SemaDecl.cpp revision 9add31798f621f843233dbff8bba103fca64447b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // If this typename is deprecated, emit a warning.
68      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // If this typename is deprecated, emit a warning.
75      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  if (Decl *D = dyn_cast<Decl>(DC))
109    return D->getLexicalDeclContext();
110
111  return DC->getLexicalParent();
112}
113
114void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
115  assert(getContainingDC(DC) == CurContext &&
116      "The next DeclContext should be lexically contained in the current one.");
117  CurContext = DC;
118  S->setEntity(DC);
119}
120
121void Sema::PopDeclContext() {
122  assert(CurContext && "DeclContext imbalance!");
123
124  CurContext = getContainingDC(CurContext);
125}
126
127/// \brief Determine whether we allow overloading of the function
128/// PrevDecl with another declaration.
129///
130/// This routine determines whether overloading is possible, not
131/// whether some new function is actually an overload. It will return
132/// true in C++ (where we can always provide overloads) or, as an
133/// extension, in C when the previous function is already an
134/// overloaded function declaration or has the "overloadable"
135/// attribute.
136static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
137  if (Context.getLangOptions().CPlusPlus)
138    return true;
139
140  if (isa<OverloadedFunctionDecl>(PrevDecl))
141    return true;
142
143  return PrevDecl->getAttr<OverloadableAttr>() != 0;
144}
145
146/// Add this decl to the scope shadowed decl chains.
147void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
148  // Move up the scope chain until we find the nearest enclosing
149  // non-transparent context. The declaration will be introduced into this
150  // scope.
151  while (S->getEntity() &&
152         ((DeclContext *)S->getEntity())->isTransparentContext())
153    S = S->getParent();
154
155  S->AddDecl(D);
156
157  // Add scoped declarations into their context, so that they can be
158  // found later. Declarations without a context won't be inserted
159  // into any context.
160  CurContext->addDecl(D);
161
162  // C++ [basic.scope]p4:
163  //   -- exactly one declaration shall declare a class name or
164  //   enumeration name that is not a typedef name and the other
165  //   declarations shall all refer to the same object or
166  //   enumerator, or all refer to functions and function templates;
167  //   in this case the class name or enumeration name is hidden.
168  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
169    // We are pushing the name of a tag (enum or class).
170    if (CurContext->getLookupContext()
171          == TD->getDeclContext()->getLookupContext()) {
172      // We're pushing the tag into the current context, which might
173      // require some reshuffling in the identifier resolver.
174      IdentifierResolver::iterator
175        I = IdResolver.begin(TD->getDeclName()),
176        IEnd = IdResolver.end();
177      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
178        NamedDecl *PrevDecl = *I;
179        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
180             PrevDecl = *I, ++I) {
181          if (TD->declarationReplaces(*I)) {
182            // This is a redeclaration. Remove it from the chain and
183            // break out, so that we'll add in the shadowed
184            // declaration.
185            S->RemoveDecl(*I);
186            if (PrevDecl == *I) {
187              IdResolver.RemoveDecl(*I);
188              IdResolver.AddDecl(TD);
189              return;
190            } else {
191              IdResolver.RemoveDecl(*I);
192              break;
193            }
194          }
195        }
196
197        // There is already a declaration with the same name in the same
198        // scope, which is not a tag declaration. It must be found
199        // before we find the new declaration, so insert the new
200        // declaration at the end of the chain.
201        IdResolver.AddShadowedDecl(TD, PrevDecl);
202
203        return;
204      }
205    }
206  } else if (isa<FunctionDecl>(D) &&
207             AllowOverloadingOfFunction(D, Context)) {
208    // We are pushing the name of a function, which might be an
209    // overloaded name.
210    FunctionDecl *FD = cast<FunctionDecl>(D);
211    IdentifierResolver::iterator Redecl
212      = std::find_if(IdResolver.begin(FD->getDeclName()),
213                     IdResolver.end(),
214                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
215                                  FD));
216    if (Redecl != IdResolver.end()) {
217      // There is already a declaration of a function on our
218      // IdResolver chain. Replace it with this declaration.
219      S->RemoveDecl(*Redecl);
220      IdResolver.RemoveDecl(*Redecl);
221    }
222  }
223
224  IdResolver.AddDecl(D);
225}
226
227void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
228  if (S->decl_empty()) return;
229  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
230	 "Scope shouldn't contain decls!");
231
232  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
233       I != E; ++I) {
234    Decl *TmpD = static_cast<Decl*>(*I);
235    assert(TmpD && "This decl didn't get pushed??");
236
237    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
238    NamedDecl *D = cast<NamedDecl>(TmpD);
239
240    if (!D->getDeclName()) continue;
241
242    // Remove this name from our lexical scope.
243    IdResolver.RemoveDecl(D);
244  }
245}
246
247/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
248/// return 0 if one not found.
249ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
250  // The third "scope" argument is 0 since we aren't enabling lazy built-in
251  // creation from this context.
252  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
253
254  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
255}
256
257/// getNonFieldDeclScope - Retrieves the innermost scope, starting
258/// from S, where a non-field would be declared. This routine copes
259/// with the difference between C and C++ scoping rules in structs and
260/// unions. For example, the following code is well-formed in C but
261/// ill-formed in C++:
262/// @code
263/// struct S6 {
264///   enum { BAR } e;
265/// };
266///
267/// void test_S6() {
268///   struct S6 a;
269///   a.e = BAR;
270/// }
271/// @endcode
272/// For the declaration of BAR, this routine will return a different
273/// scope. The scope S will be the scope of the unnamed enumeration
274/// within S6. In C++, this routine will return the scope associated
275/// with S6, because the enumeration's scope is a transparent
276/// context but structures can contain non-field names. In C, this
277/// routine will return the translation unit scope, since the
278/// enumeration's scope is a transparent context and structures cannot
279/// contain non-field names.
280Scope *Sema::getNonFieldDeclScope(Scope *S) {
281  while (((S->getFlags() & Scope::DeclScope) == 0) ||
282         (S->getEntity() &&
283          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
284         (S->isClassScope() && !getLangOptions().CPlusPlus))
285    S = S->getParent();
286  return S;
287}
288
289void Sema::InitBuiltinVaListType() {
290  if (!Context.getBuiltinVaListType().isNull())
291    return;
292
293  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
294  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
295  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
296  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
297}
298
299/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
300/// file scope.  lazily create a decl for it. ForRedeclaration is true
301/// if we're creating this built-in in anticipation of redeclaring the
302/// built-in.
303NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
304                                     Scope *S, bool ForRedeclaration,
305                                     SourceLocation Loc) {
306  Builtin::ID BID = (Builtin::ID)bid;
307
308  if (Context.BuiltinInfo.hasVAListUse(BID))
309    InitBuiltinVaListType();
310
311  Builtin::Context::GetBuiltinTypeError Error;
312  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
313  switch (Error) {
314  case Builtin::Context::GE_None:
315    // Okay
316    break;
317
318  case Builtin::Context::GE_Missing_FILE:
319    if (ForRedeclaration)
320      Diag(Loc, diag::err_implicit_decl_requires_stdio)
321        << Context.BuiltinInfo.GetName(BID);
322    return 0;
323  }
324
325  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
326    Diag(Loc, diag::ext_implicit_lib_function_decl)
327      << Context.BuiltinInfo.GetName(BID)
328      << R;
329    if (Context.BuiltinInfo.getHeaderName(BID) &&
330        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
331          != diag::MAP_IGNORE)
332      Diag(Loc, diag::note_please_include_header)
333        << Context.BuiltinInfo.getHeaderName(BID)
334        << Context.BuiltinInfo.GetName(BID);
335  }
336
337  FunctionDecl *New = FunctionDecl::Create(Context,
338                                           Context.getTranslationUnitDecl(),
339                                           Loc, II, R,
340                                           FunctionDecl::Extern, false);
341  New->setImplicit();
342
343  // Create Decl objects for each parameter, adding them to the
344  // FunctionDecl.
345  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
346    llvm::SmallVector<ParmVarDecl*, 16> Params;
347    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
348      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
349                                           FT->getArgType(i), VarDecl::None, 0));
350    New->setParams(Context, &Params[0], Params.size());
351  }
352
353  AddKnownFunctionAttributes(New);
354
355  // TUScope is the translation-unit scope to insert this function into.
356  // FIXME: This is hideous. We need to teach PushOnScopeChains to
357  // relate Scopes to DeclContexts, and probably eliminate CurContext
358  // entirely, but we're not there yet.
359  DeclContext *SavedContext = CurContext;
360  CurContext = Context.getTranslationUnitDecl();
361  PushOnScopeChains(New, TUScope);
362  CurContext = SavedContext;
363  return New;
364}
365
366/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
367/// everything from the standard library is defined.
368NamespaceDecl *Sema::GetStdNamespace() {
369  if (!StdNamespace) {
370    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
371    DeclContext *Global = Context.getTranslationUnitDecl();
372    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
373    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
374  }
375  return StdNamespace;
376}
377
378/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
379/// same name and scope as a previous declaration 'Old'.  Figure out
380/// how to resolve this situation, merging decls or emitting
381/// diagnostics as appropriate. Returns true if there was an error,
382/// false otherwise.
383///
384bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
385  bool objc_types = false;
386  // Allow multiple definitions for ObjC built-in typedefs.
387  // FIXME: Verify the underlying types are equivalent!
388  if (getLangOptions().ObjC1) {
389    const IdentifierInfo *TypeID = New->getIdentifier();
390    switch (TypeID->getLength()) {
391    default: break;
392    case 2:
393      if (!TypeID->isStr("id"))
394        break;
395      Context.setObjCIdType(New);
396      objc_types = true;
397      break;
398    case 5:
399      if (!TypeID->isStr("Class"))
400        break;
401      Context.setObjCClassType(New);
402      objc_types = true;
403      return false;
404    case 3:
405      if (!TypeID->isStr("SEL"))
406        break;
407      Context.setObjCSelType(New);
408      objc_types = true;
409      return false;
410    case 8:
411      if (!TypeID->isStr("Protocol"))
412        break;
413      Context.setObjCProtoType(New->getUnderlyingType());
414      objc_types = true;
415      return false;
416    }
417    // Fall through - the typedef name was not a builtin type.
418  }
419  // Verify the old decl was also a type.
420  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
421  if (!Old) {
422    Diag(New->getLocation(), diag::err_redefinition_different_kind)
423      << New->getDeclName();
424    if (!objc_types)
425      Diag(OldD->getLocation(), diag::note_previous_definition);
426    return true;
427  }
428
429  // Determine the "old" type we'll use for checking and diagnostics.
430  QualType OldType;
431  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
432    OldType = OldTypedef->getUnderlyingType();
433  else
434    OldType = Context.getTypeDeclType(Old);
435
436  // If the typedef types are not identical, reject them in all languages and
437  // with any extensions enabled.
438
439  if (OldType != New->getUnderlyingType() &&
440      Context.getCanonicalType(OldType) !=
441      Context.getCanonicalType(New->getUnderlyingType())) {
442    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
443      << New->getUnderlyingType() << OldType;
444    if (!objc_types)
445      Diag(Old->getLocation(), diag::note_previous_definition);
446    return true;
447  }
448  if (objc_types) return false;
449  if (getLangOptions().Microsoft) return false;
450
451  // C++ [dcl.typedef]p2:
452  //   In a given non-class scope, a typedef specifier can be used to
453  //   redefine the name of any type declared in that scope to refer
454  //   to the type to which it already refers.
455  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
456    return false;
457
458  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
459  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
460  // *either* declaration is in a system header. The code below implements
461  // this adhoc compatibility rule. FIXME: The following code will not
462  // work properly when compiling ".i" files (containing preprocessed output).
463  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
464    SourceManager &SrcMgr = Context.getSourceManager();
465    if (SrcMgr.isInSystemHeader(Old->getLocation()))
466      return false;
467    if (SrcMgr.isInSystemHeader(New->getLocation()))
468      return false;
469  }
470
471  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
472  Diag(Old->getLocation(), diag::note_previous_definition);
473  return true;
474}
475
476/// DeclhasAttr - returns true if decl Declaration already has the target
477/// attribute.
478static bool DeclHasAttr(const Decl *decl, const Attr *target) {
479  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
480    if (attr->getKind() == target->getKind())
481      return true;
482
483  return false;
484}
485
486/// MergeAttributes - append attributes from the Old decl to the New one.
487static void MergeAttributes(Decl *New, Decl *Old) {
488  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
489
490  while (attr) {
491    tmp = attr;
492    attr = attr->getNext();
493
494    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
495      tmp->setInherited(true);
496      New->addAttr(tmp);
497    } else {
498      tmp->setNext(0);
499      delete(tmp);
500    }
501  }
502
503  Old->invalidateAttrs();
504}
505
506/// MergeFunctionDecl - We just parsed a function 'New' from
507/// declarator D which has the same name and scope as a previous
508/// declaration 'Old'.  Figure out how to resolve this situation,
509/// merging decls or emitting diagnostics as appropriate.
510///
511/// In C++, New and Old must be declarations that are not
512/// overloaded. Use IsOverload to determine whether New and Old are
513/// overloaded, and to select the Old declaration that New should be
514/// merged with.
515///
516/// Returns true if there was an error, false otherwise.
517bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
518  assert(!isa<OverloadedFunctionDecl>(OldD) &&
519         "Cannot merge with an overloaded function declaration");
520
521  // Verify the old decl was also a function.
522  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
523  if (!Old) {
524    Diag(New->getLocation(), diag::err_redefinition_different_kind)
525      << New->getDeclName();
526    Diag(OldD->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529
530  // Determine whether the previous declaration was a definition,
531  // implicit declaration, or a declaration.
532  diag::kind PrevDiag;
533  if (Old->isThisDeclarationADefinition())
534    PrevDiag = diag::note_previous_definition;
535  else if (Old->isImplicit())
536    PrevDiag = diag::note_previous_implicit_declaration;
537  else
538    PrevDiag = diag::note_previous_declaration;
539
540  QualType OldQType = Context.getCanonicalType(Old->getType());
541  QualType NewQType = Context.getCanonicalType(New->getType());
542
543  if (getLangOptions().CPlusPlus) {
544    // (C++98 13.1p2):
545    //   Certain function declarations cannot be overloaded:
546    //     -- Function declarations that differ only in the return type
547    //        cannot be overloaded.
548    QualType OldReturnType
549      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
550    QualType NewReturnType
551      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
552    if (OldReturnType != NewReturnType) {
553      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
554      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
555      return true;
556    }
557
558    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
559    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
560    if (OldMethod && NewMethod) {
561      //    -- Member function declarations with the same name and the
562      //       same parameter types cannot be overloaded if any of them
563      //       is a static member function declaration.
564      if (OldMethod->isStatic() || NewMethod->isStatic()) {
565        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
566        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
567        return true;
568      }
569
570      // C++ [class.mem]p1:
571      //   [...] A member shall not be declared twice in the
572      //   member-specification, except that a nested class or member
573      //   class template can be declared and then later defined.
574      if (OldMethod->getLexicalDeclContext() ==
575            NewMethod->getLexicalDeclContext()) {
576        unsigned NewDiag;
577        if (isa<CXXConstructorDecl>(OldMethod))
578          NewDiag = diag::err_constructor_redeclared;
579        else if (isa<CXXDestructorDecl>(NewMethod))
580          NewDiag = diag::err_destructor_redeclared;
581        else if (isa<CXXConversionDecl>(NewMethod))
582          NewDiag = diag::err_conv_function_redeclared;
583        else
584          NewDiag = diag::err_member_redeclared;
585
586        Diag(New->getLocation(), NewDiag);
587        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
588      }
589    }
590
591    // (C++98 8.3.5p3):
592    //   All declarations for a function shall agree exactly in both the
593    //   return type and the parameter-type-list.
594    if (OldQType == NewQType) {
595      // We have a redeclaration.
