SemaDecl.cpp revision 9bd6336f0b6e378125ce33d562a00a278c4350d8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "Lookup.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclObjC.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/AST/StmtObjC.h"
26#include "clang/Parse/DeclSpec.h"
27#include "clang/Parse/ParseDiagnostic.h"
28#include "clang/Parse/Template.h"
29#include "clang/Basic/PartialDiagnostic.h"
30#include "clang/Basic/SourceManager.h"
31#include "clang/Basic/TargetInfo.h"
32// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
33#include "clang/Lex/Preprocessor.h"
34#include "clang/Lex/HeaderSearch.h"
35#include "llvm/ADT/BitVector.h"
36#include "llvm/ADT/STLExtras.h"
37#include <algorithm>
38#include <cstring>
39#include <functional>
40#include <queue>
41using namespace clang;
42
43/// getDeclName - Return a pretty name for the specified decl if possible, or
44/// an empty string if not.  This is used for pretty crash reporting.
45std::string Sema::getDeclName(DeclPtrTy d) {
46  Decl *D = d.getAs<Decl>();
47  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
48    return DN->getQualifiedNameAsString();
49  return "";
50}
51
52Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
53  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
54}
55
56/// \brief If the identifier refers to a type name within this scope,
57/// return the declaration of that type.
58///
59/// This routine performs ordinary name lookup of the identifier II
60/// within the given scope, with optional C++ scope specifier SS, to
61/// determine whether the name refers to a type. If so, returns an
62/// opaque pointer (actually a QualType) corresponding to that
63/// type. Otherwise, returns NULL.
64///
65/// If name lookup results in an ambiguity, this routine will complain
66/// and then return NULL.
67Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
68                                Scope *S, const CXXScopeSpec *SS,
69                                bool isClassName,
70                                TypeTy *ObjectTypePtr) {
71  // Determine where we will perform name lookup.
72  DeclContext *LookupCtx = 0;
73  if (ObjectTypePtr) {
74    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
75    if (ObjectType->isRecordType())
76      LookupCtx = computeDeclContext(ObjectType);
77  } else if (SS && SS->isSet()) {
78    LookupCtx = computeDeclContext(*SS, false);
79
80    if (!LookupCtx) {
81      if (isDependentScopeSpecifier(*SS)) {
82        // C++ [temp.res]p3:
83        //   A qualified-id that refers to a type and in which the
84        //   nested-name-specifier depends on a template-parameter (14.6.2)
85        //   shall be prefixed by the keyword typename to indicate that the
86        //   qualified-id denotes a type, forming an
87        //   elaborated-type-specifier (7.1.5.3).
88        //
89        // We therefore do not perform any name lookup if the result would
90        // refer to a member of an unknown specialization.
91        if (!isClassName)
92          return 0;
93
94        // We know from the grammar that this name refers to a type, so build a
95        // TypenameType node to describe the type.
96        // FIXME: Record somewhere that this TypenameType node has no "typename"
97        // keyword associated with it.
98        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
99                                 II, SS->getRange()).getAsOpaquePtr();
100      }
101
102      return 0;
103    }
104
105    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
106      return 0;
107  }
108
109  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
110  if (LookupCtx) {
111    // Perform "qualified" name lookup into the declaration context we
112    // computed, which is either the type of the base of a member access
113    // expression or the declaration context associated with a prior
114    // nested-name-specifier.
115    LookupQualifiedName(Result, LookupCtx);
116
117    if (ObjectTypePtr && Result.empty()) {
118      // C++ [basic.lookup.classref]p3:
119      //   If the unqualified-id is ~type-name, the type-name is looked up
120      //   in the context of the entire postfix-expression. If the type T of
121      //   the object expression is of a class type C, the type-name is also
122      //   looked up in the scope of class C. At least one of the lookups shall
123      //   find a name that refers to (possibly cv-qualified) T.
124      LookupName(Result, S);
125    }
126  } else {
127    // Perform unqualified name lookup.
128    LookupName(Result, S);
129  }
130
131  NamedDecl *IIDecl = 0;
132  switch (Result.getResultKind()) {
133  case LookupResult::NotFound:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    return 0;
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return 0;
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return 0;
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    // C++ [temp.local]p2:
189    //   Within the scope of a class template specialization or
190    //   partial specialization, when the injected-class-name is
191    //   not followed by a <, it is equivalent to the
192    //   injected-class-name followed by the template-argument s
193    //   of the class template specialization or partial
194    //   specialization enclosed in <>.
195    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
196      if (RD->isInjectedClassName())
197        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
198          T = Template->getInjectedClassNameType(Context);
199
200    if (T.isNull())
201      T = Context.getTypeDeclType(TD);
202
203    if (SS)
204      T = getQualifiedNameType(*SS, T);
205
206  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
207    T = Context.getObjCInterfaceType(IDecl);
208  } else if (UnresolvedUsingTypenameDecl *UUDecl =
209               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
210    // FIXME: preserve source structure information.
211    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
212  } else {
213    // If it's not plausibly a type, suppress diagnostics.
214    Result.suppressDiagnostics();
215    return 0;
216  }
217
218  return T.getAsOpaquePtr();
219}
220
221/// isTagName() - This method is called *for error recovery purposes only*
222/// to determine if the specified name is a valid tag name ("struct foo").  If
223/// so, this returns the TST for the tag corresponding to it (TST_enum,
224/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
225/// where the user forgot to specify the tag.
226DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
227  // Do a tag name lookup in this scope.
228  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
229  LookupName(R, S, false);
230  R.suppressDiagnostics();
231  if (R.getResultKind() == LookupResult::Found)
232    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
233      switch (TD->getTagKind()) {
234      case TagDecl::TK_struct: return DeclSpec::TST_struct;
235      case TagDecl::TK_union:  return DeclSpec::TST_union;
236      case TagDecl::TK_class:  return DeclSpec::TST_class;
237      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
238      }
239    }
240
241  return DeclSpec::TST_unspecified;
242}
243
244bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
245                                   SourceLocation IILoc,
246                                   Scope *S,
247                                   const CXXScopeSpec *SS,
248                                   TypeTy *&SuggestedType) {
249  // We don't have anything to suggest (yet).
250  SuggestedType = 0;
251
252  // FIXME: Should we move the logic that tries to recover from a missing tag
253  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
254
255  if (!SS)
256    Diag(IILoc, diag::err_unknown_typename) << &II;
257  else if (DeclContext *DC = computeDeclContext(*SS, false))
258    Diag(IILoc, diag::err_typename_nested_not_found)
259      << &II << DC << SS->getRange();
260  else if (isDependentScopeSpecifier(*SS)) {
261    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
262      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
263      << SourceRange(SS->getRange().getBegin(), IILoc)
264      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
265                                               "typename ");
266    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
267  } else {
268    assert(SS && SS->isInvalid() &&
269           "Invalid scope specifier has already been diagnosed");
270  }
271
272  return true;
273}
274
275// Determines the context to return to after temporarily entering a
276// context.  This depends in an unnecessarily complicated way on the
277// exact ordering of callbacks from the parser.
278DeclContext *Sema::getContainingDC(DeclContext *DC) {
279
280  // Functions defined inline within classes aren't parsed until we've
281  // finished parsing the top-level class, so the top-level class is
282  // the context we'll need to return to.
283  if (isa<FunctionDecl>(DC)) {
284    DC = DC->getLexicalParent();
285
286    // A function not defined within a class will always return to its
287    // lexical context.
288    if (!isa<CXXRecordDecl>(DC))
289      return DC;
290
291    // A C++ inline method/friend is parsed *after* the topmost class
292    // it was declared in is fully parsed ("complete");  the topmost
293    // class is the context we need to return to.
294    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
295      DC = RD;
296
297    // Return the declaration context of the topmost class the inline method is
298    // declared in.
299    return DC;
300  }
301
302  if (isa<ObjCMethodDecl>(DC))
303    return Context.getTranslationUnitDecl();
304
305  return DC->getLexicalParent();
306}
307
308void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
309  assert(getContainingDC(DC) == CurContext &&
310      "The next DeclContext should be lexically contained in the current one.");
311  CurContext = DC;
312  S->setEntity(DC);
313}
314
315void Sema::PopDeclContext() {
316  assert(CurContext && "DeclContext imbalance!");
317
318  CurContext = getContainingDC(CurContext);
319}
320
321/// EnterDeclaratorContext - Used when we must lookup names in the context
322/// of a declarator's nested name specifier.
323void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
324  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
325  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
326  CurContext = DC;
327  assert(CurContext && "No context?");
328  S->setEntity(CurContext);
329}
330
331void Sema::ExitDeclaratorContext(Scope *S) {
332  S->setEntity(PreDeclaratorDC);
333  PreDeclaratorDC = 0;
334
335  // Reset CurContext to the nearest enclosing context.
336  while (!S->getEntity() && S->getParent())
337    S = S->getParent();
338  CurContext = static_cast<DeclContext*>(S->getEntity());
339  assert(CurContext && "No context?");
340}
341
342/// \brief Determine whether we allow overloading of the function
343/// PrevDecl with another declaration.
344///
345/// This routine determines whether overloading is possible, not
346/// whether some new function is actually an overload. It will return
347/// true in C++ (where we can always provide overloads) or, as an
348/// extension, in C when the previous function is already an
349/// overloaded function declaration or has the "overloadable"
350/// attribute.
351static bool AllowOverloadingOfFunction(LookupResult &Previous,
352                                       ASTContext &Context) {
353  if (Context.getLangOptions().CPlusPlus)
354    return true;
355
356  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
357    return true;
358
359  return (Previous.getResultKind() == LookupResult::Found
360          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
361}
362
363/// Add this decl to the scope shadowed decl chains.
364void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
365  // Move up the scope chain until we find the nearest enclosing
366  // non-transparent context. The declaration will be introduced into this
367  // scope.
368  while (S->getEntity() &&
369         ((DeclContext *)S->getEntity())->isTransparentContext())
370    S = S->getParent();
371
372  // Add scoped declarations into their context, so that they can be
373  // found later. Declarations without a context won't be inserted
374  // into any context.
375  if (AddToContext)
376    CurContext->addDecl(D);
377
378  // Out-of-line function and variable definitions should not be pushed into
379  // scope.
380  if ((isa<FunctionTemplateDecl>(D) &&
381       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
382      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
383      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
384    return;
385
386  // If this replaces anything in the current scope,
387  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
388                               IEnd = IdResolver.end();
389  for (; I != IEnd; ++I) {
390    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
391      S->RemoveDecl(DeclPtrTy::make(*I));
392      IdResolver.RemoveDecl(*I);
393
394      // Should only need to replace one decl.
395      break;
396    }
397  }
398
399  S->AddDecl(DeclPtrTy::make(D));
400  IdResolver.AddDecl(D);
401}
402
403bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
404  return IdResolver.isDeclInScope(D, Ctx, Context, S);
405}
406
407static bool isOutOfScopePreviousDeclaration(NamedDecl *,
408                                            DeclContext*,
409                                            ASTContext&);
410
411/// Filters out lookup results that don't fall within the given scope
412/// as determined by isDeclInScope.
413static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
414                                 DeclContext *Ctx, Scope *S,
415                                 bool ConsiderLinkage) {
416  LookupResult::Filter F = R.makeFilter();
417  while (F.hasNext()) {
418    NamedDecl *D = F.next();
419
420    if (SemaRef.isDeclInScope(D, Ctx, S))
421      continue;
422
423    if (ConsiderLinkage &&
424        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
425      continue;
426
427    F.erase();
428  }
429
430  F.done();
431}
432
433static bool isUsingDecl(NamedDecl *D) {
434  return isa<UsingShadowDecl>(D) ||
435         isa<UnresolvedUsingTypenameDecl>(D) ||
436         isa<UnresolvedUsingValueDecl>(D);
437}
438
439/// Removes using shadow declarations from the lookup results.
