SemaDecl.cpp revision 9b6348dcc3aaa88b9b04dd51acb0d4c0bb35cf9b
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclPtrTy d) {
36  Decl *D = d.getAs<Decl>();
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
43  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
44}
45
46/// \brief If the identifier refers to a type name within this scope,
47/// return the declaration of that type.
48///
49/// This routine performs ordinary name lookup of the identifier II
50/// within the given scope, with optional C++ scope specifier SS, to
51/// determine whether the name refers to a type. If so, returns an
52/// opaque pointer (actually a QualType) corresponding to that
53/// type. Otherwise, returns NULL.
54///
55/// If name lookup results in an ambiguity, this routine will complain
56/// and then return NULL.
57Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
58                                Scope *S, const CXXScopeSpec *SS) {
59  // C++ [temp.res]p3:
60  //   A qualified-id that refers to a type and in which the
61  //   nested-name-specifier depends on a template-parameter (14.6.2)
62  //   shall be prefixed by the keyword typename to indicate that the
63  //   qualified-id denotes a type, forming an
64  //   elaborated-type-specifier (7.1.5.3).
65  //
66  // We therefore do not perform any name lookup up SS is a dependent
67  // scope name. FIXME: we will need to perform a special kind of
68  // lookup if the scope specifier names a member of the current
69  // instantiation.
70  if (SS && isDependentScopeSpecifier(*SS))
71    return 0;
72
73  NamedDecl *IIDecl = 0;
74  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
75                                         false, false);
76  switch (Result.getKind()) {
77  case LookupResult::NotFound:
78  case LookupResult::FoundOverloaded:
79    return 0;
80
81  case LookupResult::AmbiguousBaseSubobjectTypes:
82  case LookupResult::AmbiguousBaseSubobjects:
83  case LookupResult::AmbiguousReference: {
84    // Look to see if we have a type anywhere in the list of results.
85    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
86         Res != ResEnd; ++Res) {
87      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
88        if (!IIDecl ||
89            (*Res)->getLocation().getRawEncoding() <
90              IIDecl->getLocation().getRawEncoding())
91          IIDecl = *Res;
92      }
93    }
94
95    if (!IIDecl) {
96      // None of the entities we found is a type, so there is no way
97      // to even assume that the result is a type. In this case, don't
98      // complain about the ambiguity. The parser will either try to
99      // perform this lookup again (e.g., as an object name), which
100      // will produce the ambiguity, or will complain that it expected
101      // a type name.
102      Result.Destroy();
103      return 0;
104    }
105
106    // We found a type within the ambiguous lookup; diagnose the
107    // ambiguity and then return that type. This might be the right
108    // answer, or it might not be, but it suppresses any attempt to
109    // perform the name lookup again.
110    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
111    break;
112  }
113
114  case LookupResult::Found:
115    IIDecl = Result.getAsDecl();
116    break;
117  }
118
119  if (IIDecl) {
120    QualType T;
121
122    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
123      // Check whether we can use this type
124      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
125
126      T = Context.getTypeDeclType(TD);
127    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
128      // Check whether we can use this interface.
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      T = Context.getObjCInterfaceType(IDecl);
132    } else
133      return 0;
134
135    if (SS)
136      T = getQualifiedNameType(*SS, T);
137
138    return T.getAsOpaquePtr();
139  }
140
141  return 0;
142}
143
144/// isTagName() - This method is called *for error recovery purposes only*
145/// to determine if the specified name is a valid tag name ("struct foo").  If
146/// so, this returns the TST for the tag corresponding to it (TST_enum,
147/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
148/// where the user forgot to specify the tag.
149DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
150  // Do a tag name lookup in this scope.
151  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
152  if (R.getKind() == LookupResult::Found)
153    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
154      switch (TD->getTagKind()) {
155      case TagDecl::TK_struct: return DeclSpec::TST_struct;
156      case TagDecl::TK_union:  return DeclSpec::TST_union;
157      case TagDecl::TK_class:  return DeclSpec::TST_class;
158      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
159      }
160    }
161
162  return DeclSpec::TST_unspecified;
163}
164
165
166
167DeclContext *Sema::getContainingDC(DeclContext *DC) {
168  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
169    // A C++ out-of-line method will return to the file declaration context.
170    if (MD->isOutOfLineDefinition())
171      return MD->getLexicalDeclContext();
172
173    // A C++ inline method is parsed *after* the topmost class it was declared
174    // in is fully parsed (it's "complete").
175    // The parsing of a C++ inline method happens at the declaration context of
176    // the topmost (non-nested) class it is lexically declared in.
177    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
178    DC = MD->getParent();
179    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
180      DC = RD;
181
182    // Return the declaration context of the topmost class the inline method is
183    // declared in.
184    return DC;
185  }
186
187  if (isa<ObjCMethodDecl>(DC))
188    return Context.getTranslationUnitDecl();
189
190  return DC->getLexicalParent();
191}
192
193void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
194  assert(getContainingDC(DC) == CurContext &&
195      "The next DeclContext should be lexically contained in the current one.");
196  CurContext = DC;
197  S->setEntity(DC);
198}
199
200void Sema::PopDeclContext() {
201  assert(CurContext && "DeclContext imbalance!");
202
203  CurContext = getContainingDC(CurContext);
204}
205
206/// \brief Determine whether we allow overloading of the function
207/// PrevDecl with another declaration.
208///
209/// This routine determines whether overloading is possible, not
210/// whether some new function is actually an overload. It will return
211/// true in C++ (where we can always provide overloads) or, as an
212/// extension, in C when the previous function is already an
213/// overloaded function declaration or has the "overloadable"
214/// attribute.
215static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
216  if (Context.getLangOptions().CPlusPlus)
217    return true;
218
219  if (isa<OverloadedFunctionDecl>(PrevDecl))
220    return true;
221
222  return PrevDecl->getAttr<OverloadableAttr>() != 0;
223}
224
225/// Add this decl to the scope shadowed decl chains.
226void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
227  // Move up the scope chain until we find the nearest enclosing
228  // non-transparent context. The declaration will be introduced into this
229  // scope.
230  while (S->getEntity() &&
231         ((DeclContext *)S->getEntity())->isTransparentContext())
232    S = S->getParent();
233
234  S->AddDecl(DeclPtrTy::make(D));
235
236  // Add scoped declarations into their context, so that they can be
237  // found later. Declarations without a context won't be inserted
238  // into any context.
239  CurContext->addDecl(Context, D);
240
241  // C++ [basic.scope]p4:
242  //   -- exactly one declaration shall declare a class name or
243  //   enumeration name that is not a typedef name and the other
244  //   declarations shall all refer to the same object or
245  //   enumerator, or all refer to functions and function templates;
246  //   in this case the class name or enumeration name is hidden.
247  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
248    // We are pushing the name of a tag (enum or class).
249    if (CurContext->getLookupContext()
250          == TD->getDeclContext()->getLookupContext()) {
251      // We're pushing the tag into the current context, which might
252      // require some reshuffling in the identifier resolver.
253      IdentifierResolver::iterator
254        I = IdResolver.begin(TD->getDeclName()),
255        IEnd = IdResolver.end();
256      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
257        NamedDecl *PrevDecl = *I;
258        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
259             PrevDecl = *I, ++I) {
260          if (TD->declarationReplaces(*I)) {
261            // This is a redeclaration. Remove it from the chain and
262            // break out, so that we'll add in the shadowed
263            // declaration.
264            S->RemoveDecl(DeclPtrTy::make(*I));
265            if (PrevDecl == *I) {
266              IdResolver.RemoveDecl(*I);
267              IdResolver.AddDecl(TD);
268              return;
269            } else {
270              IdResolver.RemoveDecl(*I);
271              break;
272            }
273          }
274        }
275
276        // There is already a declaration with the same name in the same
277        // scope, which is not a tag declaration. It must be found
278        // before we find the new declaration, so insert the new
279        // declaration at the end of the chain.
280        IdResolver.AddShadowedDecl(TD, PrevDecl);
281
282        return;
283      }
284    }
285  } else if (isa<FunctionDecl>(D) &&
286             AllowOverloadingOfFunction(D, Context)) {
287    // We are pushing the name of a function, which might be an
288    // overloaded name.
289    FunctionDecl *FD = cast<FunctionDecl>(D);
290    IdentifierResolver::iterator Redecl
291      = std::find_if(IdResolver.begin(FD->getDeclName()),
292                     IdResolver.end(),
293                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
294                                  FD));
295    if (Redecl != IdResolver.end() &&
296        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
297      // There is already a declaration of a function on our
298      // IdResolver chain. Replace it with this declaration.
299      S->RemoveDecl(DeclPtrTy::make(*Redecl));
300      IdResolver.RemoveDecl(*Redecl);
301    }
302  }
303
304  IdResolver.AddDecl(D);
305}
306
307void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
308  if (S->decl_empty()) return;
309  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
310	 "Scope shouldn't contain decls!");
311
312  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
313       I != E; ++I) {
314    Decl *TmpD = (*I).getAs<Decl>();
315    assert(TmpD && "This decl didn't get pushed??");
316
317    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
318    NamedDecl *D = cast<NamedDecl>(TmpD);
319
320    if (!D->getDeclName()) continue;
321
322    // Remove this name from our lexical scope.
323    IdResolver.RemoveDecl(D);
324  }
325}
326
327/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
328/// return 0 if one not found.
329ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
330  // The third "scope" argument is 0 since we aren't enabling lazy built-in
331  // creation from this context.
332  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
333
334  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
335}
336
337/// getNonFieldDeclScope - Retrieves the innermost scope, starting
338/// from S, where a non-field would be declared. This routine copes
339/// with the difference between C and C++ scoping rules in structs and
340/// unions. For example, the following code is well-formed in C but
341/// ill-formed in C++:
342/// @code
343/// struct S6 {
344///   enum { BAR } e;
345/// };
346///
347/// void test_S6() {
348///   struct S6 a;
349///   a.e = BAR;
350/// }
351/// @endcode
352/// For the declaration of BAR, this routine will return a different
353/// scope. The scope S will be the scope of the unnamed enumeration
354/// within S6. In C++, this routine will return the scope associated
355/// with S6, because the enumeration's scope is a transparent
356/// context but structures can contain non-field names. In C, this
357/// routine will return the translation unit scope, since the
358/// enumeration's scope is a transparent context and structures cannot
359/// contain non-field names.
360Scope *Sema::getNonFieldDeclScope(Scope *S) {
361  while (((S->getFlags() & Scope::DeclScope) == 0) ||
362         (S->getEntity() &&
363          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
364         (S->isClassScope() && !getLangOptions().CPlusPlus))
365    S = S->getParent();
366  return S;
367}
368
369void Sema::InitBuiltinVaListType() {
370  if (!Context.getBuiltinVaListType().isNull())
371    return;
372
373  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
374  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
375  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
376  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
377}
378
379/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
380/// file scope.  lazily create a decl for it. ForRedeclaration is true
381/// if we're creating this built-in in anticipation of redeclaring the
382/// built-in.
383NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
384                                     Scope *S, bool ForRedeclaration,
385                                     SourceLocation Loc) {
386  Builtin::ID BID = (Builtin::ID)bid;
387
388  if (Context.BuiltinInfo.hasVAListUse(BID))
389    InitBuiltinVaListType();
390
391  Builtin::Context::GetBuiltinTypeError Error;
392  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
393  switch (Error) {
394  case Builtin::Context::GE_None:
395    // Okay
396    break;
397
398  case Builtin::Context::GE_Missing_FILE:
399    if (ForRedeclaration)
400      Diag(Loc, diag::err_implicit_decl_requires_stdio)
401        << Context.BuiltinInfo.GetName(BID);
402    return 0;
403  }
404
405  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
406    Diag(Loc, diag::ext_implicit_lib_function_decl)
407      << Context.BuiltinInfo.GetName(BID)
408      << R;
409    if (Context.BuiltinInfo.getHeaderName(BID) &&
410        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
411          != Diagnostic::Ignored)
412      Diag(Loc, diag::note_please_include_header)
413        << Context.BuiltinInfo.getHeaderName(BID)
414        << Context.BuiltinInfo.GetName(BID);
415  }
416
417  FunctionDecl *New = FunctionDecl::Create(Context,
418                                           Context.getTranslationUnitDecl(),
419                                           Loc, II, R,
420                                           FunctionDecl::Extern, false,
421                                           /*hasPrototype=*/true);
422  New->setImplicit();
423
424  // Create Decl objects for each parameter, adding them to the
425  // FunctionDecl.
426  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
427    llvm::SmallVector<ParmVarDecl*, 16> Params;
428    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
429      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
430                                           FT->getArgType(i), VarDecl::None, 0));
431    New->setParams(Context, &Params[0], Params.size());
432  }
433
434  AddKnownFunctionAttributes(New);
435
436  // TUScope is the translation-unit scope to insert this function into.
437  // FIXME: This is hideous. We need to teach PushOnScopeChains to
438  // relate Scopes to DeclContexts, and probably eliminate CurContext
439  // entirely, but we're not there yet.
440  DeclContext *SavedContext = CurContext;
441  CurContext = Context.getTranslationUnitDecl();
442  PushOnScopeChains(New, TUScope);
443  CurContext = SavedContext;
444  return New;
445}
446
447/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
448/// everything from the standard library is defined.
449NamespaceDecl *Sema::GetStdNamespace() {
450  if (!StdNamespace) {
451    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
452    DeclContext *Global = Context.getTranslationUnitDecl();
453    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
454    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
455  }
456  return StdNamespace;
457}
458
459/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
460/// same name and scope as a previous declaration 'Old'.  Figure out
461/// how to resolve this situation, merging decls or emitting
462/// diagnostics as appropriate. Returns true if there was an error,
463/// false otherwise.
464///
465bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
466  bool objc_types = false;
467  // Allow multiple definitions for ObjC built-in typedefs.
468  // FIXME: Verify the underlying types are equivalent!
469  if (getLangOptions().ObjC1) {
470    const IdentifierInfo *TypeID = New->getIdentifier();
471    switch (TypeID->getLength()) {
472    default: break;
473    case 2:
474      if (!TypeID->isStr("id"))
475        break;
476      Context.setObjCIdType(New);
477      objc_types = true;
478      break;
479    case 5:
480      if (!TypeID->isStr("Class"))
481        break;
482      Context.setObjCClassType(New);
483      objc_types = true;
484      return false;
485    case 3:
486      if (!TypeID->isStr("SEL"))
487        break;
488      Context.setObjCSelType(New);
489      objc_types = true;
490      return false;
491    case 8:
492      if (!TypeID->isStr("Protocol"))
493        break;
494      Context.setObjCProtoType(New->getUnderlyingType());
495      objc_types = true;
496      return false;
497    }
498    // Fall through - the typedef name was not a builtin type.
499  }
500  // Verify the old decl was also a type.
501  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
502  if (!Old) {
503    Diag(New->getLocation(), diag::err_redefinition_different_kind)
504      << New->getDeclName();
505    if (!objc_types)
506      Diag(OldD->getLocation(), diag::note_previous_definition);
507    return true;
508  }
509
510  // Determine the "old" type we'll use for checking and diagnostics.
511  QualType OldType;
512  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
513    OldType = OldTypedef->getUnderlyingType();
514  else
515    OldType = Context.getTypeDeclType(Old);
516
517  // If the typedef types are not identical, reject them in all languages and
518  // with any extensions enabled.
519
520  if (OldType != New->getUnderlyingType() &&
521      Context.getCanonicalType(OldType) !=
522      Context.getCanonicalType(New->getUnderlyingType())) {
523    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
524      << New->getUnderlyingType() << OldType;
525    if (!objc_types)
526      Diag(Old->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529  if (objc_types) return false;
530  if (getLangOptions().Microsoft) return false;
531
532  // C++ [dcl.typedef]p2:
533  //   In a given non-class scope, a typedef specifier can be used to
534  //   redefine the name of any type declared in that scope to refer
535  //   to the type to which it already refers.
536  if (getLangOptions().CPlusPlus) {
537    if (!isa<CXXRecordDecl>(CurContext))
538      return false;
539    Diag(New->getLocation(), diag::err_redefinition)
540      << New->getDeclName();
541    Diag(Old->getLocation(), diag::note_previous_definition);
542    return true;
543  }
544
545  // If we have a redefinition of a typedef in C, emit a warning.  This warning
546  // is normally mapped to an error, but can be controlled with
547  // -Wtypedef-redefinition.
548  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
549    << New->getDeclName();
550  Diag(Old->getLocation(), diag::note_previous_definition);
551  return false;
552}
553
554/// DeclhasAttr - returns true if decl Declaration already has the target
555/// attribute.
556static bool DeclHasAttr(const Decl *decl, const Attr *target) {
557  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
558    if (attr->getKind() == target->getKind())
559      return true;
560
561  return false;
562}
563
564/// MergeAttributes - append attributes from the Old decl to the New one.
565static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
566  Attr *attr = const_cast<Attr*>(Old->getAttrs());
567
568  while (attr) {
569    Attr *tmp = attr;
570    attr = attr->getNext();
571
572    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
573      tmp->setInherited(true);
574      New->addAttr(tmp);
575    } else {
576      tmp->setNext(0);
577      tmp->Destroy(C);
578    }
579  }
580
581  Old->invalidateAttrs();
582}
583
584/// Used in MergeFunctionDecl to keep track of function parameters in
585/// C.
586struct GNUCompatibleParamWarning {
587  ParmVarDecl *OldParm;
588  ParmVarDecl *NewParm;
589  QualType PromotedType;
590};
591
592/// MergeFunctionDecl - We just parsed a function 'New' from
593/// declarator D which has the same name and scope as a previous
594/// declaration 'Old'.  Figure out how to resolve this situation,
595/// merging decls or emitting diagnostics as appropriate.