596      MergeAttributes(New, Old);
597      return MergeCXXFunctionDecl(New, Old);
598    }
599
600    // Fall through for conflicting redeclarations and redefinitions.
601  }
602
603  // C: Function types need to be compatible, not identical. This handles
604  // duplicate function decls like "void f(int); void f(enum X);" properly.
605  if (!getLangOptions().CPlusPlus &&
606      Context.typesAreCompatible(OldQType, NewQType)) {
607    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
608    const FunctionTypeProto *OldProto = 0;
609    if (isa<FunctionTypeNoProto>(NewFuncType) &&
610        (OldProto = OldQType->getAsFunctionTypeProto())) {
611      // The old declaration provided a function prototype, but the
612      // new declaration does not. Merge in the prototype.
613      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
614                                                 OldProto->arg_type_end());
615      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
616                                         &ParamTypes[0], ParamTypes.size(),
617                                         OldProto->isVariadic(),
618                                         OldProto->getTypeQuals());
619      New->setType(NewQType);
620      New->setInheritedPrototype();
621
622      // Synthesize a parameter for each argument type.
623      llvm::SmallVector<ParmVarDecl*, 16> Params;
624      for (FunctionTypeProto::arg_type_iterator
625             ParamType = OldProto->arg_type_begin(),
626             ParamEnd = OldProto->arg_type_end();
627           ParamType != ParamEnd; ++ParamType) {
628        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
629                                                 SourceLocation(), 0,
630                                                 *ParamType, VarDecl::None,
631                                                 0);
632        Param->setImplicit();
633        Params.push_back(Param);
634      }
635
636      New->setParams(Context, &Params[0], Params.size());
637
638    }
639
640    MergeAttributes(New, Old);
641
642    return false;
643  }
644
645  // A function that has already been declared has been redeclared or defined
646  // with a different type- show appropriate diagnostic
647  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
648    // The user has declared a builtin function with an incompatible
649    // signature.
650    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
651      // The function the user is redeclaring is a library-defined
652      // function like 'malloc' or 'printf'. Warn about the
653      // redeclaration, then ignore it.
654      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
655      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
656        << Old << Old->getType();
657      return false;
658    }
659
660    PrevDiag = diag::note_previous_builtin_declaration;
661  }
662
663  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
664  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
665  return true;
666}
667
668/// Predicate for C "tentative" external object definitions (C99 6.9.2).
669static bool isTentativeDefinition(VarDecl *VD) {
670  if (VD->isFileVarDecl())
671    return (!VD->getInit() &&
672            (VD->getStorageClass() == VarDecl::None ||
673             VD->getStorageClass() == VarDecl::Static));
674  return false;
675}
676
677/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
678/// when dealing with C "tentative" external object definitions (C99 6.9.2).
679void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
680  bool VDIsTentative = isTentativeDefinition(VD);
681  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
682
683  // FIXME: I don't think this will actually see all of the
684  // redefinitions. Can't we check this property on-the-fly?
685  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
686                                    E = IdResolver.end();
687       I != E; ++I) {
688    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
689      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
690
691      // Handle the following case:
692      //   int a[10];
693      //   int a[];   - the code below makes sure we set the correct type.
694      //   int a[11]; - this is an error, size isn't 10.
695      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
696          OldDecl->getType()->isConstantArrayType())
697        VD->setType(OldDecl->getType());
698
699      // Check for "tentative" definitions. We can't accomplish this in
700      // MergeVarDecl since the initializer hasn't been attached.
701      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
702        continue;
703
704      // Handle __private_extern__ just like extern.
705      if (OldDecl->getStorageClass() != VarDecl::Extern &&
706          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
707          VD->getStorageClass() != VarDecl::Extern &&
708          VD->getStorageClass() != VarDecl::PrivateExtern) {
709        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
710        Diag(OldDecl->getLocation(), diag::note_previous_definition);
711        // One redefinition error is enough.
712        break;
713      }
714    }
715  }
716}
717
718/// MergeVarDecl - We just parsed a variable 'New' which has the same name
719/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
720/// situation, merging decls or emitting diagnostics as appropriate.
721///
722/// Tentative definition rules (C99 6.9.2p2) are checked by
723/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
724/// definitions here, since the initializer hasn't been attached.
725///
726bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
727  // Verify the old decl was also a variable.
728  VarDecl *Old = dyn_cast<VarDecl>(OldD);
729  if (!Old) {
730    Diag(New->getLocation(), diag::err_redefinition_different_kind)
731      << New->getDeclName();
732    Diag(OldD->getLocation(), diag::note_previous_definition);
733    return true;
734  }
735
736  MergeAttributes(New, Old);
737
738  // Merge the types
739  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
740  if (MergedT.isNull()) {
741    Diag(New->getLocation(), diag::err_redefinition_different_type)
742      << New->getDeclName();
743    Diag(Old->getLocation(), diag::note_previous_definition);
744    return true;
745  }
746  New->setType(MergedT);
747  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
748  if (New->getStorageClass() == VarDecl::Static &&
749      (Old->getStorageClass() == VarDecl::None ||
750       Old->getStorageClass() == VarDecl::Extern)) {
751    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
752    Diag(Old->getLocation(), diag::note_previous_definition);
753    return true;
754  }
755  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
756  if (New->getStorageClass() != VarDecl::Static &&
757      Old->getStorageClass() == VarDecl::Static) {
758    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
759    Diag(Old->getLocation(), diag::note_previous_definition);
760    return true;
761  }
762  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
763  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
764    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
765    Diag(Old->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768  return false;
769}
770
771/// CheckParmsForFunctionDef - Check that the parameters of the given
772/// function are appropriate for the definition of a function. This
773/// takes care of any checks that cannot be performed on the
774/// declaration itself, e.g., that the types of each of the function
775/// parameters are complete.
776bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
777  bool HasInvalidParm = false;
778  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
779    ParmVarDecl *Param = FD->getParamDecl(p);
780
781    // C99 6.7.5.3p4: the parameters in a parameter type list in a
782    // function declarator that is part of a function definition of
783    // that function shall not have incomplete type.
784    if (!Param->isInvalidDecl() &&
785        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
786                               diag::err_typecheck_decl_incomplete_type)) {
787      Param->setInvalidDecl();
788      HasInvalidParm = true;
789    }
790
791    // C99 6.9.1p5: If the declarator includes a parameter type list, the
792    // declaration of each parameter shall include an identifier.
793    if (Param->getIdentifier() == 0 &&
794        !Param->isImplicit() &&
795        !getLangOptions().CPlusPlus)
796      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
797  }
798
799  return HasInvalidParm;
800}
801
802/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
803/// no declarator (e.g. "struct foo;") is parsed.
804Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
805  TagDecl *Tag = 0;
806  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
807      DS.getTypeSpecType() == DeclSpec::TST_struct ||
808      DS.getTypeSpecType() == DeclSpec::TST_union ||
809      DS.getTypeSpecType() == DeclSpec::TST_enum)
810    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
811
812  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
813    if (!Record->getDeclName() && Record->isDefinition() &&
814        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
815      return BuildAnonymousStructOrUnion(S, DS, Record);
816
817    // Microsoft allows unnamed struct/union fields. Don't complain
818    // about them.
819    // FIXME: Should we support Microsoft's extensions in this area?
820    if (Record->getDeclName() && getLangOptions().Microsoft)
821      return Tag;
822  }
823
824  if (!DS.isMissingDeclaratorOk() &&
825      DS.getTypeSpecType() != DeclSpec::TST_error) {
826    // Warn about typedefs of enums without names, since this is an
827    // extension in both Microsoft an GNU.
828    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
829        Tag && isa<EnumDecl>(Tag)) {
830      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
831        << DS.getSourceRange();
832      return Tag;
833    }
834
835    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
836      << DS.getSourceRange();
837    return 0;
838  }
839
840  return Tag;
841}
842
843/// InjectAnonymousStructOrUnionMembers - Inject the members of the
844/// anonymous struct or union AnonRecord into the owning context Owner
845/// and scope S. This routine will be invoked just after we realize
846/// that an unnamed union or struct is actually an anonymous union or
847/// struct, e.g.,
848///
849/// @code
850/// union {
851///   int i;
852///   float f;
853/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
854///    // f into the surrounding scope.x
855/// @endcode
856///
857/// This routine is recursive, injecting the names of nested anonymous
858/// structs/unions into the owning context and scope as well.
859bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
860                                               RecordDecl *AnonRecord) {
861  bool Invalid = false;
862  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
863                               FEnd = AnonRecord->field_end();
864       F != FEnd; ++F) {
865    if ((*F)->getDeclName()) {
866      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
867                                                LookupOrdinaryName, true);
868      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
869        // C++ [class.union]p2:
870        //   The names of the members of an anonymous union shall be
871        //   distinct from the names of any other entity in the
872        //   scope in which the anonymous union is declared.
873        unsigned diagKind
874          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
875                                 : diag::err_anonymous_struct_member_redecl;
876        Diag((*F)->getLocation(), diagKind)
877          << (*F)->getDeclName();
878        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
879        Invalid = true;
880      } else {
881        // C++ [class.union]p2:
882        //   For the purpose of name lookup, after the anonymous union
883        //   definition, the members of the anonymous union are
884        //   considered to have been defined in the scope in which the
885        //   anonymous union is declared.
886        Owner->makeDeclVisibleInContext(*F);
887        S->AddDecl(*F);
888        IdResolver.AddDecl(*F);
889      }
890    } else if (const RecordType *InnerRecordType
891                 = (*F)->getType()->getAsRecordType()) {
892      RecordDecl *InnerRecord = InnerRecordType->getDecl();
893      if (InnerRecord->isAnonymousStructOrUnion())
894        Invalid = Invalid ||
895          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
896    }
897  }
898
899  return Invalid;
900}
901
902/// ActOnAnonymousStructOrUnion - Handle the declaration of an
903/// anonymous structure or union. Anonymous unions are a C++ feature
904/// (C++ [class.union]) and a GNU C extension; anonymous structures
905/// are a GNU C and GNU C++ extension.
906Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
907                                                RecordDecl *Record) {
908  DeclContext *Owner = Record->getDeclContext();
909
910  // Diagnose whether this anonymous struct/union is an extension.
911  if (Record->isUnion() && !getLangOptions().CPlusPlus)
912    Diag(Record->getLocation(), diag::ext_anonymous_union);
913  else if (!Record->isUnion())
914    Diag(Record->getLocation(), diag::ext_anonymous_struct);
915
916  // C and C++ require different kinds of checks for anonymous
917  // structs/unions.
918  bool Invalid = false;
919  if (getLangOptions().CPlusPlus) {
920    const char* PrevSpec = 0;
921    // C++ [class.union]p3:
922    //   Anonymous unions declared in a named namespace or in the
923    //   global namespace shall be declared static.
924    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
925        (isa<TranslationUnitDecl>(Owner) ||
926         (isa<NamespaceDecl>(Owner) &&
927          cast<NamespaceDecl>(Owner)->getDeclName()))) {
928      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
929      Invalid = true;
930
931      // Recover by adding 'static'.
932      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
933    }
934    // C++ [class.union]p3:
935    //   A storage class is not allowed in a declaration of an
936    //   anonymous union in a class scope.
937    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
938             isa<RecordDecl>(Owner)) {
939      Diag(DS.getStorageClassSpecLoc(),
940           diag::err_anonymous_union_with_storage_spec);
941      Invalid = true;
942
943      // Recover by removing the storage specifier.
944      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
945                             PrevSpec);
946    }
947
948    // C++ [class.union]p2:
949    //   The member-specification of an anonymous union shall only
950    //   define non-static data members. [Note: nested types and
951    //   functions cannot be declared within an anonymous union. ]
952    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
953                                 MemEnd = Record->decls_end();
954         Mem != MemEnd; ++Mem) {
955      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
956        // C++ [class.union]p3:
957        //   An anonymous union shall not have private or protected
958        //   members (clause 11).
959        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
960          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
961            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
962          Invalid = true;
963        }
964      } else if ((*Mem)->isImplicit()) {
965        // Any implicit members are fine.
966      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
967        // This is a type that showed up in an
968        // elaborated-type-specifier inside the anonymous struct or
969        // union, but which actually declares a type outside of the
970        // anonymous struct or union. It's okay.
971      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
972        if (!MemRecord->isAnonymousStructOrUnion() &&
973            MemRecord->getDeclName()) {
974          // This is a nested type declaration.
975          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
976            << (int)Record->isUnion();
977          Invalid = true;
978        }
979      } else {
980        // We have something that isn't a non-static data
981        // member. Complain about it.
982        unsigned DK = diag::err_anonymous_record_bad_member;
983        if (isa<TypeDecl>(*Mem))
984          DK = diag::err_anonymous_record_with_type;
985        else if (isa<FunctionDecl>(*Mem))
986          DK = diag::err_anonymous_record_with_function;
987        else if (isa<VarDecl>(*Mem))
988          DK = diag::err_anonymous_record_with_static;
989        Diag((*Mem)->getLocation(), DK)
990            << (int)Record->isUnion();
991          Invalid = true;
992      }
993    }
994  } else {
995    // FIXME: Check GNU C semantics
996    if (Record->isUnion() && !Owner->isRecord()) {
997      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
998        << (int)getLangOptions().CPlusPlus;
999      Invalid = true;
1000    }
1001  }
1002
1003  if (!Record->isUnion() && !Owner->isRecord()) {
1004    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1005      << (int)getLangOptions().CPlusPlus;
1006    Invalid = true;
1007  }
1008
1009  // Create a declaration for this anonymous struct/union.
1010  NamedDecl *Anon = 0;
1011  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1012    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1013                             /*IdentifierInfo=*/0,
1014                             Context.getTypeDeclType(Record),
1015                             /*BitWidth=*/0, /*Mutable=*/false);
1016    Anon->setAccess(AS_public);
1017    if (getLangOptions().CPlusPlus)
1018      FieldCollector->Add(cast<FieldDecl>(Anon));
1019  } else {
1020    VarDecl::StorageClass SC;
1021    switch (DS.getStorageClassSpec()) {
1022    default: assert(0 && "Unknown storage class!");
1023    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1024    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1025    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1026    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1027    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1028    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1029    case DeclSpec::SCS_mutable:
1030      // mutable can only appear on non-static class members, so it's always
1031      // an error here
1032      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1033      Invalid = true;
1034      SC = VarDecl::None;
1035      break;
1036    }
1037
1038    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1039                           /*IdentifierInfo=*/0,
1040                           Context.getTypeDeclType(Record),
1041                           SC, DS.getSourceRange().getBegin());
1042  }
1043  Anon->setImplicit();
1044
1045  // Add the anonymous struct/union object to the current
1046  // context. We'll be referencing this object when we refer to one of
1047  // its members.
1048  Owner->addDecl(Anon);
1049
1050  // Inject the members of the anonymous struct/union into the owning
1051  // context and into the identifier resolver chain for name lookup
1052  // purposes.
1053  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1054    Invalid = true;
1055
1056  // Mark this as an anonymous struct/union type. Note that we do not
1057  // do this until after we have already checked and injected the
1058  // members of this anonymous struct/union type, because otherwise
1059  // the members could be injected twice: once by DeclContext when it
1060  // builds its lookup table, and once by
1061  // InjectAnonymousStructOrUnionMembers.
1062  Record->setAnonymousStructOrUnion(true);
1063
1064  if (Invalid)
1065    Anon->setInvalidDecl();
1066
1067  return Anon;
1068}
1069
1070bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1071                                  bool DirectInit) {
1072  // Get the type before calling CheckSingleAssignmentConstraints(), since
1073  // it can promote the expression.
1074  QualType InitType = Init->getType();
1075
1076  if (getLangOptions().CPlusPlus) {
1077    // FIXME: I dislike this error message. A lot.
