    if (!FixedTy.isNull()) {
3981      Diag(Loc, diag::warn_illegal_constant_array_size);
3982      T = FixedTy;
3983    } else {
3984      if (SizeIsNegative)
3985        Diag(Loc, diag::err_typecheck_negative_array_size);
3986      else
3987        Diag(Loc, diag::err_typecheck_field_variable_size);
3988      T = Context.IntTy;
3989      InvalidDecl = true;
3990    }
3991  }
3992
3993  // Fields can not have abstract class types
3994  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3995                             AbstractFieldType))
3996    InvalidDecl = true;
3997
3998  // If this is declared as a bit-field, check the bit-field.
3999  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4000    InvalidDecl = true;
4001    DeleteExpr(BitWidth);
4002    BitWidth = 0;
4003  }
4004
4005  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4006                                       Mutable);
4007  if (InvalidDecl)
4008    NewFD->setInvalidDecl();
4009
4010  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4011    Diag(Loc, diag::err_duplicate_member) << II;
4012    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4013    NewFD->setInvalidDecl();
4014  }
4015
4016  if (getLangOptions().CPlusPlus && !T->isPODType())
4017    cast<CXXRecordDecl>(Record)->setPOD(false);
4018
4019  // FIXME: We need to pass in the attributes given an AST
4020  // representation, not a parser representation.
4021  if (D)
4022    // FIXME: What to pass instead of TUScope?
4023    ProcessDeclAttributes(TUScope, NewFD, *D);
4024
4025  if (T.isObjCGCWeak())
4026    Diag(Loc, diag::warn_attribute_weak_on_field);
4027
4028  NewFD->setAccess(AS);
4029
4030  // C++ [dcl.init.aggr]p1:
4031  //   An aggregate is an array or a class (clause 9) with [...] no
4032  //   private or protected non-static data members (clause 11).
4033  // A POD must be an aggregate.
4034  if (getLangOptions().CPlusPlus &&
4035      (AS == AS_private || AS == AS_protected)) {
4036    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4037    CXXRecord->setAggregate(false);
4038    CXXRecord->setPOD(false);
4039  }
4040
4041  return NewFD;
4042}
4043
4044/// TranslateIvarVisibility - Translate visibility from a token ID to an
4045///  AST enum value.
4046static ObjCIvarDecl::AccessControl
4047TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4048  switch (ivarVisibility) {
4049  default: assert(0 && "Unknown visitibility kind");
4050  case tok::objc_private: return ObjCIvarDecl::Private;
4051  case tok::objc_public: return ObjCIvarDecl::Public;
4052  case tok::objc_protected: return ObjCIvarDecl::Protected;
4053  case tok::objc_package: return ObjCIvarDecl::Package;
4054  }
4055}
4056
4057/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4058/// in order to create an IvarDecl object for it.
4059Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4060                                SourceLocation DeclStart,
4061                                DeclPtrTy IntfDecl,
4062                                Declarator &D, ExprTy *BitfieldWidth,
4063                                tok::ObjCKeywordKind Visibility) {
4064
4065  IdentifierInfo *II = D.getIdentifier();
4066  Expr *BitWidth = (Expr*)BitfieldWidth;
4067  SourceLocation Loc = DeclStart;
4068  if (II) Loc = D.getIdentifierLoc();
4069
4070  // FIXME: Unnamed fields can be handled in various different ways, for
4071  // example, unnamed unions inject all members into the struct namespace!
4072
4073  QualType T = GetTypeForDeclarator(D, S);
4074
4075  if (BitWidth) {
4076    // 6.7.2.1p3, 6.7.2.1p4
4077    if (VerifyBitField(Loc, II, T, BitWidth)) {
4078      D.setInvalidType();
4079      DeleteExpr(BitWidth);
4080      BitWidth = 0;
4081    }
4082  } else {
4083    // Not a bitfield.
4084
4085    // validate II.
4086
4087  }
4088
4089  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4090  // than a variably modified type.
4091  if (T->isVariablyModifiedType()) {
4092    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4093    D.setInvalidType();
4094  }
4095
4096  // Get the visibility (access control) for this ivar.
4097  ObjCIvarDecl::AccessControl ac =
4098    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4099                                        : ObjCIvarDecl::None;
4100  // Must set ivar's DeclContext to its enclosing interface.
