SemaDecl.cpp revision 96db329b3a982ac83c700c4469a3f618dc53cb42
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679           UnqualifiedDiag = diag::err_unknown_typename_suggest;
680           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681         }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  if (!getLangOpts().ObjC1) {
862    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
863    if ((NextToken.is(tok::identifier) ||
864         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
865        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
866      TypeDecl *Type = Result.getAsSingle<TypeDecl>();
867      DiagnoseUseOfDecl(Type, NameLoc);
868      QualType T = Context.getTypeDeclType(Type);
869      if (SS.isNotEmpty())
870        return buildNestedType(*this, SS, T, NameLoc);
871      return ParsedType::make(T);
872    }
873  }
874
875  if (FirstDecl->isCXXClassMember())
876    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
877
878  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
879  return BuildDeclarationNameExpr(SS, Result, ADL);
880}
881
882// Determines the context to return to after temporarily entering a
883// context.  This depends in an unnecessarily complicated way on the
884// exact ordering of callbacks from the parser.
885DeclContext *Sema::getContainingDC(DeclContext *DC) {
886
887  // Functions defined inline within classes aren't parsed until we've
888  // finished parsing the top-level class, so the top-level class is
889  // the context we'll need to return to.
890  if (isa<FunctionDecl>(DC)) {
891    DC = DC->getLexicalParent();
892
893    // A function not defined within a class will always return to its
894    // lexical context.
895    if (!isa<CXXRecordDecl>(DC))
896      return DC;
897
898    // A C++ inline method/friend is parsed *after* the topmost class
899    // it was declared in is fully parsed ("complete");  the topmost
900    // class is the context we need to return to.
901    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
902      DC = RD;
903
904    // Return the declaration context of the topmost class the inline method is
905    // declared in.
906    return DC;
907  }
908
909  return DC->getLexicalParent();
910}
911
912void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
913  assert(getContainingDC(DC) == CurContext &&
914      "The next DeclContext should be lexically contained in the current one.");
915  CurContext = DC;
916  S->setEntity(DC);
917}
918
919void Sema::PopDeclContext() {
920  assert(CurContext && "DeclContext imbalance!");
921
922  CurContext = getContainingDC(CurContext);
923  assert(CurContext && "Popped translation unit!");
924}
925
926/// EnterDeclaratorContext - Used when we must lookup names in the context
927/// of a declarator's nested name specifier.
928///
929void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
930  // C++0x [basic.lookup.unqual]p13:
931  //   A name used in the definition of a static data member of class
932  //   X (after the qualified-id of the static member) is looked up as
933  //   if the name was used in a member function of X.
934  // C++0x [basic.lookup.unqual]p14:
935  //   If a variable member of a namespace is defined outside of the
936  //   scope of its namespace then any name used in the definition of
937  //   the variable member (after the declarator-id) is looked up as
938  //   if the definition of the variable member occurred in its
939  //   namespace.
940  // Both of these imply that we should push a scope whose context
941  // is the semantic context of the declaration.  We can't use
942  // PushDeclContext here because that context is not necessarily
943  // lexically contained in the current context.  Fortunately,
944  // the containing scope should have the appropriate information.
945
946  assert(!S->getEntity() && "scope already has entity");
947
948#ifndef NDEBUG
949  Scope *Ancestor = S->getParent();
950  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
951  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
952#endif
953
954  CurContext = DC;
955  S->setEntity(DC);
956}
957
958void Sema::ExitDeclaratorContext(Scope *S) {
959  assert(S->getEntity() == CurContext && "Context imbalance!");
960
961  // Switch back to the lexical context.  The safety of this is
962  // enforced by an assert in EnterDeclaratorContext.
963  Scope *Ancestor = S->getParent();
964  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
965  CurContext = (DeclContext*) Ancestor->getEntity();
966
967  // We don't need to do anything with the scope, which is going to
968  // disappear.
969}
970
971
972void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
973  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
974  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
975    // We assume that the caller has already called
976    // ActOnReenterTemplateScope
977    FD = TFD->getTemplatedDecl();
978  }
979  if (!FD)
980    return;
981
982  // Same implementation as PushDeclContext, but enters the context
983  // from the lexical parent, rather than the top-level class.
984  assert(CurContext == FD->getLexicalParent() &&
985    "The next DeclContext should be lexically contained in the current one.");
986  CurContext = FD;
987  S->setEntity(CurContext);
988
989  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
990    ParmVarDecl *Param = FD->getParamDecl(P);
991    // If the parameter has an identifier, then add it to the scope
992    if (Param->getIdentifier()) {
993      S->AddDecl(Param);
994      IdResolver.AddDecl(Param);
995    }
996  }
997}
998
999
1000void Sema::ActOnExitFunctionContext() {
1001  // Same implementation as PopDeclContext, but returns to the lexical parent,
1002  // rather than the top-level class.
1003  assert(CurContext && "DeclContext imbalance!");
1004  CurContext = CurContext->getLexicalParent();
1005  assert(CurContext && "Popped translation unit!");
1006}
1007
1008
1009/// \brief Determine whether we allow overloading of the function
1010/// PrevDecl with another declaration.
1011///
1012/// This routine determines whether overloading is possible, not
1013/// whether some new function is actually an overload. It will return
1014/// true in C++ (where we can always provide overloads) or, as an
1015/// extension, in C when the previous function is already an
1016/// overloaded function declaration or has the "overloadable"
1017/// attribute.
1018static bool AllowOverloadingOfFunction(LookupResult &Previous,
1019                                       ASTContext &Context) {
1020  if (Context.getLangOpts().CPlusPlus)
1021    return true;
1022
1023  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1024    return true;
1025
1026  return (Previous.getResultKind() == LookupResult::Found
1027          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1028}
1029
1030/// Add this decl to the scope shadowed decl chains.
1031void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1032  // Move up the scope chain until we find the nearest enclosing
1033  // non-transparent context. The declaration will be introduced into this
1034  // scope.
1035  while (S->getEntity() &&
1036         ((DeclContext *)S->getEntity())->isTransparentContext())
1037    S = S->getParent();
1038
1039  // Add scoped declarations into their context, so that they can be
1040  // found later. Declarations without a context won't be inserted
1041  // into any context.
1042  if (AddToContext)
1043    CurContext->addDecl(D);
1044
1045  // Out-of-line definitions shouldn't be pushed into scope in C++.
1046  // Out-of-line variable and function definitions shouldn't even in C.
1047  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1048      D->isOutOfLine() &&
1049      !D->getDeclContext()->getRedeclContext()->Equals(
1050        D->getLexicalDeclContext()->getRedeclContext()))
1051    return;
1052
1053  // Template instantiations should also not be pushed into scope.
1054  if (isa<FunctionDecl>(D) &&
1055      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1056    return;
1057
1058  // If this replaces anything in the current scope,
1059  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1060                               IEnd = IdResolver.end();
1061  for (; I != IEnd; ++I) {
1062    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1063      S->RemoveDecl(*I);
1064      IdResolver.RemoveDecl(*I);
1065
1066      // Should only need to replace one decl.
1067      break;
1068    }
1069  }
1070
1071  S->AddDecl(D);
1072
1073  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1074    // Implicitly-generated labels may end up getting generated in an order that
1075    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1076    // the label at the appropriate place in the identifier chain.
1077    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1078      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1079      if (IDC == CurContext) {
1080        if (!S->isDeclScope(*I))
1081          continue;
1082      } else if (IDC->Encloses(CurContext))
1083        break;
1084    }
1085
1086    IdResolver.InsertDeclAfter(I, D);
1087  } else {
1088    IdResolver.AddDecl(D);
1089  }
1090}
1091
1092void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1093  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1094    TUScope->AddDecl(D);
1095}
1096
1097bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1098                         bool ExplicitInstantiationOrSpecialization) {
1099  return IdResolver.isDeclInScope(D, Ctx, S,
1100                                  ExplicitInstantiationOrSpecialization);
1101}
1102
1103Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1104  DeclContext *TargetDC = DC->getPrimaryContext();
1105  do {
1106    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1107      if (ScopeDC->getPrimaryContext() == TargetDC)
1108        return S;
1109  } while ((S = S->getParent()));
1110
1111  return 0;
1112}
1113
1114static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1115                                            DeclContext*,
1116                                            ASTContext&);
1117
1118/// Filters out lookup results that don't fall within the given scope
1119/// as determined by isDeclInScope.
1120void Sema::FilterLookupForScope(LookupResult &R,
1121                                DeclContext *Ctx, Scope *S,
1122                                bool ConsiderLinkage,
1123                                bool ExplicitInstantiationOrSpecialization) {
1124  LookupResult::Filter F = R.makeFilter();
1125  while (F.hasNext()) {
1126    NamedDecl *D = F.next();
1127
1128    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1129      continue;
1130
1131    if (ConsiderLinkage &&
1132        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1133      continue;
1134
1135    F.erase();
1136  }
1137
1138  F.done();
1139}
1140
1141static bool isUsingDecl(NamedDecl *D) {
1142  return isa<UsingShadowDecl>(D) ||
1143         isa<UnresolvedUsingTypenameDecl>(D) ||
1144         isa<UnresolvedUsingValueDecl>(D);
1145}
1146
1147/// Removes using shadow declarations from the lookup results.
1148static void RemoveUsingDecls(LookupResult &R) {
1149  LookupResult::Filter F = R.makeFilter();
1150  while (F.hasNext())
1151    if (isUsingDecl(F.next()))
1152      F.erase();
1153
1154  F.done();
1155}
1156
1157/// \brief Check for this common pattern:
1158/// @code
1159/// class S {
1160///   S(const S&); // DO NOT IMPLEMENT
1161///   void operator=(const S&); // DO NOT IMPLEMENT
1162/// };
1163/// @endcode
1164static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1165  // FIXME: Should check for private access too but access is set after we get
1166  // the decl here.
1167  if (D->doesThisDeclarationHaveABody())
1168    return false;
1169
1170  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1171    return CD->isCopyConstructor();
1172  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1173    return Method->isCopyAssignmentOperator();
1174  return false;
1175}
1176
1177// We need this to handle
1178//
1179// typedef struct {
1180//   void *foo() { return 0; }
1181// } A;
1182//
1183// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1184// for example. If 'A', foo will have external linkage. If we have '*A',
1185// foo will have no linkage. Since we can't know untill we get to the end
1186// of the typedef, this function finds out if D might have non external linkage.
1187// Callers should verify at the end of the TU if it D has external linkage or
1188// not.
1189bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1190  const DeclContext *DC = D->getDeclContext();
1191  while (!DC->isTranslationUnit()) {
1192    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1193      if (!RD->hasNameForLinkage())
1194        return true;
1195    }
1196    DC = DC->getParent();
1197  }
1198
1199  return !D->hasExternalLinkage();
1200}
1201
1202bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1203  assert(D);
1204
1205  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1206    return false;
1207
1208  // Ignore class templates.
1209  if (D->getDeclContext()->isDependentContext() ||
1210      D->getLexicalDeclContext()->isDependentContext())
1211    return false;
1212
1213  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1214    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1215      return false;
1216
1217    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1218      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1219        return false;
1220    } else {
1221      // 'static inline' functions are used in headers; don't warn.
1222      if (FD->getStorageClass() == SC_Static &&
1223          FD->isInlineSpecified())
1224        return false;
1225    }
1226
1227    if (FD->doesThisDeclarationHaveABody() &&
1228        Context.DeclMustBeEmitted(FD))
1229      return false;
1230  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1231    // Don't warn on variables of const-qualified or reference type, since their
1232    // values can be used even if though they're not odr-used, and because const
1233    // qualified variables can appear in headers in contexts where they're not
1234    // intended to be used.
1235    // FIXME: Use more principled rules for these exemptions.
1236    if (!VD->isFileVarDecl() ||
1237        VD->getType().isConstQualified() ||
1238        VD->getType()->isReferenceType() ||
1239        Context.DeclMustBeEmitted(VD))
1240      return false;
1241
1242    if (VD->isStaticDataMember() &&
1243        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1244      return false;
1245
1246  } else {
1247    return false;
1248  }
1249
1250  // Only warn for unused decls internal to the translation unit.
1251  return mightHaveNonExternalLinkage(D);
1252}
1253
1254void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1255  if (!D)
1256    return;
1257
1258  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1259    const FunctionDecl *First = FD->getFirstDeclaration();
1260    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1261      return; // First should already be in the vector.
1262  }
1263
1264  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1265    const VarDecl *First = VD->getFirstDeclaration();
1266    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1267      return; // First should already be in the vector.
1268  }
1269
1270  if (ShouldWarnIfUnusedFileScopedDecl(D))
1271    UnusedFileScopedDecls.push_back(D);
1272}
1273
1274static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1275  if (D->isInvalidDecl())
1276    return false;
1277
1278  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1279    return false;
1280
1281  if (isa<LabelDecl>(D))
1282    return true;
1283
1284  // White-list anything that isn't a local variable.
1285  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1286      !D->getDeclContext()->isFunctionOrMethod())
1287    return false;
1288
1289  // Types of valid local variables should be complete, so this should succeed.
1290  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1291
1292    // White-list anything with an __attribute__((unused)) type.
1293    QualType Ty = VD->getType();
1294
1295    // Only look at the outermost level of typedef.
1296    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1297      if (TT->getDecl()->hasAttr<UnusedAttr>())
1298        return false;
1299    }
1300
1301    // If we failed to complete the type for some reason, or if the type is
1302    // dependent, don't diagnose the variable.
1303    if (Ty->isIncompleteType() || Ty->isDependentType())
1304      return false;
1305
1306    if (const TagType *TT = Ty->getAs<TagType>()) {
1307      const TagDecl *Tag = TT->getDecl();
1308      if (Tag->hasAttr<UnusedAttr>())
1309        return false;
1310
1311      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1312        if (!RD->hasTrivialDestructor())
1313          return false;
1314
1315        if (const Expr *Init = VD->getInit()) {
1316          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1317            Init = Cleanups->getSubExpr();
1318          const CXXConstructExpr *Construct =
1319            dyn_cast<CXXConstructExpr>(Init);
1320          if (Construct && !Construct->isElidable()) {
1321            CXXConstructorDecl *CD = Construct->getConstructor();
1322            if (!CD->isTrivial())
1323              return false;
1324          }
1325        }
1326      }
1327    }
1328
1329    // TODO: __attribute__((unused)) templates?
1330  }
1331
1332  return true;
1333}
1334
1335static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1336                                     FixItHint &Hint) {
1337  if (isa<LabelDecl>(D)) {
1338    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1339                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1340    if (AfterColon.isInvalid())
1341      return;
1342    Hint = FixItHint::CreateRemoval(CharSourceRange::
1343                                    getCharRange(D->getLocStart(), AfterColon));
1344  }
1345  return;
1346}
1347
1348/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1349/// unless they are marked attr(unused).
1350void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1351  FixItHint Hint;
1352  if (!ShouldDiagnoseUnusedDecl(D))
1353    return;
1354
1355  GenerateFixForUnusedDecl(D, Context, Hint);
1356
1357  unsigned DiagID;
1358  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1359    DiagID = diag::warn_unused_exception_param;
1360  else if (isa<LabelDecl>(D))
1361    DiagID = diag::warn_unused_label;
1362  else
1363    DiagID = diag::warn_unused_variable;
1364
1365  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1366}
1367
1368static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1369  // Verify that we have no forward references left.  If so, there was a goto
1370  // or address of a label taken, but no definition of it.  Label fwd
1371  // definitions are indicated with a null substmt.
1372  if (L->getStmt() == 0)
1373    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1374}
1375
1376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1377  if (S->decl_empty()) return;
1378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1379         "Scope shouldn't contain decls!");
1380
1381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1382       I != E; ++I) {
1383    Decl *TmpD = (*I);
1384    assert(TmpD && "This decl didn't get pushed??");
1385
1386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1387    NamedDecl *D = cast<NamedDecl>(TmpD);
1388
1389    if (!D->getDeclName()) continue;
1390
1391    // Diagnose unused variables in this scope.
1392    if (!S->hasErrorOccurred())
1393      DiagnoseUnusedDecl(D);
1394
1395    // If this was a forward reference to a label, verify it was defined.
1396    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1397      CheckPoppedLabel(LD, *this);
1398
1399    // Remove this name from our lexical scope.
1400    IdResolver.RemoveDecl(D);
1401  }
1402}
1403
1404void Sema::ActOnStartFunctionDeclarator() {
1405  ++InFunctionDeclarator;
1406}
1407
1408void Sema::ActOnEndFunctionDeclarator() {
1409  assert(InFunctionDeclarator);
1410  --InFunctionDeclarator;
1411}
1412
1413/// \brief Look for an Objective-C class in the translation unit.
1414///
1415/// \param Id The name of the Objective-C class we're looking for. If
1416/// typo-correction fixes this name, the Id will be updated
1417/// to the fixed name.
1418///
1419/// \param IdLoc The location of the name in the translation unit.
1420///
1421/// \param DoTypoCorrection If true, this routine will attempt typo correction
1422/// if there is no class with the given name.
1423///
1424/// \returns The declaration of the named Objective-C class, or NULL if the
1425/// class could not be found.
1426ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1427                                              SourceLocation IdLoc,
1428                                              bool DoTypoCorrection) {
1429  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1430  // creation from this context.
1431  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1432
1433  if (!IDecl && DoTypoCorrection) {
1434    // Perform typo correction at the given location, but only if we
1435    // find an Objective-C class name.
1436    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1437    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1438                                       LookupOrdinaryName, TUScope, NULL,
1439                                       Validator)) {
1440      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1441      Diag(IdLoc, diag::err_undef_interface_suggest)
1442        << Id << IDecl->getDeclName()
1443        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1444      Diag(IDecl->getLocation(), diag::note_previous_decl)
1445        << IDecl->getDeclName();
1446
1447      Id = IDecl->getIdentifier();
1448    }
1449  }
1450  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1451  // This routine must always return a class definition, if any.
1452  if (Def && Def->getDefinition())
1453      Def = Def->getDefinition();
1454  return Def;
1455}
1456
1457/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1458/// from S, where a non-field would be declared. This routine copes
1459/// with the difference between C and C++ scoping rules in structs and
1460/// unions. For example, the following code is well-formed in C but
1461/// ill-formed in C++:
1462/// @code
1463/// struct S6 {
1464///   enum { BAR } e;
1465/// };
1466///
1467/// void test_S6() {
1468///   struct S6 a;
1469///   a.e = BAR;
1470/// }
1471/// @endcode
1472/// For the declaration of BAR, this routine will return a different
1473/// scope. The scope S will be the scope of the unnamed enumeration
1474/// within S6. In C++, this routine will return the scope associated
1475/// with S6, because the enumeration's scope is a transparent
1476/// context but structures can contain non-field names. In C, this
1477/// routine will return the translation unit scope, since the
1478/// enumeration's scope is a transparent context and structures cannot
1479/// contain non-field names.
1480Scope *Sema::getNonFieldDeclScope(Scope *S) {
1481  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1482         (S->getEntity() &&
1483          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1484         (S->isClassScope() && !getLangOpts().CPlusPlus))
1485    S = S->getParent();
1486  return S;
1487}
1488
1489/// \brief Looks up the declaration of "struct objc_super" and
1490/// saves it for later use in building builtin declaration of
1491/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1492/// pre-existing declaration exists no action takes place.
1493static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1494                                        IdentifierInfo *II) {
1495  if (!II->isStr("objc_msgSendSuper"))
1496    return;
1497  ASTContext &Context = ThisSema.Context;
1498
1499  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1500                      SourceLocation(), Sema::LookupTagName);
1501  ThisSema.LookupName(Result, S);
1502  if (Result.getResultKind() == LookupResult::Found)
1503    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1504      Context.setObjCSuperType(Context.getTagDeclType(TD));
1505}
1506
1507/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1508/// file scope.  lazily create a decl for it. ForRedeclaration is true
1509/// if we're creating this built-in in anticipation of redeclaring the
1510/// built-in.
1511NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1512                                     Scope *S, bool ForRedeclaration,
1513                                     SourceLocation Loc) {
1514  LookupPredefedObjCSuperType(*this, S, II);
1515
1516  Builtin::ID BID = (Builtin::ID)bid;
1517
1518  ASTContext::GetBuiltinTypeError Error;
1519  QualType R = Context.GetBuiltinType(BID, Error);
1520  switch (Error) {
1521  case ASTContext::GE_None:
1522    // Okay
1523    break;
1524
1525  case ASTContext::GE_Missing_stdio:
1526    if (ForRedeclaration)
1527      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1528        << Context.BuiltinInfo.GetName(BID);
1529    return 0;
1530
1531  case ASTContext::GE_Missing_setjmp:
1532    if (ForRedeclaration)
1533      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1534        << Context.BuiltinInfo.GetName(BID);
1535    return 0;
1536
1537  case ASTContext::GE_Missing_ucontext:
1538    if (ForRedeclaration)
1539      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1540        << Context.BuiltinInfo.GetName(BID);
1541    return 0;
1542  }
1543
1544  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1545    Diag(Loc, diag::ext_implicit_lib_function_decl)
1546      << Context.BuiltinInfo.GetName(BID)
1547      << R;
1548    if (Context.BuiltinInfo.getHeaderName(BID) &&
1549        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1550          != DiagnosticsEngine::Ignored)
1551      Diag(Loc, diag::note_please_include_header)
1552        << Context.BuiltinInfo.getHeaderName(BID)
1553        << Context.BuiltinInfo.GetName(BID);
1554  }
1555
1556  FunctionDecl *New = FunctionDecl::Create(Context,
1557                                           Context.getTranslationUnitDecl(),
1558                                           Loc, Loc, II, R, /*TInfo=*/0,
1559                                           SC_Extern,
1560                                           SC_None, false,
1561                                           /*hasPrototype=*/true);
1562  New->setImplicit();
1563
1564  // Create Decl objects for each parameter, adding them to the
1565  // FunctionDecl.
1566  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1567    SmallVector<ParmVarDecl*, 16> Params;
1568    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1569      ParmVarDecl *parm =
1570        ParmVarDecl::Create(Context, New, SourceLocation(),
1571                            SourceLocation(), 0,
1572                            FT->getArgType(i), /*TInfo=*/0,
1573                            SC_None, SC_None, 0);
1574      parm->setScopeInfo(0, i);
1575      Params.push_back(parm);
1576    }
1577    New->setParams(Params);
1578  }
1579
1580  AddKnownFunctionAttributes(New);
1581
1582  // TUScope is the translation-unit scope to insert this function into.
1583  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1584  // relate Scopes to DeclContexts, and probably eliminate CurContext
1585  // entirely, but we're not there yet.
1586  DeclContext *SavedContext = CurContext;
1587  CurContext = Context.getTranslationUnitDecl();
1588  PushOnScopeChains(New, TUScope);
1589  CurContext = SavedContext;
1590  return New;
1591}
1592
1593/// \brief Filter out any previous declarations that the given declaration
1594/// should not consider because they are not permitted to conflict, e.g.,
1595/// because they come from hidden sub-modules and do not refer to the same
1596/// entity.
1597static void filterNonConflictingPreviousDecls(ASTContext &context,
1598                                              NamedDecl *decl,
1599                                              LookupResult &previous){
1600  // This is only interesting when modules are enabled.
1601  if (!context.getLangOpts().Modules)
1602    return;
1603
1604  // Empty sets are uninteresting.
1605  if (previous.empty())
1606    return;
1607
1608  // If this declaration has external
1609  bool hasExternalLinkage = decl->hasExternalLinkage();
1610
1611  LookupResult::Filter filter = previous.makeFilter();
1612  while (filter.hasNext()) {
1613    NamedDecl *old = filter.next();
1614
1615    // Non-hidden declarations are never ignored.
1616    if (!old->isHidden())
1617      continue;
1618
1619    // If either has no-external linkage, ignore the old declaration.
1620    if (!hasExternalLinkage || old->getLinkage() != ExternalLinkage)
1621      filter.erase();
1622  }
1623
1624  filter.done();
1625}
1626
1627bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1628  QualType OldType;
1629  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1630    OldType = OldTypedef->getUnderlyingType();
1631  else
1632    OldType = Context.getTypeDeclType(Old);
1633  QualType NewType = New->getUnderlyingType();
1634
1635  if (NewType->isVariablyModifiedType()) {
1636    // Must not redefine a typedef with a variably-modified type.
1637    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1638    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1639      << Kind << NewType;
1640    if (Old->getLocation().isValid())
1641      Diag(Old->getLocation(), diag::note_previous_definition);
1642    New->setInvalidDecl();
1643    return true;
1644  }
1645
1646  if (OldType != NewType &&
1647      !OldType->isDependentType() &&
1648      !NewType->isDependentType() &&
1649      !Context.hasSameType(OldType, NewType)) {
1650    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1651    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1652      << Kind << NewType << OldType;
1653    if (Old->getLocation().isValid())
1654      Diag(Old->getLocation(), diag::note_previous_definition);
1655    New->setInvalidDecl();
1656    return true;
1657  }
1658  return false;
1659}
1660
1661/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1662/// same name and scope as a previous declaration 'Old'.  Figure out
1663/// how to resolve this situation, merging decls or emitting
1664/// diagnostics as appropriate. If there was an error, set New to be invalid.
1665///
1666void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1667  // If the new decl is known invalid already, don't bother doing any
1668  // merging checks.
1669  if (New->isInvalidDecl()) return;
1670
1671  // Allow multiple definitions for ObjC built-in typedefs.
1672  // FIXME: Verify the underlying types are equivalent!
1673  if (getLangOpts().ObjC1) {
1674    const IdentifierInfo *TypeID = New->getIdentifier();
1675    switch (TypeID->getLength()) {
1676    default: break;
1677    case 2:
1678      {
1679        if (!TypeID->isStr("id"))
1680          break;
1681        QualType T = New->getUnderlyingType();
1682        if (!T->isPointerType())
1683          break;
1684        if (!T->isVoidPointerType()) {
1685          QualType PT = T->getAs<PointerType>()->getPointeeType();
1686          if (!PT->isStructureType())
1687            break;
1688        }
1689        Context.setObjCIdRedefinitionType(T);
1690        // Install the built-in type for 'id', ignoring the current definition.
1691        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1692        return;
1693      }
1694    case 5:
1695      if (!TypeID->isStr("Class"))
1696        break;
1697      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1698      // Install the built-in type for 'Class', ignoring the current definition.
1699      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1700      return;
1701    case 3:
1702      if (!TypeID->isStr("SEL"))
1703        break;
1704      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1705      // Install the built-in type for 'SEL', ignoring the current definition.
1706      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1707      return;
1708    }
1709    // Fall through - the typedef name was not a builtin type.
1710  }
1711
1712  // Verify the old decl was also a type.
1713  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1714  if (!Old) {
1715    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1716      << New->getDeclName();
1717
1718    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1719    if (OldD->getLocation().isValid())
1720      Diag(OldD->getLocation(), diag::note_previous_definition);
1721
1722    return New->setInvalidDecl();
1723  }
1724
1725  // If the old declaration is invalid, just give up here.
1726  if (Old->isInvalidDecl())
1727    return New->setInvalidDecl();
1728
1729  // If the typedef types are not identical, reject them in all languages and
1730  // with any extensions enabled.
1731  if (isIncompatibleTypedef(Old, New))
1732    return;
1733
1734  // The types match.  Link up the redeclaration chain if the old
1735  // declaration was a typedef.
1736  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1737    New->setPreviousDeclaration(Typedef);
1738
1739  if (getLangOpts().MicrosoftExt)
1740    return;
1741
1742  if (getLangOpts().CPlusPlus) {
1743    // C++ [dcl.typedef]p2:
1744    //   In a given non-class scope, a typedef specifier can be used to
1745    //   redefine the name of any type declared in that scope to refer
1746    //   to the type to which it already refers.
1747    if (!isa<CXXRecordDecl>(CurContext))
1748      return;
1749
1750    // C++0x [dcl.typedef]p4:
1751    //   In a given class scope, a typedef specifier can be used to redefine
1752    //   any class-name declared in that scope that is not also a typedef-name
1753    //   to refer to the type to which it already refers.
1754    //
1755    // This wording came in via DR424, which was a correction to the
1756    // wording in DR56, which accidentally banned code like:
1757    //
1758    //   struct S {
1759    //     typedef struct A { } A;
1760    //   };
1761    //
1762    // in the C++03 standard. We implement the C++0x semantics, which
1763    // allow the above but disallow
1764    //
1765    //   struct S {
1766    //     typedef int I;
1767    //     typedef int I;
1768    //   };
1769    //
1770    // since that was the intent of DR56.
1771    if (!isa<TypedefNameDecl>(Old))
1772      return;
1773
1774    Diag(New->getLocation(), diag::err_redefinition)
1775      << New->getDeclName();
1776    Diag(Old->getLocation(), diag::note_previous_definition);
1777    return New->setInvalidDecl();
1778  }
1779
1780  // Modules always permit redefinition of typedefs, as does C11.
1781  if (getLangOpts().Modules || getLangOpts().C11)
1782    return;
1783
1784  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1785  // is normally mapped to an error, but can be controlled with
1786  // -Wtypedef-redefinition.  If either the original or the redefinition is
1787  // in a system header, don't emit this for compatibility with GCC.
1788  if (getDiagnostics().getSuppressSystemWarnings() &&
1789      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1790       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1791    return;
1792
1793  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1794    << New->getDeclName();
1795  Diag(Old->getLocation(), diag::note_previous_definition);
1796  return;
1797}
1798
1799/// DeclhasAttr - returns true if decl Declaration already has the target
1800/// attribute.
1801static bool
1802DeclHasAttr(const Decl *D, const Attr *A) {
1803  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1804  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1805  // responsible for making sure they are consistent.
1806  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1807  if (AA)
1808    return false;
1809
1810  // The following thread safety attributes can also be duplicated.
1811  switch (A->getKind()) {
1812    case attr::ExclusiveLocksRequired:
1813    case attr::SharedLocksRequired:
1814    case attr::LocksExcluded:
1815    case attr::ExclusiveLockFunction:
1816    case attr::SharedLockFunction:
1817    case attr::UnlockFunction:
1818    case attr::ExclusiveTrylockFunction:
1819    case attr::SharedTrylockFunction:
1820    case attr::GuardedBy:
1821    case attr::PtGuardedBy:
1822    case attr::AcquiredBefore:
1823    case attr::AcquiredAfter:
1824      return false;
1825    default:
1826      ;
1827  }
1828
1829  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1830  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1831  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1832    if ((*i)->getKind() == A->getKind()) {
1833      if (Ann) {
1834        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1835          return true;
1836        continue;
1837      }
1838      // FIXME: Don't hardcode this check
1839      if (OA && isa<OwnershipAttr>(*i))
1840        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1841      return true;
1842    }
1843
1844  return false;
1845}
1846
1847static bool isAttributeTargetADefinition(Decl *D) {
1848  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1849    return VD->isThisDeclarationADefinition();
1850  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1851    return TD->isCompleteDefinition() || TD->isBeingDefined();
1852  return true;
1853}
1854
1855/// Merge alignment attributes from \p Old to \p New, taking into account the
1856/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1857///
1858/// \return \c true if any attributes were added to \p New.
1859static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1860  // Look for alignas attributes on Old, and pick out whichever attribute
1861  // specifies the strictest alignment requirement.
1862  AlignedAttr *OldAlignasAttr = 0;
1863  AlignedAttr *OldStrictestAlignAttr = 0;
1864  unsigned OldAlign = 0;
1865  for (specific_attr_iterator<AlignedAttr>
1866         I = Old->specific_attr_begin<AlignedAttr>(),
1867         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1868    // FIXME: We have no way of representing inherited dependent alignments
1869    // in a case like:
1870    //   template<int A, int B> struct alignas(A) X;
1871    //   template<int A, int B> struct alignas(B) X {};
1872    // For now, we just ignore any alignas attributes which are not on the
1873    // definition in such a case.
1874    if (I->isAlignmentDependent())
1875      return false;
1876
1877    if (I->isAlignas())
1878      OldAlignasAttr = *I;
1879
1880    unsigned Align = I->getAlignment(S.Context);
1881    if (Align > OldAlign) {
1882      OldAlign = Align;
1883      OldStrictestAlignAttr = *I;
1884    }
1885  }
1886
1887  // Look for alignas attributes on New.
1888  AlignedAttr *NewAlignasAttr = 0;
1889  unsigned NewAlign = 0;
1890  for (specific_attr_iterator<AlignedAttr>
1891         I = New->specific_attr_begin<AlignedAttr>(),
1892         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1893    if (I->isAlignmentDependent())
1894      return false;
1895
1896    if (I->isAlignas())
1897      NewAlignasAttr = *I;
1898
1899    unsigned Align = I->getAlignment(S.Context);
1900    if (Align > NewAlign)
1901      NewAlign = Align;
1902  }
1903
1904  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1905    // Both declarations have 'alignas' attributes. We require them to match.
1906    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1907    // fall short. (If two declarations both have alignas, they must both match
1908    // every definition, and so must match each other if there is a definition.)
1909
1910    // If either declaration only contains 'alignas(0)' specifiers, then it
1911    // specifies the natural alignment for the type.
1912    if (OldAlign == 0 || NewAlign == 0) {
1913      QualType Ty;
1914      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1915        Ty = VD->getType();
1916      else
1917        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1918
1919      if (OldAlign == 0)
1920        OldAlign = S.Context.getTypeAlign(Ty);
1921      if (NewAlign == 0)
1922        NewAlign = S.Context.getTypeAlign(Ty);
1923    }
1924
1925    if (OldAlign != NewAlign) {
1926      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1927        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1928        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1929      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1930    }
1931  }
1932
1933  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1934    // C++11 [dcl.align]p6:
1935    //   if any declaration of an entity has an alignment-specifier,
1936    //   every defining declaration of that entity shall specify an
1937    //   equivalent alignment.
1938    // C11 6.7.5/7:
1939    //   If the definition of an object does not have an alignment
1940    //   specifier, any other declaration of that object shall also
1941    //   have no alignment specifier.
1942    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1943      << OldAlignasAttr->isC11();
1944    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1945      << OldAlignasAttr->isC11();
1946  }
1947
1948  bool AnyAdded = false;
1949
1950  // Ensure we have an attribute representing the strictest alignment.
1951  if (OldAlign > NewAlign) {
1952    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1953    Clone->setInherited(true);
1954    New->addAttr(Clone);
1955    AnyAdded = true;
1956  }
1957
1958  // Ensure we have an alignas attribute if the old declaration had one.
1959  if (OldAlignasAttr && !NewAlignasAttr &&
1960      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1961    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1962    Clone->setInherited(true);
1963    New->addAttr(Clone);
1964    AnyAdded = true;
1965  }
1966
1967  return AnyAdded;
1968}
1969
1970static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1971                               bool Override) {
1972  InheritableAttr *NewAttr = NULL;
1973  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1974  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1975    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1976                                      AA->getIntroduced(), AA->getDeprecated(),
1977                                      AA->getObsoleted(), AA->getUnavailable(),
1978                                      AA->getMessage(), Override,
1979                                      AttrSpellingListIndex);
1980  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1981    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                    AttrSpellingListIndex);
1983  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1984    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1985                                        AttrSpellingListIndex);
1986  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1987    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1988                                   AttrSpellingListIndex);
1989  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1990    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1991                                   AttrSpellingListIndex);
1992  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1993    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1994                                FA->getFormatIdx(), FA->getFirstArg(),
1995                                AttrSpellingListIndex);
1996  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1997    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1998                                 AttrSpellingListIndex);
1999  else if (isa<AlignedAttr>(Attr))
2000    // AlignedAttrs are handled separately, because we need to handle all
2001    // such attributes on a declaration at the same time.
2002    NewAttr = 0;
2003  else if (!DeclHasAttr(D, Attr))
2004    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2005
2006  if (NewAttr) {
2007    NewAttr->setInherited(true);
2008    D->addAttr(NewAttr);
2009    return true;
2010  }
2011
2012  return false;
2013}
2014
2015static const Decl *getDefinition(const Decl *D) {
2016  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2017    return TD->getDefinition();
2018  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2019    return VD->getDefinition();
2020  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2021    const FunctionDecl* Def;
2022    if (FD->hasBody(Def))
2023      return Def;
2024  }
2025  return NULL;
2026}
2027
2028static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2029  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2030       I != E; ++I) {
2031    Attr *Attribute = *I;
2032    if (Attribute->getKind() == Kind)
2033      return true;
2034  }
2035  return false;
2036}
2037
2038/// checkNewAttributesAfterDef - If we already have a definition, check that
2039/// there are no new attributes in this declaration.
2040static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2041  if (!New->hasAttrs())
2042    return;
2043
2044  const Decl *Def = getDefinition(Old);
2045  if (!Def || Def == New)
2046    return;
2047
2048  AttrVec &NewAttributes = New->getAttrs();
2049  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2050    const Attr *NewAttribute = NewAttributes[I];
2051    if (hasAttribute(Def, NewAttribute->getKind())) {
2052      ++I;
2053      continue; // regular attr merging will take care of validating this.
2054    }
2055
2056    if (isa<C11NoReturnAttr>(NewAttribute)) {
2057      // C's _Noreturn is allowed to be added to a function after it is defined.
2058      ++I;
2059      continue;
2060    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2061      if (AA->isAlignas()) {
2062        // C++11 [dcl.align]p6:
2063        //   if any declaration of an entity has an alignment-specifier,
2064        //   every defining declaration of that entity shall specify an
2065        //   equivalent alignment.
2066        // C11 6.7.5/7:
2067        //   If the definition of an object does not have an alignment
2068        //   specifier, any other declaration of that object shall also
2069        //   have no alignment specifier.
2070        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2071          << AA->isC11();
2072        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2073          << AA->isC11();
2074        NewAttributes.erase(NewAttributes.begin() + I);
2075        --E;
2076        continue;
2077      }
2078    }
2079
2080    S.Diag(NewAttribute->getLocation(),
2081           diag::warn_attribute_precede_definition);
2082    S.Diag(Def->getLocation(), diag::note_previous_definition);
2083    NewAttributes.erase(NewAttributes.begin() + I);
2084    --E;
2085  }
2086}
2087
2088/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2089void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2090                               AvailabilityMergeKind AMK) {
2091  if (!Old->hasAttrs() && !New->hasAttrs())
2092    return;
2093
2094  // attributes declared post-definition are currently ignored
2095  checkNewAttributesAfterDef(*this, New, Old);
2096
2097  if (!Old->hasAttrs())
2098    return;
2099
2100  bool foundAny = New->hasAttrs();
2101
2102  // Ensure that any moving of objects within the allocated map is done before
2103  // we process them.
2104  if (!foundAny) New->setAttrs(AttrVec());
2105
2106  for (specific_attr_iterator<InheritableAttr>
2107         i = Old->specific_attr_begin<InheritableAttr>(),
2108         e = Old->specific_attr_end<InheritableAttr>();
2109       i != e; ++i) {
2110    bool Override = false;
2111    // Ignore deprecated/unavailable/availability attributes if requested.
2112    if (isa<DeprecatedAttr>(*i) ||
2113        isa<UnavailableAttr>(*i) ||
2114        isa<AvailabilityAttr>(*i)) {
2115      switch (AMK) {
2116      case AMK_None:
2117        continue;
2118
2119      case AMK_Redeclaration:
2120        break;
2121
2122      case AMK_Override:
2123        Override = true;
2124        break;
2125      }
2126    }
2127
2128    if (mergeDeclAttribute(*this, New, *i, Override))
2129      foundAny = true;
2130  }
2131
2132  if (mergeAlignedAttrs(*this, New, Old))
2133    foundAny = true;
2134
2135  if (!foundAny) New->dropAttrs();
2136}
2137
2138/// mergeParamDeclAttributes - Copy attributes from the old parameter
2139/// to the new one.
2140static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2141                                     const ParmVarDecl *oldDecl,
2142                                     Sema &S) {
2143  // C++11 [dcl.attr.depend]p2:
2144  //   The first declaration of a function shall specify the
2145  //   carries_dependency attribute for its declarator-id if any declaration
2146  //   of the function specifies the carries_dependency attribute.
2147  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2148      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2149    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2150           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2151    // Find the first declaration of the parameter.
2152    // FIXME: Should we build redeclaration chains for function parameters?
2153    const FunctionDecl *FirstFD =
2154      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2155    const ParmVarDecl *FirstVD =
2156      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2157    S.Diag(FirstVD->getLocation(),
2158           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2159  }
2160
2161  if (!oldDecl->hasAttrs())
2162    return;
2163
2164  bool foundAny = newDecl->hasAttrs();
2165
2166  // Ensure that any moving of objects within the allocated map is
2167  // done before we process them.
2168  if (!foundAny) newDecl->setAttrs(AttrVec());
2169
2170  for (specific_attr_iterator<InheritableParamAttr>
2171       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2172       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2173    if (!DeclHasAttr(newDecl, *i)) {
2174      InheritableAttr *newAttr =
2175        cast<InheritableParamAttr>((*i)->clone(S.Context));
2176      newAttr->setInherited(true);
2177      newDecl->addAttr(newAttr);
2178      foundAny = true;
2179    }
2180  }
2181
2182  if (!foundAny) newDecl->dropAttrs();
2183}
2184
2185namespace {
2186
2187/// Used in MergeFunctionDecl to keep track of function parameters in
2188/// C.
2189struct GNUCompatibleParamWarning {
2190  ParmVarDecl *OldParm;
2191  ParmVarDecl *NewParm;
2192  QualType PromotedType;
2193};
2194
2195}
2196
2197/// getSpecialMember - get the special member enum for a method.
2198Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2199  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2200    if (Ctor->isDefaultConstructor())
2201      return Sema::CXXDefaultConstructor;
2202
2203    if (Ctor->isCopyConstructor())
2204      return Sema::CXXCopyConstructor;
2205
2206    if (Ctor->isMoveConstructor())
2207      return Sema::CXXMoveConstructor;
2208  } else if (isa<CXXDestructorDecl>(MD)) {
2209    return Sema::CXXDestructor;
2210  } else if (MD->isCopyAssignmentOperator()) {
2211    return Sema::CXXCopyAssignment;
2212  } else if (MD->isMoveAssignmentOperator()) {
2213    return Sema::CXXMoveAssignment;
2214  }
2215
2216  return Sema::CXXInvalid;
2217}
2218
2219/// canRedefineFunction - checks if a function can be redefined. Currently,
2220/// only extern inline functions can be redefined, and even then only in
2221/// GNU89 mode.
2222static bool canRedefineFunction(const FunctionDecl *FD,
2223                                const LangOptions& LangOpts) {
2224  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2225          !LangOpts.CPlusPlus &&
2226          FD->isInlineSpecified() &&
2227          FD->getStorageClass() == SC_Extern);
2228}
2229
2230/// Is the given calling convention the ABI default for the given
2231/// declaration?
2232static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2233  CallingConv ABIDefaultCC;
2234  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2235    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2236  } else {
2237    // Free C function or a static method.
2238    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2239  }
2240  return ABIDefaultCC == CC;
2241}
2242
2243template <typename T>
2244static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2245  const DeclContext *DC = Old->getDeclContext();
2246  if (DC->isRecord())
2247    return false;
2248
2249  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2250  if (OldLinkage == CXXLanguageLinkage &&
2251      New->getDeclContext()->isExternCContext())
2252    return true;
2253  if (OldLinkage == CLanguageLinkage &&
2254      New->getDeclContext()->isExternCXXContext())
2255    return true;
2256  return false;
2257}
2258
2259/// MergeFunctionDecl - We just parsed a function 'New' from
2260/// declarator D which has the same name and scope as a previous
2261/// declaration 'Old'.  Figure out how to resolve this situation,
2262/// merging decls or emitting diagnostics as appropriate.
2263///
2264/// In C++, New and Old must be declarations that are not
2265/// overloaded. Use IsOverload to determine whether New and Old are
2266/// overloaded, and to select the Old declaration that New should be
2267/// merged with.
2268///
2269/// Returns true if there was an error, false otherwise.
2270bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2271  // Verify the old decl was also a function.
2272  FunctionDecl *Old = 0;
2273  if (FunctionTemplateDecl *OldFunctionTemplate
2274        = dyn_cast<FunctionTemplateDecl>(OldD))
2275    Old = OldFunctionTemplate->getTemplatedDecl();
2276  else
2277    Old = dyn_cast<FunctionDecl>(OldD);
2278  if (!Old) {
2279    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2280      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2281      Diag(Shadow->getTargetDecl()->getLocation(),
2282           diag::note_using_decl_target);
2283      Diag(Shadow->getUsingDecl()->getLocation(),
2284           diag::note_using_decl) << 0;
2285      return true;
2286    }
2287
2288    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2289      << New->getDeclName();
2290    Diag(OldD->getLocation(), diag::note_previous_definition);
2291    return true;
2292  }
2293
2294  // Determine whether the previous declaration was a definition,
2295  // implicit declaration, or a declaration.
2296  diag::kind PrevDiag;
2297  if (Old->isThisDeclarationADefinition())
2298    PrevDiag = diag::note_previous_definition;
2299  else if (Old->isImplicit())
2300    PrevDiag = diag::note_previous_implicit_declaration;
2301  else
2302    PrevDiag = diag::note_previous_declaration;
2303
2304  QualType OldQType = Context.getCanonicalType(Old->getType());
2305  QualType NewQType = Context.getCanonicalType(New->getType());
2306
2307  // Don't complain about this if we're in GNU89 mode and the old function
2308  // is an extern inline function.