1078    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1079      return Diag(Init->getSourceRange().getBegin(),
1080                  diag::err_typecheck_convert_incompatible)
1081        << DeclType << Init->getType() << "initializing"
1082        << Init->getSourceRange();
1083
1084    return false;
1085  }
1086
1087  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1088  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1089                                  InitType, Init, "initializing");
1090}
1091
1092bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1093  const ArrayType *AT = Context.getAsArrayType(DeclT);
1094
1095  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1096    // C99 6.7.8p14. We have an array of character type with unknown size
1097    // being initialized to a string literal.
1098    llvm::APSInt ConstVal(32);
1099    ConstVal = strLiteral->getByteLength() + 1;
1100    // Return a new array type (C99 6.7.8p22).
1101    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1102                                         ArrayType::Normal, 0);
1103  } else {
1104    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1105    // C99 6.7.8p14. We have an array of character type with known size.
1106    // FIXME: Avoid truncation for 64-bit length strings.
1107    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1108      Diag(strLiteral->getSourceRange().getBegin(),
1109           diag::warn_initializer_string_for_char_array_too_long)
1110        << strLiteral->getSourceRange();
1111  }
1112  // Set type from "char *" to "constant array of char".
1113  strLiteral->setType(DeclT);
1114  // For now, we always return false (meaning success).
1115  return false;
1116}
1117
1118StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1119  const ArrayType *AT = Context.getAsArrayType(DeclType);
1120  if (AT && AT->getElementType()->isCharType()) {
1121    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1122  }
1123  return 0;
1124}
1125
1126bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1127                                 SourceLocation InitLoc,
1128                                 DeclarationName InitEntity,
1129                                 bool DirectInit) {
1130  if (DeclType->isDependentType() || Init->isTypeDependent())
1131    return false;
1132
1133  // C++ [dcl.init.ref]p1:
1134  //   A variable declared to be a T&, that is "reference to type T"
1135  //   (8.3.2), shall be initialized by an object, or function, of
1136  //   type T or by an object that can be converted into a T.
1137  if (DeclType->isReferenceType())
1138    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1139
1140  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1141  // of unknown size ("[]") or an object type that is not a variable array type.
1142  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1143    return Diag(InitLoc,  diag::err_variable_object_no_init)
1144      << VAT->getSizeExpr()->getSourceRange();
1145
1146  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1147  if (!InitList) {
1148    // FIXME: Handle wide strings
1149    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1150      return CheckStringLiteralInit(strLiteral, DeclType);
1151
1152    // C++ [dcl.init]p14:
1153    //   -- If the destination type is a (possibly cv-qualified) class
1154    //      type:
1155    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1156      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1157      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1158
1159      //   -- If the initialization is direct-initialization, or if it is
1160      //      copy-initialization where the cv-unqualified version of the
1161      //      source type is the same class as, or a derived class of, the
1162      //      class of the destination, constructors are considered.
1163      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1164          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1165        CXXConstructorDecl *Constructor
1166          = PerformInitializationByConstructor(DeclType, &Init, 1,
1167                                               InitLoc, Init->getSourceRange(),
1168                                               InitEntity,
1169                                               DirectInit? IK_Direct : IK_Copy);
1170        return Constructor == 0;
1171      }
1172
1173      //   -- Otherwise (i.e., for the remaining copy-initialization
1174      //      cases), user-defined conversion sequences that can
1175      //      convert from the source type to the destination type or
1176      //      (when a conversion function is used) to a derived class
1177      //      thereof are enumerated as described in 13.3.1.4, and the
1178      //      best one is chosen through overload resolution
1179      //      (13.3). If the conversion cannot be done or is
1180      //      ambiguous, the initialization is ill-formed. The
1181      //      function selected is called with the initializer
1182      //      expression as its argument; if the function is a
1183      //      constructor, the call initializes a temporary of the
1184      //      destination type.
1185      // FIXME: We're pretending to do copy elision here; return to
1186      // this when we have ASTs for such things.
1187      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1188        return false;
1189
1190      if (InitEntity)
1191        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1192          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1193          << Init->getType() << Init->getSourceRange();
1194      else
1195        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1196          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1197          << Init->getType() << Init->getSourceRange();
1198    }
1199
1200    // C99 6.7.8p16.
1201    if (DeclType->isArrayType())
1202      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1203        << Init->getSourceRange();
1204
1205    return CheckSingleInitializer(Init, DeclType, DirectInit);
1206  }
1207
1208  bool hadError = CheckInitList(InitList, DeclType);
1209  Init = InitList;
1210  return hadError;
1211}
1212
1213/// GetNameForDeclarator - Determine the full declaration name for the
1214/// given Declarator.
1215DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1216  switch (D.getKind()) {
1217  case Declarator::DK_Abstract:
1218    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1219    return DeclarationName();
1220
1221  case Declarator::DK_Normal:
1222    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1223    return DeclarationName(D.getIdentifier());
1224
1225  case Declarator::DK_Constructor: {
1226    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1227    Ty = Context.getCanonicalType(Ty);
1228    return Context.DeclarationNames.getCXXConstructorName(Ty);
1229  }
1230
1231  case Declarator::DK_Destructor: {
1232    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1233    Ty = Context.getCanonicalType(Ty);
1234    return Context.DeclarationNames.getCXXDestructorName(Ty);
1235  }
1236
1237  case Declarator::DK_Conversion: {
1238    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1239    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1240    Ty = Context.getCanonicalType(Ty);
1241    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1242  }
1243
1244  case Declarator::DK_Operator:
1245    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1246    return Context.DeclarationNames.getCXXOperatorName(
1247                                                D.getOverloadedOperator());
1248  }
1249
1250  assert(false && "Unknown name kind");
1251  return DeclarationName();
1252}
1253
1254/// isNearlyMatchingFunction - Determine whether the C++ functions
1255/// Declaration and Definition are "nearly" matching. This heuristic
1256/// is used to improve diagnostics in the case where an out-of-line
1257/// function definition doesn't match any declaration within
1258/// the class or namespace.
1259static bool isNearlyMatchingFunction(ASTContext &Context,
1260                                     FunctionDecl *Declaration,
1261                                     FunctionDecl *Definition) {
1262  if (Declaration->param_size() != Definition->param_size())
1263    return false;
1264  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1265    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1266    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1267
1268    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1269    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1270    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1271      return false;
1272  }
1273
1274  return true;
1275}
1276
1277Sema::DeclTy *
1278Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1279                      bool IsFunctionDefinition) {
1280  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1281  DeclarationName Name = GetNameForDeclarator(D);
1282
1283  // All of these full declarators require an identifier.  If it doesn't have
1284  // one, the ParsedFreeStandingDeclSpec action should be used.
1285  if (!Name) {
1286    if (!D.getInvalidType())  // Reject this if we think it is valid.
1287      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1288           diag::err_declarator_need_ident)
1289        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1290    return 0;
1291  }
1292
1293  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1294  // we find one that is.
1295  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1296         (S->getFlags() & Scope::TemplateParamScope) != 0)
1297    S = S->getParent();
1298
1299  DeclContext *DC;
1300  NamedDecl *PrevDecl;
1301  NamedDecl *New;
1302  bool InvalidDecl = false;
1303
1304  // See if this is a redefinition of a variable in the same scope.
1305  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1306    DC = CurContext;
1307    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true,
1308                          D.getDeclSpec().getStorageClassSpec() !=
1309                            DeclSpec::SCS_static,
1310                          D.getIdentifierLoc());
1311  } else { // Something like "int foo::x;"
1312    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1313    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1314
1315    // C++ 7.3.1.2p2:
1316    // Members (including explicit specializations of templates) of a named
1317    // namespace can also be defined outside that namespace by explicit
1318    // qualification of the name being defined, provided that the entity being
1319    // defined was already declared in the namespace and the definition appears
1320    // after the point of declaration in a namespace that encloses the
1321    // declarations namespace.
1322    //
1323    // Note that we only check the context at this point. We don't yet
1324    // have enough information to make sure that PrevDecl is actually
1325    // the declaration we want to match. For example, given:
1326    //
1327    //   class X {
1328    //     void f();
1329    //     void f(float);
1330    //   };
1331    //
1332    //   void X::f(int) { } // ill-formed
1333    //
1334    // In this case, PrevDecl will point to the overload set
1335    // containing the two f's declared in X, but neither of them
1336    // matches.
1337
1338    // First check whether we named the global scope.
1339    if (isa<TranslationUnitDecl>(DC)) {
1340      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1341        << Name << D.getCXXScopeSpec().getRange();
1342    } else if (!CurContext->Encloses(DC)) {
1343      // The qualifying scope doesn't enclose the original declaration.
1344      // Emit diagnostic based on current scope.
1345      SourceLocation L = D.getIdentifierLoc();
1346      SourceRange R = D.getCXXScopeSpec().getRange();
1347      if (isa<FunctionDecl>(CurContext))
1348        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1349      else
1350        Diag(L, diag::err_invalid_declarator_scope)
1351          << Name << cast<NamedDecl>(DC) << R;
1352      InvalidDecl = true;
1353    }
1354  }
1355
1356  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1357    // Maybe we will complain about the shadowed template parameter.
1358    InvalidDecl = InvalidDecl
1359      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1360    // Just pretend that we didn't see the previous declaration.
1361    PrevDecl = 0;
1362  }
1363
1364  // In C++, the previous declaration we find might be a tag type
1365  // (class or enum). In this case, the new declaration will hide the
1366  // tag type. Note that this does does not apply if we're declaring a
1367  // typedef (C++ [dcl.typedef]p4).
1368  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1369      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1370    PrevDecl = 0;
1371
1372  QualType R = GetTypeForDeclarator(D, S);
1373  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1374
1375  bool Redeclaration = false;
1376  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1377    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1378                                 InvalidDecl, Redeclaration);
1379  } else if (R.getTypePtr()->isFunctionType()) {
1380    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1381                                  IsFunctionDefinition, InvalidDecl,
1382                                  Redeclaration);
1383  } else {
1384    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1385                                  InvalidDecl, Redeclaration);
1386  }
1387
1388  if (New == 0)
1389    return 0;
1390
1391  // Set the lexical context. If the declarator has a C++ scope specifier, the
1392  // lexical context will be different from the semantic context.
1393  New->setLexicalDeclContext(CurContext);
1394
1395  // If this has an identifier and is not an invalid redeclaration,
1396  // add it to the scope stack.
1397  if (Name && !(Redeclaration && InvalidDecl))
1398    PushOnScopeChains(New, S);
1399  // If any semantic error occurred, mark the decl as invalid.
1400  if (D.getInvalidType() || InvalidDecl)
1401    New->setInvalidDecl();
1402
1403  return New;
1404}
1405
1406NamedDecl*
1407Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1408                             QualType R, Decl* LastDeclarator,
1409                             Decl* PrevDecl, bool& InvalidDecl,
1410                             bool &Redeclaration) {
1411  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1412  if (D.getCXXScopeSpec().isSet()) {
1413    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1414      << D.getCXXScopeSpec().getRange();
1415    InvalidDecl = true;
1416    // Pretend we didn't see the scope specifier.
1417    DC = 0;
1418  }
1419
1420  // Check that there are no default arguments (C++ only).
1421  if (getLangOptions().CPlusPlus)
1422    CheckExtraCXXDefaultArguments(D);
1423
1424  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1425  if (!NewTD) return 0;
1426
1427  // Handle attributes prior to checking for duplicates in MergeVarDecl
1428  ProcessDeclAttributes(NewTD, D);
1429  // Merge the decl with the existing one if appropriate. If the decl is
1430  // in an outer scope, it isn't the same thing.
1431  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1432    Redeclaration = true;
1433    if (MergeTypeDefDecl(NewTD, PrevDecl))
1434      InvalidDecl = true;
1435  }
1436
1437  if (S->getFnParent() == 0) {
1438    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1439    // then it shall have block scope.
1440    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1441      if (NewTD->getUnderlyingType()->isVariableArrayType())
1442        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1443      else
1444        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1445
1446      InvalidDecl = true;
1447    }
1448  }
1449  return NewTD;
1450}
1451
1452NamedDecl*
1453Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1454                              QualType R, Decl* LastDeclarator,
1455                              Decl* PrevDecl, bool& InvalidDecl,
1456                              bool &Redeclaration) {
1457  DeclarationName Name = GetNameForDeclarator(D);
1458
1459  // Check that there are no default arguments (C++ only).
1460  if (getLangOptions().CPlusPlus)
1461    CheckExtraCXXDefaultArguments(D);
1462
1463  if (R.getTypePtr()->isObjCInterfaceType()) {
1464    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1465      << D.getIdentifier();
1466    InvalidDecl = true;
1467  }
1468
1469  VarDecl *NewVD;
1470  VarDecl::StorageClass SC;
1471  switch (D.getDeclSpec().getStorageClassSpec()) {
1472  default: assert(0 && "Unknown storage class!");
1473  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1474  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1475  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1476  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1477  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1478  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1479  case DeclSpec::SCS_mutable:
1480    // mutable can only appear on non-static class members, so it's always
1481    // an error here
1482    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1483    InvalidDecl = true;
1484    SC = VarDecl::None;
1485    break;
1486  }
1487
1488  IdentifierInfo *II = Name.getAsIdentifierInfo();
1489  if (!II) {
1490    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1491      << Name.getAsString();
1492    return 0;
1493  }
1494
1495  if (DC->isRecord()) {
1496    // This is a static data member for a C++ class.
1497    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1498                                    D.getIdentifierLoc(), II,
1499                                    R);
1500  } else {
1501    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1502    if (S->getFnParent() == 0) {
1503      // C99 6.9p2: The storage-class specifiers auto and register shall not
1504      // appear in the declaration specifiers in an external declaration.
1505      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1506        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1507        InvalidDecl = true;
1508      }
1509    }
1510    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1511                            II, R, SC,
1512                            // FIXME: Move to DeclGroup...
1513                            D.getDeclSpec().getSourceRange().getBegin());
1514    NewVD->setThreadSpecified(ThreadSpecified);
1515  }
1516  NewVD->setNextDeclarator(LastDeclarator);
1517
1518  // Handle attributes prior to checking for duplicates in MergeVarDecl
1519  ProcessDeclAttributes(NewVD, D);
1520
1521  // Handle GNU asm-label extension (encoded as an attribute).
1522  if (Expr *E = (Expr*) D.getAsmLabel()) {
1523    // The parser guarantees this is a string.
1524    StringLiteral *SE = cast<StringLiteral>(E);
1525    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1526                                                SE->getByteLength())));
1527  }
1528
1529  // Emit an error if an address space was applied to decl with local storage.
1530  // This includes arrays of objects with address space qualifiers, but not
1531  // automatic variables that point to other address spaces.
1532  // ISO/IEC TR 18037 S5.1.2
1533  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1534    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1535    InvalidDecl = true;
1536  }
1537  // Merge the decl with the existing one if appropriate. If the decl is
1538  // in an outer scope, it isn't the same thing.
1539  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1540    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1541      // The user tried to define a non-static data member
1542      // out-of-line (C++ [dcl.meaning]p1).
1543      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1544        << D.getCXXScopeSpec().getRange();
1545      NewVD->Destroy(Context);
1546      return 0;
1547    }
1548
1549    Redeclaration = true;
1550    if (MergeVarDecl(NewVD, PrevDecl))
1551      InvalidDecl = true;
1552
1553    if (D.getCXXScopeSpec().isSet()) {
1554      // No previous declaration in the qualifying scope.
1555      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1556        << Name << D.getCXXScopeSpec().getRange();
1557      InvalidDecl = true;
1558    }
1559  }
1560  return NewVD;
1561}
1562
1563NamedDecl*
1564Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1565                              QualType R, Decl *LastDeclarator,
1566                              Decl* PrevDecl, bool IsFunctionDefinition,
1567                              bool& InvalidDecl, bool &Redeclaration) {
1568  assert(R.getTypePtr()->isFunctionType());
1569
1570  DeclarationName Name = GetNameForDeclarator(D);
1571  FunctionDecl::StorageClass SC = FunctionDecl::None;
1572  switch (D.getDeclSpec().getStorageClassSpec()) {
1573  default: assert(0 && "Unknown storage class!");
1574  case DeclSpec::SCS_auto:
1575  case DeclSpec::SCS_register:
1576  case DeclSpec::SCS_mutable:
1577    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1578    InvalidDecl = true;
1579    break;
1580  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1581  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1582  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1583  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1584  }
1585
1586  bool isInline = D.getDeclSpec().isInlineSpecified();
1587  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1588  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1589
1590  FunctionDecl *NewFD;
1591  if (D.getKind() == Declarator::DK_Constructor) {
1592    // This is a C++ constructor declaration.