440static void RemoveUsingDecls(LookupResult &R) {
441  LookupResult::Filter F = R.makeFilter();
442  while (F.hasNext())
443    if (isUsingDecl(F.next()))
444      F.erase();
445
446  F.done();
447}
448
449static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
450  if (D->isUsed() || D->hasAttr<UnusedAttr>())
451    return false;
452
453  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
454    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
455      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
456        if (!RD->hasTrivialConstructor())
457          return false;
458        if (!RD->hasTrivialDestructor())
459          return false;
460      }
461    }
462  }
463
464  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
465          !isa<ImplicitParamDecl>(D) &&
466          D->getDeclContext()->isFunctionOrMethod());
467}
468
469void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
470  if (S->decl_empty()) return;
471  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
472         "Scope shouldn't contain decls!");
473
474  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
475       I != E; ++I) {
476    Decl *TmpD = (*I).getAs<Decl>();
477    assert(TmpD && "This decl didn't get pushed??");
478
479    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
480    NamedDecl *D = cast<NamedDecl>(TmpD);
481
482    if (!D->getDeclName()) continue;
483
484    // Diagnose unused variables in this scope.
485    if (ShouldDiagnoseUnusedDecl(D))
486      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
487
488    // Remove this name from our lexical scope.
489    IdResolver.RemoveDecl(D);
490  }
491}
492
493/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
494/// return 0 if one not found.
495ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
496  // The third "scope" argument is 0 since we aren't enabling lazy built-in
497  // creation from this context.
498  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
499
500  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
501}
502
503/// getNonFieldDeclScope - Retrieves the innermost scope, starting
504/// from S, where a non-field would be declared. This routine copes
505/// with the difference between C and C++ scoping rules in structs and
506/// unions. For example, the following code is well-formed in C but
507/// ill-formed in C++:
508/// @code
509/// struct S6 {
510///   enum { BAR } e;
511/// };
512///
513/// void test_S6() {
514///   struct S6 a;
515///   a.e = BAR;
516/// }
517/// @endcode
518/// For the declaration of BAR, this routine will return a different
519/// scope. The scope S will be the scope of the unnamed enumeration
520/// within S6. In C++, this routine will return the scope associated
521/// with S6, because the enumeration's scope is a transparent
522/// context but structures can contain non-field names. In C, this
523/// routine will return the translation unit scope, since the
524/// enumeration's scope is a transparent context and structures cannot
525/// contain non-field names.
526Scope *Sema::getNonFieldDeclScope(Scope *S) {
527  while (((S->getFlags() & Scope::DeclScope) == 0) ||
528         (S->getEntity() &&
529          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
530         (S->isClassScope() && !getLangOptions().CPlusPlus))
531    S = S->getParent();
532  return S;
533}
534
535void Sema::InitBuiltinVaListType() {
536  if (!Context.getBuiltinVaListType().isNull())
537    return;
538
539  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
540  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
541  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
542  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
543}
544
545/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
546/// file scope.  lazily create a decl for it. ForRedeclaration is true
547/// if we're creating this built-in in anticipation of redeclaring the
548/// built-in.
549NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
550                                     Scope *S, bool ForRedeclaration,
551                                     SourceLocation Loc) {
552  Builtin::ID BID = (Builtin::ID)bid;
553
554  if (Context.BuiltinInfo.hasVAListUse(BID))
555    InitBuiltinVaListType();
556
557  ASTContext::GetBuiltinTypeError Error;
558  QualType R = Context.GetBuiltinType(BID, Error);
559  switch (Error) {
560  case ASTContext::GE_None:
561    // Okay
562    break;
563
564  case ASTContext::GE_Missing_stdio:
565    if (ForRedeclaration)
566      Diag(Loc, diag::err_implicit_decl_requires_stdio)
567        << Context.BuiltinInfo.GetName(BID);
568    return 0;
569
570  case ASTContext::GE_Missing_setjmp:
571    if (ForRedeclaration)
572      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
573        << Context.BuiltinInfo.GetName(BID);
574    return 0;
575  }
576
577  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
578    Diag(Loc, diag::ext_implicit_lib_function_decl)
579      << Context.BuiltinInfo.GetName(BID)
580      << R;
581    if (Context.BuiltinInfo.getHeaderName(BID) &&
582        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
583          != Diagnostic::Ignored)
584      Diag(Loc, diag::note_please_include_header)
585        << Context.BuiltinInfo.getHeaderName(BID)
586        << Context.BuiltinInfo.GetName(BID);
587  }
588
589  FunctionDecl *New = FunctionDecl::Create(Context,
590                                           Context.getTranslationUnitDecl(),
591                                           Loc, II, R, /*DInfo=*/0,
592                                           FunctionDecl::Extern, false,
593                                           /*hasPrototype=*/true);
594  New->setImplicit();
595
596  // Create Decl objects for each parameter, adding them to the
597  // FunctionDecl.
598  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
599    llvm::SmallVector<ParmVarDecl*, 16> Params;
600    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
601      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
602                                           FT->getArgType(i), /*DInfo=*/0,
603                                           VarDecl::None, 0));
604    New->setParams(Context, Params.data(), Params.size());
605  }
606
607  AddKnownFunctionAttributes(New);
608
609  // TUScope is the translation-unit scope to insert this function into.
610  // FIXME: This is hideous. We need to teach PushOnScopeChains to
611  // relate Scopes to DeclContexts, and probably eliminate CurContext
612  // entirely, but we're not there yet.
613  DeclContext *SavedContext = CurContext;
614  CurContext = Context.getTranslationUnitDecl();
615  PushOnScopeChains(New, TUScope);
616  CurContext = SavedContext;
617  return New;
618}
619
620/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
621/// same name and scope as a previous declaration 'Old'.  Figure out
622/// how to resolve this situation, merging decls or emitting
623/// diagnostics as appropriate. If there was an error, set New to be invalid.
624///
625void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
626  // If the new decl is known invalid already, don't bother doing any
627  // merging checks.
628  if (New->isInvalidDecl()) return;
629
630  // Allow multiple definitions for ObjC built-in typedefs.
631  // FIXME: Verify the underlying types are equivalent!
632  if (getLangOptions().ObjC1) {
633    const IdentifierInfo *TypeID = New->getIdentifier();
634    switch (TypeID->getLength()) {
635    default: break;
636    case 2:
637      if (!TypeID->isStr("id"))
638        break;
639      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
640      // Install the built-in type for 'id', ignoring the current definition.
641      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
642      return;
643    case 5:
644      if (!TypeID->isStr("Class"))
645        break;
646      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
647      // Install the built-in type for 'Class', ignoring the current definition.
648      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
649      return;
650    case 3:
651      if (!TypeID->isStr("SEL"))
652        break;
653      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
654      // Install the built-in type for 'SEL', ignoring the current definition.
655      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
656      return;
657    case 8:
658      if (!TypeID->isStr("Protocol"))
659        break;
660      Context.setObjCProtoType(New->getUnderlyingType());
661      return;
662    }
663    // Fall through - the typedef name was not a builtin type.
664  }
665
666  // Verify the old decl was also a type.
667  TypeDecl *Old = 0;
668  if (!OldDecls.isSingleResult() ||
669      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
670    Diag(New->getLocation(), diag::err_redefinition_different_kind)
671      << New->getDeclName();
672
673    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
674    if (OldD->getLocation().isValid())
675      Diag(OldD->getLocation(), diag::note_previous_definition);
676
677    return New->setInvalidDecl();
678  }
679
680  // If the old declaration is invalid, just give up here.
681  if (Old->isInvalidDecl())
682    return New->setInvalidDecl();
683
684  // Determine the "old" type we'll use for checking and diagnostics.
685  QualType OldType;
686  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
687    OldType = OldTypedef->getUnderlyingType();
688  else
689    OldType = Context.getTypeDeclType(Old);
690
691  // If the typedef types are not identical, reject them in all languages and
692  // with any extensions enabled.
693
694  if (OldType != New->getUnderlyingType() &&
695      Context.getCanonicalType(OldType) !=
696      Context.getCanonicalType(New->getUnderlyingType())) {
697    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
698      << New->getUnderlyingType() << OldType;
699    if (Old->getLocation().isValid())
700      Diag(Old->getLocation(), diag::note_previous_definition);
701    return New->setInvalidDecl();
702  }
703
704  if (getLangOptions().Microsoft)
705    return;
706
707  // C++ [dcl.typedef]p2:
708  //   In a given non-class scope, a typedef specifier can be used to
709  //   redefine the name of any type declared in that scope to refer
710  //   to the type to which it already refers.
711  if (getLangOptions().CPlusPlus) {
712    if (!isa<CXXRecordDecl>(CurContext))
713      return;
714    Diag(New->getLocation(), diag::err_redefinition)
715      << New->getDeclName();
716    Diag(Old->getLocation(), diag::note_previous_definition);
717    return New->setInvalidDecl();
718  }
719
720  // If we have a redefinition of a typedef in C, emit a warning.  This warning
721  // is normally mapped to an error, but can be controlled with
722  // -Wtypedef-redefinition.  If either the original or the redefinition is
723  // in a system header, don't emit this for compatibility with GCC.
724  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
725      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
726       Context.getSourceManager().isInSystemHeader(New->getLocation())))
727    return;
728
729  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
730    << New->getDeclName();
731  Diag(Old->getLocation(), diag::note_previous_definition);
732  return;
733}
734
735/// DeclhasAttr - returns true if decl Declaration already has the target
736/// attribute.
737static bool
738DeclHasAttr(const Decl *decl, const Attr *target) {
739  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
740    if (attr->getKind() == target->getKind())
741      return true;
742
743  return false;
744}
745
746/// MergeAttributes - append attributes from the Old decl to the New one.
747static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
748  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
749    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
750      Attr *NewAttr = attr->clone(C);
751      NewAttr->setInherited(true);
752      New->addAttr(NewAttr);
753    }
754  }
755}
756
757/// Used in MergeFunctionDecl to keep track of function parameters in
758/// C.
759struct GNUCompatibleParamWarning {
760  ParmVarDecl *OldParm;
761  ParmVarDecl *NewParm;
762  QualType PromotedType;
763};
764
765
766/// getSpecialMember - get the special member enum for a method.
767static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
768                                               const CXXMethodDecl *MD) {
769  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
770    if (Ctor->isDefaultConstructor())
771      return Sema::CXXDefaultConstructor;
772    if (Ctor->isCopyConstructor(Ctx))
773      return Sema::CXXCopyConstructor;
774  }
775
776  if (isa<CXXDestructorDecl>(MD))
777    return Sema::CXXDestructor;
778
779  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
780  return Sema::CXXCopyAssignment;
781}
782
783/// MergeFunctionDecl - We just parsed a function 'New' from
784/// declarator D which has the same name and scope as a previous
785/// declaration 'Old'.  Figure out how to resolve this situation,
786/// merging decls or emitting diagnostics as appropriate.
787///
788/// In C++, New and Old must be declarations that are not
789/// overloaded. Use IsOverload to determine whether New and Old are
790/// overloaded, and to select the Old declaration that New should be
791/// merged with.
792///
793/// Returns true if there was an error, false otherwise.
794bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
795  // Verify the old decl was also a function.
796  FunctionDecl *Old = 0;
797  if (FunctionTemplateDecl *OldFunctionTemplate
798        = dyn_cast<FunctionTemplateDecl>(OldD))
799    Old = OldFunctionTemplate->getTemplatedDecl();
800  else
801    Old = dyn_cast<FunctionDecl>(OldD);
802  if (!Old) {
803    Diag(New->getLocation(), diag::err_redefinition_different_kind)
804      << New->getDeclName();
805    Diag(OldD->getLocation(), diag::note_previous_definition);
806    return true;
807  }
808
809  // Determine whether the previous declaration was a definition,
810  // implicit declaration, or a declaration.