596///
597/// In C++, New and Old must be declarations that are not
598/// overloaded. Use IsOverload to determine whether New and Old are
599/// overloaded, and to select the Old declaration that New should be
600/// merged with.
601///
602/// Returns true if there was an error, false otherwise.
603bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
604  assert(!isa<OverloadedFunctionDecl>(OldD) &&
605         "Cannot merge with an overloaded function declaration");
606
607  // Verify the old decl was also a function.
608  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
609  if (!Old) {
610    Diag(New->getLocation(), diag::err_redefinition_different_kind)
611      << New->getDeclName();
612    Diag(OldD->getLocation(), diag::note_previous_definition);
613    return true;
614  }
615
616  // Determine whether the previous declaration was a definition,
617  // implicit declaration, or a declaration.
618  diag::kind PrevDiag;
619  if (Old->isThisDeclarationADefinition())
620    PrevDiag = diag::note_previous_definition;
621  else if (Old->isImplicit())
622    PrevDiag = diag::note_previous_implicit_declaration;
623  else
624    PrevDiag = diag::note_previous_declaration;
625
626  QualType OldQType = Context.getCanonicalType(Old->getType());
627  QualType NewQType = Context.getCanonicalType(New->getType());
628
629  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
630      New->getStorageClass() == FunctionDecl::Static &&
631      Old->getStorageClass() != FunctionDecl::Static) {
632    Diag(New->getLocation(), diag::err_static_non_static)
633      << New;
634    Diag(Old->getLocation(), PrevDiag);
635    return true;
636  }
637
638  if (getLangOptions().CPlusPlus) {
639    // (C++98 13.1p2):
640    //   Certain function declarations cannot be overloaded:
641    //     -- Function declarations that differ only in the return type
642    //        cannot be overloaded.
643    QualType OldReturnType
644      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
645    QualType NewReturnType
646      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
647    if (OldReturnType != NewReturnType) {
648      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
649      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
650      return true;
651    }
652
653    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
654    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
655    if (OldMethod && NewMethod &&
656        OldMethod->getLexicalDeclContext() ==
657          NewMethod->getLexicalDeclContext()) {
658      //    -- Member function declarations with the same name and the
659      //       same parameter types cannot be overloaded if any of them
660      //       is a static member function declaration.
661      if (OldMethod->isStatic() || NewMethod->isStatic()) {
662        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
663        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
664        return true;
665      }
666
667      // C++ [class.mem]p1:
668      //   [...] A member shall not be declared twice in the
669      //   member-specification, except that a nested class or member
670      //   class template can be declared and then later defined.
671      unsigned NewDiag;
672      if (isa<CXXConstructorDecl>(OldMethod))
673        NewDiag = diag::err_constructor_redeclared;
674      else if (isa<CXXDestructorDecl>(NewMethod))
675        NewDiag = diag::err_destructor_redeclared;
676      else if (isa<CXXConversionDecl>(NewMethod))
677        NewDiag = diag::err_conv_function_redeclared;
678      else
679        NewDiag = diag::err_member_redeclared;
680
681      Diag(New->getLocation(), NewDiag);
682      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
683    }
684
685    // (C++98 8.3.5p3):
686    //   All declarations for a function shall agree exactly in both the
687    //   return type and the parameter-type-list.
688    if (OldQType == NewQType)
689      return MergeCompatibleFunctionDecls(New, Old);
690
691    // Fall through for conflicting redeclarations and redefinitions.
692  }
693
694  // C: Function types need to be compatible, not identical. This handles
695  // duplicate function decls like "void f(int); void f(enum X);" properly.
696  if (!getLangOptions().CPlusPlus &&
697      Context.typesAreCompatible(OldQType, NewQType)) {
698    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
699    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
700    const FunctionProtoType *OldProto = 0;
701    if (isa<FunctionNoProtoType>(NewFuncType) &&
702        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
703      // The old declaration provided a function prototype, but the
704      // new declaration does not. Merge in the prototype.
705      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
706                                                 OldProto->arg_type_end());
707      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
708                                         &ParamTypes[0], ParamTypes.size(),
709                                         OldProto->isVariadic(),
710                                         OldProto->getTypeQuals());
711      New->setType(NewQType);
712      New->setInheritedPrototype();
713
714      // Synthesize a parameter for each argument type.
715      llvm::SmallVector<ParmVarDecl*, 16> Params;
716      for (FunctionProtoType::arg_type_iterator
717             ParamType = OldProto->arg_type_begin(),
718             ParamEnd = OldProto->arg_type_end();
719           ParamType != ParamEnd; ++ParamType) {
720        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
721                                                 SourceLocation(), 0,
722                                                 *ParamType, VarDecl::None,
723                                                 0);
724        Param->setImplicit();
725        Params.push_back(Param);
726      }
727
728      New->setParams(Context, &Params[0], Params.size());
729    }
730
731    return MergeCompatibleFunctionDecls(New, Old);
732  }
733
734  // GNU C permits a K&R definition to follow a prototype declaration
735  // if the declared types of the parameters in the K&R definition
736  // match the types in the prototype declaration, even when the
737  // promoted types of the parameters from the K&R definition differ
738  // from the types in the prototype. GCC then keeps the types from
739  // the prototype.
740  if (!getLangOptions().CPlusPlus &&
741      !getLangOptions().NoExtensions &&
742      Old->hasPrototype() && !New->hasPrototype() &&
743      New->getType()->getAsFunctionProtoType() &&
744      Old->getNumParams() == New->getNumParams()) {
745    llvm::SmallVector<QualType, 16> ArgTypes;
746    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
747    const FunctionProtoType *OldProto
748      = Old->getType()->getAsFunctionProtoType();
749    const FunctionProtoType *NewProto
750      = New->getType()->getAsFunctionProtoType();
751
752    // Determine whether this is the GNU C extension.
753    bool GNUCompatible =
754      Context.typesAreCompatible(OldProto->getResultType(),
755                                 NewProto->getResultType()) &&
756      (OldProto->isVariadic() == NewProto->isVariadic());
757    for (unsigned Idx = 0, End = Old->getNumParams();
758         GNUCompatible && Idx != End; ++Idx) {
759      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
760      ParmVarDecl *NewParm = New->getParamDecl(Idx);
761      if (Context.typesAreCompatible(OldParm->getType(),
762                                     NewProto->getArgType(Idx))) {
763        ArgTypes.push_back(NewParm->getType());
764      } else if (Context.typesAreCompatible(OldParm->getType(),
765                                            NewParm->getType())) {
766        GNUCompatibleParamWarning Warn
767          = { OldParm, NewParm, NewProto->getArgType(Idx) };
768        Warnings.push_back(Warn);
769        ArgTypes.push_back(NewParm->getType());
770      } else
771        GNUCompatible = false;
772    }
773
774    if (GNUCompatible) {
775      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
776        Diag(Warnings[Warn].NewParm->getLocation(),
777             diag::ext_param_promoted_not_compatible_with_prototype)
778          << Warnings[Warn].PromotedType
779          << Warnings[Warn].OldParm->getType();
780        Diag(Warnings[Warn].OldParm->getLocation(),
781             diag::note_previous_declaration);
782      }
783
784      New->setType(Context.getFunctionType(NewProto->getResultType(),
785                                           &ArgTypes[0], ArgTypes.size(),
786                                           NewProto->isVariadic(),
787                                           NewProto->getTypeQuals()));
788      return MergeCompatibleFunctionDecls(New, Old);
789    }
790
791    // Fall through to diagnose conflicting types.
792  }
793
794  // A function that has already been declared has been redeclared or defined
795  // with a different type- show appropriate diagnostic
796  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
797    // The user has declared a builtin function with an incompatible
798    // signature.
799    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
800      // The function the user is redeclaring is a library-defined
801      // function like 'malloc' or 'printf'. Warn about the
802      // redeclaration, then pretend that we don't know about this
803      // library built-in.
804      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
805      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
806        << Old << Old->getType();
807      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
808      Old->setInvalidDecl();
809      return false;
810    }
811
812    PrevDiag = diag::note_previous_builtin_declaration;
813  }
814
815  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
816  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
817  return true;
818}
819
820/// \brief Completes the merge of two function declarations that are
821/// known to be compatible.
822///
823/// This routine handles the merging of attributes and other
824/// properties of function declarations form the old declaration to
825/// the new declaration, once we know that New is in fact a
826/// redeclaration of Old.
827///
828/// \returns false
829bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
830  // Merge the attributes
831  MergeAttributes(New, Old, Context);
832
833  // Merge the storage class.
834  New->setStorageClass(Old->getStorageClass());
835
836  // Merge "inline"
837  if (Old->isInline())
838    New->setInline(true);
839
840  // If this function declaration by itself qualifies as a C99 inline
841  // definition (C99 6.7.4p6), but the previous definition did not,
842  // then the function is not a C99 inline definition.
843  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
844    New->setC99InlineDefinition(false);
845  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
846    // Mark all preceding definitions as not being C99 inline definitions.
847    for (const FunctionDecl *Prev = Old; Prev;
848         Prev = Prev->getPreviousDeclaration())
849      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
850  }
851
852  // Merge "pure" flag.
853  if (Old->isPure())
854    New->setPure();
855
856  // Merge the "deleted" flag.
857  if (Old->isDeleted())
858    New->setDeleted();
859
860  if (getLangOptions().CPlusPlus)
861    return MergeCXXFunctionDecl(New, Old);
862
863  return false;
864}
865
866/// MergeVarDecl - We just parsed a variable 'New' which has the same name
867/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
868/// situation, merging decls or emitting diagnostics as appropriate.
869///
870/// Tentative definition rules (C99 6.9.2p2) are checked by
871/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
872/// definitions here, since the initializer hasn't been attached.
873///
874bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
875  // Verify the old decl was also a variable.
876  VarDecl *Old = dyn_cast<VarDecl>(OldD);
877  if (!Old) {
878    Diag(New->getLocation(), diag::err_redefinition_different_kind)
879      << New->getDeclName();
880    Diag(OldD->getLocation(), diag::note_previous_definition);
881    return true;
882  }
883
884  MergeAttributes(New, Old, Context);
885
886  // Merge the types
887  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
888  if (MergedT.isNull()) {
889    Diag(New->getLocation(), diag::err_redefinition_different_type)
890      << New->getDeclName();
891    Diag(Old->getLocation(), diag::note_previous_definition);
892    return true;
893  }
894  New->setType(MergedT);
895
896  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
897  if (New->getStorageClass() == VarDecl::Static &&
898      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
899    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
900    Diag(Old->getLocation(), diag::note_previous_definition);
901    return true;
902  }
903  // C99 6.2.2p4:
904  //   For an identifier declared with the storage-class specifier
905  //   extern in a scope in which a prior declaration of that
906  //   identifier is visible,23) if the prior declaration specifies
907  //   internal or external linkage, the linkage of the identifier at
908  //   the later declaration is the same as the linkage specified at
909  //   the prior declaration. If no prior declaration is visible, or
910  //   if the prior declaration specifies no linkage, then the
911  //   identifier has external linkage.
912  if (New->hasExternalStorage() && Old->hasLinkage())
913    /* Okay */;
914  else if (New->getStorageClass() != VarDecl::Static &&
915           Old->getStorageClass() == VarDecl::Static) {
916    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
917    Diag(Old->getLocation(), diag::note_previous_definition);
918    return true;
919  }
920
921  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
922
923  // FIXME: The test for external storage here seems wrong? We still
924  // need to check for mismatches.
925  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
926      // Don't complain about out-of-line definitions of static members.
927      !(Old->getLexicalDeclContext()->isRecord() &&
928        !New->getLexicalDeclContext()->isRecord())) {
929    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
930    Diag(Old->getLocation(), diag::note_previous_definition);
931    return true;
932  }
933
934  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
935    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
936    Diag(Old->getLocation(), diag::note_previous_definition);
937  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
938    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
939    Diag(Old->getLocation(), diag::note_previous_definition);
940  }
941
942  // Keep a chain of previous declarations.
943  New->setPreviousDeclaration(Old);
944
945  return false;
946}
947
948/// CheckParmsForFunctionDef - Check that the parameters of the given
949/// function are appropriate for the definition of a function. This
950/// takes care of any checks that cannot be performed on the
951/// declaration itself, e.g., that the types of each of the function
952/// parameters are complete.
953bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
954  bool HasInvalidParm = false;
955  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
956    ParmVarDecl *Param = FD->getParamDecl(p);
957
958    // C99 6.7.5.3p4: the parameters in a parameter type list in a
959    // function declarator that is part of a function definition of
960    // that function shall not have incomplete type.
961    //
962    // This is also C++ [dcl.fct]p6.
963    if (!Param->isInvalidDecl() &&
964        RequireCompleteType(Param->getLocation(), Param->getType(),
965                               diag::err_typecheck_decl_incomplete_type)) {
966      Param->setInvalidDecl();
967      HasInvalidParm = true;
968    }
969
970    // C99 6.9.1p5: If the declarator includes a parameter type list, the
971    // declaration of each parameter shall include an identifier.
972    if (Param->getIdentifier() == 0 &&
973        !Param->isImplicit() &&
974        !getLangOptions().CPlusPlus)
975      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
976  }
977
978  return HasInvalidParm;
979}
980
981/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
982/// no declarator (e.g. "struct foo;") is parsed.
983Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
984  // FIXME: Error on auto/register at file scope
985  // FIXME: Error on inline/virtual/explicit
986  // FIXME: Error on invalid restrict
987  // FIXME: Warn on useless __thread
988  // FIXME: Warn on useless const/volatile
989  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
990  // FIXME: Warn on useless attributes
991
992  TagDecl *Tag = 0;
993  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
994      DS.getTypeSpecType() == DeclSpec::TST_struct ||
995      DS.getTypeSpecType() == DeclSpec::TST_union ||
996      DS.getTypeSpecType() == DeclSpec::TST_enum)
997    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
998
999  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1000    if (!Record->getDeclName() && Record->isDefinition() &&
1001        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1002      if (getLangOptions().CPlusPlus ||
1003          Record->getDeclContext()->isRecord())
1004        return BuildAnonymousStructOrUnion(S, DS, Record);
1005
1006      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1007        << DS.getSourceRange();
1008    }
1009
1010    // Microsoft allows unnamed struct/union fields. Don't complain
1011    // about them.
1012    // FIXME: Should we support Microsoft's extensions in this area?
1013    if (Record->getDeclName() && getLangOptions().Microsoft)
1014      return DeclPtrTy::make(Tag);
1015  }
1016
1017  if (!DS.isMissingDeclaratorOk() &&
1018      DS.getTypeSpecType() != DeclSpec::TST_error) {
1019    // Warn about typedefs of enums without names, since this is an
1020    // extension in both Microsoft an GNU.
1021    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1022        Tag && isa<EnumDecl>(Tag)) {
1023      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1024        << DS.getSourceRange();
1025      return DeclPtrTy::make(Tag);
1026    }
1027
1028    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1029      << DS.getSourceRange();
1030    return DeclPtrTy();
1031  }
1032
1033  return DeclPtrTy::make(Tag);
1034}
1035
1036/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1037/// anonymous struct or union AnonRecord into the owning context Owner
1038/// and scope S. This routine will be invoked just after we realize
1039/// that an unnamed union or struct is actually an anonymous union or
1040/// struct, e.g.,
1041///
1042/// @code
1043/// union {
1044///   int i;
1045///   float f;
1046/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1047///    // f into the surrounding scope.x
1048/// @endcode
1049///
1050/// This routine is recursive, injecting the names of nested anonymous
1051/// structs/unions into the owning context and scope as well.
1052bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1053                                               RecordDecl *AnonRecord) {
1054  bool Invalid = false;
1055  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1056                               FEnd = AnonRecord->field_end(Context);
1057       F != FEnd; ++F) {
1058    if ((*F)->getDeclName()) {
1059      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1060                                                LookupOrdinaryName, true);
1061      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1062        // C++ [class.union]p2:
1063        //   The names of the members of an anonymous union shall be
1064        //   distinct from the names of any other entity in the
1065        //   scope in which the anonymous union is declared.
1066        unsigned diagKind
1067          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1068                                 : diag::err_anonymous_struct_member_redecl;
1069        Diag((*F)->getLocation(), diagKind)
1070          << (*F)->getDeclName();
1071        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1072        Invalid = true;
1073      } else {
1074        // C++ [class.union]p2:
1075        //   For the purpose of name lookup, after the anonymous union
1076        //   definition, the members of the anonymous union are
1077        //   considered to have been defined in the scope in which the
1078        //   anonymous union is declared.
1079        Owner->makeDeclVisibleInContext(Context, *F);
1080        S->AddDecl(DeclPtrTy::make(*F));
1081        IdResolver.AddDecl(*F);
1082      }
1083    } else if (const RecordType *InnerRecordType
1084                 = (*F)->getType()->getAsRecordType()) {
1085      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1086      if (InnerRecord->isAnonymousStructOrUnion())
1087        Invalid = Invalid ||
1088          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1089    }
1090  }
1091
1092  return Invalid;
1093}
1094
1095/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1096/// anonymous structure or union. Anonymous unions are a C++ feature
1097/// (C++ [class.union]) and a GNU C extension; anonymous structures
1098/// are a GNU C and GNU C++ extension.
1099Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1100                                                  RecordDecl *Record) {
1101  DeclContext *Owner = Record->getDeclContext();
1102
1103  // Diagnose whether this anonymous struct/union is an extension.
1104  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1105    Diag(Record->getLocation(), diag::ext_anonymous_union);
1106  else if (!Record->isUnion())
1107    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1108
1109  // C and C++ require different kinds of checks for anonymous
1110  // structs/unions.
1111  bool Invalid = false;
1112  if (getLangOptions().CPlusPlus) {
1113    const char* PrevSpec = 0;
1114    // C++ [class.union]p3:
1115    //   Anonymous unions declared in a named namespace or in the
1116    //   global namespace shall be declared static.