4101  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4102  DeclContext *EnclosingContext;
4103  if (ObjCImplementationDecl *IMPDecl =
4104      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4105    // Case of ivar declared in an implementation. Context is that of its class.
4106    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4107    assert(IDecl && "No class- ActOnIvar");
4108    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4109  }
4110  else
4111    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4112  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4113
4114  // Construct the decl.
4115  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4116                                             EnclosingContext, Loc, II, T,ac,
4117                                             (Expr *)BitfieldWidth);
4118
4119  if (II) {
4120    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4121    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4122        && !isa<TagDecl>(PrevDecl)) {
4123      Diag(Loc, diag::err_duplicate_member) << II;
4124      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4125      NewID->setInvalidDecl();
4126    }
4127  }
4128
4129  // Process attributes attached to the ivar.
4130  ProcessDeclAttributes(S, NewID, D);
4131
4132  if (D.isInvalidType())
4133    NewID->setInvalidDecl();
4134
4135  if (II) {
4136    // FIXME: When interfaces are DeclContexts, we'll need to add
4137    // these to the interface.
4138    S->AddDecl(DeclPtrTy::make(NewID));
4139    IdResolver.AddDecl(NewID);
4140  }
4141
4142  return DeclPtrTy::make(NewID);
4143}
4144
4145void Sema::ActOnFields(Scope* S,
4146                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4147                       DeclPtrTy *Fields, unsigned NumFields,
4148                       SourceLocation LBrac, SourceLocation RBrac,
4149                       AttributeList *Attr) {
4150  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4151  assert(EnclosingDecl && "missing record or interface decl");
4152
4153  // If the decl this is being inserted into is invalid, then it may be a
4154  // redeclaration or some other bogus case.  Don't try to add fields to it.
4155  if (EnclosingDecl->isInvalidDecl()) {
4156    // FIXME: Deallocate fields?
4157    return;
4158  }
4159
4160
4161  // Verify that all the fields are okay.
4162  unsigned NumNamedMembers = 0;
4163  llvm::SmallVector<FieldDecl*, 32> RecFields;
4164
4165  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4166  for (unsigned i = 0; i != NumFields; ++i) {
4167    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4168
4169    // Get the type for the field.
4170    Type *FDTy = FD->getType().getTypePtr();
4171
4172    if (!FD->isAnonymousStructOrUnion()) {
4173      // Remember all fields written by the user.
4174      RecFields.push_back(FD);
4175    }
4176
4177    // If the field is already invalid for some reason, don't emit more
4178    // diagnostics about it.
4179    if (FD->isInvalidDecl())
4180      continue;
4181
4182    // C99 6.7.2.1p2:
4183    //   A structure or union shall not contain a member with
4184    //   incomplete or function type (hence, a structure shall not
4185    //   contain an instance of itself, but may contain a pointer to
4186    //   an instance of itself), except that the last member of a
4187    //   structure with more than one named member may have incomplete
4188    //   array type; such a structure (and any union containing,
4189    //   possibly recursively, a member that is such a structure)
4190    //   shall not be a member of a structure or an element of an
4191    //   array.
4192    if (FDTy->isFunctionType()) {
4193      // Field declared as a function.
4194      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4195        << FD->getDeclName();
4196      FD->setInvalidDecl();
4197      EnclosingDecl->setInvalidDecl();
4198      continue;
4199    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4200               Record && Record->isStruct()) {
4201      // Flexible array member.
4202      if (NumNamedMembers < 1) {
4203        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4204          << FD->getDeclName();
4205        FD->setInvalidDecl();
4206        EnclosingDecl->setInvalidDecl();
4207        continue;
4208      }
4209      // Okay, we have a legal flexible array member at the end of the struct.
4210      if (Record)
4211        Record->setHasFlexibleArrayMember(true);
4212    } else if (!FDTy->isDependentType() &&
4213               RequireCompleteType(FD->getLocation(), FD->getType(),
4214                                   diag::err_field_incomplete)) {
4215      // Incomplete type
4216      FD->setInvalidDecl();
4217      EnclosingDecl->setInvalidDecl();
4218      continue;
4219    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4220      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4221        // If this is a member of a union, then entire union becomes "flexible".