1593    assert(DC->isRecord() &&
1594           "Constructors can only be declared in a member context");
1595
1596    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1597
1598    // Create the new declaration
1599    NewFD = CXXConstructorDecl::Create(Context,
1600                                       cast<CXXRecordDecl>(DC),
1601                                       D.getIdentifierLoc(), Name, R,
1602                                       isExplicit, isInline,
1603                                       /*isImplicitlyDeclared=*/false);
1604
1605    if (InvalidDecl)
1606      NewFD->setInvalidDecl();
1607  } else if (D.getKind() == Declarator::DK_Destructor) {
1608    // This is a C++ destructor declaration.
1609    if (DC->isRecord()) {
1610      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1611
1612      NewFD = CXXDestructorDecl::Create(Context,
1613                                        cast<CXXRecordDecl>(DC),
1614                                        D.getIdentifierLoc(), Name, R,
1615                                        isInline,
1616                                        /*isImplicitlyDeclared=*/false);
1617
1618      if (InvalidDecl)
1619        NewFD->setInvalidDecl();
1620    } else {
1621      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1622
1623      // Create a FunctionDecl to satisfy the function definition parsing
1624      // code path.
1625      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1626                                   Name, R, SC, isInline,
1627                                   // FIXME: Move to DeclGroup...
1628                                   D.getDeclSpec().getSourceRange().getBegin());
1629      InvalidDecl = true;
1630      NewFD->setInvalidDecl();
1631    }
1632  } else if (D.getKind() == Declarator::DK_Conversion) {
1633    if (!DC->isRecord()) {
1634      Diag(D.getIdentifierLoc(),
1635           diag::err_conv_function_not_member);
1636      return 0;
1637    } else {
1638      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1639
1640      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1641                                        D.getIdentifierLoc(), Name, R,
1642                                        isInline, isExplicit);
1643
1644      if (InvalidDecl)
1645        NewFD->setInvalidDecl();
1646    }
1647  } else if (DC->isRecord()) {
1648    // This is a C++ method declaration.
1649    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1650                                  D.getIdentifierLoc(), Name, R,
1651                                  (SC == FunctionDecl::Static), isInline);
1652  } else {
1653    NewFD = FunctionDecl::Create(Context, DC,
1654                                 D.getIdentifierLoc(),
1655                                 Name, R, SC, isInline,
1656                                 // FIXME: Move to DeclGroup...
1657                                 D.getDeclSpec().getSourceRange().getBegin());
1658  }
1659  NewFD->setNextDeclarator(LastDeclarator);
1660
1661  // Set the lexical context. If the declarator has a C++
1662  // scope specifier, the lexical context will be different
1663  // from the semantic context.
1664  NewFD->setLexicalDeclContext(CurContext);
1665
1666  // Handle GNU asm-label extension (encoded as an attribute).
1667  if (Expr *E = (Expr*) D.getAsmLabel()) {
1668    // The parser guarantees this is a string.
1669    StringLiteral *SE = cast<StringLiteral>(E);
1670    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1671                                                SE->getByteLength())));
1672  }
1673
1674  // Copy the parameter declarations from the declarator D to
1675  // the function declaration NewFD, if they are available.
1676  if (D.getNumTypeObjects() > 0) {
1677    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1678
1679    // Create Decl objects for each parameter, adding them to the
1680    // FunctionDecl.
1681    llvm::SmallVector<ParmVarDecl*, 16> Params;
1682
1683    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1684    // function that takes no arguments, not a function that takes a
1685    // single void argument.
1686    // We let through "const void" here because Sema::GetTypeForDeclarator
1687    // already checks for that case.
1688    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1689        FTI.ArgInfo[0].Param &&
1690        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1691      // empty arg list, don't push any params.
1692      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1693
1694      // In C++, the empty parameter-type-list must be spelled "void"; a
1695      // typedef of void is not permitted.
1696      if (getLangOptions().CPlusPlus &&
1697          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1698        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1699      }
1700    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1701      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1702        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1703    }
1704
1705    NewFD->setParams(Context, &Params[0], Params.size());
1706  } else if (R->getAsTypedefType()) {
1707    // When we're declaring a function with a typedef, as in the
1708    // following example, we'll need to synthesize (unnamed)
1709    // parameters for use in the declaration.
1710    //
1711    // @code
1712    // typedef void fn(int);
1713    // fn f;
1714    // @endcode
1715    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1716    if (!FT) {
1717      // This is a typedef of a function with no prototype, so we
1718      // don't need to do anything.
1719    } else if ((FT->getNumArgs() == 0) ||
1720               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1721                FT->getArgType(0)->isVoidType())) {
1722      // This is a zero-argument function. We don't need to do anything.
1723    } else {
1724      // Synthesize a parameter for each argument type.
1725      llvm::SmallVector<ParmVarDecl*, 16> Params;
1726      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1727           ArgType != FT->arg_type_end(); ++ArgType) {
1728        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1729                                                 SourceLocation(), 0,
1730                                                 *ArgType, VarDecl::None,
1731                                                 0);
1732        Param->setImplicit();
1733        Params.push_back(Param);
1734      }
1735
1736      NewFD->setParams(Context, &Params[0], Params.size());
1737    }
1738  }
1739
1740  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1741    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1742  else if (isa<CXXDestructorDecl>(NewFD)) {
1743    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1744    Record->setUserDeclaredDestructor(true);
1745    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1746    // user-defined destructor.
1747    Record->setPOD(false);
1748  } else if (CXXConversionDecl *Conversion =
1749             dyn_cast<CXXConversionDecl>(NewFD))
1750    ActOnConversionDeclarator(Conversion);
1751
1752  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1753  if (NewFD->isOverloadedOperator() &&
1754      CheckOverloadedOperatorDeclaration(NewFD))
1755    NewFD->setInvalidDecl();
1756
1757  // Merge the decl with the existing one if appropriate. Since C functions
1758  // are in a flat namespace, make sure we consider decls in outer scopes.
1759  bool OverloadableAttrRequired = false;
1760  if (PrevDecl &&
1761      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1762    // Determine whether NewFD is an overload of PrevDecl or
1763    // a declaration that requires merging. If it's an overload,
1764    // there's no more work to do here; we'll just add the new
1765    // function to the scope.
1766    OverloadedFunctionDecl::function_iterator MatchedDecl;
1767
1768    if (!getLangOptions().CPlusPlus &&
1769        AllowOverloadingOfFunction(PrevDecl, Context))
1770      OverloadableAttrRequired = true;
1771
1772    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1773        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1774      Redeclaration = true;
1775      Decl *OldDecl = PrevDecl;
1776
1777      // If PrevDecl was an overloaded function, extract the
1778      // FunctionDecl that matched.
1779      if (isa<OverloadedFunctionDecl>(PrevDecl))
1780        OldDecl = *MatchedDecl;
1781
1782      // NewFD and PrevDecl represent declarations that need to be
1783      // merged.
1784      if (MergeFunctionDecl(NewFD, OldDecl))
1785        InvalidDecl = true;
1786
1787      if (!InvalidDecl) {
1788        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1789
1790        // An out-of-line member function declaration must also be a
1791        // definition (C++ [dcl.meaning]p1).
1792        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1793            !InvalidDecl) {
1794          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1795            << D.getCXXScopeSpec().getRange();
1796          NewFD->setInvalidDecl();
1797        }
1798      }
1799    }
1800  }
1801
1802  if (D.getCXXScopeSpec().isSet() &&
1803      (!PrevDecl || !Redeclaration)) {
1804    // The user tried to provide an out-of-line definition for a
1805    // function that is a member of a class or namespace, but there
1806    // was no such member function declared (C++ [class.mfct]p2,
1807    // C++ [namespace.memdef]p2). For example:
1808    //
1809    // class X {
1810    //   void f() const;
1811    // };
1812    //
1813    // void X::f() { } // ill-formed
1814    //
1815    // Complain about this problem, and attempt to suggest close
1816    // matches (e.g., those that differ only in cv-qualifiers and
1817    // whether the parameter types are references).
1818    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1819      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1820    InvalidDecl = true;
1821
1822    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1823                                            true);
1824    assert(!Prev.isAmbiguous() &&
1825           "Cannot have an ambiguity in previous-declaration lookup");
1826    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1827         Func != FuncEnd; ++Func) {
1828      if (isa<FunctionDecl>(*Func) &&
1829          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1830        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1831    }
1832
1833    PrevDecl = 0;
1834  }
1835
1836  // Handle attributes. We need to have merged decls when handling attributes
1837  // (for example to check for conflicts, etc).
1838  ProcessDeclAttributes(NewFD, D);
1839  AddKnownFunctionAttributes(NewFD);
1840
1841  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1842    // If a function name is overloadable in C, then every function
1843    // with that name must be marked "overloadable".
1844    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1845      << Redeclaration << NewFD;
1846    if (PrevDecl)
1847      Diag(PrevDecl->getLocation(),
1848           diag::note_attribute_overloadable_prev_overload);
1849    NewFD->addAttr(new OverloadableAttr);
1850  }
1851
1852  if (getLangOptions().CPlusPlus) {
1853    // In C++, check default arguments now that we have merged decls. Unless
1854    // the lexical context is the class, because in this case this is done
1855    // during delayed parsing anyway.
1856    if (!CurContext->isRecord())
1857      CheckCXXDefaultArguments(NewFD);
1858
1859    // An out-of-line member function declaration must also be a
1860    // definition (C++ [dcl.meaning]p1).
1861    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1862      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1863        << D.getCXXScopeSpec().getRange();
1864      InvalidDecl = true;
1865    }
1866  }
1867  return NewFD;
1868}
1869
1870void Sema::InitializerElementNotConstant(const Expr *Init) {
1871  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1872    << Init->getSourceRange();
1873}
1874
1875bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1876  switch (Init->getStmtClass()) {
1877  default:
1878    InitializerElementNotConstant(Init);
1879    return true;
1880  case Expr::ParenExprClass: {
1881    const ParenExpr* PE = cast<ParenExpr>(Init);
1882    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1883  }
1884  case Expr::CompoundLiteralExprClass:
1885    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1886  case Expr::DeclRefExprClass:
1887  case Expr::QualifiedDeclRefExprClass: {
1888    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1889    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1890      if (VD->hasGlobalStorage())
1891        return false;
1892      InitializerElementNotConstant(Init);
1893      return true;
1894    }
1895    if (isa<FunctionDecl>(D))
1896      return false;
1897    InitializerElementNotConstant(Init);
1898    return true;
1899  }
1900  case Expr::MemberExprClass: {
1901    const MemberExpr *M = cast<MemberExpr>(Init);
1902    if (M->isArrow())
1903      return CheckAddressConstantExpression(M->getBase());
1904    return CheckAddressConstantExpressionLValue(M->getBase());
1905  }
1906  case Expr::ArraySubscriptExprClass: {
1907    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1908    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1909    return CheckAddressConstantExpression(ASE->getBase()) ||
1910           CheckArithmeticConstantExpression(ASE->getIdx());
1911  }
1912  case Expr::StringLiteralClass:
1913  case Expr::PredefinedExprClass:
1914    return false;
1915  case Expr::UnaryOperatorClass: {
1916    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1917
1918    // C99 6.6p9
1919    if (Exp->getOpcode() == UnaryOperator::Deref)
1920      return CheckAddressConstantExpression(Exp->getSubExpr());
1921
1922    InitializerElementNotConstant(Init);
1923    return true;
1924  }
1925  }
1926}
1927
1928bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1929  switch (Init->getStmtClass()) {
1930  default:
1931    InitializerElementNotConstant(Init);
1932    return true;
1933  case Expr::ParenExprClass:
1934    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1935  case Expr::StringLiteralClass:
1936  case Expr::ObjCStringLiteralClass:
1937    return false;
1938  case Expr::CallExprClass:
1939  case Expr::CXXOperatorCallExprClass:
1940    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1941    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1942           Builtin::BI__builtin___CFStringMakeConstantString)
1943      return false;
1944
1945    InitializerElementNotConstant(Init);
1946    return true;
1947
1948  case Expr::UnaryOperatorClass: {
1949    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1950
1951    // C99 6.6p9
1952    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1953      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1954
1955    if (Exp->getOpcode() == UnaryOperator::Extension)
1956      return CheckAddressConstantExpression(Exp->getSubExpr());
1957
1958    InitializerElementNotConstant(Init);
1959    return true;
1960  }
1961  case Expr::BinaryOperatorClass: {
1962    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1963    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1964
1965    Expr *PExp = Exp->getLHS();
1966    Expr *IExp = Exp->getRHS();
1967    if (IExp->getType()->isPointerType())
1968      std::swap(PExp, IExp);
1969
1970    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1971    return CheckAddressConstantExpression(PExp) ||
1972           CheckArithmeticConstantExpression(IExp);
1973  }
1974  case Expr::ImplicitCastExprClass:
1975  case Expr::CStyleCastExprClass: {
1976    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1977    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1978      // Check for implicit promotion
1979      if (SubExpr->getType()->isFunctionType() ||
1980          SubExpr->getType()->isArrayType())
1981        return CheckAddressConstantExpressionLValue(SubExpr);
1982    }
1983
1984    // Check for pointer->pointer cast
1985    if (SubExpr->getType()->isPointerType())
1986      return CheckAddressConstantExpression(SubExpr);
1987
1988    if (SubExpr->getType()->isIntegralType()) {
1989      // Check for the special-case of a pointer->int->pointer cast;
1990      // this isn't standard, but some code requires it. See
1991      // PR2720 for an example.
1992      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1993        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1994          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1995          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1996          if (IntWidth >= PointerWidth) {
1997            return CheckAddressConstantExpression(SubCast->getSubExpr());
1998          }
1999        }
2000      }
2001    }
2002    if (SubExpr->getType()->isArithmeticType()) {
2003      return CheckArithmeticConstantExpression(SubExpr);
2004    }
2005
2006    InitializerElementNotConstant(Init);
2007    return true;
2008  }
2009  case Expr::ConditionalOperatorClass: {
2010    // FIXME: Should we pedwarn here?