1117    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1118        (isa<TranslationUnitDecl>(Owner) ||
1119         (isa<NamespaceDecl>(Owner) &&
1120          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1121      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1122      Invalid = true;
1123
1124      // Recover by adding 'static'.
1125      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1126    }
1127    // C++ [class.union]p3:
1128    //   A storage class is not allowed in a declaration of an
1129    //   anonymous union in a class scope.
1130    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1131             isa<RecordDecl>(Owner)) {
1132      Diag(DS.getStorageClassSpecLoc(),
1133           diag::err_anonymous_union_with_storage_spec);
1134      Invalid = true;
1135
1136      // Recover by removing the storage specifier.
1137      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1138                             PrevSpec);
1139    }
1140
1141    // C++ [class.union]p2:
1142    //   The member-specification of an anonymous union shall only
1143    //   define non-static data members. [Note: nested types and
1144    //   functions cannot be declared within an anonymous union. ]
1145    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1146                                 MemEnd = Record->decls_end(Context);
1147         Mem != MemEnd; ++Mem) {
1148      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1149        // C++ [class.union]p3:
1150        //   An anonymous union shall not have private or protected
1151        //   members (clause 11).
1152        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1153          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1154            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1155          Invalid = true;
1156        }
1157      } else if ((*Mem)->isImplicit()) {
1158        // Any implicit members are fine.
1159      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1160        // This is a type that showed up in an
1161        // elaborated-type-specifier inside the anonymous struct or
1162        // union, but which actually declares a type outside of the
1163        // anonymous struct or union. It's okay.
1164      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1165        if (!MemRecord->isAnonymousStructOrUnion() &&
1166            MemRecord->getDeclName()) {
1167          // This is a nested type declaration.
1168          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1169            << (int)Record->isUnion();
1170          Invalid = true;
1171        }
1172      } else {
1173        // We have something that isn't a non-static data
1174        // member. Complain about it.
1175        unsigned DK = diag::err_anonymous_record_bad_member;
1176        if (isa<TypeDecl>(*Mem))
1177          DK = diag::err_anonymous_record_with_type;
1178        else if (isa<FunctionDecl>(*Mem))
1179          DK = diag::err_anonymous_record_with_function;
1180        else if (isa<VarDecl>(*Mem))
1181          DK = diag::err_anonymous_record_with_static;
1182        Diag((*Mem)->getLocation(), DK)
1183            << (int)Record->isUnion();
1184          Invalid = true;
1185      }
1186    }
1187  }
1188
1189  if (!Record->isUnion() && !Owner->isRecord()) {
1190    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1191      << (int)getLangOptions().CPlusPlus;
1192    Invalid = true;
1193  }
1194
1195  // Create a declaration for this anonymous struct/union.
1196  NamedDecl *Anon = 0;
1197  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1198    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1199                             /*IdentifierInfo=*/0,
1200                             Context.getTypeDeclType(Record),
1201                             /*BitWidth=*/0, /*Mutable=*/false);
1202    Anon->setAccess(AS_public);
1203    if (getLangOptions().CPlusPlus)
1204      FieldCollector->Add(cast<FieldDecl>(Anon));
1205  } else {
1206    VarDecl::StorageClass SC;
1207    switch (DS.getStorageClassSpec()) {
1208    default: assert(0 && "Unknown storage class!");
1209    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1210    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1211    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1212    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1213    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1214    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1215    case DeclSpec::SCS_mutable:
1216      // mutable can only appear on non-static class members, so it's always
1217      // an error here
1218      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1219      Invalid = true;
1220      SC = VarDecl::None;
1221      break;
1222    }
1223
1224    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1225                           /*IdentifierInfo=*/0,
1226                           Context.getTypeDeclType(Record),
1227                           SC, DS.getSourceRange().getBegin());
1228  }
1229  Anon->setImplicit();
1230
1231  // Add the anonymous struct/union object to the current
1232  // context. We'll be referencing this object when we refer to one of
1233  // its members.
1234  Owner->addDecl(Context, Anon);
1235
1236  // Inject the members of the anonymous struct/union into the owning
1237  // context and into the identifier resolver chain for name lookup
1238  // purposes.
1239  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1240    Invalid = true;
1241
1242  // Mark this as an anonymous struct/union type. Note that we do not
1243  // do this until after we have already checked and injected the
1244  // members of this anonymous struct/union type, because otherwise
1245  // the members could be injected twice: once by DeclContext when it
1246  // builds its lookup table, and once by
1247  // InjectAnonymousStructOrUnionMembers.
1248  Record->setAnonymousStructOrUnion(true);
1249
1250  if (Invalid)
1251    Anon->setInvalidDecl();
1252
1253  return DeclPtrTy::make(Anon);
1254}
1255
1256
1257/// GetNameForDeclarator - Determine the full declaration name for the
1258/// given Declarator.
1259DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1260  switch (D.getKind()) {
1261  case Declarator::DK_Abstract:
1262    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1263    return DeclarationName();
1264
1265  case Declarator::DK_Normal:
1266    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1267    return DeclarationName(D.getIdentifier());
1268
1269  case Declarator::DK_Constructor: {
1270    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1271    Ty = Context.getCanonicalType(Ty);
1272    return Context.DeclarationNames.getCXXConstructorName(Ty);
1273  }
1274
1275  case Declarator::DK_Destructor: {
1276    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1277    Ty = Context.getCanonicalType(Ty);
1278    return Context.DeclarationNames.getCXXDestructorName(Ty);
1279  }
1280
1281  case Declarator::DK_Conversion: {
1282    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1283    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1284    Ty = Context.getCanonicalType(Ty);
1285    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1286  }
1287
1288  case Declarator::DK_Operator:
1289    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1290    return Context.DeclarationNames.getCXXOperatorName(
1291                                                D.getOverloadedOperator());
1292  }
1293
1294  assert(false && "Unknown name kind");
1295  return DeclarationName();
1296}
1297
1298/// isNearlyMatchingFunction - Determine whether the C++ functions
1299/// Declaration and Definition are "nearly" matching. This heuristic
1300/// is used to improve diagnostics in the case where an out-of-line
1301/// function definition doesn't match any declaration within
1302/// the class or namespace.
1303static bool isNearlyMatchingFunction(ASTContext &Context,
1304                                     FunctionDecl *Declaration,
1305                                     FunctionDecl *Definition) {
1306  if (Declaration->param_size() != Definition->param_size())
1307    return false;
1308  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1309    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1310    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1311
1312    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1313    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1314    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1315      return false;
1316  }
1317
1318  return true;
1319}
1320
1321Sema::DeclPtrTy
1322Sema::ActOnDeclarator(Scope *S, Declarator &D, bool IsFunctionDefinition) {
1323  DeclarationName Name = GetNameForDeclarator(D);
1324
1325  // All of these full declarators require an identifier.  If it doesn't have
1326  // one, the ParsedFreeStandingDeclSpec action should be used.
1327  if (!Name) {
1328    if (!D.getInvalidType())  // Reject this if we think it is valid.
1329      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1330           diag::err_declarator_need_ident)
1331        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1332    return DeclPtrTy();
1333  }
1334
1335  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1336  // we find one that is.
1337  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1338         (S->getFlags() & Scope::TemplateParamScope) != 0)
1339    S = S->getParent();
1340
1341  DeclContext *DC;
1342  NamedDecl *PrevDecl;
1343  NamedDecl *New;
1344  bool InvalidDecl = false;
1345
1346  QualType R = GetTypeForDeclarator(D, S);
1347  if (R.isNull()) {
1348    InvalidDecl = true;
1349    R = Context.IntTy;
1350    if (IsFunctionDefinition) // int(...)
1351      R = Context.getFunctionType(R, 0, 0, true, 0);
1352
1353  }
1354
1355  // See if this is a redefinition of a variable in the same scope.
1356  if (D.getCXXScopeSpec().isInvalid()) {
1357    DC = CurContext;
1358    PrevDecl = 0;
1359    InvalidDecl = true;
1360  } else if (!D.getCXXScopeSpec().isSet()) {
1361    LookupNameKind NameKind = LookupOrdinaryName;
1362
1363    // If the declaration we're planning to build will be a function
1364    // or object with linkage, then look for another declaration with
1365    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1366    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1367      /* Do nothing*/;
1368    else if (R->isFunctionType()) {
1369      if (CurContext->isFunctionOrMethod())
1370        NameKind = LookupRedeclarationWithLinkage;
1371    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1372      NameKind = LookupRedeclarationWithLinkage;
1373
1374    DC = CurContext;
1375    PrevDecl = LookupName(S, Name, NameKind, true,
1376                          D.getDeclSpec().getStorageClassSpec() !=
1377                            DeclSpec::SCS_static,
1378                          D.getIdentifierLoc());
1379  } else { // Something like "int foo::x;"
1380    DC = computeDeclContext(D.getCXXScopeSpec());
1381    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1382    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1383
1384    // C++ 7.3.1.2p2:
1385    // Members (including explicit specializations of templates) of a named
1386    // namespace can also be defined outside that namespace by explicit
1387    // qualification of the name being defined, provided that the entity being
1388    // defined was already declared in the namespace and the definition appears
1389    // after the point of declaration in a namespace that encloses the
1390    // declarations namespace.
1391    //
1392    // Note that we only check the context at this point. We don't yet
1393    // have enough information to make sure that PrevDecl is actually
1394    // the declaration we want to match. For example, given:
1395    //
1396    //   class X {
1397    //     void f();
1398    //     void f(float);
1399    //   };
1400    //
1401    //   void X::f(int) { } // ill-formed
1402    //
1403    // In this case, PrevDecl will point to the overload set
1404    // containing the two f's declared in X, but neither of them
1405    // matches.
1406
1407    // First check whether we named the global scope.
1408    if (isa<TranslationUnitDecl>(DC)) {
1409      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1410        << Name << D.getCXXScopeSpec().getRange();
1411    } else if (!CurContext->Encloses(DC)) {
1412      // The qualifying scope doesn't enclose the original declaration.
1413      // Emit diagnostic based on current scope.
1414      SourceLocation L = D.getIdentifierLoc();
1415      SourceRange R = D.getCXXScopeSpec().getRange();
1416      if (isa<FunctionDecl>(CurContext))
1417        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1418      else
1419        Diag(L, diag::err_invalid_declarator_scope)
1420          << Name << cast<NamedDecl>(DC) << R;
1421      InvalidDecl = true;
1422    }
1423  }
1424
1425  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1426    // Maybe we will complain about the shadowed template parameter.
1427    InvalidDecl = InvalidDecl
1428      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1429    // Just pretend that we didn't see the previous declaration.
1430    PrevDecl = 0;
1431  }
1432
1433  // In C++, the previous declaration we find might be a tag type
1434  // (class or enum). In this case, the new declaration will hide the
1435  // tag type. Note that this does does not apply if we're declaring a
1436  // typedef (C++ [dcl.typedef]p4).
1437  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1438      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1439    PrevDecl = 0;
1440
1441  bool Redeclaration = false;
1442  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1443    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl,
1444                                 InvalidDecl, Redeclaration);
1445  } else if (R->isFunctionType()) {
1446    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1447                                  IsFunctionDefinition, InvalidDecl,
1448                                  Redeclaration);
1449  } else {
1450    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1451                                  InvalidDecl, Redeclaration);
1452  }
1453
1454  if (New == 0)
1455    return DeclPtrTy();
1456
1457  // If this has an identifier and is not an invalid redeclaration,
1458  // add it to the scope stack.
1459  if (Name && !(Redeclaration && InvalidDecl))
1460    PushOnScopeChains(New, S);
1461  // If any semantic error occurred, mark the decl as invalid.
1462  if (D.getInvalidType() || InvalidDecl)
1463    New->setInvalidDecl();
1464
1465  return DeclPtrTy::make(New);
1466}
1467
1468/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1469/// types into constant array types in certain situations which would otherwise
1470/// be errors (for GCC compatibility).
1471static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1472                                                    ASTContext &Context,
1473                                                    bool &SizeIsNegative) {
1474  // This method tries to turn a variable array into a constant
1475  // array even when the size isn't an ICE.  This is necessary
1476  // for compatibility with code that depends on gcc's buggy
1477  // constant expression folding, like struct {char x[(int)(char*)2];}
1478  SizeIsNegative = false;
1479
1480  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1481    QualType Pointee = PTy->getPointeeType();
1482    QualType FixedType =
1483        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1484    if (FixedType.isNull()) return FixedType;
1485    FixedType = Context.getPointerType(FixedType);
1486    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1487    return FixedType;
1488  }
1489
1490  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1491  if (!VLATy)
1492    return QualType();
1493  // FIXME: We should probably handle this case
1494  if (VLATy->getElementType()->isVariablyModifiedType())
1495    return QualType();
1496
1497  Expr::EvalResult EvalResult;
1498  if (!VLATy->getSizeExpr() ||
1499      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1500      !EvalResult.Val.isInt())
1501    return QualType();
1502
1503  llvm::APSInt &Res = EvalResult.Val.getInt();
1504  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1505    return Context.getConstantArrayType(VLATy->getElementType(),
1506                                        Res, ArrayType::Normal, 0);
1507
1508  SizeIsNegative = true;
1509  return QualType();
1510}
1511
1512/// \brief Register the given locally-scoped external C declaration so
1513/// that it can be found later for redeclarations
1514void
1515Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1516                                       Scope *S) {
1517  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1518         "Decl is not a locally-scoped decl!");
1519  // Note that we have a locally-scoped external with this name.
1520  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1521
1522  if (!PrevDecl)
1523    return;
1524
1525  // If there was a previous declaration of this variable, it may be
1526  // in our identifier chain. Update the identifier chain with the new
1527  // declaration.
1528  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1529    // The previous declaration was found on the identifer resolver
1530    // chain, so remove it from its scope.
1531    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1532      S = S->getParent();
1533
1534    if (S)
1535      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1536  }
1537}
1538
1539/// \brief Diagnose function specifiers on a declaration of an identifier that
1540/// does not identify a function.
1541void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1542  // FIXME: We should probably indicate the identifier in question to avoid
1543  // confusion for constructs like "inline int a(), b;"
1544  if (D.getDeclSpec().isInlineSpecified())
1545    Diag(D.getDeclSpec().getInlineSpecLoc(),
1546         diag::err_inline_non_function);
1547
1548  if (D.getDeclSpec().isVirtualSpecified())
1549    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1550         diag::err_virtual_non_function);
1551
1552  if (D.getDeclSpec().isExplicitSpecified())
1553    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1554         diag::err_explicit_non_function);
1555}
1556
1557NamedDecl*
1558Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1559                             QualType R, Decl* PrevDecl, bool& InvalidDecl,
1560                             bool &Redeclaration) {
1561  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1562  if (D.getCXXScopeSpec().isSet()) {
1563    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1564      << D.getCXXScopeSpec().getRange();
1565    InvalidDecl = true;
1566    // Pretend we didn't see the scope specifier.
1567    DC = 0;
1568  }
1569
1570  if (getLangOptions().CPlusPlus) {
1571    // Check that there are no default arguments (C++ only).
1572    CheckExtraCXXDefaultArguments(D);
1573  }
1574
1575  DiagnoseFunctionSpecifiers(D);
1576
1577  if (D.getDeclSpec().isThreadSpecified())
1578    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1579
1580  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1581  if (!NewTD) return 0;
1582
1583  // Handle attributes prior to checking for duplicates in MergeVarDecl
1584  ProcessDeclAttributes(NewTD, D);
1585  // Merge the decl with the existing one if appropriate. If the decl is
1586  // in an outer scope, it isn't the same thing.
1587  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1588    Redeclaration = true;
1589    if (MergeTypeDefDecl(NewTD, PrevDecl))
1590      InvalidDecl = true;
1591  }
1592
1593  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1594  // then it shall have block scope.
1595  QualType T = NewTD->getUnderlyingType();
1596  if (T->isVariablyModifiedType()) {
1597    CurFunctionNeedsScopeChecking = true;
1598
1599    if (S->getFnParent() == 0) {
1600      bool SizeIsNegative;
1601      QualType FixedTy =
1602          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1603      if (!FixedTy.isNull()) {
1604        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1605        NewTD->setUnderlyingType(FixedTy);
1606      } else {
1607        if (SizeIsNegative)
1608          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1609        else if (T->isVariableArrayType())
1610          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1611        else
1612          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1613        InvalidDecl = true;
1614      }
1615    }
1616  }
1617  return NewTD;
1618}
1619
1620/// \brief Determines whether the given declaration is an out-of-scope
1621/// previous declaration.
1622///
1623/// This routine should be invoked when name lookup has found a
1624/// previous declaration (PrevDecl) that is not in the scope where a
1625/// new declaration by the same name is being introduced. If the new
1626/// declaration occurs in a local scope, previous declarations with
1627/// linkage may still be considered previous declarations (C99
1628/// 6.2.2p4-5, C++ [basic.link]p6).
1629///
1630/// \param PrevDecl the previous declaration found by name
1631/// lookup
1632///
1633/// \param DC the context in which the new declaration is being
1634/// declared.
1635///
1636/// \returns true if PrevDecl is an out-of-scope previous declaration
1637/// for a new delcaration with the same name.
1638static bool
1639isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1640                                ASTContext &Context) {
1641  if (!PrevDecl)
1642    return 0;
1643
1644  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1645  // case we need to check each of the overloaded functions.
1646  if (!PrevDecl->hasLinkage())
1647    return false;
1648
1649  if (Context.getLangOptions().CPlusPlus) {
1650    // C++ [basic.link]p6:
1651    //   If there is a visible declaration of an entity with linkage
1652    //   having the same name and type, ignoring entities declared
1653    //   outside the innermost enclosing namespace scope, the block
1654    //   scope declaration declares that same entity and receives the
1655    //   linkage of the previous declaration.