811  diag::kind PrevDiag;
812  if (Old->isThisDeclarationADefinition())
813    PrevDiag = diag::note_previous_definition;
814  else if (Old->isImplicit())
815    PrevDiag = diag::note_previous_implicit_declaration;
816  else
817    PrevDiag = diag::note_previous_declaration;
818
819  QualType OldQType = Context.getCanonicalType(Old->getType());
820  QualType NewQType = Context.getCanonicalType(New->getType());
821
822  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
823      New->getStorageClass() == FunctionDecl::Static &&
824      Old->getStorageClass() != FunctionDecl::Static) {
825    Diag(New->getLocation(), diag::err_static_non_static)
826      << New;
827    Diag(Old->getLocation(), PrevDiag);
828    return true;
829  }
830
831  if (getLangOptions().CPlusPlus) {
832    // (C++98 13.1p2):
833    //   Certain function declarations cannot be overloaded:
834    //     -- Function declarations that differ only in the return type
835    //        cannot be overloaded.
836    QualType OldReturnType
837      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
838    QualType NewReturnType
839      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
840    if (OldReturnType != NewReturnType) {
841      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
842      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
843      return true;
844    }
845
846    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
847    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
848    if (OldMethod && NewMethod) {
849      if (!NewMethod->getFriendObjectKind() &&
850          NewMethod->getLexicalDeclContext()->isRecord()) {
851        //    -- Member function declarations with the same name and the
852        //       same parameter types cannot be overloaded if any of them
853        //       is a static member function declaration.
854        if (OldMethod->isStatic() || NewMethod->isStatic()) {
855          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
856          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
857          return true;
858        }
859
860        // C++ [class.mem]p1:
861        //   [...] A member shall not be declared twice in the
862        //   member-specification, except that a nested class or member
863        //   class template can be declared and then later defined.
864        unsigned NewDiag;
865        if (isa<CXXConstructorDecl>(OldMethod))
866          NewDiag = diag::err_constructor_redeclared;
867        else if (isa<CXXDestructorDecl>(NewMethod))
868          NewDiag = diag::err_destructor_redeclared;
869        else if (isa<CXXConversionDecl>(NewMethod))
870          NewDiag = diag::err_conv_function_redeclared;
871        else
872          NewDiag = diag::err_member_redeclared;
873
874        Diag(New->getLocation(), NewDiag);
875        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
876      } else {
877        if (OldMethod->isImplicit()) {
878          Diag(NewMethod->getLocation(),
879               diag::err_definition_of_implicitly_declared_member)
880          << New << getSpecialMember(Context, OldMethod);
881
882          Diag(OldMethod->getLocation(),
883               diag::note_previous_implicit_declaration);
884          return true;
885        }
886      }
887    }
888
889    // (C++98 8.3.5p3):
890    //   All declarations for a function shall agree exactly in both the
891    //   return type and the parameter-type-list.
892    if (OldQType == NewQType)
893      return MergeCompatibleFunctionDecls(New, Old);
894
895    // Fall through for conflicting redeclarations and redefinitions.
896  }
897
898  // C: Function types need to be compatible, not identical. This handles
899  // duplicate function decls like "void f(int); void f(enum X);" properly.
900  if (!getLangOptions().CPlusPlus &&
901      Context.typesAreCompatible(OldQType, NewQType)) {
902    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
903    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
904    const FunctionProtoType *OldProto = 0;
905    if (isa<FunctionNoProtoType>(NewFuncType) &&
906        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
907      // The old declaration provided a function prototype, but the
908      // new declaration does not. Merge in the prototype.
909      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
910      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
911                                                 OldProto->arg_type_end());
912      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
913                                         ParamTypes.data(), ParamTypes.size(),
914                                         OldProto->isVariadic(),
915                                         OldProto->getTypeQuals());
916      New->setType(NewQType);
917      New->setHasInheritedPrototype();
918
919      // Synthesize a parameter for each argument type.
920      llvm::SmallVector<ParmVarDecl*, 16> Params;
921      for (FunctionProtoType::arg_type_iterator
922             ParamType = OldProto->arg_type_begin(),
923             ParamEnd = OldProto->arg_type_end();
924           ParamType != ParamEnd; ++ParamType) {
925        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
926                                                 SourceLocation(), 0,
927                                                 *ParamType, /*DInfo=*/0,
928                                                 VarDecl::None, 0);
929        Param->setImplicit();
930        Params.push_back(Param);
931      }
932
933      New->setParams(Context, Params.data(), Params.size());
934    }
935
936    return MergeCompatibleFunctionDecls(New, Old);
937  }
938
939  // GNU C permits a K&R definition to follow a prototype declaration
940  // if the declared types of the parameters in the K&R definition
941  // match the types in the prototype declaration, even when the
942  // promoted types of the parameters from the K&R definition differ
943  // from the types in the prototype. GCC then keeps the types from
944  // the prototype.
945  //
946  // If a variadic prototype is followed by a non-variadic K&R definition,
947  // the K&R definition becomes variadic.  This is sort of an edge case, but
948  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
949  // C99 6.9.1p8.
950  if (!getLangOptions().CPlusPlus &&
951      Old->hasPrototype() && !New->hasPrototype() &&
952      New->getType()->getAs<FunctionProtoType>() &&
953      Old->getNumParams() == New->getNumParams()) {
954    llvm::SmallVector<QualType, 16> ArgTypes;
955    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
956    const FunctionProtoType *OldProto
957      = Old->getType()->getAs<FunctionProtoType>();
958    const FunctionProtoType *NewProto
959      = New->getType()->getAs<FunctionProtoType>();
960
961    // Determine whether this is the GNU C extension.
962    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
963                                               NewProto->getResultType());
964    bool LooseCompatible = !MergedReturn.isNull();
965    for (unsigned Idx = 0, End = Old->getNumParams();
966         LooseCompatible && Idx != End; ++Idx) {
967      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
968      ParmVarDecl *NewParm = New->getParamDecl(Idx);
969      if (Context.typesAreCompatible(OldParm->getType(),
970                                     NewProto->getArgType(Idx))) {
971        ArgTypes.push_back(NewParm->getType());
972      } else if (Context.typesAreCompatible(OldParm->getType(),
973                                            NewParm->getType())) {
974        GNUCompatibleParamWarning Warn
975          = { OldParm, NewParm, NewProto->getArgType(Idx) };
976        Warnings.push_back(Warn);
977        ArgTypes.push_back(NewParm->getType());
978      } else
979        LooseCompatible = false;
980    }
981
982    if (LooseCompatible) {
983      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
984        Diag(Warnings[Warn].NewParm->getLocation(),
985             diag::ext_param_promoted_not_compatible_with_prototype)
986          << Warnings[Warn].PromotedType
987          << Warnings[Warn].OldParm->getType();
988        Diag(Warnings[Warn].OldParm->getLocation(),
989             diag::note_previous_declaration);
990      }
991
992      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
993                                           ArgTypes.size(),
994                                           OldProto->isVariadic(), 0));
995      return MergeCompatibleFunctionDecls(New, Old);
996    }
997
998    // Fall through to diagnose conflicting types.
999  }
1000
1001  // A function that has already been declared has been redeclared or defined
1002  // with a different type- show appropriate diagnostic
1003  if (unsigned BuiltinID = Old->getBuiltinID()) {
1004    // The user has declared a builtin function with an incompatible
1005    // signature.
1006    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1007      // The function the user is redeclaring is a library-defined
1008      // function like 'malloc' or 'printf'. Warn about the
1009      // redeclaration, then pretend that we don't know about this
1010      // library built-in.
1011      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1012      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1013        << Old << Old->getType();
1014      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1015      Old->setInvalidDecl();
1016      return false;
1017    }
1018
1019    PrevDiag = diag::note_previous_builtin_declaration;
1020  }
1021
1022  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1023  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1024  return true;
1025}
1026
1027/// \brief Completes the merge of two function declarations that are
1028/// known to be compatible.
1029///
1030/// This routine handles the merging of attributes and other
1031/// properties of function declarations form the old declaration to
1032/// the new declaration, once we know that New is in fact a
1033/// redeclaration of Old.
1034///
1035/// \returns false
1036bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1037  // Merge the attributes
1038  MergeAttributes(New, Old, Context);
1039
1040  // Merge the storage class.
1041  if (Old->getStorageClass() != FunctionDecl::Extern &&
1042      Old->getStorageClass() != FunctionDecl::None)
1043    New->setStorageClass(Old->getStorageClass());
1044
1045  // Merge "pure" flag.
1046  if (Old->isPure())
1047    New->setPure();
1048
1049  // Merge the "deleted" flag.
1050  if (Old->isDeleted())
1051    New->setDeleted();
1052
1053  if (getLangOptions().CPlusPlus)
1054    return MergeCXXFunctionDecl(New, Old);
1055
1056  return false;
1057}
1058
1059/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1060/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1061/// situation, merging decls or emitting diagnostics as appropriate.
1062///
1063/// Tentative definition rules (C99 6.9.2p2) are checked by
1064/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1065/// definitions here, since the initializer hasn't been attached.
1066///
1067void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1068  // If the new decl is already invalid, don't do any other checking.
1069  if (New->isInvalidDecl())
1070    return;
1071
1072  // Verify the old decl was also a variable.
1073  VarDecl *Old = 0;
1074  if (!Previous.isSingleResult() ||
1075      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1076    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1077      << New->getDeclName();
1078    Diag(Previous.getRepresentativeDecl()->getLocation(),
1079         diag::note_previous_definition);
1080    return New->setInvalidDecl();
1081  }
1082
1083  MergeAttributes(New, Old, Context);
1084
1085  // Merge the types
1086  QualType MergedT;
1087  if (getLangOptions().CPlusPlus) {
1088    if (Context.hasSameType(New->getType(), Old->getType()))
1089      MergedT = New->getType();
1090    // C++ [basic.types]p7:
1091    //   [...] The declared type of an array object might be an array of
1092    //   unknown size and therefore be incomplete at one point in a
1093    //   translation unit and complete later on; [...]
1094    else if (Old->getType()->isIncompleteArrayType() &&
1095             New->getType()->isArrayType()) {
1096      CanQual<ArrayType> OldArray
1097        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1098      CanQual<ArrayType> NewArray
1099        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1100      if (OldArray->getElementType() == NewArray->getElementType())
1101        MergedT = New->getType();
1102    }
1103  } else {
1104    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1105  }
1106  if (MergedT.isNull()) {
1107    Diag(New->getLocation(), diag::err_redefinition_different_type)
1108      << New->getDeclName();
1109    Diag(Old->getLocation(), diag::note_previous_definition);
1110    return New->setInvalidDecl();
1111  }
1112  New->setType(MergedT);
1113
1114  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1115  if (New->getStorageClass() == VarDecl::Static &&
1116      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1117    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1118    Diag(Old->getLocation(), diag::note_previous_definition);
1119    return New->setInvalidDecl();
1120  }
1121  // C99 6.2.2p4:
1122  //   For an identifier declared with the storage-class specifier
1123  //   extern in a scope in which a prior declaration of that
1124  //   identifier is visible,23) if the prior declaration specifies
1125  //   internal or external linkage, the linkage of the identifier at
1126  //   the later declaration is the same as the linkage specified at
1127  //   the prior declaration. If no prior declaration is visible, or
1128  //   if the prior declaration specifies no linkage, then the
1129  //   identifier has external linkage.
1130  if (New->hasExternalStorage() && Old->hasLinkage())
1131    /* Okay */;
1132  else if (New->getStorageClass() != VarDecl::Static &&
1133           Old->getStorageClass() == VarDecl::Static) {
1134    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1135    Diag(Old->getLocation(), diag::note_previous_definition);
1136    return New->setInvalidDecl();
1137  }
1138
1139  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1140
1141  // FIXME: The test for external storage here seems wrong? We still
1142  // need to check for mismatches.