2309  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2310      New->getStorageClass() == SC_Static &&
2311      Old->getStorageClass() != SC_Static &&
2312      !canRedefineFunction(Old, getLangOpts())) {
2313    if (getLangOpts().MicrosoftExt) {
2314      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2315      Diag(Old->getLocation(), PrevDiag);
2316    } else {
2317      Diag(New->getLocation(), diag::err_static_non_static) << New;
2318      Diag(Old->getLocation(), PrevDiag);
2319      return true;
2320    }
2321  }
2322
2323  // If a function is first declared with a calling convention, but is
2324  // later declared or defined without one, the second decl assumes the
2325  // calling convention of the first.
2326  //
2327  // It's OK if a function is first declared without a calling convention,
2328  // but is later declared or defined with the default calling convention.
2329  //
2330  // For the new decl, we have to look at the NON-canonical type to tell the
2331  // difference between a function that really doesn't have a calling
2332  // convention and one that is declared cdecl. That's because in
2333  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2334  // because it is the default calling convention.
2335  //
2336  // Note also that we DO NOT return at this point, because we still have
2337  // other tests to run.
2338  const FunctionType *OldType = cast<FunctionType>(OldQType);
2339  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2340  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2341  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2342  bool RequiresAdjustment = false;
2343  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2344    // Fast path: nothing to do.
2345
2346  // Inherit the CC from the previous declaration if it was specified
2347  // there but not here.
2348  } else if (NewTypeInfo.getCC() == CC_Default) {
2349    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2350    RequiresAdjustment = true;
2351
2352  // Don't complain about mismatches when the default CC is
2353  // effectively the same as the explict one. Only Old decl contains correct
2354  // information about storage class of CXXMethod.
2355  } else if (OldTypeInfo.getCC() == CC_Default &&
2356             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2357    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2358    RequiresAdjustment = true;
2359
2360  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2361                                     NewTypeInfo.getCC())) {
2362    // Calling conventions really aren't compatible, so complain.
2363    Diag(New->getLocation(), diag::err_cconv_change)
2364      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2365      << (OldTypeInfo.getCC() == CC_Default)
2366      << (OldTypeInfo.getCC() == CC_Default ? "" :
2367          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2368    Diag(Old->getLocation(), diag::note_previous_declaration);
2369    return true;
2370  }
2371
2372  // FIXME: diagnose the other way around?
2373  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2374    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2375    RequiresAdjustment = true;
2376  }
2377
2378  // Merge regparm attribute.
2379  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2380      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2381    if (NewTypeInfo.getHasRegParm()) {
2382      Diag(New->getLocation(), diag::err_regparm_mismatch)
2383        << NewType->getRegParmType()
2384        << OldType->getRegParmType();
2385      Diag(Old->getLocation(), diag::note_previous_declaration);
2386      return true;
2387    }
2388
2389    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2390    RequiresAdjustment = true;
2391  }
2392
2393  // Merge ns_returns_retained attribute.
2394  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2395    if (NewTypeInfo.getProducesResult()) {
2396      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2397      Diag(Old->getLocation(), diag::note_previous_declaration);
2398      return true;
2399    }
2400
2401    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2402    RequiresAdjustment = true;
2403  }
2404
2405  if (RequiresAdjustment) {
2406    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2407    New->setType(QualType(NewType, 0));
2408    NewQType = Context.getCanonicalType(New->getType());
2409  }
2410
2411  // If this redeclaration makes the function inline, we may need to add it to
2412  // UndefinedButUsed.
2413  if (!Old->isInlined() && New->isInlined() &&
2414      !New->hasAttr<GNUInlineAttr>() &&
2415      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2416      Old->isUsed(false) &&
2417      !Old->isDefined() && !New->isThisDeclarationADefinition())
2418    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2419                                           SourceLocation()));
2420
2421  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2422  // about it.
2423  if (New->hasAttr<GNUInlineAttr>() &&
2424      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2425    UndefinedButUsed.erase(Old->getCanonicalDecl());
2426  }
2427
2428  if (getLangOpts().CPlusPlus) {
2429    // (C++98 13.1p2):
2430    //   Certain function declarations cannot be overloaded:
2431    //     -- Function declarations that differ only in the return type
2432    //        cannot be overloaded.
2433    QualType OldReturnType = OldType->getResultType();
2434    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2435    QualType ResQT;
2436    if (OldReturnType != NewReturnType) {
2437      if (NewReturnType->isObjCObjectPointerType()
2438          && OldReturnType->isObjCObjectPointerType())
2439        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2440      if (ResQT.isNull()) {
2441        if (New->isCXXClassMember() && New->isOutOfLine())
2442          Diag(New->getLocation(),
2443               diag::err_member_def_does_not_match_ret_type) << New;
2444        else
2445          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2446        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2447        return true;
2448      }
2449      else
2450        NewQType = ResQT;
2451    }
2452
2453    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
2454    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
2455    if (OldMethod && NewMethod) {
2456      // Preserve triviality.
2457      NewMethod->setTrivial(OldMethod->isTrivial());
2458
2459      // MSVC allows explicit template specialization at class scope:
2460      // 2 CXMethodDecls referring to the same function will be injected.
2461      // We don't want a redeclartion error.
2462      bool IsClassScopeExplicitSpecialization =
2463                              OldMethod->isFunctionTemplateSpecialization() &&
2464                              NewMethod->isFunctionTemplateSpecialization();
2465      bool isFriend = NewMethod->getFriendObjectKind();
2466
2467      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2468          !IsClassScopeExplicitSpecialization) {
2469        //    -- Member function declarations with the same name and the
2470        //       same parameter types cannot be overloaded if any of them
2471        //       is a static member function declaration.
2472        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2473          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2474          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2475          return true;
2476        }
2477
2478        // C++ [class.mem]p1:
2479        //   [...] A member shall not be declared twice in the
2480        //   member-specification, except that a nested class or member
2481        //   class template can be declared and then later defined.
2482        if (ActiveTemplateInstantiations.empty()) {
2483          unsigned NewDiag;
2484          if (isa<CXXConstructorDecl>(OldMethod))
2485            NewDiag = diag::err_constructor_redeclared;
2486          else if (isa<CXXDestructorDecl>(NewMethod))
2487            NewDiag = diag::err_destructor_redeclared;
2488          else if (isa<CXXConversionDecl>(NewMethod))
2489            NewDiag = diag::err_conv_function_redeclared;
2490          else
2491            NewDiag = diag::err_member_redeclared;
2492
2493          Diag(New->getLocation(), NewDiag);
2494        } else {
2495          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2496            << New << New->getType();
2497        }
2498        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2499
2500      // Complain if this is an explicit declaration of a special
2501      // member that was initially declared implicitly.
2502      //
2503      // As an exception, it's okay to befriend such methods in order
2504      // to permit the implicit constructor/destructor/operator calls.
2505      } else if (OldMethod->isImplicit()) {
2506        if (isFriend) {
2507          NewMethod->setImplicit();
2508        } else {
2509          Diag(NewMethod->getLocation(),
2510               diag::err_definition_of_implicitly_declared_member)
2511            << New << getSpecialMember(OldMethod);
2512          return true;
2513        }
2514      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2515        Diag(NewMethod->getLocation(),
2516             diag::err_definition_of_explicitly_defaulted_member)
2517          << getSpecialMember(OldMethod);
2518        return true;
2519      }
2520    }
2521
2522    // C++11 [dcl.attr.noreturn]p1:
2523    //   The first declaration of a function shall specify the noreturn
2524    //   attribute if any declaration of that function specifies the noreturn
2525    //   attribute.
2526    if (New->hasAttr<CXX11NoReturnAttr>() &&
2527        !Old->hasAttr<CXX11NoReturnAttr>()) {
2528      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2529           diag::err_noreturn_missing_on_first_decl);
2530      Diag(Old->getFirstDeclaration()->getLocation(),
2531           diag::note_noreturn_missing_first_decl);
2532    }
2533
2534    // C++11 [dcl.attr.depend]p2:
2535    //   The first declaration of a function shall specify the
2536    //   carries_dependency attribute for its declarator-id if any declaration
2537    //   of the function specifies the carries_dependency attribute.
2538    if (New->hasAttr<CarriesDependencyAttr>() &&
2539        !Old->hasAttr<CarriesDependencyAttr>()) {
2540      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2541           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2542      Diag(Old->getFirstDeclaration()->getLocation(),
2543           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2544    }
2545
2546    // (C++98 8.3.5p3):
2547    //   All declarations for a function shall agree exactly in both the
2548    //   return type and the parameter-type-list.
2549    // We also want to respect all the extended bits except noreturn.
2550
2551    // noreturn should now match unless the old type info didn't have it.
2552    QualType OldQTypeForComparison = OldQType;
2553    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2554      assert(OldQType == QualType(OldType, 0));
2555      const FunctionType *OldTypeForComparison
2556        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2557      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2558      assert(OldQTypeForComparison.isCanonical());
2559    }
2560
2561    if (haveIncompatibleLanguageLinkages(Old, New)) {
2562      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2563      Diag(Old->getLocation(), PrevDiag);
2564      return true;
2565    }
2566
2567    if (OldQTypeForComparison == NewQType)
2568      return MergeCompatibleFunctionDecls(New, Old, S);
2569
2570    // Fall through for conflicting redeclarations and redefinitions.
2571  }
2572
2573  // C: Function types need to be compatible, not identical. This handles
2574  // duplicate function decls like "void f(int); void f(enum X);" properly.
2575  if (!getLangOpts().CPlusPlus &&
2576      Context.typesAreCompatible(OldQType, NewQType)) {
2577    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2578    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2579    const FunctionProtoType *OldProto = 0;
2580    if (isa<FunctionNoProtoType>(NewFuncType) &&
2581        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2582      // The old declaration provided a function prototype, but the
2583      // new declaration does not. Merge in the prototype.
2584      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2585      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2586                                                 OldProto->arg_type_end());
2587      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2588                                         ParamTypes,
2589                                         OldProto->getExtProtoInfo());
2590      New->setType(NewQType);
2591      New->setHasInheritedPrototype();
2592
2593      // Synthesize a parameter for each argument type.
2594      SmallVector<ParmVarDecl*, 16> Params;
2595      for (FunctionProtoType::arg_type_iterator
2596             ParamType = OldProto->arg_type_begin(),
2597             ParamEnd = OldProto->arg_type_end();
2598           ParamType != ParamEnd; ++ParamType) {
2599        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2600                                                 SourceLocation(),
2601                                                 SourceLocation(), 0,
2602                                                 *ParamType, /*TInfo=*/0,
2603                                                 SC_None, SC_None,
2604                                                 0);
2605        Param->setScopeInfo(0, Params.size());
2606        Param->setImplicit();
2607        Params.push_back(Param);
2608      }
2609
2610      New->setParams(Params);
2611    }
2612
2613    return MergeCompatibleFunctionDecls(New, Old, S);
2614  }
2615
2616  // GNU C permits a K&R definition to follow a prototype declaration
2617  // if the declared types of the parameters in the K&R definition
2618  // match the types in the prototype declaration, even when the
2619  // promoted types of the parameters from the K&R definition differ
2620  // from the types in the prototype. GCC then keeps the types from
2621  // the prototype.
2622  //
2623  // If a variadic prototype is followed by a non-variadic K&R definition,
2624  // the K&R definition becomes variadic.  This is sort of an edge case, but
2625  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2626  // C99 6.9.1p8.
2627  if (!getLangOpts().CPlusPlus &&
2628      Old->hasPrototype() && !New->hasPrototype() &&
2629      New->getType()->getAs<FunctionProtoType>() &&
2630      Old->getNumParams() == New->getNumParams()) {
2631    SmallVector<QualType, 16> ArgTypes;
2632    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2633    const FunctionProtoType *OldProto
2634      = Old->getType()->getAs<FunctionProtoType>();
2635    const FunctionProtoType *NewProto
2636      = New->getType()->getAs<FunctionProtoType>();
2637
2638    // Determine whether this is the GNU C extension.
2639    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2640                                               NewProto->getResultType());
2641    bool LooseCompatible = !MergedReturn.isNull();
2642    for (unsigned Idx = 0, End = Old->getNumParams();
2643         LooseCompatible && Idx != End; ++Idx) {
2644      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2645      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2646      if (Context.typesAreCompatible(OldParm->getType(),
2647                                     NewProto->getArgType(Idx))) {
2648        ArgTypes.push_back(NewParm->getType());
2649      } else if (Context.typesAreCompatible(OldParm->getType(),
2650                                            NewParm->getType(),
2651                                            /*CompareUnqualified=*/true)) {
2652        GNUCompatibleParamWarning Warn
2653          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2654        Warnings.push_back(Warn);
2655        ArgTypes.push_back(NewParm->getType());
2656      } else
2657        LooseCompatible = false;
2658    }
2659
2660    if (LooseCompatible) {
2661      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2662        Diag(Warnings[Warn].NewParm->getLocation(),
2663             diag::ext_param_promoted_not_compatible_with_prototype)
2664          << Warnings[Warn].PromotedType
2665          << Warnings[Warn].OldParm->getType();
2666        if (Warnings[Warn].OldParm->getLocation().isValid())
2667          Diag(Warnings[Warn].OldParm->getLocation(),
2668               diag::note_previous_declaration);
2669      }
2670
2671      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2672                                           OldProto->getExtProtoInfo()));
2673      return MergeCompatibleFunctionDecls(New, Old, S);
2674    }
2675
2676    // Fall through to diagnose conflicting types.
2677  }
2678
2679  // A function that has already been declared has been redeclared or defined
2680  // with a different type- show appropriate diagnostic
2681  if (unsigned BuiltinID = Old->getBuiltinID()) {
2682    // The user has declared a builtin function with an incompatible
2683    // signature.
2684    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2685      // The function the user is redeclaring is a library-defined
2686      // function like 'malloc' or 'printf'. Warn about the
2687      // redeclaration, then pretend that we don't know about this
2688      // library built-in.
2689      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2690      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2691        << Old << Old->getType();
2692      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2693      Old->setInvalidDecl();
2694      return false;
2695    }
2696
2697    PrevDiag = diag::note_previous_builtin_declaration;
2698  }
2699
2700  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2701  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2702  return true;
2703}
2704
2705/// \brief Completes the merge of two function declarations that are
2706/// known to be compatible.
2707///
2708/// This routine handles the merging of attributes and other
2709/// properties of function declarations form the old declaration to
2710/// the new declaration, once we know that New is in fact a
2711/// redeclaration of Old.
2712///
2713/// \returns false
2714bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2715                                        Scope *S) {
2716  // Merge the attributes
2717  mergeDeclAttributes(New, Old);
2718
2719  // Merge the storage class.
2720  if (Old->getStorageClass() != SC_Extern &&
2721      Old->getStorageClass() != SC_None)
2722    New->setStorageClass(Old->getStorageClass());
2723
2724  // Merge "pure" flag.
2725  if (Old->isPure())
2726    New->setPure();
2727
2728  // Merge "used" flag.
2729  if (Old->isUsed(false))
2730    New->setUsed();
2731
2732  // Merge attributes from the parameters.  These can mismatch with K&R
2733  // declarations.
2734  if (New->getNumParams() == Old->getNumParams())
2735    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2736      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2737                               *this);
2738
2739  if (getLangOpts().CPlusPlus)
2740    return MergeCXXFunctionDecl(New, Old, S);
2741
2742  // Merge the function types so the we get the composite types for the return
2743  // and argument types.
2744  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2745  if (!Merged.isNull())
2746    New->setType(Merged);
2747
2748  return false;
2749}
2750
2751
2752void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2753                                ObjCMethodDecl *oldMethod) {
2754
2755  // Merge the attributes, including deprecated/unavailable
2756  mergeDeclAttributes(newMethod, oldMethod, AMK_Override);
2757
2758  // Merge attributes from the parameters.
2759  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2760                                       oe = oldMethod->param_end();
2761  for (ObjCMethodDecl::param_iterator
2762         ni = newMethod->param_begin(), ne = newMethod->param_end();
2763       ni != ne && oi != oe; ++ni, ++oi)
2764    mergeParamDeclAttributes(*ni, *oi, *this);
2765
2766  CheckObjCMethodOverride(newMethod, oldMethod);
2767}
2768
2769/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2770/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2771/// emitting diagnostics as appropriate.
2772///
2773/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2774/// to here in AddInitializerToDecl. We can't check them before the initializer
2775/// is attached.
2776void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2777  if (New->isInvalidDecl() || Old->isInvalidDecl())
2778    return;
2779
2780  QualType MergedT;
2781  if (getLangOpts().CPlusPlus) {
2782    AutoType *AT = New->getType()->getContainedAutoType();
2783    if (AT && !AT->isDeduced()) {
2784      // We don't know what the new type is until the initializer is attached.
2785      return;
2786    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2787      // These could still be something that needs exception specs checked.
2788      return MergeVarDeclExceptionSpecs(New, Old);
2789    }
2790    // C++ [basic.link]p10:
2791    //   [...] the types specified by all declarations referring to a given
2792    //   object or function shall be identical, except that declarations for an
2793    //   array object can specify array types that differ by the presence or
2794    //   absence of a major array bound (8.3.4).
2795    else if (Old->getType()->isIncompleteArrayType() &&
2796             New->getType()->isArrayType()) {
2797      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2798      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2799      if (Context.hasSameType(OldArray->getElementType(),
2800                              NewArray->getElementType()))
2801        MergedT = New->getType();
2802    } else if (Old->getType()->isArrayType() &&
2803             New->getType()->isIncompleteArrayType()) {
2804      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2805      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2806      if (Context.hasSameType(OldArray->getElementType(),
2807                              NewArray->getElementType()))
2808        MergedT = Old->getType();
2809    } else if (New->getType()->isObjCObjectPointerType()
2810               && Old->getType()->isObjCObjectPointerType()) {
2811        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2812                                                        Old->getType());
2813    }
2814  } else {
2815    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2816  }
2817  if (MergedT.isNull()) {
2818    Diag(New->getLocation(), diag::err_redefinition_different_type)
2819      << New->getDeclName() << New->getType() << Old->getType();
2820    Diag(Old->getLocation(), diag::note_previous_definition);
2821    return New->setInvalidDecl();
2822  }
2823  New->setType(MergedT);
2824}
2825
2826/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2827/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2828/// situation, merging decls or emitting diagnostics as appropriate.
2829///
2830/// Tentative definition rules (C99 6.9.2p2) are checked by
2831/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2832/// definitions here, since the initializer hasn't been attached.
2833///
2834void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2835  // If the new decl is already invalid, don't do any other checking.
2836  if (New->isInvalidDecl())
2837    return;
2838
2839  // Verify the old decl was also a variable.
2840  VarDecl *Old = 0;
2841  if (!Previous.isSingleResult() ||
2842      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2843    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2844      << New->getDeclName();
2845    Diag(Previous.getRepresentativeDecl()->getLocation(),
2846         diag::note_previous_definition);
2847    return New->setInvalidDecl();
2848  }
2849
2850  // C++ [class.mem]p1:
2851  //   A member shall not be declared twice in the member-specification [...]
2852  //
2853  // Here, we need only consider static data members.
2854  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2855    Diag(New->getLocation(), diag::err_duplicate_member)
2856      << New->getIdentifier();
2857    Diag(Old->getLocation(), diag::note_previous_declaration);
2858    New->setInvalidDecl();
2859  }
2860
2861  mergeDeclAttributes(New, Old);
2862  // Warn if an already-declared variable is made a weak_import in a subsequent
2863  // declaration
2864  if (New->getAttr<WeakImportAttr>() &&
2865      Old->getStorageClass() == SC_None &&
2866      !Old->getAttr<WeakImportAttr>()) {
2867    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2868    Diag(Old->getLocation(), diag::note_previous_definition);
2869    // Remove weak_import attribute on new declaration.
2870    New->dropAttr<WeakImportAttr>();
2871  }
2872
2873  // Merge the types.
2874  MergeVarDeclTypes(New, Old);
2875  if (New->isInvalidDecl())
2876    return;
2877
2878  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2879  if (New->getStorageClass() == SC_Static &&
2880      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2881    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2882    Diag(Old->getLocation(), diag::note_previous_definition);
2883    return New->setInvalidDecl();
2884  }
2885  // C99 6.2.2p4:
2886  //   For an identifier declared with the storage-class specifier
2887  //   extern in a scope in which a prior declaration of that
2888  //   identifier is visible,23) if the prior declaration specifies
2889  //   internal or external linkage, the linkage of the identifier at
2890  //   the later declaration is the same as the linkage specified at
2891  //   the prior declaration. If no prior declaration is visible, or
2892  //   if the prior declaration specifies no linkage, then the
2893  //   identifier has external linkage.
2894  if (New->hasExternalStorage() && Old->hasLinkage())
2895    /* Okay */;
2896  else if (New->getStorageClass() != SC_Static &&
2897           Old->getStorageClass() == SC_Static) {
2898    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2899    Diag(Old->getLocation(), diag::note_previous_definition);
2900    return New->setInvalidDecl();
2901  }
2902
2903  // Check if extern is followed by non-extern and vice-versa.
2904  if (New->hasExternalStorage() &&
2905      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2906    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2907    Diag(Old->getLocation(), diag::note_previous_definition);
2908    return New->setInvalidDecl();
2909  }
2910  if (Old->hasExternalStorage() &&
2911      New->isLocalVarDecl() && !New->hasLinkage()) {
2912    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914    return New->setInvalidDecl();
2915  }
2916
2917  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2918
2919  // FIXME: The test for external storage here seems wrong? We still
2920  // need to check for mismatches.
2921  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2922      // Don't complain about out-of-line definitions of static members.
2923      !(Old->getLexicalDeclContext()->isRecord() &&
2924        !New->getLexicalDeclContext()->isRecord())) {
2925    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2926    Diag(Old->getLocation(), diag::note_previous_definition);
2927    return New->setInvalidDecl();
2928  }
2929
2930  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2931    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2932    Diag(Old->getLocation(), diag::note_previous_definition);
2933  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2934    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2935    Diag(Old->getLocation(), diag::note_previous_definition);
2936  }
2937
2938  // C++ doesn't have tentative definitions, so go right ahead and check here.
2939  const VarDecl *Def;
2940  if (getLangOpts().CPlusPlus &&
2941      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2942      (Def = Old->getDefinition())) {
2943    Diag(New->getLocation(), diag::err_redefinition)
2944      << New->getDeclName();
2945    Diag(Def->getLocation(), diag::note_previous_definition);
2946    New->setInvalidDecl();
2947    return;
2948  }
2949
2950  if (haveIncompatibleLanguageLinkages(Old, New)) {
2951    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2952    Diag(Old->getLocation(), diag::note_previous_definition);
2953    New->setInvalidDecl();
2954    return;
2955  }
2956
2957  // c99 6.2.2 P4.
2958  // For an identifier declared with the storage-class specifier extern in a
2959  // scope in which a prior declaration of that identifier is visible, if
2960  // the prior declaration specifies internal or external linkage, the linkage
2961  // of the identifier at the later declaration is the same as the linkage
2962  // specified at the prior declaration.
2963  // FIXME. revisit this code.
2964  if (New->hasExternalStorage() &&
2965      Old->getLinkage() == InternalLinkage)
2966    New->setStorageClass(Old->getStorageClass());
2967
2968  // Merge "used" flag.
2969  if (Old->isUsed(false))
2970    New->setUsed();
2971
2972  // Keep a chain of previous declarations.
2973  New->setPreviousDeclaration(Old);
2974
2975  // Inherit access appropriately.
2976  New->setAccess(Old->getAccess());
2977}
2978
2979/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2980/// no declarator (e.g. "struct foo;") is parsed.
2981Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2982                                       DeclSpec &DS) {
2983  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
2984}
2985
2986/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2987/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2988/// parameters to cope with template friend declarations.
2989Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2990                                       DeclSpec &DS,
2991                                       MultiTemplateParamsArg TemplateParams) {
2992  Decl *TagD = 0;
2993  TagDecl *Tag = 0;
2994  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2995      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2996      DS.getTypeSpecType() == DeclSpec::TST_interface ||
2997      DS.getTypeSpecType() == DeclSpec::TST_union ||
2998      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2999    TagD = DS.getRepAsDecl();
3000
3001    if (!TagD) // We probably had an error
3002      return 0;
3003
3004    // Note that the above type specs guarantee that the
3005    // type rep is a Decl, whereas in many of the others
3006    // it's a Type.
3007    if (isa<TagDecl>(TagD))
3008      Tag = cast<TagDecl>(TagD);
3009    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3010      Tag = CTD->getTemplatedDecl();
3011  }
3012
3013  if (Tag) {
3014    getASTContext().addUnnamedTag(Tag);
3015    Tag->setFreeStanding();
3016    if (Tag->isInvalidDecl())
3017      return Tag;
3018  }
3019
3020  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3021    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3022    // or incomplete types shall not be restrict-qualified."
3023    if (TypeQuals & DeclSpec::TQ_restrict)
3024      Diag(DS.getRestrictSpecLoc(),
3025           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3026           << DS.getSourceRange();
3027  }
3028
3029  if (DS.isConstexprSpecified()) {
3030    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3031    // and definitions of functions and variables.
3032    if (Tag)
3033      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3034        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3035            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3036            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3037            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3038    else
3039      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3040    // Don't emit warnings after this error.
3041    return TagD;
3042  }
3043
3044  if (DS.isFriendSpecified()) {
3045    // If we're dealing with a decl but not a TagDecl, assume that
3046    // whatever routines created it handled the friendship aspect.
3047    if (TagD && !Tag)
3048      return 0;
3049    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3050  }
3051
3052  // Track whether we warned about the fact that there aren't any
3053  // declarators.
3054  bool emittedWarning = false;
3055
3056  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3057    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3058        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3059      if (getLangOpts().CPlusPlus ||
3060          Record->getDeclContext()->isRecord())
3061        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3062
3063      Diag(DS.getLocStart(), diag::ext_no_declarators)
3064        << DS.getSourceRange();
3065      emittedWarning = true;
3066    }
3067  }
3068
3069  // Check for Microsoft C extension: anonymous struct.
3070  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3071      CurContext->isRecord() &&
3072      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3073    // Handle 2 kinds of anonymous struct:
3074    //   struct STRUCT;
3075    // and
3076    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3077    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3078    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3079        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3080         DS.getRepAsType().get()->isStructureType())) {
3081      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3082        << DS.getSourceRange();
3083      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3084    }
3085  }
3086
3087  if (getLangOpts().CPlusPlus &&
3088      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3089    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3090      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3091          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
3092        Diag(Enum->getLocation(), diag::ext_no_declarators)
3093          << DS.getSourceRange();
3094        emittedWarning = true;
3095      }
3096
3097  // Skip all the checks below if we have a type error.
3098  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
3099
3100  if (!DS.isMissingDeclaratorOk()) {
3101    // Warn about typedefs of enums without names, since this is an
3102    // extension in both Microsoft and GNU.
3103    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
3104        Tag && isa<EnumDecl>(Tag)) {
3105      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3106        << DS.getSourceRange();
3107      return Tag;
3108    }
3109
3110    Diag(DS.getLocStart(), diag::ext_no_declarators)
3111      << DS.getSourceRange();
3112    emittedWarning = true;
3113  }
3114
3115  // We're going to complain about a bunch of spurious specifiers;
3116  // only do this if we're declaring a tag, because otherwise we
3117  // should be getting diag::ext_no_declarators.
3118  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
3119    return TagD;
3120
3121  // Note that a linkage-specification sets a storage class, but
3122  // 'extern "C" struct foo;' is actually valid and not theoretically
3123  // useless.
3124  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
3125    if (!DS.isExternInLinkageSpec())
3126      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
3127        << DeclSpec::getSpecifierName(scs);
3128
3129  if (DS.isThreadSpecified())
3130    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
3131  if (DS.getTypeQualifiers()) {
3132    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3133      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
3134    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3135      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
3136    // Restrict is covered above.
3137  }
3138  if (DS.isInlineSpecified())
3139    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
3140  if (DS.isVirtualSpecified())
3141    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
3142  if (DS.isExplicitSpecified())
3143    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
3144
3145  if (DS.isModulePrivateSpecified() &&
3146      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3147    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3148      << Tag->getTagKind()
3149      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3150
3151  // Warn about ignored type attributes, for example:
3152  // __attribute__((aligned)) struct A;
3153  // Attributes should be placed after tag to apply to type declaration.
3154  if (!DS.getAttributes().empty()) {
3155    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3156    if (TypeSpecType == DeclSpec::TST_class ||
3157        TypeSpecType == DeclSpec::TST_struct ||
3158        TypeSpecType == DeclSpec::TST_interface ||
3159        TypeSpecType == DeclSpec::TST_union ||
3160        TypeSpecType == DeclSpec::TST_enum) {
3161      AttributeList* attrs = DS.getAttributes().getList();
3162      while (attrs) {
3163        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3164        << attrs->getName()
3165        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3166            TypeSpecType == DeclSpec::TST_struct ? 1 :
3167            TypeSpecType == DeclSpec::TST_union ? 2 :
3168            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3169        attrs = attrs->getNext();
3170      }
3171    }
3172  }
3173
3174  ActOnDocumentableDecl(TagD);
3175
3176  return TagD;
3177}
3178
3179/// We are trying to inject an anonymous member into the given scope;
3180/// check if there's an existing declaration that can't be overloaded.
3181///
3182/// \return true if this is a forbidden redeclaration
3183static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3184                                         Scope *S,
3185                                         DeclContext *Owner,
3186                                         DeclarationName Name,
3187                                         SourceLocation NameLoc,
3188                                         unsigned diagnostic) {
3189  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3190                 Sema::ForRedeclaration);
3191  if (!SemaRef.LookupName(R, S)) return false;
3192
3193  if (R.getAsSingle<TagDecl>())
3194    return false;
3195
3196  // Pick a representative declaration.
3197  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3198  assert(PrevDecl && "Expected a non-null Decl");
3199
3200  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3201    return false;
3202
3203  SemaRef.Diag(NameLoc, diagnostic) << Name;
3204  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3205
3206  return true;
3207}
3208
3209/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3210/// anonymous struct or union AnonRecord into the owning context Owner
3211/// and scope S. This routine will be invoked just after we realize
3212/// that an unnamed union or struct is actually an anonymous union or
3213/// struct, e.g.,
3214///
3215/// @code
3216/// union {
3217///   int i;
3218///   float f;
3219/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3220///    // f into the surrounding scope.x
3221/// @endcode
3222///
3223/// This routine is recursive, injecting the names of nested anonymous
3224/// structs/unions into the owning context and scope as well.
3225static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3226                                                DeclContext *Owner,
3227                                                RecordDecl *AnonRecord,
3228                                                AccessSpecifier AS,
3229                              SmallVector<NamedDecl*, 2> &Chaining,
3230                                                      bool MSAnonStruct) {
3231  unsigned diagKind
3232    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3233                            : diag::err_anonymous_struct_member_redecl;
3234
3235  bool Invalid = false;
3236
3237  // Look every FieldDecl and IndirectFieldDecl with a name.
3238  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3239                               DEnd = AnonRecord->decls_end();
3240       D != DEnd; ++D) {
3241    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3242        cast<NamedDecl>(*D)->getDeclName()) {
3243      ValueDecl *VD = cast<ValueDecl>(*D);
3244      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3245                                       VD->getLocation(), diagKind)) {
3246        // C++ [class.union]p2:
3247        //   The names of the members of an anonymous union shall be
3248        //   distinct from the names of any other entity in the
3249        //   scope in which the anonymous union is declared.
3250        Invalid = true;
3251      } else {
3252        // C++ [class.union]p2:
3253        //   For the purpose of name lookup, after the anonymous union
3254        //   definition, the members of the anonymous union are
3255        //   considered to have been defined in the scope in which the
3256        //   anonymous union is declared.
3257        unsigned OldChainingSize = Chaining.size();
3258        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3259          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3260               PE = IF->chain_end(); PI != PE; ++PI)
3261            Chaining.push_back(*PI);
3262        else
3263          Chaining.push_back(VD);
3264
3265        assert(Chaining.size() >= 2);
3266        NamedDecl **NamedChain =
3267          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3268        for (unsigned i = 0; i < Chaining.size(); i++)
3269          NamedChain[i] = Chaining[i];
3270
3271        IndirectFieldDecl* IndirectField =
3272          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3273                                    VD->getIdentifier(), VD->getType(),
3274                                    NamedChain, Chaining.size());
3275
3276        IndirectField->setAccess(AS);
3277        IndirectField->setImplicit();
3278        SemaRef.PushOnScopeChains(IndirectField, S);
3279
3280        // That includes picking up the appropriate access specifier.
3281        if (AS != AS_none) IndirectField->setAccess(AS);
3282
3283        Chaining.resize(OldChainingSize);
3284      }
3285    }
3286  }
3287
3288  return Invalid;
3289}
3290
3291/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3292/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3293/// illegal input values are mapped to SC_None.
3294static StorageClass
3295StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3296  switch (StorageClassSpec) {
3297  case DeclSpec::SCS_unspecified:    return SC_None;
3298  case DeclSpec::SCS_extern:         return SC_Extern;
3299  case DeclSpec::SCS_static:         return SC_Static;
3300  case DeclSpec::SCS_auto:           return SC_Auto;
3301  case DeclSpec::SCS_register:       return SC_Register;
3302  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3303    // Illegal SCSs map to None: error reporting is up to the caller.
3304  case DeclSpec::SCS_mutable:        // Fall through.
3305  case DeclSpec::SCS_typedef:        return SC_None;
3306  }
3307  llvm_unreachable("unknown storage class specifier");
3308}
3309
3310/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
3311/// a StorageClass. Any error reporting is up to the caller:
3312/// illegal input values are mapped to SC_None.
3313static StorageClass
3314StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
3315  switch (StorageClassSpec) {
3316  case DeclSpec::SCS_unspecified:    return SC_None;
3317  case DeclSpec::SCS_extern:         return SC_Extern;
3318  case DeclSpec::SCS_static:         return SC_Static;
3319  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3320    // Illegal SCSs map to None: error reporting is up to the caller.
3321  case DeclSpec::SCS_auto:           // Fall through.
3322  case DeclSpec::SCS_mutable:        // Fall through.
3323  case DeclSpec::SCS_register:       // Fall through.
3324  case DeclSpec::SCS_typedef:        return SC_None;
3325  }
3326  llvm_unreachable("unknown storage class specifier");
3327}
3328
3329/// BuildAnonymousStructOrUnion - Handle the declaration of an
3330/// anonymous structure or union. Anonymous unions are a C++ feature
3331/// (C++ [class.union]) and a C11 feature; anonymous structures
3332/// are a C11 feature and GNU C++ extension.
3333Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3334                                             AccessSpecifier AS,
3335                                             RecordDecl *Record) {
3336  DeclContext *Owner = Record->getDeclContext();
3337
3338  // Diagnose whether this anonymous struct/union is an extension.
3339  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3340    Diag(Record->getLocation(), diag::ext_anonymous_union);
3341  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3342    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3343  else if (!Record->isUnion() && !getLangOpts().C11)
3344    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3345
3346  // C and C++ require different kinds of checks for anonymous
3347  // structs/unions.
3348  bool Invalid = false;
3349  if (getLangOpts().CPlusPlus) {
3350    const char* PrevSpec = 0;
3351    unsigned DiagID;
3352    if (Record->isUnion()) {
3353      // C++ [class.union]p6:
3354      //   Anonymous unions declared in a named namespace or in the
3355      //   global namespace shall be declared static.
3356      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3357          (isa<TranslationUnitDecl>(Owner) ||
3358           (isa<NamespaceDecl>(Owner) &&
3359            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3360        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3361          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3362
3363        // Recover by adding 'static'.
3364        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3365                               PrevSpec, DiagID);
3366      }
3367      // C++ [class.union]p6:
3368      //   A storage class is not allowed in a declaration of an
3369      //   anonymous union in a class scope.
3370      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3371               isa<RecordDecl>(Owner)) {
3372        Diag(DS.getStorageClassSpecLoc(),
3373             diag::err_anonymous_union_with_storage_spec)
3374          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3375
3376        // Recover by removing the storage specifier.
3377        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3378                               SourceLocation(),
3379                               PrevSpec, DiagID);
3380      }
3381    }
3382
3383    // Ignore const/volatile/restrict qualifiers.
3384    if (DS.getTypeQualifiers()) {
3385      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3386        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3387          << Record->isUnion() << 0
3388          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3389      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3390        Diag(DS.getVolatileSpecLoc(),
3391             diag::ext_anonymous_struct_union_qualified)
3392          << Record->isUnion() << 1
3393          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3394      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3395        Diag(DS.getRestrictSpecLoc(),
3396             diag::ext_anonymous_struct_union_qualified)
3397          << Record->isUnion() << 2
3398          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3399
3400      DS.ClearTypeQualifiers();
3401    }
3402
3403    // C++ [class.union]p2:
3404    //   The member-specification of an anonymous union shall only
3405    //   define non-static data members. [Note: nested types and
3406    //   functions cannot be declared within an anonymous union. ]
3407    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3408                                 MemEnd = Record->decls_end();
3409         Mem != MemEnd; ++Mem) {
3410      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3411        // C++ [class.union]p3:
3412        //   An anonymous union shall not have private or protected
3413        //   members (clause 11).
3414        assert(FD->getAccess() != AS_none);
3415        if (FD->getAccess() != AS_public) {
3416          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3417            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3418          Invalid = true;
3419        }
3420
3421        // C++ [class.union]p1
3422        //   An object of a class with a non-trivial constructor, a non-trivial
3423        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3424        //   assignment operator cannot be a member of a union, nor can an
3425        //   array of such objects.
3426        if (CheckNontrivialField(FD))
3427          Invalid = true;
3428      } else if ((*Mem)->isImplicit()) {
3429        // Any implicit members are fine.
3430      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3431        // This is a type that showed up in an
3432        // elaborated-type-specifier inside the anonymous struct or
3433        // union, but which actually declares a type outside of the
3434        // anonymous struct or union. It's okay.
3435      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3436        if (!MemRecord->isAnonymousStructOrUnion() &&
3437            MemRecord->getDeclName()) {
3438          // Visual C++ allows type definition in anonymous struct or union.
3439          if (getLangOpts().MicrosoftExt)
3440            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3441              << (int)Record->isUnion();
3442          else {
3443            // This is a nested type declaration.
3444            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3445              << (int)Record->isUnion();
3446            Invalid = true;
3447          }
3448        } else {
3449          // This is an anonymous type definition within another anonymous type.
3450          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3451          // not part of standard C++.
3452          Diag(MemRecord->getLocation(),
3453               diag::ext_anonymous_record_with_anonymous_type)
3454            << (int)Record->isUnion();
3455        }
3456      } else if (isa<AccessSpecDecl>(*Mem)) {
3457        // Any access specifier is fine.
3458      } else {
3459        // We have something that isn't a non-static data
3460        // member. Complain about it.
3461        unsigned DK = diag::err_anonymous_record_bad_member;
3462        if (isa<TypeDecl>(*Mem))
3463          DK = diag::err_anonymous_record_with_type;
3464        else if (isa<FunctionDecl>(*Mem))
3465          DK = diag::err_anonymous_record_with_function;
3466        else if (isa<VarDecl>(*Mem))
3467          DK = diag::err_anonymous_record_with_static;
3468
3469        // Visual C++ allows type definition in anonymous struct or union.
3470        if (getLangOpts().MicrosoftExt &&
3471            DK == diag::err_anonymous_record_with_type)
3472          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3473            << (int)Record->isUnion();
3474        else {
3475          Diag((*Mem)->getLocation(), DK)
3476              << (int)Record->isUnion();
3477          Invalid = true;
3478        }
3479      }
3480    }
3481  }
3482
3483  if (!Record->isUnion() && !Owner->isRecord()) {
3484    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3485      << (int)getLangOpts().CPlusPlus;
3486    Invalid = true;
3487  }
3488
3489  // Mock up a declarator.
3490  Declarator Dc(DS, Declarator::MemberContext);
3491  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3492  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3493
3494  // Create a declaration for this anonymous struct/union.
3495  NamedDecl *Anon = 0;
3496  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3497    Anon = FieldDecl::Create(Context, OwningClass,
3498                             DS.getLocStart(),
3499                             Record->getLocation(),
3500                             /*IdentifierInfo=*/0,
3501                             Context.getTypeDeclType(Record),
3502                             TInfo,
3503                             /*BitWidth=*/0, /*Mutable=*/false,
3504                             /*InitStyle=*/ICIS_NoInit);
3505    Anon->setAccess(AS);
3506    if (getLangOpts().CPlusPlus)
3507      FieldCollector->Add(cast<FieldDecl>(Anon));
3508  } else {
3509    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3510    assert(SCSpec != DeclSpec::SCS_typedef &&
3511           "Parser allowed 'typedef' as storage class VarDecl.");
3512    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3513    if (SCSpec == DeclSpec::SCS_mutable) {
3514      // mutable can only appear on non-static class members, so it's always
3515      // an error here
3516      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3517      Invalid = true;
3518      SC = SC_None;
3519    }
3520    SCSpec = DS.getStorageClassSpecAsWritten();
3521    VarDecl::StorageClass SCAsWritten
3522      = StorageClassSpecToVarDeclStorageClass(SCSpec);
3523
3524    Anon = VarDecl::Create(Context, Owner,
3525                           DS.getLocStart(),
3526                           Record->getLocation(), /*IdentifierInfo=*/0,
3527                           Context.getTypeDeclType(Record),
3528                           TInfo, SC, SCAsWritten);
3529
3530    // Default-initialize the implicit variable. This initialization will be
3531    // trivial in almost all cases, except if a union member has an in-class
3532    // initializer:
3533    //   union { int n = 0; };
3534    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3535  }
3536  Anon->setImplicit();
3537
3538  // Add the anonymous struct/union object to the current
3539  // context. We'll be referencing this object when we refer to one of
3540  // its members.
3541  Owner->addDecl(Anon);
3542
3543  // Inject the members of the anonymous struct/union into the owning
3544  // context and into the identifier resolver chain for name lookup
3545  // purposes.
3546  SmallVector<NamedDecl*, 2> Chain;
3547  Chain.push_back(Anon);
3548
3549  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3550                                          Chain, false))
3551    Invalid = true;
3552
3553  // Mark this as an anonymous struct/union type. Note that we do not
3554  // do this until after we have already checked and injected the
3555  // members of this anonymous struct/union type, because otherwise
3556  // the members could be injected twice: once by DeclContext when it
3557  // builds its lookup table, and once by
3558  // InjectAnonymousStructOrUnionMembers.
3559  Record->setAnonymousStructOrUnion(true);
3560
3561  if (Invalid)
3562    Anon->setInvalidDecl();
3563
3564  return Anon;
3565}
3566
3567/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3568/// Microsoft C anonymous structure.
3569/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3570/// Example:
3571///
3572/// struct A { int a; };
3573/// struct B { struct A; int b; };
3574///
3575/// void foo() {
3576///   B var;
3577///   var.a = 3;
3578/// }
3579///
3580Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3581                                           RecordDecl *Record) {
3582
3583  // If there is no Record, get the record via the typedef.
3584  if (!Record)
3585    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3586
3587  // Mock up a declarator.
3588  Declarator Dc(DS, Declarator::TypeNameContext);
3589  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3590  assert(TInfo && "couldn't build declarator info for anonymous struct");
3591
3592  // Create a declaration for this anonymous struct.
3593  NamedDecl* Anon = FieldDecl::Create(Context,
3594                             cast<RecordDecl>(CurContext),
3595                             DS.getLocStart(),
3596                             DS.getLocStart(),
3597                             /*IdentifierInfo=*/0,
3598                             Context.getTypeDeclType(Record),
3599                             TInfo,
3600                             /*BitWidth=*/0, /*Mutable=*/false,
3601                             /*InitStyle=*/ICIS_NoInit);
3602  Anon->setImplicit();
3603
3604  // Add the anonymous struct object to the current context.
3605  CurContext->addDecl(Anon);
3606
3607  // Inject the members of the anonymous struct into the current
3608  // context and into the identifier resolver chain for name lookup
3609  // purposes.
3610  SmallVector<NamedDecl*, 2> Chain;
3611  Chain.push_back(Anon);
3612
3613  RecordDecl *RecordDef = Record->getDefinition();
3614  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3615                                                        RecordDef, AS_none,
3616                                                        Chain, true))
3617    Anon->setInvalidDecl();
3618
3619  return Anon;
3620}
3621
3622/// GetNameForDeclarator - Determine the full declaration name for the
3623/// given Declarator.
3624DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3625  return GetNameFromUnqualifiedId(D.getName());
3626}
3627
3628/// \brief Retrieves the declaration name from a parsed unqualified-id.