1656    DeclContext *OuterContext = DC->getLookupContext();
1657    if (!OuterContext->isFunctionOrMethod())
1658      // This rule only applies to block-scope declarations.
1659      return false;
1660    else {
1661      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1662      if (PrevOuterContext->isRecord())
1663        // We found a member function: ignore it.
1664        return false;
1665      else {
1666        // Find the innermost enclosing namespace for the new and
1667        // previous declarations.
1668        while (!OuterContext->isFileContext())
1669          OuterContext = OuterContext->getParent();
1670        while (!PrevOuterContext->isFileContext())
1671          PrevOuterContext = PrevOuterContext->getParent();
1672
1673        // The previous declaration is in a different namespace, so it
1674        // isn't the same function.
1675        if (OuterContext->getPrimaryContext() !=
1676            PrevOuterContext->getPrimaryContext())
1677          return false;
1678      }
1679    }
1680  }
1681
1682  return true;
1683}
1684
1685NamedDecl*
1686Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1687                              QualType R,NamedDecl* PrevDecl, bool& InvalidDecl,
1688                              bool &Redeclaration) {
1689  DeclarationName Name = GetNameForDeclarator(D);
1690
1691  // Check that there are no default arguments (C++ only).
1692  if (getLangOptions().CPlusPlus)
1693    CheckExtraCXXDefaultArguments(D);
1694
1695  VarDecl *NewVD;
1696  VarDecl::StorageClass SC;
1697  switch (D.getDeclSpec().getStorageClassSpec()) {
1698  default: assert(0 && "Unknown storage class!");
1699  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1700  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1701  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1702  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1703  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1704  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1705  case DeclSpec::SCS_mutable:
1706    // mutable can only appear on non-static class members, so it's always
1707    // an error here
1708    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1709    InvalidDecl = true;
1710    SC = VarDecl::None;
1711    break;
1712  }
1713
1714  IdentifierInfo *II = Name.getAsIdentifierInfo();
1715  if (!II) {
1716    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1717      << Name.getAsString();
1718    return 0;
1719  }
1720
1721  DiagnoseFunctionSpecifiers(D);
1722
1723  if (!DC->isRecord() && S->getFnParent() == 0) {
1724    // C99 6.9p2: The storage-class specifiers auto and register shall not
1725    // appear in the declaration specifiers in an external declaration.
1726    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1727      Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1728      InvalidDecl = true;
1729    }
1730  }
1731  if (DC->isRecord() && !CurContext->isRecord()) {
1732    // This is an out-of-line definition of a static data member.
1733    if (SC == VarDecl::Static) {
1734      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1735           diag::err_static_out_of_line)
1736        << CodeModificationHint::CreateRemoval(
1737                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1738    } else if (SC == VarDecl::None)
1739      SC = VarDecl::Static;
1740  }
1741
1742  // The variable can not
1743  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1744                          II, R, SC,
1745                          // FIXME: Move to DeclGroup...
1746                          D.getDeclSpec().getSourceRange().getBegin());
1747
1748  if (D.getDeclSpec().isThreadSpecified()) {
1749    if (NewVD->hasLocalStorage())
1750      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1751    else if (!Context.Target.isTLSSupported())
1752      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1753    else
1754      NewVD->setThreadSpecified(true);
1755  }
1756
1757  // Set the lexical context. If the declarator has a C++ scope specifier, the
1758  // lexical context will be different from the semantic context.
1759  NewVD->setLexicalDeclContext(CurContext);
1760
1761  // Handle attributes prior to checking for duplicates in MergeVarDecl
1762  ProcessDeclAttributes(NewVD, D);
1763
1764  // Handle GNU asm-label extension (encoded as an attribute).
1765  if (Expr *E = (Expr*) D.getAsmLabel()) {
1766    // The parser guarantees this is a string.
1767    StringLiteral *SE = cast<StringLiteral>(E);
1768    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1769                                                        SE->getByteLength())));
1770  }
1771
1772  // If name lookup finds a previous declaration that is not in the
1773  // same scope as the new declaration, this may still be an
1774  // acceptable redeclaration.
1775  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1776      !(NewVD->hasLinkage() &&
1777        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1778    PrevDecl = 0;
1779
1780  // Merge the decl with the existing one if appropriate.
1781  if (PrevDecl) {
1782    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1783      // The user tried to define a non-static data member
1784      // out-of-line (C++ [dcl.meaning]p1).
1785      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1786        << D.getCXXScopeSpec().getRange();
1787      PrevDecl = 0;
1788      InvalidDecl = true;
1789    }
1790  } else if (D.getCXXScopeSpec().isSet()) {
1791    // No previous declaration in the qualifying scope.
1792    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1793      << Name << D.getCXXScopeSpec().getRange();
1794    InvalidDecl = true;
1795  }
1796
1797  if (CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration))
1798    InvalidDecl = true;
1799
1800  // If this is a locally-scoped extern C variable, update the map of
1801  // such variables.
1802  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1803      !InvalidDecl)
1804    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1805
1806  return NewVD;
1807}
1808
1809/// \brief Perform semantic checking on a newly-created variable
1810/// declaration.
1811///
1812/// This routine performs all of the type-checking required for a
1813/// variable declaration once it has been build. It is used both to
1814/// check variables after they have been parsed and their declarators
1815/// have been translated into a declaration, and to check
1816///
1817/// \returns true if an error was encountered, false otherwise.
1818bool Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1819                                    bool &Redeclaration) {
1820  bool Invalid = false;
1821
1822  QualType T = NewVD->getType();
1823
1824  if (T->isObjCInterfaceType()) {
1825    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1826    Invalid = true;
1827  }
1828
1829  // The variable can not have an abstract class type.
1830  if (RequireNonAbstractType(NewVD->getLocation(), T,
1831                             diag::err_abstract_type_in_decl,
1832                             AbstractVariableType))
1833    Invalid = true;
1834
1835  // Emit an error if an address space was applied to decl with local storage.
1836  // This includes arrays of objects with address space qualifiers, but not
1837  // automatic variables that point to other address spaces.
1838  // ISO/IEC TR 18037 S5.1.2
1839  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1840    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1841    Invalid = true;
1842  }
1843
1844  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1845      && !NewVD->hasAttr<BlocksAttr>())
1846    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1847
1848  bool isVM = T->isVariablyModifiedType();
1849  if (isVM || NewVD->hasAttr<CleanupAttr>())
1850    CurFunctionNeedsScopeChecking = true;
1851
1852  if ((isVM && NewVD->hasLinkage()) ||
1853      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1854    bool SizeIsNegative;
1855    QualType FixedTy =
1856        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1857    if (!FixedTy.isNull()) {
1858      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1859      NewVD->setType(FixedTy);
1860    } else if (T->isVariableArrayType()) {
1861      Invalid = true;
1862
1863      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1864      // FIXME: This won't give the correct result for
1865      // int a[10][n];
1866      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1867
1868      if (NewVD->isFileVarDecl())
1869        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1870          << SizeRange;
1871      else if (NewVD->getStorageClass() == VarDecl::Static)
1872        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1873          << SizeRange;
1874      else
1875        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1876            << SizeRange;
1877    } else {
1878      Invalid = true;
1879
1880      if (NewVD->isFileVarDecl())
1881        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1882      else
1883        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1884    }
1885  }
1886
1887  if (!PrevDecl && NewVD->isExternC(Context)) {
1888    // Since we did not find anything by this name and we're declaring
1889    // an extern "C" variable, look for a non-visible extern "C"
1890    // declaration with the same name.
1891    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1892      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1893    if (Pos != LocallyScopedExternalDecls.end())
1894      PrevDecl = Pos->second;
1895  }
1896
1897  if (!Invalid && T->isVoidType() && !NewVD->hasExternalStorage()) {
1898    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1899      << T;
1900    Invalid = true;
1901  }
1902
1903  if (PrevDecl) {
1904    Redeclaration = true;
1905    if (MergeVarDecl(NewVD, PrevDecl))
1906      Invalid = true;
1907  }
1908
1909  return NewVD->isInvalidDecl() || Invalid;
1910}
1911
1912NamedDecl*
1913Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1914                              QualType R, NamedDecl* PrevDecl,
1915                              bool IsFunctionDefinition,
1916                              bool& InvalidDecl, bool &Redeclaration) {
1917  assert(R.getTypePtr()->isFunctionType());
1918
1919  DeclarationName Name = GetNameForDeclarator(D);
1920  FunctionDecl::StorageClass SC = FunctionDecl::None;
1921  switch (D.getDeclSpec().getStorageClassSpec()) {
1922  default: assert(0 && "Unknown storage class!");
1923  case DeclSpec::SCS_auto:
1924  case DeclSpec::SCS_register:
1925  case DeclSpec::SCS_mutable:
1926    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1927         diag::err_typecheck_sclass_func);
1928    InvalidDecl = true;
1929    break;
1930  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1931  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1932  case DeclSpec::SCS_static: {
1933    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
1934      // C99 6.7.1p5:
1935      //   The declaration of an identifier for a function that has
1936      //   block scope shall have no explicit storage-class specifier
1937      //   other than extern
1938      // See also (C++ [dcl.stc]p4).
1939      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1940           diag::err_static_block_func);
1941      SC = FunctionDecl::None;
1942    } else
1943      SC = FunctionDecl::Static;
1944    break;
1945  }
1946  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1947  }
1948
1949  if (D.getDeclSpec().isThreadSpecified())
1950    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1951
1952  bool isInline = D.getDeclSpec().isInlineSpecified();
1953  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1954  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1955
1956  // Check that the return type is not an abstract class type.
1957  // For record types, this is done by the AbstractClassUsageDiagnoser once
1958  // the class has been completely parsed.
1959  if (!DC->isRecord() &&
1960      RequireNonAbstractType(D.getIdentifierLoc(),
1961                             R->getAsFunctionType()->getResultType(),
1962                             diag::err_abstract_type_in_decl,
1963                             AbstractReturnType))
1964    InvalidDecl = true;
1965
1966  // Do not allow returning a objc interface by-value.
1967  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
1968    Diag(D.getIdentifierLoc(),
1969         diag::err_object_cannot_be_passed_returned_by_value) << 0
1970      << R->getAsFunctionType()->getResultType();
1971    InvalidDecl = true;
1972  }
1973
1974  bool isVirtualOkay = false;
1975  FunctionDecl *NewFD;
1976  if (D.getKind() == Declarator::DK_Constructor) {
1977    // This is a C++ constructor declaration.
1978    assert(DC->isRecord() &&
1979           "Constructors can only be declared in a member context");
1980
1981    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1982
1983    // Create the new declaration
1984    NewFD = CXXConstructorDecl::Create(Context,
1985                                       cast<CXXRecordDecl>(DC),
1986                                       D.getIdentifierLoc(), Name, R,
1987                                       isExplicit, isInline,
1988                                       /*isImplicitlyDeclared=*/false);
1989
1990    if (InvalidDecl)
1991      NewFD->setInvalidDecl();
1992  } else if (D.getKind() == Declarator::DK_Destructor) {
1993    // This is a C++ destructor declaration.
1994    if (DC->isRecord()) {
1995      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1996
1997      NewFD = CXXDestructorDecl::Create(Context,
1998                                        cast<CXXRecordDecl>(DC),
1999                                        D.getIdentifierLoc(), Name, R,
2000                                        isInline,
2001                                        /*isImplicitlyDeclared=*/false);
2002
2003      if (InvalidDecl)
2004        NewFD->setInvalidDecl();
2005
2006      isVirtualOkay = true;
2007    } else {
2008      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2009
2010      // Create a FunctionDecl to satisfy the function definition parsing
2011      // code path.
2012      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2013                                   Name, R, SC, isInline,
2014                                   /*hasPrototype=*/true,
2015                                   // FIXME: Move to DeclGroup...
2016                                   D.getDeclSpec().getSourceRange().getBegin());
2017      InvalidDecl = true;
2018      NewFD->setInvalidDecl();
2019    }
2020  } else if (D.getKind() == Declarator::DK_Conversion) {
2021    if (!DC->isRecord()) {
2022      Diag(D.getIdentifierLoc(),
2023           diag::err_conv_function_not_member);
2024      return 0;
2025    } else {
2026      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
2027
2028      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2029                                        D.getIdentifierLoc(), Name, R,
2030                                        isInline, isExplicit);
2031
2032      if (InvalidDecl)
2033        NewFD->setInvalidDecl();
2034
2035      isVirtualOkay = true;
2036    }
2037  } else if (DC->isRecord()) {
2038    // This is a C++ method declaration.
2039    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2040                                  D.getIdentifierLoc(), Name, R,
2041                                  (SC == FunctionDecl::Static), isInline);
2042
2043    isVirtualOkay = (SC != FunctionDecl::Static);
2044  } else {
2045    // Determine whether the function was written with a
2046    // prototype. This true when:
2047    //   - we're in C++ (where every function has a prototype),
2048    //   - there is a prototype in the declarator, or
2049    //   - the type R of the function is some kind of typedef or other reference
2050    //     to a type name (which eventually refers to a function type).
2051    bool HasPrototype =
2052       getLangOptions().CPlusPlus ||
2053       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2054       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2055
2056    NewFD = FunctionDecl::Create(Context, DC,
2057                                 D.getIdentifierLoc(),
2058                                 Name, R, SC, isInline, HasPrototype,
2059                                 // FIXME: Move to DeclGroup...
2060                                 D.getDeclSpec().getSourceRange().getBegin());
2061  }
2062
2063  // Set the lexical context. If the declarator has a C++
2064  // scope specifier, the lexical context will be different
2065  // from the semantic context.
2066  NewFD->setLexicalDeclContext(CurContext);
2067
2068  // C++ [dcl.fct.spec]p5:
2069  //   The virtual specifier shall only be used in declarations of
2070  //   nonstatic class member functions that appear within a
2071  //   member-specification of a class declaration; see 10.3.
2072  //
2073  // FIXME: Checking the 'virtual' specifier is not sufficient. A
2074  // function is also virtual if it overrides an already virtual
2075  // function. This is important to do here because it's part of the
2076  // declaration.
2077  if (isVirtual && !InvalidDecl) {
2078    if (!isVirtualOkay) {
2079       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2080           diag::err_virtual_non_function);
2081    } else if (!CurContext->isRecord()) {
2082      // 'virtual' was specified outside of the class.
2083      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2084        << CodeModificationHint::CreateRemoval(
2085                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2086    } else {
2087      // Okay: Add virtual to the method.
2088      cast<CXXMethodDecl>(NewFD)->setVirtual();
2089      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2090      CurClass->setAggregate(false);
2091      CurClass->setPOD(false);
2092      CurClass->setPolymorphic(true);
2093      CurClass->setHasTrivialConstructor(false);
2094    }
2095  }
2096
2097  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2098      !CurContext->isRecord()) {
2099    // C++ [class.static]p1:
2100    //   A data or function member of a class may be declared static
2101    //   in a class definition, in which case it is a static member of
2102    //   the class.
2103
2104    // Complain about the 'static' specifier if it's on an out-of-line
2105    // member function definition.
2106    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2107         diag::err_static_out_of_line)
2108      << CodeModificationHint::CreateRemoval(
2109                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2110  }
2111
2112  // Handle GNU asm-label extension (encoded as an attribute).
2113  if (Expr *E = (Expr*) D.getAsmLabel()) {
2114    // The parser guarantees this is a string.
2115    StringLiteral *SE = cast<StringLiteral>(E);
2116    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2117                                                        SE->getByteLength())));
2118  }
2119
2120  // Copy the parameter declarations from the declarator D to
2121  // the function declaration NewFD, if they are available.
2122  if (D.getNumTypeObjects() > 0) {
2123    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2124
2125    // Create Decl objects for each parameter, adding them to the
2126    // FunctionDecl.
2127    llvm::SmallVector<ParmVarDecl*, 16> Params;
2128
2129    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2130    // function that takes no arguments, not a function that takes a
2131    // single void argument.
2132    // We let through "const void" here because Sema::GetTypeForDeclarator
2133    // already checks for that case.
2134    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2135        FTI.ArgInfo[0].Param &&
2136        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2137      // empty arg list, don't push any params.
2138      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2139
2140      // In C++, the empty parameter-type-list must be spelled "void"; a
2141      // typedef of void is not permitted.
2142      if (getLangOptions().CPlusPlus &&
2143          Param->getType().getUnqualifiedType() != Context.VoidTy) {
2144        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2145      }
2146    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2147      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2148        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2149    }
2150
2151    NewFD->setParams(Context, &Params[0], Params.size());
2152  } else if (R->getAsTypedefType()) {
2153    // When we're declaring a function with a typedef, as in the
2154    // following example, we'll need to synthesize (unnamed)
2155    // parameters for use in the declaration.
2156    //
2157    // @code
2158    // typedef void fn(int);
2159    // fn f;
2160    // @endcode
2161    const FunctionProtoType *FT = R->getAsFunctionProtoType();
2162    if (!FT) {
2163      // This is a typedef of a function with no prototype, so we
2164      // don't need to do anything.
2165    } else if ((FT->getNumArgs() == 0) ||
2166               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
2167                FT->getArgType(0)->isVoidType())) {
2168      // This is a zero-argument function. We don't need to do anything.
2169    } else {
2170      // Synthesize a parameter for each argument type.
2171      llvm::SmallVector<ParmVarDecl*, 16> Params;
2172      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
2173           ArgType != FT->arg_type_end(); ++ArgType) {
2174        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2175                                                 SourceLocation(), 0,
2176                                                 *ArgType, VarDecl::None,
2177                                                 0);
2178        Param->setImplicit();
2179        Params.push_back(Param);
2180      }
2181
2182      NewFD->setParams(Context, &Params[0], Params.size());
2183    }
2184  }
2185
2186  // If name lookup finds a previous declaration that is not in the
2187  // same scope as the new declaration, this may still be an
2188  // acceptable redeclaration.