1143  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1144      // Don't complain about out-of-line definitions of static members.
1145      !(Old->getLexicalDeclContext()->isRecord() &&
1146        !New->getLexicalDeclContext()->isRecord())) {
1147    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1148    Diag(Old->getLocation(), diag::note_previous_definition);
1149    return New->setInvalidDecl();
1150  }
1151
1152  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1153    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1154    Diag(Old->getLocation(), diag::note_previous_definition);
1155  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1156    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1157    Diag(Old->getLocation(), diag::note_previous_definition);
1158  }
1159
1160  // Keep a chain of previous declarations.
1161  New->setPreviousDeclaration(Old);
1162}
1163
1164/// CheckFallThrough - Check that we don't fall off the end of a
1165/// Statement that should return a value.
1166///
1167/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1168/// MaybeFallThrough iff we might or might not fall off the end,
1169/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1170/// return.  We assume NeverFallThrough iff we never fall off the end of the
1171/// statement but we may return.  We assume that functions not marked noreturn
1172/// will return.
1173Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1174  // FIXME: Eventually share this CFG object when we have other warnings based
1175  // of the CFG.  This can be done using AnalysisContext.
1176  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1177
1178  // FIXME: They should never return 0, fix that, delete this code.
1179  if (cfg == 0)
1180    // FIXME: This should be NeverFallThrough
1181    return NeverFallThroughOrReturn;
1182  // The CFG leaves in dead things, and we don't want to dead code paths to
1183  // confuse us, so we mark all live things first.
1184  std::queue<CFGBlock*> workq;
1185  llvm::BitVector live(cfg->getNumBlockIDs());
1186  // Prep work queue
1187  workq.push(&cfg->getEntry());
1188  // Solve
1189  while (!workq.empty()) {
1190    CFGBlock *item = workq.front();
1191    workq.pop();
1192    live.set(item->getBlockID());
1193    for (CFGBlock::succ_iterator I=item->succ_begin(),
1194           E=item->succ_end();
1195         I != E;
1196         ++I) {
1197      if ((*I) && !live[(*I)->getBlockID()]) {
1198        live.set((*I)->getBlockID());
1199        workq.push(*I);
1200      }
1201    }
1202  }
1203
1204  // Now we know what is live, we check the live precessors of the exit block
1205  // and look for fall through paths, being careful to ignore normal returns,
1206  // and exceptional paths.
1207  bool HasLiveReturn = false;
1208  bool HasFakeEdge = false;
1209  bool HasPlainEdge = false;
1210  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1211         E = cfg->getExit().pred_end();
1212       I != E;
1213       ++I) {
1214    CFGBlock& B = **I;
1215    if (!live[B.getBlockID()])
1216      continue;
1217    if (B.size() == 0) {
1218      // A labeled empty statement, or the entry block...
1219      HasPlainEdge = true;
1220      continue;
1221    }
1222    Stmt *S = B[B.size()-1];
1223    if (isa<ReturnStmt>(S)) {
1224      HasLiveReturn = true;
1225      continue;
1226    }
1227    if (isa<ObjCAtThrowStmt>(S)) {
1228      HasFakeEdge = true;
1229      continue;
1230    }
1231    if (isa<CXXThrowExpr>(S)) {
1232      HasFakeEdge = true;
1233      continue;
1234    }
1235    bool NoReturnEdge = false;
1236    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1237      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1238      if (CEE->getType().getNoReturnAttr()) {
1239        NoReturnEdge = true;
1240        HasFakeEdge = true;
1241      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1242        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1243          if (FD->hasAttr<NoReturnAttr>()) {
1244            NoReturnEdge = true;
1245            HasFakeEdge = true;
1246          }
1247        }
1248      }
1249    }
1250    // FIXME: Add noreturn message sends.
1251    if (NoReturnEdge == false)
1252      HasPlainEdge = true;
1253  }
1254  if (!HasPlainEdge) {
1255    if (HasLiveReturn)
1256      return NeverFallThrough;
1257    return NeverFallThroughOrReturn;
1258  }
1259  if (HasFakeEdge || HasLiveReturn)
1260    return MaybeFallThrough;
1261  // This says AlwaysFallThrough for calls to functions that are not marked
1262  // noreturn, that don't return.  If people would like this warning to be more
1263  // accurate, such functions should be marked as noreturn.
1264  return AlwaysFallThrough;
1265}
1266
1267/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1268/// function that should return a value.  Check that we don't fall off the end
1269/// of a noreturn function.  We assume that functions and blocks not marked
1270/// noreturn will return.
1271void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1272  // FIXME: Would be nice if we had a better way to control cascading errors,
1273  // but for now, avoid them.  The problem is that when Parse sees:
1274  //   int foo() { return a; }
1275  // The return is eaten and the Sema code sees just:
1276  //   int foo() { }
1277  // which this code would then warn about.
1278  if (getDiagnostics().hasErrorOccurred())
1279    return;
1280
1281  bool ReturnsVoid = false;
1282  bool HasNoReturn = false;
1283  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1284    // If the result type of the function is a dependent type, we don't know
1285    // whether it will be void or not, so don't
1286    if (FD->getResultType()->isDependentType())
1287      return;
1288    if (FD->getResultType()->isVoidType())
1289      ReturnsVoid = true;
1290    if (FD->hasAttr<NoReturnAttr>())
1291      HasNoReturn = true;
1292  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1293    if (MD->getResultType()->isVoidType())
1294      ReturnsVoid = true;
1295    if (MD->hasAttr<NoReturnAttr>())
1296      HasNoReturn = true;
1297  }
1298
1299  // Short circuit for compilation speed.
1300  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1301       == Diagnostic::Ignored || ReturnsVoid)
1302      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1303          == Diagnostic::Ignored || !HasNoReturn)
1304      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1305          == Diagnostic::Ignored || !ReturnsVoid))
1306    return;
1307  // FIXME: Function try block
1308  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1309    switch (CheckFallThrough(Body)) {
1310    case MaybeFallThrough:
1311      if (HasNoReturn)
1312        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1313      else if (!ReturnsVoid)
1314        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1315      break;
1316    case AlwaysFallThrough:
1317      if (HasNoReturn)
1318        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1319      else if (!ReturnsVoid)
1320        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1321      break;
1322    case NeverFallThroughOrReturn:
1323      if (ReturnsVoid && !HasNoReturn)
1324        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1325      break;
1326    case NeverFallThrough:
1327      break;
1328    }
1329  }
1330}
1331
1332/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1333/// that should return a value.  Check that we don't fall off the end of a
1334/// noreturn block.  We assume that functions and blocks not marked noreturn
1335/// will return.
1336void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1337  // FIXME: Would be nice if we had a better way to control cascading errors,
1338  // but for now, avoid them.  The problem is that when Parse sees:
1339  //   int foo() { return a; }
1340  // The return is eaten and the Sema code sees just:
1341  //   int foo() { }
1342  // which this code would then warn about.
1343  if (getDiagnostics().hasErrorOccurred())
1344    return;
1345  bool ReturnsVoid = false;
1346  bool HasNoReturn = false;
1347  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1348    if (FT->getResultType()->isVoidType())
1349      ReturnsVoid = true;
1350    if (FT->getNoReturnAttr())
1351      HasNoReturn = true;
1352  }
1353
1354  // Short circuit for compilation speed.
1355  if (ReturnsVoid
1356      && !HasNoReturn
1357      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1358          == Diagnostic::Ignored || !ReturnsVoid))
1359    return;
1360  // FIXME: Funtion try block
1361  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1362    switch (CheckFallThrough(Body)) {
1363    case MaybeFallThrough:
1364      if (HasNoReturn)
1365        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1366      else if (!ReturnsVoid)
1367        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1368      break;
1369    case AlwaysFallThrough:
1370      if (HasNoReturn)
1371        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1372      else if (!ReturnsVoid)
1373        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1374      break;
1375    case NeverFallThroughOrReturn:
1376      if (ReturnsVoid)
1377        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1378      break;
1379    case NeverFallThrough:
1380      break;
1381    }
1382  }
1383}
1384
1385/// CheckParmsForFunctionDef - Check that the parameters of the given
1386/// function are appropriate for the definition of a function. This
1387/// takes care of any checks that cannot be performed on the
1388/// declaration itself, e.g., that the types of each of the function
1389/// parameters are complete.
1390bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1391  bool HasInvalidParm = false;
1392  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1393    ParmVarDecl *Param = FD->getParamDecl(p);
1394
1395    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1396    // function declarator that is part of a function definition of
1397    // that function shall not have incomplete type.
1398    //
1399    // This is also C++ [dcl.fct]p6.
1400    if (!Param->isInvalidDecl() &&
1401        RequireCompleteType(Param->getLocation(), Param->getType(),
1402                               diag::err_typecheck_decl_incomplete_type)) {
1403      Param->setInvalidDecl();
1404      HasInvalidParm = true;
1405    }
1406
1407    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1408    // declaration of each parameter shall include an identifier.
1409    if (Param->getIdentifier() == 0 &&
1410        !Param->isImplicit() &&
1411        !getLangOptions().CPlusPlus)
1412      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1413  }
1414
1415  return HasInvalidParm;
1416}
1417
1418/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1419/// no declarator (e.g. "struct foo;") is parsed.
1420Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1421  // FIXME: Error on auto/register at file scope
1422  // FIXME: Error on inline/virtual/explicit
1423  // FIXME: Error on invalid restrict
1424  // FIXME: Warn on useless __thread
1425  // FIXME: Warn on useless const/volatile
1426  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1427  // FIXME: Warn on useless attributes
1428  Decl *TagD = 0;
1429  TagDecl *Tag = 0;
1430  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1431      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1432      DS.getTypeSpecType() == DeclSpec::TST_union ||
1433      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1434    TagD = static_cast<Decl *>(DS.getTypeRep());
1435
1436    if (!TagD) // We probably had an error
1437      return DeclPtrTy();
1438
1439    // Note that the above type specs guarantee that the
1440    // type rep is a Decl, whereas in many of the others
1441    // it's a Type.
1442    Tag = dyn_cast<TagDecl>(TagD);
1443  }
1444
1445  if (DS.isFriendSpecified()) {
1446    // If we're dealing with a class template decl, assume that the
1447    // template routines are handling it.
1448    if (TagD && isa<ClassTemplateDecl>(TagD))
1449      return DeclPtrTy();
1450    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1451  }
1452
1453  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1454    // If there are attributes in the DeclSpec, apply them to the record.
1455    if (const AttributeList *AL = DS.getAttributes())
1456      ProcessDeclAttributeList(S, Record, AL);
1457
1458    if (!Record->getDeclName() && Record->isDefinition() &&
1459        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1460      if (getLangOptions().CPlusPlus ||
1461          Record->getDeclContext()->isRecord())
1462        return BuildAnonymousStructOrUnion(S, DS, Record);
1463
1464      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1465        << DS.getSourceRange();
1466    }
1467
1468    // Microsoft allows unnamed struct/union fields. Don't complain
1469    // about them.
1470    // FIXME: Should we support Microsoft's extensions in this area?
1471    if (Record->getDeclName() && getLangOptions().Microsoft)
1472      return DeclPtrTy::make(Tag);
1473  }
1474
1475  if (!DS.isMissingDeclaratorOk() &&
1476      DS.getTypeSpecType() != DeclSpec::TST_error) {
1477    // Warn about typedefs of enums without names, since this is an
1478    // extension in both Microsoft an GNU.