3629DeclarationNameInfo
3630Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3631  DeclarationNameInfo NameInfo;
3632  NameInfo.setLoc(Name.StartLocation);
3633
3634  switch (Name.getKind()) {
3635
3636  case UnqualifiedId::IK_ImplicitSelfParam:
3637  case UnqualifiedId::IK_Identifier:
3638    NameInfo.setName(Name.Identifier);
3639    NameInfo.setLoc(Name.StartLocation);
3640    return NameInfo;
3641
3642  case UnqualifiedId::IK_OperatorFunctionId:
3643    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3644                                           Name.OperatorFunctionId.Operator));
3645    NameInfo.setLoc(Name.StartLocation);
3646    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3647      = Name.OperatorFunctionId.SymbolLocations[0];
3648    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3649      = Name.EndLocation.getRawEncoding();
3650    return NameInfo;
3651
3652  case UnqualifiedId::IK_LiteralOperatorId:
3653    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3654                                                           Name.Identifier));
3655    NameInfo.setLoc(Name.StartLocation);
3656    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3657    return NameInfo;
3658
3659  case UnqualifiedId::IK_ConversionFunctionId: {
3660    TypeSourceInfo *TInfo;
3661    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3662    if (Ty.isNull())
3663      return DeclarationNameInfo();
3664    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3665                                               Context.getCanonicalType(Ty)));
3666    NameInfo.setLoc(Name.StartLocation);
3667    NameInfo.setNamedTypeInfo(TInfo);
3668    return NameInfo;
3669  }
3670
3671  case UnqualifiedId::IK_ConstructorName: {
3672    TypeSourceInfo *TInfo;
3673    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3674    if (Ty.isNull())
3675      return DeclarationNameInfo();
3676    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3677                                              Context.getCanonicalType(Ty)));
3678    NameInfo.setLoc(Name.StartLocation);
3679    NameInfo.setNamedTypeInfo(TInfo);
3680    return NameInfo;
3681  }
3682
3683  case UnqualifiedId::IK_ConstructorTemplateId: {
3684    // In well-formed code, we can only have a constructor
3685    // template-id that refers to the current context, so go there
3686    // to find the actual type being constructed.
3687    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3688    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3689      return DeclarationNameInfo();
3690
3691    // Determine the type of the class being constructed.
3692    QualType CurClassType = Context.getTypeDeclType(CurClass);
3693
3694    // FIXME: Check two things: that the template-id names the same type as
3695    // CurClassType, and that the template-id does not occur when the name
3696    // was qualified.
3697
3698    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3699                                    Context.getCanonicalType(CurClassType)));
3700    NameInfo.setLoc(Name.StartLocation);
3701    // FIXME: should we retrieve TypeSourceInfo?
3702    NameInfo.setNamedTypeInfo(0);
3703    return NameInfo;
3704  }
3705
3706  case UnqualifiedId::IK_DestructorName: {
3707    TypeSourceInfo *TInfo;
3708    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3709    if (Ty.isNull())
3710      return DeclarationNameInfo();
3711    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3712                                              Context.getCanonicalType(Ty)));
3713    NameInfo.setLoc(Name.StartLocation);
3714    NameInfo.setNamedTypeInfo(TInfo);
3715    return NameInfo;
3716  }
3717
3718  case UnqualifiedId::IK_TemplateId: {
3719    TemplateName TName = Name.TemplateId->Template.get();
3720    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3721    return Context.getNameForTemplate(TName, TNameLoc);
3722  }
3723
3724  } // switch (Name.getKind())
3725
3726  llvm_unreachable("Unknown name kind");
3727}
3728
3729static QualType getCoreType(QualType Ty) {
3730  do {
3731    if (Ty->isPointerType() || Ty->isReferenceType())
3732      Ty = Ty->getPointeeType();
3733    else if (Ty->isArrayType())
3734      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3735    else
3736      return Ty.withoutLocalFastQualifiers();
3737  } while (true);
3738}
3739
3740/// hasSimilarParameters - Determine whether the C++ functions Declaration
3741/// and Definition have "nearly" matching parameters. This heuristic is
3742/// used to improve diagnostics in the case where an out-of-line function
3743/// definition doesn't match any declaration within the class or namespace.
3744/// Also sets Params to the list of indices to the parameters that differ
3745/// between the declaration and the definition. If hasSimilarParameters
3746/// returns true and Params is empty, then all of the parameters match.
3747static bool hasSimilarParameters(ASTContext &Context,
3748                                     FunctionDecl *Declaration,
3749                                     FunctionDecl *Definition,
3750                                     SmallVectorImpl<unsigned> &Params) {
3751  Params.clear();
3752  if (Declaration->param_size() != Definition->param_size())
3753    return false;
3754  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3755    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3756    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3757
3758    // The parameter types are identical
3759    if (Context.hasSameType(DefParamTy, DeclParamTy))
3760      continue;
3761
3762    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3763    QualType DefParamBaseTy = getCoreType(DefParamTy);
3764    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3765    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3766
3767    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3768        (DeclTyName && DeclTyName == DefTyName))
3769      Params.push_back(Idx);
3770    else  // The two parameters aren't even close
3771      return false;
3772  }
3773
3774  return true;
3775}
3776
3777/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3778/// declarator needs to be rebuilt in the current instantiation.
3779/// Any bits of declarator which appear before the name are valid for
3780/// consideration here.  That's specifically the type in the decl spec
3781/// and the base type in any member-pointer chunks.
3782static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3783                                                    DeclarationName Name) {
3784  // The types we specifically need to rebuild are:
3785  //   - typenames, typeofs, and decltypes
3786  //   - types which will become injected class names
3787  // Of course, we also need to rebuild any type referencing such a
3788  // type.  It's safest to just say "dependent", but we call out a
3789  // few cases here.
3790
3791  DeclSpec &DS = D.getMutableDeclSpec();
3792  switch (DS.getTypeSpecType()) {
3793  case DeclSpec::TST_typename:
3794  case DeclSpec::TST_typeofType:
3795  case DeclSpec::TST_underlyingType:
3796  case DeclSpec::TST_atomic: {
3797    // Grab the type from the parser.
3798    TypeSourceInfo *TSI = 0;
3799    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3800    if (T.isNull() || !T->isDependentType()) break;
3801
3802    // Make sure there's a type source info.  This isn't really much
3803    // of a waste; most dependent types should have type source info
3804    // attached already.
3805    if (!TSI)
3806      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3807
3808    // Rebuild the type in the current instantiation.
3809    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3810    if (!TSI) return true;
3811
3812    // Store the new type back in the decl spec.
3813    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3814    DS.UpdateTypeRep(LocType);
3815    break;
3816  }
3817
3818  case DeclSpec::TST_decltype:
3819  case DeclSpec::TST_typeofExpr: {
3820    Expr *E = DS.getRepAsExpr();
3821    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3822    if (Result.isInvalid()) return true;
3823    DS.UpdateExprRep(Result.get());
3824    break;
3825  }
3826
3827  default:
3828    // Nothing to do for these decl specs.
3829    break;
3830  }
3831
3832  // It doesn't matter what order we do this in.
3833  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3834    DeclaratorChunk &Chunk = D.getTypeObject(I);
3835
3836    // The only type information in the declarator which can come
3837    // before the declaration name is the base type of a member
3838    // pointer.
3839    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3840      continue;
3841
3842    // Rebuild the scope specifier in-place.
3843    CXXScopeSpec &SS = Chunk.Mem.Scope();
3844    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3845      return true;
3846  }
3847
3848  return false;
3849}
3850
3851Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3852  D.setFunctionDefinitionKind(FDK_Declaration);
3853  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3854
3855  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3856      Dcl && Dcl->getDeclContext()->isFileContext())
3857    Dcl->setTopLevelDeclInObjCContainer();
3858
3859  return Dcl;
3860}
3861
3862/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3863///   If T is the name of a class, then each of the following shall have a
3864///   name different from T:
3865///     - every static data member of class T;
3866///     - every member function of class T
3867///     - every member of class T that is itself a type;
3868/// \returns true if the declaration name violates these rules.
3869bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3870                                   DeclarationNameInfo NameInfo) {
3871  DeclarationName Name = NameInfo.getName();
3872
3873  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3874    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3875      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3876      return true;
3877    }
3878
3879  return false;
3880}
3881
3882/// \brief Diagnose a declaration whose declarator-id has the given
3883/// nested-name-specifier.
3884///
3885/// \param SS The nested-name-specifier of the declarator-id.
3886///
3887/// \param DC The declaration context to which the nested-name-specifier
3888/// resolves.
3889///
3890/// \param Name The name of the entity being declared.
3891///
3892/// \param Loc The location of the name of the entity being declared.
3893///
3894/// \returns true if we cannot safely recover from this error, false otherwise.
3895bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3896                                        DeclarationName Name,
3897                                      SourceLocation Loc) {
3898  DeclContext *Cur = CurContext;
3899  while (isa<LinkageSpecDecl>(Cur))
3900    Cur = Cur->getParent();
3901
3902  // C++ [dcl.meaning]p1:
3903  //   A declarator-id shall not be qualified except for the definition
3904  //   of a member function (9.3) or static data member (9.4) outside of
3905  //   its class, the definition or explicit instantiation of a function
3906  //   or variable member of a namespace outside of its namespace, or the
3907  //   definition of an explicit specialization outside of its namespace,
3908  //   or the declaration of a friend function that is a member of
3909  //   another class or namespace (11.3). [...]
3910
3911  // The user provided a superfluous scope specifier that refers back to the
3912  // class or namespaces in which the entity is already declared.
3913  //
3914  // class X {
3915  //   void X::f();
3916  // };
3917  if (Cur->Equals(DC)) {
3918    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3919                                   : diag::err_member_extra_qualification)
3920      << Name << FixItHint::CreateRemoval(SS.getRange());
3921    SS.clear();
3922    return false;
3923  }
3924
3925  // Check whether the qualifying scope encloses the scope of the original
3926  // declaration.
3927  if (!Cur->Encloses(DC)) {
3928    if (Cur->isRecord())
3929      Diag(Loc, diag::err_member_qualification)
3930        << Name << SS.getRange();
3931    else if (isa<TranslationUnitDecl>(DC))
3932      Diag(Loc, diag::err_invalid_declarator_global_scope)
3933        << Name << SS.getRange();
3934    else if (isa<FunctionDecl>(Cur))
3935      Diag(Loc, diag::err_invalid_declarator_in_function)
3936        << Name << SS.getRange();
3937    else
3938      Diag(Loc, diag::err_invalid_declarator_scope)
3939      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3940
3941    return true;
3942  }
3943
3944  if (Cur->isRecord()) {
3945    // Cannot qualify members within a class.
3946    Diag(Loc, diag::err_member_qualification)
3947      << Name << SS.getRange();
3948    SS.clear();
3949
3950    // C++ constructors and destructors with incorrect scopes can break
3951    // our AST invariants by having the wrong underlying types. If
3952    // that's the case, then drop this declaration entirely.
3953    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3954         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3955        !Context.hasSameType(Name.getCXXNameType(),
3956                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3957      return true;
3958
3959    return false;
3960  }
3961
3962  // C++11 [dcl.meaning]p1:
3963  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3964  //   not begin with a decltype-specifer"
3965  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3966  while (SpecLoc.getPrefix())
3967    SpecLoc = SpecLoc.getPrefix();
3968  if (dyn_cast_or_null<DecltypeType>(
3969        SpecLoc.getNestedNameSpecifier()->getAsType()))
3970    Diag(Loc, diag::err_decltype_in_declarator)
3971      << SpecLoc.getTypeLoc().getSourceRange();
3972
3973  return false;
3974}
3975
3976NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3977                                  MultiTemplateParamsArg TemplateParamLists) {
3978  // TODO: consider using NameInfo for diagnostic.
3979  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3980  DeclarationName Name = NameInfo.getName();
3981
3982  // All of these full declarators require an identifier.  If it doesn't have
3983  // one, the ParsedFreeStandingDeclSpec action should be used.
3984  if (!Name) {
3985    if (!D.isInvalidType())  // Reject this if we think it is valid.
3986      Diag(D.getDeclSpec().getLocStart(),
3987           diag::err_declarator_need_ident)
3988        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3989    return 0;
3990  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3991    return 0;
3992
3993  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3994  // we find one that is.
3995  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3996         (S->getFlags() & Scope::TemplateParamScope) != 0)
3997    S = S->getParent();
3998
3999  DeclContext *DC = CurContext;
4000  if (D.getCXXScopeSpec().isInvalid())
4001    D.setInvalidType();
4002  else if (D.getCXXScopeSpec().isSet()) {
4003    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4004                                        UPPC_DeclarationQualifier))
4005      return 0;
4006
4007    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4008    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4009    if (!DC) {
4010      // If we could not compute the declaration context, it's because the
4011      // declaration context is dependent but does not refer to a class,
4012      // class template, or class template partial specialization. Complain
4013      // and return early, to avoid the coming semantic disaster.
4014      Diag(D.getIdentifierLoc(),
4015           diag::err_template_qualified_declarator_no_match)
4016        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4017        << D.getCXXScopeSpec().getRange();
4018      return 0;
4019    }
4020    bool IsDependentContext = DC->isDependentContext();
4021
4022    if (!IsDependentContext &&
4023        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4024      return 0;
4025
4026    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4027      Diag(D.getIdentifierLoc(),
4028           diag::err_member_def_undefined_record)
4029        << Name << DC << D.getCXXScopeSpec().getRange();
4030      D.setInvalidType();
4031    } else if (!D.getDeclSpec().isFriendSpecified()) {
4032      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4033                                      Name, D.getIdentifierLoc())) {
4034        if (DC->isRecord())
4035          return 0;
4036
4037        D.setInvalidType();
4038      }
4039    }
4040
4041    // Check whether we need to rebuild the type of the given
4042    // declaration in the current instantiation.
4043    if (EnteringContext && IsDependentContext &&
4044        TemplateParamLists.size() != 0) {
4045      ContextRAII SavedContext(*this, DC);
4046      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4047        D.setInvalidType();
4048    }
4049  }
4050
4051  if (DiagnoseClassNameShadow(DC, NameInfo))
4052    // If this is a typedef, we'll end up spewing multiple diagnostics.
4053    // Just return early; it's safer.
4054    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4055      return 0;
4056
4057  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4058  QualType R = TInfo->getType();
4059
4060  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4061                                      UPPC_DeclarationType))
4062    D.setInvalidType();
4063
4064  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4065                        ForRedeclaration);
4066
4067  // See if this is a redefinition of a variable in the same scope.
4068  if (!D.getCXXScopeSpec().isSet()) {
4069    bool IsLinkageLookup = false;
4070
4071    // If the declaration we're planning to build will be a function
4072    // or object with linkage, then look for another declaration with
4073    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4074    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4075      /* Do nothing*/;
4076    else if (R->isFunctionType()) {
4077      if (CurContext->isFunctionOrMethod() ||
4078          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4079        IsLinkageLookup = true;
4080    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4081      IsLinkageLookup = true;
4082    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4083             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4084      IsLinkageLookup = true;
4085
4086    if (IsLinkageLookup)
4087      Previous.clear(LookupRedeclarationWithLinkage);
4088
4089    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4090  } else { // Something like "int foo::x;"
4091    LookupQualifiedName(Previous, DC);
4092
4093    // C++ [dcl.meaning]p1:
4094    //   When the declarator-id is qualified, the declaration shall refer to a
4095    //  previously declared member of the class or namespace to which the
4096    //  qualifier refers (or, in the case of a namespace, of an element of the
4097    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4098    //  thereof; [...]
4099    //
4100    // Note that we already checked the context above, and that we do not have
4101    // enough information to make sure that Previous contains the declaration
4102    // we want to match. For example, given:
4103    //
4104    //   class X {
4105    //     void f();
4106    //     void f(float);
4107    //   };
4108    //
4109    //   void X::f(int) { } // ill-formed
4110    //
4111    // In this case, Previous will point to the overload set
4112    // containing the two f's declared in X, but neither of them
4113    // matches.
4114
4115    // C++ [dcl.meaning]p1:
4116    //   [...] the member shall not merely have been introduced by a
4117    //   using-declaration in the scope of the class or namespace nominated by
4118    //   the nested-name-specifier of the declarator-id.
4119    RemoveUsingDecls(Previous);
4120  }
4121
4122  if (Previous.isSingleResult() &&
4123      Previous.getFoundDecl()->isTemplateParameter()) {
4124    // Maybe we will complain about the shadowed template parameter.
4125    if (!D.isInvalidType())
4126      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4127                                      Previous.getFoundDecl());
4128
4129    // Just pretend that we didn't see the previous declaration.
4130    Previous.clear();
4131  }
4132
4133  // In C++, the previous declaration we find might be a tag type
4134  // (class or enum). In this case, the new declaration will hide the
4135  // tag type. Note that this does does not apply if we're declaring a
4136  // typedef (C++ [dcl.typedef]p4).
4137  if (Previous.isSingleTagDecl() &&
4138      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4139    Previous.clear();
4140
4141  // Check that there are no default arguments other than in the parameters
4142  // of a function declaration (C++ only).
4143  if (getLangOpts().CPlusPlus)
4144    CheckExtraCXXDefaultArguments(D);
4145
4146  NamedDecl *New;
4147
4148  bool AddToScope = true;
4149  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4150    if (TemplateParamLists.size()) {
4151      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4152      return 0;
4153    }
4154
4155    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4156  } else if (R->isFunctionType()) {
4157    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4158                                  TemplateParamLists,
4159                                  AddToScope);
4160  } else {
4161    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4162                                  TemplateParamLists);
4163  }
4164
4165  if (New == 0)
4166    return 0;
4167
4168  // If this has an identifier and is not an invalid redeclaration or
4169  // function template specialization, add it to the scope stack.
4170  if (New->getDeclName() && AddToScope &&
4171       !(D.isRedeclaration() && New->isInvalidDecl()))
4172    PushOnScopeChains(New, S);
4173
4174  return New;
4175}
4176
4177/// Helper method to turn variable array types into constant array
4178/// types in certain situations which would otherwise be errors (for
4179/// GCC compatibility).
4180static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4181                                                    ASTContext &Context,
4182                                                    bool &SizeIsNegative,
4183                                                    llvm::APSInt &Oversized) {
4184  // This method tries to turn a variable array into a constant
4185  // array even when the size isn't an ICE.  This is necessary
4186  // for compatibility with code that depends on gcc's buggy
4187  // constant expression folding, like struct {char x[(int)(char*)2];}
4188  SizeIsNegative = false;
4189  Oversized = 0;
4190
4191  if (T->isDependentType())
4192    return QualType();
4193
4194  QualifierCollector Qs;
4195  const Type *Ty = Qs.strip(T);
4196
4197  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4198    QualType Pointee = PTy->getPointeeType();
4199    QualType FixedType =
4200        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4201                                            Oversized);
4202    if (FixedType.isNull()) return FixedType;
4203    FixedType = Context.getPointerType(FixedType);
4204    return Qs.apply(Context, FixedType);
4205  }
4206  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4207    QualType Inner = PTy->getInnerType();
4208    QualType FixedType =
4209        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4210                                            Oversized);
4211    if (FixedType.isNull()) return FixedType;
4212    FixedType = Context.getParenType(FixedType);
4213    return Qs.apply(Context, FixedType);
4214  }
4215
4216  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4217  if (!VLATy)
4218    return QualType();
4219  // FIXME: We should probably handle this case
4220  if (VLATy->getElementType()->isVariablyModifiedType())
4221    return QualType();
4222
4223  llvm::APSInt Res;
4224  if (!VLATy->getSizeExpr() ||
4225      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4226    return QualType();
4227
4228  // Check whether the array size is negative.
4229  if (Res.isSigned() && Res.isNegative()) {
4230    SizeIsNegative = true;
4231    return QualType();
4232  }
4233
4234  // Check whether the array is too large to be addressed.
4235  unsigned ActiveSizeBits
4236    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4237                                              Res);
4238  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4239    Oversized = Res;
4240    return QualType();
4241  }
4242
4243  return Context.getConstantArrayType(VLATy->getElementType(),
4244                                      Res, ArrayType::Normal, 0);
4245}
4246
4247static void
4248FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4249  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4250    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4251    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4252                                      DstPTL.getPointeeLoc());
4253    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4254    return;
4255  }
4256  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4257    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4258    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4259                                      DstPTL.getInnerLoc());
4260    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4261    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4262    return;
4263  }
4264  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4265  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4266  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4267  TypeLoc DstElemTL = DstATL.getElementLoc();
4268  DstElemTL.initializeFullCopy(SrcElemTL);
4269  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4270  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4271  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4272}
4273
4274/// Helper method to turn variable array types into constant array
4275/// types in certain situations which would otherwise be errors (for
4276/// GCC compatibility).
4277static TypeSourceInfo*
4278TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4279                                              ASTContext &Context,
4280                                              bool &SizeIsNegative,
4281                                              llvm::APSInt &Oversized) {
4282  QualType FixedTy
4283    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4284                                          SizeIsNegative, Oversized);
4285  if (FixedTy.isNull())
4286    return 0;
4287  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4288  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4289                                    FixedTInfo->getTypeLoc());
4290  return FixedTInfo;
4291}
4292
4293/// \brief Register the given locally-scoped extern "C" declaration so
4294/// that it can be found later for redeclarations
4295void
4296Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
4297                                       const LookupResult &Previous,
4298                                       Scope *S) {
4299  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
4300         "Decl is not a locally-scoped decl!");
4301  // Note that we have a locally-scoped external with this name.
4302  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4303
4304  if (!Previous.isSingleResult())
4305    return;
4306
4307  NamedDecl *PrevDecl = Previous.getFoundDecl();
4308
4309  // If there was a previous declaration of this entity, it may be in
4310  // our identifier chain. Update the identifier chain with the new
4311  // declaration.
4312  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
4313    // The previous declaration was found on the identifer resolver
4314    // chain, so remove it from its scope.
4315
4316    if (S->isDeclScope(PrevDecl)) {
4317      // Special case for redeclarations in the SAME scope.
4318      // Because this declaration is going to be added to the identifier chain
4319      // later, we should temporarily take it OFF the chain.
4320      IdResolver.RemoveDecl(ND);
4321
4322    } else {
4323      // Find the scope for the original declaration.
4324      while (S && !S->isDeclScope(PrevDecl))
4325        S = S->getParent();
4326    }
4327
4328    if (S)
4329      S->RemoveDecl(PrevDecl);
4330  }
4331}
4332
4333llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
4334Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4335  if (ExternalSource) {
4336    // Load locally-scoped external decls from the external source.
4337    SmallVector<NamedDecl *, 4> Decls;
4338    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4339    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4340      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4341        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4342      if (Pos == LocallyScopedExternCDecls.end())
4343        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4344    }
4345  }
4346
4347  return LocallyScopedExternCDecls.find(Name);
4348}
4349
4350/// \brief Diagnose function specifiers on a declaration of an identifier that
4351/// does not identify a function.
4352void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
4353  // FIXME: We should probably indicate the identifier in question to avoid
4354  // confusion for constructs like "inline int a(), b;"
4355  if (D.getDeclSpec().isInlineSpecified())
4356    Diag(D.getDeclSpec().getInlineSpecLoc(),
4357         diag::err_inline_non_function);
4358
4359  if (D.getDeclSpec().isVirtualSpecified())
4360    Diag(D.getDeclSpec().getVirtualSpecLoc(),
4361         diag::err_virtual_non_function);
4362
4363  if (D.getDeclSpec().isExplicitSpecified())
4364    Diag(D.getDeclSpec().getExplicitSpecLoc(),
4365         diag::err_explicit_non_function);
4366
4367  if (D.getDeclSpec().isNoreturnSpecified())
4368    Diag(D.getDeclSpec().getNoreturnSpecLoc(),
4369         diag::err_noreturn_non_function);
4370}
4371
4372NamedDecl*
4373Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4374                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4375  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4376  if (D.getCXXScopeSpec().isSet()) {
4377    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4378      << D.getCXXScopeSpec().getRange();
4379    D.setInvalidType();
4380    // Pretend we didn't see the scope specifier.
4381    DC = CurContext;
4382    Previous.clear();
4383  }
4384
4385  DiagnoseFunctionSpecifiers(D);
4386
4387  if (D.getDeclSpec().isThreadSpecified())
4388    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4389  if (D.getDeclSpec().isConstexprSpecified())
4390    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4391      << 1;
4392
4393  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4394    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4395      << D.getName().getSourceRange();
4396    return 0;
4397  }
4398
4399  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4400  if (!NewTD) return 0;
4401
4402  // Handle attributes prior to checking for duplicates in MergeVarDecl
4403  ProcessDeclAttributes(S, NewTD, D);
4404
4405  CheckTypedefForVariablyModifiedType(S, NewTD);
4406
4407  bool Redeclaration = D.isRedeclaration();
4408  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4409  D.setRedeclaration(Redeclaration);
4410  return ND;
4411}
4412
4413void
4414Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4415  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4416  // then it shall have block scope.
4417  // Note that variably modified types must be fixed before merging the decl so
4418  // that redeclarations will match.
4419  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4420  QualType T = TInfo->getType();
4421  if (T->isVariablyModifiedType()) {
4422    getCurFunction()->setHasBranchProtectedScope();
4423
4424    if (S->getFnParent() == 0) {
4425      bool SizeIsNegative;
4426      llvm::APSInt Oversized;
4427      TypeSourceInfo *FixedTInfo =
4428        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4429                                                      SizeIsNegative,
4430                                                      Oversized);
4431      if (FixedTInfo) {
4432        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4433        NewTD->setTypeSourceInfo(FixedTInfo);
4434      } else {
4435        if (SizeIsNegative)
4436          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4437        else if (T->isVariableArrayType())
4438          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4439        else if (Oversized.getBoolValue())
4440          Diag(NewTD->getLocation(), diag::err_array_too_large)
4441            << Oversized.toString(10);
4442        else
4443          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4444        NewTD->setInvalidDecl();
4445      }
4446    }
4447  }
4448}
4449
4450
4451/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4452/// declares a typedef-name, either using the 'typedef' type specifier or via
4453/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4454NamedDecl*
4455Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4456                           LookupResult &Previous, bool &Redeclaration) {
4457  // Merge the decl with the existing one if appropriate. If the decl is
4458  // in an outer scope, it isn't the same thing.
4459  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4460                       /*ExplicitInstantiationOrSpecialization=*/false);
4461  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4462  if (!Previous.empty()) {
4463    Redeclaration = true;
4464    MergeTypedefNameDecl(NewTD, Previous);
4465  }
4466
4467  // If this is the C FILE type, notify the AST context.
4468  if (IdentifierInfo *II = NewTD->getIdentifier())
4469    if (!NewTD->isInvalidDecl() &&
4470        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4471      if (II->isStr("FILE"))
4472        Context.setFILEDecl(NewTD);
4473      else if (II->isStr("jmp_buf"))
4474        Context.setjmp_bufDecl(NewTD);
4475      else if (II->isStr("sigjmp_buf"))
4476        Context.setsigjmp_bufDecl(NewTD);
4477      else if (II->isStr("ucontext_t"))
4478        Context.setucontext_tDecl(NewTD);
4479    }
4480
4481  return NewTD;
4482}
4483
4484/// \brief Determines whether the given declaration is an out-of-scope
4485/// previous declaration.
4486///
4487/// This routine should be invoked when name lookup has found a
4488/// previous declaration (PrevDecl) that is not in the scope where a
4489/// new declaration by the same name is being introduced. If the new
4490/// declaration occurs in a local scope, previous declarations with
4491/// linkage may still be considered previous declarations (C99
4492/// 6.2.2p4-5, C++ [basic.link]p6).
4493///
4494/// \param PrevDecl the previous declaration found by name
4495/// lookup
4496///
4497/// \param DC the context in which the new declaration is being
4498/// declared.
4499///
4500/// \returns true if PrevDecl is an out-of-scope previous declaration
4501/// for a new delcaration with the same name.
4502static bool
4503isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4504                                ASTContext &Context) {
4505  if (!PrevDecl)
4506    return false;
4507
4508  if (!PrevDecl->hasLinkage())
4509    return false;
4510
4511  if (Context.getLangOpts().CPlusPlus) {
4512    // C++ [basic.link]p6:
4513    //   If there is a visible declaration of an entity with linkage
4514    //   having the same name and type, ignoring entities declared
4515    //   outside the innermost enclosing namespace scope, the block
4516    //   scope declaration declares that same entity and receives the
4517    //   linkage of the previous declaration.
4518    DeclContext *OuterContext = DC->getRedeclContext();
4519    if (!OuterContext->isFunctionOrMethod())
4520      // This rule only applies to block-scope declarations.
4521      return false;
4522
4523    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4524    if (PrevOuterContext->isRecord())
4525      // We found a member function: ignore it.
4526      return false;
4527
4528    // Find the innermost enclosing namespace for the new and
4529    // previous declarations.
4530    OuterContext = OuterContext->getEnclosingNamespaceContext();
4531    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4532
4533    // The previous declaration is in a different namespace, so it
4534    // isn't the same function.
4535    if (!OuterContext->Equals(PrevOuterContext))
4536      return false;
4537  }
4538
4539  return true;
4540}
4541
4542static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4543  CXXScopeSpec &SS = D.getCXXScopeSpec();
4544  if (!SS.isSet()) return;
4545  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4546}
4547
4548bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4549  QualType type = decl->getType();
4550  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4551  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4552    // Various kinds of declaration aren't allowed to be __autoreleasing.
4553    unsigned kind = -1U;
4554    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4555      if (var->hasAttr<BlocksAttr>())
4556        kind = 0; // __block
4557      else if (!var->hasLocalStorage())
4558        kind = 1; // global
4559    } else if (isa<ObjCIvarDecl>(decl)) {
4560      kind = 3; // ivar
4561    } else if (isa<FieldDecl>(decl)) {
4562      kind = 2; // field
4563    }
4564
4565    if (kind != -1U) {
4566      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4567        << kind;
4568    }
4569  } else if (lifetime == Qualifiers::OCL_None) {
4570    // Try to infer lifetime.
4571    if (!type->isObjCLifetimeType())
4572      return false;
4573
4574    lifetime = type->getObjCARCImplicitLifetime();
4575    type = Context.getLifetimeQualifiedType(type, lifetime);
4576    decl->setType(type);
4577  }
4578
4579  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4580    // Thread-local variables cannot have lifetime.
4581    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4582        var->isThreadSpecified()) {
4583      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4584        << var->getType();
4585      return true;
4586    }
4587  }
4588
4589  return false;
4590}
4591
4592static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4593  // 'weak' only applies to declarations with external linkage.
4594  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4595    if (ND.getLinkage() != ExternalLinkage) {
4596      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4597      ND.dropAttr<WeakAttr>();
4598    }
4599  }
4600  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4601    if (ND.hasExternalLinkage()) {
4602      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4603      ND.dropAttr<WeakRefAttr>();
4604    }
4605  }
4606}
4607
4608static bool shouldConsiderLinkage(const VarDecl *VD) {
4609  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4610  if (DC->isFunctionOrMethod())
4611    return VD->hasExternalStorageAsWritten();
4612  if (DC->isFileContext())
4613    return true;
4614  if (DC->isRecord())
4615    return false;
4616  llvm_unreachable("Unexpected context");
4617}
4618
4619static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4620  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4621  if (DC->isFileContext() || DC->isFunctionOrMethod())
4622    return true;
4623  if (DC->isRecord())
4624    return false;
4625  llvm_unreachable("Unexpected context");
4626}
4627
4628NamedDecl*
4629Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4630                              TypeSourceInfo *TInfo, LookupResult &Previous,
4631                              MultiTemplateParamsArg TemplateParamLists) {
4632  QualType R = TInfo->getType();
4633  DeclarationName Name = GetNameForDeclarator(D).getName();
4634
4635  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4636  assert(SCSpec != DeclSpec::SCS_typedef &&
4637         "Parser allowed 'typedef' as storage class VarDecl.");
4638  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4639
4640  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16)
4641  {
4642    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4643    // half array type (unless the cl_khr_fp16 extension is enabled).
4644    if (Context.getBaseElementType(R)->isHalfType()) {
4645      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4646      D.setInvalidType();
4647    }
4648  }
4649
4650  if (SCSpec == DeclSpec::SCS_mutable) {
4651    // mutable can only appear on non-static class members, so it's always
4652    // an error here
4653    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4654    D.setInvalidType();
4655    SC = SC_None;
4656  }
4657  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4658  VarDecl::StorageClass SCAsWritten
4659    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4660
4661  IdentifierInfo *II = Name.getAsIdentifierInfo();
4662  if (!II) {
4663    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4664      << Name;
4665    return 0;
4666  }
4667
4668  DiagnoseFunctionSpecifiers(D);
4669
4670  if (!DC->isRecord() && S->getFnParent() == 0) {
4671    // C99 6.9p2: The storage-class specifiers auto and register shall not
4672    // appear in the declaration specifiers in an external declaration.
4673    if (SC == SC_Auto || SC == SC_Register) {
4674
4675      // If this is a register variable with an asm label specified, then this
4676      // is a GNU extension.
4677      if (SC == SC_Register && D.getAsmLabel())
4678        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4679      else
4680        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4681      D.setInvalidType();
4682    }
4683  }
4684
4685  if (getLangOpts().OpenCL) {
4686    // Set up the special work-group-local storage class for variables in the
4687    // OpenCL __local address space.
4688    if (R.getAddressSpace() == LangAS::opencl_local) {
4689      SC = SC_OpenCLWorkGroupLocal;
4690      SCAsWritten = SC_OpenCLWorkGroupLocal;
4691    }
4692
4693    // OpenCL v1.2 s6.9.b p4:
4694    // The sampler type cannot be used with the __local and __global address
4695    // space qualifiers.
4696    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4697      R.getAddressSpace() == LangAS::opencl_global)) {
4698      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4699    }
4700
4701    // OpenCL 1.2 spec, p6.9 r:
4702    // The event type cannot be used to declare a program scope variable.
4703    // The event type cannot be used with the __local, __constant and __global
4704    // address space qualifiers.
4705    if (R->isEventT()) {
4706      if (S->getParent() == 0) {
4707        Diag(D.getLocStart(), diag::err_event_t_global_var);
4708        D.setInvalidType();
4709      }
4710
4711      if (R.getAddressSpace()) {
4712        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4713        D.setInvalidType();
4714      }
4715    }
4716  }
4717
4718  bool isExplicitSpecialization = false;
4719  VarDecl *NewVD;
4720  if (!getLangOpts().CPlusPlus) {
4721    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4722                            D.getIdentifierLoc(), II,
4723                            R, TInfo, SC, SCAsWritten);
4724
4725    if (D.isInvalidType())
4726      NewVD->setInvalidDecl();
4727  } else {
4728    if (DC->isRecord() && !CurContext->isRecord()) {
4729      // This is an out-of-line definition of a static data member.
4730      if (SC == SC_Static) {
4731        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4732             diag::err_static_out_of_line)
4733          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4734      } else if (SC == SC_None)
4735        SC = SC_Static;
4736    }
4737    if (SC == SC_Static && CurContext->isRecord()) {
4738      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4739        if (RD->isLocalClass())
4740          Diag(D.getIdentifierLoc(),
4741               diag::err_static_data_member_not_allowed_in_local_class)
4742            << Name << RD->getDeclName();
4743
4744        // C++98 [class.union]p1: If a union contains a static data member,
4745        // the program is ill-formed. C++11 drops this restriction.
4746        if (RD->isUnion())
4747          Diag(D.getIdentifierLoc(),
4748               getLangOpts().CPlusPlus11
4749                 ? diag::warn_cxx98_compat_static_data_member_in_union
4750                 : diag::ext_static_data_member_in_union) << Name;
4751        // We conservatively disallow static data members in anonymous structs.
4752        else if (!RD->getDeclName())
4753          Diag(D.getIdentifierLoc(),
4754               diag::err_static_data_member_not_allowed_in_anon_struct)
4755            << Name << RD->isUnion();
4756      }
4757    }
4758
4759    // Match up the template parameter lists with the scope specifier, then
4760    // determine whether we have a template or a template specialization.
4761    isExplicitSpecialization = false;
4762    bool Invalid = false;
4763    if (TemplateParameterList *TemplateParams
4764        = MatchTemplateParametersToScopeSpecifier(
4765                                  D.getDeclSpec().getLocStart(),
4766                                                  D.getIdentifierLoc(),
4767                                                  D.getCXXScopeSpec(),
4768                                                  TemplateParamLists.data(),
4769                                                  TemplateParamLists.size(),
4770                                                  /*never a friend*/ false,
4771                                                  isExplicitSpecialization,
4772                                                  Invalid)) {
4773      if (TemplateParams->size() > 0) {
4774        // There is no such thing as a variable template.
4775        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4776          << II
4777          << SourceRange(TemplateParams->getTemplateLoc(),
4778                         TemplateParams->getRAngleLoc());
4779        return 0;
4780      } else {
4781        // There is an extraneous 'template<>' for this variable. Complain
4782        // about it, but allow the declaration of the variable.
4783        Diag(TemplateParams->getTemplateLoc(),
4784             diag::err_template_variable_noparams)
4785          << II
4786          << SourceRange(TemplateParams->getTemplateLoc(),
4787                         TemplateParams->getRAngleLoc());
4788      }
4789    }
4790
4791    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4792                            D.getIdentifierLoc(), II,
4793                            R, TInfo, SC, SCAsWritten);
4794
4795    // If this decl has an auto type in need of deduction, make a note of the
4796    // Decl so we can diagnose uses of it in its own initializer.
4797    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4798        R->getContainedAutoType())
4799      ParsingInitForAutoVars.insert(NewVD);
4800
4801    if (D.isInvalidType() || Invalid)
4802      NewVD->setInvalidDecl();
4803
4804    SetNestedNameSpecifier(NewVD, D);
4805
4806    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4807      NewVD->setTemplateParameterListsInfo(Context,
4808                                           TemplateParamLists.size(),
4809                                           TemplateParamLists.data());
4810    }
4811
4812    if (D.getDeclSpec().isConstexprSpecified())
4813      NewVD->setConstexpr(true);
4814  }
4815
4816  // Set the lexical context. If the declarator has a C++ scope specifier, the
4817  // lexical context will be different from the semantic context.
4818  NewVD->setLexicalDeclContext(CurContext);
4819
4820  if (D.getDeclSpec().isThreadSpecified()) {
4821    if (NewVD->hasLocalStorage())
4822      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4823    else if (!Context.getTargetInfo().isTLSSupported())
4824      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4825    else
4826      NewVD->setThreadSpecified(true);
4827  }
4828
4829  if (D.getDeclSpec().isModulePrivateSpecified()) {
4830    if (isExplicitSpecialization)
4831      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4832        << 2
4833        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4834    else if (NewVD->hasLocalStorage())
4835      Diag(NewVD->getLocation(), diag::err_module_private_local)
4836        << 0 << NewVD->getDeclName()
4837        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4838        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4839    else
4840      NewVD->setModulePrivate();
4841  }
4842
4843  // Handle attributes prior to checking for duplicates in MergeVarDecl
4844  ProcessDeclAttributes(S, NewVD, D);
4845
4846  if (NewVD->hasAttrs())
4847    CheckAlignasUnderalignment(NewVD);
4848
4849  if (getLangOpts().CUDA) {
4850    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
4851    // storage [duration]."
4852    if (SC == SC_None && S->getFnParent() != 0 &&
4853        (NewVD->hasAttr<CUDASharedAttr>() ||
4854         NewVD->hasAttr<CUDAConstantAttr>())) {
4855      NewVD->setStorageClass(SC_Static);
4856      NewVD->setStorageClassAsWritten(SC_Static);
4857    }
4858  }
4859
4860  // In auto-retain/release, infer strong retension for variables of
4861  // retainable type.
4862  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4863    NewVD->setInvalidDecl();
4864
4865  // Handle GNU asm-label extension (encoded as an attribute).
4866  if (Expr *E = (Expr*)D.getAsmLabel()) {
4867    // The parser guarantees this is a string.
4868    StringLiteral *SE = cast<StringLiteral>(E);
4869    StringRef Label = SE->getString();
4870    if (S->getFnParent() != 0) {
4871      switch (SC) {
4872      case SC_None:
4873      case SC_Auto:
4874        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4875        break;
4876      case SC_Register:
4877        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4878          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4879        break;
4880      case SC_Static:
4881      case SC_Extern:
4882      case SC_PrivateExtern:
4883      case SC_OpenCLWorkGroupLocal:
4884        break;
4885      }
4886    }
4887
4888    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4889                                                Context, Label));
4890  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4891    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4892      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4893    if (I != ExtnameUndeclaredIdentifiers.end()) {
4894      NewVD->addAttr(I->second);
4895      ExtnameUndeclaredIdentifiers.erase(I);
4896    }
4897  }
4898
4899  // Diagnose shadowed variables before filtering for scope.
4900  if (!D.getCXXScopeSpec().isSet())
4901    CheckShadow(S, NewVD, Previous);
4902
4903  // Don't consider existing declarations that are in a different
4904  // scope and are out-of-semantic-context declarations (if the new
4905  // declaration has linkage).
4906  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
4907                       isExplicitSpecialization);
4908
4909  if (!getLangOpts().CPlusPlus) {
4910    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4911  } else {
4912    // Merge the decl with the existing one if appropriate.
4913    if (!Previous.empty()) {
4914      if (Previous.isSingleResult() &&
4915          isa<FieldDecl>(Previous.getFoundDecl()) &&
4916          D.getCXXScopeSpec().isSet()) {
4917        // The user tried to define a non-static data member
4918        // out-of-line (C++ [dcl.meaning]p1).
4919        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4920          << D.getCXXScopeSpec().getRange();
4921        Previous.clear();
4922        NewVD->setInvalidDecl();
4923      }
4924    } else if (D.getCXXScopeSpec().isSet()) {
4925      // No previous declaration in the qualifying scope.
4926      Diag(D.getIdentifierLoc(), diag::err_no_member)
4927        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4928        << D.getCXXScopeSpec().getRange();
4929      NewVD->setInvalidDecl();
4930    }
4931
4932    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4933
4934    // This is an explicit specialization of a static data member. Check it.
4935    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4936        CheckMemberSpecialization(NewVD, Previous))
4937      NewVD->setInvalidDecl();
4938  }
4939
4940  ProcessPragmaWeak(S, NewVD);
4941  checkAttributesAfterMerging(*this, *NewVD);
4942
4943  // If this is a locally-scoped extern C variable, update the map of
4944  // such variables.
4945  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4946      !NewVD->isInvalidDecl())
4947    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4948
4949  return NewVD;
4950}
4951
4952/// \brief Diagnose variable or built-in function shadowing.  Implements
4953/// -Wshadow.
4954///
4955/// This method is called whenever a VarDecl is added to a "useful"
4956/// scope.
4957///
4958/// \param S the scope in which the shadowing name is being declared
4959/// \param R the lookup of the name
4960///
4961void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4962  // Return if warning is ignored.
4963  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4964        DiagnosticsEngine::Ignored)
4965    return;
4966
4967  // Don't diagnose declarations at file scope.
4968  if (D->hasGlobalStorage())
4969    return;
4970
4971  DeclContext *NewDC = D->getDeclContext();
4972
4973  // Only diagnose if we're shadowing an unambiguous field or variable.
4974  if (R.getResultKind() != LookupResult::Found)
4975    return;
4976
4977  NamedDecl* ShadowedDecl = R.getFoundDecl();
4978  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4979    return;
4980
4981  // Fields are not shadowed by variables in C++ static methods.
4982  if (isa<FieldDecl>(ShadowedDecl))
4983    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4984      if (MD->isStatic())
4985        return;
4986
4987  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4988    if (shadowedVar->isExternC()) {
4989      // For shadowing external vars, make sure that we point to the global
4990      // declaration, not a locally scoped extern declaration.
4991      for (VarDecl::redecl_iterator
4992             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4993           I != E; ++I)
4994        if (I->isFileVarDecl()) {
4995          ShadowedDecl = *I;
4996          break;
4997        }
4998    }
4999
5000  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5001
5002  // Only warn about certain kinds of shadowing for class members.
5003  if (NewDC && NewDC->isRecord()) {
5004    // In particular, don't warn about shadowing non-class members.
5005    if (!OldDC->isRecord())
5006      return;
5007
5008    // TODO: should we warn about static data members shadowing
5009    // static data members from base classes?
5010
5011    // TODO: don't diagnose for inaccessible shadowed members.
5012    // This is hard to do perfectly because we might friend the
5013    // shadowing context, but that's just a false negative.
5014  }
5015
5016  // Determine what kind of declaration we're shadowing.
5017  unsigned Kind;
5018  if (isa<RecordDecl>(OldDC)) {
5019    if (isa<FieldDecl>(ShadowedDecl))
5020      Kind = 3; // field
5021    else
5022      Kind = 2; // static data member
5023  } else if (OldDC->isFileContext())
5024    Kind = 1; // global
5025  else
5026    Kind = 0; // local
5027
5028  DeclarationName Name = R.getLookupName();
5029
5030  // Emit warning and note.
5031  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5032  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5033}
5034
5035/// \brief Check -Wshadow without the advantage of a previous lookup.
5036void Sema::CheckShadow(Scope *S, VarDecl *D) {
5037  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5038        DiagnosticsEngine::Ignored)
5039    return;
5040
5041  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5042                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5043  LookupName(R, S);
5044  CheckShadow(S, D, R);
5045}
5046
5047template<typename T>
5048static bool mayConflictWithNonVisibleExternC(const T *ND) {
5049  const DeclContext *DC = ND->getDeclContext();
5050  if (DC->getRedeclContext()->isTranslationUnit())
5051    return true;
5052
5053  // We know that is the first decl we see, other than function local
5054  // extern C ones. If this is C++ and the decl is not in a extern C context
5055  // it cannot have C language linkage. Avoid calling isExternC in that case.