2011    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2012    if (!Exp->getCond()->getType()->isArithmeticType()) {
2013      InitializerElementNotConstant(Init);
2014      return true;
2015    }
2016    if (CheckArithmeticConstantExpression(Exp->getCond()))
2017      return true;
2018    if (Exp->getLHS() &&
2019        CheckAddressConstantExpression(Exp->getLHS()))
2020      return true;
2021    return CheckAddressConstantExpression(Exp->getRHS());
2022  }
2023  case Expr::AddrLabelExprClass:
2024    return false;
2025  }
2026}
2027
2028static const Expr* FindExpressionBaseAddress(const Expr* E);
2029
2030static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2031  switch (E->getStmtClass()) {
2032  default:
2033    return E;
2034  case Expr::ParenExprClass: {
2035    const ParenExpr* PE = cast<ParenExpr>(E);
2036    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2037  }
2038  case Expr::MemberExprClass: {
2039    const MemberExpr *M = cast<MemberExpr>(E);
2040    if (M->isArrow())
2041      return FindExpressionBaseAddress(M->getBase());
2042    return FindExpressionBaseAddressLValue(M->getBase());
2043  }
2044  case Expr::ArraySubscriptExprClass: {
2045    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2046    return FindExpressionBaseAddress(ASE->getBase());
2047  }
2048  case Expr::UnaryOperatorClass: {
2049    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2050
2051    if (Exp->getOpcode() == UnaryOperator::Deref)
2052      return FindExpressionBaseAddress(Exp->getSubExpr());
2053
2054    return E;
2055  }
2056  }
2057}
2058
2059static const Expr* FindExpressionBaseAddress(const Expr* E) {
2060  switch (E->getStmtClass()) {
2061  default:
2062    return E;
2063  case Expr::ParenExprClass: {
2064    const ParenExpr* PE = cast<ParenExpr>(E);
2065    return FindExpressionBaseAddress(PE->getSubExpr());
2066  }
2067  case Expr::UnaryOperatorClass: {
2068    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2069
2070    // C99 6.6p9
2071    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2072      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2073
2074    if (Exp->getOpcode() == UnaryOperator::Extension)
2075      return FindExpressionBaseAddress(Exp->getSubExpr());
2076
2077    return E;
2078  }
2079  case Expr::BinaryOperatorClass: {
2080    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2081
2082    Expr *PExp = Exp->getLHS();
2083    Expr *IExp = Exp->getRHS();
2084    if (IExp->getType()->isPointerType())
2085      std::swap(PExp, IExp);
2086
2087    return FindExpressionBaseAddress(PExp);
2088  }
2089  case Expr::ImplicitCastExprClass: {
2090    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2091
2092    // Check for implicit promotion
2093    if (SubExpr->getType()->isFunctionType() ||
2094        SubExpr->getType()->isArrayType())
2095      return FindExpressionBaseAddressLValue(SubExpr);
2096
2097    // Check for pointer->pointer cast
2098    if (SubExpr->getType()->isPointerType())
2099      return FindExpressionBaseAddress(SubExpr);
2100
2101    // We assume that we have an arithmetic expression here;
2102    // if we don't, we'll figure it out later
2103    return 0;
2104  }
2105  case Expr::CStyleCastExprClass: {
2106    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2107
2108    // Check for pointer->pointer cast
2109    if (SubExpr->getType()->isPointerType())
2110      return FindExpressionBaseAddress(SubExpr);
2111
2112    // We assume that we have an arithmetic expression here;
2113    // if we don't, we'll figure it out later
2114    return 0;
2115  }
2116  }
2117}
2118
2119bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2120  switch (Init->getStmtClass()) {
2121  default:
2122    InitializerElementNotConstant(Init);
2123    return true;
2124  case Expr::ParenExprClass: {
2125    const ParenExpr* PE = cast<ParenExpr>(Init);
2126    return CheckArithmeticConstantExpression(PE->getSubExpr());
2127  }
2128  case Expr::FloatingLiteralClass:
2129  case Expr::IntegerLiteralClass:
2130  case Expr::CharacterLiteralClass:
2131  case Expr::ImaginaryLiteralClass:
2132  case Expr::TypesCompatibleExprClass:
2133  case Expr::CXXBoolLiteralExprClass:
2134    return false;
2135  case Expr::CallExprClass:
2136  case Expr::CXXOperatorCallExprClass: {
2137    const CallExpr *CE = cast<CallExpr>(Init);
2138
2139    // Allow any constant foldable calls to builtins.
2140    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2141      return false;
2142
2143    InitializerElementNotConstant(Init);
2144    return true;
2145  }
2146  case Expr::DeclRefExprClass:
2147  case Expr::QualifiedDeclRefExprClass: {
2148    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2149    if (isa<EnumConstantDecl>(D))
2150      return false;
2151    InitializerElementNotConstant(Init);
2152    return true;
2153  }
2154  case Expr::CompoundLiteralExprClass:
2155    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2156    // but vectors are allowed to be magic.
2157    if (Init->getType()->isVectorType())
2158      return false;
2159    InitializerElementNotConstant(Init);
2160    return true;
2161  case Expr::UnaryOperatorClass: {
2162    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2163
2164    switch (Exp->getOpcode()) {
2165    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2166    // See C99 6.6p3.
2167    default:
2168      InitializerElementNotConstant(Init);
2169      return true;
2170    case UnaryOperator::OffsetOf:
2171      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2172        return false;
2173      InitializerElementNotConstant(Init);
2174      return true;
2175    case UnaryOperator::Extension:
2176    case UnaryOperator::LNot:
2177    case UnaryOperator::Plus:
2178    case UnaryOperator::Minus:
2179    case UnaryOperator::Not:
2180      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2181    }
2182  }
2183  case Expr::SizeOfAlignOfExprClass: {
2184    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2185    // Special check for void types, which are allowed as an extension
2186    if (Exp->getTypeOfArgument()->isVoidType())
2187      return false;
2188    // alignof always evaluates to a constant.
2189    // FIXME: is sizeof(int[3.0]) a constant expression?
2190    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2191      InitializerElementNotConstant(Init);
2192      return true;
2193    }
2194    return false;
2195  }
2196  case Expr::BinaryOperatorClass: {
2197    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2198
2199    if (Exp->getLHS()->getType()->isArithmeticType() &&
2200        Exp->getRHS()->getType()->isArithmeticType()) {
2201      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2202             CheckArithmeticConstantExpression(Exp->getRHS());
2203    }
2204
2205    if (Exp->getLHS()->getType()->isPointerType() &&
2206        Exp->getRHS()->getType()->isPointerType()) {
2207      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2208      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2209
2210      // Only allow a null (constant integer) base; we could
2211      // allow some additional cases if necessary, but this
2212      // is sufficient to cover offsetof-like constructs.
2213      if (!LHSBase && !RHSBase) {
2214        return CheckAddressConstantExpression(Exp->getLHS()) ||
2215               CheckAddressConstantExpression(Exp->getRHS());
2216      }
2217    }
2218
2219    InitializerElementNotConstant(Init);
2220    return true;
2221  }
2222  case Expr::ImplicitCastExprClass:
2223  case Expr::CStyleCastExprClass: {
2224    const CastExpr *CE = cast<CastExpr>(Init);
2225    const Expr *SubExpr = CE->getSubExpr();
2226
2227    if (SubExpr->getType()->isArithmeticType())
2228      return CheckArithmeticConstantExpression(SubExpr);
2229
2230    if (SubExpr->getType()->isPointerType()) {
2231      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2232      if (Base) {
2233        // the cast is only valid if done to a wide enough type
2234        if (Context.getTypeSize(CE->getType()) >=
2235            Context.getTypeSize(SubExpr->getType()))
2236          return false;
2237      } else {
2238        // If the pointer has a null base, this is an offsetof-like construct
2239        return CheckAddressConstantExpression(SubExpr);
2240      }
2241    }
2242
2243    InitializerElementNotConstant(Init);
2244    return true;
2245  }
2246  case Expr::ConditionalOperatorClass: {
2247    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2248
2249    // If GNU extensions are disabled, we require all operands to be arithmetic
2250    // constant expressions.
2251    if (getLangOptions().NoExtensions) {
2252      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2253          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2254             CheckArithmeticConstantExpression(Exp->getRHS());
2255    }
2256
2257    // Otherwise, we have to emulate some of the behavior of fold here.
2258    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2259    // because it can constant fold things away.  To retain compatibility with
2260    // GCC code, we see if we can fold the condition to a constant (which we
2261    // should always be able to do in theory).  If so, we only require the
2262    // specified arm of the conditional to be a constant.  This is a horrible
2263    // hack, but is require by real world code that uses __builtin_constant_p.
2264    Expr::EvalResult EvalResult;
2265    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2266        EvalResult.HasSideEffects) {
2267      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2268      // won't be able to either.  Use it to emit the diagnostic though.
2269      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2270      assert(Res && "Evaluate couldn't evaluate this constant?");
2271      return Res;
2272    }
2273
2274    // Verify that the side following the condition is also a constant.
2275    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2276    if (EvalResult.Val.getInt() == 0)
2277      std::swap(TrueSide, FalseSide);
2278
2279    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2280      return true;
2281
2282    // Okay, the evaluated side evaluates to a constant, so we accept this.
2283    // Check to see if the other side is obviously not a constant.  If so,
2284    // emit a warning that this is a GNU extension.
2285    if (FalseSide && !FalseSide->isEvaluatable(Context))
2286      Diag(Init->getExprLoc(),
2287           diag::ext_typecheck_expression_not_constant_but_accepted)
2288        << FalseSide->getSourceRange();
2289    return false;
2290  }
2291  }
2292}
2293
2294bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2295  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2296    Init = DIE->getInit();
2297
2298  Init = Init->IgnoreParens();
2299
2300  if (Init->isEvaluatable(Context))
2301    return false;
2302
2303  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2304  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2305    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2306
2307  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2308    return CheckForConstantInitializer(e->getInitializer(), DclT);
2309
2310  if (isa<ImplicitValueInitExpr>(Init)) {
2311    // FIXME: In C++, check for non-POD types.
2312    return false;
2313  }
2314
2315  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2316    unsigned numInits = Exp->getNumInits();
2317    for (unsigned i = 0; i < numInits; i++) {
2318      // FIXME: Need to get the type of the declaration for C++,
2319      // because it could be a reference?
2320
2321      if (CheckForConstantInitializer(Exp->getInit(i),
2322                                      Exp->getInit(i)->getType()))
2323        return true;
2324    }
2325    return false;
2326  }
2327
2328  // FIXME: We can probably remove some of this code below, now that
2329  // Expr::Evaluate is doing the heavy lifting for scalars.
2330
2331  if (Init->isNullPointerConstant(Context))
2332    return false;
2333  if (Init->getType()->isArithmeticType()) {
2334    QualType InitTy = Context.getCanonicalType(Init->getType())
2335                             .getUnqualifiedType();
2336    if (InitTy == Context.BoolTy) {
2337      // Special handling for pointers implicitly cast to bool;
2338      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2339      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2340        Expr* SubE = ICE->getSubExpr();
2341        if (SubE->getType()->isPointerType() ||
2342            SubE->getType()->isArrayType() ||
2343            SubE->getType()->isFunctionType()) {
2344          return CheckAddressConstantExpression(Init);
2345        }
2346      }
2347    } else if (InitTy->isIntegralType()) {
2348      Expr* SubE = 0;
2349      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2350        SubE = CE->getSubExpr();
2351      // Special check for pointer cast to int; we allow as an extension
2352      // an address constant cast to an integer if the integer
2353      // is of an appropriate width (this sort of code is apparently used
2354      // in some places).
2355      // FIXME: Add pedwarn?
2356      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2357      if (SubE && (SubE->getType()->isPointerType() ||
2358                   SubE->getType()->isArrayType() ||
2359                   SubE->getType()->isFunctionType())) {
2360        unsigned IntWidth = Context.getTypeSize(Init->getType());
2361        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2362        if (IntWidth >= PointerWidth)
2363          return CheckAddressConstantExpression(Init);
2364      }
2365    }
2366
2367    return CheckArithmeticConstantExpression(Init);
2368  }
2369
2370  if (Init->getType()->isPointerType())
2371    return CheckAddressConstantExpression(Init);
2372
2373  // An array type at the top level that isn't an init-list must
2374  // be a string literal
2375  if (Init->getType()->isArrayType())
2376    return false;
2377
2378  if (Init->getType()->isFunctionType())
2379    return false;
2380
2381  // Allow block exprs at top level.
2382  if (Init->getType()->isBlockPointerType())
2383    return false;
2384
2385  // GCC cast to union extension
2386  // note: the validity of the cast expr is checked by CheckCastTypes()
2387  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2388    QualType T = C->getType();
2389    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2390  }
2391
2392  InitializerElementNotConstant(Init);
2393  return true;
2394}
2395
2396void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2397  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2398}
2399
2400/// AddInitializerToDecl - Adds the initializer Init to the
2401/// declaration dcl. If DirectInit is true, this is C++ direct
2402/// initialization rather than copy initialization.
2403void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2404  Decl *RealDecl = static_cast<Decl *>(dcl);
2405  Expr *Init = static_cast<Expr *>(init.release());
2406  assert(Init && "missing initializer");
2407
2408  // If there is no declaration, there was an error parsing it.  Just ignore
2409  // the initializer.
2410  if (RealDecl == 0) {
2411    Init->Destroy(Context);
2412    return;
2413  }
2414
2415  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2416  if (!VDecl) {
2417    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2418    RealDecl->setInvalidDecl();
2419    return;
2420  }
2421  // Get the decls type and save a reference for later, since
2422  // CheckInitializerTypes may change it.
2423  QualType DclT = VDecl->getType(), SavT = DclT;
2424  if (VDecl->isBlockVarDecl()) {
2425    VarDecl::StorageClass SC = VDecl->getStorageClass();
2426    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2427      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2428      VDecl->setInvalidDecl();
2429    } else if (!VDecl->isInvalidDecl()) {
2430      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2431                                VDecl->getDeclName(), DirectInit))
2432        VDecl->setInvalidDecl();
2433
2434      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2435      if (!getLangOptions().CPlusPlus) {
2436        if (SC == VarDecl::Static) // C99 6.7.8p4.
2437          CheckForConstantInitializer(Init, DclT);
2438      }
2439    }
2440  } else if (VDecl->isFileVarDecl()) {
2441    if (VDecl->getStorageClass() == VarDecl::Extern)
2442      Diag(VDecl->getLocation(), diag::warn_extern_init);
2443    if (!VDecl->isInvalidDecl())
2444      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2445                                VDecl->getDeclName(), DirectInit))
2446        VDecl->setInvalidDecl();
2447
2448    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2449    if (!getLangOptions().CPlusPlus) {
2450      // C99 6.7.8p4. All file scoped initializers need to be constant.
2451      CheckForConstantInitializer(Init, DclT);
2452    }
2453  }
2454  // If the type changed, it means we had an incomplete type that was
2455  // completed by the initializer. For example:
2456  //   int ary[] = { 1, 3, 5 };
2457  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2458  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2459    VDecl->setType(DclT);
2460    Init->setType(DclT);
2461  }
2462
2463  // Attach the initializer to the decl.
2464  VDecl->setInit(Init);
2465  return;
2466}
2467
2468void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2469  Decl *RealDecl = static_cast<Decl *>(dcl);
2470
2471  // If there is no declaration, there was an error parsing it. Just ignore it.
2472  if (RealDecl == 0)
2473    return;
2474
2475  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2476    QualType Type = Var->getType();
2477    // C++ [dcl.init.ref]p3:
2478    //   The initializer can be omitted for a reference only in a
2479    //   parameter declaration (8.3.5), in the declaration of a
2480    //   function return type, in the declaration of a class member
2481    //   within its class declaration (9.2), and where the extern
2482    //   specifier is explicitly used.
2483    if (Type->isReferenceType() &&
2484        Var->getStorageClass() != VarDecl::Extern &&
2485        Var->getStorageClass() != VarDecl::PrivateExtern) {
2486      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2487        << Var->getDeclName()
2488        << SourceRange(Var->getLocation(), Var->getLocation());
2489      Var->setInvalidDecl();
2490      return;
2491    }
2492
2493    // C++ [dcl.init]p9:
2494    //
2495    //   If no initializer is specified for an object, and the object
2496    //   is of (possibly cv-qualified) non-POD class type (or array
2497    //   thereof), the object shall be default-initialized; if the
2498    //   object is of const-qualified type, the underlying class type
2499    //   shall have a user-declared default constructor.