2189  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2190      !(NewFD->hasLinkage() &&
2191        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2192    PrevDecl = 0;
2193
2194  // FIXME: We need to determine whether the GNU inline attribute will
2195  // be applied to this function declaration, since it affects
2196  // declaration merging. This hack will go away when the FIXME below
2197  // is resolved, since we should be putting *all* attributes onto the
2198  // declaration now.
2199  for (const AttributeList *Attr = D.getDeclSpec().getAttributes();
2200       Attr; Attr = Attr->getNext()) {
2201    if (Attr->getKind() == AttributeList::AT_gnu_inline) {
2202      NewFD->addAttr(::new (Context) GNUInlineAttr());
2203      break;
2204    }
2205  }
2206
2207  // Perform semantic checking on the function declaration.
2208  bool OverloadableAttrRequired = false; // FIXME: HACK!
2209  if (CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2210                               /*FIXME:*/OverloadableAttrRequired))
2211    InvalidDecl = true;
2212
2213  if (D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2214    // An out-of-line member function declaration must also be a
2215    // definition (C++ [dcl.meaning]p1).
2216    if (!IsFunctionDefinition) {
2217      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2218        << D.getCXXScopeSpec().getRange();
2219      InvalidDecl = true;
2220    } else if (!Redeclaration) {
2221      // The user tried to provide an out-of-line definition for a
2222      // function that is a member of a class or namespace, but there
2223      // was no such member function declared (C++ [class.mfct]p2,
2224      // C++ [namespace.memdef]p2). For example:
2225      //
2226      // class X {
2227      //   void f() const;
2228      // };
2229      //
2230      // void X::f() { } // ill-formed
2231      //
2232      // Complain about this problem, and attempt to suggest close
2233      // matches (e.g., those that differ only in cv-qualifiers and
2234      // whether the parameter types are references).
2235      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2236        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2237      InvalidDecl = true;
2238
2239      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2240                                              true);
2241      assert(!Prev.isAmbiguous() &&
2242             "Cannot have an ambiguity in previous-declaration lookup");
2243      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2244           Func != FuncEnd; ++Func) {
2245        if (isa<FunctionDecl>(*Func) &&
2246            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2247          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2248      }
2249
2250      PrevDecl = 0;
2251    }
2252  }
2253
2254  // Handle attributes. We need to have merged decls when handling attributes
2255  // (for example to check for conflicts, etc).
2256  // FIXME: This needs to happen before we merge declarations. Then,
2257  // let attribute merging cope with attribute conflicts.
2258  ProcessDeclAttributes(NewFD, D);
2259  AddKnownFunctionAttributes(NewFD);
2260
2261  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2262    // If a function name is overloadable in C, then every function
2263    // with that name must be marked "overloadable".
2264    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2265      << Redeclaration << NewFD;
2266    if (PrevDecl)
2267      Diag(PrevDecl->getLocation(),
2268           diag::note_attribute_overloadable_prev_overload);
2269    NewFD->addAttr(::new (Context) OverloadableAttr());
2270  }
2271
2272  // If this is a locally-scoped extern C function, update the
2273  // map of such names.
2274  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2275      && !InvalidDecl)
2276    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2277
2278  return NewFD;
2279}
2280
2281/// \brief Perform semantic checking of a new function declaration.
2282///
2283/// Performs semantic analysis of the new function declaration
2284/// NewFD. This routine performs all semantic checking that does not
2285/// require the actual declarator involved in the declaration, and is
2286/// used both for the declaration of functions as they are parsed
2287/// (called via ActOnDeclarator) and for the declaration of functions
2288/// that have been instantiated via C++ template instantiation (called
2289/// via InstantiateDecl).
2290///
2291/// \returns true if there was an error, false otherwise.
2292bool Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2293                                    bool &Redeclaration,
2294                                    bool &OverloadableAttrRequired) {
2295  bool InvalidDecl = false;
2296
2297  // Semantic checking for this function declaration (in isolation).
2298  if (getLangOptions().CPlusPlus) {
2299    // C++-specific checks.
2300    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
2301      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
2302    else if (isa<CXXDestructorDecl>(NewFD)) {
2303      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2304      Record->setUserDeclaredDestructor(true);
2305      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2306      // user-defined destructor.
2307      Record->setPOD(false);
2308
2309      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2310      // declared destructor.
2311      Record->setHasTrivialDestructor(false);
2312    } else if (CXXConversionDecl *Conversion
2313               = dyn_cast<CXXConversionDecl>(NewFD))
2314      ActOnConversionDeclarator(Conversion);
2315
2316    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2317    if (NewFD->isOverloadedOperator() &&
2318        CheckOverloadedOperatorDeclaration(NewFD))
2319      InvalidDecl = true;
2320  }
2321
2322  // C99 6.7.4p6:
2323  //   [... ] For a function with external linkage, the following
2324  //   restrictions apply: [...] If all of the file scope declarations
2325  //   for a function in a translation unit include the inline
2326  //   function specifier without extern, then the definition in that
2327  //   translation unit is an inline definition. An inline definition
2328  //   does not provide an external definition for the function, and
2329  //   does not forbid an external definition in another translation
2330  //   unit.
2331  //
2332  // Here we determine whether this function, in isolation, would be a
2333  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2334  // previous declarations.
2335  if (NewFD->isInline() &&
2336      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2337    bool GNUInline = NewFD->hasAttr<GNUInlineAttr>() ||
2338      (PrevDecl && PrevDecl->hasAttr<GNUInlineAttr>());
2339    if (GNUInline || (!getLangOptions().CPlusPlus && !getLangOptions().C99)) {
2340      // GNU "extern inline" is the same as "inline" in C99.
2341      if (NewFD->getStorageClass() == FunctionDecl::Extern)
2342        NewFD->setC99InlineDefinition(true);
2343    } else if (getLangOptions().C99 &&
2344               NewFD->getStorageClass() == FunctionDecl::None)
2345      NewFD->setC99InlineDefinition(true);
2346  }
2347
2348  // Check for a previous declaration of this name.
2349  if (!PrevDecl && NewFD->isExternC(Context)) {
2350    // Since we did not find anything by this name and we're declaring
2351    // an extern "C" function, look for a non-visible extern "C"
2352    // declaration with the same name.
2353    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2354      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2355    if (Pos != LocallyScopedExternalDecls.end())
2356      PrevDecl = Pos->second;
2357  }
2358
2359  // Merge or overload the declaration with an existing declaration of
2360  // the same name, if appropriate.
2361  if (PrevDecl) {
2362    // Determine whether NewFD is an overload of PrevDecl or
2363    // a declaration that requires merging. If it's an overload,
2364    // there's no more work to do here; we'll just add the new
2365    // function to the scope.
2366    OverloadedFunctionDecl::function_iterator MatchedDecl;
2367
2368    if (!getLangOptions().CPlusPlus &&
2369        AllowOverloadingOfFunction(PrevDecl, Context)) {
2370      OverloadableAttrRequired = true;
2371
2372      // Functions marked "overloadable" must have a prototype (that
2373      // we can't get through declaration merging).
2374      if (!NewFD->getType()->getAsFunctionProtoType()) {
2375        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2376          << NewFD;
2377        InvalidDecl = true;
2378        Redeclaration = true;
2379
2380        // Turn this into a variadic function with no parameters.
2381        QualType R = Context.getFunctionType(
2382                       NewFD->getType()->getAsFunctionType()->getResultType(),
2383                       0, 0, true, 0);
2384        NewFD->setType(R);
2385      }
2386    }
2387
2388    if (PrevDecl &&
2389        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2390         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
2391      Redeclaration = true;
2392      Decl *OldDecl = PrevDecl;
2393
2394      // If PrevDecl was an overloaded function, extract the
2395      // FunctionDecl that matched.
2396      if (isa<OverloadedFunctionDecl>(PrevDecl))
2397        OldDecl = *MatchedDecl;
2398
2399      // NewFD and OldDecl represent declarations that need to be
2400      // merged.
2401      if (MergeFunctionDecl(NewFD, OldDecl))
2402        InvalidDecl = true;
2403
2404      if (!InvalidDecl)
2405        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2406    }
2407  }
2408
2409  if (getLangOptions().CPlusPlus && !CurContext->isRecord()) {
2410    // In C++, check default arguments now that we have merged decls. Unless
2411    // the lexical context is the class, because in this case this is done
2412    // during delayed parsing anyway.
2413    CheckCXXDefaultArguments(NewFD);
2414  }
2415
2416  return InvalidDecl || NewFD->isInvalidDecl();
2417}
2418
2419bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2420  // FIXME: Need strict checking.  In C89, we need to check for
2421  // any assignment, increment, decrement, function-calls, or
2422  // commas outside of a sizeof.  In C99, it's the same list,
2423  // except that the aforementioned are allowed in unevaluated
2424  // expressions.  Everything else falls under the
2425  // "may accept other forms of constant expressions" exception.
2426  // (We never end up here for C++, so the constant expression
2427  // rules there don't matter.)
2428  if (Init->isConstantInitializer(Context))
2429    return false;
2430  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2431    << Init->getSourceRange();
2432  return true;
2433}
2434
2435void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
2436  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2437}
2438
2439/// AddInitializerToDecl - Adds the initializer Init to the
2440/// declaration dcl. If DirectInit is true, this is C++ direct
2441/// initialization rather than copy initialization.
2442void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2443  Decl *RealDecl = dcl.getAs<Decl>();
2444  // If there is no declaration, there was an error parsing it.  Just ignore
2445  // the initializer.
2446  if (RealDecl == 0)
2447    return;
2448
2449  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2450    // With declarators parsed the way they are, the parser cannot
2451    // distinguish between a normal initializer and a pure-specifier.
2452    // Thus this grotesque test.
2453    IntegerLiteral *IL;
2454    Expr *Init = static_cast<Expr *>(init.get());
2455    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2456        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2457      if (Method->isVirtual()) {
2458        Method->setPure();
2459
2460        // A class is abstract if at least one function is pure virtual.
2461        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2462      } else if (!Method->isInvalidDecl()) {
2463        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2464          << Method->getDeclName() << Init->getSourceRange();
2465        Method->setInvalidDecl();
2466      }
2467    } else {
2468      Diag(Method->getLocation(), diag::err_member_function_initialization)
2469        << Method->getDeclName() << Init->getSourceRange();
2470      Method->setInvalidDecl();
2471    }
2472    return;
2473  }
2474
2475  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2476  if (!VDecl) {
2477    if (getLangOptions().CPlusPlus &&
2478        RealDecl->getLexicalDeclContext()->isRecord() &&
2479        isa<NamedDecl>(RealDecl))
2480      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2481        << cast<NamedDecl>(RealDecl)->getDeclName();
2482    else
2483      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2484    RealDecl->setInvalidDecl();
2485    return;
2486  }
2487
2488  if (!VDecl->getType()->isArrayType() &&
2489      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2490                          diag::err_typecheck_decl_incomplete_type)) {
2491    RealDecl->setInvalidDecl();
2492    return;
2493  }
2494
2495  const VarDecl *Def = 0;
2496  if (VDecl->getDefinition(Def)) {
2497    Diag(VDecl->getLocation(), diag::err_redefinition)
2498      << VDecl->getDeclName();
2499    Diag(Def->getLocation(), diag::note_previous_definition);
2500    VDecl->setInvalidDecl();
2501    return;
2502  }
2503
2504  // Take ownership of the expression, now that we're sure we have somewhere
2505  // to put it.
2506  Expr *Init = static_cast<Expr *>(init.release());
2507  assert(Init && "missing initializer");
2508
2509  // Get the decls type and save a reference for later, since
2510  // CheckInitializerTypes may change it.
2511  QualType DclT = VDecl->getType(), SavT = DclT;
2512  if (VDecl->isBlockVarDecl()) {
2513    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2514      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2515      VDecl->setInvalidDecl();
2516    } else if (!VDecl->isInvalidDecl()) {
2517      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2518                                VDecl->getDeclName(), DirectInit))
2519        VDecl->setInvalidDecl();
2520
2521      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2522      // Don't check invalid declarations to avoid emitting useless diagnostics.
2523      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2524        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2525          CheckForConstantInitializer(Init, DclT);
2526      }
2527    }
2528  } else if (VDecl->isStaticDataMember() &&
2529             VDecl->getLexicalDeclContext()->isRecord()) {
2530    // This is an in-class initialization for a static data member, e.g.,
2531    //
2532    // struct S {
2533    //   static const int value = 17;
2534    // };
2535
2536    // Attach the initializer
2537    VDecl->setInit(Init);
2538
2539    // C++ [class.mem]p4:
2540    //   A member-declarator can contain a constant-initializer only
2541    //   if it declares a static member (9.4) of const integral or
2542    //   const enumeration type, see 9.4.2.
2543    QualType T = VDecl->getType();
2544    if (!T->isDependentType() &&
2545        (!Context.getCanonicalType(T).isConstQualified() ||
2546         !T->isIntegralType())) {
2547      Diag(VDecl->getLocation(), diag::err_member_initialization)
2548        << VDecl->getDeclName() << Init->getSourceRange();
2549      VDecl->setInvalidDecl();
2550    } else {
2551      // C++ [class.static.data]p4:
2552      //   If a static data member is of const integral or const
2553      //   enumeration type, its declaration in the class definition
2554      //   can specify a constant-initializer which shall be an
2555      //   integral constant expression (5.19).
2556      if (!Init->isTypeDependent() &&
2557          !Init->getType()->isIntegralType()) {
2558        // We have a non-dependent, non-integral or enumeration type.
2559        Diag(Init->getSourceRange().getBegin(),
2560             diag::err_in_class_initializer_non_integral_type)
2561          << Init->getType() << Init->getSourceRange();
2562        VDecl->setInvalidDecl();
2563      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2564        // Check whether the expression is a constant expression.
2565        llvm::APSInt Value;
2566        SourceLocation Loc;
2567        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2568          Diag(Loc, diag::err_in_class_initializer_non_constant)
2569            << Init->getSourceRange();
2570          VDecl->setInvalidDecl();
2571        } else if (!VDecl->getType()->isDependentType())
2572          ImpCastExprToType(Init, VDecl->getType());
2573      }
2574    }
2575  } else if (VDecl->isFileVarDecl()) {
2576    if (VDecl->getStorageClass() == VarDecl::Extern)
2577      Diag(VDecl->getLocation(), diag::warn_extern_init);
2578    if (!VDecl->isInvalidDecl())
2579      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2580                                VDecl->getDeclName(), DirectInit))
2581        VDecl->setInvalidDecl();
2582
2583    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2584    // Don't check invalid declarations to avoid emitting useless diagnostics.
2585    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2586      // C99 6.7.8p4. All file scoped initializers need to be constant.
2587      CheckForConstantInitializer(Init, DclT);
2588    }
2589  }
2590  // If the type changed, it means we had an incomplete type that was
2591  // completed by the initializer. For example:
2592  //   int ary[] = { 1, 3, 5 };
2593  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2594  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2595    VDecl->setType(DclT);
2596    Init->setType(DclT);
2597  }
2598
2599  // Attach the initializer to the decl.
2600  VDecl->setInit(Init);
2601
2602  // If the previous declaration of VDecl was a tentative definition,
2603  // remove it from the set of tentative definitions.
2604  if (VDecl->getPreviousDeclaration() &&
2605      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2606    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2607      = TentativeDefinitions.find(VDecl->getDeclName());
2608    assert(Pos != TentativeDefinitions.end() &&
2609           "Unrecorded tentative definition?");
2610    TentativeDefinitions.erase(Pos);
2611  }
2612
2613  return;
2614}
2615
2616void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2617  Decl *RealDecl = dcl.getAs<Decl>();
2618
2619  // If there is no declaration, there was an error parsing it. Just ignore it.
2620  if (RealDecl == 0)
2621    return;
2622
2623  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2624    QualType Type = Var->getType();
2625
2626    // Record tentative definitions.
2627    if (Var->isTentativeDefinition(Context))
2628      TentativeDefinitions[Var->getDeclName()] = Var;
2629
2630    // C++ [dcl.init.ref]p3:
2631    //   The initializer can be omitted for a reference only in a
2632    //   parameter declaration (8.3.5), in the declaration of a
2633    //   function return type, in the declaration of a class member
2634    //   within its class declaration (9.2), and where the extern
2635    //   specifier is explicitly used.
2636    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2637      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2638        << Var->getDeclName()
2639        << SourceRange(Var->getLocation(), Var->getLocation());
2640      Var->setInvalidDecl();
2641      return;
2642    }
2643
2644    // C++ [dcl.init]p9:
2645    //
2646    //   If no initializer is specified for an object, and the object
2647    //   is of (possibly cv-qualified) non-POD class type (or array
2648    //   thereof), the object shall be default-initialized; if the
2649    //   object is of const-qualified type, the underlying class type
2650    //   shall have a user-declared default constructor.
2651    if (getLangOptions().CPlusPlus) {
2652      QualType InitType = Type;
2653      if (const ArrayType *Array = Context.getAsArrayType(Type))
2654        InitType = Array->getElementType();
2655      if (!Var->hasExternalStorage() && InitType->isRecordType()) {
2656        CXXRecordDecl *RD =
2657          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2658        CXXConstructorDecl *Constructor = 0;
2659        if (!RequireCompleteType(Var->getLocation(), InitType,
2660                                    diag::err_invalid_incomplete_type_use))
2661          Constructor
2662            = PerformInitializationByConstructor(InitType, 0, 0,
2663                                                 Var->getLocation(),
2664                                               SourceRange(Var->getLocation(),
2665                                                           Var->getLocation()),
2666                                                 Var->getDeclName(),
2667                                                 IK_Default);
2668        if (!Constructor)
2669          Var->setInvalidDecl();
2670        else if (!RD->hasTrivialConstructor())
2671          InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2672      }
2673    }
2674
2675#if 0
2676    // FIXME: Temporarily disabled because we are not properly parsing
2677    // linkage specifications on declarations, e.g.,
2678    //
2679    //   extern "C" const CGPoint CGPointerZero;
2680    //
2681    // C++ [dcl.init]p9:
2682    //
2683    //     If no initializer is specified for an object, and the
2684    //     object is of (possibly cv-qualified) non-POD class type (or
2685    //     array thereof), the object shall be default-initialized; if
2686    //     the object is of const-qualified type, the underlying class
2687    //     type shall have a user-declared default
2688    //     constructor. Otherwise, if no initializer is specified for
2689    //     an object, the object and its subobjects, if any, have an
2690    //     indeterminate initial value; if the object or any of its
2691    //     subobjects are of const-qualified type, the program is
2692    //     ill-formed.