5056  // We need to this because of code like
5057  //
5058  // namespace { struct bar {}; }
5059  // auto foo = bar();
5060  //
5061  // This code runs before the init of foo is set, and therefore before
5062  // the type of foo is known. Not knowing the type we cannot know its linkage
5063  // unless it is in an extern C block.
5064  if (!DC->isExternCContext()) {
5065    const ASTContext &Context = ND->getASTContext();
5066    if (Context.getLangOpts().CPlusPlus)
5067      return false;
5068  }
5069
5070  return ND->isExternC();
5071}
5072
5073/// \brief Perform semantic checking on a newly-created variable
5074/// declaration.
5075///
5076/// This routine performs all of the type-checking required for a
5077/// variable declaration once it has been built. It is used both to
5078/// check variables after they have been parsed and their declarators
5079/// have been translated into a declaration, and to check variables
5080/// that have been instantiated from a template.
5081///
5082/// Sets NewVD->isInvalidDecl() if an error was encountered.
5083///
5084/// Returns true if the variable declaration is a redeclaration.
5085bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5086                                    LookupResult &Previous) {
5087  // If the decl is already known invalid, don't check it.
5088  if (NewVD->isInvalidDecl())
5089    return false;
5090
5091  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5092  QualType T = TInfo->getType();
5093
5094  if (T->isObjCObjectType()) {
5095    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5096      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5097    T = Context.getObjCObjectPointerType(T);
5098    NewVD->setType(T);
5099  }
5100
5101  // Emit an error if an address space was applied to decl with local storage.
5102  // This includes arrays of objects with address space qualifiers, but not
5103  // automatic variables that point to other address spaces.
5104  // ISO/IEC TR 18037 S5.1.2
5105  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5106    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5107    NewVD->setInvalidDecl();
5108    return false;
5109  }
5110
5111  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5112  // scope.
5113  if ((getLangOpts().OpenCLVersion >= 120)
5114      && NewVD->isStaticLocal()) {
5115    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5116    NewVD->setInvalidDecl();
5117    return false;
5118  }
5119
5120  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5121      && !NewVD->hasAttr<BlocksAttr>()) {
5122    if (getLangOpts().getGC() != LangOptions::NonGC)
5123      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5124    else {
5125      assert(!getLangOpts().ObjCAutoRefCount);
5126      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5127    }
5128  }
5129
5130  bool isVM = T->isVariablyModifiedType();
5131  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5132      NewVD->hasAttr<BlocksAttr>())
5133    getCurFunction()->setHasBranchProtectedScope();
5134
5135  if ((isVM && NewVD->hasLinkage()) ||
5136      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5137    bool SizeIsNegative;
5138    llvm::APSInt Oversized;
5139    TypeSourceInfo *FixedTInfo =
5140      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5141                                                    SizeIsNegative, Oversized);
5142    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5143      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5144      // FIXME: This won't give the correct result for
5145      // int a[10][n];
5146      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5147
5148      if (NewVD->isFileVarDecl())
5149        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5150        << SizeRange;
5151      else if (NewVD->getStorageClass() == SC_Static)
5152        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5153        << SizeRange;
5154      else
5155        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5156        << SizeRange;
5157      NewVD->setInvalidDecl();
5158      return false;
5159    }
5160
5161    if (FixedTInfo == 0) {
5162      if (NewVD->isFileVarDecl())
5163        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5164      else
5165        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5166      NewVD->setInvalidDecl();
5167      return false;
5168    }
5169
5170    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5171    NewVD->setType(FixedTInfo->getType());
5172    NewVD->setTypeSourceInfo(FixedTInfo);
5173  }
5174
5175  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewVD)) {
5176    // Since we did not find anything by this name, look for a non-visible
5177    // extern "C" declaration with the same name.
5178    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5179      = findLocallyScopedExternCDecl(NewVD->getDeclName());
5180    if (Pos != LocallyScopedExternCDecls.end())
5181      Previous.addDecl(Pos->second);
5182  }
5183
5184  // Filter out any non-conflicting previous declarations.
5185  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5186
5187  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
5188    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5189      << T;
5190    NewVD->setInvalidDecl();
5191    return false;
5192  }
5193
5194  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5195    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5196    NewVD->setInvalidDecl();
5197    return false;
5198  }
5199
5200  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5201    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5202    NewVD->setInvalidDecl();
5203    return false;
5204  }
5205
5206  if (NewVD->isConstexpr() && !T->isDependentType() &&
5207      RequireLiteralType(NewVD->getLocation(), T,
5208                         diag::err_constexpr_var_non_literal)) {
5209    NewVD->setInvalidDecl();
5210    return false;
5211  }
5212
5213  if (!Previous.empty()) {
5214    MergeVarDecl(NewVD, Previous);
5215    return true;
5216  }
5217  return false;
5218}
5219
5220/// \brief Data used with FindOverriddenMethod
5221struct FindOverriddenMethodData {
5222  Sema *S;
5223  CXXMethodDecl *Method;
5224};
5225
5226/// \brief Member lookup function that determines whether a given C++
5227/// method overrides a method in a base class, to be used with
5228/// CXXRecordDecl::lookupInBases().
5229static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5230                                 CXXBasePath &Path,
5231                                 void *UserData) {
5232  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5233
5234  FindOverriddenMethodData *Data
5235    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5236
5237  DeclarationName Name = Data->Method->getDeclName();
5238
5239  // FIXME: Do we care about other names here too?
5240  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5241    // We really want to find the base class destructor here.
5242    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5243    CanQualType CT = Data->S->Context.getCanonicalType(T);
5244
5245    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5246  }
5247
5248  for (Path.Decls = BaseRecord->lookup(Name);
5249       !Path.Decls.empty();
5250       Path.Decls = Path.Decls.slice(1)) {
5251    NamedDecl *D = Path.Decls.front();
5252    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5253      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5254        return true;
5255    }
5256  }
5257
5258  return false;
5259}
5260
5261namespace {
5262  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5263}
5264/// \brief Report an error regarding overriding, along with any relevant
5265/// overriden methods.
5266///
5267/// \param DiagID the primary error to report.
5268/// \param MD the overriding method.
5269/// \param OEK which overrides to include as notes.
5270static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5271                            OverrideErrorKind OEK = OEK_All) {
5272  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5273  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5274                                      E = MD->end_overridden_methods();
5275       I != E; ++I) {
5276    // This check (& the OEK parameter) could be replaced by a predicate, but
5277    // without lambdas that would be overkill. This is still nicer than writing
5278    // out the diag loop 3 times.
5279    if ((OEK == OEK_All) ||
5280        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5281        (OEK == OEK_Deleted && (*I)->isDeleted()))
5282      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5283  }
5284}
5285
5286/// AddOverriddenMethods - See if a method overrides any in the base classes,
5287/// and if so, check that it's a valid override and remember it.
5288bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5289  // Look for virtual methods in base classes that this method might override.
5290  CXXBasePaths Paths;
5291  FindOverriddenMethodData Data;
5292  Data.Method = MD;
5293  Data.S = this;
5294  bool hasDeletedOverridenMethods = false;
5295  bool hasNonDeletedOverridenMethods = false;
5296  bool AddedAny = false;
5297  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5298    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5299         E = Paths.found_decls_end(); I != E; ++I) {
5300      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5301        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5302        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5303            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5304            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5305            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5306          hasDeletedOverridenMethods |= OldMD->isDeleted();
5307          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5308          AddedAny = true;
5309        }
5310      }
5311    }
5312  }
5313
5314  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5315    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5316  }
5317  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5318    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5319  }
5320
5321  return AddedAny;
5322}
5323
5324namespace {
5325  // Struct for holding all of the extra arguments needed by
5326  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5327  struct ActOnFDArgs {
5328    Scope *S;
5329    Declarator &D;
5330    MultiTemplateParamsArg TemplateParamLists;
5331    bool AddToScope;
5332  };
5333}
5334
5335namespace {
5336
5337// Callback to only accept typo corrections that have a non-zero edit distance.
5338// Also only accept corrections that have the same parent decl.
5339class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5340 public:
5341  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5342                            CXXRecordDecl *Parent)
5343      : Context(Context), OriginalFD(TypoFD),
5344        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5345
5346  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5347    if (candidate.getEditDistance() == 0)
5348      return false;
5349
5350    SmallVector<unsigned, 1> MismatchedParams;
5351    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5352                                          CDeclEnd = candidate.end();
5353         CDecl != CDeclEnd; ++CDecl) {
5354      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5355
5356      if (FD && !FD->hasBody() &&
5357          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5358        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5359          CXXRecordDecl *Parent = MD->getParent();
5360          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5361            return true;
5362        } else if (!ExpectedParent) {
5363          return true;
5364        }
5365      }
5366    }
5367
5368    return false;
5369  }
5370
5371 private:
5372  ASTContext &Context;
5373  FunctionDecl *OriginalFD;
5374  CXXRecordDecl *ExpectedParent;
5375};
5376
5377}
5378
5379/// \brief Generate diagnostics for an invalid function redeclaration.
5380///
5381/// This routine handles generating the diagnostic messages for an invalid
5382/// function redeclaration, including finding possible similar declarations
5383/// or performing typo correction if there are no previous declarations with
5384/// the same name.
5385///
5386/// Returns a NamedDecl iff typo correction was performed and substituting in
5387/// the new declaration name does not cause new errors.
5388static NamedDecl* DiagnoseInvalidRedeclaration(
5389    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5390    ActOnFDArgs &ExtraArgs) {
5391  NamedDecl *Result = NULL;
5392  DeclarationName Name = NewFD->getDeclName();
5393  DeclContext *NewDC = NewFD->getDeclContext();
5394  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5395                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5396  SmallVector<unsigned, 1> MismatchedParams;
5397  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5398  TypoCorrection Correction;
5399  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5400                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5401  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5402                                  : diag::err_member_def_does_not_match;
5403
5404  NewFD->setInvalidDecl();
5405  SemaRef.LookupQualifiedName(Prev, NewDC);
5406  assert(!Prev.isAmbiguous() &&
5407         "Cannot have an ambiguity in previous-declaration lookup");
5408  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5409  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5410                                      MD ? MD->getParent() : 0);
5411  if (!Prev.empty()) {
5412    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5413         Func != FuncEnd; ++Func) {
5414      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5415      if (FD &&
5416          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5417        // Add 1 to the index so that 0 can mean the mismatch didn't
5418        // involve a parameter
5419        unsigned ParamNum =
5420            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5421        NearMatches.push_back(std::make_pair(FD, ParamNum));
5422      }
5423    }
5424  // If the qualified name lookup yielded nothing, try typo correction
5425  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5426                                         Prev.getLookupKind(), 0, 0,
5427                                         Validator, NewDC))) {
5428    // Trap errors.
5429    Sema::SFINAETrap Trap(SemaRef);
5430
5431    // Set up everything for the call to ActOnFunctionDeclarator
5432    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5433                              ExtraArgs.D.getIdentifierLoc());
5434    Previous.clear();
5435    Previous.setLookupName(Correction.getCorrection());
5436    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5437                                    CDeclEnd = Correction.end();
5438         CDecl != CDeclEnd; ++CDecl) {
5439      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5440      if (FD && !FD->hasBody() &&
5441          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5442        Previous.addDecl(FD);
5443      }
5444    }
5445    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5446    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5447    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5448    // eliminate the need for the parameter pack ExtraArgs.
5449    Result = SemaRef.ActOnFunctionDeclarator(
5450        ExtraArgs.S, ExtraArgs.D,
5451        Correction.getCorrectionDecl()->getDeclContext(),
5452        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5453        ExtraArgs.AddToScope);
5454    if (Trap.hasErrorOccurred()) {
5455      // Pretend the typo correction never occurred
5456      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5457                                ExtraArgs.D.getIdentifierLoc());
5458      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5459      Previous.clear();
5460      Previous.setLookupName(Name);
5461      Result = NULL;
5462    } else {
5463      for (LookupResult::iterator Func = Previous.begin(),
5464                               FuncEnd = Previous.end();
5465           Func != FuncEnd; ++Func) {
5466        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5467          NearMatches.push_back(std::make_pair(FD, 0));
5468      }
5469    }
5470    if (NearMatches.empty()) {
5471      // Ignore the correction if it didn't yield any close FunctionDecl matches
5472      Correction = TypoCorrection();
5473    } else {
5474      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5475                             : diag::err_member_def_does_not_match_suggest;
5476    }
5477  }
5478
5479  if (Correction) {
5480    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5481    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5482    // turn causes the correction to fully qualify the name. If we fix
5483    // CorrectTypo to minimally qualify then this change should be good.
5484    SourceRange FixItLoc(NewFD->getLocation());
5485    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5486    if (Correction.getCorrectionSpecifier() && SS.isValid())
5487      FixItLoc.setBegin(SS.getBeginLoc());
5488    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5489        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5490        << FixItHint::CreateReplacement(
5491            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5492  } else {
5493    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5494        << Name << NewDC << NewFD->getLocation();
5495  }
5496
5497  bool NewFDisConst = false;
5498  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5499    NewFDisConst = NewMD->isConst();
5500
5501  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5502       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5503       NearMatch != NearMatchEnd; ++NearMatch) {
5504    FunctionDecl *FD = NearMatch->first;
5505    bool FDisConst = false;
5506    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5507      FDisConst = MD->isConst();
5508
5509    if (unsigned Idx = NearMatch->second) {
5510      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5511      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5512      if (Loc.isInvalid()) Loc = FD->getLocation();
5513      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5514          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5515    } else if (Correction) {
5516      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5517          << Correction.getQuoted(SemaRef.getLangOpts());
5518    } else if (FDisConst != NewFDisConst) {
5519      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5520          << NewFDisConst << FD->getSourceRange().getEnd();
5521    } else
5522      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5523  }
5524  return Result;
5525}
5526
5527static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5528                                                          Declarator &D) {
5529  switch (D.getDeclSpec().getStorageClassSpec()) {
5530  default: llvm_unreachable("Unknown storage class!");
5531  case DeclSpec::SCS_auto:
5532  case DeclSpec::SCS_register:
5533  case DeclSpec::SCS_mutable:
5534    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5535                 diag::err_typecheck_sclass_func);
5536    D.setInvalidType();
5537    break;
5538  case DeclSpec::SCS_unspecified: break;
5539  case DeclSpec::SCS_extern: return SC_Extern;
5540  case DeclSpec::SCS_static: {
5541    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5542      // C99 6.7.1p5:
5543      //   The declaration of an identifier for a function that has
5544      //   block scope shall have no explicit storage-class specifier
5545      //   other than extern
5546      // See also (C++ [dcl.stc]p4).
5547      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5548                   diag::err_static_block_func);
5549      break;
5550    } else
5551      return SC_Static;
5552  }
5553  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5554  }
5555
5556  // No explicit storage class has already been returned
5557  return SC_None;
5558}
5559
5560static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5561                                           DeclContext *DC, QualType &R,
5562                                           TypeSourceInfo *TInfo,
5563                                           FunctionDecl::StorageClass SC,
5564                                           bool &IsVirtualOkay) {
5565  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5566  DeclarationName Name = NameInfo.getName();
5567
5568  FunctionDecl *NewFD = 0;
5569  bool isInline = D.getDeclSpec().isInlineSpecified();
5570  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
5571  FunctionDecl::StorageClass SCAsWritten
5572    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
5573
5574  if (!SemaRef.getLangOpts().CPlusPlus) {
5575    // Determine whether the function was written with a
5576    // prototype. This true when:
5577    //   - there is a prototype in the declarator, or
5578    //   - the type R of the function is some kind of typedef or other reference
5579    //     to a type name (which eventually refers to a function type).
5580    bool HasPrototype =
5581      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5582      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5583
5584    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5585                                 D.getLocStart(), NameInfo, R,
5586                                 TInfo, SC, SCAsWritten, isInline,
5587                                 HasPrototype);
5588    if (D.isInvalidType())
5589      NewFD->setInvalidDecl();
5590
5591    // Set the lexical context.
5592    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5593
5594    return NewFD;
5595  }
5596
5597  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5598  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5599
5600  // Check that the return type is not an abstract class type.
5601  // For record types, this is done by the AbstractClassUsageDiagnoser once
5602  // the class has been completely parsed.
5603  if (!DC->isRecord() &&
5604      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5605                                     R->getAs<FunctionType>()->getResultType(),
5606                                     diag::err_abstract_type_in_decl,
5607                                     SemaRef.AbstractReturnType))
5608    D.setInvalidType();
5609
5610  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5611    // This is a C++ constructor declaration.
5612    assert(DC->isRecord() &&
5613           "Constructors can only be declared in a member context");
5614
5615    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5616    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5617                                      D.getLocStart(), NameInfo,
5618                                      R, TInfo, isExplicit, isInline,
5619                                      /*isImplicitlyDeclared=*/false,
5620                                      isConstexpr);
5621
5622  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5623    // This is a C++ destructor declaration.
5624    if (DC->isRecord()) {
5625      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5626      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5627      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5628                                        SemaRef.Context, Record,
5629                                        D.getLocStart(),
5630                                        NameInfo, R, TInfo, isInline,
5631                                        /*isImplicitlyDeclared=*/false);
5632
5633      // If the class is complete, then we now create the implicit exception
5634      // specification. If the class is incomplete or dependent, we can't do
5635      // it yet.
5636      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5637          Record->getDefinition() && !Record->isBeingDefined() &&
5638          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5639        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5640      }
5641
5642      IsVirtualOkay = true;
5643      return NewDD;
5644
5645    } else {
5646      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5647      D.setInvalidType();
5648
5649      // Create a FunctionDecl to satisfy the function definition parsing
5650      // code path.
5651      return FunctionDecl::Create(SemaRef.Context, DC,
5652                                  D.getLocStart(),
5653                                  D.getIdentifierLoc(), Name, R, TInfo,
5654                                  SC, SCAsWritten, isInline,
5655                                  /*hasPrototype=*/true, isConstexpr);
5656    }
5657
5658  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5659    if (!DC->isRecord()) {
5660      SemaRef.Diag(D.getIdentifierLoc(),
5661           diag::err_conv_function_not_member);
5662      return 0;
5663    }
5664
5665    SemaRef.CheckConversionDeclarator(D, R, SC);
5666    IsVirtualOkay = true;
5667    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5668                                     D.getLocStart(), NameInfo,
5669                                     R, TInfo, isInline, isExplicit,
5670                                     isConstexpr, SourceLocation());
5671
5672  } else if (DC->isRecord()) {
5673    // If the name of the function is the same as the name of the record,
5674    // then this must be an invalid constructor that has a return type.
5675    // (The parser checks for a return type and makes the declarator a
5676    // constructor if it has no return type).
5677    if (Name.getAsIdentifierInfo() &&
5678        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5679      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5680        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5681        << SourceRange(D.getIdentifierLoc());
5682      return 0;
5683    }
5684
5685    bool isStatic = SC == SC_Static;
5686
5687    // [class.free]p1:
5688    // Any allocation function for a class T is a static member
5689    // (even if not explicitly declared static).
5690    if (Name.getCXXOverloadedOperator() == OO_New ||
5691        Name.getCXXOverloadedOperator() == OO_Array_New)
5692      isStatic = true;
5693
5694    // [class.free]p6 Any deallocation function for a class X is a static member
5695    // (even if not explicitly declared static).
5696    if (Name.getCXXOverloadedOperator() == OO_Delete ||
5697        Name.getCXXOverloadedOperator() == OO_Array_Delete)
5698      isStatic = true;
5699
5700    IsVirtualOkay = !isStatic;
5701
5702    // This is a C++ method declaration.
5703    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5704                                 D.getLocStart(), NameInfo, R,
5705                                 TInfo, isStatic, SCAsWritten, isInline,
5706                                 isConstexpr, SourceLocation());
5707
5708  } else {
5709    // Determine whether the function was written with a
5710    // prototype. This true when:
5711    //   - we're in C++ (where every function has a prototype),
5712    return FunctionDecl::Create(SemaRef.Context, DC,
5713                                D.getLocStart(),
5714                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
5715                                true/*HasPrototype*/, isConstexpr);
5716  }
5717}
5718
5719void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
5720  // In C++, the empty parameter-type-list must be spelled "void"; a
5721  // typedef of void is not permitted.
5722  if (getLangOpts().CPlusPlus &&
5723      Param->getType().getUnqualifiedType() != Context.VoidTy) {
5724    bool IsTypeAlias = false;
5725    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5726      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5727    else if (const TemplateSpecializationType *TST =
5728               Param->getType()->getAs<TemplateSpecializationType>())
5729      IsTypeAlias = TST->isTypeAlias();
5730    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5731      << IsTypeAlias;
5732  }
5733}
5734
5735NamedDecl*
5736Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
5737                              TypeSourceInfo *TInfo, LookupResult &Previous,
5738                              MultiTemplateParamsArg TemplateParamLists,
5739                              bool &AddToScope) {
5740  QualType R = TInfo->getType();
5741
5742  assert(R.getTypePtr()->isFunctionType());
5743
5744  // TODO: consider using NameInfo for diagnostic.
5745  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
5746  DeclarationName Name = NameInfo.getName();
5747  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
5748
5749  if (D.getDeclSpec().isThreadSpecified())
5750    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5751
5752  // Do not allow returning a objc interface by-value.
5753  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5754    Diag(D.getIdentifierLoc(),
5755         diag::err_object_cannot_be_passed_returned_by_value) << 0
5756    << R->getAs<FunctionType>()->getResultType()
5757    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5758
5759    QualType T = R->getAs<FunctionType>()->getResultType();
5760    T = Context.getObjCObjectPointerType(T);
5761    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5762      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5763      R = Context.getFunctionType(T,
5764                                  ArrayRef<QualType>(FPT->arg_type_begin(),
5765                                                     FPT->getNumArgs()),
5766                                  EPI);
5767    }
5768    else if (isa<FunctionNoProtoType>(R))
5769      R = Context.getFunctionNoProtoType(T);
5770  }
5771
5772  bool isFriend = false;
5773  FunctionTemplateDecl *FunctionTemplate = 0;
5774  bool isExplicitSpecialization = false;
5775  bool isFunctionTemplateSpecialization = false;
5776
5777  bool isDependentClassScopeExplicitSpecialization = false;
5778  bool HasExplicitTemplateArgs = false;
5779  TemplateArgumentListInfo TemplateArgs;
5780
5781  bool isVirtualOkay = false;
5782
5783  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5784                                              isVirtualOkay);
5785  if (!NewFD) return 0;
5786
5787  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5788    NewFD->setTopLevelDeclInObjCContainer();
5789
5790  if (getLangOpts().CPlusPlus) {
5791    bool isInline = D.getDeclSpec().isInlineSpecified();
5792    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5793    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5794    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5795    isFriend = D.getDeclSpec().isFriendSpecified();
5796    if (isFriend && !isInline && D.isFunctionDefinition()) {
5797      // C++ [class.friend]p5
5798      //   A function can be defined in a friend declaration of a
5799      //   class . . . . Such a function is implicitly inline.
5800      NewFD->setImplicitlyInline();
5801    }
5802
5803    // If this is a method defined in an __interface, and is not a constructor
5804    // or an overloaded operator, then set the pure flag (isVirtual will already
5805    // return true).
5806    if (const CXXRecordDecl *Parent =
5807          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
5808      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
5809        NewFD->setPure(true);
5810    }
5811
5812    SetNestedNameSpecifier(NewFD, D);
5813    isExplicitSpecialization = false;
5814    isFunctionTemplateSpecialization = false;
5815    if (D.isInvalidType())
5816      NewFD->setInvalidDecl();
5817
5818    // Set the lexical context. If the declarator has a C++
5819    // scope specifier, or is the object of a friend declaration, the
5820    // lexical context will be different from the semantic context.
5821    NewFD->setLexicalDeclContext(CurContext);
5822
5823    // Match up the template parameter lists with the scope specifier, then
5824    // determine whether we have a template or a template specialization.
5825    bool Invalid = false;
5826    if (TemplateParameterList *TemplateParams
5827          = MatchTemplateParametersToScopeSpecifier(
5828                                  D.getDeclSpec().getLocStart(),
5829                                  D.getIdentifierLoc(),
5830                                  D.getCXXScopeSpec(),
5831                                  TemplateParamLists.data(),
5832                                  TemplateParamLists.size(),
5833                                  isFriend,
5834                                  isExplicitSpecialization,
5835                                  Invalid)) {
5836      if (TemplateParams->size() > 0) {
5837        // This is a function template
5838
5839        // Check that we can declare a template here.
5840        if (CheckTemplateDeclScope(S, TemplateParams))
5841          return 0;
5842
5843        // A destructor cannot be a template.
5844        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5845          Diag(NewFD->getLocation(), diag::err_destructor_template);
5846          return 0;
5847        }
5848
5849        // If we're adding a template to a dependent context, we may need to
5850        // rebuilding some of the types used within the template parameter list,
5851        // now that we know what the current instantiation is.
5852        if (DC->isDependentContext()) {
5853          ContextRAII SavedContext(*this, DC);
5854          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5855            Invalid = true;
5856        }
5857
5858
5859        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5860                                                        NewFD->getLocation(),
5861                                                        Name, TemplateParams,
5862                                                        NewFD);
5863        FunctionTemplate->setLexicalDeclContext(CurContext);
5864        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5865
5866        // For source fidelity, store the other template param lists.
5867        if (TemplateParamLists.size() > 1) {
5868          NewFD->setTemplateParameterListsInfo(Context,
5869                                               TemplateParamLists.size() - 1,
5870                                               TemplateParamLists.data());
5871        }
5872      } else {
5873        // This is a function template specialization.
5874        isFunctionTemplateSpecialization = true;
5875        // For source fidelity, store all the template param lists.
5876        NewFD->setTemplateParameterListsInfo(Context,
5877                                             TemplateParamLists.size(),
5878                                             TemplateParamLists.data());
5879
5880        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5881        if (isFriend) {
5882          // We want to remove the "template<>", found here.
5883          SourceRange RemoveRange = TemplateParams->getSourceRange();
5884
5885          // If we remove the template<> and the name is not a
5886          // template-id, we're actually silently creating a problem:
5887          // the friend declaration will refer to an untemplated decl,
5888          // and clearly the user wants a template specialization.  So
5889          // we need to insert '<>' after the name.
5890          SourceLocation InsertLoc;
5891          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5892            InsertLoc = D.getName().getSourceRange().getEnd();
5893            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5894          }
5895
5896          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5897            << Name << RemoveRange
5898            << FixItHint::CreateRemoval(RemoveRange)
5899            << FixItHint::CreateInsertion(InsertLoc, "<>");
5900        }
5901      }
5902    }
5903    else {
5904      // All template param lists were matched against the scope specifier:
5905      // this is NOT (an explicit specialization of) a template.
5906      if (TemplateParamLists.size() > 0)
5907        // For source fidelity, store all the template param lists.
5908        NewFD->setTemplateParameterListsInfo(Context,
5909                                             TemplateParamLists.size(),
5910                                             TemplateParamLists.data());
5911    }
5912
5913    if (Invalid) {
5914      NewFD->setInvalidDecl();
5915      if (FunctionTemplate)
5916        FunctionTemplate->setInvalidDecl();
5917    }
5918
5919    // C++ [dcl.fct.spec]p5:
5920    //   The virtual specifier shall only be used in declarations of
5921    //   nonstatic class member functions that appear within a
5922    //   member-specification of a class declaration; see 10.3.
5923    //
5924    if (isVirtual && !NewFD->isInvalidDecl()) {
5925      if (!isVirtualOkay) {
5926        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5927             diag::err_virtual_non_function);
5928      } else if (!CurContext->isRecord()) {
5929        // 'virtual' was specified outside of the class.
5930        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5931             diag::err_virtual_out_of_class)
5932          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5933      } else if (NewFD->getDescribedFunctionTemplate()) {
5934        // C++ [temp.mem]p3:
5935        //  A member function template shall not be virtual.
5936        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5937             diag::err_virtual_member_function_template)
5938          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5939      } else {
5940        // Okay: Add virtual to the method.
5941        NewFD->setVirtualAsWritten(true);
5942      }
5943    }
5944
5945    // C++ [dcl.fct.spec]p3:
5946    //  The inline specifier shall not appear on a block scope function
5947    //  declaration.
5948    if (isInline && !NewFD->isInvalidDecl()) {
5949      if (CurContext->isFunctionOrMethod()) {
5950        // 'inline' is not allowed on block scope function declaration.
5951        Diag(D.getDeclSpec().getInlineSpecLoc(),
5952             diag::err_inline_declaration_block_scope) << Name
5953          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5954      }
5955    }
5956
5957    // C++ [dcl.fct.spec]p6:
5958    //  The explicit specifier shall be used only in the declaration of a
5959    //  constructor or conversion function within its class definition;
5960    //  see 12.3.1 and 12.3.2.
5961    if (isExplicit && !NewFD->isInvalidDecl()) {
5962      if (!CurContext->isRecord()) {
5963        // 'explicit' was specified outside of the class.
5964        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5965             diag::err_explicit_out_of_class)
5966          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5967      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5968                 !isa<CXXConversionDecl>(NewFD)) {
5969        // 'explicit' was specified on a function that wasn't a constructor
5970        // or conversion function.
5971        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5972             diag::err_explicit_non_ctor_or_conv_function)
5973          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5974      }
5975    }
5976
5977    if (isConstexpr) {
5978      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
5979      // are implicitly inline.
5980      NewFD->setImplicitlyInline();
5981
5982      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
5983      // be either constructors or to return a literal type. Therefore,
5984      // destructors cannot be declared constexpr.
5985      if (isa<CXXDestructorDecl>(NewFD))
5986        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5987    }
5988
5989    // If __module_private__ was specified, mark the function accordingly.
5990    if (D.getDeclSpec().isModulePrivateSpecified()) {
5991      if (isFunctionTemplateSpecialization) {
5992        SourceLocation ModulePrivateLoc
5993          = D.getDeclSpec().getModulePrivateSpecLoc();
5994        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5995          << 0
5996          << FixItHint::CreateRemoval(ModulePrivateLoc);
5997      } else {
5998        NewFD->setModulePrivate();
5999        if (FunctionTemplate)
6000          FunctionTemplate->setModulePrivate();
6001      }
6002    }
6003
6004    if (isFriend) {
6005      // For now, claim that the objects have no previous declaration.
6006      if (FunctionTemplate) {
6007        FunctionTemplate->setObjectOfFriendDecl(false);
6008        FunctionTemplate->setAccess(AS_public);
6009      }
6010      NewFD->setObjectOfFriendDecl(false);
6011      NewFD->setAccess(AS_public);
6012    }
6013
6014    // If a function is defined as defaulted or deleted, mark it as such now.
6015    switch (D.getFunctionDefinitionKind()) {
6016      case FDK_Declaration:
6017      case FDK_Definition:
6018        break;
6019
6020      case FDK_Defaulted:
6021        NewFD->setDefaulted();
6022        break;
6023
6024      case FDK_Deleted:
6025        NewFD->setDeletedAsWritten();
6026        break;
6027    }
6028
6029    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6030        D.isFunctionDefinition()) {
6031      // C++ [class.mfct]p2:
6032      //   A member function may be defined (8.4) in its class definition, in
6033      //   which case it is an inline member function (7.1.2)
6034      NewFD->setImplicitlyInline();
6035    }
6036
6037    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6038        !CurContext->isRecord()) {
6039      // C++ [class.static]p1:
6040      //   A data or function member of a class may be declared static
6041      //   in a class definition, in which case it is a static member of
6042      //   the class.
6043
6044      // Complain about the 'static' specifier if it's on an out-of-line
6045      // member function definition.
6046      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6047           diag::err_static_out_of_line)
6048        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6049    }
6050
6051    // C++11 [except.spec]p15:
6052    //   A deallocation function with no exception-specification is treated
6053    //   as if it were specified with noexcept(true).
6054    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6055    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6056         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6057        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6058      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6059      EPI.ExceptionSpecType = EST_BasicNoexcept;
6060      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6061                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6062                                                         FPT->getNumArgs()),
6063                                             EPI));
6064    }
6065  }
6066
6067  // Filter out previous declarations that don't match the scope.
6068  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6069                       isExplicitSpecialization ||
6070                       isFunctionTemplateSpecialization);
6071
6072  // Handle GNU asm-label extension (encoded as an attribute).
6073  if (Expr *E = (Expr*) D.getAsmLabel()) {
6074    // The parser guarantees this is a string.
6075    StringLiteral *SE = cast<StringLiteral>(E);
6076    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6077                                                SE->getString()));
6078  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6079    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6080      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6081    if (I != ExtnameUndeclaredIdentifiers.end()) {
6082      NewFD->addAttr(I->second);
6083      ExtnameUndeclaredIdentifiers.erase(I);
6084    }
6085  }
6086
6087  // Copy the parameter declarations from the declarator D to the function
6088  // declaration NewFD, if they are available.  First scavenge them into Params.
6089  SmallVector<ParmVarDecl*, 16> Params;
6090  if (D.isFunctionDeclarator()) {
6091    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6092
6093    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6094    // function that takes no arguments, not a function that takes a
6095    // single void argument.
6096    // We let through "const void" here because Sema::GetTypeForDeclarator
6097    // already checks for that case.
6098    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6099        FTI.ArgInfo[0].Param &&
6100        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6101      // Empty arg list, don't push any params.
6102      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6103    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6104      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6105        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6106        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6107        Param->setDeclContext(NewFD);
6108        Params.push_back(Param);
6109
6110        if (Param->isInvalidDecl())
6111          NewFD->setInvalidDecl();
6112      }
6113    }
6114
6115  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6116    // When we're declaring a function with a typedef, typeof, etc as in the
6117    // following example, we'll need to synthesize (unnamed)
6118    // parameters for use in the declaration.
6119    //
6120    // @code
6121    // typedef void fn(int);
6122    // fn f;
6123    // @endcode
6124
6125    // Synthesize a parameter for each argument type.
6126    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6127         AE = FT->arg_type_end(); AI != AE; ++AI) {
6128      ParmVarDecl *Param =
6129        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6130      Param->setScopeInfo(0, Params.size());
6131      Params.push_back(Param);
6132    }
6133  } else {
6134    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6135           "Should not need args for typedef of non-prototype fn");
6136  }
6137
6138  // Finally, we know we have the right number of parameters, install them.
6139  NewFD->setParams(Params);
6140
6141  // Find all anonymous symbols defined during the declaration of this function
6142  // and add to NewFD. This lets us track decls such 'enum Y' in:
6143  //
6144  //   void f(enum Y {AA} x) {}
6145  //
6146  // which would otherwise incorrectly end up in the translation unit scope.
6147  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6148  DeclsInPrototypeScope.clear();
6149
6150  if (D.getDeclSpec().isNoreturnSpecified())
6151    NewFD->addAttr(
6152        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6153                                       Context));
6154
6155  // Process the non-inheritable attributes on this declaration.
6156  ProcessDeclAttributes(S, NewFD, D,
6157                        /*NonInheritable=*/true, /*Inheritable=*/false);
6158
6159  // Functions returning a variably modified type violate C99 6.7.5.2p2
6160  // because all functions have linkage.
6161  if (!NewFD->isInvalidDecl() &&
6162      NewFD->getResultType()->isVariablyModifiedType()) {
6163    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6164    NewFD->setInvalidDecl();
6165  }
6166
6167  // Handle attributes.
6168  ProcessDeclAttributes(S, NewFD, D,
6169                        /*NonInheritable=*/false, /*Inheritable=*/true);
6170
6171  QualType RetType = NewFD->getResultType();
6172  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6173      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6174  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6175      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6176    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6177    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6178      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6179                                                        Context));
6180    }
6181  }
6182
6183  if (!getLangOpts().CPlusPlus) {
6184    // Perform semantic checking on the function declaration.
6185    bool isExplicitSpecialization=false;
6186    if (!NewFD->isInvalidDecl()) {
6187      if (NewFD->isMain())
6188        CheckMain(NewFD, D.getDeclSpec());
6189      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6190                                                  isExplicitSpecialization));
6191    }
6192    // Make graceful recovery from an invalid redeclaration.
6193    else if (!Previous.empty())
6194           D.setRedeclaration(true);
6195    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6196            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6197           "previous declaration set still overloaded");
6198  } else {
6199    // If the declarator is a template-id, translate the parser's template
6200    // argument list into our AST format.
6201    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6202      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6203      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6204      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6205      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6206                                         TemplateId->NumArgs);
6207      translateTemplateArguments(TemplateArgsPtr,
6208                                 TemplateArgs);
6209
6210      HasExplicitTemplateArgs = true;
6211
6212      if (NewFD->isInvalidDecl()) {
6213        HasExplicitTemplateArgs = false;
6214      } else if (FunctionTemplate) {
6215        // Function template with explicit template arguments.
6216        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6217          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6218
6219        HasExplicitTemplateArgs = false;
6220      } else if (!isFunctionTemplateSpecialization &&
6221                 !D.getDeclSpec().isFriendSpecified()) {
6222        // We have encountered something that the user meant to be a
6223        // specialization (because it has explicitly-specified template
6224        // arguments) but that was not introduced with a "template<>" (or had
6225        // too few of them).
6226        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6227          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6228          << FixItHint::CreateInsertion(
6229                                    D.getDeclSpec().getLocStart(),
6230                                        "template<> ");
6231        isFunctionTemplateSpecialization = true;
6232      } else {
6233        // "friend void foo<>(int);" is an implicit specialization decl.
6234        isFunctionTemplateSpecialization = true;
6235      }
6236    } else if (isFriend && isFunctionTemplateSpecialization) {
6237      // This combination is only possible in a recovery case;  the user
6238      // wrote something like:
6239      //   template <> friend void foo(int);
6240      // which we're recovering from as if the user had written:
6241      //   friend void foo<>(int);
6242      // Go ahead and fake up a template id.
6243      HasExplicitTemplateArgs = true;
6244        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6245      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6246    }
6247
6248    // If it's a friend (and only if it's a friend), it's possible
6249    // that either the specialized function type or the specialized
6250    // template is dependent, and therefore matching will fail.  In
6251    // this case, don't check the specialization yet.
6252    bool InstantiationDependent = false;
6253    if (isFunctionTemplateSpecialization && isFriend &&
6254        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6255         TemplateSpecializationType::anyDependentTemplateArguments(
6256            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6257            InstantiationDependent))) {
6258      assert(HasExplicitTemplateArgs &&
6259             "friend function specialization without template args");
6260      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6261                                                       Previous))
6262        NewFD->setInvalidDecl();
6263    } else if (isFunctionTemplateSpecialization) {
6264      if (CurContext->isDependentContext() && CurContext->isRecord()
6265          && !isFriend) {
6266        isDependentClassScopeExplicitSpecialization = true;
6267        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6268          diag::ext_function_specialization_in_class :
6269          diag::err_function_specialization_in_class)
6270          << NewFD->getDeclName();
6271      } else if (CheckFunctionTemplateSpecialization(NewFD,
6272                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6273                                                     Previous))
6274        NewFD->setInvalidDecl();
6275
6276      // C++ [dcl.stc]p1:
6277      //   A storage-class-specifier shall not be specified in an explicit
6278      //   specialization (14.7.3)
6279      if (SC != SC_None) {
6280        if (SC != NewFD->getStorageClass())
6281          Diag(NewFD->getLocation(),
6282               diag::err_explicit_specialization_inconsistent_storage_class)
6283            << SC
6284            << FixItHint::CreateRemoval(
6285                                      D.getDeclSpec().getStorageClassSpecLoc());
6286
6287        else
6288          Diag(NewFD->getLocation(),
6289               diag::ext_explicit_specialization_storage_class)
6290            << FixItHint::CreateRemoval(
6291                                      D.getDeclSpec().getStorageClassSpecLoc());
6292      }
6293
6294    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6295      if (CheckMemberSpecialization(NewFD, Previous))
6296          NewFD->setInvalidDecl();
6297    }
6298
6299    // Perform semantic checking on the function declaration.
6300    if (!isDependentClassScopeExplicitSpecialization) {
6301      if (NewFD->isInvalidDecl()) {
6302        // If this is a class member, mark the class invalid immediately.
6303        // This avoids some consistency errors later.
6304        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6305          methodDecl->getParent()->setInvalidDecl();
6306      } else {
6307        if (NewFD->isMain())
6308          CheckMain(NewFD, D.getDeclSpec());
6309        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6310                                                    isExplicitSpecialization));
6311      }
6312    }
6313
6314    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6315            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6316           "previous declaration set still overloaded");
6317
6318    NamedDecl *PrincipalDecl = (FunctionTemplate
6319                                ? cast<NamedDecl>(FunctionTemplate)
6320                                : NewFD);
6321
6322    if (isFriend && D.isRedeclaration()) {
6323      AccessSpecifier Access = AS_public;
6324      if (!NewFD->isInvalidDecl())
6325        Access = NewFD->getPreviousDecl()->getAccess();
6326
6327      NewFD->setAccess(Access);
6328      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6329
6330      PrincipalDecl->setObjectOfFriendDecl(true);
6331    }
6332
6333    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6334        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6335      PrincipalDecl->setNonMemberOperator();
6336
6337    // If we have a function template, check the template parameter
6338    // list. This will check and merge default template arguments.
6339    if (FunctionTemplate) {
6340      FunctionTemplateDecl *PrevTemplate =
6341                                     FunctionTemplate->getPreviousDecl();
6342      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6343                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6344                            D.getDeclSpec().isFriendSpecified()
6345                              ? (D.isFunctionDefinition()
6346                                   ? TPC_FriendFunctionTemplateDefinition
6347                                   : TPC_FriendFunctionTemplate)
6348                              : (D.getCXXScopeSpec().isSet() &&
6349                                 DC && DC->isRecord() &&
6350                                 DC->isDependentContext())
6351                                  ? TPC_ClassTemplateMember
6352                                  : TPC_FunctionTemplate);
6353    }
6354
6355    if (NewFD->isInvalidDecl()) {
6356      // Ignore all the rest of this.
6357    } else if (!D.isRedeclaration()) {
6358      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6359                                       AddToScope };
6360      // Fake up an access specifier if it's supposed to be a class member.
6361      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6362        NewFD->setAccess(AS_public);
6363
6364      // Qualified decls generally require a previous declaration.
6365      if (D.getCXXScopeSpec().isSet()) {
6366        // ...with the major exception of templated-scope or
6367        // dependent-scope friend declarations.
6368
6369        // TODO: we currently also suppress this check in dependent
6370        // contexts because (1) the parameter depth will be off when
6371        // matching friend templates and (2) we might actually be
6372        // selecting a friend based on a dependent factor.  But there
6373        // are situations where these conditions don't apply and we
6374        // can actually do this check immediately.
6375        if (isFriend &&
6376            (TemplateParamLists.size() ||
6377             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6378             CurContext->isDependentContext())) {
6379          // ignore these
6380        } else {
6381          // The user tried to provide an out-of-line definition for a
6382          // function that is a member of a class or namespace, but there
6383          // was no such member function declared (C++ [class.mfct]p2,
6384          // C++ [namespace.memdef]p2). For example:
6385          //
6386          // class X {
6387          //   void f() const;
6388          // };
6389          //
6390          // void X::f() { } // ill-formed
6391          //
6392          // Complain about this problem, and attempt to suggest close
6393          // matches (e.g., those that differ only in cv-qualifiers and
6394          // whether the parameter types are references).
6395
6396          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6397                                                               NewFD,
6398                                                               ExtraArgs)) {
6399            AddToScope = ExtraArgs.AddToScope;
6400            return Result;
6401          }
6402        }
6403
6404        // Unqualified local friend declarations are required to resolve
6405        // to something.
6406      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6407        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6408                                                             NewFD,
6409                                                             ExtraArgs)) {
6410          AddToScope = ExtraArgs.AddToScope;
6411          return Result;
6412        }
6413      }
6414
6415    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6416               !isFriend && !isFunctionTemplateSpecialization &&
6417               !isExplicitSpecialization) {
6418      // An out-of-line member function declaration must also be a
6419      // definition (C++ [dcl.meaning]p1).
6420      // Note that this is not the case for explicit specializations of
6421      // function templates or member functions of class templates, per
6422      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6423      // extension for compatibility with old SWIG code which likes to
6424      // generate them.
6425      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6426        << D.getCXXScopeSpec().getRange();
6427    }
6428  }
6429
6430  ProcessPragmaWeak(S, NewFD);
6431  checkAttributesAfterMerging(*this, *NewFD);
6432
6433  AddKnownFunctionAttributes(NewFD);
6434
6435  if (NewFD->hasAttr<OverloadableAttr>() &&
6436      !NewFD->getType()->getAs<FunctionProtoType>()) {
6437    Diag(NewFD->getLocation(),
6438         diag::err_attribute_overloadable_no_prototype)
6439      << NewFD;
6440
6441    // Turn this into a variadic function with no parameters.
6442    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6443    FunctionProtoType::ExtProtoInfo EPI;
6444    EPI.Variadic = true;
6445    EPI.ExtInfo = FT->getExtInfo();
6446
6447    QualType R = Context.getFunctionType(FT->getResultType(),
6448                                         ArrayRef<QualType>(),
6449                                         EPI);
6450    NewFD->setType(R);
6451  }
6452
6453  // If there's a #pragma GCC visibility in scope, and this isn't a class
6454  // member, set the visibility of this function.