2500    if (getLangOptions().CPlusPlus) {
2501      QualType InitType = Type;
2502      if (const ArrayType *Array = Context.getAsArrayType(Type))
2503        InitType = Array->getElementType();
2504      if (Var->getStorageClass() != VarDecl::Extern &&
2505          Var->getStorageClass() != VarDecl::PrivateExtern &&
2506          InitType->isRecordType()) {
2507        const CXXConstructorDecl *Constructor
2508          = PerformInitializationByConstructor(InitType, 0, 0,
2509                                               Var->getLocation(),
2510                                               SourceRange(Var->getLocation(),
2511                                                           Var->getLocation()),
2512                                               Var->getDeclName(),
2513                                               IK_Default);
2514        if (!Constructor)
2515          Var->setInvalidDecl();
2516      }
2517    }
2518
2519#if 0
2520    // FIXME: Temporarily disabled because we are not properly parsing
2521    // linkage specifications on declarations, e.g.,
2522    //
2523    //   extern "C" const CGPoint CGPointerZero;
2524    //
2525    // C++ [dcl.init]p9:
2526    //
2527    //     If no initializer is specified for an object, and the
2528    //     object is of (possibly cv-qualified) non-POD class type (or
2529    //     array thereof), the object shall be default-initialized; if
2530    //     the object is of const-qualified type, the underlying class
2531    //     type shall have a user-declared default
2532    //     constructor. Otherwise, if no initializer is specified for
2533    //     an object, the object and its subobjects, if any, have an
2534    //     indeterminate initial value; if the object or any of its
2535    //     subobjects are of const-qualified type, the program is
2536    //     ill-formed.
2537    //
2538    // This isn't technically an error in C, so we don't diagnose it.
2539    //
2540    // FIXME: Actually perform the POD/user-defined default
2541    // constructor check.
2542    if (getLangOptions().CPlusPlus &&
2543        Context.getCanonicalType(Type).isConstQualified() &&
2544        Var->getStorageClass() != VarDecl::Extern)
2545      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2546        << Var->getName()
2547        << SourceRange(Var->getLocation(), Var->getLocation());
2548#endif
2549  }
2550}
2551
2552/// The declarators are chained together backwards, reverse the list.
2553Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2554  // Often we have single declarators, handle them quickly.
2555  Decl *GroupDecl = static_cast<Decl*>(group);
2556  if (GroupDecl == 0)
2557    return 0;
2558
2559  Decl *Group = dyn_cast<Decl>(GroupDecl);
2560  Decl *NewGroup = 0;
2561  if (Group->getNextDeclarator() == 0)
2562    NewGroup = Group;
2563  else { // reverse the list.
2564    while (Group) {
2565      Decl *Next = Group->getNextDeclarator();
2566      Group->setNextDeclarator(NewGroup);
2567      NewGroup = Group;
2568      Group = Next;
2569    }
2570  }
2571  // Perform semantic analysis that depends on having fully processed both
2572  // the declarator and initializer.
2573  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2574    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2575    if (!IDecl)
2576      continue;
2577    QualType T = IDecl->getType();
2578
2579    if (T->isVariableArrayType()) {
2580      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2581
2582      // FIXME: This won't give the correct result for
2583      // int a[10][n];
2584      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2585      if (IDecl->isFileVarDecl()) {
2586        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2587          SizeRange;
2588
2589        IDecl->setInvalidDecl();
2590      } else {
2591        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2592        // static storage duration, it shall not have a variable length array.
2593        if (IDecl->getStorageClass() == VarDecl::Static) {
2594          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2595            << SizeRange;
2596          IDecl->setInvalidDecl();
2597        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2598          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2599            << SizeRange;
2600          IDecl->setInvalidDecl();
2601        }
2602      }
2603    } else if (T->isVariablyModifiedType()) {
2604      if (IDecl->isFileVarDecl()) {
2605        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2606        IDecl->setInvalidDecl();
2607      } else {
2608        if (IDecl->getStorageClass() == VarDecl::Extern) {
2609          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2610          IDecl->setInvalidDecl();
2611        }
2612      }
2613    }
2614
2615    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2616    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2617    if (IDecl->isBlockVarDecl() &&
2618        IDecl->getStorageClass() != VarDecl::Extern) {
2619      if (!IDecl->isInvalidDecl() &&
2620          DiagnoseIncompleteType(IDecl->getLocation(), T,
2621                                 diag::err_typecheck_decl_incomplete_type))
2622        IDecl->setInvalidDecl();
2623    }
2624    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2625    // object that has file scope without an initializer, and without a
2626    // storage-class specifier or with the storage-class specifier "static",
2627    // constitutes a tentative definition. Note: A tentative definition with
2628    // external linkage is valid (C99 6.2.2p5).
2629    if (isTentativeDefinition(IDecl)) {
2630      if (T->isIncompleteArrayType()) {
2631        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2632        // array to be completed. Don't issue a diagnostic.
2633      } else if (!IDecl->isInvalidDecl() &&
2634                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2635                                        diag::err_typecheck_decl_incomplete_type))
2636        // C99 6.9.2p3: If the declaration of an identifier for an object is
2637        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2638        // declared type shall not be an incomplete type.
2639        IDecl->setInvalidDecl();
2640    }
2641    if (IDecl->isFileVarDecl())
2642      CheckForFileScopedRedefinitions(S, IDecl);
2643  }
2644  return NewGroup;
2645}
2646
2647/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2648/// to introduce parameters into function prototype scope.
2649Sema::DeclTy *
2650Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2651  const DeclSpec &DS = D.getDeclSpec();
2652
2653  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2654  VarDecl::StorageClass StorageClass = VarDecl::None;
2655  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2656    StorageClass = VarDecl::Register;
2657  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2658    Diag(DS.getStorageClassSpecLoc(),
2659         diag::err_invalid_storage_class_in_func_decl);
2660    D.getMutableDeclSpec().ClearStorageClassSpecs();
2661  }
2662  if (DS.isThreadSpecified()) {
2663    Diag(DS.getThreadSpecLoc(),
2664         diag::err_invalid_storage_class_in_func_decl);
2665    D.getMutableDeclSpec().ClearStorageClassSpecs();
2666  }
2667
2668  // Check that there are no default arguments inside the type of this
2669  // parameter (C++ only).
2670  if (getLangOptions().CPlusPlus)
2671    CheckExtraCXXDefaultArguments(D);
2672
2673  // In this context, we *do not* check D.getInvalidType(). If the declarator
2674  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2675  // though it will not reflect the user specified type.
2676  QualType parmDeclType = GetTypeForDeclarator(D, S);
2677
2678  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2679
2680  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2681  // Can this happen for params?  We already checked that they don't conflict
2682  // among each other.  Here they can only shadow globals, which is ok.
2683  IdentifierInfo *II = D.getIdentifier();
2684  if (II) {
2685    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2686      if (PrevDecl->isTemplateParameter()) {
2687        // Maybe we will complain about the shadowed template parameter.
2688        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2689        // Just pretend that we didn't see the previous declaration.
2690        PrevDecl = 0;
2691      } else if (S->isDeclScope(PrevDecl)) {
2692        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2693
2694        // Recover by removing the name
2695        II = 0;
2696        D.SetIdentifier(0, D.getIdentifierLoc());
2697      }
2698    }
2699  }
2700
2701  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2702  // Doing the promotion here has a win and a loss. The win is the type for
2703  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2704  // code generator). The loss is the orginal type isn't preserved. For example:
2705  //
2706  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2707  //    int blockvardecl[5];
2708  //    sizeof(parmvardecl);  // size == 4
2709  //    sizeof(blockvardecl); // size == 20
2710  // }
2711  //
2712  // For expressions, all implicit conversions are captured using the
2713  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2714  //
2715  // FIXME: If a source translation tool needs to see the original type, then
2716  // we need to consider storing both types (in ParmVarDecl)...
2717  //
2718  if (parmDeclType->isArrayType()) {
2719    // int x[restrict 4] ->  int *restrict
2720    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2721  } else if (parmDeclType->isFunctionType())
2722    parmDeclType = Context.getPointerType(parmDeclType);
2723
2724  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2725                                         D.getIdentifierLoc(), II,
2726                                         parmDeclType, StorageClass,
2727                                         0);
2728
2729  if (D.getInvalidType())
2730    New->setInvalidDecl();
2731
2732  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2733  if (D.getCXXScopeSpec().isSet()) {
2734    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2735      << D.getCXXScopeSpec().getRange();
2736    New->setInvalidDecl();
2737  }
2738
2739  // Add the parameter declaration into this scope.
2740  S->AddDecl(New);
2741  if (II)
2742    IdResolver.AddDecl(New);
2743
2744  ProcessDeclAttributes(New, D);
2745  return New;
2746
2747}
2748
2749void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2750  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2751         "Not a function declarator!");
2752  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2753
2754  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2755  // for a K&R function.
2756  if (!FTI.hasPrototype) {
2757    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2758      if (FTI.ArgInfo[i].Param == 0) {
2759        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2760          << FTI.ArgInfo[i].Ident;
2761        // Implicitly declare the argument as type 'int' for lack of a better
2762        // type.
2763        DeclSpec DS;
2764        const char* PrevSpec; // unused
2765        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2766                           PrevSpec);
2767        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2768        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2769        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2770      }
2771    }
2772  }
2773}
2774
2775Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2776  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2777  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2778         "Not a function declarator!");
2779  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2780
2781  if (FTI.hasPrototype) {
2782    // FIXME: Diagnose arguments without names in C.
2783  }
2784
2785  Scope *ParentScope = FnBodyScope->getParent();
2786
2787  return ActOnStartOfFunctionDef(FnBodyScope,
2788                                 ActOnDeclarator(ParentScope, D, 0,
2789                                                 /*IsFunctionDefinition=*/true));
2790}
2791
2792Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2793  Decl *decl = static_cast<Decl*>(D);
2794  FunctionDecl *FD = cast<FunctionDecl>(decl);
2795
2796  // See if this is a redefinition.
2797  const FunctionDecl *Definition;
2798  if (FD->getBody(Definition)) {
2799    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2800    Diag(Definition->getLocation(), diag::note_previous_definition);
2801  }
2802
2803  // Builtin functions cannot be defined.
2804  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2805    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2806      Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
2807      Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
2808    } else
2809      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2810    FD->setInvalidDecl();
2811  }
2812
2813  PushDeclContext(FnBodyScope, FD);
2814
2815  // Check the validity of our function parameters
2816  CheckParmsForFunctionDef(FD);
2817
2818  // Introduce our parameters into the function scope
2819  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2820    ParmVarDecl *Param = FD->getParamDecl(p);
2821    Param->setOwningFunction(FD);
2822
2823    // If this has an identifier, add it to the scope stack.
2824    if (Param->getIdentifier())
2825      PushOnScopeChains(Param, FnBodyScope);
2826  }
2827
2828  // Checking attributes of current function definition
2829  // dllimport attribute.
2830  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2831    // dllimport attribute cannot be applied to definition.
2832    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2833      Diag(FD->getLocation(),
2834           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2835        << "dllimport";
2836      FD->setInvalidDecl();
2837      return FD;
2838    } else {
2839      // If a symbol previously declared dllimport is later defined, the
2840      // attribute is ignored in subsequent references, and a warning is
2841      // emitted.
2842      Diag(FD->getLocation(),
2843           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2844        << FD->getNameAsCString() << "dllimport";
2845    }
2846  }
2847  return FD;
2848}
2849
2850Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2851  Decl *dcl = static_cast<Decl *>(D);
2852  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2853  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2854    FD->setBody(Body);
2855    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2856  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2857    assert(MD == getCurMethodDecl() && "Method parsing confused");
2858    MD->setBody((Stmt*)Body);
2859  } else {
2860    Body->Destroy(Context);
2861    return 0;
2862  }
2863  PopDeclContext();
2864  // Verify and clean out per-function state.
2865
2866  // Check goto/label use.
2867  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2868       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2869    // Verify that we have no forward references left.  If so, there was a goto
2870    // or address of a label taken, but no definition of it.  Label fwd
2871    // definitions are indicated with a null substmt.
2872    if (I->second->getSubStmt() == 0) {
2873      LabelStmt *L = I->second;
2874      // Emit error.
2875      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2876
2877      // At this point, we have gotos that use the bogus label.  Stitch it into
2878      // the function body so that they aren't leaked and that the AST is well
2879      // formed.
2880      if (Body) {
2881#if 0
2882        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2883        // and the AST is malformed anyway.  We should just blow away 'L'.
2884        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2885        cast<CompoundStmt>(Body)->push_back(L);
2886#else
2887        L->Destroy(Context);
2888#endif
2889      } else {
2890        // The whole function wasn't parsed correctly, just delete this.
2891        L->Destroy(Context);
2892      }
2893    }
2894  }
2895  LabelMap.clear();
2896
2897  return D;
2898}
2899
2900/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2901/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2902NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2903                                          IdentifierInfo &II, Scope *S) {
2904  // Extension in C99.  Legal in C90, but warn about it.
2905  if (getLangOptions().C99)
2906    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2907  else
2908    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2909
2910  // FIXME: handle stuff like:
2911  // void foo() { extern float X(); }
2912  // void bar() { X(); }  <-- implicit decl for X in another scope.
2913
2914  // Set a Declarator for the implicit definition: int foo();
2915  const char *Dummy;
2916  DeclSpec DS;
2917  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2918  Error = Error; // Silence warning.
2919  assert(!Error && "Error setting up implicit decl!");
2920  Declarator D(DS, Declarator::BlockContext);
2921  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2922                SourceLocation());
2923  D.SetIdentifier(&II, Loc);
2924
2925  // Insert this function into translation-unit scope.
2926
2927  DeclContext *PrevDC = CurContext;
2928  CurContext = Context.getTranslationUnitDecl();
2929
2930  FunctionDecl *FD =
2931    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2932  FD->setImplicit();
2933
2934  CurContext = PrevDC;
2935
2936  AddKnownFunctionAttributes(FD);
2937
2938  return FD;
2939}
2940
2941/// \brief Adds any function attributes that we know a priori based on
2942/// the declaration of this function.
2943///
2944/// These attributes can apply both to implicitly-declared builtins
2945/// (like __builtin___printf_chk) or to library-declared functions
2946/// like NSLog or printf.
2947void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2948  if (FD->isInvalidDecl())
2949    return;
2950
2951  // If this is a built-in function, map its builtin attributes to
2952  // actual attributes.
2953  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2954    // Handle printf-formatting attributes.
2955    unsigned FormatIdx;
2956    bool HasVAListArg;
2957    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2958      if (!FD->getAttr<FormatAttr>())
2959        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2960    }
2961
2962    // Mark const if we don't care about errno and that is the only
2963    // thing preventing the function from being const. This allows
2964    // IRgen to use LLVM intrinsics for such functions.
2965    if (!getLangOptions().MathErrno &&
2966        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2967      if (!FD->getAttr<ConstAttr>())
2968        FD->addAttr(new ConstAttr());
2969    }
2970  }
2971
2972  IdentifierInfo *Name = FD->getIdentifier();
2973  if (!Name)
2974    return;
2975  if ((!getLangOptions().CPlusPlus &&
2976       FD->getDeclContext()->isTranslationUnit()) ||
2977      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2978       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2979       LinkageSpecDecl::lang_c)) {
2980    // Okay: this could be a libc/libm/Objective-C function we know
2981    // about.
2982  } else
2983    return;
2984
2985  unsigned KnownID;
2986  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2987    if (KnownFunctionIDs[KnownID] == Name)
2988      break;
2989
2990  switch (KnownID) {
2991  case id_NSLog:
2992  case id_NSLogv:
2993    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2994      // FIXME: We known better than our headers.
2995      const_cast<FormatAttr *>(Format)->setType("printf");
2996    } else
2997      FD->addAttr(new FormatAttr("printf", 1, 2));
2998    break;
2999
3000  case id_asprintf:
3001  case id_vasprintf:
3002    if (!FD->getAttr<FormatAttr>())
3003      FD->addAttr(new FormatAttr("printf", 2, 3));
3004    break;
3005
3006  default:
3007    // Unknown function or known function without any attributes to
3008    // add. Do nothing.
3009    break;
3010  }
3011}
3012
3013TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3014                                    Decl *LastDeclarator) {
3015  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3016  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3017
3018  // Scope manipulation handled by caller.
3019  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3020                                           D.getIdentifierLoc(),
3021                                           D.getIdentifier(),
3022                                           T);
3023  NewTD->setNextDeclarator(LastDeclarator);
3024  if (D.getInvalidType())
3025    NewTD->setInvalidDecl();
3026  return NewTD;
3027}
3028
3029/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3030/// former case, Name will be non-null.  In the later case, Name will be null.