4222        if (Record && Record->isUnion()) {
4223          Record->setHasFlexibleArrayMember(true);
4224        } else {
4225          // If this is a struct/class and this is not the last element, reject
4226          // it.  Note that GCC supports variable sized arrays in the middle of
4227          // structures.
4228          if (i != NumFields-1)
4229            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4230              << FD->getDeclName() << FD->getType();
4231          else {
4232            // We support flexible arrays at the end of structs in
4233            // other structs as an extension.
4234            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4235              << FD->getDeclName();
4236            if (Record)
4237              Record->setHasFlexibleArrayMember(true);
4238          }
4239        }
4240      }
4241    } else if (FDTy->isObjCInterfaceType()) {
4242      /// A field cannot be an Objective-c object
4243      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4244      FD->setInvalidDecl();
4245      EnclosingDecl->setInvalidDecl();
4246      continue;
4247    }
4248    // Keep track of the number of named members.
4249    if (FD->getIdentifier())
4250      ++NumNamedMembers;
4251  }
4252
4253  // Okay, we successfully defined 'Record'.
4254  if (Record) {
4255    Record->completeDefinition(Context);
4256  } else {
4257    ObjCIvarDecl **ClsFields =
4258      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4259    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4260      ID->setIVarList(ClsFields, RecFields.size(), Context);
4261      ID->setLocEnd(RBrac);
4262      // Add ivar's to class's DeclContext.
4263      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4264        ClsFields[i]->setLexicalDeclContext(ID);
4265        ID->addDecl(ClsFields[i]);
4266      }
4267      // Must enforce the rule that ivars in the base classes may not be
4268      // duplicates.
4269      if (ID->getSuperClass()) {
4270        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4271             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4272          ObjCIvarDecl* Ivar = (*IVI);
4273
4274          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4275            ObjCIvarDecl* prevIvar =
4276              ID->getSuperClass()->lookupInstanceVariable(II);
4277            if (prevIvar) {
4278              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4279              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4280            }
4281          }
4282        }
4283      }
4284    } else if (ObjCImplementationDecl *IMPDecl =
4285                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4286      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4287      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4288        // Ivar declared in @implementation never belongs to the implementation.
4289        // Only it is in implementation's lexical context.
4290        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4291      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4292    }
4293  }
4294
4295  if (Attr)
4296    ProcessDeclAttributeList(S, Record, Attr);
4297}
4298
4299EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4300                                          EnumConstantDecl *LastEnumConst,
4301                                          SourceLocation IdLoc,
4302                                          IdentifierInfo *Id,
4303                                          ExprArg val) {
4304  Expr *Val = (Expr *)val.get();
4305
4306  llvm::APSInt EnumVal(32);
4307  QualType EltTy;
4308  if (Val && !Val->isTypeDependent()) {
4309    // Make sure to promote the operand type to int.
4310    UsualUnaryConversions(Val);
4311    if (Val != val.get()) {
4312      val.release();
4313      val = Val;
4314    }
4315
4316    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4317    SourceLocation ExpLoc;
4318    if (!Val->isValueDependent() &&
4319        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4320      Val = 0;
4321    } else {
4322      EltTy = Val->getType();
4323    }
4324  }
4325
4326  if (!Val) {
4327    if (LastEnumConst) {
4328      // Assign the last value + 1.
4329      EnumVal = LastEnumConst->getInitVal();
4330      ++EnumVal;
4331
4332      // Check for overflow on increment.
4333      if (EnumVal < LastEnumConst->getInitVal())
4334        Diag(IdLoc, diag::warn_enum_value_overflow);
4335
4336      EltTy = LastEnumConst->getType();
4337    } else {
4338      // First value, set to zero.
4339      EltTy = Context.IntTy;
4340      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4341    }
4342  }
4343
4344  val.release();
4345  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4346                                  Val, EnumVal);
4347}
4348
4349
4350Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4351                                        DeclPtrTy lastEnumConst,
4352                                        SourceLocation IdLoc,
4353                                        IdentifierInfo *Id,
4354                                        SourceLocation EqualLoc, ExprTy *val) {
4355  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4356  EnumConstantDecl *LastEnumConst =
4357    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4358  Expr *Val = static_cast<Expr*>(val);
4359
4360  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4361  // we find one that is.