6455  if (!DC->isRecord() && NewFD->hasExternalLinkage())
6456    AddPushedVisibilityAttribute(NewFD);
6457
6458  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6459  // marking the function.
6460  AddCFAuditedAttribute(NewFD);
6461
6462  // If this is a locally-scoped extern C function, update the
6463  // map of such names.
6464  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
6465      && !NewFD->isInvalidDecl())
6466    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
6467
6468  // Set this FunctionDecl's range up to the right paren.
6469  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6470
6471  if (getLangOpts().CPlusPlus) {
6472    if (FunctionTemplate) {
6473      if (NewFD->isInvalidDecl())
6474        FunctionTemplate->setInvalidDecl();
6475      return FunctionTemplate;
6476    }
6477  }
6478
6479  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6480    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6481    if ((getLangOpts().OpenCLVersion >= 120)
6482        && (SC == SC_Static)) {
6483      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6484      D.setInvalidType();
6485    }
6486
6487    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6488    if (!NewFD->getResultType()->isVoidType()) {
6489      Diag(D.getIdentifierLoc(),
6490           diag::err_expected_kernel_void_return_type);
6491      D.setInvalidType();
6492    }
6493
6494    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6495         PE = NewFD->param_end(); PI != PE; ++PI) {
6496      ParmVarDecl *Param = *PI;
6497      QualType PT = Param->getType();
6498
6499      // OpenCL v1.2 s6.9.a:
6500      // A kernel function argument cannot be declared as a
6501      // pointer to a pointer type.
6502      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6503        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6504        D.setInvalidType();
6505      }
6506
6507      // OpenCL v1.2 s6.8 n:
6508      // A kernel function argument cannot be declared
6509      // of event_t type.
6510      if (PT->isEventT()) {
6511        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6512        D.setInvalidType();
6513      }
6514    }
6515  }
6516
6517  MarkUnusedFileScopedDecl(NewFD);
6518
6519  if (getLangOpts().CUDA)
6520    if (IdentifierInfo *II = NewFD->getIdentifier())
6521      if (!NewFD->isInvalidDecl() &&
6522          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6523        if (II->isStr("cudaConfigureCall")) {
6524          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6525            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6526
6527          Context.setcudaConfigureCallDecl(NewFD);
6528        }
6529      }
6530
6531  // Here we have an function template explicit specialization at class scope.
6532  // The actually specialization will be postponed to template instatiation
6533  // time via the ClassScopeFunctionSpecializationDecl node.
6534  if (isDependentClassScopeExplicitSpecialization) {
6535    ClassScopeFunctionSpecializationDecl *NewSpec =
6536                         ClassScopeFunctionSpecializationDecl::Create(
6537                                Context, CurContext, SourceLocation(),
6538                                cast<CXXMethodDecl>(NewFD),
6539                                HasExplicitTemplateArgs, TemplateArgs);
6540    CurContext->addDecl(NewSpec);
6541    AddToScope = false;
6542  }
6543
6544  return NewFD;
6545}
6546
6547/// \brief Perform semantic checking of a new function declaration.
6548///
6549/// Performs semantic analysis of the new function declaration
6550/// NewFD. This routine performs all semantic checking that does not
6551/// require the actual declarator involved in the declaration, and is
6552/// used both for the declaration of functions as they are parsed
6553/// (called via ActOnDeclarator) and for the declaration of functions
6554/// that have been instantiated via C++ template instantiation (called
6555/// via InstantiateDecl).
6556///
6557/// \param IsExplicitSpecialization whether this new function declaration is
6558/// an explicit specialization of the previous declaration.
6559///
6560/// This sets NewFD->isInvalidDecl() to true if there was an error.
6561///
6562/// \returns true if the function declaration is a redeclaration.
6563bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6564                                    LookupResult &Previous,
6565                                    bool IsExplicitSpecialization) {
6566  assert(!NewFD->getResultType()->isVariablyModifiedType()
6567         && "Variably modified return types are not handled here");
6568
6569  // Check for a previous declaration of this name.
6570  if (Previous.empty() && mayConflictWithNonVisibleExternC(NewFD)) {
6571    // Since we did not find anything by this name, look for a non-visible
6572    // extern "C" declaration with the same name.
6573    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6574      = findLocallyScopedExternCDecl(NewFD->getDeclName());
6575    if (Pos != LocallyScopedExternCDecls.end())
6576      Previous.addDecl(Pos->second);
6577  }
6578
6579  // Filter out any non-conflicting previous declarations.
6580  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6581
6582  bool Redeclaration = false;
6583  NamedDecl *OldDecl = 0;
6584
6585  // Merge or overload the declaration with an existing declaration of
6586  // the same name, if appropriate.
6587  if (!Previous.empty()) {
6588    // Determine whether NewFD is an overload of PrevDecl or
6589    // a declaration that requires merging. If it's an overload,
6590    // there's no more work to do here; we'll just add the new
6591    // function to the scope.
6592    if (!AllowOverloadingOfFunction(Previous, Context)) {
6593      Redeclaration = true;
6594      OldDecl = Previous.getFoundDecl();
6595    } else {
6596      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6597                            /*NewIsUsingDecl*/ false)) {
6598      case Ovl_Match:
6599        Redeclaration = true;
6600        break;
6601
6602      case Ovl_NonFunction:
6603        Redeclaration = true;
6604        break;
6605
6606      case Ovl_Overload:
6607        Redeclaration = false;
6608        break;
6609      }
6610
6611      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6612        // If a function name is overloadable in C, then every function
6613        // with that name must be marked "overloadable".
6614        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6615          << Redeclaration << NewFD;
6616        NamedDecl *OverloadedDecl = 0;
6617        if (Redeclaration)
6618          OverloadedDecl = OldDecl;
6619        else if (!Previous.empty())
6620          OverloadedDecl = Previous.getRepresentativeDecl();
6621        if (OverloadedDecl)
6622          Diag(OverloadedDecl->getLocation(),
6623               diag::note_attribute_overloadable_prev_overload);
6624        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6625                                                        Context));
6626      }
6627    }
6628  }
6629
6630  // C++11 [dcl.constexpr]p8:
6631  //   A constexpr specifier for a non-static member function that is not
6632  //   a constructor declares that member function to be const.
6633  //
6634  // This needs to be delayed until we know whether this is an out-of-line
6635  // definition of a static member function.
6636  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6637  if (MD && MD->isConstexpr() && !MD->isStatic() &&
6638      !isa<CXXConstructorDecl>(MD) &&
6639      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6640    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6641    if (FunctionTemplateDecl *OldTD =
6642          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6643      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6644    if (!OldMD || !OldMD->isStatic()) {
6645      const FunctionProtoType *FPT =
6646        MD->getType()->castAs<FunctionProtoType>();
6647      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6648      EPI.TypeQuals |= Qualifiers::Const;
6649      MD->setType(Context.getFunctionType(FPT->getResultType(),
6650                                      ArrayRef<QualType>(FPT->arg_type_begin(),
6651                                                         FPT->getNumArgs()),
6652                                          EPI));
6653    }
6654  }
6655
6656  if (Redeclaration) {
6657    // NewFD and OldDecl represent declarations that need to be
6658    // merged.
6659    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6660      NewFD->setInvalidDecl();
6661      return Redeclaration;
6662    }
6663
6664    Previous.clear();
6665    Previous.addDecl(OldDecl);
6666
6667    if (FunctionTemplateDecl *OldTemplateDecl
6668                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6669      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6670      FunctionTemplateDecl *NewTemplateDecl
6671        = NewFD->getDescribedFunctionTemplate();
6672      assert(NewTemplateDecl && "Template/non-template mismatch");
6673      if (CXXMethodDecl *Method
6674            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6675        Method->setAccess(OldTemplateDecl->getAccess());
6676        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6677      }
6678
6679      // If this is an explicit specialization of a member that is a function
6680      // template, mark it as a member specialization.
6681      if (IsExplicitSpecialization &&
6682          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6683        NewTemplateDecl->setMemberSpecialization();
6684        assert(OldTemplateDecl->isMemberSpecialization());
6685      }
6686
6687    } else {
6688      // This needs to happen first so that 'inline' propagates.
6689      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
6690
6691      if (isa<CXXMethodDecl>(NewFD)) {
6692        // A valid redeclaration of a C++ method must be out-of-line,
6693        // but (unfortunately) it's not necessarily a definition
6694        // because of templates, which means that the previous
6695        // declaration is not necessarily from the class definition.
6696
6697        // For just setting the access, that doesn't matter.
6698        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
6699        NewFD->setAccess(oldMethod->getAccess());
6700
6701        // Update the key-function state if necessary for this ABI.
6702        if (NewFD->isInlined() &&
6703            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
6704          // setNonKeyFunction needs to work with the original
6705          // declaration from the class definition, and isVirtual() is
6706          // just faster in that case, so map back to that now.
6707          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
6708          if (oldMethod->isVirtual()) {
6709            Context.setNonKeyFunction(oldMethod);
6710          }
6711        }
6712      }
6713    }
6714  }
6715
6716  // Semantic checking for this function declaration (in isolation).
6717  if (getLangOpts().CPlusPlus) {
6718    // C++-specific checks.
6719    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
6720      CheckConstructor(Constructor);
6721    } else if (CXXDestructorDecl *Destructor =
6722                dyn_cast<CXXDestructorDecl>(NewFD)) {
6723      CXXRecordDecl *Record = Destructor->getParent();
6724      QualType ClassType = Context.getTypeDeclType(Record);
6725
6726      // FIXME: Shouldn't we be able to perform this check even when the class
6727      // type is dependent? Both gcc and edg can handle that.
6728      if (!ClassType->isDependentType()) {
6729        DeclarationName Name
6730          = Context.DeclarationNames.getCXXDestructorName(
6731                                        Context.getCanonicalType(ClassType));
6732        if (NewFD->getDeclName() != Name) {
6733          Diag(NewFD->getLocation(), diag::err_destructor_name);
6734          NewFD->setInvalidDecl();
6735          return Redeclaration;
6736        }
6737      }
6738    } else if (CXXConversionDecl *Conversion
6739               = dyn_cast<CXXConversionDecl>(NewFD)) {
6740      ActOnConversionDeclarator(Conversion);
6741    }
6742
6743    // Find any virtual functions that this function overrides.
6744    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
6745      if (!Method->isFunctionTemplateSpecialization() &&
6746          !Method->getDescribedFunctionTemplate() &&
6747          Method->isCanonicalDecl()) {
6748        if (AddOverriddenMethods(Method->getParent(), Method)) {
6749          // If the function was marked as "static", we have a problem.
6750          if (NewFD->getStorageClass() == SC_Static) {
6751            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
6752          }
6753        }
6754      }
6755
6756      if (Method->isStatic())
6757        checkThisInStaticMemberFunctionType(Method);
6758    }
6759
6760    // Extra checking for C++ overloaded operators (C++ [over.oper]).
6761    if (NewFD->isOverloadedOperator() &&
6762        CheckOverloadedOperatorDeclaration(NewFD)) {
6763      NewFD->setInvalidDecl();
6764      return Redeclaration;
6765    }
6766
6767    // Extra checking for C++0x literal operators (C++0x [over.literal]).
6768    if (NewFD->getLiteralIdentifier() &&
6769        CheckLiteralOperatorDeclaration(NewFD)) {
6770      NewFD->setInvalidDecl();
6771      return Redeclaration;
6772    }
6773
6774    // In C++, check default arguments now that we have merged decls. Unless
6775    // the lexical context is the class, because in this case this is done
6776    // during delayed parsing anyway.
6777    if (!CurContext->isRecord())
6778      CheckCXXDefaultArguments(NewFD);
6779
6780    // If this function declares a builtin function, check the type of this
6781    // declaration against the expected type for the builtin.
6782    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
6783      ASTContext::GetBuiltinTypeError Error;
6784      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
6785      QualType T = Context.GetBuiltinType(BuiltinID, Error);
6786      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
6787        // The type of this function differs from the type of the builtin,
6788        // so forget about the builtin entirely.
6789        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
6790      }
6791    }
6792
6793    // If this function is declared as being extern "C", then check to see if
6794    // the function returns a UDT (class, struct, or union type) that is not C
6795    // compatible, and if it does, warn the user.
6796    // But, issue any diagnostic on the first declaration only.
6797    if (NewFD->isExternC() && Previous.empty()) {
6798      QualType R = NewFD->getResultType();
6799      if (R->isIncompleteType() && !R->isVoidType())
6800        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
6801            << NewFD << R;
6802      else if (!R.isPODType(Context) && !R->isVoidType() &&
6803               !R->isObjCObjectPointerType())
6804        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
6805    }
6806  }
6807  return Redeclaration;
6808}
6809
6810static SourceRange getResultSourceRange(const FunctionDecl *FD) {
6811  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
6812  if (!TSI)
6813    return SourceRange();
6814
6815  TypeLoc TL = TSI->getTypeLoc();
6816  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
6817  if (!FunctionTL)
6818    return SourceRange();
6819
6820  TypeLoc ResultTL = FunctionTL.getResultLoc();
6821  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
6822    return ResultTL.getSourceRange();
6823
6824  return SourceRange();
6825}
6826
6827void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
6828  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
6829  //   static or constexpr is ill-formed.
6830  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
6831  //   appear in a declaration of main.
6832  // static main is not an error under C99, but we should warn about it.
6833  // We accept _Noreturn main as an extension.
6834  if (FD->getStorageClass() == SC_Static)
6835    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
6836         ? diag::err_static_main : diag::warn_static_main)
6837      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
6838  if (FD->isInlineSpecified())
6839    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
6840      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6841  if (DS.isNoreturnSpecified()) {
6842    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
6843    SourceRange NoreturnRange(NoreturnLoc,
6844                              PP.getLocForEndOfToken(NoreturnLoc));
6845    Diag(NoreturnLoc, diag::ext_noreturn_main);
6846    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
6847      << FixItHint::CreateRemoval(NoreturnRange);
6848  }
6849  if (FD->isConstexpr()) {
6850    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6851      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6852    FD->setConstexpr(false);
6853  }
6854
6855  QualType T = FD->getType();
6856  assert(T->isFunctionType() && "function decl is not of function type");
6857  const FunctionType* FT = T->castAs<FunctionType>();
6858
6859  // All the standards say that main() should should return 'int'.
6860  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6861    // In C and C++, main magically returns 0 if you fall off the end;
6862    // set the flag which tells us that.
6863    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6864    FD->setHasImplicitReturnZero(true);
6865
6866  // In C with GNU extensions we allow main() to have non-integer return
6867  // type, but we should warn about the extension, and we disable the
6868  // implicit-return-zero rule.
6869  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6870    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6871
6872    SourceRange ResultRange = getResultSourceRange(FD);
6873    if (ResultRange.isValid())
6874      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
6875          << FixItHint::CreateReplacement(ResultRange, "int");
6876
6877  // Otherwise, this is just a flat-out error.
6878  } else {
6879    SourceRange ResultRange = getResultSourceRange(FD);
6880    if (ResultRange.isValid())
6881      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
6882          << FixItHint::CreateReplacement(ResultRange, "int");
6883    else
6884      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6885
6886    FD->setInvalidDecl(true);
6887  }
6888
6889  // Treat protoless main() as nullary.
6890  if (isa<FunctionNoProtoType>(FT)) return;
6891
6892  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6893  unsigned nparams = FTP->getNumArgs();
6894  assert(FD->getNumParams() == nparams);
6895
6896  bool HasExtraParameters = (nparams > 3);
6897
6898  // Darwin passes an undocumented fourth argument of type char**.  If
6899  // other platforms start sprouting these, the logic below will start
6900  // getting shifty.
6901  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6902    HasExtraParameters = false;
6903
6904  if (HasExtraParameters) {
6905    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6906    FD->setInvalidDecl(true);
6907    nparams = 3;
6908  }
6909
6910  // FIXME: a lot of the following diagnostics would be improved
6911  // if we had some location information about types.
6912
6913  QualType CharPP =
6914    Context.getPointerType(Context.getPointerType(Context.CharTy));
6915  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6916
6917  for (unsigned i = 0; i < nparams; ++i) {
6918    QualType AT = FTP->getArgType(i);
6919
6920    bool mismatch = true;
6921
6922    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6923      mismatch = false;
6924    else if (Expected[i] == CharPP) {
6925      // As an extension, the following forms are okay:
6926      //   char const **
6927      //   char const * const *
6928      //   char * const *
6929
6930      QualifierCollector qs;
6931      const PointerType* PT;
6932      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6933          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6934          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
6935                              Context.CharTy)) {
6936        qs.removeConst();
6937        mismatch = !qs.empty();
6938      }
6939    }
6940
6941    if (mismatch) {
6942      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6943      // TODO: suggest replacing given type with expected type
6944      FD->setInvalidDecl(true);
6945    }
6946  }
6947
6948  if (nparams == 1 && !FD->isInvalidDecl()) {
6949    Diag(FD->getLocation(), diag::warn_main_one_arg);
6950  }
6951
6952  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6953    Diag(FD->getLocation(), diag::err_main_template_decl);
6954    FD->setInvalidDecl();
6955  }
6956}
6957
6958bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6959  // FIXME: Need strict checking.  In C89, we need to check for
6960  // any assignment, increment, decrement, function-calls, or
6961  // commas outside of a sizeof.  In C99, it's the same list,
6962  // except that the aforementioned are allowed in unevaluated
6963  // expressions.  Everything else falls under the
6964  // "may accept other forms of constant expressions" exception.
6965  // (We never end up here for C++, so the constant expression
6966  // rules there don't matter.)
6967  if (Init->isConstantInitializer(Context, false))
6968    return false;
6969  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6970    << Init->getSourceRange();
6971  return true;
6972}
6973
6974namespace {
6975  // Visits an initialization expression to see if OrigDecl is evaluated in
6976  // its own initialization and throws a warning if it does.
6977  class SelfReferenceChecker
6978      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6979    Sema &S;
6980    Decl *OrigDecl;
6981    bool isRecordType;
6982    bool isPODType;
6983    bool isReferenceType;
6984
6985  public:
6986    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6987
6988    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6989                                                    S(S), OrigDecl(OrigDecl) {
6990      isPODType = false;
6991      isRecordType = false;
6992      isReferenceType = false;
6993      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6994        isPODType = VD->getType().isPODType(S.Context);
6995        isRecordType = VD->getType()->isRecordType();
6996        isReferenceType = VD->getType()->isReferenceType();
6997      }
6998    }
6999
7000    // For most expressions, the cast is directly above the DeclRefExpr.
7001    // For conditional operators, the cast can be outside the conditional
7002    // operator if both expressions are DeclRefExpr's.
7003    void HandleValue(Expr *E) {
7004      if (isReferenceType)
7005        return;
7006      E = E->IgnoreParenImpCasts();
7007      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7008        HandleDeclRefExpr(DRE);
7009        return;
7010      }
7011
7012      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7013        HandleValue(CO->getTrueExpr());
7014        HandleValue(CO->getFalseExpr());
7015        return;
7016      }
7017
7018      if (isa<MemberExpr>(E)) {
7019        Expr *Base = E->IgnoreParenImpCasts();
7020        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7021          // Check for static member variables and don't warn on them.
7022          if (!isa<FieldDecl>(ME->getMemberDecl()))
7023            return;
7024          Base = ME->getBase()->IgnoreParenImpCasts();
7025        }
7026        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7027          HandleDeclRefExpr(DRE);
7028        return;
7029      }
7030    }
7031
7032    // Reference types are handled here since all uses of references are
7033    // bad, not just r-value uses.
7034    void VisitDeclRefExpr(DeclRefExpr *E) {
7035      if (isReferenceType)
7036        HandleDeclRefExpr(E);
7037    }
7038
7039    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7040      if (E->getCastKind() == CK_LValueToRValue ||
7041          (isRecordType && E->getCastKind() == CK_NoOp))
7042        HandleValue(E->getSubExpr());
7043
7044      Inherited::VisitImplicitCastExpr(E);
7045    }
7046
7047    void VisitMemberExpr(MemberExpr *E) {
7048      // Don't warn on arrays since they can be treated as pointers.
7049      if (E->getType()->canDecayToPointerType()) return;
7050
7051      // Warn when a non-static method call is followed by non-static member
7052      // field accesses, which is followed by a DeclRefExpr.
7053      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7054      bool Warn = (MD && !MD->isStatic());
7055      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7056      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7057        if (!isa<FieldDecl>(ME->getMemberDecl()))
7058          Warn = false;
7059        Base = ME->getBase()->IgnoreParenImpCasts();
7060      }
7061
7062      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7063        if (Warn)
7064          HandleDeclRefExpr(DRE);
7065        return;
7066      }
7067
7068      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7069      // Visit that expression.
7070      Visit(Base);
7071    }
7072
7073    void VisitUnaryOperator(UnaryOperator *E) {
7074      // For POD record types, addresses of its own members are well-defined.
7075      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7076          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7077        if (!isPODType)
7078          HandleValue(E->getSubExpr());
7079        return;
7080      }
7081      Inherited::VisitUnaryOperator(E);
7082    }
7083
7084    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7085
7086    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7087      Decl* ReferenceDecl = DRE->getDecl();
7088      if (OrigDecl != ReferenceDecl) return;
7089      unsigned diag;
7090      if (isReferenceType) {
7091        diag = diag::warn_uninit_self_reference_in_reference_init;
7092      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7093        diag = diag::warn_static_self_reference_in_init;
7094      } else {
7095        diag = diag::warn_uninit_self_reference_in_init;
7096      }
7097
7098      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7099                            S.PDiag(diag)
7100                              << DRE->getNameInfo().getName()
7101                              << OrigDecl->getLocation()
7102                              << DRE->getSourceRange());
7103    }
7104  };
7105
7106  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7107  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7108                                 bool DirectInit) {
7109    // Parameters arguments are occassionially constructed with itself,
7110    // for instance, in recursive functions.  Skip them.
7111    if (isa<ParmVarDecl>(OrigDecl))
7112      return;
7113
7114    E = E->IgnoreParens();
7115
7116    // Skip checking T a = a where T is not a record or reference type.
7117    // Doing so is a way to silence uninitialized warnings.
7118    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7119      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7120        if (ICE->getCastKind() == CK_LValueToRValue)
7121          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7122            if (DRE->getDecl() == OrigDecl)
7123              return;
7124
7125    SelfReferenceChecker(S, OrigDecl).Visit(E);
7126  }
7127}
7128
7129/// AddInitializerToDecl - Adds the initializer Init to the
7130/// declaration dcl. If DirectInit is true, this is C++ direct
7131/// initialization rather than copy initialization.
7132void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7133                                bool DirectInit, bool TypeMayContainAuto) {
7134  // If there is no declaration, there was an error parsing it.  Just ignore
7135  // the initializer.
7136  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7137    return;
7138
7139  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7140    // With declarators parsed the way they are, the parser cannot
7141    // distinguish between a normal initializer and a pure-specifier.
7142    // Thus this grotesque test.
7143    IntegerLiteral *IL;
7144    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7145        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7146      CheckPureMethod(Method, Init->getSourceRange());
7147    else {
7148      Diag(Method->getLocation(), diag::err_member_function_initialization)
7149        << Method->getDeclName() << Init->getSourceRange();
7150      Method->setInvalidDecl();
7151    }
7152    return;
7153  }
7154
7155  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7156  if (!VDecl) {
7157    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7158    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7159    RealDecl->setInvalidDecl();
7160    return;
7161  }
7162
7163  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7164
7165  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7166  AutoType *Auto = 0;
7167  if (TypeMayContainAuto &&
7168      (Auto = VDecl->getType()->getContainedAutoType()) &&
7169      !Auto->isDeduced()) {
7170    Expr *DeduceInit = Init;
7171    // Initializer could be a C++ direct-initializer. Deduction only works if it
7172    // contains exactly one expression.
7173    if (CXXDirectInit) {
7174      if (CXXDirectInit->getNumExprs() == 0) {
7175        // It isn't possible to write this directly, but it is possible to
7176        // end up in this situation with "auto x(some_pack...);"
7177        Diag(CXXDirectInit->getLocStart(),
7178             diag::err_auto_var_init_no_expression)
7179          << VDecl->getDeclName() << VDecl->getType()
7180          << VDecl->getSourceRange();
7181        RealDecl->setInvalidDecl();
7182        return;
7183      } else if (CXXDirectInit->getNumExprs() > 1) {
7184        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7185             diag::err_auto_var_init_multiple_expressions)
7186          << VDecl->getDeclName() << VDecl->getType()
7187          << VDecl->getSourceRange();
7188        RealDecl->setInvalidDecl();
7189        return;
7190      } else {
7191        DeduceInit = CXXDirectInit->getExpr(0);
7192      }
7193    }
7194
7195    // Expressions default to 'id' when we're in a debugger.
7196    bool DefaultedToAuto = false;
7197    if (getLangOpts().DebuggerCastResultToId &&
7198        Init->getType() == Context.UnknownAnyTy) {
7199      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7200      if (Result.isInvalid()) {
7201        VDecl->setInvalidDecl();
7202        return;
7203      }
7204      Init = Result.take();
7205      DefaultedToAuto = true;
7206    }
7207
7208    TypeSourceInfo *DeducedType = 0;
7209    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7210            DAR_Failed)
7211      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7212    if (!DeducedType) {
7213      RealDecl->setInvalidDecl();
7214      return;
7215    }
7216    VDecl->setTypeSourceInfo(DeducedType);
7217    VDecl->setType(DeducedType->getType());
7218    assert(VDecl->isLinkageValid());
7219
7220    // In ARC, infer lifetime.
7221    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7222      VDecl->setInvalidDecl();
7223
7224    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7225    // 'id' instead of a specific object type prevents most of our usual checks.
7226    // We only want to warn outside of template instantiations, though:
7227    // inside a template, the 'id' could have come from a parameter.
7228    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7229        DeducedType->getType()->isObjCIdType()) {
7230      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
7231      Diag(Loc, diag::warn_auto_var_is_id)
7232        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7233    }
7234
7235    // If this is a redeclaration, check that the type we just deduced matches
7236    // the previously declared type.
7237    if (VarDecl *Old = VDecl->getPreviousDecl())
7238      MergeVarDeclTypes(VDecl, Old);
7239  }
7240
7241  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7242    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7243    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7244    VDecl->setInvalidDecl();
7245    return;
7246  }
7247
7248  if (!VDecl->getType()->isDependentType()) {
7249    // A definition must end up with a complete type, which means it must be
7250    // complete with the restriction that an array type might be completed by
7251    // the initializer; note that later code assumes this restriction.
7252    QualType BaseDeclType = VDecl->getType();
7253    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7254      BaseDeclType = Array->getElementType();
7255    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7256                            diag::err_typecheck_decl_incomplete_type)) {
7257      RealDecl->setInvalidDecl();
7258      return;
7259    }
7260
7261    // The variable can not have an abstract class type.
7262    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7263                               diag::err_abstract_type_in_decl,
7264                               AbstractVariableType))
7265      VDecl->setInvalidDecl();
7266  }
7267
7268  const VarDecl *Def;
7269  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7270    Diag(VDecl->getLocation(), diag::err_redefinition)
7271      << VDecl->getDeclName();
7272    Diag(Def->getLocation(), diag::note_previous_definition);
7273    VDecl->setInvalidDecl();
7274    return;
7275  }
7276
7277  const VarDecl* PrevInit = 0;
7278  if (getLangOpts().CPlusPlus) {
7279    // C++ [class.static.data]p4
7280    //   If a static data member is of const integral or const
7281    //   enumeration type, its declaration in the class definition can
7282    //   specify a constant-initializer which shall be an integral
7283    //   constant expression (5.19). In that case, the member can appear
7284    //   in integral constant expressions. The member shall still be
7285    //   defined in a namespace scope if it is used in the program and the
7286    //   namespace scope definition shall not contain an initializer.
7287    //
7288    // We already performed a redefinition check above, but for static
7289    // data members we also need to check whether there was an in-class
7290    // declaration with an initializer.
7291    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7292      Diag(VDecl->getLocation(), diag::err_redefinition)
7293        << VDecl->getDeclName();
7294      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7295      return;
7296    }
7297
7298    if (VDecl->hasLocalStorage())
7299      getCurFunction()->setHasBranchProtectedScope();
7300
7301    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7302      VDecl->setInvalidDecl();
7303      return;
7304    }
7305  }
7306
7307  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7308  // a kernel function cannot be initialized."
7309  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7310    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7311    VDecl->setInvalidDecl();
7312    return;
7313  }
7314
7315  // Get the decls type and save a reference for later, since
7316  // CheckInitializerTypes may change it.
7317  QualType DclT = VDecl->getType(), SavT = DclT;
7318
7319  // Expressions default to 'id' when we're in a debugger
7320  // and we are assigning it to a variable of Objective-C pointer type.
7321  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7322      Init->getType() == Context.UnknownAnyTy) {
7323    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7324    if (Result.isInvalid()) {
7325      VDecl->setInvalidDecl();
7326      return;
7327    }
7328    Init = Result.take();
7329  }
7330
7331  // Perform the initialization.
7332  if (!VDecl->isInvalidDecl()) {
7333    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7334    InitializationKind Kind
7335      = DirectInit ?
7336          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7337                                                           Init->getLocStart(),
7338                                                           Init->getLocEnd())
7339                        : InitializationKind::CreateDirectList(
7340                                                          VDecl->getLocation())
7341                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7342                                                    Init->getLocStart());
7343
7344    Expr **Args = &Init;
7345    unsigned NumArgs = 1;
7346    if (CXXDirectInit) {
7347      Args = CXXDirectInit->getExprs();
7348      NumArgs = CXXDirectInit->getNumExprs();
7349    }
7350    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
7351    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
7352                                        MultiExprArg(Args, NumArgs), &DclT);
7353    if (Result.isInvalid()) {
7354      VDecl->setInvalidDecl();
7355      return;
7356    }
7357
7358    Init = Result.takeAs<Expr>();
7359  }
7360
7361  // Check for self-references within variable initializers.
7362  // Variables declared within a function/method body (except for references)
7363  // are handled by a dataflow analysis.
7364  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7365      VDecl->getType()->isReferenceType()) {
7366    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7367  }
7368
7369  // If the type changed, it means we had an incomplete type that was
7370  // completed by the initializer. For example:
7371  //   int ary[] = { 1, 3, 5 };
7372  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7373  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7374    VDecl->setType(DclT);
7375
7376  if (!VDecl->isInvalidDecl()) {
7377    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7378
7379    if (VDecl->hasAttr<BlocksAttr>())
7380      checkRetainCycles(VDecl, Init);
7381
7382    // It is safe to assign a weak reference into a strong variable.
7383    // Although this code can still have problems:
7384    //   id x = self.weakProp;
7385    //   id y = self.weakProp;
7386    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7387    // paths through the function. This should be revisited if
7388    // -Wrepeated-use-of-weak is made flow-sensitive.
7389    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7390      DiagnosticsEngine::Level Level =
7391        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7392                                 Init->getLocStart());
7393      if (Level != DiagnosticsEngine::Ignored)
7394        getCurFunction()->markSafeWeakUse(Init);
7395    }
7396  }
7397
7398  // The initialization is usually a full-expression.
7399  //
7400  // FIXME: If this is a braced initialization of an aggregate, it is not
7401  // an expression, and each individual field initializer is a separate
7402  // full-expression. For instance, in:
7403  //
7404  //   struct Temp { ~Temp(); };
7405  //   struct S { S(Temp); };
7406  //   struct T { S a, b; } t = { Temp(), Temp() }
7407  //
7408  // we should destroy the first Temp before constructing the second.
7409  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7410                                          false,
7411                                          VDecl->isConstexpr());
7412  if (Result.isInvalid()) {
7413    VDecl->setInvalidDecl();
7414    return;
7415  }
7416  Init = Result.take();
7417
7418  // Attach the initializer to the decl.
7419  VDecl->setInit(Init);
7420
7421  if (VDecl->isLocalVarDecl()) {
7422    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7423    // static storage duration shall be constant expressions or string literals.
7424    // C++ does not have this restriction.
7425    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7426        VDecl->getStorageClass() == SC_Static)
7427      CheckForConstantInitializer(Init, DclT);
7428  } else if (VDecl->isStaticDataMember() &&
7429             VDecl->getLexicalDeclContext()->isRecord()) {
7430    // This is an in-class initialization for a static data member, e.g.,
7431    //
7432    // struct S {
7433    //   static const int value = 17;
7434    // };
7435
7436    // C++ [class.mem]p4:
7437    //   A member-declarator can contain a constant-initializer only
7438    //   if it declares a static member (9.4) of const integral or
7439    //   const enumeration type, see 9.4.2.
7440    //
7441    // C++11 [class.static.data]p3:
7442    //   If a non-volatile const static data member is of integral or
7443    //   enumeration type, its declaration in the class definition can
7444    //   specify a brace-or-equal-initializer in which every initalizer-clause
7445    //   that is an assignment-expression is a constant expression. A static
7446    //   data member of literal type can be declared in the class definition
7447    //   with the constexpr specifier; if so, its declaration shall specify a
7448    //   brace-or-equal-initializer in which every initializer-clause that is
7449    //   an assignment-expression is a constant expression.
7450
7451    // Do nothing on dependent types.
7452    if (DclT->isDependentType()) {
7453
7454    // Allow any 'static constexpr' members, whether or not they are of literal
7455    // type. We separately check that every constexpr variable is of literal
7456    // type.
7457    } else if (VDecl->isConstexpr()) {
7458
7459    // Require constness.
7460    } else if (!DclT.isConstQualified()) {
7461      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7462        << Init->getSourceRange();
7463      VDecl->setInvalidDecl();
7464
7465    // We allow integer constant expressions in all cases.
7466    } else if (DclT->isIntegralOrEnumerationType()) {
7467      // Check whether the expression is a constant expression.
7468      SourceLocation Loc;
7469      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7470        // In C++11, a non-constexpr const static data member with an
7471        // in-class initializer cannot be volatile.
7472        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7473      else if (Init->isValueDependent())
7474        ; // Nothing to check.
7475      else if (Init->isIntegerConstantExpr(Context, &Loc))
7476        ; // Ok, it's an ICE!
7477      else if (Init->isEvaluatable(Context)) {
7478        // If we can constant fold the initializer through heroics, accept it,
7479        // but report this as a use of an extension for -pedantic.
7480        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7481          << Init->getSourceRange();
7482      } else {
7483        // Otherwise, this is some crazy unknown case.  Report the issue at the
7484        // location provided by the isIntegerConstantExpr failed check.
7485        Diag(Loc, diag::err_in_class_initializer_non_constant)
7486          << Init->getSourceRange();
7487        VDecl->setInvalidDecl();
7488      }
7489
7490    // We allow foldable floating-point constants as an extension.
7491    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7492      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7493      // it anyway and provide a fixit to add the 'constexpr'.
7494      if (getLangOpts().CPlusPlus11) {
7495        Diag(VDecl->getLocation(),
7496             diag::ext_in_class_initializer_float_type_cxx11)
7497            << DclT << Init->getSourceRange();
7498        Diag(VDecl->getLocStart(),
7499             diag::note_in_class_initializer_float_type_cxx11)
7500            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7501      } else {
7502        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7503          << DclT << Init->getSourceRange();
7504
7505        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7506          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7507            << Init->getSourceRange();
7508          VDecl->setInvalidDecl();
7509        }
7510      }
7511
7512    // Suggest adding 'constexpr' in C++11 for literal types.
7513    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType()) {
7514      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7515        << DclT << Init->getSourceRange()
7516        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7517      VDecl->setConstexpr(true);
7518
7519    } else {
7520      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7521        << DclT << Init->getSourceRange();
7522      VDecl->setInvalidDecl();
7523    }
7524  } else if (VDecl->isFileVarDecl()) {
7525    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
7526        (!getLangOpts().CPlusPlus ||
7527         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
7528      Diag(VDecl->getLocation(), diag::warn_extern_init);
7529
7530    // C99 6.7.8p4. All file scoped initializers need to be constant.
7531    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7532      CheckForConstantInitializer(Init, DclT);
7533  }
7534
7535  // We will represent direct-initialization similarly to copy-initialization:
7536  //    int x(1);  -as-> int x = 1;
7537  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7538  //
7539  // Clients that want to distinguish between the two forms, can check for
7540  // direct initializer using VarDecl::getInitStyle().
7541  // A major benefit is that clients that don't particularly care about which
7542  // exactly form was it (like the CodeGen) can handle both cases without
7543  // special case code.
7544
7545  // C++ 8.5p11:
7546  // The form of initialization (using parentheses or '=') is generally
7547  // insignificant, but does matter when the entity being initialized has a
7548  // class type.
7549  if (CXXDirectInit) {
7550    assert(DirectInit && "Call-style initializer must be direct init.");
7551    VDecl->setInitStyle(VarDecl::CallInit);
7552  } else if (DirectInit) {
7553    // This must be list-initialization. No other way is direct-initialization.
7554    VDecl->setInitStyle(VarDecl::ListInit);
7555  }
7556
7557  CheckCompleteVariableDeclaration(VDecl);
7558}
7559
7560/// ActOnInitializerError - Given that there was an error parsing an
7561/// initializer for the given declaration, try to return to some form
7562/// of sanity.
7563void Sema::ActOnInitializerError(Decl *D) {
7564  // Our main concern here is re-establishing invariants like "a
7565  // variable's type is either dependent or complete".
7566  if (!D || D->isInvalidDecl()) return;
7567
7568  VarDecl *VD = dyn_cast<VarDecl>(D);
7569  if (!VD) return;
7570
7571  // Auto types are meaningless if we can't make sense of the initializer.
7572  if (ParsingInitForAutoVars.count(D)) {
7573    D->setInvalidDecl();
7574    return;
7575  }
7576
7577  QualType Ty = VD->getType();
7578  if (Ty->isDependentType()) return;
7579
7580  // Require a complete type.
7581  if (RequireCompleteType(VD->getLocation(),
7582                          Context.getBaseElementType(Ty),
7583                          diag::err_typecheck_decl_incomplete_type)) {
7584    VD->setInvalidDecl();
7585    return;
7586  }
7587
7588  // Require an abstract type.
7589  if (RequireNonAbstractType(VD->getLocation(), Ty,
7590                             diag::err_abstract_type_in_decl,
7591                             AbstractVariableType)) {
7592    VD->setInvalidDecl();
7593    return;
7594  }
7595
7596  // Don't bother complaining about constructors or destructors,
7597  // though.
7598}
7599
7600void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7601                                  bool TypeMayContainAuto) {
7602  // If there is no declaration, there was an error parsing it. Just ignore it.
7603  if (RealDecl == 0)
7604    return;
7605
7606  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7607    QualType Type = Var->getType();
7608
7609    // C++11 [dcl.spec.auto]p3
7610    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7611      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7612        << Var->getDeclName() << Type;
7613      Var->setInvalidDecl();
7614      return;
7615    }
7616
7617    // C++11 [class.static.data]p3: A static data member can be declared with
7618    // the constexpr specifier; if so, its declaration shall specify
7619    // a brace-or-equal-initializer.
7620    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7621    // the definition of a variable [...] or the declaration of a static data
7622    // member.
7623    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7624      if (Var->isStaticDataMember())
7625        Diag(Var->getLocation(),
7626             diag::err_constexpr_static_mem_var_requires_init)
7627          << Var->getDeclName();
7628      else
7629        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7630      Var->setInvalidDecl();
7631      return;
7632    }
7633
7634    switch (Var->isThisDeclarationADefinition()) {
7635    case VarDecl::Definition:
7636      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7637        break;
7638
7639      // We have an out-of-line definition of a static data member
7640      // that has an in-class initializer, so we type-check this like
7641      // a declaration.
7642      //
7643      // Fall through
7644
7645    case VarDecl::DeclarationOnly:
7646      // It's only a declaration.
7647
7648      // Block scope. C99 6.7p7: If an identifier for an object is
7649      // declared with no linkage (C99 6.2.2p6), the type for the
7650      // object shall be complete.
7651      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7652          !Var->getLinkage() && !Var->isInvalidDecl() &&
7653          RequireCompleteType(Var->getLocation(), Type,
7654                              diag::err_typecheck_decl_incomplete_type))
7655        Var->setInvalidDecl();
7656
7657      // Make sure that the type is not abstract.
7658      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7659          RequireNonAbstractType(Var->getLocation(), Type,
7660                                 diag::err_abstract_type_in_decl,
7661                                 AbstractVariableType))
7662        Var->setInvalidDecl();
7663      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7664          Var->getStorageClass() == SC_PrivateExtern) {
7665        Diag(Var->getLocation(), diag::warn_private_extern);
7666        Diag(Var->getLocation(), diag::note_private_extern);
7667      }
7668
7669      return;
7670
7671    case VarDecl::TentativeDefinition:
7672      // File scope. C99 6.9.2p2: A declaration of an identifier for an
7673      // object that has file scope without an initializer, and without a
7674      // storage-class specifier or with the storage-class specifier "static",
7675      // constitutes a tentative definition. Note: A tentative definition with
7676      // external linkage is valid (C99 6.2.2p5).
7677      if (!Var->isInvalidDecl()) {
7678        if (const IncompleteArrayType *ArrayT
7679                                    = Context.getAsIncompleteArrayType(Type)) {
7680          if (RequireCompleteType(Var->getLocation(),
7681                                  ArrayT->getElementType(),
7682                                  diag::err_illegal_decl_array_incomplete_type))
7683            Var->setInvalidDecl();
7684        } else if (Var->getStorageClass() == SC_Static) {
7685          // C99 6.9.2p3: If the declaration of an identifier for an object is
7686          // a tentative definition and has internal linkage (C99 6.2.2p3), the
7687          // declared type shall not be an incomplete type.
7688          // NOTE: code such as the following
7689          //     static struct s;
7690          //     struct s { int a; };
7691          // is accepted by gcc. Hence here we issue a warning instead of
7692          // an error and we do not invalidate the static declaration.
7693          // NOTE: to avoid multiple warnings, only check the first declaration.
7694          if (Var->getPreviousDecl() == 0)
7695            RequireCompleteType(Var->getLocation(), Type,
7696                                diag::ext_typecheck_decl_incomplete_type);
7697        }
7698      }
7699
7700      // Record the tentative definition; we're done.
7701      if (!Var->isInvalidDecl())
7702        TentativeDefinitions.push_back(Var);
7703      return;
7704    }
7705
7706    // Provide a specific diagnostic for uninitialized variable
7707    // definitions with incomplete array type.
7708    if (Type->isIncompleteArrayType()) {
7709      Diag(Var->getLocation(),
7710           diag::err_typecheck_incomplete_array_needs_initializer);
7711      Var->setInvalidDecl();
7712      return;
7713    }
7714
7715    // Provide a specific diagnostic for uninitialized variable
7716    // definitions with reference type.
7717    if (Type->isReferenceType()) {
7718      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
7719        << Var->getDeclName()
7720        << SourceRange(Var->getLocation(), Var->getLocation());
7721      Var->setInvalidDecl();
7722      return;
7723    }
7724
7725    // Do not attempt to type-check the default initializer for a
7726    // variable with dependent type.
7727    if (Type->isDependentType())
7728      return;
7729
7730    if (Var->isInvalidDecl())
7731      return;
7732
7733    if (RequireCompleteType(Var->getLocation(),
7734                            Context.getBaseElementType(Type),
7735                            diag::err_typecheck_decl_incomplete_type)) {
7736      Var->setInvalidDecl();
7737      return;
7738    }
7739
7740    // The variable can not have an abstract class type.
7741    if (RequireNonAbstractType(Var->getLocation(), Type,
7742                               diag::err_abstract_type_in_decl,
7743                               AbstractVariableType)) {
7744      Var->setInvalidDecl();
7745      return;
7746    }
7747
7748    // Check for jumps past the implicit initializer.  C++0x
7749    // clarifies that this applies to a "variable with automatic
7750    // storage duration", not a "local variable".
7751    // C++11 [stmt.dcl]p3
7752    //   A program that jumps from a point where a variable with automatic
7753    //   storage duration is not in scope to a point where it is in scope is
7754    //   ill-formed unless the variable has scalar type, class type with a
7755    //   trivial default constructor and a trivial destructor, a cv-qualified
7756    //   version of one of these types, or an array of one of the preceding
7757    //   types and is declared without an initializer.
7758    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
7759      if (const RecordType *Record
7760            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
7761        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
7762        // Mark the function for further checking even if the looser rules of
7763        // C++11 do not require such checks, so that we can diagnose
7764        // incompatibilities with C++98.
7765        if (!CXXRecord->isPOD())
7766          getCurFunction()->setHasBranchProtectedScope();
7767      }
7768    }
7769
7770    // C++03 [dcl.init]p9:
7771    //   If no initializer is specified for an object, and the
7772    //   object is of (possibly cv-qualified) non-POD class type (or
7773    //   array thereof), the object shall be default-initialized; if
7774    //   the object is of const-qualified type, the underlying class
7775    //   type shall have a user-declared default
7776    //   constructor. Otherwise, if no initializer is specified for
7777    //   a non- static object, the object and its subobjects, if
7778    //   any, have an indeterminate initial value); if the object
7779    //   or any of its subobjects are of const-qualified type, the
7780    //   program is ill-formed.