3031/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3032/// reference/declaration/definition of a tag.
3033Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3034                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3035                             IdentifierInfo *Name, SourceLocation NameLoc,
3036                             AttributeList *Attr) {
3037  // If this is not a definition, it must have a name.
3038  assert((Name != 0 || TK == TK_Definition) &&
3039         "Nameless record must be a definition!");
3040
3041  TagDecl::TagKind Kind;
3042  switch (TagSpec) {
3043  default: assert(0 && "Unknown tag type!");
3044  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3045  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3046  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3047  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3048  }
3049
3050  DeclContext *SearchDC = CurContext;
3051  DeclContext *DC = CurContext;
3052  NamedDecl *PrevDecl = 0;
3053
3054  bool Invalid = false;
3055
3056  if (Name && SS.isNotEmpty()) {
3057    // We have a nested-name tag ('struct foo::bar').
3058
3059    // Check for invalid 'foo::'.
3060    if (SS.isInvalid()) {
3061      Name = 0;
3062      goto CreateNewDecl;
3063    }
3064
3065    DC = static_cast<DeclContext*>(SS.getScopeRep());
3066    SearchDC = DC;
3067    // Look-up name inside 'foo::'.
3068    PrevDecl = dyn_cast_or_null<TagDecl>(
3069                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3070
3071    // A tag 'foo::bar' must already exist.
3072    if (PrevDecl == 0) {
3073      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3074      Name = 0;
3075      goto CreateNewDecl;
3076    }
3077  } else if (Name) {
3078    // If this is a named struct, check to see if there was a previous forward
3079    // declaration or definition.
3080    // FIXME: We're looking into outer scopes here, even when we
3081    // shouldn't be. Doing so can result in ambiguities that we
3082    // shouldn't be diagnosing.
3083    LookupResult R = LookupName(S, Name, LookupTagName,
3084                                /*RedeclarationOnly=*/(TK != TK_Reference));
3085    if (R.isAmbiguous()) {
3086      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3087      // FIXME: This is not best way to recover from case like:
3088      //
3089      // struct S s;
3090      //
3091      // causes needless err_ovl_no_viable_function_in_init latter.
3092      Name = 0;
3093      PrevDecl = 0;
3094      Invalid = true;
3095    }
3096    else
3097      PrevDecl = R;
3098
3099    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3100      // FIXME: This makes sure that we ignore the contexts associated
3101      // with C structs, unions, and enums when looking for a matching
3102      // tag declaration or definition. See the similar lookup tweak
3103      // in Sema::LookupName; is there a better way to deal with this?
3104      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3105        SearchDC = SearchDC->getParent();
3106    }
3107  }
3108
3109  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3110    // Maybe we will complain about the shadowed template parameter.
3111    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3112    // Just pretend that we didn't see the previous declaration.
3113    PrevDecl = 0;
3114  }
3115
3116  if (PrevDecl) {
3117    // If the previous declaration was deprecated, emit a warning.
3118    DiagnoseUseOfDeprecatedDecl(PrevDecl, NameLoc);
3119
3120    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3121      // If this is a use of a previous tag, or if the tag is already declared
3122      // in the same scope (so that the definition/declaration completes or
3123      // rementions the tag), reuse the decl.
3124      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3125        // Make sure that this wasn't declared as an enum and now used as a
3126        // struct or something similar.
3127        if (PrevTagDecl->getTagKind() != Kind) {
3128          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3129          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3130          // Recover by making this an anonymous redefinition.
3131          Name = 0;
3132          PrevDecl = 0;
3133          Invalid = true;
3134        } else {
3135          // If this is a use, just return the declaration we found.
3136
3137          // FIXME: In the future, return a variant or some other clue
3138          // for the consumer of this Decl to know it doesn't own it.
3139          // For our current ASTs this shouldn't be a problem, but will
3140          // need to be changed with DeclGroups.
3141          if (TK == TK_Reference)
3142            return PrevDecl;
3143
3144          // Diagnose attempts to redefine a tag.
3145          if (TK == TK_Definition) {
3146            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3147              Diag(NameLoc, diag::err_redefinition) << Name;
3148              Diag(Def->getLocation(), diag::note_previous_definition);
3149              // If this is a redefinition, recover by making this
3150              // struct be anonymous, which will make any later
3151              // references get the previous definition.
3152              Name = 0;
3153              PrevDecl = 0;
3154              Invalid = true;
3155            } else {
3156              // If the type is currently being defined, complain
3157              // about a nested redefinition.
3158              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3159              if (Tag->isBeingDefined()) {
3160                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3161                Diag(PrevTagDecl->getLocation(),
3162                     diag::note_previous_definition);
3163                Name = 0;
3164                PrevDecl = 0;
3165                Invalid = true;
3166              }
3167            }
3168
3169            // Okay, this is definition of a previously declared or referenced
3170            // tag PrevDecl. We're going to create a new Decl for it.
3171          }
3172        }
3173        // If we get here we have (another) forward declaration or we
3174        // have a definition.  Just create a new decl.
3175      } else {
3176        // If we get here, this is a definition of a new tag type in a nested
3177        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3178        // new decl/type.  We set PrevDecl to NULL so that the entities
3179        // have distinct types.
3180        PrevDecl = 0;
3181      }
3182      // If we get here, we're going to create a new Decl. If PrevDecl
3183      // is non-NULL, it's a definition of the tag declared by
3184      // PrevDecl. If it's NULL, we have a new definition.
3185    } else {
3186      // PrevDecl is a namespace, template, or anything else
3187      // that lives in the IDNS_Tag identifier namespace.
3188      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3189        // The tag name clashes with a namespace name, issue an error and
3190        // recover by making this tag be anonymous.
3191        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3192        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3193        Name = 0;
3194        PrevDecl = 0;
3195        Invalid = true;
3196      } else {
3197        // The existing declaration isn't relevant to us; we're in a
3198        // new scope, so clear out the previous declaration.
3199        PrevDecl = 0;
3200      }
3201    }
3202  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3203             (Kind != TagDecl::TK_enum))  {
3204    // C++ [basic.scope.pdecl]p5:
3205    //   -- for an elaborated-type-specifier of the form
3206    //
3207    //          class-key identifier
3208    //
3209    //      if the elaborated-type-specifier is used in the
3210    //      decl-specifier-seq or parameter-declaration-clause of a
3211    //      function defined in namespace scope, the identifier is
3212    //      declared as a class-name in the namespace that contains
3213    //      the declaration; otherwise, except as a friend
3214    //      declaration, the identifier is declared in the smallest
3215    //      non-class, non-function-prototype scope that contains the
3216    //      declaration.
3217    //
3218    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3219    // C structs and unions.
3220
3221    // Find the context where we'll be declaring the tag.
3222    // FIXME: We would like to maintain the current DeclContext as the
3223    // lexical context,
3224    while (SearchDC->isRecord())
3225      SearchDC = SearchDC->getParent();
3226
3227    // Find the scope where we'll be declaring the tag.
3228    while (S->isClassScope() ||
3229           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3230           ((S->getFlags() & Scope::DeclScope) == 0) ||
3231           (S->getEntity() &&
3232            ((DeclContext *)S->getEntity())->isTransparentContext()))
3233      S = S->getParent();
3234  }
3235
3236CreateNewDecl:
3237
3238  // If there is an identifier, use the location of the identifier as the
3239  // location of the decl, otherwise use the location of the struct/union
3240  // keyword.
3241  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3242
3243  // Otherwise, create a new declaration. If there is a previous
3244  // declaration of the same entity, the two will be linked via
3245  // PrevDecl.
3246  TagDecl *New;
3247
3248  if (Kind == TagDecl::TK_enum) {
3249    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3250    // enum X { A, B, C } D;    D should chain to X.
3251    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3252                           cast_or_null<EnumDecl>(PrevDecl));
3253    // If this is an undefined enum, warn.
3254    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3255  } else {
3256    // struct/union/class
3257
3258    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3259    // struct X { int A; } D;    D should chain to X.
3260    if (getLangOptions().CPlusPlus)
3261      // FIXME: Look for a way to use RecordDecl for simple structs.
3262      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3263                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3264    else
3265      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3266                               cast_or_null<RecordDecl>(PrevDecl));
3267  }
3268
3269  if (Kind != TagDecl::TK_enum) {
3270    // Handle #pragma pack: if the #pragma pack stack has non-default
3271    // alignment, make up a packed attribute for this decl. These
3272    // attributes are checked when the ASTContext lays out the
3273    // structure.
3274    //
3275    // It is important for implementing the correct semantics that this
3276    // happen here (in act on tag decl). The #pragma pack stack is
3277    // maintained as a result of parser callbacks which can occur at
3278    // many points during the parsing of a struct declaration (because
3279    // the #pragma tokens are effectively skipped over during the
3280    // parsing of the struct).
3281    if (unsigned Alignment = getPragmaPackAlignment())
3282      New->addAttr(new PackedAttr(Alignment * 8));
3283  }
3284
3285  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3286    // C++ [dcl.typedef]p3:
3287    //   [...] Similarly, in a given scope, a class or enumeration
3288    //   shall not be declared with the same name as a typedef-name
3289    //   that is declared in that scope and refers to a type other
3290    //   than the class or enumeration itself.
3291    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3292    TypedefDecl *PrevTypedef = 0;
3293    if (Lookup.getKind() == LookupResult::Found)
3294      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3295
3296    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3297        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3298          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3299      Diag(Loc, diag::err_tag_definition_of_typedef)
3300        << Context.getTypeDeclType(New)
3301        << PrevTypedef->getUnderlyingType();
3302      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3303      Invalid = true;
3304    }
3305  }
3306
3307  if (Invalid)
3308    New->setInvalidDecl();
3309
3310  if (Attr)
3311    ProcessDeclAttributeList(New, Attr);
3312
3313  // If we're declaring or defining a tag in function prototype scope
3314  // in C, note that this type can only be used within the function.
3315  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3316    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3317
3318  // Set the lexical context. If the tag has a C++ scope specifier, the
3319  // lexical context will be different from the semantic context.
3320  New->setLexicalDeclContext(CurContext);
3321
3322  if (TK == TK_Definition)
3323    New->startDefinition();
3324
3325  // If this has an identifier, add it to the scope stack.
3326  if (Name) {
3327    S = getNonFieldDeclScope(S);
3328    PushOnScopeChains(New, S);
3329  } else {
3330    CurContext->addDecl(New);
3331  }
3332
3333  return New;
3334}
3335
3336void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3337  AdjustDeclIfTemplate(TagD);
3338  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3339
3340  // Enter the tag context.
3341  PushDeclContext(S, Tag);
3342
3343  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3344    FieldCollector->StartClass();
3345
3346    if (Record->getIdentifier()) {
3347      // C++ [class]p2:
3348      //   [...] The class-name is also inserted into the scope of the
3349      //   class itself; this is known as the injected-class-name. For
3350      //   purposes of access checking, the injected-class-name is treated
3351      //   as if it were a public member name.
3352      RecordDecl *InjectedClassName
3353        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3354                                CurContext, Record->getLocation(),
3355                                Record->getIdentifier(), Record);
3356      InjectedClassName->setImplicit();
3357      PushOnScopeChains(InjectedClassName, S);
3358    }
3359  }
3360}
3361
3362void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3363  AdjustDeclIfTemplate(TagD);
3364  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3365
3366  if (isa<CXXRecordDecl>(Tag))
3367    FieldCollector->FinishClass();
3368
3369  // Exit this scope of this tag's definition.
3370  PopDeclContext();
3371
3372  // Notify the consumer that we've defined a tag.
3373  Consumer.HandleTagDeclDefinition(Tag);
3374}
3375
3376/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3377/// types into constant array types in certain situations which would otherwise
3378/// be errors (for GCC compatibility).
3379static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3380                                                    ASTContext &Context) {
3381  // This method tries to turn a variable array into a constant
3382  // array even when the size isn't an ICE.  This is necessary
3383  // for compatibility with code that depends on gcc's buggy
3384  // constant expression folding, like struct {char x[(int)(char*)2];}
3385  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3386  if (!VLATy) return QualType();
3387
3388  Expr::EvalResult EvalResult;
3389  if (!VLATy->getSizeExpr() ||
3390      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3391    return QualType();
3392
3393  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3394  llvm::APSInt &Res = EvalResult.Val.getInt();
3395  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3396    return Context.getConstantArrayType(VLATy->getElementType(),
3397                                        Res, ArrayType::Normal, 0);
3398  return QualType();
3399}
3400
3401bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3402                          QualType FieldTy, const Expr *BitWidth) {
3403  // FIXME: 6.7.2.1p4 - verify the field type.
3404
3405  llvm::APSInt Value;
3406  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3407    return true;
3408
3409  // Zero-width bitfield is ok for anonymous field.
3410  if (Value == 0 && FieldName)
3411    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3412
3413  if (Value.isNegative())
3414    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3415
3416  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3417  // FIXME: We won't need the 0 size once we check that the field type is valid.
3418  if (TypeSize && Value.getZExtValue() > TypeSize)
3419    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3420       << FieldName << (unsigned)TypeSize;
3421
3422  return false;
3423}
3424
3425/// ActOnField - Each field of a struct/union/class is passed into this in order
3426/// to create a FieldDecl object for it.
3427Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3428                               SourceLocation DeclStart,
3429                               Declarator &D, ExprTy *BitfieldWidth) {
3430  IdentifierInfo *II = D.getIdentifier();
3431  Expr *BitWidth = (Expr*)BitfieldWidth;
3432  SourceLocation Loc = DeclStart;
3433  RecordDecl *Record = (RecordDecl *)TagD;
3434  if (II) Loc = D.getIdentifierLoc();
3435
3436  // FIXME: Unnamed fields can be handled in various different ways, for
3437  // example, unnamed unions inject all members into the struct namespace!
3438
3439  QualType T = GetTypeForDeclarator(D, S);
3440  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3441  bool InvalidDecl = false;
3442
3443  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3444  // than a variably modified type.
3445  if (T->isVariablyModifiedType()) {
3446    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3447    if (!FixedTy.isNull()) {
3448      Diag(Loc, diag::warn_illegal_constant_array_size);
3449      T = FixedTy;
3450    } else {
3451      Diag(Loc, diag::err_typecheck_field_variable_size);
3452      T = Context.IntTy;
3453      InvalidDecl = true;
3454    }
3455  }
3456
3457  if (BitWidth) {
3458    if (VerifyBitField(Loc, II, T, BitWidth))
3459      InvalidDecl = true;
3460  } else {
3461    // Not a bitfield.
3462
3463    // validate II.
3464
3465  }
3466
3467  // FIXME: Chain fielddecls together.
3468  FieldDecl *NewFD;
3469
3470  NewFD = FieldDecl::Create(Context, Record,
3471                            Loc, II, T, BitWidth,
3472                            D.getDeclSpec().getStorageClassSpec() ==
3473                              DeclSpec::SCS_mutable);
3474
3475  if (II) {
3476    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3477    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3478        && !isa<TagDecl>(PrevDecl)) {
3479      Diag(Loc, diag::err_duplicate_member) << II;
3480      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3481      NewFD->setInvalidDecl();
3482      Record->setInvalidDecl();
3483    }
3484  }
3485
3486  if (getLangOptions().CPlusPlus) {
3487    CheckExtraCXXDefaultArguments(D);
3488    if (!T->isPODType())
3489      cast<CXXRecordDecl>(Record)->setPOD(false);
3490  }
3491
3492  ProcessDeclAttributes(NewFD, D);
3493
3494  if (D.getInvalidType() || InvalidDecl)
3495    NewFD->setInvalidDecl();
3496
3497  if (II) {
3498    PushOnScopeChains(NewFD, S);
3499  } else
3500    Record->addDecl(NewFD);
3501
3502  return NewFD;
3503}
3504
3505/// TranslateIvarVisibility - Translate visibility from a token ID to an
3506///  AST enum value.