4362  S = getNonFieldDeclScope(S);
4363
4364  // Verify that there isn't already something declared with this name in this
4365  // scope.
4366  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4367  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4368    // Maybe we will complain about the shadowed template parameter.
4369    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4370    // Just pretend that we didn't see the previous declaration.
4371    PrevDecl = 0;
4372  }
4373
4374  if (PrevDecl) {
4375    // When in C++, we may get a TagDecl with the same name; in this case the
4376    // enum constant will 'hide' the tag.
4377    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4378           "Received TagDecl when not in C++!");
4379    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4380      if (isa<EnumConstantDecl>(PrevDecl))
4381        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4382      else
4383        Diag(IdLoc, diag::err_redefinition) << Id;
4384      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4385      if (Val) Val->Destroy(Context);
4386      return DeclPtrTy();
4387    }
4388  }
4389
4390  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4391                                            IdLoc, Id, Owned(Val));
4392
4393  // Register this decl in the current scope stack.
4394  if (New)
4395    PushOnScopeChains(New, S);
4396
4397  return DeclPtrTy::make(New);
4398}
4399
4400void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4401                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4402                         DeclPtrTy *Elements, unsigned NumElements) {
4403  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4404  QualType EnumType = Context.getTypeDeclType(Enum);
4405
4406  // TODO: If the result value doesn't fit in an int, it must be a long or long
4407  // long value.  ISO C does not support this, but GCC does as an extension,
4408  // emit a warning.
4409  unsigned IntWidth = Context.Target.getIntWidth();
4410
4411  // Verify that all the values are okay, compute the size of the values, and
4412  // reverse the list.
4413  unsigned NumNegativeBits = 0;
4414  unsigned NumPositiveBits = 0;
4415
4416  // Keep track of whether all elements have type int.
4417  bool AllElementsInt = true;
4418
4419  for (unsigned i = 0; i != NumElements; ++i) {
4420    EnumConstantDecl *ECD =
4421      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4422    if (!ECD) continue;  // Already issued a diagnostic.
4423
4424    // If the enum value doesn't fit in an int, emit an extension warning.
4425    const llvm::APSInt &InitVal = ECD->getInitVal();
4426    assert(InitVal.getBitWidth() >= IntWidth &&
4427           "Should have promoted value to int");
4428    if (InitVal.getBitWidth() > IntWidth) {
4429      llvm::APSInt V(InitVal);
4430      V.trunc(IntWidth);
4431      V.extend(InitVal.getBitWidth());
4432      if (V != InitVal)
4433        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4434          << InitVal.toString(10);
4435    }
4436
4437    // Keep track of the size of positive and negative values.
4438    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4439      NumPositiveBits = std::max(NumPositiveBits,
4440                                 (unsigned)InitVal.getActiveBits());
4441    else
4442      NumNegativeBits = std::max(NumNegativeBits,
4443                                 (unsigned)InitVal.getMinSignedBits());
4444
4445    // Keep track of whether every enum element has type int (very commmon).
4446    if (AllElementsInt)
4447      AllElementsInt = ECD->getType() == Context.IntTy;
4448  }
4449
4450  // Figure out the type that should be used for this enum.
4451  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4452  QualType BestType;
4453  unsigned BestWidth;
4454
4455  if (NumNegativeBits) {
4456    // If there is a negative value, figure out the smallest integer type (of
4457    // int/long/longlong) that fits.
4458    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4459      BestType = Context.IntTy;
4460      BestWidth = IntWidth;
4461    } else {
4462      BestWidth = Context.Target.getLongWidth();
4463
4464      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4465        BestType = Context.LongTy;
4466      else {
4467        BestWidth = Context.Target.getLongLongWidth();
4468
4469        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4470          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4471        BestType = Context.LongLongTy;
4472      }
4473    }
4474  } else {
4475    // If there is no negative value, figure out which of uint, ulong, ulonglong
4476    // fits.
4477    if (NumPositiveBits <= IntWidth) {
4478      BestType = Context.UnsignedIntTy;
4479      BestWidth = IntWidth;
4480    } else if (NumPositiveBits <=
4481               (BestWidth = Context.Target.getLongWidth())) {
4482      BestType = Context.UnsignedLongTy;
4483    } else {
4484      BestWidth = Context.Target.getLongLongWidth();
4485      assert(NumPositiveBits <= BestWidth &&
4486             "How could an initializer get larger than ULL?");
4487      BestType = Context.UnsignedLongLongTy;
4488    }
4489  }
4490
4491  // Loop over all of the enumerator constants, changing their types to match
4492  // the type of the enum if needed.