1479    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1480        Tag && isa<EnumDecl>(Tag)) {
1481      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1482        << DS.getSourceRange();
1483      return DeclPtrTy::make(Tag);
1484    }
1485
1486    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1487      << DS.getSourceRange();
1488    return DeclPtrTy();
1489  }
1490
1491  return DeclPtrTy::make(Tag);
1492}
1493
1494/// We are trying to introduce the given name into the given context;
1495/// check if there's an existing declaration that can't be overloaded.
1496///
1497/// \return true if this is a forbidden redeclaration
1498bool Sema::CheckRedeclaration(DeclContext *DC,
1499                              DeclarationName Name,
1500                              SourceLocation NameLoc,
1501                              unsigned diagnostic) {
1502  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1503                 ForRedeclaration);
1504  LookupQualifiedName(R, DC);
1505
1506  if (R.empty()) return false;
1507
1508  if (R.getResultKind() == LookupResult::Found &&
1509      isa<TagDecl>(R.getFoundDecl()))
1510    return false;
1511
1512  // Pick a representative declaration.
1513  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1514
1515  Diag(NameLoc, diagnostic) << Name;
1516  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1517
1518  return true;
1519}
1520
1521/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1522/// anonymous struct or union AnonRecord into the owning context Owner
1523/// and scope S. This routine will be invoked just after we realize
1524/// that an unnamed union or struct is actually an anonymous union or
1525/// struct, e.g.,
1526///
1527/// @code
1528/// union {
1529///   int i;
1530///   float f;
1531/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1532///    // f into the surrounding scope.x
1533/// @endcode
1534///
1535/// This routine is recursive, injecting the names of nested anonymous
1536/// structs/unions into the owning context and scope as well.
1537bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1538                                               RecordDecl *AnonRecord) {
1539  unsigned diagKind
1540    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1541                            : diag::err_anonymous_struct_member_redecl;
1542
1543  bool Invalid = false;
1544  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1545                               FEnd = AnonRecord->field_end();
1546       F != FEnd; ++F) {
1547    if ((*F)->getDeclName()) {
1548      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1549                             (*F)->getLocation(), diagKind)) {
1550        // C++ [class.union]p2:
1551        //   The names of the members of an anonymous union shall be
1552        //   distinct from the names of any other entity in the
1553        //   scope in which the anonymous union is declared.
1554        Invalid = true;
1555      } else {
1556        // C++ [class.union]p2:
1557        //   For the purpose of name lookup, after the anonymous union
1558        //   definition, the members of the anonymous union are
1559        //   considered to have been defined in the scope in which the
1560        //   anonymous union is declared.
1561        Owner->makeDeclVisibleInContext(*F);
1562        S->AddDecl(DeclPtrTy::make(*F));
1563        IdResolver.AddDecl(*F);
1564      }
1565    } else if (const RecordType *InnerRecordType
1566                 = (*F)->getType()->getAs<RecordType>()) {
1567      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1568      if (InnerRecord->isAnonymousStructOrUnion())
1569        Invalid = Invalid ||
1570          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1571    }
1572  }
1573
1574  return Invalid;
1575}
1576
1577/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1578/// anonymous structure or union. Anonymous unions are a C++ feature
1579/// (C++ [class.union]) and a GNU C extension; anonymous structures
1580/// are a GNU C and GNU C++ extension.
1581Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1582                                                  RecordDecl *Record) {
1583  DeclContext *Owner = Record->getDeclContext();
1584
1585  // Diagnose whether this anonymous struct/union is an extension.
1586  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1587    Diag(Record->getLocation(), diag::ext_anonymous_union);
1588  else if (!Record->isUnion())
1589    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1590
1591  // C and C++ require different kinds of checks for anonymous
1592  // structs/unions.
1593  bool Invalid = false;
1594  if (getLangOptions().CPlusPlus) {
1595    const char* PrevSpec = 0;
1596    unsigned DiagID;
1597    // C++ [class.union]p3:
1598    //   Anonymous unions declared in a named namespace or in the
1599    //   global namespace shall be declared static.
1600    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1601        (isa<TranslationUnitDecl>(Owner) ||
1602         (isa<NamespaceDecl>(Owner) &&
1603          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1604      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1605      Invalid = true;
1606
1607      // Recover by adding 'static'.
1608      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1609                             PrevSpec, DiagID);
1610    }
1611    // C++ [class.union]p3:
1612    //   A storage class is not allowed in a declaration of an
1613    //   anonymous union in a class scope.
1614    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1615             isa<RecordDecl>(Owner)) {
1616      Diag(DS.getStorageClassSpecLoc(),
1617           diag::err_anonymous_union_with_storage_spec);
1618      Invalid = true;
1619
1620      // Recover by removing the storage specifier.
1621      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1622                             PrevSpec, DiagID);
1623    }
1624
1625    // C++ [class.union]p2:
1626    //   The member-specification of an anonymous union shall only
1627    //   define non-static data members. [Note: nested types and
1628    //   functions cannot be declared within an anonymous union. ]
1629    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1630                                 MemEnd = Record->decls_end();
1631         Mem != MemEnd; ++Mem) {
1632      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1633        // C++ [class.union]p3:
1634        //   An anonymous union shall not have private or protected
1635        //   members (clause 11).
1636        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1637          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1638            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1639          Invalid = true;
1640        }
1641      } else if ((*Mem)->isImplicit()) {
1642        // Any implicit members are fine.
1643      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1644        // This is a type that showed up in an
1645        // elaborated-type-specifier inside the anonymous struct or
1646        // union, but which actually declares a type outside of the
1647        // anonymous struct or union. It's okay.
1648      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1649        if (!MemRecord->isAnonymousStructOrUnion() &&
1650            MemRecord->getDeclName()) {
1651          // This is a nested type declaration.
1652          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1653            << (int)Record->isUnion();
1654          Invalid = true;
1655        }
1656      } else {
1657        // We have something that isn't a non-static data
1658        // member. Complain about it.
1659        unsigned DK = diag::err_anonymous_record_bad_member;
1660        if (isa<TypeDecl>(*Mem))
1661          DK = diag::err_anonymous_record_with_type;
1662        else if (isa<FunctionDecl>(*Mem))
1663          DK = diag::err_anonymous_record_with_function;
1664        else if (isa<VarDecl>(*Mem))
1665          DK = diag::err_anonymous_record_with_static;
1666        Diag((*Mem)->getLocation(), DK)
1667            << (int)Record->isUnion();
1668          Invalid = true;
1669      }
1670    }
1671  }
1672
1673  if (!Record->isUnion() && !Owner->isRecord()) {
1674    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1675      << (int)getLangOptions().CPlusPlus;
1676    Invalid = true;
1677  }
1678
1679  // Mock up a declarator.
1680  Declarator Dc(DS, Declarator::TypeNameContext);
1681  DeclaratorInfo *DInfo = 0;
1682  GetTypeForDeclarator(Dc, S, &DInfo);
1683  assert(DInfo && "couldn't build declarator info for anonymous struct/union");
1684
1685  // Create a declaration for this anonymous struct/union.
1686  NamedDecl *Anon = 0;
1687  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1688    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1689                             /*IdentifierInfo=*/0,
1690                             Context.getTypeDeclType(Record),
1691                             DInfo,
1692                             /*BitWidth=*/0, /*Mutable=*/false);
1693    Anon->setAccess(AS_public);
1694    if (getLangOptions().CPlusPlus)
1695      FieldCollector->Add(cast<FieldDecl>(Anon));
1696  } else {
1697    VarDecl::StorageClass SC;
1698    switch (DS.getStorageClassSpec()) {
1699    default: assert(0 && "Unknown storage class!");
1700    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1701    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1702    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1703    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1704    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1705    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1706    case DeclSpec::SCS_mutable:
1707      // mutable can only appear on non-static class members, so it's always
1708      // an error here
1709      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1710      Invalid = true;
1711      SC = VarDecl::None;
1712      break;
1713    }
1714
1715    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1716                           /*IdentifierInfo=*/0,
1717                           Context.getTypeDeclType(Record),
1718                           DInfo,
1719                           SC);
1720  }
1721  Anon->setImplicit();
1722
1723  // Add the anonymous struct/union object to the current
1724  // context. We'll be referencing this object when we refer to one of
1725  // its members.
1726  Owner->addDecl(Anon);
1727
1728  // Inject the members of the anonymous struct/union into the owning
1729  // context and into the identifier resolver chain for name lookup
1730  // purposes.
1731  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1732    Invalid = true;
1733
1734  // Mark this as an anonymous struct/union type. Note that we do not
1735  // do this until after we have already checked and injected the
1736  // members of this anonymous struct/union type, because otherwise
1737  // the members could be injected twice: once by DeclContext when it
1738  // builds its lookup table, and once by
1739  // InjectAnonymousStructOrUnionMembers.
1740  Record->setAnonymousStructOrUnion(true);
1741
1742  if (Invalid)
1743    Anon->setInvalidDecl();
1744
1745  return DeclPtrTy::make(Anon);
1746}
1747
1748
1749/// GetNameForDeclarator - Determine the full declaration name for the
1750/// given Declarator.
1751DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1752  return GetNameFromUnqualifiedId(D.getName());
1753}
1754
1755/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1756DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1757  switch (Name.getKind()) {
1758    case UnqualifiedId::IK_Identifier:
1759      return DeclarationName(Name.Identifier);
1760
1761    case UnqualifiedId::IK_OperatorFunctionId:
1762      return Context.DeclarationNames.getCXXOperatorName(
1763                                              Name.OperatorFunctionId.Operator);
1764
1765    case UnqualifiedId::IK_LiteralOperatorId:
1766      return Context.DeclarationNames.getCXXLiteralOperatorName(
1767                                                               Name.Identifier);
1768
1769    case UnqualifiedId::IK_ConversionFunctionId: {
1770      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1771      if (Ty.isNull())
1772        return DeclarationName();
1773
1774      return Context.DeclarationNames.getCXXConversionFunctionName(
1775                                                  Context.getCanonicalType(Ty));
1776    }
1777
1778    case UnqualifiedId::IK_ConstructorName: {
1779      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1780      if (Ty.isNull())
1781        return DeclarationName();
1782
1783      return Context.DeclarationNames.getCXXConstructorName(
1784                                                  Context.getCanonicalType(Ty));
1785    }
1786
1787    case UnqualifiedId::IK_DestructorName: {
1788      QualType Ty = GetTypeFromParser(Name.DestructorName);
1789      if (Ty.isNull())
1790        return DeclarationName();
1791
1792      return Context.DeclarationNames.getCXXDestructorName(
1793                                                           Context.getCanonicalType(Ty));
1794    }
1795
1796    case UnqualifiedId::IK_TemplateId: {
1797      TemplateName TName
1798        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1799      return Context.getNameForTemplate(TName);
1800    }
1801  }
1802
1803  assert(false && "Unknown name kind");
1804  return DeclarationName();
1805}
1806
1807/// isNearlyMatchingFunction - Determine whether the C++ functions
1808/// Declaration and Definition are "nearly" matching. This heuristic
1809/// is used to improve diagnostics in the case where an out-of-line
1810/// function definition doesn't match any declaration within
1811/// the class or namespace.
1812static bool isNearlyMatchingFunction(ASTContext &Context,
1813                                     FunctionDecl *Declaration,
1814                                     FunctionDecl *Definition) {
1815  if (Declaration->param_size() != Definition->param_size())
1816    return false;
1817  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1818    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1819    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1820
1821    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1822                                        DefParamTy.getNonReferenceType()))
1823      return false;
1824  }
1825
1826  return true;
1827}
1828
1829Sema::DeclPtrTy
1830Sema::HandleDeclarator(Scope *S, Declarator &D,
1831                       MultiTemplateParamsArg TemplateParamLists,
1832                       bool IsFunctionDefinition) {
1833  DeclarationName Name = GetNameForDeclarator(D);
1834
1835  // All of these full declarators require an identifier.  If it doesn't have
1836  // one, the ParsedFreeStandingDeclSpec action should be used.