3507static ObjCIvarDecl::AccessControl
3508TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3509  switch (ivarVisibility) {
3510  default: assert(0 && "Unknown visitibility kind");
3511  case tok::objc_private: return ObjCIvarDecl::Private;
3512  case tok::objc_public: return ObjCIvarDecl::Public;
3513  case tok::objc_protected: return ObjCIvarDecl::Protected;
3514  case tok::objc_package: return ObjCIvarDecl::Package;
3515  }
3516}
3517
3518/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3519/// in order to create an IvarDecl object for it.
3520Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3521                              SourceLocation DeclStart,
3522                              Declarator &D, ExprTy *BitfieldWidth,
3523                              tok::ObjCKeywordKind Visibility) {
3524
3525  IdentifierInfo *II = D.getIdentifier();
3526  Expr *BitWidth = (Expr*)BitfieldWidth;
3527  SourceLocation Loc = DeclStart;
3528  if (II) Loc = D.getIdentifierLoc();
3529
3530  // FIXME: Unnamed fields can be handled in various different ways, for
3531  // example, unnamed unions inject all members into the struct namespace!
3532
3533  QualType T = GetTypeForDeclarator(D, S);
3534  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3535  bool InvalidDecl = false;
3536
3537  if (BitWidth) {
3538    // TODO: Validate.
3539    //printf("WARNING: BITFIELDS IGNORED!\n");
3540
3541    // 6.7.2.1p3
3542    // 6.7.2.1p4
3543
3544  } else {
3545    // Not a bitfield.
3546
3547    // validate II.
3548
3549  }
3550
3551  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3552  // than a variably modified type.
3553  if (T->isVariablyModifiedType()) {
3554    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3555    InvalidDecl = true;
3556  }
3557
3558  // Get the visibility (access control) for this ivar.
3559  ObjCIvarDecl::AccessControl ac =
3560    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3561                                        : ObjCIvarDecl::None;
3562
3563  // Construct the decl.
3564  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3565                                             (Expr *)BitfieldWidth);
3566
3567  if (II) {
3568    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3569    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3570        && !isa<TagDecl>(PrevDecl)) {
3571      Diag(Loc, diag::err_duplicate_member) << II;
3572      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3573      NewID->setInvalidDecl();
3574    }
3575  }
3576
3577  // Process attributes attached to the ivar.
3578  ProcessDeclAttributes(NewID, D);
3579
3580  if (D.getInvalidType() || InvalidDecl)
3581    NewID->setInvalidDecl();
3582
3583  if (II) {
3584    // FIXME: When interfaces are DeclContexts, we'll need to add
3585    // these to the interface.
3586    S->AddDecl(NewID);
3587    IdResolver.AddDecl(NewID);
3588  }
3589
3590  return NewID;
3591}
3592
3593void Sema::ActOnFields(Scope* S,
3594                       SourceLocation RecLoc, DeclTy *RecDecl,
3595                       DeclTy **Fields, unsigned NumFields,
3596                       SourceLocation LBrac, SourceLocation RBrac,
3597                       AttributeList *Attr) {
3598  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3599  assert(EnclosingDecl && "missing record or interface decl");
3600  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3601
3602  // Verify that all the fields are okay.
3603  unsigned NumNamedMembers = 0;
3604  llvm::SmallVector<FieldDecl*, 32> RecFields;
3605
3606  for (unsigned i = 0; i != NumFields; ++i) {
3607    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3608    assert(FD && "missing field decl");
3609
3610    // Get the type for the field.
3611    Type *FDTy = FD->getType().getTypePtr();
3612
3613    if (!FD->isAnonymousStructOrUnion()) {
3614      // Remember all fields written by the user.
3615      RecFields.push_back(FD);
3616    }
3617
3618    // C99 6.7.2.1p2 - A field may not be a function type.
3619    if (FDTy->isFunctionType()) {
3620      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3621        << FD->getDeclName();
3622      FD->setInvalidDecl();
3623      EnclosingDecl->setInvalidDecl();
3624      continue;
3625    }
3626    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3627    if (FDTy->isIncompleteType()) {
3628      if (!Record) {  // Incomplete ivar type is always an error.
3629        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3630                               diag::err_field_incomplete);
3631        FD->setInvalidDecl();
3632        EnclosingDecl->setInvalidDecl();
3633        continue;
3634      }
3635      if (i != NumFields-1 ||                   // ... that the last member ...
3636          !Record->isStruct() ||  // ... of a structure ...
3637          !FDTy->isArrayType()) {         //... may have incomplete array type.
3638        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3639                               diag::err_field_incomplete);
3640        FD->setInvalidDecl();
3641        EnclosingDecl->setInvalidDecl();
3642        continue;
3643      }
3644      if (NumNamedMembers < 1) {  //... must have more than named member ...
3645        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3646          << FD->getDeclName();
3647        FD->setInvalidDecl();
3648        EnclosingDecl->setInvalidDecl();
3649        continue;
3650      }
3651      // Okay, we have a legal flexible array member at the end of the struct.
3652      if (Record)
3653        Record->setHasFlexibleArrayMember(true);
3654    }
3655    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3656    /// field of another structure or the element of an array.
3657    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3658      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3659        // If this is a member of a union, then entire union becomes "flexible".
3660        if (Record && Record->isUnion()) {
3661          Record->setHasFlexibleArrayMember(true);
3662        } else {
3663          // If this is a struct/class and this is not the last element, reject
3664          // it.  Note that GCC supports variable sized arrays in the middle of
3665          // structures.
3666          if (i != NumFields-1) {
3667            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3668              << FD->getDeclName();
3669            FD->setInvalidDecl();
3670            EnclosingDecl->setInvalidDecl();
3671            continue;
3672          }
3673          // We support flexible arrays at the end of structs in other structs
3674          // as an extension.
3675          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3676            << FD->getDeclName();
3677          if (Record)
3678            Record->setHasFlexibleArrayMember(true);
3679        }
3680      }
3681    }
3682    /// A field cannot be an Objective-c object
3683    if (FDTy->isObjCInterfaceType()) {
3684      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3685        << FD->getDeclName();
3686      FD->setInvalidDecl();
3687      EnclosingDecl->setInvalidDecl();
3688      continue;
3689    }
3690    // Keep track of the number of named members.
3691    if (FD->getIdentifier())
3692      ++NumNamedMembers;
3693  }
3694
3695  // Okay, we successfully defined 'Record'.
3696  if (Record) {
3697    Record->completeDefinition(Context);
3698  } else {
3699    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3700    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3701      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3702      // Must enforce the rule that ivars in the base classes may not be
3703      // duplicates.
3704      if (ID->getSuperClass()) {
3705        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3706             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3707          ObjCIvarDecl* Ivar = (*IVI);
3708          IdentifierInfo *II = Ivar->getIdentifier();
3709          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3710          if (prevIvar) {
3711            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3712            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3713          }
3714        }
3715      }
3716    }
3717    else if (ObjCImplementationDecl *IMPDecl =
3718               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3719      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3720      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3721      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3722    }
3723  }
3724
3725  if (Attr)
3726    ProcessDeclAttributeList(Record, Attr);
3727}
3728
3729Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3730                                      DeclTy *lastEnumConst,
3731                                      SourceLocation IdLoc, IdentifierInfo *Id,
3732                                      SourceLocation EqualLoc, ExprTy *val) {
3733  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3734  EnumConstantDecl *LastEnumConst =
3735    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3736  Expr *Val = static_cast<Expr*>(val);
3737
3738  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3739  // we find one that is.
3740  S = getNonFieldDeclScope(S);
3741
3742  // Verify that there isn't already something declared with this name in this
3743  // scope.
3744  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3745  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3746    // Maybe we will complain about the shadowed template parameter.
3747    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3748    // Just pretend that we didn't see the previous declaration.
3749    PrevDecl = 0;
3750  }
3751
3752  if (PrevDecl) {
3753    // When in C++, we may get a TagDecl with the same name; in this case the
3754    // enum constant will 'hide' the tag.
3755    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3756           "Received TagDecl when not in C++!");
3757    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3758      if (isa<EnumConstantDecl>(PrevDecl))
3759        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3760      else
3761        Diag(IdLoc, diag::err_redefinition) << Id;
3762      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3763      Val->Destroy(Context);
3764      return 0;
3765    }
3766  }
3767
3768  llvm::APSInt EnumVal(32);
3769  QualType EltTy;
3770  if (Val) {
3771    // Make sure to promote the operand type to int.
3772    UsualUnaryConversions(Val);
3773
3774    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3775    SourceLocation ExpLoc;
3776    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3777      Val->Destroy(Context);
3778      Val = 0;  // Just forget about it.
3779    } else {
3780      EltTy = Val->getType();
3781    }
3782  }
3783
3784  if (!Val) {
3785    if (LastEnumConst) {
3786      // Assign the last value + 1.
3787      EnumVal = LastEnumConst->getInitVal();
3788      ++EnumVal;
3789
3790      // Check for overflow on increment.
3791      if (EnumVal < LastEnumConst->getInitVal())
3792        Diag(IdLoc, diag::warn_enum_value_overflow);
3793
3794      EltTy = LastEnumConst->getType();
3795    } else {
3796      // First value, set to zero.
3797      EltTy = Context.IntTy;
3798      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3799    }
3800  }
3801
3802  EnumConstantDecl *New =
3803    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3804                             Val, EnumVal);
3805
3806  // Register this decl in the current scope stack.
3807  PushOnScopeChains(New, S);
3808
3809  return New;
3810}
3811
3812// FIXME: For consistency with ActOnFields(), we should have the parser
3813// pass in the source location for the left/right braces.
3814void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3815                         DeclTy **Elements, unsigned NumElements) {
3816  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3817  QualType EnumType = Context.getTypeDeclType(Enum);
3818
3819  // TODO: If the result value doesn't fit in an int, it must be a long or long
3820  // long value.  ISO C does not support this, but GCC does as an extension,
3821  // emit a warning.
3822  unsigned IntWidth = Context.Target.getIntWidth();
3823
3824  // Verify that all the values are okay, compute the size of the values, and
3825  // reverse the list.
3826  unsigned NumNegativeBits = 0;
3827  unsigned NumPositiveBits = 0;
3828
3829  // Keep track of whether all elements have type int.
3830  bool AllElementsInt = true;
3831
3832  for (unsigned i = 0; i != NumElements; ++i) {
3833    EnumConstantDecl *ECD =
3834      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3835    if (!ECD) continue;  // Already issued a diagnostic.
3836
3837    // If the enum value doesn't fit in an int, emit an extension warning.
3838    const llvm::APSInt &InitVal = ECD->getInitVal();
3839    assert(InitVal.getBitWidth() >= IntWidth &&
3840           "Should have promoted value to int");
3841    if (InitVal.getBitWidth() > IntWidth) {
3842      llvm::APSInt V(InitVal);
3843      V.trunc(IntWidth);
3844      V.extend(InitVal.getBitWidth());
3845      if (V != InitVal)
3846        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3847          << InitVal.toString(10);
3848    }
3849
3850    // Keep track of the size of positive and negative values.
3851    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3852      NumPositiveBits = std::max(NumPositiveBits,
3853                                 (unsigned)InitVal.getActiveBits());
3854    else
3855      NumNegativeBits = std::max(NumNegativeBits,
3856                                 (unsigned)InitVal.getMinSignedBits());
3857
3858    // Keep track of whether every enum element has type int (very commmon).
3859    if (AllElementsInt)
3860      AllElementsInt = ECD->getType() == Context.IntTy;
3861  }
3862
3863  // Figure out the type that should be used for this enum.
3864  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3865  QualType BestType;
3866  unsigned BestWidth;
3867
3868  if (NumNegativeBits) {
3869    // If there is a negative value, figure out the smallest integer type (of
3870    // int/long/longlong) that fits.
3871    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3872      BestType = Context.IntTy;
3873      BestWidth = IntWidth;
3874    } else {
3875      BestWidth = Context.Target.getLongWidth();
3876
3877      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3878        BestType = Context.LongTy;
3879      else {
3880        BestWidth = Context.Target.getLongLongWidth();
3881
3882        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3883          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3884        BestType = Context.LongLongTy;
3885      }
3886    }
3887  } else {
3888    // If there is no negative value, figure out which of uint, ulong, ulonglong
3889    // fits.
3890    if (NumPositiveBits <= IntWidth) {
3891      BestType = Context.UnsignedIntTy;
3892      BestWidth = IntWidth;
3893    } else if (NumPositiveBits <=
3894               (BestWidth = Context.Target.getLongWidth())) {
3895      BestType = Context.UnsignedLongTy;
3896    } else {
3897      BestWidth = Context.Target.getLongLongWidth();
3898      assert(NumPositiveBits <= BestWidth &&
3899             "How could an initializer get larger than ULL?");
3900      BestType = Context.UnsignedLongLongTy;
3901    }
3902  }
3903
3904  // Loop over all of the enumerator constants, changing their types to match
3905  // the type of the enum if needed.
3906  for (unsigned i = 0; i != NumElements; ++i) {
3907    EnumConstantDecl *ECD =
3908      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3909    if (!ECD) continue;  // Already issued a diagnostic.
3910
3911    // Standard C says the enumerators have int type, but we allow, as an
3912    // extension, the enumerators to be larger than int size.  If each
3913    // enumerator value fits in an int, type it as an int, otherwise type it the
3914    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3915    // that X has type 'int', not 'unsigned'.
3916    if (ECD->getType() == Context.IntTy) {
3917      // Make sure the init value is signed.
3918      llvm::APSInt IV = ECD->getInitVal();
3919      IV.setIsSigned(true);
3920      ECD->setInitVal(IV);
3921
3922      if (getLangOptions().CPlusPlus)
3923        // C++ [dcl.enum]p4: Following the closing brace of an
3924        // enum-specifier, each enumerator has the type of its
3925        // enumeration.
3926        ECD->setType(EnumType);
3927      continue;  // Already int type.
3928    }
3929
3930    // Determine whether the value fits into an int.
3931    llvm::APSInt InitVal = ECD->getInitVal();
3932    bool FitsInInt;
3933    if (InitVal.isUnsigned() || !InitVal.isNegative())
3934      FitsInInt = InitVal.getActiveBits() < IntWidth;
3935    else
3936      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3937
3938    // If it fits into an integer type, force it.  Otherwise force it to match
3939    // the enum decl type.
3940    QualType NewTy;
3941    unsigned NewWidth;
3942    bool NewSign;
3943    if (FitsInInt) {
3944      NewTy = Context.IntTy;
3945      NewWidth = IntWidth;
3946      NewSign = true;
3947    } else if (ECD->getType() == BestType) {
3948      // Already the right type!
3949      if (getLangOptions().CPlusPlus)
3950        // C++ [dcl.enum]p4: Following the closing brace of an
3951        // enum-specifier, each enumerator has the type of its
3952        // enumeration.
3953        ECD->setType(EnumType);
3954      continue;
3955    } else {
3956      NewTy = BestType;
3957      NewWidth = BestWidth;
3958      NewSign = BestType->isSignedIntegerType();
3959    }
3960
3961    // Adjust the APSInt value.
3962    InitVal.extOrTrunc(NewWidth);
3963    InitVal.setIsSigned(NewSign);
3964    ECD->setInitVal(InitVal);
3965
3966    // Adjust the Expr initializer and type.
3967    if (ECD->getInitExpr())
3968      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3969                                                      /*isLvalue=*/false));
3970    if (getLangOptions().CPlusPlus)
3971      // C++ [dcl.enum]p4: Following the closing brace of an
3972      // enum-specifier, each enumerator has the type of its
3973      // enumeration.
3974      ECD->setType(EnumType);
3975    else
3976      ECD->setType(NewTy);
3977  }
3978
3979  Enum->completeDefinition(Context, BestType);
3980}
3981
3982Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3983                                          ExprArg expr) {
3984  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3985
3986  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3987}
3988
3989