7781    // C++0x [dcl.init]p11:
7782    //   If no initializer is specified for an object, the object is
7783    //   default-initialized; [...].
7784    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
7785    InitializationKind Kind
7786      = InitializationKind::CreateDefault(Var->getLocation());
7787
7788    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
7789    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, MultiExprArg());
7790    if (Init.isInvalid())
7791      Var->setInvalidDecl();
7792    else if (Init.get()) {
7793      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
7794      // This is important for template substitution.
7795      Var->setInitStyle(VarDecl::CallInit);
7796    }
7797
7798    CheckCompleteVariableDeclaration(Var);
7799  }
7800}
7801
7802void Sema::ActOnCXXForRangeDecl(Decl *D) {
7803  VarDecl *VD = dyn_cast<VarDecl>(D);
7804  if (!VD) {
7805    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
7806    D->setInvalidDecl();
7807    return;
7808  }
7809
7810  VD->setCXXForRangeDecl(true);
7811
7812  // for-range-declaration cannot be given a storage class specifier.
7813  int Error = -1;
7814  switch (VD->getStorageClassAsWritten()) {
7815  case SC_None:
7816    break;
7817  case SC_Extern:
7818    Error = 0;
7819    break;
7820  case SC_Static:
7821    Error = 1;
7822    break;
7823  case SC_PrivateExtern:
7824    Error = 2;
7825    break;
7826  case SC_Auto:
7827    Error = 3;
7828    break;
7829  case SC_Register:
7830    Error = 4;
7831    break;
7832  case SC_OpenCLWorkGroupLocal:
7833    llvm_unreachable("Unexpected storage class");
7834  }
7835  if (VD->isConstexpr())
7836    Error = 5;
7837  if (Error != -1) {
7838    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
7839      << VD->getDeclName() << Error;
7840    D->setInvalidDecl();
7841  }
7842}
7843
7844void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
7845  if (var->isInvalidDecl()) return;
7846
7847  // In ARC, don't allow jumps past the implicit initialization of a
7848  // local retaining variable.
7849  if (getLangOpts().ObjCAutoRefCount &&
7850      var->hasLocalStorage()) {
7851    switch (var->getType().getObjCLifetime()) {
7852    case Qualifiers::OCL_None:
7853    case Qualifiers::OCL_ExplicitNone:
7854    case Qualifiers::OCL_Autoreleasing:
7855      break;
7856
7857    case Qualifiers::OCL_Weak:
7858    case Qualifiers::OCL_Strong:
7859      getCurFunction()->setHasBranchProtectedScope();
7860      break;
7861    }
7862  }
7863
7864  if (var->isThisDeclarationADefinition() &&
7865      var->hasExternalLinkage() &&
7866      getDiagnostics().getDiagnosticLevel(
7867                       diag::warn_missing_variable_declarations,
7868                       var->getLocation())) {
7869    // Find a previous declaration that's not a definition.
7870    VarDecl *prev = var->getPreviousDecl();
7871    while (prev && prev->isThisDeclarationADefinition())
7872      prev = prev->getPreviousDecl();
7873
7874    if (!prev)
7875      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
7876  }
7877
7878  // All the following checks are C++ only.
7879  if (!getLangOpts().CPlusPlus) return;
7880
7881  QualType type = var->getType();
7882  if (type->isDependentType()) return;
7883
7884  // __block variables might require us to capture a copy-initializer.
7885  if (var->hasAttr<BlocksAttr>()) {
7886    // It's currently invalid to ever have a __block variable with an
7887    // array type; should we diagnose that here?
7888
7889    // Regardless, we don't want to ignore array nesting when
7890    // constructing this copy.
7891    if (type->isStructureOrClassType()) {
7892      SourceLocation poi = var->getLocation();
7893      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
7894      ExprResult result
7895        = PerformMoveOrCopyInitialization(
7896            InitializedEntity::InitializeBlock(poi, type, false),
7897            var, var->getType(), varRef, /*AllowNRVO=*/true);
7898      if (!result.isInvalid()) {
7899        result = MaybeCreateExprWithCleanups(result);
7900        Expr *init = result.takeAs<Expr>();
7901        Context.setBlockVarCopyInits(var, init);
7902      }
7903    }
7904  }
7905
7906  Expr *Init = var->getInit();
7907  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
7908  QualType baseType = Context.getBaseElementType(type);
7909
7910  if (!var->getDeclContext()->isDependentContext() &&
7911      Init && !Init->isValueDependent()) {
7912    if (IsGlobal && !var->isConstexpr() &&
7913        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
7914                                            var->getLocation())
7915          != DiagnosticsEngine::Ignored &&
7916        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
7917      Diag(var->getLocation(), diag::warn_global_constructor)
7918        << Init->getSourceRange();
7919
7920    if (var->isConstexpr()) {
7921      SmallVector<PartialDiagnosticAt, 8> Notes;
7922      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
7923        SourceLocation DiagLoc = var->getLocation();
7924        // If the note doesn't add any useful information other than a source
7925        // location, fold it into the primary diagnostic.
7926        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
7927              diag::note_invalid_subexpr_in_const_expr) {
7928          DiagLoc = Notes[0].first;
7929          Notes.clear();
7930        }
7931        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
7932          << var << Init->getSourceRange();
7933        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
7934          Diag(Notes[I].first, Notes[I].second);
7935      }
7936    } else if (var->isUsableInConstantExpressions(Context)) {
7937      // Check whether the initializer of a const variable of integral or
7938      // enumeration type is an ICE now, since we can't tell whether it was
7939      // initialized by a constant expression if we check later.
7940      var->checkInitIsICE();
7941    }
7942  }
7943
7944  // Require the destructor.
7945  if (const RecordType *recordType = baseType->getAs<RecordType>())
7946    FinalizeVarWithDestructor(var, recordType);
7947}
7948
7949/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
7950/// any semantic actions necessary after any initializer has been attached.
7951void
7952Sema::FinalizeDeclaration(Decl *ThisDecl) {
7953  // Note that we are no longer parsing the initializer for this declaration.
7954  ParsingInitForAutoVars.erase(ThisDecl);
7955
7956  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
7957  if (!VD)
7958    return;
7959
7960  const DeclContext *DC = VD->getDeclContext();
7961  // If there's a #pragma GCC visibility in scope, and this isn't a class
7962  // member, set the visibility of this variable.
7963  if (!DC->isRecord() && VD->hasExternalLinkage())
7964    AddPushedVisibilityAttribute(VD);
7965
7966  if (VD->isFileVarDecl())
7967    MarkUnusedFileScopedDecl(VD);
7968
7969  // Now we have parsed the initializer and can update the table of magic
7970  // tag values.
7971  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
7972      !VD->getType()->isIntegralOrEnumerationType())
7973    return;
7974
7975  for (specific_attr_iterator<TypeTagForDatatypeAttr>
7976         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
7977         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
7978       I != E; ++I) {
7979    const Expr *MagicValueExpr = VD->getInit();
7980    if (!MagicValueExpr) {
7981      continue;
7982    }
7983    llvm::APSInt MagicValueInt;
7984    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
7985      Diag(I->getRange().getBegin(),
7986           diag::err_type_tag_for_datatype_not_ice)
7987        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7988      continue;
7989    }
7990    if (MagicValueInt.getActiveBits() > 64) {
7991      Diag(I->getRange().getBegin(),
7992           diag::err_type_tag_for_datatype_too_large)
7993        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
7994      continue;
7995    }
7996    uint64_t MagicValue = MagicValueInt.getZExtValue();
7997    RegisterTypeTagForDatatype(I->getArgumentKind(),
7998                               MagicValue,
7999                               I->getMatchingCType(),
8000                               I->getLayoutCompatible(),
8001                               I->getMustBeNull());
8002  }
8003}
8004
8005Sema::DeclGroupPtrTy
8006Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8007                              Decl **Group, unsigned NumDecls) {
8008  SmallVector<Decl*, 8> Decls;
8009
8010  if (DS.isTypeSpecOwned())
8011    Decls.push_back(DS.getRepAsDecl());
8012
8013  for (unsigned i = 0; i != NumDecls; ++i)
8014    if (Decl *D = Group[i])
8015      Decls.push_back(D);
8016
8017  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8018    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8019      getASTContext().addUnnamedTag(Tag);
8020
8021  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8022                              DS.getTypeSpecType() == DeclSpec::TST_auto);
8023}
8024
8025/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8026/// group, performing any necessary semantic checking.
8027Sema::DeclGroupPtrTy
8028Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8029                           bool TypeMayContainAuto) {
8030  // C++0x [dcl.spec.auto]p7:
8031  //   If the type deduced for the template parameter U is not the same in each
8032  //   deduction, the program is ill-formed.
8033  // FIXME: When initializer-list support is added, a distinction is needed
8034  // between the deduced type U and the deduced type which 'auto' stands for.
8035  //   auto a = 0, b = { 1, 2, 3 };
8036  // is legal because the deduced type U is 'int' in both cases.
8037  if (TypeMayContainAuto && NumDecls > 1) {
8038    QualType Deduced;
8039    CanQualType DeducedCanon;
8040    VarDecl *DeducedDecl = 0;
8041    for (unsigned i = 0; i != NumDecls; ++i) {
8042      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8043        AutoType *AT = D->getType()->getContainedAutoType();
8044        // Don't reissue diagnostics when instantiating a template.
8045        if (AT && D->isInvalidDecl())
8046          break;
8047        if (AT && AT->isDeduced()) {
8048          QualType U = AT->getDeducedType();
8049          CanQualType UCanon = Context.getCanonicalType(U);
8050          if (Deduced.isNull()) {
8051            Deduced = U;
8052            DeducedCanon = UCanon;
8053            DeducedDecl = D;
8054          } else if (DeducedCanon != UCanon) {
8055            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8056                 diag::err_auto_different_deductions)
8057              << Deduced << DeducedDecl->getDeclName()
8058              << U << D->getDeclName()
8059              << DeducedDecl->getInit()->getSourceRange()
8060              << D->getInit()->getSourceRange();
8061            D->setInvalidDecl();
8062            break;
8063          }
8064        }
8065      }
8066    }
8067  }
8068
8069  ActOnDocumentableDecls(Group, NumDecls);
8070
8071  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8072}
8073
8074void Sema::ActOnDocumentableDecl(Decl *D) {
8075  ActOnDocumentableDecls(&D, 1);
8076}
8077
8078void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8079  // Don't parse the comment if Doxygen diagnostics are ignored.
8080  if (NumDecls == 0 || !Group[0])
8081   return;
8082
8083  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8084                               Group[0]->getLocation())
8085        == DiagnosticsEngine::Ignored)
8086    return;
8087
8088  if (NumDecls >= 2) {
8089    // This is a decl group.  Normally it will contain only declarations
8090    // procuded from declarator list.  But in case we have any definitions or
8091    // additional declaration references:
8092    //   'typedef struct S {} S;'
8093    //   'typedef struct S *S;'
8094    //   'struct S *pS;'
8095    // FinalizeDeclaratorGroup adds these as separate declarations.
8096    Decl *MaybeTagDecl = Group[0];
8097    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8098      Group++;
8099      NumDecls--;
8100    }
8101  }
8102
8103  // See if there are any new comments that are not attached to a decl.
8104  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8105  if (!Comments.empty() &&
8106      !Comments.back()->isAttached()) {
8107    // There is at least one comment that not attached to a decl.
8108    // Maybe it should be attached to one of these decls?
8109    //
8110    // Note that this way we pick up not only comments that precede the
8111    // declaration, but also comments that *follow* the declaration -- thanks to
8112    // the lookahead in the lexer: we've consumed the semicolon and looked
8113    // ahead through comments.
8114    for (unsigned i = 0; i != NumDecls; ++i)
8115      Context.getCommentForDecl(Group[i], &PP);
8116  }
8117}
8118
8119/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8120/// to introduce parameters into function prototype scope.
8121Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8122  const DeclSpec &DS = D.getDeclSpec();
8123
8124  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8125  // C++03 [dcl.stc]p2 also permits 'auto'.
8126  VarDecl::StorageClass StorageClass = SC_None;
8127  VarDecl::StorageClass StorageClassAsWritten = SC_None;
8128  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8129    StorageClass = SC_Register;
8130    StorageClassAsWritten = SC_Register;
8131  } else if (getLangOpts().CPlusPlus &&
8132             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8133    StorageClass = SC_Auto;
8134    StorageClassAsWritten = SC_Auto;
8135  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8136    Diag(DS.getStorageClassSpecLoc(),
8137         diag::err_invalid_storage_class_in_func_decl);
8138    D.getMutableDeclSpec().ClearStorageClassSpecs();
8139  }
8140
8141  if (D.getDeclSpec().isThreadSpecified())
8142    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8143  if (D.getDeclSpec().isConstexprSpecified())
8144    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8145      << 0;
8146
8147  DiagnoseFunctionSpecifiers(D);
8148
8149  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8150  QualType parmDeclType = TInfo->getType();
8151
8152  if (getLangOpts().CPlusPlus) {
8153    // Check that there are no default arguments inside the type of this
8154    // parameter.
8155    CheckExtraCXXDefaultArguments(D);
8156
8157    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8158    if (D.getCXXScopeSpec().isSet()) {
8159      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8160        << D.getCXXScopeSpec().getRange();
8161      D.getCXXScopeSpec().clear();
8162    }
8163  }
8164
8165  // Ensure we have a valid name
8166  IdentifierInfo *II = 0;
8167  if (D.hasName()) {
8168    II = D.getIdentifier();
8169    if (!II) {
8170      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8171        << GetNameForDeclarator(D).getName().getAsString();
8172      D.setInvalidType(true);
8173    }
8174  }
8175
8176  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8177  if (II) {
8178    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8179                   ForRedeclaration);
8180    LookupName(R, S);
8181    if (R.isSingleResult()) {
8182      NamedDecl *PrevDecl = R.getFoundDecl();
8183      if (PrevDecl->isTemplateParameter()) {
8184        // Maybe we will complain about the shadowed template parameter.
8185        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8186        // Just pretend that we didn't see the previous declaration.
8187        PrevDecl = 0;
8188      } else if (S->isDeclScope(PrevDecl)) {
8189        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8190        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8191
8192        // Recover by removing the name
8193        II = 0;
8194        D.SetIdentifier(0, D.getIdentifierLoc());
8195        D.setInvalidType(true);
8196      }
8197    }
8198  }
8199
8200  // Temporarily put parameter variables in the translation unit, not
8201  // the enclosing context.  This prevents them from accidentally
8202  // looking like class members in C++.
8203  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8204                                    D.getLocStart(),
8205                                    D.getIdentifierLoc(), II,
8206                                    parmDeclType, TInfo,
8207                                    StorageClass, StorageClassAsWritten);
8208
8209  if (D.isInvalidType())
8210    New->setInvalidDecl();
8211
8212  assert(S->isFunctionPrototypeScope());
8213  assert(S->getFunctionPrototypeDepth() >= 1);
8214  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8215                    S->getNextFunctionPrototypeIndex());
8216
8217  // Add the parameter declaration into this scope.
8218  S->AddDecl(New);
8219  if (II)
8220    IdResolver.AddDecl(New);
8221
8222  ProcessDeclAttributes(S, New, D);
8223
8224  if (D.getDeclSpec().isModulePrivateSpecified())
8225    Diag(New->getLocation(), diag::err_module_private_local)
8226      << 1 << New->getDeclName()
8227      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8228      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8229
8230  if (New->hasAttr<BlocksAttr>()) {
8231    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8232  }
8233  return New;
8234}
8235
8236/// \brief Synthesizes a variable for a parameter arising from a
8237/// typedef.
8238ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8239                                              SourceLocation Loc,
8240                                              QualType T) {
8241  /* FIXME: setting StartLoc == Loc.
8242     Would it be worth to modify callers so as to provide proper source
8243     location for the unnamed parameters, embedding the parameter's type? */
8244  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8245                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8246                                           SC_None, SC_None, 0);
8247  Param->setImplicit();
8248  return Param;
8249}
8250
8251void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8252                                    ParmVarDecl * const *ParamEnd) {
8253  // Don't diagnose unused-parameter errors in template instantiations; we
8254  // will already have done so in the template itself.
8255  if (!ActiveTemplateInstantiations.empty())
8256    return;
8257
8258  for (; Param != ParamEnd; ++Param) {
8259    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8260        !(*Param)->hasAttr<UnusedAttr>()) {
8261      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8262        << (*Param)->getDeclName();
8263    }
8264  }
8265}
8266
8267void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8268                                                  ParmVarDecl * const *ParamEnd,
8269                                                  QualType ReturnTy,
8270                                                  NamedDecl *D) {
8271  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8272    return;
8273
8274  // Warn if the return value is pass-by-value and larger than the specified
8275  // threshold.
8276  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8277    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8278    if (Size > LangOpts.NumLargeByValueCopy)
8279      Diag(D->getLocation(), diag::warn_return_value_size)
8280          << D->getDeclName() << Size;
8281  }
8282
8283  // Warn if any parameter is pass-by-value and larger than the specified
8284  // threshold.
8285  for (; Param != ParamEnd; ++Param) {
8286    QualType T = (*Param)->getType();
8287    if (T->isDependentType() || !T.isPODType(Context))
8288      continue;
8289    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8290    if (Size > LangOpts.NumLargeByValueCopy)
8291      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8292          << (*Param)->getDeclName() << Size;
8293  }
8294}
8295
8296ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8297                                  SourceLocation NameLoc, IdentifierInfo *Name,
8298                                  QualType T, TypeSourceInfo *TSInfo,
8299                                  VarDecl::StorageClass StorageClass,
8300                                  VarDecl::StorageClass StorageClassAsWritten) {
8301  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8302  if (getLangOpts().ObjCAutoRefCount &&
8303      T.getObjCLifetime() == Qualifiers::OCL_None &&
8304      T->isObjCLifetimeType()) {
8305
8306    Qualifiers::ObjCLifetime lifetime;
8307
8308    // Special cases for arrays:
8309    //   - if it's const, use __unsafe_unretained
8310    //   - otherwise, it's an error
8311    if (T->isArrayType()) {
8312      if (!T.isConstQualified()) {
8313        DelayedDiagnostics.add(
8314            sema::DelayedDiagnostic::makeForbiddenType(
8315            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8316      }
8317      lifetime = Qualifiers::OCL_ExplicitNone;
8318    } else {
8319      lifetime = T->getObjCARCImplicitLifetime();
8320    }
8321    T = Context.getLifetimeQualifiedType(T, lifetime);
8322  }
8323
8324  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8325                                         Context.getAdjustedParameterType(T),
8326                                         TSInfo,
8327                                         StorageClass, StorageClassAsWritten,
8328                                         0);
8329
8330  // Parameters can not be abstract class types.
8331  // For record types, this is done by the AbstractClassUsageDiagnoser once
8332  // the class has been completely parsed.
8333  if (!CurContext->isRecord() &&
8334      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8335                             AbstractParamType))
8336    New->setInvalidDecl();
8337
8338  // Parameter declarators cannot be interface types. All ObjC objects are
8339  // passed by reference.
8340  if (T->isObjCObjectType()) {
8341    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8342    Diag(NameLoc,
8343         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8344      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8345    T = Context.getObjCObjectPointerType(T);
8346    New->setType(T);
8347  }
8348
8349  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8350  // duration shall not be qualified by an address-space qualifier."
8351  // Since all parameters have automatic store duration, they can not have
8352  // an address space.
8353  if (T.getAddressSpace() != 0) {
8354    Diag(NameLoc, diag::err_arg_with_address_space);
8355    New->setInvalidDecl();
8356  }
8357
8358  return New;
8359}
8360
8361void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8362                                           SourceLocation LocAfterDecls) {
8363  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8364
8365  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8366  // for a K&R function.
8367  if (!FTI.hasPrototype) {
8368    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8369      --i;
8370      if (FTI.ArgInfo[i].Param == 0) {
8371        SmallString<256> Code;
8372        llvm::raw_svector_ostream(Code) << "  int "
8373                                        << FTI.ArgInfo[i].Ident->getName()
8374                                        << ";\n";
8375        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8376          << FTI.ArgInfo[i].Ident
8377          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8378
8379        // Implicitly declare the argument as type 'int' for lack of a better
8380        // type.
8381        AttributeFactory attrs;
8382        DeclSpec DS(attrs);
8383        const char* PrevSpec; // unused
8384        unsigned DiagID; // unused
8385        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8386                           PrevSpec, DiagID);
8387        // Use the identifier location for the type source range.
8388        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8389        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8390        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8391        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8392        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8393      }
8394    }
8395  }
8396}
8397
8398Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8399  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8400  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8401  Scope *ParentScope = FnBodyScope->getParent();
8402
8403  D.setFunctionDefinitionKind(FDK_Definition);
8404  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8405  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8406}
8407
8408static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8409                             const FunctionDecl*& PossibleZeroParamPrototype) {
8410  // Don't warn about invalid declarations.
8411  if (FD->isInvalidDecl())
8412    return false;
8413
8414  // Or declarations that aren't global.
8415  if (!FD->isGlobal())
8416    return false;
8417
8418  // Don't warn about C++ member functions.
8419  if (isa<CXXMethodDecl>(FD))
8420    return false;
8421
8422  // Don't warn about 'main'.
8423  if (FD->isMain())
8424    return false;
8425
8426  // Don't warn about inline functions.
8427  if (FD->isInlined())
8428    return false;
8429
8430  // Don't warn about function templates.
8431  if (FD->getDescribedFunctionTemplate())
8432    return false;
8433
8434  // Don't warn about function template specializations.
8435  if (FD->isFunctionTemplateSpecialization())
8436    return false;
8437
8438  // Don't warn for OpenCL kernels.
8439  if (FD->hasAttr<OpenCLKernelAttr>())
8440    return false;
8441
8442  bool MissingPrototype = true;
8443  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8444       Prev; Prev = Prev->getPreviousDecl()) {
8445    // Ignore any declarations that occur in function or method
8446    // scope, because they aren't visible from the header.
8447    if (Prev->getDeclContext()->isFunctionOrMethod())
8448      continue;
8449
8450    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8451    if (FD->getNumParams() == 0)
8452      PossibleZeroParamPrototype = Prev;
8453    break;
8454  }
8455
8456  return MissingPrototype;
8457}
8458
8459void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8460  // Don't complain if we're in GNU89 mode and the previous definition
8461  // was an extern inline function.
8462  const FunctionDecl *Definition;
8463  if (FD->isDefined(Definition) &&
8464      !canRedefineFunction(Definition, getLangOpts())) {
8465    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8466        Definition->getStorageClass() == SC_Extern)
8467      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8468        << FD->getDeclName() << getLangOpts().CPlusPlus;
8469    else
8470      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8471    Diag(Definition->getLocation(), diag::note_previous_definition);
8472    FD->setInvalidDecl();
8473  }
8474}
8475
8476Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8477  // Clear the last template instantiation error context.
8478  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8479
8480  if (!D)
8481    return D;
8482  FunctionDecl *FD = 0;
8483
8484  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8485    FD = FunTmpl->getTemplatedDecl();
8486  else
8487    FD = cast<FunctionDecl>(D);
8488
8489  // Enter a new function scope
8490  PushFunctionScope();
8491
8492  // See if this is a redefinition.
8493  if (!FD->isLateTemplateParsed())
8494    CheckForFunctionRedefinition(FD);
8495
8496  // Builtin functions cannot be defined.
8497  if (unsigned BuiltinID = FD->getBuiltinID()) {
8498    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
8499      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8500      FD->setInvalidDecl();
8501    }
8502  }
8503
8504  // The return type of a function definition must be complete
8505  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8506  QualType ResultType = FD->getResultType();
8507  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8508      !FD->isInvalidDecl() &&
8509      RequireCompleteType(FD->getLocation(), ResultType,
8510                          diag::err_func_def_incomplete_result))
8511    FD->setInvalidDecl();
8512
8513  // GNU warning -Wmissing-prototypes:
8514  //   Warn if a global function is defined without a previous
8515  //   prototype declaration. This warning is issued even if the
8516  //   definition itself provides a prototype. The aim is to detect
8517  //   global functions that fail to be declared in header files.
8518  const FunctionDecl *PossibleZeroParamPrototype = 0;
8519  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8520    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8521
8522    if (PossibleZeroParamPrototype) {
8523      // We found a declaration that is not a prototype,
8524      // but that could be a zero-parameter prototype
8525      TypeSourceInfo* TI = PossibleZeroParamPrototype->getTypeSourceInfo();
8526      TypeLoc TL = TI->getTypeLoc();
8527      if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8528        Diag(PossibleZeroParamPrototype->getLocation(),
8529             diag::note_declaration_not_a_prototype)
8530          << PossibleZeroParamPrototype
8531          << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8532    }
8533  }
8534
8535  if (FnBodyScope)
8536    PushDeclContext(FnBodyScope, FD);
8537
8538  // Check the validity of our function parameters
8539  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8540                           /*CheckParameterNames=*/true);
8541
8542  // Introduce our parameters into the function scope
8543  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8544    ParmVarDecl *Param = FD->getParamDecl(p);
8545    Param->setOwningFunction(FD);
8546
8547    // If this has an identifier, add it to the scope stack.
8548    if (Param->getIdentifier() && FnBodyScope) {
8549      CheckShadow(FnBodyScope, Param);
8550
8551      PushOnScopeChains(Param, FnBodyScope);
8552    }
8553  }
8554
8555  // If we had any tags defined in the function prototype,
8556  // introduce them into the function scope.
8557  if (FnBodyScope) {
8558    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8559           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8560      NamedDecl *D = *I;
8561
8562      // Some of these decls (like enums) may have been pinned to the translation unit
8563      // for lack of a real context earlier. If so, remove from the translation unit
8564      // and reattach to the current context.
8565      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8566        // Is the decl actually in the context?
8567        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8568               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8569          if (*DI == D) {
8570            Context.getTranslationUnitDecl()->removeDecl(D);
8571            break;
8572          }
8573        }
8574        // Either way, reassign the lexical decl context to our FunctionDecl.
8575        D->setLexicalDeclContext(CurContext);
8576      }
8577
8578      // If the decl has a non-null name, make accessible in the current scope.
8579      if (!D->getName().empty())
8580        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8581
8582      // Similarly, dive into enums and fish their constants out, making them
8583      // accessible in this scope.
8584      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8585        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8586               EE = ED->enumerator_end(); EI != EE; ++EI)
8587          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8588      }
8589    }
8590  }
8591
8592  // Ensure that the function's exception specification is instantiated.
8593  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8594    ResolveExceptionSpec(D->getLocation(), FPT);
8595
8596  // Checking attributes of current function definition
8597  // dllimport attribute.
8598  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8599  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8600    // dllimport attribute cannot be directly applied to definition.
8601    // Microsoft accepts dllimport for functions defined within class scope.
8602    if (!DA->isInherited() &&
8603        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8604      Diag(FD->getLocation(),
8605           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8606        << "dllimport";
8607      FD->setInvalidDecl();
8608      return D;
8609    }
8610
8611    // Visual C++ appears to not think this is an issue, so only issue
8612    // a warning when Microsoft extensions are disabled.
8613    if (!LangOpts.MicrosoftExt) {
8614      // If a symbol previously declared dllimport is later defined, the
8615      // attribute is ignored in subsequent references, and a warning is
8616      // emitted.
8617      Diag(FD->getLocation(),
8618           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8619        << FD->getName() << "dllimport";
8620    }
8621  }
8622  // We want to attach documentation to original Decl (which might be
8623  // a function template).
8624  ActOnDocumentableDecl(D);
8625  return D;
8626}
8627
8628/// \brief Given the set of return statements within a function body,
8629/// compute the variables that are subject to the named return value
8630/// optimization.
8631///
8632/// Each of the variables that is subject to the named return value
8633/// optimization will be marked as NRVO variables in the AST, and any
8634/// return statement that has a marked NRVO variable as its NRVO candidate can
8635/// use the named return value optimization.
8636///
8637/// This function applies a very simplistic algorithm for NRVO: if every return
8638/// statement in the function has the same NRVO candidate, that candidate is
8639/// the NRVO variable.
8640///
8641/// FIXME: Employ a smarter algorithm that accounts for multiple return
8642/// statements and the lifetimes of the NRVO candidates. We should be able to
8643/// find a maximal set of NRVO variables.
8644void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8645  ReturnStmt **Returns = Scope->Returns.data();
8646
8647  const VarDecl *NRVOCandidate = 0;
8648  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8649    if (!Returns[I]->getNRVOCandidate())
8650      return;
8651
8652    if (!NRVOCandidate)
8653      NRVOCandidate = Returns[I]->getNRVOCandidate();
8654    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
8655      return;
8656  }
8657
8658  if (NRVOCandidate)
8659    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
8660}
8661
8662bool Sema::canSkipFunctionBody(Decl *D) {
8663  if (!Consumer.shouldSkipFunctionBody(D))
8664    return false;
8665
8666  if (isa<ObjCMethodDecl>(D))
8667    return true;
8668
8669  FunctionDecl *FD = 0;
8670  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
8671    FD = FTD->getTemplatedDecl();
8672  else
8673    FD = cast<FunctionDecl>(D);
8674
8675  // We cannot skip the body of a function (or function template) which is
8676  // constexpr, since we may need to evaluate its body in order to parse the
8677  // rest of the file.
8678  return !FD->isConstexpr();
8679}
8680
8681Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
8682  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
8683    FD->setHasSkippedBody();
8684  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
8685    MD->setHasSkippedBody();
8686  return ActOnFinishFunctionBody(Decl, 0);
8687}
8688
8689Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
8690  return ActOnFinishFunctionBody(D, BodyArg, false);
8691}
8692
8693Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
8694                                    bool IsInstantiation) {
8695  FunctionDecl *FD = 0;
8696  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
8697  if (FunTmpl)
8698    FD = FunTmpl->getTemplatedDecl();
8699  else
8700    FD = dyn_cast_or_null<FunctionDecl>(dcl);
8701
8702  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
8703  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
8704
8705  if (FD) {
8706    FD->setBody(Body);
8707
8708    // The only way to be included in UndefinedButUsed is if there is an
8709    // ODR use before the definition. Avoid the expensive map lookup if this
8710    // is the first declaration.
8711    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
8712      if (FD->getLinkage() != ExternalLinkage)
8713        UndefinedButUsed.erase(FD);
8714      else if (FD->isInlined() &&
8715               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
8716               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
8717        UndefinedButUsed.erase(FD);
8718    }
8719
8720    // If the function implicitly returns zero (like 'main') or is naked,
8721    // don't complain about missing return statements.
8722    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
8723      WP.disableCheckFallThrough();
8724
8725    // MSVC permits the use of pure specifier (=0) on function definition,
8726    // defined at class scope, warn about this non standard construct.
8727    if (getLangOpts().MicrosoftExt && FD->isPure())
8728      Diag(FD->getLocation(), diag::warn_pure_function_definition);
8729
8730    if (!FD->isInvalidDecl()) {
8731      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
8732      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
8733                                             FD->getResultType(), FD);
8734
8735      // If this is a constructor, we need a vtable.
8736      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
8737        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
8738
8739      // Try to apply the named return value optimization. We have to check
8740      // if we can do this here because lambdas keep return statements around
8741      // to deduce an implicit return type.
8742      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
8743          !FD->isDependentContext())
8744        computeNRVO(Body, getCurFunction());
8745    }
8746
8747    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
8748           "Function parsing confused");
8749  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
8750    assert(MD == getCurMethodDecl() && "Method parsing confused");
8751    MD->setBody(Body);
8752    if (!MD->isInvalidDecl()) {
8753      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
8754      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
8755                                             MD->getResultType(), MD);
8756
8757      if (Body)
8758        computeNRVO(Body, getCurFunction());
8759    }
8760    if (getCurFunction()->ObjCShouldCallSuper) {
8761      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
8762        << MD->getSelector().getAsString();
8763      getCurFunction()->ObjCShouldCallSuper = false;
8764    }
8765  } else {
8766    return 0;
8767  }
8768
8769  assert(!getCurFunction()->ObjCShouldCallSuper &&
8770         "This should only be set for ObjC methods, which should have been "
8771         "handled in the block above.");
8772
8773  // Verify and clean out per-function state.
8774  if (Body) {
8775    // C++ constructors that have function-try-blocks can't have return
8776    // statements in the handlers of that block. (C++ [except.handle]p14)
8777    // Verify this.
8778    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
8779      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
8780
8781    // Verify that gotos and switch cases don't jump into scopes illegally.
8782    if (getCurFunction()->NeedsScopeChecking() &&
8783        !dcl->isInvalidDecl() &&
8784        !hasAnyUnrecoverableErrorsInThisFunction() &&
8785        !PP.isCodeCompletionEnabled())
8786      DiagnoseInvalidJumps(Body);
8787
8788    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
8789      if (!Destructor->getParent()->isDependentType())
8790        CheckDestructor(Destructor);
8791
8792      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
8793                                             Destructor->getParent());
8794    }
8795
8796    // If any errors have occurred, clear out any temporaries that may have
8797    // been leftover. This ensures that these temporaries won't be picked up for
8798    // deletion in some later function.
8799    if (PP.getDiagnostics().hasErrorOccurred() ||
8800        PP.getDiagnostics().getSuppressAllDiagnostics()) {
8801      DiscardCleanupsInEvaluationContext();
8802    }
8803    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
8804        !isa<FunctionTemplateDecl>(dcl)) {
8805      // Since the body is valid, issue any analysis-based warnings that are
8806      // enabled.
8807      ActivePolicy = &WP;
8808    }
8809
8810    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
8811        (!CheckConstexprFunctionDecl(FD) ||
8812         !CheckConstexprFunctionBody(FD, Body)))
8813      FD->setInvalidDecl();
8814
8815    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
8816    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
8817    assert(MaybeODRUseExprs.empty() &&
8818           "Leftover expressions for odr-use checking");
8819  }
8820
8821  if (!IsInstantiation)
8822    PopDeclContext();
8823
8824  PopFunctionScopeInfo(ActivePolicy, dcl);
8825
8826  // If any errors have occurred, clear out any temporaries that may have
8827  // been leftover. This ensures that these temporaries won't be picked up for
8828  // deletion in some later function.
8829  if (getDiagnostics().hasErrorOccurred()) {
8830    DiscardCleanupsInEvaluationContext();
8831  }
8832
8833  return dcl;
8834}
8835
8836
8837/// When we finish delayed parsing of an attribute, we must attach it to the
8838/// relevant Decl.
8839void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
8840                                       ParsedAttributes &Attrs) {
8841  // Always attach attributes to the underlying decl.
8842  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
8843    D = TD->getTemplatedDecl();
8844  ProcessDeclAttributeList(S, D, Attrs.getList());
8845
8846  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
8847    if (Method->isStatic())
8848      checkThisInStaticMemberFunctionAttributes(Method);
8849}
8850
8851
8852/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
8853/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
8854NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
8855                                          IdentifierInfo &II, Scope *S) {
8856  // Before we produce a declaration for an implicitly defined
8857  // function, see whether there was a locally-scoped declaration of
8858  // this name as a function or variable. If so, use that
8859  // (non-visible) declaration, and complain about it.
8860  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
8861    = findLocallyScopedExternCDecl(&II);
8862  if (Pos != LocallyScopedExternCDecls.end()) {
8863    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
8864    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
8865    return Pos->second;
8866  }
8867
8868  // Extension in C99.  Legal in C90, but warn about it.
8869  unsigned diag_id;
8870  if (II.getName().startswith("__builtin_"))
8871    diag_id = diag::warn_builtin_unknown;
8872  else if (getLangOpts().C99)
8873    diag_id = diag::ext_implicit_function_decl;
8874  else
8875    diag_id = diag::warn_implicit_function_decl;
8876  Diag(Loc, diag_id) << &II;
8877
8878  // Because typo correction is expensive, only do it if the implicit
8879  // function declaration is going to be treated as an error.
8880  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
8881    TypoCorrection Corrected;
8882    DeclFilterCCC<FunctionDecl> Validator;
8883    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
8884                                      LookupOrdinaryName, S, 0, Validator))) {
8885      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
8886      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
8887      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
8888
8889      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
8890          << FixItHint::CreateReplacement(Loc, CorrectedStr);
8891
8892      if (Func->getLocation().isValid()
8893          && !II.getName().startswith("__builtin_"))
8894        Diag(Func->getLocation(), diag::note_previous_decl)
8895            << CorrectedQuotedStr;
8896    }
8897  }
8898
8899  // Set a Declarator for the implicit definition: int foo();
8900  const char *Dummy;
8901  AttributeFactory attrFactory;
8902  DeclSpec DS(attrFactory);
8903  unsigned DiagID;
8904  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
8905  (void)Error; // Silence warning.
8906  assert(!Error && "Error setting up implicit decl!");
8907  SourceLocation NoLoc;
8908  Declarator D(DS, Declarator::BlockContext);
8909  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
8910                                             /*IsAmbiguous=*/false,
8911                                             /*RParenLoc=*/NoLoc,
8912                                             /*ArgInfo=*/0,
8913                                             /*NumArgs=*/0,
8914                                             /*EllipsisLoc=*/NoLoc,
8915                                             /*RParenLoc=*/NoLoc,
8916                                             /*TypeQuals=*/0,
8917                                             /*RefQualifierIsLvalueRef=*/true,
8918                                             /*RefQualifierLoc=*/NoLoc,
8919                                             /*ConstQualifierLoc=*/NoLoc,
8920                                             /*VolatileQualifierLoc=*/NoLoc,
8921                                             /*MutableLoc=*/NoLoc,
8922                                             EST_None,
8923                                             /*ESpecLoc=*/NoLoc,
8924                                             /*Exceptions=*/0,
8925                                             /*ExceptionRanges=*/0,
8926                                             /*NumExceptions=*/0,
8927                                             /*NoexceptExpr=*/0,
8928                                             Loc, Loc, D),
8929                DS.getAttributes(),
8930                SourceLocation());
8931  D.SetIdentifier(&II, Loc);
8932
8933  // Insert this function into translation-unit scope.
8934
8935  DeclContext *PrevDC = CurContext;
8936  CurContext = Context.getTranslationUnitDecl();
8937
8938  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
8939  FD->setImplicit();
8940
8941  CurContext = PrevDC;
8942
8943  AddKnownFunctionAttributes(FD);
8944
8945  return FD;
8946}
8947
8948/// \brief Adds any function attributes that we know a priori based on
8949/// the declaration of this function.
8950///
8951/// These attributes can apply both to implicitly-declared builtins
8952/// (like __builtin___printf_chk) or to library-declared functions
8953/// like NSLog or printf.
8954///
8955/// We need to check for duplicate attributes both here and where user-written
8956/// attributes are applied to declarations.
8957void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
8958  if (FD->isInvalidDecl())
8959    return;
8960
8961  // If this is a built-in function, map its builtin attributes to
8962  // actual attributes.
8963  if (unsigned BuiltinID = FD->getBuiltinID()) {
8964    // Handle printf-formatting attributes.
8965    unsigned FormatIdx;
8966    bool HasVAListArg;
8967    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
8968      if (!FD->getAttr<FormatAttr>()) {
8969        const char *fmt = "printf";
8970        unsigned int NumParams = FD->getNumParams();
8971        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
8972            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
8973          fmt = "NSString";
8974        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8975                                               fmt, FormatIdx+1,
8976                                               HasVAListArg ? 0 : FormatIdx+2));
8977      }
8978    }
8979    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
8980                                             HasVAListArg)) {
8981     if (!FD->getAttr<FormatAttr>())
8982       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
8983                                              "scanf", FormatIdx+1,
8984                                              HasVAListArg ? 0 : FormatIdx+2));
8985    }
8986
8987    // Mark const if we don't care about errno and that is the only
8988    // thing preventing the function from being const. This allows
8989    // IRgen to use LLVM intrinsics for such functions.
8990    if (!getLangOpts().MathErrno &&
8991        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
8992      if (!FD->getAttr<ConstAttr>())
8993        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
8994    }
8995
8996    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
8997        !FD->getAttr<ReturnsTwiceAttr>())
8998      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
8999    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9000      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9001    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9002      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9003  }
9004
9005  IdentifierInfo *Name = FD->getIdentifier();
9006  if (!Name)
9007    return;
9008  if ((!getLangOpts().CPlusPlus &&
9009       FD->getDeclContext()->isTranslationUnit()) ||
9010      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9011       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9012       LinkageSpecDecl::lang_c)) {
9013    // Okay: this could be a libc/libm/Objective-C function we know
9014    // about.
9015  } else
9016    return;
9017
9018  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9019    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9020    // target-specific builtins, perhaps?
9021    if (!FD->getAttr<FormatAttr>())
9022      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9023                                             "printf", 2,
9024                                             Name->isStr("vasprintf") ? 0 : 3));
9025  }
9026
9027  if (Name->isStr("__CFStringMakeConstantString")) {
9028    // We already have a __builtin___CFStringMakeConstantString,
9029    // but builds that use -fno-constant-cfstrings don't go through that.
9030    if (!FD->getAttr<FormatArgAttr>())
9031      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9032  }
9033}
9034
9035TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9036                                    TypeSourceInfo *TInfo) {
9037  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9038  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9039
9040  if (!TInfo) {
9041    assert(D.isInvalidType() && "no declarator info for valid type");
9042    TInfo = Context.getTrivialTypeSourceInfo(T);
9043  }
9044
9045  // Scope manipulation handled by caller.
9046  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9047                                           D.getLocStart(),
9048                                           D.getIdentifierLoc(),
9049                                           D.getIdentifier(),
9050                                           TInfo);
9051
9052  // Bail out immediately if we have an invalid declaration.
9053  if (D.isInvalidType()) {
9054    NewTD->setInvalidDecl();
9055    return NewTD;
9056  }
9057
9058  if (D.getDeclSpec().isModulePrivateSpecified()) {
9059    if (CurContext->isFunctionOrMethod())
9060      Diag(NewTD->getLocation(), diag::err_module_private_local)
9061        << 2 << NewTD->getDeclName()
9062        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9063        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9064    else
9065      NewTD->setModulePrivate();
9066  }
9067
9068  // C++ [dcl.typedef]p8:
9069  //   If the typedef declaration defines an unnamed class (or
9070  //   enum), the first typedef-name declared by the declaration
9071  //   to be that class type (or enum type) is used to denote the
9072  //   class type (or enum type) for linkage purposes only.
9073  // We need to check whether the type was declared in the declaration.
9074  switch (D.getDeclSpec().getTypeSpecType()) {
9075  case TST_enum:
9076  case TST_struct:
9077  case TST_interface:
9078  case TST_union:
9079  case TST_class: {
9080    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9081
9082    // Do nothing if the tag is not anonymous or already has an
9083    // associated typedef (from an earlier typedef in this decl group).
9084    if (tagFromDeclSpec->getIdentifier()) break;
9085    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9086
9087    // A well-formed anonymous tag must always be a TUK_Definition.
9088    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9089
9090    // The type must match the tag exactly;  no qualifiers allowed.
9091    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9092      break;
9093
9094    // Otherwise, set this is the anon-decl typedef for the tag.
9095    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9096    break;
9097  }
9098
9099  default:
9100    break;
9101  }
9102
9103  return NewTD;
9104}
9105
9106
9107/// \brief Check that this is a valid underlying type for an enum declaration.
9108bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9109  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9110  QualType T = TI->getType();
9111
9112  if (T->isDependentType())
9113    return false;
9114
9115  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9116    if (BT->isInteger())
9117      return false;
9118
9119  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9120  return true;
9121}
9122
9123/// Check whether this is a valid redeclaration of a previous enumeration.
9124/// \return true if the redeclaration was invalid.
9125bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9126                                  QualType EnumUnderlyingTy,
9127                                  const EnumDecl *Prev) {
9128  bool IsFixed = !EnumUnderlyingTy.isNull();
9129
9130  if (IsScoped != Prev->isScoped()) {
9131    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9132      << Prev->isScoped();
9133    Diag(Prev->getLocation(), diag::note_previous_use);
9134    return true;
9135  }
9136
9137  if (IsFixed && Prev->isFixed()) {
9138    if (!EnumUnderlyingTy->isDependentType() &&
9139        !Prev->getIntegerType()->isDependentType() &&
9140        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9141                                        Prev->getIntegerType())) {
9142      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9143        << EnumUnderlyingTy << Prev->getIntegerType();
9144      Diag(Prev->getLocation(), diag::note_previous_use);
9145      return true;
9146    }
9147  } else if (IsFixed != Prev->isFixed()) {
9148    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9149      << Prev->isFixed();
9150    Diag(Prev->getLocation(), diag::note_previous_use);
9151    return true;
9152  }
9153
9154  return false;
9155}
9156
9157/// \brief Get diagnostic %select index for tag kind for
9158/// redeclaration diagnostic message.
9159/// WARNING: Indexes apply to particular diagnostics only!
9160///
9161/// \returns diagnostic %select index.
9162static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9163  switch (Tag) {
9164  case TTK_Struct: return 0;
9165  case TTK_Interface: return 1;
9166  case TTK_Class:  return 2;
9167  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9168  }
9169}
9170
9171/// \brief Determine if tag kind is a class-key compatible with
9172/// class for redeclaration (class, struct, or __interface).
9173///
9174/// \returns true iff the tag kind is compatible.