2693    //
2694    // This isn't technically an error in C, so we don't diagnose it.
2695    //
2696    // FIXME: Actually perform the POD/user-defined default
2697    // constructor check.
2698    if (getLangOptions().CPlusPlus &&
2699        Context.getCanonicalType(Type).isConstQualified() &&
2700        !Var->hasExternalStorage())
2701      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2702        << Var->getName()
2703        << SourceRange(Var->getLocation(), Var->getLocation());
2704#endif
2705  }
2706}
2707
2708Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, DeclPtrTy *Group,
2709                                                   unsigned NumDecls) {
2710  llvm::SmallVector<Decl*, 8> Decls;
2711
2712  for (unsigned i = 0; i != NumDecls; ++i)
2713    if (Decl *D = Group[i].getAs<Decl>())
2714      Decls.push_back(D);
2715
2716  // Perform semantic analysis that depends on having fully processed both
2717  // the declarator and initializer.
2718  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2719    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2720    if (!IDecl)
2721      continue;
2722    QualType T = IDecl->getType();
2723
2724    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2725    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2726    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2727      if (!IDecl->isInvalidDecl() &&
2728          RequireCompleteType(IDecl->getLocation(), T,
2729                              diag::err_typecheck_decl_incomplete_type))
2730        IDecl->setInvalidDecl();
2731    }
2732    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2733    // object that has file scope without an initializer, and without a
2734    // storage-class specifier or with the storage-class specifier "static",
2735    // constitutes a tentative definition. Note: A tentative definition with
2736    // external linkage is valid (C99 6.2.2p5).
2737    if (IDecl->isTentativeDefinition(Context)) {
2738      QualType CheckType = T;
2739      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2740
2741      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2742      if (ArrayT) {
2743        CheckType = ArrayT->getElementType();
2744        DiagID = diag::err_illegal_decl_array_incomplete_type;
2745      }
2746
2747      if (IDecl->isInvalidDecl()) {
2748        // Do nothing with invalid declarations
2749      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2750                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2751        // C99 6.9.2p3: If the declaration of an identifier for an object is
2752        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2753        // declared type shall not be an incomplete type.
2754        IDecl->setInvalidDecl();
2755      }
2756    }
2757  }
2758  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2759                                                   &Decls[0], Decls.size()));
2760}
2761
2762
2763/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2764/// to introduce parameters into function prototype scope.
2765Sema::DeclPtrTy
2766Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2767  const DeclSpec &DS = D.getDeclSpec();
2768
2769  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2770  VarDecl::StorageClass StorageClass = VarDecl::None;
2771  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2772    StorageClass = VarDecl::Register;
2773  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2774    Diag(DS.getStorageClassSpecLoc(),
2775         diag::err_invalid_storage_class_in_func_decl);
2776    D.getMutableDeclSpec().ClearStorageClassSpecs();
2777  }
2778
2779  if (D.getDeclSpec().isThreadSpecified())
2780    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2781
2782  DiagnoseFunctionSpecifiers(D);
2783
2784  // Check that there are no default arguments inside the type of this
2785  // parameter (C++ only).
2786  if (getLangOptions().CPlusPlus)
2787    CheckExtraCXXDefaultArguments(D);
2788
2789  // In this context, we *do not* check D.getInvalidType(). If the declarator
2790  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2791  // though it will not reflect the user specified type.
2792  QualType parmDeclType = GetTypeForDeclarator(D, S);
2793  if (parmDeclType.isNull()) {
2794    D.setInvalidType(true);
2795    parmDeclType = Context.IntTy;
2796  }
2797
2798  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2799  // Can this happen for params?  We already checked that they don't conflict
2800  // among each other.  Here they can only shadow globals, which is ok.
2801  IdentifierInfo *II = D.getIdentifier();
2802  if (II) {
2803    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2804      if (PrevDecl->isTemplateParameter()) {
2805        // Maybe we will complain about the shadowed template parameter.
2806        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2807        // Just pretend that we didn't see the previous declaration.
2808        PrevDecl = 0;
2809      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2810        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2811
2812        // Recover by removing the name
2813        II = 0;
2814        D.SetIdentifier(0, D.getIdentifierLoc());
2815      }
2816    }
2817  }
2818
2819  // Parameters can not be abstract class types.
2820  // For record types, this is done by the AbstractClassUsageDiagnoser once
2821  // the class has been completely parsed.
2822  if (!CurContext->isRecord() &&
2823      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2824                             diag::err_abstract_type_in_decl,
2825                             AbstractParamType))
2826    D.setInvalidType(true);
2827
2828  QualType T = adjustParameterType(parmDeclType);
2829
2830  ParmVarDecl *New;
2831  if (T == parmDeclType) // parameter type did not need adjustment
2832    New = ParmVarDecl::Create(Context, CurContext,
2833                              D.getIdentifierLoc(), II,
2834                              parmDeclType, StorageClass,
2835                              0);
2836  else // keep track of both the adjusted and unadjusted types
2837    New = OriginalParmVarDecl::Create(Context, CurContext,
2838                                      D.getIdentifierLoc(), II, T,
2839                                      parmDeclType, StorageClass, 0);
2840
2841  if (D.getInvalidType())
2842    New->setInvalidDecl();
2843
2844  // Parameter declarators cannot be interface types. All ObjC objects are
2845  // passed by reference.
2846  if (T->isObjCInterfaceType()) {
2847    Diag(D.getIdentifierLoc(),
2848         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2849    New->setInvalidDecl();
2850  }
2851
2852  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2853  if (D.getCXXScopeSpec().isSet()) {
2854    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2855      << D.getCXXScopeSpec().getRange();
2856    New->setInvalidDecl();
2857  }
2858
2859  // Add the parameter declaration into this scope.
2860  S->AddDecl(DeclPtrTy::make(New));
2861  if (II)
2862    IdResolver.AddDecl(New);
2863
2864  ProcessDeclAttributes(New, D);
2865  return DeclPtrTy::make(New);
2866}
2867
2868void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2869                                           SourceLocation LocAfterDecls) {
2870  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2871         "Not a function declarator!");
2872  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2873
2874  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2875  // for a K&R function.
2876  if (!FTI.hasPrototype) {
2877    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
2878      --i;
2879      if (FTI.ArgInfo[i].Param == 0) {
2880        std::string Code = "  int ";
2881        Code += FTI.ArgInfo[i].Ident->getName();
2882        Code += ";\n";
2883        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2884          << FTI.ArgInfo[i].Ident
2885          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
2886
2887        // Implicitly declare the argument as type 'int' for lack of a better
2888        // type.
2889        DeclSpec DS;
2890        const char* PrevSpec; // unused
2891        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2892                           PrevSpec);
2893        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2894        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2895        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2896      }
2897    }
2898  }
2899}
2900
2901Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
2902                                              Declarator &D) {
2903  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2904  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2905         "Not a function declarator!");
2906  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2907
2908  if (FTI.hasPrototype) {
2909    // FIXME: Diagnose arguments without names in C.
2910  }
2911
2912  Scope *ParentScope = FnBodyScope->getParent();
2913
2914  DeclPtrTy DP = ActOnDeclarator(ParentScope, D, /*IsFunctionDefinition=*/true);
2915  return ActOnStartOfFunctionDef(FnBodyScope, DP);
2916}
2917
2918Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
2919  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
2920
2921  CurFunctionNeedsScopeChecking = false;
2922
2923  // See if this is a redefinition.
2924  const FunctionDecl *Definition;
2925  if (FD->getBody(Context, Definition)) {
2926    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2927    Diag(Definition->getLocation(), diag::note_previous_definition);
2928  }
2929
2930  // Builtin functions cannot be defined.
2931  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2932    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2933      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2934      FD->setInvalidDecl();
2935    }
2936  }
2937
2938  // The return type of a function definition must be complete
2939  // (C99 6.9.1p3, C++ [dcl.fct]p6).
2940  QualType ResultType = FD->getResultType();
2941  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
2942      RequireCompleteType(FD->getLocation(), ResultType,
2943                          diag::err_func_def_incomplete_result))
2944    FD->setInvalidDecl();
2945
2946  // GNU warning -Wmissing-prototypes:
2947  //   Warn if a global function is defined without a previous
2948  //   prototype declaration. This warning is issued even if the
2949  //   definition itself provides a prototype. The aim is to detect
2950  //   global functions that fail to be declared in header files.
2951  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
2952      !FD->isMain()) {
2953    bool MissingPrototype = true;
2954    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
2955         Prev; Prev = Prev->getPreviousDeclaration()) {
2956      // Ignore any declarations that occur in function or method
2957      // scope, because they aren't visible from the header.
2958      if (Prev->getDeclContext()->isFunctionOrMethod())
2959        continue;
2960
2961      MissingPrototype = !Prev->getType()->isFunctionProtoType();
2962      break;
2963    }
2964
2965    if (MissingPrototype)
2966      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
2967  }
2968
2969  PushDeclContext(FnBodyScope, FD);
2970
2971  // Check the validity of our function parameters
2972  CheckParmsForFunctionDef(FD);
2973
2974  // Introduce our parameters into the function scope
2975  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2976    ParmVarDecl *Param = FD->getParamDecl(p);
2977    Param->setOwningFunction(FD);
2978
2979    // If this has an identifier, add it to the scope stack.
2980    if (Param->getIdentifier())
2981      PushOnScopeChains(Param, FnBodyScope);
2982  }
2983
2984  // Checking attributes of current function definition
2985  // dllimport attribute.
2986  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2987    // dllimport attribute cannot be applied to definition.
2988    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2989      Diag(FD->getLocation(),
2990           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2991        << "dllimport";
2992      FD->setInvalidDecl();
2993      return DeclPtrTy::make(FD);
2994    } else {
2995      // If a symbol previously declared dllimport is later defined, the
2996      // attribute is ignored in subsequent references, and a warning is
2997      // emitted.
2998      Diag(FD->getLocation(),
2999           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3000        << FD->getNameAsCString() << "dllimport";
3001    }
3002  }
3003  return DeclPtrTy::make(FD);
3004}
3005
3006
3007Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3008  Decl *dcl = D.getAs<Decl>();
3009  CompoundStmt *Body =cast<CompoundStmt>(static_cast<Stmt*>(BodyArg.release()));
3010  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3011    FD->setBody(Body);
3012    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3013  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3014    assert(MD == getCurMethodDecl() && "Method parsing confused");
3015    MD->setBody(Body);
3016  } else {
3017    Body->Destroy(Context);
3018    return DeclPtrTy();
3019  }
3020  PopDeclContext();
3021  // Verify and clean out per-function state.
3022
3023  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3024
3025  // Check goto/label use.
3026  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3027       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3028    LabelStmt *L = I->second;
3029
3030    // Verify that we have no forward references left.  If so, there was a goto
3031    // or address of a label taken, but no definition of it.  Label fwd
3032    // definitions are indicated with a null substmt.
3033    if (L->getSubStmt() != 0)
3034      continue;
3035
3036    // Emit error.
3037    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3038
3039    // At this point, we have gotos that use the bogus label.  Stitch it into
3040    // the function body so that they aren't leaked and that the AST is well
3041    // formed.
3042    if (Body == 0) {
3043      // The whole function wasn't parsed correctly, just delete this.
3044      L->Destroy(Context);
3045      continue;
3046    }
3047
3048    // Otherwise, the body is valid: we want to stitch the label decl into the
3049    // function somewhere so that it is properly owned and so that the goto
3050    // has a valid target.  Do this by creating a new compound stmt with the
3051    // label in it.
3052
3053    // Give the label a sub-statement.
3054    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3055
3056    std::vector<Stmt*> Elements(Body->body_begin(), Body->body_end());
3057    Elements.push_back(L);
3058    Body->setStmts(Context, &Elements[0], Elements.size());
3059  }
3060  FunctionLabelMap.clear();
3061
3062  if (!Body) return D;
3063
3064  // Verify that that gotos and switch cases don't jump into scopes illegally.
3065  if (CurFunctionNeedsScopeChecking)
3066    DiagnoseInvalidJumps(Body);
3067
3068  return D;
3069}
3070
3071/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3072/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3073NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3074                                          IdentifierInfo &II, Scope *S) {
3075  // Before we produce a declaration for an implicitly defined
3076  // function, see whether there was a locally-scoped declaration of
3077  // this name as a function or variable. If so, use that
3078  // (non-visible) declaration, and complain about it.
3079  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3080    = LocallyScopedExternalDecls.find(&II);
3081  if (Pos != LocallyScopedExternalDecls.end()) {
3082    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3083    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3084    return Pos->second;
3085  }
3086
3087  // Extension in C99.  Legal in C90, but warn about it.
3088  if (getLangOptions().C99)
3089    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3090  else
3091    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3092
3093  // FIXME: handle stuff like:
3094  // void foo() { extern float X(); }
3095  // void bar() { X(); }  <-- implicit decl for X in another scope.
3096
3097  // Set a Declarator for the implicit definition: int foo();
3098  const char *Dummy;
3099  DeclSpec DS;
3100  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3101  Error = Error; // Silence warning.
3102  assert(!Error && "Error setting up implicit decl!");
3103  Declarator D(DS, Declarator::BlockContext);
3104  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
3105                                             0, 0, 0, Loc, D),
3106                SourceLocation());
3107  D.SetIdentifier(&II, Loc);
3108
3109  // Insert this function into translation-unit scope.
3110
3111  DeclContext *PrevDC = CurContext;
3112  CurContext = Context.getTranslationUnitDecl();
3113
3114  FunctionDecl *FD =
3115 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D, DeclPtrTy()).getAs<Decl>());
3116  FD->setImplicit();
3117
3118  CurContext = PrevDC;
3119
3120  AddKnownFunctionAttributes(FD);
3121
3122  return FD;
3123}
3124
3125/// \brief Adds any function attributes that we know a priori based on
3126/// the declaration of this function.
3127///
3128/// These attributes can apply both to implicitly-declared builtins
3129/// (like __builtin___printf_chk) or to library-declared functions
3130/// like NSLog or printf.
3131void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3132  if (FD->isInvalidDecl())
3133    return;
3134
3135  // If this is a built-in function, map its builtin attributes to
3136  // actual attributes.
3137  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3138    // Handle printf-formatting attributes.
3139    unsigned FormatIdx;
3140    bool HasVAListArg;
3141    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3142      if (!FD->getAttr<FormatAttr>())
3143        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3144                                               FormatIdx + 2));
3145    }
3146
3147    // Mark const if we don't care about errno and that is the only
3148    // thing preventing the function from being const. This allows
3149    // IRgen to use LLVM intrinsics for such functions.
3150    if (!getLangOptions().MathErrno &&
3151        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3152      if (!FD->getAttr<ConstAttr>())
3153        FD->addAttr(::new (Context) ConstAttr());
3154    }
3155  }
3156
3157  IdentifierInfo *Name = FD->getIdentifier();
3158  if (!Name)
3159    return;
3160  if ((!getLangOptions().CPlusPlus &&
3161       FD->getDeclContext()->isTranslationUnit()) ||
3162      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3163       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3164       LinkageSpecDecl::lang_c)) {
3165    // Okay: this could be a libc/libm/Objective-C function we know
3166    // about.
3167  } else
3168    return;
3169
3170  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3171    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3172      // FIXME: We known better than our headers.
3173      const_cast<FormatAttr *>(Format)->setType("printf");
3174    } else
3175      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
3176  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3177    if (!FD->getAttr<FormatAttr>())
3178      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
3179  }
3180}
3181
3182TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3183  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3184  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3185
3186  // Scope manipulation handled by caller.
3187  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3188                                           D.getIdentifierLoc(),
3189                                           D.getIdentifier(),
3190                                           T);
3191
3192  if (TagType *TT = dyn_cast<TagType>(T)) {
3193    TagDecl *TD = TT->getDecl();
3194
3195    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3196    // keep track of the TypedefDecl.
3197    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3198      TD->setTypedefForAnonDecl(NewTD);
3199  }
3200
3201  if (D.getInvalidType())
3202    NewTD->setInvalidDecl();
3203  return NewTD;
3204}
3205
3206/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3207/// former case, Name will be non-null.  In the later case, Name will be null.
3208/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3209/// reference/declaration/definition of a tag.
3210Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3211                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3212                               IdentifierInfo *Name, SourceLocation NameLoc,
3213                               AttributeList *Attr, AccessSpecifier AS) {
3214  // If this is not a definition, it must have a name.
3215  assert((Name != 0 || TK == TK_Definition) &&
3216         "Nameless record must be a definition!");
3217
3218  TagDecl::TagKind Kind;
3219  switch (TagSpec) {
3220  default: assert(0 && "Unknown tag type!");
3221  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3222  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3223  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3224  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3225  }
3226
3227  DeclContext *SearchDC = CurContext;
3228  DeclContext *DC = CurContext;
3229  NamedDecl *PrevDecl = 0;
3230
3231  bool Invalid = false;
3232
3233  if (Name && SS.isNotEmpty()) {
3234    // We have a nested-name tag ('struct foo::bar').