1837  if (!Name) {
1838    if (!D.isInvalidType())  // Reject this if we think it is valid.
1839      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1840           diag::err_declarator_need_ident)
1841        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1842    return DeclPtrTy();
1843  }
1844
1845  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1846  // we find one that is.
1847  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1848         (S->getFlags() & Scope::TemplateParamScope) != 0)
1849    S = S->getParent();
1850
1851  // If this is an out-of-line definition of a member of a class template
1852  // or class template partial specialization, we may need to rebuild the
1853  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1854  // for more information.
1855  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1856  // handle expressions properly.
1857  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1858  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1859      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1860      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1861       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1862       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1863       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1864    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1865      // FIXME: Preserve type source info.
1866      QualType T = GetTypeFromParser(DS.getTypeRep());
1867      EnterDeclaratorContext(S, DC);
1868      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1869      ExitDeclaratorContext(S);
1870      if (T.isNull())
1871        return DeclPtrTy();
1872      DS.UpdateTypeRep(T.getAsOpaquePtr());
1873    }
1874  }
1875
1876  DeclContext *DC;
1877  NamedDecl *New;
1878
1879  DeclaratorInfo *DInfo = 0;
1880  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1881
1882  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1883                        ForRedeclaration);
1884
1885  // See if this is a redefinition of a variable in the same scope.
1886  if (D.getCXXScopeSpec().isInvalid()) {
1887    DC = CurContext;
1888    D.setInvalidType();
1889  } else if (!D.getCXXScopeSpec().isSet()) {
1890    bool IsLinkageLookup = false;
1891
1892    // If the declaration we're planning to build will be a function
1893    // or object with linkage, then look for another declaration with
1894    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1895    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1896      /* Do nothing*/;
1897    else if (R->isFunctionType()) {
1898      if (CurContext->isFunctionOrMethod() ||
1899          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1900        IsLinkageLookup = true;
1901    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1902      IsLinkageLookup = true;
1903    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1904             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1905      IsLinkageLookup = true;
1906
1907    if (IsLinkageLookup)
1908      Previous.clear(LookupRedeclarationWithLinkage);
1909
1910    DC = CurContext;
1911    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1912  } else { // Something like "int foo::x;"
1913    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1914
1915    if (!DC) {
1916      // If we could not compute the declaration context, it's because the
1917      // declaration context is dependent but does not refer to a class,
1918      // class template, or class template partial specialization. Complain
1919      // and return early, to avoid the coming semantic disaster.
1920      Diag(D.getIdentifierLoc(),
1921           diag::err_template_qualified_declarator_no_match)
1922        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1923        << D.getCXXScopeSpec().getRange();
1924      return DeclPtrTy();
1925    }
1926
1927    if (!DC->isDependentContext() &&
1928        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1929      return DeclPtrTy();
1930
1931    LookupQualifiedName(Previous, DC);
1932
1933    // Don't consider using declarations as previous declarations for
1934    // out-of-line members.
1935    RemoveUsingDecls(Previous);
1936
1937    // C++ 7.3.1.2p2:
1938    // Members (including explicit specializations of templates) of a named
1939    // namespace can also be defined outside that namespace by explicit
1940    // qualification of the name being defined, provided that the entity being
1941    // defined was already declared in the namespace and the definition appears
1942    // after the point of declaration in a namespace that encloses the
1943    // declarations namespace.
1944    //
1945    // Note that we only check the context at this point. We don't yet
1946    // have enough information to make sure that PrevDecl is actually
1947    // the declaration we want to match. For example, given:
1948    //
1949    //   class X {
1950    //     void f();
1951    //     void f(float);
1952    //   };
1953    //
1954    //   void X::f(int) { } // ill-formed
1955    //
1956    // In this case, PrevDecl will point to the overload set
1957    // containing the two f's declared in X, but neither of them
1958    // matches.
1959
1960    // First check whether we named the global scope.
1961    if (isa<TranslationUnitDecl>(DC)) {
1962      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1963        << Name << D.getCXXScopeSpec().getRange();
1964    } else {
1965      DeclContext *Cur = CurContext;
1966      while (isa<LinkageSpecDecl>(Cur))
1967        Cur = Cur->getParent();
1968      if (!Cur->Encloses(DC)) {
1969        // The qualifying scope doesn't enclose the original declaration.
1970        // Emit diagnostic based on current scope.
1971        SourceLocation L = D.getIdentifierLoc();
1972        SourceRange R = D.getCXXScopeSpec().getRange();
1973        if (isa<FunctionDecl>(Cur))
1974          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1975        else
1976          Diag(L, diag::err_invalid_declarator_scope)
1977            << Name << cast<NamedDecl>(DC) << R;
1978        D.setInvalidType();
1979      }
1980    }
1981  }
1982
1983  if (Previous.isSingleResult() &&
1984      Previous.getFoundDecl()->isTemplateParameter()) {
1985    // Maybe we will complain about the shadowed template parameter.
1986    if (!D.isInvalidType())
1987      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1988                                          Previous.getFoundDecl()))
1989        D.setInvalidType();
1990
1991    // Just pretend that we didn't see the previous declaration.
1992    Previous.clear();
1993  }
1994
1995  // In C++, the previous declaration we find might be a tag type
1996  // (class or enum). In this case, the new declaration will hide the
1997  // tag type. Note that this does does not apply if we're declaring a
1998  // typedef (C++ [dcl.typedef]p4).
1999  if (Previous.isSingleTagDecl() &&
2000      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2001    Previous.clear();
2002
2003  bool Redeclaration = false;
2004  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2005    if (TemplateParamLists.size()) {
2006      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2007      return DeclPtrTy();
2008    }
2009
2010    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, Previous, Redeclaration);
2011  } else if (R->isFunctionType()) {
2012    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, Previous,
2013                                  move(TemplateParamLists),
2014                                  IsFunctionDefinition, Redeclaration);
2015  } else {
2016    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, Previous,
2017                                  move(TemplateParamLists),
2018                                  Redeclaration);
2019  }
2020
2021  if (New == 0)
2022    return DeclPtrTy();
2023
2024  // If this has an identifier and is not an invalid redeclaration or
2025  // function template specialization, add it to the scope stack.
2026  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
2027      !(isa<FunctionDecl>(New) &&
2028        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
2029    PushOnScopeChains(New, S);
2030
2031  return DeclPtrTy::make(New);
2032}
2033
2034/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2035/// types into constant array types in certain situations which would otherwise
2036/// be errors (for GCC compatibility).
2037static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2038                                                    ASTContext &Context,
2039                                                    bool &SizeIsNegative) {
2040  // This method tries to turn a variable array into a constant
2041  // array even when the size isn't an ICE.  This is necessary
2042  // for compatibility with code that depends on gcc's buggy
2043  // constant expression folding, like struct {char x[(int)(char*)2];}
2044  SizeIsNegative = false;
2045
2046  QualifierCollector Qs;
2047  const Type *Ty = Qs.strip(T);
2048
2049  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2050    QualType Pointee = PTy->getPointeeType();
2051    QualType FixedType =
2052        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2053    if (FixedType.isNull()) return FixedType;
2054    FixedType = Context.getPointerType(FixedType);
2055    return Qs.apply(FixedType);
2056  }
2057
2058  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2059  if (!VLATy)
2060    return QualType();
2061  // FIXME: We should probably handle this case
2062  if (VLATy->getElementType()->isVariablyModifiedType())
2063    return QualType();
2064
2065  Expr::EvalResult EvalResult;
2066  if (!VLATy->getSizeExpr() ||
2067      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2068      !EvalResult.Val.isInt())
2069    return QualType();
2070
2071  llvm::APSInt &Res = EvalResult.Val.getInt();
2072  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2073    // TODO: preserve the size expression in declarator info
2074    return Context.getConstantArrayType(VLATy->getElementType(),
2075                                        Res, ArrayType::Normal, 0);
2076  }
2077
2078  SizeIsNegative = true;
2079  return QualType();
2080}
2081
2082/// \brief Register the given locally-scoped external C declaration so
2083/// that it can be found later for redeclarations
2084void
2085Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2086                                       const LookupResult &Previous,
2087                                       Scope *S) {
2088  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2089         "Decl is not a locally-scoped decl!");
2090  // Note that we have a locally-scoped external with this name.
2091  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2092
2093  if (!Previous.isSingleResult())
2094    return;
2095
2096  NamedDecl *PrevDecl = Previous.getFoundDecl();
2097
2098  // If there was a previous declaration of this variable, it may be
2099  // in our identifier chain. Update the identifier chain with the new
2100  // declaration.
2101  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2102    // The previous declaration was found on the identifer resolver
2103    // chain, so remove it from its scope.
2104    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2105      S = S->getParent();
2106
2107    if (S)
2108      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2109  }
2110}
2111
2112/// \brief Diagnose function specifiers on a declaration of an identifier that
2113/// does not identify a function.
2114void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2115  // FIXME: We should probably indicate the identifier in question to avoid
2116  // confusion for constructs like "inline int a(), b;"
2117  if (D.getDeclSpec().isInlineSpecified())
2118    Diag(D.getDeclSpec().getInlineSpecLoc(),
2119         diag::err_inline_non_function);
2120
2121  if (D.getDeclSpec().isVirtualSpecified())
2122    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2123         diag::err_virtual_non_function);
2124
2125  if (D.getDeclSpec().isExplicitSpecified())
2126    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2127         diag::err_explicit_non_function);
2128}
2129
2130NamedDecl*
2131Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2132                             QualType R,  DeclaratorInfo *DInfo,
2133                             LookupResult &Previous, bool &Redeclaration) {
2134  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2135  if (D.getCXXScopeSpec().isSet()) {
2136    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2137      << D.getCXXScopeSpec().getRange();
2138    D.setInvalidType();
2139    // Pretend we didn't see the scope specifier.
2140    DC = 0;
2141  }
2142
2143  if (getLangOptions().CPlusPlus) {
2144    // Check that there are no default arguments (C++ only).
2145    CheckExtraCXXDefaultArguments(D);
2146  }
2147
2148  DiagnoseFunctionSpecifiers(D);
2149
2150  if (D.getDeclSpec().isThreadSpecified())
2151    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2152
2153  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, DInfo);
2154  if (!NewTD) return 0;
2155
2156  // Handle attributes prior to checking for duplicates in MergeVarDecl
2157  ProcessDeclAttributes(S, NewTD, D);
2158
2159  // Merge the decl with the existing one if appropriate. If the decl is
2160  // in an outer scope, it isn't the same thing.
2161  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2162  if (!Previous.empty()) {
2163    Redeclaration = true;
2164    MergeTypeDefDecl(NewTD, Previous);
2165  }
2166
2167  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2168  // then it shall have block scope.
2169  QualType T = NewTD->getUnderlyingType();
2170  if (T->isVariablyModifiedType()) {
2171    CurFunctionNeedsScopeChecking = true;
2172
2173    if (S->getFnParent() == 0) {
2174      bool SizeIsNegative;
2175      QualType FixedTy =
2176          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2177      if (!FixedTy.isNull()) {
2178        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2179        NewTD->setTypeDeclaratorInfo(Context.getTrivialDeclaratorInfo(FixedTy));
2180      } else {
2181        if (SizeIsNegative)
2182          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2183        else if (T->isVariableArrayType())
2184          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2185        else
2186          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2187        NewTD->setInvalidDecl();
2188      }
2189    }
2190  }
2191
2192  // If this is the C FILE type, notify the AST context.
2193  if (IdentifierInfo *II = NewTD->getIdentifier())
2194    if (!NewTD->isInvalidDecl() &&
2195        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2196      if (II->isStr("FILE"))
2197        Context.setFILEDecl(NewTD);
2198      else if (II->isStr("jmp_buf"))
2199        Context.setjmp_bufDecl(NewTD);
2200      else if (II->isStr("sigjmp_buf"))
2201        Context.setsigjmp_bufDecl(NewTD);
2202    }
2203
2204  return NewTD;
2205}
2206
2207/// \brief Determines whether the given declaration is an out-of-scope
2208/// previous declaration.