9175static bool isClassCompatTagKind(TagTypeKind Tag)
9176{
9177  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9178}
9179
9180/// \brief Determine whether a tag with a given kind is acceptable
9181/// as a redeclaration of the given tag declaration.
9182///
9183/// \returns true if the new tag kind is acceptable, false otherwise.
9184bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9185                                        TagTypeKind NewTag, bool isDefinition,
9186                                        SourceLocation NewTagLoc,
9187                                        const IdentifierInfo &Name) {
9188  // C++ [dcl.type.elab]p3:
9189  //   The class-key or enum keyword present in the
9190  //   elaborated-type-specifier shall agree in kind with the
9191  //   declaration to which the name in the elaborated-type-specifier
9192  //   refers. This rule also applies to the form of
9193  //   elaborated-type-specifier that declares a class-name or
9194  //   friend class since it can be construed as referring to the
9195  //   definition of the class. Thus, in any
9196  //   elaborated-type-specifier, the enum keyword shall be used to
9197  //   refer to an enumeration (7.2), the union class-key shall be
9198  //   used to refer to a union (clause 9), and either the class or
9199  //   struct class-key shall be used to refer to a class (clause 9)
9200  //   declared using the class or struct class-key.
9201  TagTypeKind OldTag = Previous->getTagKind();
9202  if (!isDefinition || !isClassCompatTagKind(NewTag))
9203    if (OldTag == NewTag)
9204      return true;
9205
9206  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9207    // Warn about the struct/class tag mismatch.
9208    bool isTemplate = false;
9209    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9210      isTemplate = Record->getDescribedClassTemplate();
9211
9212    if (!ActiveTemplateInstantiations.empty()) {
9213      // In a template instantiation, do not offer fix-its for tag mismatches
9214      // since they usually mess up the template instead of fixing the problem.
9215      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9216        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9217        << getRedeclDiagFromTagKind(OldTag);
9218      return true;
9219    }
9220
9221    if (isDefinition) {
9222      // On definitions, check previous tags and issue a fix-it for each
9223      // one that doesn't match the current tag.
9224      if (Previous->getDefinition()) {
9225        // Don't suggest fix-its for redefinitions.
9226        return true;
9227      }
9228
9229      bool previousMismatch = false;
9230      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9231           E(Previous->redecls_end()); I != E; ++I) {
9232        if (I->getTagKind() != NewTag) {
9233          if (!previousMismatch) {
9234            previousMismatch = true;
9235            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9236              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9237              << getRedeclDiagFromTagKind(I->getTagKind());
9238          }
9239          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9240            << getRedeclDiagFromTagKind(NewTag)
9241            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9242                 TypeWithKeyword::getTagTypeKindName(NewTag));
9243        }
9244      }
9245      return true;
9246    }
9247
9248    // Check for a previous definition.  If current tag and definition
9249    // are same type, do nothing.  If no definition, but disagree with
9250    // with previous tag type, give a warning, but no fix-it.
9251    const TagDecl *Redecl = Previous->getDefinition() ?
9252                            Previous->getDefinition() : Previous;
9253    if (Redecl->getTagKind() == NewTag) {
9254      return true;
9255    }
9256
9257    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9258      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9259      << getRedeclDiagFromTagKind(OldTag);
9260    Diag(Redecl->getLocation(), diag::note_previous_use);
9261
9262    // If there is a previous defintion, suggest a fix-it.
9263    if (Previous->getDefinition()) {
9264        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9265          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9266          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9267               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9268    }
9269
9270    return true;
9271  }
9272  return false;
9273}
9274
9275/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9276/// former case, Name will be non-null.  In the later case, Name will be null.
9277/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9278/// reference/declaration/definition of a tag.
9279Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9280                     SourceLocation KWLoc, CXXScopeSpec &SS,
9281                     IdentifierInfo *Name, SourceLocation NameLoc,
9282                     AttributeList *Attr, AccessSpecifier AS,
9283                     SourceLocation ModulePrivateLoc,
9284                     MultiTemplateParamsArg TemplateParameterLists,
9285                     bool &OwnedDecl, bool &IsDependent,
9286                     SourceLocation ScopedEnumKWLoc,
9287                     bool ScopedEnumUsesClassTag,
9288                     TypeResult UnderlyingType) {
9289  // If this is not a definition, it must have a name.
9290  IdentifierInfo *OrigName = Name;
9291  assert((Name != 0 || TUK == TUK_Definition) &&
9292         "Nameless record must be a definition!");
9293  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9294
9295  OwnedDecl = false;
9296  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9297  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9298
9299  // FIXME: Check explicit specializations more carefully.
9300  bool isExplicitSpecialization = false;
9301  bool Invalid = false;
9302
9303  // We only need to do this matching if we have template parameters
9304  // or a scope specifier, which also conveniently avoids this work
9305  // for non-C++ cases.
9306  if (TemplateParameterLists.size() > 0 ||
9307      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9308    if (TemplateParameterList *TemplateParams
9309          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9310                                                TemplateParameterLists.data(),
9311                                                TemplateParameterLists.size(),
9312                                                    TUK == TUK_Friend,
9313                                                    isExplicitSpecialization,
9314                                                    Invalid)) {
9315      if (TemplateParams->size() > 0) {
9316        // This is a declaration or definition of a class template (which may
9317        // be a member of another template).
9318
9319        if (Invalid)
9320          return 0;
9321
9322        OwnedDecl = false;
9323        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9324                                               SS, Name, NameLoc, Attr,
9325                                               TemplateParams, AS,
9326                                               ModulePrivateLoc,
9327                                               TemplateParameterLists.size()-1,
9328                                               TemplateParameterLists.data());
9329        return Result.get();
9330      } else {
9331        // The "template<>" header is extraneous.
9332        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9333          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9334        isExplicitSpecialization = true;
9335      }
9336    }
9337  }
9338
9339  // Figure out the underlying type if this a enum declaration. We need to do
9340  // this early, because it's needed to detect if this is an incompatible
9341  // redeclaration.
9342  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9343
9344  if (Kind == TTK_Enum) {
9345    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9346      // No underlying type explicitly specified, or we failed to parse the
9347      // type, default to int.
9348      EnumUnderlying = Context.IntTy.getTypePtr();
9349    else if (UnderlyingType.get()) {
9350      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9351      // integral type; any cv-qualification is ignored.
9352      TypeSourceInfo *TI = 0;
9353      GetTypeFromParser(UnderlyingType.get(), &TI);
9354      EnumUnderlying = TI;
9355
9356      if (CheckEnumUnderlyingType(TI))
9357        // Recover by falling back to int.
9358        EnumUnderlying = Context.IntTy.getTypePtr();
9359
9360      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9361                                          UPPC_FixedUnderlyingType))
9362        EnumUnderlying = Context.IntTy.getTypePtr();
9363
9364    } else if (getLangOpts().MicrosoftMode)
9365      // Microsoft enums are always of int type.
9366      EnumUnderlying = Context.IntTy.getTypePtr();
9367  }
9368
9369  DeclContext *SearchDC = CurContext;
9370  DeclContext *DC = CurContext;
9371  bool isStdBadAlloc = false;
9372
9373  RedeclarationKind Redecl = ForRedeclaration;
9374  if (TUK == TUK_Friend || TUK == TUK_Reference)
9375    Redecl = NotForRedeclaration;
9376
9377  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9378
9379  if (Name && SS.isNotEmpty()) {
9380    // We have a nested-name tag ('struct foo::bar').
9381
9382    // Check for invalid 'foo::'.
9383    if (SS.isInvalid()) {
9384      Name = 0;
9385      goto CreateNewDecl;
9386    }
9387
9388    // If this is a friend or a reference to a class in a dependent
9389    // context, don't try to make a decl for it.
9390    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9391      DC = computeDeclContext(SS, false);
9392      if (!DC) {
9393        IsDependent = true;
9394        return 0;
9395      }
9396    } else {
9397      DC = computeDeclContext(SS, true);
9398      if (!DC) {
9399        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9400          << SS.getRange();
9401        return 0;
9402      }
9403    }
9404
9405    if (RequireCompleteDeclContext(SS, DC))
9406      return 0;
9407
9408    SearchDC = DC;
9409    // Look-up name inside 'foo::'.
9410    LookupQualifiedName(Previous, DC);
9411
9412    if (Previous.isAmbiguous())
9413      return 0;
9414
9415    if (Previous.empty()) {
9416      // Name lookup did not find anything. However, if the
9417      // nested-name-specifier refers to the current instantiation,
9418      // and that current instantiation has any dependent base
9419      // classes, we might find something at instantiation time: treat
9420      // this as a dependent elaborated-type-specifier.
9421      // But this only makes any sense for reference-like lookups.
9422      if (Previous.wasNotFoundInCurrentInstantiation() &&
9423          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9424        IsDependent = true;
9425        return 0;
9426      }
9427
9428      // A tag 'foo::bar' must already exist.
9429      Diag(NameLoc, diag::err_not_tag_in_scope)
9430        << Kind << Name << DC << SS.getRange();
9431      Name = 0;
9432      Invalid = true;
9433      goto CreateNewDecl;
9434    }
9435  } else if (Name) {
9436    // If this is a named struct, check to see if there was a previous forward
9437    // declaration or definition.
9438    // FIXME: We're looking into outer scopes here, even when we
9439    // shouldn't be. Doing so can result in ambiguities that we
9440    // shouldn't be diagnosing.
9441    LookupName(Previous, S);
9442
9443    if (Previous.isAmbiguous() &&
9444        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9445      LookupResult::Filter F = Previous.makeFilter();
9446      while (F.hasNext()) {
9447        NamedDecl *ND = F.next();
9448        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9449          F.erase();
9450      }
9451      F.done();
9452    }
9453
9454    // Note:  there used to be some attempt at recovery here.
9455    if (Previous.isAmbiguous())
9456      return 0;
9457
9458    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9459      // FIXME: This makes sure that we ignore the contexts associated
9460      // with C structs, unions, and enums when looking for a matching
9461      // tag declaration or definition. See the similar lookup tweak
9462      // in Sema::LookupName; is there a better way to deal with this?
9463      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9464        SearchDC = SearchDC->getParent();
9465    }
9466  } else if (S->isFunctionPrototypeScope()) {
9467    // If this is an enum declaration in function prototype scope, set its
9468    // initial context to the translation unit.
9469    // FIXME: [citation needed]
9470    SearchDC = Context.getTranslationUnitDecl();
9471  }
9472
9473  if (Previous.isSingleResult() &&
9474      Previous.getFoundDecl()->isTemplateParameter()) {
9475    // Maybe we will complain about the shadowed template parameter.
9476    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9477    // Just pretend that we didn't see the previous declaration.
9478    Previous.clear();
9479  }
9480
9481  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9482      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9483    // This is a declaration of or a reference to "std::bad_alloc".
9484    isStdBadAlloc = true;
9485
9486    if (Previous.empty() && StdBadAlloc) {
9487      // std::bad_alloc has been implicitly declared (but made invisible to
9488      // name lookup). Fill in this implicit declaration as the previous
9489      // declaration, so that the declarations get chained appropriately.
9490      Previous.addDecl(getStdBadAlloc());
9491    }
9492  }
9493
9494  // If we didn't find a previous declaration, and this is a reference
9495  // (or friend reference), move to the correct scope.  In C++, we
9496  // also need to do a redeclaration lookup there, just in case
9497  // there's a shadow friend decl.
9498  if (Name && Previous.empty() &&
9499      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9500    if (Invalid) goto CreateNewDecl;
9501    assert(SS.isEmpty());
9502
9503    if (TUK == TUK_Reference) {
9504      // C++ [basic.scope.pdecl]p5:
9505      //   -- for an elaborated-type-specifier of the form
9506      //
9507      //          class-key identifier
9508      //
9509      //      if the elaborated-type-specifier is used in the
9510      //      decl-specifier-seq or parameter-declaration-clause of a
9511      //      function defined in namespace scope, the identifier is
9512      //      declared as a class-name in the namespace that contains
9513      //      the declaration; otherwise, except as a friend
9514      //      declaration, the identifier is declared in the smallest
9515      //      non-class, non-function-prototype scope that contains the
9516      //      declaration.
9517      //
9518      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9519      // C structs and unions.
9520      //
9521      // It is an error in C++ to declare (rather than define) an enum
9522      // type, including via an elaborated type specifier.  We'll
9523      // diagnose that later; for now, declare the enum in the same
9524      // scope as we would have picked for any other tag type.
9525      //
9526      // GNU C also supports this behavior as part of its incomplete
9527      // enum types extension, while GNU C++ does not.
9528      //
9529      // Find the context where we'll be declaring the tag.
9530      // FIXME: We would like to maintain the current DeclContext as the
9531      // lexical context,
9532      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9533        SearchDC = SearchDC->getParent();
9534
9535      // Find the scope where we'll be declaring the tag.
9536      while (S->isClassScope() ||
9537             (getLangOpts().CPlusPlus &&
9538              S->isFunctionPrototypeScope()) ||
9539             ((S->getFlags() & Scope::DeclScope) == 0) ||
9540             (S->getEntity() &&
9541              ((DeclContext *)S->getEntity())->isTransparentContext()))
9542        S = S->getParent();
9543    } else {
9544      assert(TUK == TUK_Friend);
9545      // C++ [namespace.memdef]p3:
9546      //   If a friend declaration in a non-local class first declares a
9547      //   class or function, the friend class or function is a member of
9548      //   the innermost enclosing namespace.
9549      SearchDC = SearchDC->getEnclosingNamespaceContext();
9550    }
9551
9552    // In C++, we need to do a redeclaration lookup to properly
9553    // diagnose some problems.
9554    if (getLangOpts().CPlusPlus) {
9555      Previous.setRedeclarationKind(ForRedeclaration);
9556      LookupQualifiedName(Previous, SearchDC);
9557    }
9558  }
9559
9560  if (!Previous.empty()) {
9561    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9562
9563    // It's okay to have a tag decl in the same scope as a typedef
9564    // which hides a tag decl in the same scope.  Finding this
9565    // insanity with a redeclaration lookup can only actually happen
9566    // in C++.
9567    //
9568    // This is also okay for elaborated-type-specifiers, which is
9569    // technically forbidden by the current standard but which is
9570    // okay according to the likely resolution of an open issue;
9571    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9572    if (getLangOpts().CPlusPlus) {
9573      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9574        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9575          TagDecl *Tag = TT->getDecl();
9576          if (Tag->getDeclName() == Name &&
9577              Tag->getDeclContext()->getRedeclContext()
9578                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9579            PrevDecl = Tag;
9580            Previous.clear();
9581            Previous.addDecl(Tag);
9582            Previous.resolveKind();
9583          }
9584        }
9585      }
9586    }
9587
9588    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9589      // If this is a use of a previous tag, or if the tag is already declared
9590      // in the same scope (so that the definition/declaration completes or
9591      // rementions the tag), reuse the decl.
9592      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9593          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9594        // Make sure that this wasn't declared as an enum and now used as a
9595        // struct or something similar.
9596        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9597                                          TUK == TUK_Definition, KWLoc,
9598                                          *Name)) {
9599          bool SafeToContinue
9600            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9601               Kind != TTK_Enum);
9602          if (SafeToContinue)
9603            Diag(KWLoc, diag::err_use_with_wrong_tag)
9604              << Name
9605              << FixItHint::CreateReplacement(SourceRange(KWLoc),
9606                                              PrevTagDecl->getKindName());
9607          else
9608            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
9609          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
9610
9611          if (SafeToContinue)
9612            Kind = PrevTagDecl->getTagKind();
9613          else {
9614            // Recover by making this an anonymous redefinition.
9615            Name = 0;
9616            Previous.clear();
9617            Invalid = true;
9618          }
9619        }
9620
9621        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
9622          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
9623
9624          // If this is an elaborated-type-specifier for a scoped enumeration,
9625          // the 'class' keyword is not necessary and not permitted.
9626          if (TUK == TUK_Reference || TUK == TUK_Friend) {
9627            if (ScopedEnum)
9628              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
9629                << PrevEnum->isScoped()
9630                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
9631            return PrevTagDecl;
9632          }
9633
9634          QualType EnumUnderlyingTy;
9635          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9636            EnumUnderlyingTy = TI->getType();
9637          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
9638            EnumUnderlyingTy = QualType(T, 0);
9639
9640          // All conflicts with previous declarations are recovered by
9641          // returning the previous declaration, unless this is a definition,
9642          // in which case we want the caller to bail out.
9643          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
9644                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
9645            return TUK == TUK_Declaration ? PrevTagDecl : 0;
9646        }
9647
9648        if (!Invalid) {
9649          // If this is a use, just return the declaration we found.
9650
9651          // FIXME: In the future, return a variant or some other clue
9652          // for the consumer of this Decl to know it doesn't own it.
9653          // For our current ASTs this shouldn't be a problem, but will
9654          // need to be changed with DeclGroups.
9655          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
9656               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
9657            return PrevTagDecl;
9658
9659          // Diagnose attempts to redefine a tag.
9660          if (TUK == TUK_Definition) {
9661            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
9662              // If we're defining a specialization and the previous definition
9663              // is from an implicit instantiation, don't emit an error
9664              // here; we'll catch this in the general case below.
9665              bool IsExplicitSpecializationAfterInstantiation = false;
9666              if (isExplicitSpecialization) {
9667                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
9668                  IsExplicitSpecializationAfterInstantiation =
9669                    RD->getTemplateSpecializationKind() !=
9670                    TSK_ExplicitSpecialization;
9671                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
9672                  IsExplicitSpecializationAfterInstantiation =
9673                    ED->getTemplateSpecializationKind() !=
9674                    TSK_ExplicitSpecialization;
9675              }
9676
9677              if (!IsExplicitSpecializationAfterInstantiation) {
9678                // A redeclaration in function prototype scope in C isn't
9679                // visible elsewhere, so merely issue a warning.
9680                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
9681                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
9682                else
9683                  Diag(NameLoc, diag::err_redefinition) << Name;
9684                Diag(Def->getLocation(), diag::note_previous_definition);
9685                // If this is a redefinition, recover by making this
9686                // struct be anonymous, which will make any later
9687                // references get the previous definition.
9688                Name = 0;
9689                Previous.clear();
9690                Invalid = true;
9691              }
9692            } else {
9693              // If the type is currently being defined, complain
9694              // about a nested redefinition.
9695              const TagType *Tag
9696                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
9697              if (Tag->isBeingDefined()) {
9698                Diag(NameLoc, diag::err_nested_redefinition) << Name;
9699                Diag(PrevTagDecl->getLocation(),
9700                     diag::note_previous_definition);
9701                Name = 0;
9702                Previous.clear();
9703                Invalid = true;
9704              }
9705            }
9706
9707            // Okay, this is definition of a previously declared or referenced
9708            // tag PrevDecl. We're going to create a new Decl for it.
9709          }
9710        }
9711        // If we get here we have (another) forward declaration or we
9712        // have a definition.  Just create a new decl.
9713
9714      } else {
9715        // If we get here, this is a definition of a new tag type in a nested
9716        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
9717        // new decl/type.  We set PrevDecl to NULL so that the entities
9718        // have distinct types.
9719        Previous.clear();
9720      }
9721      // If we get here, we're going to create a new Decl. If PrevDecl
9722      // is non-NULL, it's a definition of the tag declared by
9723      // PrevDecl. If it's NULL, we have a new definition.
9724
9725
9726    // Otherwise, PrevDecl is not a tag, but was found with tag
9727    // lookup.  This is only actually possible in C++, where a few
9728    // things like templates still live in the tag namespace.
9729    } else {
9730      // Use a better diagnostic if an elaborated-type-specifier
9731      // found the wrong kind of type on the first
9732      // (non-redeclaration) lookup.
9733      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
9734          !Previous.isForRedeclaration()) {
9735        unsigned Kind = 0;
9736        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9737        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9738        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9739        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
9740        Diag(PrevDecl->getLocation(), diag::note_declared_at);
9741        Invalid = true;
9742
9743      // Otherwise, only diagnose if the declaration is in scope.
9744      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
9745                                isExplicitSpecialization)) {
9746        // do nothing
9747
9748      // Diagnose implicit declarations introduced by elaborated types.
9749      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
9750        unsigned Kind = 0;
9751        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
9752        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
9753        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
9754        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
9755        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9756        Invalid = true;
9757
9758      // Otherwise it's a declaration.  Call out a particularly common
9759      // case here.
9760      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9761        unsigned Kind = 0;
9762        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
9763        Diag(NameLoc, diag::err_tag_definition_of_typedef)
9764          << Name << Kind << TND->getUnderlyingType();
9765        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
9766        Invalid = true;
9767
9768      // Otherwise, diagnose.
9769      } else {
9770        // The tag name clashes with something else in the target scope,
9771        // issue an error and recover by making this tag be anonymous.
9772        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
9773        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9774        Name = 0;
9775        Invalid = true;
9776      }
9777
9778      // The existing declaration isn't relevant to us; we're in a
9779      // new scope, so clear out the previous declaration.
9780      Previous.clear();
9781    }
9782  }
9783
9784CreateNewDecl:
9785
9786  TagDecl *PrevDecl = 0;
9787  if (Previous.isSingleResult())
9788    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
9789
9790  // If there is an identifier, use the location of the identifier as the
9791  // location of the decl, otherwise use the location of the struct/union
9792  // keyword.
9793  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
9794
9795  // Otherwise, create a new declaration. If there is a previous
9796  // declaration of the same entity, the two will be linked via
9797  // PrevDecl.
9798  TagDecl *New;
9799
9800  bool IsForwardReference = false;
9801  if (Kind == TTK_Enum) {
9802    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9803    // enum X { A, B, C } D;    D should chain to X.
9804    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
9805                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
9806                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
9807    // If this is an undefined enum, warn.
9808    if (TUK != TUK_Definition && !Invalid) {
9809      TagDecl *Def;
9810      if (getLangOpts().CPlusPlus11 && cast<EnumDecl>(New)->isFixed()) {
9811        // C++0x: 7.2p2: opaque-enum-declaration.
9812        // Conflicts are diagnosed above. Do nothing.
9813      }
9814      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
9815        Diag(Loc, diag::ext_forward_ref_enum_def)
9816          << New;
9817        Diag(Def->getLocation(), diag::note_previous_definition);
9818      } else {
9819        unsigned DiagID = diag::ext_forward_ref_enum;
9820        if (getLangOpts().MicrosoftMode)
9821          DiagID = diag::ext_ms_forward_ref_enum;
9822        else if (getLangOpts().CPlusPlus)
9823          DiagID = diag::err_forward_ref_enum;
9824        Diag(Loc, DiagID);
9825
9826        // If this is a forward-declared reference to an enumeration, make a
9827        // note of it; we won't actually be introducing the declaration into
9828        // the declaration context.
9829        if (TUK == TUK_Reference)
9830          IsForwardReference = true;
9831      }
9832    }
9833
9834    if (EnumUnderlying) {
9835      EnumDecl *ED = cast<EnumDecl>(New);
9836      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
9837        ED->setIntegerTypeSourceInfo(TI);
9838      else
9839        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
9840      ED->setPromotionType(ED->getIntegerType());
9841    }
9842
9843  } else {
9844    // struct/union/class
9845
9846    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
9847    // struct X { int A; } D;    D should chain to X.
9848    if (getLangOpts().CPlusPlus) {
9849      // FIXME: Look for a way to use RecordDecl for simple structs.
9850      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9851                                  cast_or_null<CXXRecordDecl>(PrevDecl));
9852
9853      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
9854        StdBadAlloc = cast<CXXRecordDecl>(New);
9855    } else
9856      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
9857                               cast_or_null<RecordDecl>(PrevDecl));
9858  }
9859
9860  // Maybe add qualifier info.
9861  if (SS.isNotEmpty()) {
9862    if (SS.isSet()) {
9863      // If this is either a declaration or a definition, check the
9864      // nested-name-specifier against the current context. We don't do this
9865      // for explicit specializations, because they have similar checking
9866      // (with more specific diagnostics) in the call to
9867      // CheckMemberSpecialization, below.
9868      if (!isExplicitSpecialization &&
9869          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
9870          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
9871        Invalid = true;
9872
9873      New->setQualifierInfo(SS.getWithLocInContext(Context));
9874      if (TemplateParameterLists.size() > 0) {
9875        New->setTemplateParameterListsInfo(Context,
9876                                           TemplateParameterLists.size(),
9877                                           TemplateParameterLists.data());
9878      }
9879    }
9880    else
9881      Invalid = true;
9882  }
9883
9884  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
9885    // Add alignment attributes if necessary; these attributes are checked when
9886    // the ASTContext lays out the structure.
9887    //
9888    // It is important for implementing the correct semantics that this
9889    // happen here (in act on tag decl). The #pragma pack stack is
9890    // maintained as a result of parser callbacks which can occur at
9891    // many points during the parsing of a struct declaration (because
9892    // the #pragma tokens are effectively skipped over during the
9893    // parsing of the struct).
9894    if (TUK == TUK_Definition) {
9895      AddAlignmentAttributesForRecord(RD);
9896      AddMsStructLayoutForRecord(RD);
9897    }
9898  }
9899
9900  if (ModulePrivateLoc.isValid()) {
9901    if (isExplicitSpecialization)
9902      Diag(New->getLocation(), diag::err_module_private_specialization)
9903        << 2
9904        << FixItHint::CreateRemoval(ModulePrivateLoc);
9905    // __module_private__ does not apply to local classes. However, we only
9906    // diagnose this as an error when the declaration specifiers are
9907    // freestanding. Here, we just ignore the __module_private__.
9908    else if (!SearchDC->isFunctionOrMethod())
9909      New->setModulePrivate();
9910  }
9911
9912  // If this is a specialization of a member class (of a class template),
9913  // check the specialization.
9914  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
9915    Invalid = true;
9916
9917  if (Invalid)
9918    New->setInvalidDecl();
9919
9920  if (Attr)
9921    ProcessDeclAttributeList(S, New, Attr);
9922
9923  // If we're declaring or defining a tag in function prototype scope
9924  // in C, note that this type can only be used within the function.
9925  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
9926    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
9927
9928  // Set the lexical context. If the tag has a C++ scope specifier, the
9929  // lexical context will be different from the semantic context.
9930  New->setLexicalDeclContext(CurContext);
9931
9932  // Mark this as a friend decl if applicable.
9933  // In Microsoft mode, a friend declaration also acts as a forward
9934  // declaration so we always pass true to setObjectOfFriendDecl to make
9935  // the tag name visible.
9936  if (TUK == TUK_Friend)
9937    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
9938                               getLangOpts().MicrosoftExt);
9939
9940  // Set the access specifier.
9941  if (!Invalid && SearchDC->isRecord())
9942    SetMemberAccessSpecifier(New, PrevDecl, AS);
9943
9944  if (TUK == TUK_Definition)
9945    New->startDefinition();
9946
9947  // If this has an identifier, add it to the scope stack.
9948  if (TUK == TUK_Friend) {
9949    // We might be replacing an existing declaration in the lookup tables;
9950    // if so, borrow its access specifier.
9951    if (PrevDecl)
9952      New->setAccess(PrevDecl->getAccess());
9953
9954    DeclContext *DC = New->getDeclContext()->getRedeclContext();
9955    DC->makeDeclVisibleInContext(New);
9956    if (Name) // can be null along some error paths
9957      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
9958        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
9959  } else if (Name) {
9960    S = getNonFieldDeclScope(S);
9961    PushOnScopeChains(New, S, !IsForwardReference);
9962    if (IsForwardReference)
9963      SearchDC->makeDeclVisibleInContext(New);
9964
9965  } else {
9966    CurContext->addDecl(New);
9967  }
9968
9969  // If this is the C FILE type, notify the AST context.
9970  if (IdentifierInfo *II = New->getIdentifier())
9971    if (!New->isInvalidDecl() &&
9972        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
9973        II->isStr("FILE"))
9974      Context.setFILEDecl(New);
9975
9976  // If we were in function prototype scope (and not in C++ mode), add this
9977  // tag to the list of decls to inject into the function definition scope.
9978  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
9979      InFunctionDeclarator && Name)
9980    DeclsInPrototypeScope.push_back(New);
9981
9982  if (PrevDecl)
9983    mergeDeclAttributes(New, PrevDecl);
9984
9985  // If there's a #pragma GCC visibility in scope, set the visibility of this
9986  // record.
9987  AddPushedVisibilityAttribute(New);
9988
9989  OwnedDecl = true;
9990  // In C++, don't return an invalid declaration. We can't recover well from
9991  // the cases where we make the type anonymous.
9992  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
9993}
9994
9995void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
9996  AdjustDeclIfTemplate(TagD);
9997  TagDecl *Tag = cast<TagDecl>(TagD);
9998
9999  // Enter the tag context.
10000  PushDeclContext(S, Tag);
10001
10002  ActOnDocumentableDecl(TagD);
10003
10004  // If there's a #pragma GCC visibility in scope, set the visibility of this
10005  // record.
10006  AddPushedVisibilityAttribute(Tag);
10007}
10008
10009Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10010  assert(isa<ObjCContainerDecl>(IDecl) &&
10011         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10012  DeclContext *OCD = cast<DeclContext>(IDecl);
10013  assert(getContainingDC(OCD) == CurContext &&
10014      "The next DeclContext should be lexically contained in the current one.");
10015  CurContext = OCD;
10016  return IDecl;
10017}
10018
10019void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10020                                           SourceLocation FinalLoc,
10021                                           SourceLocation LBraceLoc) {
10022  AdjustDeclIfTemplate(TagD);
10023  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10024
10025  FieldCollector->StartClass();
10026
10027  if (!Record->getIdentifier())
10028    return;
10029
10030  if (FinalLoc.isValid())
10031    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10032
10033  // C++ [class]p2:
10034  //   [...] The class-name is also inserted into the scope of the
10035  //   class itself; this is known as the injected-class-name. For
10036  //   purposes of access checking, the injected-class-name is treated
10037  //   as if it were a public member name.
10038  CXXRecordDecl *InjectedClassName
10039    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10040                            Record->getLocStart(), Record->getLocation(),
10041                            Record->getIdentifier(),
10042                            /*PrevDecl=*/0,
10043                            /*DelayTypeCreation=*/true);
10044  Context.getTypeDeclType(InjectedClassName, Record);
10045  InjectedClassName->setImplicit();
10046  InjectedClassName->setAccess(AS_public);
10047  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10048      InjectedClassName->setDescribedClassTemplate(Template);
10049  PushOnScopeChains(InjectedClassName, S);
10050  assert(InjectedClassName->isInjectedClassName() &&
10051         "Broken injected-class-name");
10052}
10053
10054void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10055                                    SourceLocation RBraceLoc) {
10056  AdjustDeclIfTemplate(TagD);
10057  TagDecl *Tag = cast<TagDecl>(TagD);
10058  Tag->setRBraceLoc(RBraceLoc);
10059
10060  // Make sure we "complete" the definition even it is invalid.
10061  if (Tag->isBeingDefined()) {
10062    assert(Tag->isInvalidDecl() && "We should already have completed it");
10063    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10064      RD->completeDefinition();
10065  }
10066
10067  if (isa<CXXRecordDecl>(Tag))
10068    FieldCollector->FinishClass();
10069
10070  // Exit this scope of this tag's definition.
10071  PopDeclContext();
10072
10073  if (getCurLexicalContext()->isObjCContainer() &&
10074      Tag->getDeclContext()->isFileContext())
10075    Tag->setTopLevelDeclInObjCContainer();
10076
10077  // Notify the consumer that we've defined a tag.
10078  Consumer.HandleTagDeclDefinition(Tag);
10079}
10080
10081void Sema::ActOnObjCContainerFinishDefinition() {
10082  // Exit this scope of this interface definition.
10083  PopDeclContext();
10084}
10085
10086void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10087  assert(DC == CurContext && "Mismatch of container contexts");
10088  OriginalLexicalContext = DC;
10089  ActOnObjCContainerFinishDefinition();
10090}
10091
10092void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10093  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10094  OriginalLexicalContext = 0;
10095}
10096
10097void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10098  AdjustDeclIfTemplate(TagD);
10099  TagDecl *Tag = cast<TagDecl>(TagD);
10100  Tag->setInvalidDecl();
10101
10102  // Make sure we "complete" the definition even it is invalid.
10103  if (Tag->isBeingDefined()) {
10104    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10105      RD->completeDefinition();
10106  }
10107
10108  // We're undoing ActOnTagStartDefinition here, not
10109  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10110  // the FieldCollector.
10111
10112  PopDeclContext();
10113}
10114
10115// Note that FieldName may be null for anonymous bitfields.
10116ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10117                                IdentifierInfo *FieldName,
10118                                QualType FieldTy, Expr *BitWidth,
10119                                bool *ZeroWidth) {
10120  // Default to true; that shouldn't confuse checks for emptiness
10121  if (ZeroWidth)
10122    *ZeroWidth = true;
10123
10124  // C99 6.7.2.1p4 - verify the field type.
10125  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10126  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10127    // Handle incomplete types with specific error.
10128    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10129      return ExprError();
10130    if (FieldName)
10131      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10132        << FieldName << FieldTy << BitWidth->getSourceRange();
10133    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10134      << FieldTy << BitWidth->getSourceRange();
10135  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10136                                             UPPC_BitFieldWidth))
10137    return ExprError();
10138
10139  // If the bit-width is type- or value-dependent, don't try to check
10140  // it now.
10141  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10142    return Owned(BitWidth);
10143
10144  llvm::APSInt Value;
10145  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10146  if (ICE.isInvalid())
10147    return ICE;
10148  BitWidth = ICE.take();
10149
10150  if (Value != 0 && ZeroWidth)
10151    *ZeroWidth = false;
10152
10153  // Zero-width bitfield is ok for anonymous field.
10154  if (Value == 0 && FieldName)
10155    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10156
10157  if (Value.isSigned() && Value.isNegative()) {
10158    if (FieldName)
10159      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10160               << FieldName << Value.toString(10);
10161    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10162      << Value.toString(10);
10163  }
10164
10165  if (!FieldTy->isDependentType()) {
10166    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10167    if (Value.getZExtValue() > TypeSize) {
10168      if (!getLangOpts().CPlusPlus) {
10169        if (FieldName)
10170          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10171            << FieldName << (unsigned)Value.getZExtValue()
10172            << (unsigned)TypeSize;
10173
10174        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10175          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10176      }
10177
10178      if (FieldName)
10179        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10180          << FieldName << (unsigned)Value.getZExtValue()
10181          << (unsigned)TypeSize;
10182      else
10183        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10184          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10185    }
10186  }
10187
10188  return Owned(BitWidth);
10189}
10190
10191/// ActOnField - Each field of a C struct/union is passed into this in order
10192/// to create a FieldDecl object for it.
10193Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10194                       Declarator &D, Expr *BitfieldWidth) {
10195  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10196                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10197                               /*InitStyle=*/ICIS_NoInit, AS_public);
10198  return Res;
10199}
10200
10201/// HandleField - Analyze a field of a C struct or a C++ data member.
10202///
10203FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10204                             SourceLocation DeclStart,
10205                             Declarator &D, Expr *BitWidth,
10206                             InClassInitStyle InitStyle,
10207                             AccessSpecifier AS) {
10208  IdentifierInfo *II = D.getIdentifier();
10209  SourceLocation Loc = DeclStart;
10210  if (II) Loc = D.getIdentifierLoc();
10211
10212  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10213  QualType T = TInfo->getType();
10214  if (getLangOpts().CPlusPlus) {
10215    CheckExtraCXXDefaultArguments(D);
10216
10217    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10218                                        UPPC_DataMemberType)) {
10219      D.setInvalidType();
10220      T = Context.IntTy;
10221      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10222    }
10223  }
10224
10225  // TR 18037 does not allow fields to be declared with address spaces.
10226  if (T.getQualifiers().hasAddressSpace()) {
10227    Diag(Loc, diag::err_field_with_address_space);
10228    D.setInvalidType();
10229  }
10230
10231  // OpenCL 1.2 spec, s6.9 r:
10232  // The event type cannot be used to declare a structure or union field.
10233  if (LangOpts.OpenCL && T->isEventT()) {
10234    Diag(Loc, diag::err_event_t_struct_field);
10235    D.setInvalidType();
10236  }
10237
10238  DiagnoseFunctionSpecifiers(D);
10239
10240  if (D.getDeclSpec().isThreadSpecified())
10241    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
10242
10243  // Check to see if this name was declared as a member previously
10244  NamedDecl *PrevDecl = 0;
10245  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10246  LookupName(Previous, S);
10247  switch (Previous.getResultKind()) {
10248    case LookupResult::Found:
10249    case LookupResult::FoundUnresolvedValue:
10250      PrevDecl = Previous.getAsSingle<NamedDecl>();
10251      break;
10252
10253    case LookupResult::FoundOverloaded:
10254      PrevDecl = Previous.getRepresentativeDecl();
10255      break;
10256
10257    case LookupResult::NotFound:
10258    case LookupResult::NotFoundInCurrentInstantiation:
10259    case LookupResult::Ambiguous:
10260      break;
10261  }
10262  Previous.suppressDiagnostics();
10263
10264  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10265    // Maybe we will complain about the shadowed template parameter.
10266    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10267    // Just pretend that we didn't see the previous declaration.
10268    PrevDecl = 0;
10269  }
10270
10271  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10272    PrevDecl = 0;
10273
10274  bool Mutable
10275    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10276  SourceLocation TSSL = D.getLocStart();
10277  FieldDecl *NewFD
10278    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10279                     TSSL, AS, PrevDecl, &D);
10280
10281  if (NewFD->isInvalidDecl())
10282    Record->setInvalidDecl();
10283
10284  if (D.getDeclSpec().isModulePrivateSpecified())
10285    NewFD->setModulePrivate();
10286
10287  if (NewFD->isInvalidDecl() && PrevDecl) {
10288    // Don't introduce NewFD into scope; there's already something
10289    // with the same name in the same scope.
10290  } else if (II) {
10291    PushOnScopeChains(NewFD, S);
10292  } else
10293    Record->addDecl(NewFD);
10294
10295  return NewFD;
10296}
10297
10298/// \brief Build a new FieldDecl and check its well-formedness.
10299///
10300/// This routine builds a new FieldDecl given the fields name, type,
10301/// record, etc. \p PrevDecl should refer to any previous declaration
10302/// with the same name and in the same scope as the field to be
10303/// created.
10304///
10305/// \returns a new FieldDecl.
10306///
10307/// \todo The Declarator argument is a hack. It will be removed once
10308FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10309                                TypeSourceInfo *TInfo,
10310                                RecordDecl *Record, SourceLocation Loc,
10311                                bool Mutable, Expr *BitWidth,
10312                                InClassInitStyle InitStyle,
10313                                SourceLocation TSSL,
10314                                AccessSpecifier AS, NamedDecl *PrevDecl,
10315                                Declarator *D) {
10316  IdentifierInfo *II = Name.getAsIdentifierInfo();
10317  bool InvalidDecl = false;
10318  if (D) InvalidDecl = D->isInvalidType();
10319
10320  // If we receive a broken type, recover by assuming 'int' and
10321  // marking this declaration as invalid.
10322  if (T.isNull()) {
10323    InvalidDecl = true;
10324    T = Context.IntTy;
10325  }
10326
10327  QualType EltTy = Context.getBaseElementType(T);
10328  if (!EltTy->isDependentType()) {
10329    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10330      // Fields of incomplete type force their record to be invalid.
10331      Record->setInvalidDecl();
10332      InvalidDecl = true;
10333    } else {
10334      NamedDecl *Def;
10335      EltTy->isIncompleteType(&Def);
10336      if (Def && Def->isInvalidDecl()) {
10337        Record->setInvalidDecl();
10338        InvalidDecl = true;
10339      }
10340    }
10341  }
10342
10343  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10344  if (BitWidth && getLangOpts().OpenCL) {
10345    Diag(Loc, diag::err_opencl_bitfields);
10346    InvalidDecl = true;
10347  }
10348
10349  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10350  // than a variably modified type.
10351  if (!InvalidDecl && T->isVariablyModifiedType()) {
10352    bool SizeIsNegative;
10353    llvm::APSInt Oversized;
10354
10355    TypeSourceInfo *FixedTInfo =
10356      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10357                                                    SizeIsNegative,
10358                                                    Oversized);
10359    if (FixedTInfo) {
10360      Diag(Loc, diag::warn_illegal_constant_array_size);
10361      TInfo = FixedTInfo;
10362      T = FixedTInfo->getType();
10363    } else {
10364      if (SizeIsNegative)
10365        Diag(Loc, diag::err_typecheck_negative_array_size);
10366      else if (Oversized.getBoolValue())
10367        Diag(Loc, diag::err_array_too_large)
10368          << Oversized.toString(10);
10369      else
10370        Diag(Loc, diag::err_typecheck_field_variable_size);
10371      InvalidDecl = true;
10372    }
10373  }
10374
10375  // Fields can not have abstract class types
10376  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10377                                             diag::err_abstract_type_in_decl,
10378                                             AbstractFieldType))
10379    InvalidDecl = true;
10380
10381  bool ZeroWidth = false;
10382  // If this is declared as a bit-field, check the bit-field.
10383  if (!InvalidDecl && BitWidth) {
10384    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10385    if (!BitWidth) {
10386      InvalidDecl = true;
10387      BitWidth = 0;
10388      ZeroWidth = false;
10389    }
10390  }
10391
10392  // Check that 'mutable' is consistent with the type of the declaration.
10393  if (!InvalidDecl && Mutable) {
10394    unsigned DiagID = 0;
10395    if (T->isReferenceType())
10396      DiagID = diag::err_mutable_reference;
10397    else if (T.isConstQualified())
10398      DiagID = diag::err_mutable_const;
10399
10400    if (DiagID) {
10401      SourceLocation ErrLoc = Loc;
10402      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10403        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10404      Diag(ErrLoc, DiagID);
10405      Mutable = false;
10406      InvalidDecl = true;
10407    }
10408  }
10409
10410  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10411                                       BitWidth, Mutable, InitStyle);
10412  if (InvalidDecl)
10413    NewFD->setInvalidDecl();
10414
10415  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10416    Diag(Loc, diag::err_duplicate_member) << II;
10417    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10418    NewFD->setInvalidDecl();
10419  }
10420
10421  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10422    if (Record->isUnion()) {
10423      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10424        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10425        if (RDecl->getDefinition()) {
10426          // C++ [class.union]p1: An object of a class with a non-trivial
10427          // constructor, a non-trivial copy constructor, a non-trivial
10428          // destructor, or a non-trivial copy assignment operator
10429          // cannot be a member of a union, nor can an array of such
10430          // objects.
10431          if (CheckNontrivialField(NewFD))
10432            NewFD->setInvalidDecl();
10433        }
10434      }
10435
10436      // C++ [class.union]p1: If a union contains a member of reference type,
10437      // the program is ill-formed.
10438      if (EltTy->isReferenceType()) {
10439        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
10440          << NewFD->getDeclName() << EltTy;
10441        NewFD->setInvalidDecl();
10442      }
10443    }
10444  }
10445
10446  // FIXME: We need to pass in the attributes given an AST
10447  // representation, not a parser representation.
10448  if (D) {
10449    // FIXME: What to pass instead of TUScope?
10450    ProcessDeclAttributes(TUScope, NewFD, *D);
10451
10452    if (NewFD->hasAttrs())
10453      CheckAlignasUnderalignment(NewFD);
10454  }
10455
10456  // In auto-retain/release, infer strong retension for fields of
10457  // retainable type.
10458  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10459    NewFD->setInvalidDecl();
10460
10461  if (T.isObjCGCWeak())
10462    Diag(Loc, diag::warn_attribute_weak_on_field);
10463
10464  NewFD->setAccess(AS);
10465  return NewFD;
10466}
10467
10468bool Sema::CheckNontrivialField(FieldDecl *FD) {
10469  assert(FD);
10470  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10471
10472  if (FD->isInvalidDecl())
10473    return true;
10474
10475  QualType EltTy = Context.getBaseElementType(FD->getType());
10476  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10477    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10478    if (RDecl->getDefinition()) {
10479      // We check for copy constructors before constructors
10480      // because otherwise we'll never get complaints about
10481      // copy constructors.
10482
10483      CXXSpecialMember member = CXXInvalid;
10484      // We're required to check for any non-trivial constructors. Since the
10485      // implicit default constructor is suppressed if there are any
10486      // user-declared constructors, we just need to check that there is a
10487      // trivial default constructor and a trivial copy constructor. (We don't
10488      // worry about move constructors here, since this is a C++98 check.)
10489      if (RDecl->hasNonTrivialCopyConstructor())
10490        member = CXXCopyConstructor;
10491      else if (!RDecl->hasTrivialDefaultConstructor())
10492        member = CXXDefaultConstructor;
10493      else if (RDecl->hasNonTrivialCopyAssignment())
10494        member = CXXCopyAssignment;
10495      else if (RDecl->hasNonTrivialDestructor())
10496        member = CXXDestructor;
10497
10498      if (member != CXXInvalid) {
10499        if (!getLangOpts().CPlusPlus11 &&
10500            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10501          // Objective-C++ ARC: it is an error to have a non-trivial field of
10502          // a union. However, system headers in Objective-C programs
10503          // occasionally have Objective-C lifetime objects within unions,
10504          // and rather than cause the program to fail, we make those
10505          // members unavailable.