3235
3236    // Check for invalid 'foo::'.
3237    if (SS.isInvalid()) {
3238      Name = 0;
3239      goto CreateNewDecl;
3240    }
3241
3242    // FIXME: RequireCompleteDeclContext(SS)?
3243    DC = computeDeclContext(SS);
3244    SearchDC = DC;
3245    // Look-up name inside 'foo::'.
3246    PrevDecl = dyn_cast_or_null<TagDecl>(
3247                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3248
3249    // A tag 'foo::bar' must already exist.
3250    if (PrevDecl == 0) {
3251      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3252      Name = 0;
3253      goto CreateNewDecl;
3254    }
3255  } else if (Name) {
3256    // If this is a named struct, check to see if there was a previous forward
3257    // declaration or definition.
3258    // FIXME: We're looking into outer scopes here, even when we
3259    // shouldn't be. Doing so can result in ambiguities that we
3260    // shouldn't be diagnosing.
3261    LookupResult R = LookupName(S, Name, LookupTagName,
3262                                /*RedeclarationOnly=*/(TK != TK_Reference));
3263    if (R.isAmbiguous()) {
3264      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3265      // FIXME: This is not best way to recover from case like:
3266      //
3267      // struct S s;
3268      //
3269      // causes needless "incomplete type" error later.
3270      Name = 0;
3271      PrevDecl = 0;
3272      Invalid = true;
3273    }
3274    else
3275      PrevDecl = R;
3276
3277    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3278      // FIXME: This makes sure that we ignore the contexts associated
3279      // with C structs, unions, and enums when looking for a matching
3280      // tag declaration or definition. See the similar lookup tweak
3281      // in Sema::LookupName; is there a better way to deal with this?
3282      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3283        SearchDC = SearchDC->getParent();
3284    }
3285  }
3286
3287  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3288    // Maybe we will complain about the shadowed template parameter.
3289    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3290    // Just pretend that we didn't see the previous declaration.
3291    PrevDecl = 0;
3292  }
3293
3294  if (PrevDecl) {
3295    // Check whether the previous declaration is usable.
3296    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3297
3298    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3299      // If this is a use of a previous tag, or if the tag is already declared
3300      // in the same scope (so that the definition/declaration completes or
3301      // rementions the tag), reuse the decl.
3302      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3303        // Make sure that this wasn't declared as an enum and now used as a
3304        // struct or something similar.
3305        if (PrevTagDecl->getTagKind() != Kind) {
3306          bool SafeToContinue
3307            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3308               Kind != TagDecl::TK_enum);
3309          if (SafeToContinue)
3310            Diag(KWLoc, diag::err_use_with_wrong_tag)
3311              << Name
3312              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3313                                                  PrevTagDecl->getKindName());
3314          else
3315            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3316          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3317
3318          if (SafeToContinue)
3319            Kind = PrevTagDecl->getTagKind();
3320          else {
3321            // Recover by making this an anonymous redefinition.
3322            Name = 0;
3323            PrevDecl = 0;
3324            Invalid = true;
3325          }
3326        }
3327
3328        if (!Invalid) {
3329          // If this is a use, just return the declaration we found.
3330
3331          // FIXME: In the future, return a variant or some other clue
3332          // for the consumer of this Decl to know it doesn't own it.
3333          // For our current ASTs this shouldn't be a problem, but will
3334          // need to be changed with DeclGroups.
3335          if (TK == TK_Reference)
3336            return DeclPtrTy::make(PrevDecl);
3337
3338          // Diagnose attempts to redefine a tag.
3339          if (TK == TK_Definition) {
3340            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3341              Diag(NameLoc, diag::err_redefinition) << Name;
3342              Diag(Def->getLocation(), diag::note_previous_definition);
3343              // If this is a redefinition, recover by making this
3344              // struct be anonymous, which will make any later
3345              // references get the previous definition.
3346              Name = 0;
3347              PrevDecl = 0;
3348              Invalid = true;
3349            } else {
3350              // If the type is currently being defined, complain
3351              // about a nested redefinition.
3352              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3353              if (Tag->isBeingDefined()) {
3354                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3355                Diag(PrevTagDecl->getLocation(),
3356                     diag::note_previous_definition);
3357                Name = 0;
3358                PrevDecl = 0;
3359                Invalid = true;
3360              }
3361            }
3362
3363            // Okay, this is definition of a previously declared or referenced
3364            // tag PrevDecl. We're going to create a new Decl for it.
3365          }
3366        }
3367        // If we get here we have (another) forward declaration or we
3368        // have a definition.  Just create a new decl.
3369      } else {
3370        // If we get here, this is a definition of a new tag type in a nested
3371        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3372        // new decl/type.  We set PrevDecl to NULL so that the entities
3373        // have distinct types.
3374        PrevDecl = 0;
3375      }
3376      // If we get here, we're going to create a new Decl. If PrevDecl
3377      // is non-NULL, it's a definition of the tag declared by
3378      // PrevDecl. If it's NULL, we have a new definition.
3379    } else {
3380      // PrevDecl is a namespace, template, or anything else
3381      // that lives in the IDNS_Tag identifier namespace.
3382      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3383        // The tag name clashes with a namespace name, issue an error and
3384        // recover by making this tag be anonymous.
3385        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3386        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3387        Name = 0;
3388        PrevDecl = 0;
3389        Invalid = true;
3390      } else {
3391        // The existing declaration isn't relevant to us; we're in a
3392        // new scope, so clear out the previous declaration.
3393        PrevDecl = 0;
3394      }
3395    }
3396  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3397             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3398    // C.scope.pdecl]p5:
3399    //   -- for an elaborated-type-specifier of the form
3400    //
3401    //          class-key identifier
3402    //
3403    //      if the elaborated-type-specifier is used in the
3404    //      decl-specifier-seq or parameter-declaration-clause of a
3405    //      function defined in namespace scope, the identifier is
3406    //      declared as a class-name in the namespace that contains
3407    //      the declaration; otherwise, except as a friend
3408    //      declaration, the identifier is declared in the smallest
3409    //      non-class, non-function-prototype scope that contains the
3410    //      declaration.
3411    //
3412    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3413    // C structs and unions.
3414    //
3415    // GNU C also supports this behavior as part of its incomplete
3416    // enum types extension, while GNU C++ does not.
3417    //
3418    // Find the context where we'll be declaring the tag.
3419    // FIXME: We would like to maintain the current DeclContext as the
3420    // lexical context,
3421    while (SearchDC->isRecord())
3422      SearchDC = SearchDC->getParent();
3423
3424    // Find the scope where we'll be declaring the tag.
3425    while (S->isClassScope() ||
3426           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3427           ((S->getFlags() & Scope::DeclScope) == 0) ||
3428           (S->getEntity() &&
3429            ((DeclContext *)S->getEntity())->isTransparentContext()))
3430      S = S->getParent();
3431  }
3432
3433CreateNewDecl:
3434
3435  // If there is an identifier, use the location of the identifier as the
3436  // location of the decl, otherwise use the location of the struct/union
3437  // keyword.
3438  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3439
3440  // Otherwise, create a new declaration. If there is a previous
3441  // declaration of the same entity, the two will be linked via
3442  // PrevDecl.
3443  TagDecl *New;
3444
3445  if (Kind == TagDecl::TK_enum) {
3446    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3447    // enum X { A, B, C } D;    D should chain to X.
3448    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3449                           cast_or_null<EnumDecl>(PrevDecl));
3450    // If this is an undefined enum, warn.
3451    if (TK != TK_Definition && !Invalid)  {
3452      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3453                                              : diag::ext_forward_ref_enum;
3454      Diag(Loc, DK);
3455    }
3456  } else {
3457    // struct/union/class
3458
3459    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3460    // struct X { int A; } D;    D should chain to X.
3461    if (getLangOptions().CPlusPlus)
3462      // FIXME: Look for a way to use RecordDecl for simple structs.
3463      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3464                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3465    else
3466      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3467                               cast_or_null<RecordDecl>(PrevDecl));
3468  }
3469
3470  if (Kind != TagDecl::TK_enum) {
3471    // Handle #pragma pack: if the #pragma pack stack has non-default
3472    // alignment, make up a packed attribute for this decl. These
3473    // attributes are checked when the ASTContext lays out the
3474    // structure.
3475    //
3476    // It is important for implementing the correct semantics that this
3477    // happen here (in act on tag decl). The #pragma pack stack is
3478    // maintained as a result of parser callbacks which can occur at
3479    // many points during the parsing of a struct declaration (because
3480    // the #pragma tokens are effectively skipped over during the
3481    // parsing of the struct).
3482    if (unsigned Alignment = getPragmaPackAlignment())
3483      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3484  }
3485
3486  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3487    // C++ [dcl.typedef]p3:
3488    //   [...] Similarly, in a given scope, a class or enumeration
3489    //   shall not be declared with the same name as a typedef-name
3490    //   that is declared in that scope and refers to a type other
3491    //   than the class or enumeration itself.
3492    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3493    TypedefDecl *PrevTypedef = 0;
3494    if (Lookup.getKind() == LookupResult::Found)
3495      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3496
3497    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3498        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3499          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3500      Diag(Loc, diag::err_tag_definition_of_typedef)
3501        << Context.getTypeDeclType(New)
3502        << PrevTypedef->getUnderlyingType();
3503      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3504      Invalid = true;
3505    }
3506  }
3507
3508  if (Invalid)
3509    New->setInvalidDecl();
3510
3511  if (Attr)
3512    ProcessDeclAttributeList(New, Attr);
3513
3514  // If we're declaring or defining a tag in function prototype scope
3515  // in C, note that this type can only be used within the function.
3516  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3517    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3518
3519  // Set the lexical context. If the tag has a C++ scope specifier, the
3520  // lexical context will be different from the semantic context.
3521  New->setLexicalDeclContext(CurContext);
3522
3523  // Set the access specifier.
3524  SetMemberAccessSpecifier(New, PrevDecl, AS);
3525
3526  if (TK == TK_Definition)
3527    New->startDefinition();
3528
3529  // If this has an identifier, add it to the scope stack.
3530  if (Name) {
3531    S = getNonFieldDeclScope(S);
3532    PushOnScopeChains(New, S);
3533  } else {
3534    CurContext->addDecl(Context, New);
3535  }
3536
3537  return DeclPtrTy::make(New);
3538}
3539
3540void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3541  AdjustDeclIfTemplate(TagD);
3542  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3543
3544  // Enter the tag context.
3545  PushDeclContext(S, Tag);
3546
3547  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3548    FieldCollector->StartClass();
3549
3550    if (Record->getIdentifier()) {
3551      // C++ [class]p2:
3552      //   [...] The class-name is also inserted into the scope of the
3553      //   class itself; this is known as the injected-class-name. For
3554      //   purposes of access checking, the injected-class-name is treated
3555      //   as if it were a public member name.
3556      CXXRecordDecl *InjectedClassName
3557        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3558                                CurContext, Record->getLocation(),
3559                                Record->getIdentifier(), Record);
3560      InjectedClassName->setImplicit();
3561      InjectedClassName->setAccess(AS_public);
3562      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3563        InjectedClassName->setDescribedClassTemplate(Template);
3564      PushOnScopeChains(InjectedClassName, S);
3565      assert(InjectedClassName->isInjectedClassName() &&
3566             "Broken injected-class-name");
3567    }
3568  }
3569}
3570
3571void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3572  AdjustDeclIfTemplate(TagD);
3573  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3574
3575  if (isa<CXXRecordDecl>(Tag))
3576    FieldCollector->FinishClass();
3577
3578  // Exit this scope of this tag's definition.
3579  PopDeclContext();
3580
3581  // Notify the consumer that we've defined a tag.
3582  Consumer.HandleTagDeclDefinition(Tag);
3583}
3584
3585// Note that FieldName may be null for anonymous bitfields.
3586bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3587                          QualType FieldTy, const Expr *BitWidth) {
3588
3589  // C99 6.7.2.1p4 - verify the field type.
3590  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3591  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3592    // Handle incomplete types with specific error.
3593    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3594      return true;
3595    if (FieldName)
3596      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3597        << FieldName << FieldTy << BitWidth->getSourceRange();
3598    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3599      << FieldTy << BitWidth->getSourceRange();
3600  }
3601
3602  // If the bit-width is type- or value-dependent, don't try to check
3603  // it now.
3604  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3605    return false;
3606
3607  llvm::APSInt Value;
3608  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3609    return true;
3610
3611  // Zero-width bitfield is ok for anonymous field.
3612  if (Value == 0 && FieldName)
3613    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3614
3615  if (Value.isSigned() && Value.isNegative()) {
3616    if (FieldName)
3617      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3618               << FieldName << Value.toString(10);
3619    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3620      << Value.toString(10);
3621  }
3622
3623  if (!FieldTy->isDependentType()) {
3624    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3625    if (Value.getZExtValue() > TypeSize) {
3626      if (FieldName)
3627        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3628          << FieldName << (unsigned)TypeSize;
3629      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3630        << (unsigned)TypeSize;
3631    }
3632  }
3633
3634  return false;
3635}
3636
3637/// ActOnField - Each field of a struct/union/class is passed into this in order
3638/// to create a FieldDecl object for it.
3639Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3640                                 SourceLocation DeclStart,
3641                                 Declarator &D, ExprTy *BitfieldWidth) {
3642  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3643                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3644                               AS_public);
3645  return DeclPtrTy::make(Res);
3646}
3647
3648/// HandleField - Analyze a field of a C struct or a C++ data member.
3649///
3650FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3651                             SourceLocation DeclStart,
3652                             Declarator &D, Expr *BitWidth,
3653                             AccessSpecifier AS) {
3654  IdentifierInfo *II = D.getIdentifier();
3655  SourceLocation Loc = DeclStart;
3656  if (II) Loc = D.getIdentifierLoc();
3657
3658  QualType T = GetTypeForDeclarator(D, S);
3659  if (getLangOptions().CPlusPlus)
3660    CheckExtraCXXDefaultArguments(D);
3661
3662  DiagnoseFunctionSpecifiers(D);
3663
3664  if (D.getDeclSpec().isThreadSpecified())
3665    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3666
3667  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3668  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3669    PrevDecl = 0;
3670
3671  FieldDecl *NewFD
3672    = CheckFieldDecl(II, T, Record, Loc,
3673               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3674                     BitWidth, AS, PrevDecl, &D);
3675  if (NewFD->isInvalidDecl() && PrevDecl) {
3676    // Don't introduce NewFD into scope; there's already something
3677    // with the same name in the same scope.
3678  } else if (II) {
3679    PushOnScopeChains(NewFD, S);
3680  } else
3681    Record->addDecl(Context, NewFD);
3682
3683  return NewFD;
3684}
3685
3686/// \brief Build a new FieldDecl and check its well-formedness.
3687///
3688/// This routine builds a new FieldDecl given the fields name, type,
3689/// record, etc. \p PrevDecl should refer to any previous declaration
3690/// with the same name and in the same scope as the field to be
3691/// created.
3692///
3693/// \returns a new FieldDecl.
3694///
3695/// \todo The Declarator argument is a hack. It will be removed once
3696FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3697                                RecordDecl *Record, SourceLocation Loc,
3698                                bool Mutable, Expr *BitWidth,
3699                                AccessSpecifier AS, NamedDecl *PrevDecl,
3700                                Declarator *D) {
3701  IdentifierInfo *II = Name.getAsIdentifierInfo();
3702  bool InvalidDecl = false;
3703
3704  // If we receive a broken type, recover by assuming 'int' and
3705  // marking this declaration as invalid.
3706  if (T.isNull()) {
3707    InvalidDecl = true;
3708    T = Context.IntTy;
3709  }
3710
3711  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3712  // than a variably modified type.
3713  if (T->isVariablyModifiedType()) {
3714    bool SizeIsNegative;
3715    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3716                                                           SizeIsNegative);
3717    if (!FixedTy.isNull()) {
3718      Diag(Loc, diag::warn_illegal_constant_array_size);
3719      T = FixedTy;
3720    } else {
3721      if (SizeIsNegative)
3722        Diag(Loc, diag::err_typecheck_negative_array_size);
3723      else
3724        Diag(Loc, diag::err_typecheck_field_variable_size);
3725      T = Context.IntTy;
3726      InvalidDecl = true;
3727    }
3728  }
3729
3730  // Fields can not have abstract class types
3731  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3732                             AbstractFieldType))
3733    InvalidDecl = true;
3734
3735  // If this is declared as a bit-field, check the bit-field.
3736  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3737    InvalidDecl = true;
3738    DeleteExpr(BitWidth);
3739    BitWidth = 0;
3740  }
3741
3742  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3743                                       Mutable);
3744
3745  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3746    Diag(Loc, diag::err_duplicate_member) << II;
3747    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3748    NewFD->setInvalidDecl();
3749    Record->setInvalidDecl();
3750  }
3751
3752  if (getLangOptions().CPlusPlus && !T->isPODType())
3753    cast<CXXRecordDecl>(Record)->setPOD(false);
3754
3755  // FIXME: We need to pass in the attributes given an AST
3756  // representation, not a parser representation.
3757  if (D)
3758    ProcessDeclAttributes(NewFD, *D);
3759
3760  if (T.isObjCGCWeak())
3761    Diag(Loc, diag::warn_attribute_weak_on_field);
3762
3763  if (InvalidDecl)
3764    NewFD->setInvalidDecl();
3765
3766  NewFD->setAccess(AS);
3767
3768  // C++ [dcl.init.aggr]p1:
3769  //   An aggregate is an array or a class (clause 9) with [...] no
3770  //   private or protected non-static data members (clause 11).
3771  // A POD must be an aggregate.