2209///
2210/// This routine should be invoked when name lookup has found a
2211/// previous declaration (PrevDecl) that is not in the scope where a
2212/// new declaration by the same name is being introduced. If the new
2213/// declaration occurs in a local scope, previous declarations with
2214/// linkage may still be considered previous declarations (C99
2215/// 6.2.2p4-5, C++ [basic.link]p6).
2216///
2217/// \param PrevDecl the previous declaration found by name
2218/// lookup
2219///
2220/// \param DC the context in which the new declaration is being
2221/// declared.
2222///
2223/// \returns true if PrevDecl is an out-of-scope previous declaration
2224/// for a new delcaration with the same name.
2225static bool
2226isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2227                                ASTContext &Context) {
2228  if (!PrevDecl)
2229    return 0;
2230
2231  if (!PrevDecl->hasLinkage())
2232    return false;
2233
2234  if (Context.getLangOptions().CPlusPlus) {
2235    // C++ [basic.link]p6:
2236    //   If there is a visible declaration of an entity with linkage
2237    //   having the same name and type, ignoring entities declared
2238    //   outside the innermost enclosing namespace scope, the block
2239    //   scope declaration declares that same entity and receives the
2240    //   linkage of the previous declaration.
2241    DeclContext *OuterContext = DC->getLookupContext();
2242    if (!OuterContext->isFunctionOrMethod())
2243      // This rule only applies to block-scope declarations.
2244      return false;
2245    else {
2246      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2247      if (PrevOuterContext->isRecord())
2248        // We found a member function: ignore it.
2249        return false;
2250      else {
2251        // Find the innermost enclosing namespace for the new and
2252        // previous declarations.
2253        while (!OuterContext->isFileContext())
2254          OuterContext = OuterContext->getParent();
2255        while (!PrevOuterContext->isFileContext())
2256          PrevOuterContext = PrevOuterContext->getParent();
2257
2258        // The previous declaration is in a different namespace, so it
2259        // isn't the same function.
2260        if (OuterContext->getPrimaryContext() !=
2261            PrevOuterContext->getPrimaryContext())
2262          return false;
2263      }
2264    }
2265  }
2266
2267  return true;
2268}
2269
2270NamedDecl*
2271Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2272                              QualType R, DeclaratorInfo *DInfo,
2273                              LookupResult &Previous,
2274                              MultiTemplateParamsArg TemplateParamLists,
2275                              bool &Redeclaration) {
2276  DeclarationName Name = GetNameForDeclarator(D);
2277
2278  // Check that there are no default arguments (C++ only).
2279  if (getLangOptions().CPlusPlus)
2280    CheckExtraCXXDefaultArguments(D);
2281
2282  VarDecl *NewVD;
2283  VarDecl::StorageClass SC;
2284  switch (D.getDeclSpec().getStorageClassSpec()) {
2285  default: assert(0 && "Unknown storage class!");
2286  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2287  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2288  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2289  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2290  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2291  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2292  case DeclSpec::SCS_mutable:
2293    // mutable can only appear on non-static class members, so it's always
2294    // an error here
2295    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2296    D.setInvalidType();
2297    SC = VarDecl::None;
2298    break;
2299  }
2300
2301  IdentifierInfo *II = Name.getAsIdentifierInfo();
2302  if (!II) {
2303    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2304      << Name.getAsString();
2305    return 0;
2306  }
2307
2308  DiagnoseFunctionSpecifiers(D);
2309
2310  if (!DC->isRecord() && S->getFnParent() == 0) {
2311    // C99 6.9p2: The storage-class specifiers auto and register shall not
2312    // appear in the declaration specifiers in an external declaration.
2313    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2314
2315      // If this is a register variable with an asm label specified, then this
2316      // is a GNU extension.
2317      if (SC == VarDecl::Register && D.getAsmLabel())
2318        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2319      else
2320        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2321      D.setInvalidType();
2322    }
2323  }
2324  if (DC->isRecord() && !CurContext->isRecord()) {
2325    // This is an out-of-line definition of a static data member.
2326    if (SC == VarDecl::Static) {
2327      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2328           diag::err_static_out_of_line)
2329        << CodeModificationHint::CreateRemoval(
2330                                      D.getDeclSpec().getStorageClassSpecLoc());
2331    } else if (SC == VarDecl::None)
2332      SC = VarDecl::Static;
2333  }
2334  if (SC == VarDecl::Static) {
2335    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2336      if (RD->isLocalClass())
2337        Diag(D.getIdentifierLoc(),
2338             diag::err_static_data_member_not_allowed_in_local_class)
2339          << Name << RD->getDeclName();
2340    }
2341  }
2342
2343  // Match up the template parameter lists with the scope specifier, then
2344  // determine whether we have a template or a template specialization.
2345  bool isExplicitSpecialization = false;
2346  if (TemplateParameterList *TemplateParams
2347        = MatchTemplateParametersToScopeSpecifier(
2348                                  D.getDeclSpec().getSourceRange().getBegin(),
2349                                                  D.getCXXScopeSpec(),
2350                        (TemplateParameterList**)TemplateParamLists.get(),
2351                                                   TemplateParamLists.size(),
2352                                                  isExplicitSpecialization)) {
2353    if (TemplateParams->size() > 0) {
2354      // There is no such thing as a variable template.
2355      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2356        << II
2357        << SourceRange(TemplateParams->getTemplateLoc(),
2358                       TemplateParams->getRAngleLoc());
2359      return 0;
2360    } else {
2361      // There is an extraneous 'template<>' for this variable. Complain
2362      // about it, but allow the declaration of the variable.
2363      Diag(TemplateParams->getTemplateLoc(),
2364           diag::err_template_variable_noparams)
2365        << II
2366        << SourceRange(TemplateParams->getTemplateLoc(),
2367                       TemplateParams->getRAngleLoc());
2368
2369      isExplicitSpecialization = true;
2370    }
2371  }
2372
2373  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2374                          II, R, DInfo, SC);
2375
2376  if (D.isInvalidType())
2377    NewVD->setInvalidDecl();
2378
2379  if (D.getDeclSpec().isThreadSpecified()) {
2380    if (NewVD->hasLocalStorage())
2381      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2382    else if (!Context.Target.isTLSSupported())
2383      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2384    else
2385      NewVD->setThreadSpecified(true);
2386  }
2387
2388  // Set the lexical context. If the declarator has a C++ scope specifier, the
2389  // lexical context will be different from the semantic context.
2390  NewVD->setLexicalDeclContext(CurContext);
2391
2392  // Handle attributes prior to checking for duplicates in MergeVarDecl
2393  ProcessDeclAttributes(S, NewVD, D);
2394
2395  // Handle GNU asm-label extension (encoded as an attribute).
2396  if (Expr *E = (Expr*) D.getAsmLabel()) {
2397    // The parser guarantees this is a string.
2398    StringLiteral *SE = cast<StringLiteral>(E);
2399    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2400  }
2401
2402  // Don't consider existing declarations that are in a different
2403  // scope and are out-of-semantic-context declarations (if the new
2404  // declaration has linkage).
2405  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2406
2407  // Merge the decl with the existing one if appropriate.
2408  if (!Previous.empty()) {
2409    if (Previous.isSingleResult() &&
2410        isa<FieldDecl>(Previous.getFoundDecl()) &&
2411        D.getCXXScopeSpec().isSet()) {
2412      // The user tried to define a non-static data member
2413      // out-of-line (C++ [dcl.meaning]p1).
2414      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2415        << D.getCXXScopeSpec().getRange();
2416      Previous.clear();
2417      NewVD->setInvalidDecl();
2418    }
2419  } else if (D.getCXXScopeSpec().isSet()) {
2420    // No previous declaration in the qualifying scope.
2421    Diag(D.getIdentifierLoc(), diag::err_no_member)
2422      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2423      << D.getCXXScopeSpec().getRange();
2424    NewVD->setInvalidDecl();
2425  }
2426
2427  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2428
2429  // This is an explicit specialization of a static data member. Check it.
2430  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2431      CheckMemberSpecialization(NewVD, Previous))
2432    NewVD->setInvalidDecl();
2433
2434  // attributes declared post-definition are currently ignored
2435  if (Previous.isSingleResult()) {
2436    const VarDecl *Def = 0;
2437    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2438    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2439      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2440      Diag(Def->getLocation(), diag::note_previous_definition);
2441    }
2442  }
2443
2444  // If this is a locally-scoped extern C variable, update the map of
2445  // such variables.
2446  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2447      !NewVD->isInvalidDecl())
2448    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2449
2450  return NewVD;
2451}
2452
2453/// \brief Perform semantic checking on a newly-created variable
2454/// declaration.
2455///
2456/// This routine performs all of the type-checking required for a
2457/// variable declaration once it has been built. It is used both to
2458/// check variables after they have been parsed and their declarators
2459/// have been translated into a declaration, and to check variables
2460/// that have been instantiated from a template.
2461///
2462/// Sets NewVD->isInvalidDecl() if an error was encountered.
2463void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2464                                    LookupResult &Previous,
2465                                    bool &Redeclaration) {
2466  // If the decl is already known invalid, don't check it.
2467  if (NewVD->isInvalidDecl())
2468    return;
2469
2470  QualType T = NewVD->getType();
2471
2472  if (T->isObjCInterfaceType()) {
2473    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2474    return NewVD->setInvalidDecl();
2475  }
2476
2477  // Emit an error if an address space was applied to decl with local storage.
2478  // This includes arrays of objects with address space qualifiers, but not
2479  // automatic variables that point to other address spaces.
2480  // ISO/IEC TR 18037 S5.1.2
2481  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2482    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2483    return NewVD->setInvalidDecl();
2484  }
2485
2486  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2487      && !NewVD->hasAttr<BlocksAttr>())
2488    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2489
2490  bool isVM = T->isVariablyModifiedType();
2491  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2492      NewVD->hasAttr<BlocksAttr>())
2493    CurFunctionNeedsScopeChecking = true;
2494
2495  if ((isVM && NewVD->hasLinkage()) ||
2496      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2497    bool SizeIsNegative;
2498    QualType FixedTy =
2499        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2500
2501    if (FixedTy.isNull() && T->isVariableArrayType()) {
2502      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2503      // FIXME: This won't give the correct result for
2504      // int a[10][n];
2505      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2506
2507      if (NewVD->isFileVarDecl())
2508        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2509        << SizeRange;
2510      else if (NewVD->getStorageClass() == VarDecl::Static)
2511        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2512        << SizeRange;
2513      else
2514        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2515        << SizeRange;
2516      return NewVD->setInvalidDecl();
2517    }
2518
2519    if (FixedTy.isNull()) {
2520      if (NewVD->isFileVarDecl())
2521        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2522      else
2523        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2524      return NewVD->setInvalidDecl();
2525    }
2526
2527    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2528    NewVD->setType(FixedTy);
2529  }
2530
2531  if (Previous.empty() && NewVD->isExternC()) {
2532    // Since we did not find anything by this name and we're declaring
2533    // an extern "C" variable, look for a non-visible extern "C"
2534    // declaration with the same name.
2535    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2536      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2537    if (Pos != LocallyScopedExternalDecls.end())
2538      Previous.addDecl(Pos->second);
2539  }
2540
2541  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2542    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2543      << T;
2544    return NewVD->setInvalidDecl();
2545  }
2546
2547  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2548    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2549    return NewVD->setInvalidDecl();
2550  }
2551
2552  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2553    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2554    return NewVD->setInvalidDecl();
2555  }
2556
2557  if (!Previous.empty()) {
2558    Redeclaration = true;
2559    MergeVarDecl(NewVD, Previous);
2560  }
2561}
2562
2563/// \brief Data used with FindOverriddenMethod
2564struct FindOverriddenMethodData {
2565  Sema *S;
2566  CXXMethodDecl *Method;
2567};
2568
2569/// \brief Member lookup function that determines whether a given C++
2570/// method overrides a method in a base class, to be used with
2571/// CXXRecordDecl::lookupInBases().