10506          SourceLocation Loc = FD->getLocation();
10507          if (getSourceManager().isInSystemHeader(Loc)) {
10508            if (!FD->hasAttr<UnavailableAttr>())
10509              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10510                                  "this system field has retaining ownership"));
10511            return false;
10512          }
10513        }
10514
10515        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10516               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10517               diag::err_illegal_union_or_anon_struct_member)
10518          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10519        DiagnoseNontrivial(RDecl, member);
10520        return !getLangOpts().CPlusPlus11;
10521      }
10522    }
10523  }
10524
10525  return false;
10526}
10527
10528/// TranslateIvarVisibility - Translate visibility from a token ID to an
10529///  AST enum value.
10530static ObjCIvarDecl::AccessControl
10531TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10532  switch (ivarVisibility) {
10533  default: llvm_unreachable("Unknown visitibility kind");
10534  case tok::objc_private: return ObjCIvarDecl::Private;
10535  case tok::objc_public: return ObjCIvarDecl::Public;
10536  case tok::objc_protected: return ObjCIvarDecl::Protected;
10537  case tok::objc_package: return ObjCIvarDecl::Package;
10538  }
10539}
10540
10541/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10542/// in order to create an IvarDecl object for it.
10543Decl *Sema::ActOnIvar(Scope *S,
10544                                SourceLocation DeclStart,
10545                                Declarator &D, Expr *BitfieldWidth,
10546                                tok::ObjCKeywordKind Visibility) {
10547
10548  IdentifierInfo *II = D.getIdentifier();
10549  Expr *BitWidth = (Expr*)BitfieldWidth;
10550  SourceLocation Loc = DeclStart;
10551  if (II) Loc = D.getIdentifierLoc();
10552
10553  // FIXME: Unnamed fields can be handled in various different ways, for
10554  // example, unnamed unions inject all members into the struct namespace!
10555
10556  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10557  QualType T = TInfo->getType();
10558
10559  if (BitWidth) {
10560    // 6.7.2.1p3, 6.7.2.1p4
10561    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10562    if (!BitWidth)
10563      D.setInvalidType();
10564  } else {
10565    // Not a bitfield.
10566
10567    // validate II.
10568
10569  }
10570  if (T->isReferenceType()) {
10571    Diag(Loc, diag::err_ivar_reference_type);
10572    D.setInvalidType();
10573  }
10574  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10575  // than a variably modified type.
10576  else if (T->isVariablyModifiedType()) {
10577    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10578    D.setInvalidType();
10579  }
10580
10581  // Get the visibility (access control) for this ivar.
10582  ObjCIvarDecl::AccessControl ac =
10583    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10584                                        : ObjCIvarDecl::None;
10585  // Must set ivar's DeclContext to its enclosing interface.
10586  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
10587  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
10588    return 0;
10589  ObjCContainerDecl *EnclosingContext;
10590  if (ObjCImplementationDecl *IMPDecl =
10591      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10592    if (LangOpts.ObjCRuntime.isFragile()) {
10593    // Case of ivar declared in an implementation. Context is that of its class.
10594      EnclosingContext = IMPDecl->getClassInterface();
10595      assert(EnclosingContext && "Implementation has no class interface!");
10596    }
10597    else
10598      EnclosingContext = EnclosingDecl;
10599  } else {
10600    if (ObjCCategoryDecl *CDecl =
10601        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
10602      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
10603        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
10604        return 0;
10605      }
10606    }
10607    EnclosingContext = EnclosingDecl;
10608  }
10609
10610  // Construct the decl.
10611  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
10612                                             DeclStart, Loc, II, T,
10613                                             TInfo, ac, (Expr *)BitfieldWidth);
10614
10615  if (II) {
10616    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
10617                                           ForRedeclaration);
10618    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
10619        && !isa<TagDecl>(PrevDecl)) {
10620      Diag(Loc, diag::err_duplicate_member) << II;
10621      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10622      NewID->setInvalidDecl();
10623    }
10624  }
10625
10626  // Process attributes attached to the ivar.
10627  ProcessDeclAttributes(S, NewID, D);
10628
10629  if (D.isInvalidType())
10630    NewID->setInvalidDecl();
10631
10632  // In ARC, infer 'retaining' for ivars of retainable type.
10633  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
10634    NewID->setInvalidDecl();
10635
10636  if (D.getDeclSpec().isModulePrivateSpecified())
10637    NewID->setModulePrivate();
10638
10639  if (II) {
10640    // FIXME: When interfaces are DeclContexts, we'll need to add
10641    // these to the interface.
10642    S->AddDecl(NewID);
10643    IdResolver.AddDecl(NewID);
10644  }
10645
10646  if (LangOpts.ObjCRuntime.isNonFragile() &&
10647      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
10648    Diag(Loc, diag::warn_ivars_in_interface);
10649
10650  return NewID;
10651}
10652
10653/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
10654/// class and class extensions. For every class @interface and class
10655/// extension @interface, if the last ivar is a bitfield of any type,
10656/// then add an implicit `char :0` ivar to the end of that interface.
10657void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
10658                             SmallVectorImpl<Decl *> &AllIvarDecls) {
10659  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
10660    return;
10661
10662  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
10663  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
10664
10665  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
10666    return;
10667  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
10668  if (!ID) {
10669    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
10670      if (!CD->IsClassExtension())
10671        return;
10672    }
10673    // No need to add this to end of @implementation.
10674    else
10675      return;
10676  }
10677  // All conditions are met. Add a new bitfield to the tail end of ivars.
10678  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
10679  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
10680
10681  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
10682                              DeclLoc, DeclLoc, 0,
10683                              Context.CharTy,
10684                              Context.getTrivialTypeSourceInfo(Context.CharTy,
10685                                                               DeclLoc),
10686                              ObjCIvarDecl::Private, BW,
10687                              true);
10688  AllIvarDecls.push_back(Ivar);
10689}
10690
10691void Sema::ActOnFields(Scope* S,
10692                       SourceLocation RecLoc, Decl *EnclosingDecl,
10693                       llvm::ArrayRef<Decl *> Fields,
10694                       SourceLocation LBrac, SourceLocation RBrac,
10695                       AttributeList *Attr) {
10696  assert(EnclosingDecl && "missing record or interface decl");
10697
10698  // If this is an Objective-C @implementation or category and we have
10699  // new fields here we should reset the layout of the interface since
10700  // it will now change.
10701  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
10702    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
10703    switch (DC->getKind()) {
10704    default: break;
10705    case Decl::ObjCCategory:
10706      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
10707      break;
10708    case Decl::ObjCImplementation:
10709      Context.
10710        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
10711      break;
10712    }
10713  }
10714
10715  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
10716
10717  // Start counting up the number of named members; make sure to include
10718  // members of anonymous structs and unions in the total.
10719  unsigned NumNamedMembers = 0;
10720  if (Record) {
10721    for (RecordDecl::decl_iterator i = Record->decls_begin(),
10722                                   e = Record->decls_end(); i != e; i++) {
10723      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
10724        if (IFD->getDeclName())
10725          ++NumNamedMembers;
10726    }
10727  }
10728
10729  // Verify that all the fields are okay.
10730  SmallVector<FieldDecl*, 32> RecFields;
10731
10732  bool ARCErrReported = false;
10733  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
10734       i != end; ++i) {
10735    FieldDecl *FD = cast<FieldDecl>(*i);
10736
10737    // Get the type for the field.
10738    const Type *FDTy = FD->getType().getTypePtr();
10739
10740    if (!FD->isAnonymousStructOrUnion()) {
10741      // Remember all fields written by the user.
10742      RecFields.push_back(FD);
10743    }
10744
10745    // If the field is already invalid for some reason, don't emit more
10746    // diagnostics about it.
10747    if (FD->isInvalidDecl()) {
10748      EnclosingDecl->setInvalidDecl();
10749      continue;
10750    }
10751
10752    // C99 6.7.2.1p2:
10753    //   A structure or union shall not contain a member with
10754    //   incomplete or function type (hence, a structure shall not
10755    //   contain an instance of itself, but may contain a pointer to
10756    //   an instance of itself), except that the last member of a
10757    //   structure with more than one named member may have incomplete
10758    //   array type; such a structure (and any union containing,
10759    //   possibly recursively, a member that is such a structure)
10760    //   shall not be a member of a structure or an element of an
10761    //   array.
10762    if (FDTy->isFunctionType()) {
10763      // Field declared as a function.
10764      Diag(FD->getLocation(), diag::err_field_declared_as_function)
10765        << FD->getDeclName();
10766      FD->setInvalidDecl();
10767      EnclosingDecl->setInvalidDecl();
10768      continue;
10769    } else if (FDTy->isIncompleteArrayType() && Record &&
10770               ((i + 1 == Fields.end() && !Record->isUnion()) ||
10771                ((getLangOpts().MicrosoftExt ||
10772                  getLangOpts().CPlusPlus) &&
10773                 (i + 1 == Fields.end() || Record->isUnion())))) {
10774      // Flexible array member.
10775      // Microsoft and g++ is more permissive regarding flexible array.
10776      // It will accept flexible array in union and also
10777      // as the sole element of a struct/class.
10778      if (getLangOpts().MicrosoftExt) {
10779        if (Record->isUnion())
10780          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
10781            << FD->getDeclName();
10782        else if (Fields.size() == 1)
10783          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
10784            << FD->getDeclName() << Record->getTagKind();
10785      } else if (getLangOpts().CPlusPlus) {
10786        if (Record->isUnion())
10787          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10788            << FD->getDeclName();
10789        else if (Fields.size() == 1)
10790          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
10791            << FD->getDeclName() << Record->getTagKind();
10792      } else if (!getLangOpts().C99) {
10793      if (Record->isUnion())
10794        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
10795          << FD->getDeclName();
10796      else
10797        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
10798          << FD->getDeclName() << Record->getTagKind();
10799      } else if (NumNamedMembers < 1) {
10800        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
10801          << FD->getDeclName();
10802        FD->setInvalidDecl();
10803        EnclosingDecl->setInvalidDecl();
10804        continue;
10805      }
10806      if (!FD->getType()->isDependentType() &&
10807          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
10808        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
10809          << FD->getDeclName() << FD->getType();
10810        FD->setInvalidDecl();
10811        EnclosingDecl->setInvalidDecl();
10812        continue;
10813      }
10814      // Okay, we have a legal flexible array member at the end of the struct.
10815      if (Record)
10816        Record->setHasFlexibleArrayMember(true);
10817    } else if (!FDTy->isDependentType() &&
10818               RequireCompleteType(FD->getLocation(), FD->getType(),
10819                                   diag::err_field_incomplete)) {
10820      // Incomplete type
10821      FD->setInvalidDecl();
10822      EnclosingDecl->setInvalidDecl();
10823      continue;
10824    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
10825      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
10826        // If this is a member of a union, then entire union becomes "flexible".
10827        if (Record && Record->isUnion()) {
10828          Record->setHasFlexibleArrayMember(true);
10829        } else {
10830          // If this is a struct/class and this is not the last element, reject
10831          // it.  Note that GCC supports variable sized arrays in the middle of
10832          // structures.
10833          if (i + 1 != Fields.end())
10834            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
10835              << FD->getDeclName() << FD->getType();
10836          else {
10837            // We support flexible arrays at the end of structs in
10838            // other structs as an extension.
10839            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
10840              << FD->getDeclName();
10841            if (Record)
10842              Record->setHasFlexibleArrayMember(true);
10843          }
10844        }
10845      }
10846      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
10847          RequireNonAbstractType(FD->getLocation(), FD->getType(),
10848                                 diag::err_abstract_type_in_decl,
10849                                 AbstractIvarType)) {
10850        // Ivars can not have abstract class types
10851        FD->setInvalidDecl();
10852      }
10853      if (Record && FDTTy->getDecl()->hasObjectMember())
10854        Record->setHasObjectMember(true);
10855      if (Record && FDTTy->getDecl()->hasVolatileMember())
10856        Record->setHasVolatileMember(true);
10857    } else if (FDTy->isObjCObjectType()) {
10858      /// A field cannot be an Objective-c object
10859      Diag(FD->getLocation(), diag::err_statically_allocated_object)
10860        << FixItHint::CreateInsertion(FD->getLocation(), "*");
10861      QualType T = Context.getObjCObjectPointerType(FD->getType());
10862      FD->setType(T);
10863    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
10864               (!getLangOpts().CPlusPlus || Record->isUnion())) {
10865      // It's an error in ARC if a field has lifetime.
10866      // We don't want to report this in a system header, though,
10867      // so we just make the field unavailable.
10868      // FIXME: that's really not sufficient; we need to make the type
10869      // itself invalid to, say, initialize or copy.
10870      QualType T = FD->getType();
10871      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
10872      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
10873        SourceLocation loc = FD->getLocation();
10874        if (getSourceManager().isInSystemHeader(loc)) {
10875          if (!FD->hasAttr<UnavailableAttr>()) {
10876            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
10877                              "this system field has retaining ownership"));
10878          }
10879        } else {
10880          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
10881            << T->isBlockPointerType() << Record->getTagKind();
10882        }
10883        ARCErrReported = true;
10884      }
10885    } else if (getLangOpts().ObjC1 &&
10886               getLangOpts().getGC() != LangOptions::NonGC &&
10887               Record && !Record->hasObjectMember()) {
10888      if (FD->getType()->isObjCObjectPointerType() ||
10889          FD->getType().isObjCGCStrong())
10890        Record->setHasObjectMember(true);
10891      else if (Context.getAsArrayType(FD->getType())) {
10892        QualType BaseType = Context.getBaseElementType(FD->getType());
10893        if (BaseType->isRecordType() &&
10894            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
10895          Record->setHasObjectMember(true);
10896        else if (BaseType->isObjCObjectPointerType() ||
10897                 BaseType.isObjCGCStrong())
10898               Record->setHasObjectMember(true);
10899      }
10900    }
10901    if (Record && FD->getType().isVolatileQualified())
10902      Record->setHasVolatileMember(true);
10903    // Keep track of the number of named members.
10904    if (FD->getIdentifier())
10905      ++NumNamedMembers;
10906  }
10907
10908  // Okay, we successfully defined 'Record'.
10909  if (Record) {
10910    bool Completed = false;
10911    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
10912      if (!CXXRecord->isInvalidDecl()) {
10913        // Set access bits correctly on the directly-declared conversions.
10914        for (CXXRecordDecl::conversion_iterator
10915               I = CXXRecord->conversion_begin(),
10916               E = CXXRecord->conversion_end(); I != E; ++I)
10917          I.setAccess((*I)->getAccess());
10918
10919        if (!CXXRecord->isDependentType()) {
10920          // Adjust user-defined destructor exception spec.
10921          if (getLangOpts().CPlusPlus11 &&
10922              CXXRecord->hasUserDeclaredDestructor())
10923            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
10924
10925          // Add any implicitly-declared members to this class.
10926          AddImplicitlyDeclaredMembersToClass(CXXRecord);
10927
10928          // If we have virtual base classes, we may end up finding multiple
10929          // final overriders for a given virtual function. Check for this
10930          // problem now.
10931          if (CXXRecord->getNumVBases()) {
10932            CXXFinalOverriderMap FinalOverriders;
10933            CXXRecord->getFinalOverriders(FinalOverriders);
10934
10935            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
10936                                             MEnd = FinalOverriders.end();
10937                 M != MEnd; ++M) {
10938              for (OverridingMethods::iterator SO = M->second.begin(),
10939                                            SOEnd = M->second.end();
10940                   SO != SOEnd; ++SO) {
10941                assert(SO->second.size() > 0 &&
10942                       "Virtual function without overridding functions?");
10943                if (SO->second.size() == 1)
10944                  continue;
10945
10946                // C++ [class.virtual]p2:
10947                //   In a derived class, if a virtual member function of a base
10948                //   class subobject has more than one final overrider the
10949                //   program is ill-formed.
10950                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
10951                  << (const NamedDecl *)M->first << Record;
10952                Diag(M->first->getLocation(),
10953                     diag::note_overridden_virtual_function);
10954                for (OverridingMethods::overriding_iterator
10955                          OM = SO->second.begin(),
10956                       OMEnd = SO->second.end();
10957                     OM != OMEnd; ++OM)
10958                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
10959                    << (const NamedDecl *)M->first << OM->Method->getParent();
10960
10961                Record->setInvalidDecl();
10962              }
10963            }
10964            CXXRecord->completeDefinition(&FinalOverriders);
10965            Completed = true;
10966          }
10967        }
10968      }
10969    }
10970
10971    if (!Completed)
10972      Record->completeDefinition();
10973
10974    if (Record->hasAttrs())
10975      CheckAlignasUnderalignment(Record);
10976  } else {
10977    ObjCIvarDecl **ClsFields =
10978      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
10979    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
10980      ID->setEndOfDefinitionLoc(RBrac);
10981      // Add ivar's to class's DeclContext.
10982      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
10983        ClsFields[i]->setLexicalDeclContext(ID);
10984        ID->addDecl(ClsFields[i]);
10985      }
10986      // Must enforce the rule that ivars in the base classes may not be
10987      // duplicates.
10988      if (ID->getSuperClass())
10989        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
10990    } else if (ObjCImplementationDecl *IMPDecl =
10991                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
10992      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
10993      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
10994        // Ivar declared in @implementation never belongs to the implementation.
10995        // Only it is in implementation's lexical context.
10996        ClsFields[I]->setLexicalDeclContext(IMPDecl);
10997      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
10998      IMPDecl->setIvarLBraceLoc(LBrac);
10999      IMPDecl->setIvarRBraceLoc(RBrac);
11000    } else if (ObjCCategoryDecl *CDecl =
11001                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11002      // case of ivars in class extension; all other cases have been
11003      // reported as errors elsewhere.
11004      // FIXME. Class extension does not have a LocEnd field.
11005      // CDecl->setLocEnd(RBrac);
11006      // Add ivar's to class extension's DeclContext.
11007      // Diagnose redeclaration of private ivars.
11008      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11009      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11010        if (IDecl) {
11011          if (const ObjCIvarDecl *ClsIvar =
11012              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11013            Diag(ClsFields[i]->getLocation(),
11014                 diag::err_duplicate_ivar_declaration);
11015            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11016            continue;
11017          }
11018          for (ObjCInterfaceDecl::known_extensions_iterator
11019                 Ext = IDecl->known_extensions_begin(),
11020                 ExtEnd = IDecl->known_extensions_end();
11021               Ext != ExtEnd; ++Ext) {
11022            if (const ObjCIvarDecl *ClsExtIvar
11023                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11024              Diag(ClsFields[i]->getLocation(),
11025                   diag::err_duplicate_ivar_declaration);
11026              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11027              continue;
11028            }
11029          }
11030        }
11031        ClsFields[i]->setLexicalDeclContext(CDecl);
11032        CDecl->addDecl(ClsFields[i]);
11033      }
11034      CDecl->setIvarLBraceLoc(LBrac);
11035      CDecl->setIvarRBraceLoc(RBrac);
11036    }
11037  }
11038
11039  if (Attr)
11040    ProcessDeclAttributeList(S, Record, Attr);
11041}
11042
11043/// \brief Determine whether the given integral value is representable within
11044/// the given type T.
11045static bool isRepresentableIntegerValue(ASTContext &Context,
11046                                        llvm::APSInt &Value,
11047                                        QualType T) {
11048  assert(T->isIntegralType(Context) && "Integral type required!");
11049  unsigned BitWidth = Context.getIntWidth(T);
11050
11051  if (Value.isUnsigned() || Value.isNonNegative()) {
11052    if (T->isSignedIntegerOrEnumerationType())
11053      --BitWidth;
11054    return Value.getActiveBits() <= BitWidth;
11055  }
11056  return Value.getMinSignedBits() <= BitWidth;
11057}
11058
11059// \brief Given an integral type, return the next larger integral type
11060// (or a NULL type of no such type exists).
11061static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11062  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11063  // enum checking below.
11064  assert(T->isIntegralType(Context) && "Integral type required!");
11065  const unsigned NumTypes = 4;
11066  QualType SignedIntegralTypes[NumTypes] = {
11067    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11068  };
11069  QualType UnsignedIntegralTypes[NumTypes] = {
11070    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11071    Context.UnsignedLongLongTy
11072  };
11073
11074  unsigned BitWidth = Context.getTypeSize(T);
11075  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11076                                                        : UnsignedIntegralTypes;
11077  for (unsigned I = 0; I != NumTypes; ++I)
11078    if (Context.getTypeSize(Types[I]) > BitWidth)
11079      return Types[I];
11080
11081  return QualType();
11082}
11083
11084EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11085                                          EnumConstantDecl *LastEnumConst,
11086                                          SourceLocation IdLoc,
11087                                          IdentifierInfo *Id,
11088                                          Expr *Val) {
11089  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11090  llvm::APSInt EnumVal(IntWidth);
11091  QualType EltTy;
11092
11093  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11094    Val = 0;
11095
11096  if (Val)
11097    Val = DefaultLvalueConversion(Val).take();
11098
11099  if (Val) {
11100    if (Enum->isDependentType() || Val->isTypeDependent())
11101      EltTy = Context.DependentTy;
11102    else {
11103      SourceLocation ExpLoc;
11104      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11105          !getLangOpts().MicrosoftMode) {
11106        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11107        // constant-expression in the enumerator-definition shall be a converted
11108        // constant expression of the underlying type.
11109        EltTy = Enum->getIntegerType();
11110        ExprResult Converted =
11111          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11112                                           CCEK_Enumerator);
11113        if (Converted.isInvalid())
11114          Val = 0;
11115        else
11116          Val = Converted.take();
11117      } else if (!Val->isValueDependent() &&
11118                 !(Val = VerifyIntegerConstantExpression(Val,
11119                                                         &EnumVal).take())) {
11120        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11121      } else {
11122        if (Enum->isFixed()) {
11123          EltTy = Enum->getIntegerType();
11124
11125          // In Obj-C and Microsoft mode, require the enumeration value to be
11126          // representable in the underlying type of the enumeration. In C++11,
11127          // we perform a non-narrowing conversion as part of converted constant
11128          // expression checking.
11129          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11130            if (getLangOpts().MicrosoftMode) {
11131              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11132              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11133            } else
11134              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11135          } else
11136            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11137        } else if (getLangOpts().CPlusPlus) {
11138          // C++11 [dcl.enum]p5:
11139          //   If the underlying type is not fixed, the type of each enumerator
11140          //   is the type of its initializing value:
11141          //     - If an initializer is specified for an enumerator, the
11142          //       initializing value has the same type as the expression.
11143          EltTy = Val->getType();
11144        } else {
11145          // C99 6.7.2.2p2:
11146          //   The expression that defines the value of an enumeration constant
11147          //   shall be an integer constant expression that has a value
11148          //   representable as an int.
11149
11150          // Complain if the value is not representable in an int.
11151          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11152            Diag(IdLoc, diag::ext_enum_value_not_int)
11153              << EnumVal.toString(10) << Val->getSourceRange()
11154              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11155          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11156            // Force the type of the expression to 'int'.
11157            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11158          }
11159          EltTy = Val->getType();
11160        }
11161      }
11162    }
11163  }
11164
11165  if (!Val) {
11166    if (Enum->isDependentType())
11167      EltTy = Context.DependentTy;
11168    else if (!LastEnumConst) {
11169      // C++0x [dcl.enum]p5:
11170      //   If the underlying type is not fixed, the type of each enumerator
11171      //   is the type of its initializing value:
11172      //     - If no initializer is specified for the first enumerator, the
11173      //       initializing value has an unspecified integral type.
11174      //
11175      // GCC uses 'int' for its unspecified integral type, as does
11176      // C99 6.7.2.2p3.
11177      if (Enum->isFixed()) {
11178        EltTy = Enum->getIntegerType();
11179      }
11180      else {
11181        EltTy = Context.IntTy;
11182      }
11183    } else {
11184      // Assign the last value + 1.
11185      EnumVal = LastEnumConst->getInitVal();
11186      ++EnumVal;
11187      EltTy = LastEnumConst->getType();
11188
11189      // Check for overflow on increment.
11190      if (EnumVal < LastEnumConst->getInitVal()) {
11191        // C++0x [dcl.enum]p5:
11192        //   If the underlying type is not fixed, the type of each enumerator
11193        //   is the type of its initializing value:
11194        //
11195        //     - Otherwise the type of the initializing value is the same as
11196        //       the type of the initializing value of the preceding enumerator
11197        //       unless the incremented value is not representable in that type,
11198        //       in which case the type is an unspecified integral type
11199        //       sufficient to contain the incremented value. If no such type
11200        //       exists, the program is ill-formed.
11201        QualType T = getNextLargerIntegralType(Context, EltTy);
11202        if (T.isNull() || Enum->isFixed()) {
11203          // There is no integral type larger enough to represent this
11204          // value. Complain, then allow the value to wrap around.
11205          EnumVal = LastEnumConst->getInitVal();
11206          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11207          ++EnumVal;
11208          if (Enum->isFixed())
11209            // When the underlying type is fixed, this is ill-formed.
11210            Diag(IdLoc, diag::err_enumerator_wrapped)
11211              << EnumVal.toString(10)
11212              << EltTy;
11213          else
11214            Diag(IdLoc, diag::warn_enumerator_too_large)
11215              << EnumVal.toString(10);
11216        } else {
11217          EltTy = T;
11218        }
11219
11220        // Retrieve the last enumerator's value, extent that type to the
11221        // type that is supposed to be large enough to represent the incremented
11222        // value, then increment.
11223        EnumVal = LastEnumConst->getInitVal();
11224        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11225        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11226        ++EnumVal;
11227
11228        // If we're not in C++, diagnose the overflow of enumerator values,
11229        // which in C99 means that the enumerator value is not representable in
11230        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11231        // permits enumerator values that are representable in some larger
11232        // integral type.
11233        if (!getLangOpts().CPlusPlus && !T.isNull())
11234          Diag(IdLoc, diag::warn_enum_value_overflow);
11235      } else if (!getLangOpts().CPlusPlus &&
11236                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11237        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11238        Diag(IdLoc, diag::ext_enum_value_not_int)
11239          << EnumVal.toString(10) << 1;
11240      }
11241    }
11242  }
11243
11244  if (!EltTy->isDependentType()) {
11245    // Make the enumerator value match the signedness and size of the
11246    // enumerator's type.
11247    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11248    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11249  }
11250
11251  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11252                                  Val, EnumVal);
11253}
11254
11255
11256Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11257                              SourceLocation IdLoc, IdentifierInfo *Id,
11258                              AttributeList *Attr,
11259                              SourceLocation EqualLoc, Expr *Val) {
11260  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11261  EnumConstantDecl *LastEnumConst =
11262    cast_or_null<EnumConstantDecl>(lastEnumConst);
11263
11264  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11265  // we find one that is.
11266  S = getNonFieldDeclScope(S);
11267
11268  // Verify that there isn't already something declared with this name in this
11269  // scope.
11270  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11271                                         ForRedeclaration);
11272  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11273    // Maybe we will complain about the shadowed template parameter.
11274    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11275    // Just pretend that we didn't see the previous declaration.
11276    PrevDecl = 0;
11277  }
11278
11279  if (PrevDecl) {
11280    // When in C++, we may get a TagDecl with the same name; in this case the
11281    // enum constant will 'hide' the tag.
11282    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11283           "Received TagDecl when not in C++!");
11284    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11285      if (isa<EnumConstantDecl>(PrevDecl))
11286        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11287      else
11288        Diag(IdLoc, diag::err_redefinition) << Id;
11289      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11290      return 0;
11291    }
11292  }
11293
11294  // C++ [class.mem]p15:
11295  // If T is the name of a class, then each of the following shall have a name
11296  // different from T:
11297  // - every enumerator of every member of class T that is an unscoped
11298  // enumerated type
11299  if (CXXRecordDecl *Record
11300                      = dyn_cast<CXXRecordDecl>(
11301                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11302    if (!TheEnumDecl->isScoped() &&
11303        Record->getIdentifier() && Record->getIdentifier() == Id)
11304      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11305
11306  EnumConstantDecl *New =
11307    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11308
11309  if (New) {
11310    // Process attributes.
11311    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11312
11313    // Register this decl in the current scope stack.
11314    New->setAccess(TheEnumDecl->getAccess());
11315    PushOnScopeChains(New, S);
11316  }
11317
11318  ActOnDocumentableDecl(New);
11319
11320  return New;
11321}
11322
11323// Returns true when the enum initial expression does not trigger the
11324// duplicate enum warning.  A few common cases are exempted as follows:
11325// Element2 = Element1
11326// Element2 = Element1 + 1
11327// Element2 = Element1 - 1
11328// Where Element2 and Element1 are from the same enum.
11329static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11330  Expr *InitExpr = ECD->getInitExpr();
11331  if (!InitExpr)
11332    return true;
11333  InitExpr = InitExpr->IgnoreImpCasts();
11334
11335  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11336    if (!BO->isAdditiveOp())
11337      return true;
11338    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11339    if (!IL)
11340      return true;
11341    if (IL->getValue() != 1)
11342      return true;
11343
11344    InitExpr = BO->getLHS();
11345  }
11346
11347  // This checks if the elements are from the same enum.
11348  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11349  if (!DRE)
11350    return true;
11351
11352  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11353  if (!EnumConstant)
11354    return true;
11355
11356  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11357      Enum)
11358    return true;
11359
11360  return false;
11361}
11362
11363struct DupKey {
11364  int64_t val;
11365  bool isTombstoneOrEmptyKey;
11366  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11367    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11368};
11369
11370static DupKey GetDupKey(const llvm::APSInt& Val) {
11371  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11372                false);
11373}
11374
11375struct DenseMapInfoDupKey {
11376  static DupKey getEmptyKey() { return DupKey(0, true); }
11377  static DupKey getTombstoneKey() { return DupKey(1, true); }
11378  static unsigned getHashValue(const DupKey Key) {
11379    return (unsigned)(Key.val * 37);
11380  }
11381  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11382    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11383           LHS.val == RHS.val;
11384  }
11385};
11386
11387// Emits a warning when an element is implicitly set a value that
11388// a previous element has already been set to.
11389static void CheckForDuplicateEnumValues(Sema &S, Decl **Elements,
11390                                        unsigned NumElements, EnumDecl *Enum,
11391                                        QualType EnumType) {
11392  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11393                                 Enum->getLocation()) ==
11394      DiagnosticsEngine::Ignored)
11395    return;
11396  // Avoid anonymous enums
11397  if (!Enum->getIdentifier())
11398    return;
11399
11400  // Only check for small enums.
11401  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11402    return;
11403
11404  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11405  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11406
11407  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11408  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11409          ValueToVectorMap;
11410
11411  DuplicatesVector DupVector;
11412  ValueToVectorMap EnumMap;
11413
11414  // Populate the EnumMap with all values represented by enum constants without
11415  // an initialier.
11416  for (unsigned i = 0; i < NumElements; ++i) {
11417    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11418
11419    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11420    // this constant.  Skip this enum since it may be ill-formed.
11421    if (!ECD) {
11422      return;
11423    }
11424
11425    if (ECD->getInitExpr())
11426      continue;
11427
11428    DupKey Key = GetDupKey(ECD->getInitVal());
11429    DeclOrVector &Entry = EnumMap[Key];
11430
11431    // First time encountering this value.
11432    if (Entry.isNull())
11433      Entry = ECD;
11434  }
11435
11436  // Create vectors for any values that has duplicates.
11437  for (unsigned i = 0; i < NumElements; ++i) {
11438    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11439    if (!ValidDuplicateEnum(ECD, Enum))
11440      continue;
11441
11442    DupKey Key = GetDupKey(ECD->getInitVal());
11443
11444    DeclOrVector& Entry = EnumMap[Key];
11445    if (Entry.isNull())
11446      continue;
11447
11448    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11449      // Ensure constants are different.
11450      if (D == ECD)
11451        continue;
11452
11453      // Create new vector and push values onto it.
11454      ECDVector *Vec = new ECDVector();
11455      Vec->push_back(D);
11456      Vec->push_back(ECD);
11457
11458      // Update entry to point to the duplicates vector.
11459      Entry = Vec;
11460
11461      // Store the vector somewhere we can consult later for quick emission of
11462      // diagnostics.
11463      DupVector.push_back(Vec);
11464      continue;
11465    }
11466
11467    ECDVector *Vec = Entry.get<ECDVector*>();
11468    // Make sure constants are not added more than once.
11469    if (*Vec->begin() == ECD)
11470      continue;
11471
11472    Vec->push_back(ECD);
11473  }
11474
11475  // Emit diagnostics.
11476  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11477                                  DupVectorEnd = DupVector.end();
11478       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11479    ECDVector *Vec = *DupVectorIter;
11480    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11481
11482    // Emit warning for one enum constant.
11483    ECDVector::iterator I = Vec->begin();
11484    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11485      << (*I)->getName() << (*I)->getInitVal().toString(10)
11486      << (*I)->getSourceRange();
11487    ++I;
11488
11489    // Emit one note for each of the remaining enum constants with
11490    // the same value.
11491    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11492      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11493        << (*I)->getName() << (*I)->getInitVal().toString(10)
11494        << (*I)->getSourceRange();
11495    delete Vec;
11496  }
11497}
11498
11499void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11500                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11501                         Decl **Elements, unsigned NumElements,
11502                         Scope *S, AttributeList *Attr) {
11503  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11504  QualType EnumType = Context.getTypeDeclType(Enum);
11505
11506  if (Attr)
11507    ProcessDeclAttributeList(S, Enum, Attr);
11508
11509  if (Enum->isDependentType()) {
11510    for (unsigned i = 0; i != NumElements; ++i) {
11511      EnumConstantDecl *ECD =
11512        cast_or_null<EnumConstantDecl>(Elements[i]);
11513      if (!ECD) continue;
11514
11515      ECD->setType(EnumType);
11516    }
11517
11518    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11519    return;
11520  }
11521
11522  // TODO: If the result value doesn't fit in an int, it must be a long or long
11523  // long value.  ISO C does not support this, but GCC does as an extension,
11524  // emit a warning.
11525  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11526  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11527  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11528
11529  // Verify that all the values are okay, compute the size of the values, and
11530  // reverse the list.
11531  unsigned NumNegativeBits = 0;
11532  unsigned NumPositiveBits = 0;
11533
11534  // Keep track of whether all elements have type int.
11535  bool AllElementsInt = true;
11536
11537  for (unsigned i = 0; i != NumElements; ++i) {
11538    EnumConstantDecl *ECD =
11539      cast_or_null<EnumConstantDecl>(Elements[i]);
11540    if (!ECD) continue;  // Already issued a diagnostic.
11541
11542    const llvm::APSInt &InitVal = ECD->getInitVal();
11543
11544    // Keep track of the size of positive and negative values.
11545    if (InitVal.isUnsigned() || InitVal.isNonNegative())
11546      NumPositiveBits = std::max(NumPositiveBits,
11547                                 (unsigned)InitVal.getActiveBits());
11548    else
11549      NumNegativeBits = std::max(NumNegativeBits,
11550                                 (unsigned)InitVal.getMinSignedBits());
11551
11552    // Keep track of whether every enum element has type int (very commmon).
11553    if (AllElementsInt)
11554      AllElementsInt = ECD->getType() == Context.IntTy;
11555  }
11556
11557  // Figure out the type that should be used for this enum.
11558  QualType BestType;
11559  unsigned BestWidth;
11560
11561  // C++0x N3000 [conv.prom]p3:
11562  //   An rvalue of an unscoped enumeration type whose underlying
11563  //   type is not fixed can be converted to an rvalue of the first
11564  //   of the following types that can represent all the values of
11565  //   the enumeration: int, unsigned int, long int, unsigned long
11566  //   int, long long int, or unsigned long long int.
11567  // C99 6.4.4.3p2:
11568  //   An identifier declared as an enumeration constant has type int.
11569  // The C99 rule is modified by a gcc extension
11570  QualType BestPromotionType;
11571
11572  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
11573  // -fshort-enums is the equivalent to specifying the packed attribute on all
11574  // enum definitions.
11575  if (LangOpts.ShortEnums)
11576    Packed = true;
11577
11578  if (Enum->isFixed()) {
11579    BestType = Enum->getIntegerType();
11580    if (BestType->isPromotableIntegerType())
11581      BestPromotionType = Context.getPromotedIntegerType(BestType);
11582    else
11583      BestPromotionType = BestType;
11584    // We don't need to set BestWidth, because BestType is going to be the type
11585    // of the enumerators, but we do anyway because otherwise some compilers
11586    // warn that it might be used uninitialized.
11587    BestWidth = CharWidth;
11588  }
11589  else if (NumNegativeBits) {
11590    // If there is a negative value, figure out the smallest integer type (of
11591    // int/long/longlong) that fits.
11592    // If it's packed, check also if it fits a char or a short.
11593    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
11594      BestType = Context.SignedCharTy;
11595      BestWidth = CharWidth;
11596    } else if (Packed && NumNegativeBits <= ShortWidth &&
11597               NumPositiveBits < ShortWidth) {
11598      BestType = Context.ShortTy;
11599      BestWidth = ShortWidth;
11600    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
11601      BestType = Context.IntTy;
11602      BestWidth = IntWidth;
11603    } else {
11604      BestWidth = Context.getTargetInfo().getLongWidth();
11605
11606      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
11607        BestType = Context.LongTy;
11608      } else {
11609        BestWidth = Context.getTargetInfo().getLongLongWidth();
11610
11611        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
11612          Diag(Enum->getLocation(), diag::warn_enum_too_large);
11613        BestType = Context.LongLongTy;
11614      }
11615    }
11616    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
11617  } else {
11618    // If there is no negative value, figure out the smallest type that fits
11619    // all of the enumerator values.
11620    // If it's packed, check also if it fits a char or a short.
11621    if (Packed && NumPositiveBits <= CharWidth) {
11622      BestType = Context.UnsignedCharTy;
11623      BestPromotionType = Context.IntTy;
11624      BestWidth = CharWidth;
11625    } else if (Packed && NumPositiveBits <= ShortWidth) {
11626      BestType = Context.UnsignedShortTy;
11627      BestPromotionType = Context.IntTy;
11628      BestWidth = ShortWidth;
11629    } else if (NumPositiveBits <= IntWidth) {
11630      BestType = Context.UnsignedIntTy;
11631      BestWidth = IntWidth;
11632      BestPromotionType
11633        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11634                           ? Context.UnsignedIntTy : Context.IntTy;
11635    } else if (NumPositiveBits <=
11636               (BestWidth = Context.getTargetInfo().getLongWidth())) {
11637      BestType = Context.UnsignedLongTy;
11638      BestPromotionType
11639        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11640                           ? Context.UnsignedLongTy : Context.LongTy;
11641    } else {
11642      BestWidth = Context.getTargetInfo().getLongLongWidth();
11643      assert(NumPositiveBits <= BestWidth &&
11644             "How could an initializer get larger than ULL?");
11645      BestType = Context.UnsignedLongLongTy;
11646      BestPromotionType
11647        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
11648                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
11649    }
11650  }
11651
11652  // Loop over all of the enumerator constants, changing their types to match
11653  // the type of the enum if needed.
11654  for (unsigned i = 0; i != NumElements; ++i) {
11655    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11656    if (!ECD) continue;  // Already issued a diagnostic.
11657
11658    // Standard C says the enumerators have int type, but we allow, as an
11659    // extension, the enumerators to be larger than int size.  If each
11660    // enumerator value fits in an int, type it as an int, otherwise type it the
11661    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
11662    // that X has type 'int', not 'unsigned'.
11663
11664    // Determine whether the value fits into an int.
11665    llvm::APSInt InitVal = ECD->getInitVal();
11666
11667    // If it fits into an integer type, force it.  Otherwise force it to match
11668    // the enum decl type.
11669    QualType NewTy;
11670    unsigned NewWidth;
11671    bool NewSign;
11672    if (!getLangOpts().CPlusPlus &&
11673        !Enum->isFixed() &&
11674        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
11675      NewTy = Context.IntTy;
11676      NewWidth = IntWidth;
11677      NewSign = true;
11678    } else if (ECD->getType() == BestType) {
11679      // Already the right type!
11680      if (getLangOpts().CPlusPlus)
11681        // C++ [dcl.enum]p4: Following the closing brace of an
11682        // enum-specifier, each enumerator has the type of its
11683        // enumeration.
11684        ECD->setType(EnumType);
11685      continue;
11686    } else {
11687      NewTy = BestType;
11688      NewWidth = BestWidth;
11689      NewSign = BestType->isSignedIntegerOrEnumerationType();
11690    }
11691
11692    // Adjust the APSInt value.
11693    InitVal = InitVal.extOrTrunc(NewWidth);
11694    InitVal.setIsSigned(NewSign);
11695    ECD->setInitVal(InitVal);
11696
11697    // Adjust the Expr initializer and type.
11698    if (ECD->getInitExpr() &&
11699        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
11700      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
11701                                                CK_IntegralCast,
11702                                                ECD->getInitExpr(),
11703                                                /*base paths*/ 0,
11704                                                VK_RValue));
11705    if (getLangOpts().CPlusPlus)
11706      // C++ [dcl.enum]p4: Following the closing brace of an
11707      // enum-specifier, each enumerator has the type of its
11708      // enumeration.
11709      ECD->setType(EnumType);
11710    else
11711      ECD->setType(NewTy);
11712  }
11713
11714  Enum->completeDefinition(BestType, BestPromotionType,
11715                           NumPositiveBits, NumNegativeBits);
11716
11717  // If we're declaring a function, ensure this decl isn't forgotten about -
11718  // it needs to go into the function scope.
11719  if (InFunctionDeclarator)
11720    DeclsInPrototypeScope.push_back(Enum);
11721
11722  CheckForDuplicateEnumValues(*this, Elements, NumElements, Enum, EnumType);
11723
11724  // Now that the enum type is defined, ensure it's not been underaligned.
11725  if (Enum->hasAttrs())
11726    CheckAlignasUnderalignment(Enum);
11727}
11728
11729Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
11730                                  SourceLocation StartLoc,
11731                                  SourceLocation EndLoc) {
11732  StringLiteral *AsmString = cast<StringLiteral>(expr);
11733
11734  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
11735                                                   AsmString, StartLoc,
11736                                                   EndLoc);
11737  CurContext->addDecl(New);
11738  return New;
11739}
11740
11741DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
11742                                   SourceLocation ImportLoc,
11743                                   ModuleIdPath Path) {
11744  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
11745                                                Module::AllVisible,
11746                                                /*IsIncludeDirective=*/false);
11747  if (!Mod)
11748    return true;
11749
11750  SmallVector<SourceLocation, 2> IdentifierLocs;
11751  Module *ModCheck = Mod;
11752  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
11753    // If we've run out of module parents, just drop the remaining identifiers.
11754    // We need the length to be consistent.
11755    if (!ModCheck)
11756      break;
11757    ModCheck = ModCheck->Parent;
11758
11759    IdentifierLocs.push_back(Path[I].second);
11760  }
11761
11762  ImportDecl *Import = ImportDecl::Create(Context,
11763                                          Context.getTranslationUnitDecl(),
11764                                          AtLoc.isValid()? AtLoc : ImportLoc,
11765                                          Mod, IdentifierLocs);
11766  Context.getTranslationUnitDecl()->addDecl(Import);
11767  return Import;
11768}
11769
11770void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
11771  // Create the implicit import declaration.
11772  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
11773  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
11774                                                   Loc, Mod, Loc);
11775  TU->addDecl(ImportD);
11776  Consumer.HandleImplicitImportDecl(ImportD);
11777
11778  // Make the module visible.
11779  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc);
11780}
11781
11782void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
11783                                      IdentifierInfo* AliasName,
11784                                      SourceLocation PragmaLoc,
11785                                      SourceLocation NameLoc,
11786                                      SourceLocation AliasNameLoc) {
11787  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
11788                                    LookupOrdinaryName);
11789  AsmLabelAttr *Attr =
11790     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
11791
11792  if (PrevDecl)
11793    PrevDecl->addAttr(Attr);
11794  else
11795    (void)ExtnameUndeclaredIdentifiers.insert(
11796      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
11797}
11798
11799void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
11800                             SourceLocation PragmaLoc,
11801                             SourceLocation NameLoc) {
11802  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
11803
11804  if (PrevDecl) {
11805    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
11806  } else {
11807    (void)WeakUndeclaredIdentifiers.insert(
11808      std::pair<IdentifierInfo*,WeakInfo>
11809        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
11810  }
11811}
11812
11813void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
11814                                IdentifierInfo* AliasName,
11815                                SourceLocation PragmaLoc,
11816                                SourceLocation NameLoc,
11817                                SourceLocation AliasNameLoc) {
11818  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
11819                                    LookupOrdinaryName);
11820  WeakInfo W = WeakInfo(Name, NameLoc);
11821
11822  if (PrevDecl) {
11823    if (!PrevDecl->hasAttr<AliasAttr>())
11824      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
11825        DeclApplyPragmaWeak(TUScope, ND, W);
11826  } else {
11827    (void)WeakUndeclaredIdentifiers.insert(
11828      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
11829  }
11830}
11831
11832Decl *Sema::getObjCDeclContext() const {
11833  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
11834}
11835
11836AvailabilityResult Sema::getCurContextAvailability() const {
11837  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
11838  return D->getAvailability();
11839}
11840