3772  if (getLangOptions().CPlusPlus &&
3773      (AS == AS_private || AS == AS_protected)) {
3774    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3775    CXXRecord->setAggregate(false);
3776    CXXRecord->setPOD(false);
3777  }
3778
3779  return NewFD;
3780}
3781
3782/// TranslateIvarVisibility - Translate visibility from a token ID to an
3783///  AST enum value.
3784static ObjCIvarDecl::AccessControl
3785TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3786  switch (ivarVisibility) {
3787  default: assert(0 && "Unknown visitibility kind");
3788  case tok::objc_private: return ObjCIvarDecl::Private;
3789  case tok::objc_public: return ObjCIvarDecl::Public;
3790  case tok::objc_protected: return ObjCIvarDecl::Protected;
3791  case tok::objc_package: return ObjCIvarDecl::Package;
3792  }
3793}
3794
3795/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3796/// in order to create an IvarDecl object for it.
3797Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
3798                                SourceLocation DeclStart,
3799                                Declarator &D, ExprTy *BitfieldWidth,
3800                                tok::ObjCKeywordKind Visibility) {
3801
3802  IdentifierInfo *II = D.getIdentifier();
3803  Expr *BitWidth = (Expr*)BitfieldWidth;
3804  SourceLocation Loc = DeclStart;
3805  if (II) Loc = D.getIdentifierLoc();
3806
3807  // FIXME: Unnamed fields can be handled in various different ways, for
3808  // example, unnamed unions inject all members into the struct namespace!
3809
3810  QualType T = GetTypeForDeclarator(D, S);
3811  bool InvalidDecl = false;
3812  if (T.isNull()) {
3813    InvalidDecl = true;
3814    T = Context.IntTy;
3815  }
3816
3817  if (BitWidth) {
3818    // 6.7.2.1p3, 6.7.2.1p4
3819    if (VerifyBitField(Loc, II, T, BitWidth)) {
3820      InvalidDecl = true;
3821      DeleteExpr(BitWidth);
3822      BitWidth = 0;
3823    }
3824  } else {
3825    // Not a bitfield.
3826
3827    // validate II.
3828
3829  }
3830
3831  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3832  // than a variably modified type.
3833  if (T->isVariablyModifiedType()) {
3834    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3835    InvalidDecl = true;
3836  }
3837
3838  // Get the visibility (access control) for this ivar.
3839  ObjCIvarDecl::AccessControl ac =
3840    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3841                                        : ObjCIvarDecl::None;
3842
3843  // Construct the decl.
3844  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3845                                             (Expr *)BitfieldWidth);
3846
3847  if (II) {
3848    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3849    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3850        && !isa<TagDecl>(PrevDecl)) {
3851      Diag(Loc, diag::err_duplicate_member) << II;
3852      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3853      NewID->setInvalidDecl();
3854    }
3855  }
3856
3857  // Process attributes attached to the ivar.
3858  ProcessDeclAttributes(NewID, D);
3859
3860  if (D.getInvalidType() || InvalidDecl)
3861    NewID->setInvalidDecl();
3862
3863  if (II) {
3864    // FIXME: When interfaces are DeclContexts, we'll need to add
3865    // these to the interface.
3866    S->AddDecl(DeclPtrTy::make(NewID));
3867    IdResolver.AddDecl(NewID);
3868  }
3869
3870  return DeclPtrTy::make(NewID);
3871}
3872
3873void Sema::ActOnFields(Scope* S,
3874                       SourceLocation RecLoc, DeclPtrTy RecDecl,
3875                       DeclPtrTy *Fields, unsigned NumFields,
3876                       SourceLocation LBrac, SourceLocation RBrac,
3877                       AttributeList *Attr) {
3878  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
3879  assert(EnclosingDecl && "missing record or interface decl");
3880
3881  // If the decl this is being inserted into is invalid, then it may be a
3882  // redeclaration or some other bogus case.  Don't try to add fields to it.
3883  if (EnclosingDecl->isInvalidDecl()) {
3884    // FIXME: Deallocate fields?
3885    return;
3886  }
3887
3888
3889  // Verify that all the fields are okay.
3890  unsigned NumNamedMembers = 0;
3891  llvm::SmallVector<FieldDecl*, 32> RecFields;
3892
3893  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3894  for (unsigned i = 0; i != NumFields; ++i) {
3895    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
3896
3897    // Get the type for the field.
3898    Type *FDTy = FD->getType().getTypePtr();
3899
3900    if (!FD->isAnonymousStructOrUnion()) {
3901      // Remember all fields written by the user.
3902      RecFields.push_back(FD);
3903    }
3904
3905    // If the field is already invalid for some reason, don't emit more
3906    // diagnostics about it.
3907    if (FD->isInvalidDecl())
3908      continue;
3909
3910    // C99 6.7.2.1p2:
3911    //   A structure or union shall not contain a member with
3912    //   incomplete or function type (hence, a structure shall not
3913    //   contain an instance of itself, but may contain a pointer to
3914    //   an instance of itself), except that the last member of a
3915    //   structure with more than one named member may have incomplete
3916    //   array type; such a structure (and any union containing,
3917    //   possibly recursively, a member that is such a structure)
3918    //   shall not be a member of a structure or an element of an
3919    //   array.
3920    if (FDTy->isFunctionType()) {
3921      // Field declared as a function.
3922      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3923        << FD->getDeclName();
3924      FD->setInvalidDecl();
3925      EnclosingDecl->setInvalidDecl();
3926      continue;
3927    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
3928               Record && Record->isStruct()) {
3929      // Flexible array member.
3930      if (NumNamedMembers < 1) {
3931        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3932          << FD->getDeclName();
3933        FD->setInvalidDecl();
3934        EnclosingDecl->setInvalidDecl();
3935        continue;
3936      }
3937      // Okay, we have a legal flexible array member at the end of the struct.
3938      if (Record)
3939        Record->setHasFlexibleArrayMember(true);
3940    } else if (!FDTy->isDependentType() &&
3941               RequireCompleteType(FD->getLocation(), FD->getType(),
3942                                   diag::err_field_incomplete)) {
3943      // Incomplete type
3944      FD->setInvalidDecl();
3945      EnclosingDecl->setInvalidDecl();
3946      continue;
3947    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3948      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3949        // If this is a member of a union, then entire union becomes "flexible".
3950        if (Record && Record->isUnion()) {
3951          Record->setHasFlexibleArrayMember(true);
3952        } else {
3953          // If this is a struct/class and this is not the last element, reject
3954          // it.  Note that GCC supports variable sized arrays in the middle of
3955          // structures.
3956          if (i != NumFields-1)
3957            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
3958              << FD->getDeclName();
3959          else {
3960            // We support flexible arrays at the end of structs in
3961            // other structs as an extension.
3962            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3963              << FD->getDeclName();
3964            if (Record)
3965              Record->setHasFlexibleArrayMember(true);
3966          }
3967        }
3968      }
3969    } else if (FDTy->isObjCInterfaceType()) {
3970      /// A field cannot be an Objective-c object
3971      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3972      FD->setInvalidDecl();
3973      EnclosingDecl->setInvalidDecl();
3974      continue;
3975    }
3976    // Keep track of the number of named members.
3977    if (FD->getIdentifier())
3978      ++NumNamedMembers;
3979  }
3980
3981  // Okay, we successfully defined 'Record'.
3982  if (Record) {
3983    Record->completeDefinition(Context);
3984  } else {
3985    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3986    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3987      ID->setIVarList(ClsFields, RecFields.size(), Context);
3988      ID->setLocEnd(RBrac);
3989
3990      // Must enforce the rule that ivars in the base classes may not be
3991      // duplicates.
3992      if (ID->getSuperClass()) {
3993        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3994             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3995          ObjCIvarDecl* Ivar = (*IVI);
3996          IdentifierInfo *II = Ivar->getIdentifier();
3997          ObjCIvarDecl* prevIvar =
3998            ID->getSuperClass()->lookupInstanceVariable(Context, II);
3999          if (prevIvar) {
4000            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4001            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4002          }
4003        }
4004      }
4005    } else if (ObjCImplementationDecl *IMPDecl =
4006                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4007      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4008      for (unsigned I = 0, N = RecFields.size(); I != N; ++I) {
4009        // FIXME: Set the DeclContext correctly when we build the
4010        // declarations.
4011        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4012        IMPDecl->addDecl(Context, ClsFields[I]);
4013      }
4014      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4015    }
4016  }
4017
4018  if (Attr)
4019    ProcessDeclAttributeList(Record, Attr);
4020}
4021
4022EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4023                                          EnumConstantDecl *LastEnumConst,
4024                                          SourceLocation IdLoc,
4025                                          IdentifierInfo *Id,
4026                                          ExprArg val) {
4027  Expr *Val = (Expr *)val.get();
4028
4029  llvm::APSInt EnumVal(32);
4030  QualType EltTy;
4031  if (Val && !Val->isTypeDependent()) {
4032    // Make sure to promote the operand type to int.
4033    UsualUnaryConversions(Val);
4034    if (Val != val.get()) {
4035      val.release();
4036      val = Val;
4037    }
4038
4039    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4040    SourceLocation ExpLoc;
4041    if (!Val->isValueDependent() &&
4042        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4043      Val = 0;
4044    } else {
4045      EltTy = Val->getType();
4046    }
4047  }
4048
4049  if (!Val) {
4050    if (LastEnumConst) {
4051      // Assign the last value + 1.
4052      EnumVal = LastEnumConst->getInitVal();
4053      ++EnumVal;
4054
4055      // Check for overflow on increment.
4056      if (EnumVal < LastEnumConst->getInitVal())
4057        Diag(IdLoc, diag::warn_enum_value_overflow);
4058
4059      EltTy = LastEnumConst->getType();
4060    } else {
4061      // First value, set to zero.
4062      EltTy = Context.IntTy;
4063      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4064    }
4065  }
4066
4067  val.release();
4068  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4069                                  Val, EnumVal);
4070}
4071
4072
4073Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4074                                        DeclPtrTy lastEnumConst,
4075                                        SourceLocation IdLoc,
4076                                        IdentifierInfo *Id,
4077                                        SourceLocation EqualLoc, ExprTy *val) {
4078  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4079  EnumConstantDecl *LastEnumConst =
4080    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4081  Expr *Val = static_cast<Expr*>(val);
4082
4083  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4084  // we find one that is.
4085  S = getNonFieldDeclScope(S);
4086
4087  // Verify that there isn't already something declared with this name in this
4088  // scope.
4089  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4090  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4091    // Maybe we will complain about the shadowed template parameter.
4092    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4093    // Just pretend that we didn't see the previous declaration.
4094    PrevDecl = 0;
4095  }
4096
4097  if (PrevDecl) {
4098    // When in C++, we may get a TagDecl with the same name; in this case the
4099    // enum constant will 'hide' the tag.
4100    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4101           "Received TagDecl when not in C++!");
4102    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4103      if (isa<EnumConstantDecl>(PrevDecl))
4104        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4105      else
4106        Diag(IdLoc, diag::err_redefinition) << Id;
4107      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4108      if (Val) Val->Destroy(Context);
4109      return DeclPtrTy();
4110    }
4111  }
4112
4113  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4114                                            IdLoc, Id, Owned(Val));
4115
4116  // Register this decl in the current scope stack.
4117  if (New)
4118    PushOnScopeChains(New, S);
4119
4120  return DeclPtrTy::make(New);
4121}
4122
4123// FIXME: For consistency with ActOnFields(), we should have the parser
4124// pass in the source location for the left/right braces.
4125void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclPtrTy EnumDeclX,
4126                         DeclPtrTy *Elements, unsigned NumElements) {
4127  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4128  QualType EnumType = Context.getTypeDeclType(Enum);
4129
4130  // TODO: If the result value doesn't fit in an int, it must be a long or long
4131  // long value.  ISO C does not support this, but GCC does as an extension,
4132  // emit a warning.
4133  unsigned IntWidth = Context.Target.getIntWidth();
4134
4135  // Verify that all the values are okay, compute the size of the values, and
4136  // reverse the list.
4137  unsigned NumNegativeBits = 0;
4138  unsigned NumPositiveBits = 0;
4139
4140  // Keep track of whether all elements have type int.
4141  bool AllElementsInt = true;
4142
4143  for (unsigned i = 0; i != NumElements; ++i) {
4144    EnumConstantDecl *ECD =
4145      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4146    if (!ECD) continue;  // Already issued a diagnostic.
4147
4148    // If the enum value doesn't fit in an int, emit an extension warning.
4149    const llvm::APSInt &InitVal = ECD->getInitVal();
4150    assert(InitVal.getBitWidth() >= IntWidth &&
4151           "Should have promoted value to int");
4152    if (InitVal.getBitWidth() > IntWidth) {
4153      llvm::APSInt V(InitVal);
4154      V.trunc(IntWidth);
4155      V.extend(InitVal.getBitWidth());
4156      if (V != InitVal)
4157        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4158          << InitVal.toString(10);
4159    }
4160
4161    // Keep track of the size of positive and negative values.
4162    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4163      NumPositiveBits = std::max(NumPositiveBits,
4164                                 (unsigned)InitVal.getActiveBits());
4165    else
4166      NumNegativeBits = std::max(NumNegativeBits,
4167                                 (unsigned)InitVal.getMinSignedBits());
4168
4169    // Keep track of whether every enum element has type int (very commmon).
4170    if (AllElementsInt)
4171      AllElementsInt = ECD->getType() == Context.IntTy;
4172  }
4173
4174  // Figure out the type that should be used for this enum.
4175  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4176  QualType BestType;
4177  unsigned BestWidth;
4178
4179  if (NumNegativeBits) {
4180    // If there is a negative value, figure out the smallest integer type (of
4181    // int/long/longlong) that fits.
4182    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4183      BestType = Context.IntTy;
4184      BestWidth = IntWidth;
4185    } else {
4186      BestWidth = Context.Target.getLongWidth();
4187
4188      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4189        BestType = Context.LongTy;
4190      else {
4191        BestWidth = Context.Target.getLongLongWidth();
4192
4193        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4194          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4195        BestType = Context.LongLongTy;
4196      }
4197    }
4198  } else {
4199    // If there is no negative value, figure out which of uint, ulong, ulonglong
4200    // fits.
4201    if (NumPositiveBits <= IntWidth) {
4202      BestType = Context.UnsignedIntTy;
4203      BestWidth = IntWidth;
4204    } else if (NumPositiveBits <=
4205               (BestWidth = Context.Target.getLongWidth())) {
4206      BestType = Context.UnsignedLongTy;
4207    } else {
4208      BestWidth = Context.Target.getLongLongWidth();
4209      assert(NumPositiveBits <= BestWidth &&
4210             "How could an initializer get larger than ULL?");
4211      BestType = Context.UnsignedLongLongTy;
4212    }
4213  }
4214
4215  // Loop over all of the enumerator constants, changing their types to match
4216  // the type of the enum if needed.
4217  for (unsigned i = 0; i != NumElements; ++i) {
4218    EnumConstantDecl *ECD =
4219      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4220    if (!ECD) continue;  // Already issued a diagnostic.
4221
4222    // Standard C says the enumerators have int type, but we allow, as an
4223    // extension, the enumerators to be larger than int size.  If each
4224    // enumerator value fits in an int, type it as an int, otherwise type it the
4225    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4226    // that X has type 'int', not 'unsigned'.
4227    if (ECD->getType() == Context.IntTy) {
4228      // Make sure the init value is signed.
4229      llvm::APSInt IV = ECD->getInitVal();
4230      IV.setIsSigned(true);
4231      ECD->setInitVal(IV);
4232
4233      if (getLangOptions().CPlusPlus)
4234        // C++ [dcl.enum]p4: Following the closing brace of an
4235        // enum-specifier, each enumerator has the type of its
4236        // enumeration.
4237        ECD->setType(EnumType);
4238      continue;  // Already int type.
4239    }
4240
4241    // Determine whether the value fits into an int.
4242    llvm::APSInt InitVal = ECD->getInitVal();
4243    bool FitsInInt;
4244    if (InitVal.isUnsigned() || !InitVal.isNegative())
4245      FitsInInt = InitVal.getActiveBits() < IntWidth;
4246    else
4247      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4248
4249    // If it fits into an integer type, force it.  Otherwise force it to match
4250    // the enum decl type.
4251    QualType NewTy;
4252    unsigned NewWidth;
4253    bool NewSign;
4254    if (FitsInInt) {
4255      NewTy = Context.IntTy;
4256      NewWidth = IntWidth;
4257      NewSign = true;
4258    } else if (ECD->getType() == BestType) {
4259      // Already the right type!
4260      if (getLangOptions().CPlusPlus)
4261        // C++ [dcl.enum]p4: Following the closing brace of an
4262        // enum-specifier, each enumerator has the type of its
4263        // enumeration.
4264        ECD->setType(EnumType);
4265      continue;
4266    } else {
4267      NewTy = BestType;
4268      NewWidth = BestWidth;
4269      NewSign = BestType->isSignedIntegerType();
4270    }
4271
4272    // Adjust the APSInt value.
4273    InitVal.extOrTrunc(NewWidth);
4274    InitVal.setIsSigned(NewSign);
4275    ECD->setInitVal(InitVal);
4276
4277    // Adjust the Expr initializer and type.
4278    if (ECD->getInitExpr())
4279      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4280                                                      /*isLvalue=*/false));
4281    if (getLangOptions().CPlusPlus)
4282      // C++ [dcl.enum]p4: Following the closing brace of an
4283      // enum-specifier, each enumerator has the type of its
4284      // enumeration.
4285      ECD->setType(EnumType);
4286    else
4287      ECD->setType(NewTy);
4288  }
4289
4290  Enum->completeDefinition(Context, BestType);
4291}
4292
4293Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4294                                            ExprArg expr) {
4295  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
4296
4297  return DeclPtrTy::make(FileScopeAsmDecl::Create(Context, CurContext,
4298                                                  Loc, AsmString));
4299}
4300
4301