4493  for (unsigned i = 0; i != NumElements; ++i) {
4494    EnumConstantDecl *ECD =
4495      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4496    if (!ECD) continue;  // Already issued a diagnostic.
4497
4498    // Standard C says the enumerators have int type, but we allow, as an
4499    // extension, the enumerators to be larger than int size.  If each
4500    // enumerator value fits in an int, type it as an int, otherwise type it the
4501    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4502    // that X has type 'int', not 'unsigned'.
4503    if (ECD->getType() == Context.IntTy) {
4504      // Make sure the init value is signed.
4505      llvm::APSInt IV = ECD->getInitVal();
4506      IV.setIsSigned(true);
4507      ECD->setInitVal(IV);
4508
4509      if (getLangOptions().CPlusPlus)
4510        // C++ [dcl.enum]p4: Following the closing brace of an
4511        // enum-specifier, each enumerator has the type of its
4512        // enumeration.
4513        ECD->setType(EnumType);
4514      continue;  // Already int type.
4515    }
4516
4517    // Determine whether the value fits into an int.
4518    llvm::APSInt InitVal = ECD->getInitVal();
4519    bool FitsInInt;
4520    if (InitVal.isUnsigned() || !InitVal.isNegative())
4521      FitsInInt = InitVal.getActiveBits() < IntWidth;
4522    else
4523      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4524
4525    // If it fits into an integer type, force it.  Otherwise force it to match
4526    // the enum decl type.
4527    QualType NewTy;
4528    unsigned NewWidth;
4529    bool NewSign;
4530    if (FitsInInt) {
4531      NewTy = Context.IntTy;
4532      NewWidth = IntWidth;
4533      NewSign = true;
4534    } else if (ECD->getType() == BestType) {
4535      // Already the right type!
4536      if (getLangOptions().CPlusPlus)
4537        // C++ [dcl.enum]p4: Following the closing brace of an
4538        // enum-specifier, each enumerator has the type of its
4539        // enumeration.
4540        ECD->setType(EnumType);
4541      continue;
4542    } else {
4543      NewTy = BestType;
4544      NewWidth = BestWidth;
4545      NewSign = BestType->isSignedIntegerType();
4546    }
4547
4548    // Adjust the APSInt value.
4549    InitVal.extOrTrunc(NewWidth);
4550    InitVal.setIsSigned(NewSign);
4551    ECD->setInitVal(InitVal);
4552
4553    // Adjust the Expr initializer and type.
4554    if (ECD->getInitExpr())
4555      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4556                                                      /*isLvalue=*/false));
4557    if (getLangOptions().CPlusPlus)
4558      // C++ [dcl.enum]p4: Following the closing brace of an
4559      // enum-specifier, each enumerator has the type of its
4560      // enumeration.
4561      ECD->setType(EnumType);
4562    else
4563      ECD->setType(NewTy);
4564  }
4565
4566  Enum->completeDefinition(Context, BestType);
4567}
4568
4569Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4570                                            ExprArg expr) {
4571  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4572
4573  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4574                                                   Loc, AsmString);
4575  CurContext->addDecl(New);
4576  return DeclPtrTy::make(New);
4577}
4578
4579void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4580                             SourceLocation PragmaLoc,
4581                             SourceLocation NameLoc) {
4582  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4583
4584  // FIXME: This implementation is an ugly hack!
4585  if (PrevDecl) {
4586    PrevDecl->addAttr(::new (Context) WeakAttr());
4587    return;
4588  }
4589  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4590  return;
4591}
4592
4593void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4594                                IdentifierInfo* AliasName,
4595                                SourceLocation PragmaLoc,
4596                                SourceLocation NameLoc,
4597                                SourceLocation AliasNameLoc) {
4598  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4599
4600  // FIXME: This implementation is an ugly hack!
4601  if (PrevDecl) {
4602    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4603    PrevDecl->addAttr(::new (Context) WeakAttr());
4604    return;
4605  }
4606  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4607  return;
4608}
4609