2572static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2573                                 CXXBasePath &Path,
2574                                 void *UserData) {
2575  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2576
2577  FindOverriddenMethodData *Data
2578    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2579
2580  DeclarationName Name = Data->Method->getDeclName();
2581
2582  // FIXME: Do we care about other names here too?
2583  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2584    // We really want to find the base class constructor here.
2585    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2586    CanQualType CT = Data->S->Context.getCanonicalType(T);
2587
2588    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2589  }
2590
2591  for (Path.Decls = BaseRecord->lookup(Name);
2592       Path.Decls.first != Path.Decls.second;
2593       ++Path.Decls.first) {
2594    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2595      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2596        return true;
2597    }
2598  }
2599
2600  return false;
2601}
2602
2603/// AddOverriddenMethods - See if a method overrides any in the base classes,
2604/// and if so, check that it's a valid override and remember it.
2605void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2606  // Look for virtual methods in base classes that this method might override.
2607  CXXBasePaths Paths;
2608  FindOverriddenMethodData Data;
2609  Data.Method = MD;
2610  Data.S = this;
2611  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2612    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2613         E = Paths.found_decls_end(); I != E; ++I) {
2614      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2615        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2616            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2617            !CheckOverridingFunctionAttributes(MD, OldMD))
2618          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2619      }
2620    }
2621  }
2622}
2623
2624NamedDecl*
2625Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2626                              QualType R, DeclaratorInfo *DInfo,
2627                              LookupResult &Previous,
2628                              MultiTemplateParamsArg TemplateParamLists,
2629                              bool IsFunctionDefinition, bool &Redeclaration) {
2630  assert(R.getTypePtr()->isFunctionType());
2631
2632  DeclarationName Name = GetNameForDeclarator(D);
2633  FunctionDecl::StorageClass SC = FunctionDecl::None;
2634  switch (D.getDeclSpec().getStorageClassSpec()) {
2635  default: assert(0 && "Unknown storage class!");
2636  case DeclSpec::SCS_auto:
2637  case DeclSpec::SCS_register:
2638  case DeclSpec::SCS_mutable:
2639    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2640         diag::err_typecheck_sclass_func);
2641    D.setInvalidType();
2642    break;
2643  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2644  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2645  case DeclSpec::SCS_static: {
2646    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2647      // C99 6.7.1p5:
2648      //   The declaration of an identifier for a function that has
2649      //   block scope shall have no explicit storage-class specifier
2650      //   other than extern
2651      // See also (C++ [dcl.stc]p4).
2652      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2653           diag::err_static_block_func);
2654      SC = FunctionDecl::None;
2655    } else
2656      SC = FunctionDecl::Static;
2657    break;
2658  }
2659  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2660  }
2661
2662  if (D.getDeclSpec().isThreadSpecified())
2663    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2664
2665  bool isFriend = D.getDeclSpec().isFriendSpecified();
2666  bool isInline = D.getDeclSpec().isInlineSpecified();
2667  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2668  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2669
2670  // Check that the return type is not an abstract class type.
2671  // For record types, this is done by the AbstractClassUsageDiagnoser once
2672  // the class has been completely parsed.
2673  if (!DC->isRecord() &&
2674      RequireNonAbstractType(D.getIdentifierLoc(),
2675                             R->getAs<FunctionType>()->getResultType(),
2676                             diag::err_abstract_type_in_decl,
2677                             AbstractReturnType))
2678    D.setInvalidType();
2679
2680  // Do not allow returning a objc interface by-value.
2681  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2682    Diag(D.getIdentifierLoc(),
2683         diag::err_object_cannot_be_passed_returned_by_value) << 0
2684      << R->getAs<FunctionType>()->getResultType();
2685    D.setInvalidType();
2686  }
2687
2688  bool isVirtualOkay = false;
2689  FunctionDecl *NewFD;
2690
2691  if (isFriend) {
2692    // C++ [class.friend]p5
2693    //   A function can be defined in a friend declaration of a
2694    //   class . . . . Such a function is implicitly inline.
2695    isInline |= IsFunctionDefinition;
2696  }
2697
2698  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2699    // This is a C++ constructor declaration.
2700    assert(DC->isRecord() &&
2701           "Constructors can only be declared in a member context");
2702
2703    R = CheckConstructorDeclarator(D, R, SC);
2704
2705    // Create the new declaration
2706    NewFD = CXXConstructorDecl::Create(Context,
2707                                       cast<CXXRecordDecl>(DC),
2708                                       D.getIdentifierLoc(), Name, R, DInfo,
2709                                       isExplicit, isInline,
2710                                       /*isImplicitlyDeclared=*/false);
2711  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2712    // This is a C++ destructor declaration.
2713    if (DC->isRecord()) {
2714      R = CheckDestructorDeclarator(D, SC);
2715
2716      NewFD = CXXDestructorDecl::Create(Context,
2717                                        cast<CXXRecordDecl>(DC),
2718                                        D.getIdentifierLoc(), Name, R,
2719                                        isInline,
2720                                        /*isImplicitlyDeclared=*/false);
2721
2722      isVirtualOkay = true;
2723    } else {
2724      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2725
2726      // Create a FunctionDecl to satisfy the function definition parsing
2727      // code path.
2728      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2729                                   Name, R, DInfo, SC, isInline,
2730                                   /*hasPrototype=*/true);
2731      D.setInvalidType();
2732    }
2733  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2734    if (!DC->isRecord()) {
2735      Diag(D.getIdentifierLoc(),
2736           diag::err_conv_function_not_member);
2737      return 0;
2738    }
2739
2740    CheckConversionDeclarator(D, R, SC);
2741    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2742                                      D.getIdentifierLoc(), Name, R, DInfo,
2743                                      isInline, isExplicit);
2744
2745    isVirtualOkay = true;
2746  } else if (DC->isRecord()) {
2747    // If the of the function is the same as the name of the record, then this
2748    // must be an invalid constructor that has a return type.
2749    // (The parser checks for a return type and makes the declarator a
2750    // constructor if it has no return type).
2751    // must have an invalid constructor that has a return type
2752    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2753      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2754        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2755        << SourceRange(D.getIdentifierLoc());
2756      return 0;
2757    }
2758
2759    bool isStatic = SC == FunctionDecl::Static;
2760
2761    // [class.free]p1:
2762    // Any allocation function for a class T is a static member
2763    // (even if not explicitly declared static).
2764    if (Name.getCXXOverloadedOperator() == OO_New ||
2765        Name.getCXXOverloadedOperator() == OO_Array_New)
2766      isStatic = true;
2767
2768    // [class.free]p6 Any deallocation function for a class X is a static member
2769    // (even if not explicitly declared static).
2770    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2771        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2772      isStatic = true;
2773
2774    // This is a C++ method declaration.
2775    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2776                                  D.getIdentifierLoc(), Name, R, DInfo,
2777                                  isStatic, isInline);
2778
2779    isVirtualOkay = !isStatic;
2780  } else {
2781    // Determine whether the function was written with a
2782    // prototype. This true when:
2783    //   - we're in C++ (where every function has a prototype),
2784    //   - there is a prototype in the declarator, or
2785    //   - the type R of the function is some kind of typedef or other reference
2786    //     to a type name (which eventually refers to a function type).
2787    bool HasPrototype =
2788       getLangOptions().CPlusPlus ||
2789       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2790       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2791
2792    NewFD = FunctionDecl::Create(Context, DC,
2793                                 D.getIdentifierLoc(),
2794                                 Name, R, DInfo, SC, isInline, HasPrototype);
2795  }
2796
2797  if (D.isInvalidType())
2798    NewFD->setInvalidDecl();
2799
2800  // Set the lexical context. If the declarator has a C++
2801  // scope specifier, or is the object of a friend declaration, the
2802  // lexical context will be different from the semantic context.
2803  NewFD->setLexicalDeclContext(CurContext);
2804
2805  // Match up the template parameter lists with the scope specifier, then
2806  // determine whether we have a template or a template specialization.
2807  FunctionTemplateDecl *FunctionTemplate = 0;
2808  bool isExplicitSpecialization = false;
2809  bool isFunctionTemplateSpecialization = false;
2810  if (TemplateParameterList *TemplateParams
2811        = MatchTemplateParametersToScopeSpecifier(
2812                                  D.getDeclSpec().getSourceRange().getBegin(),
2813                                  D.getCXXScopeSpec(),
2814                           (TemplateParameterList**)TemplateParamLists.get(),
2815                                                  TemplateParamLists.size(),
2816                                                  isExplicitSpecialization)) {
2817    if (TemplateParams->size() > 0) {
2818      // This is a function template
2819
2820      // Check that we can declare a template here.
2821      if (CheckTemplateDeclScope(S, TemplateParams))
2822        return 0;
2823
2824      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2825                                                      NewFD->getLocation(),
2826                                                      Name, TemplateParams,
2827                                                      NewFD);
2828      FunctionTemplate->setLexicalDeclContext(CurContext);
2829      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2830    } else {
2831      // This is a function template specialization.
2832      isFunctionTemplateSpecialization = true;
2833    }
2834
2835    // FIXME: Free this memory properly.
2836    TemplateParamLists.release();
2837  }
2838
2839  // C++ [dcl.fct.spec]p5:
2840  //   The virtual specifier shall only be used in declarations of
2841  //   nonstatic class member functions that appear within a
2842  //   member-specification of a class declaration; see 10.3.
2843  //
2844  if (isVirtual && !NewFD->isInvalidDecl()) {
2845    if (!isVirtualOkay) {
2846       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2847           diag::err_virtual_non_function);
2848    } else if (!CurContext->isRecord()) {
2849      // 'virtual' was specified outside of the class.
2850      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2851        << CodeModificationHint::CreateRemoval(
2852                                           D.getDeclSpec().getVirtualSpecLoc());
2853    } else {
2854      // Okay: Add virtual to the method.
2855      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2856      CurClass->setMethodAsVirtual(NewFD);
2857    }
2858  }
2859
2860  // Filter out previous declarations that don't match the scope.
2861  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2862
2863  if (isFriend) {
2864    // DC is the namespace in which the function is being declared.
2865    assert((DC->isFileContext() || !Previous.empty()) &&
2866           "previously-undeclared friend function being created "
2867           "in a non-namespace context");
2868
2869    if (FunctionTemplate) {
2870      FunctionTemplate->setObjectOfFriendDecl(
2871                                   /* PreviouslyDeclared= */ !Previous.empty());
2872      FunctionTemplate->setAccess(AS_public);
2873    }
2874    else
2875      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2876
2877    NewFD->setAccess(AS_public);
2878  }
2879
2880  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2881      !CurContext->isRecord()) {
2882    // C++ [class.static]p1:
2883    //   A data or function member of a class may be declared static
2884    //   in a class definition, in which case it is a static member of
2885    //   the class.
2886
2887    // Complain about the 'static' specifier if it's on an out-of-line
2888    // member function definition.
2889    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2890         diag::err_static_out_of_line)
2891      << CodeModificationHint::CreateRemoval(
2892                                      D.getDeclSpec().getStorageClassSpecLoc());
2893  }
2894
2895  // Handle GNU asm-label extension (encoded as an attribute).
2896  if (Expr *E = (Expr*) D.getAsmLabel()) {
2897    // The parser guarantees this is a string.
2898    StringLiteral *SE = cast<StringLiteral>(E);
2899    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2900  }
2901
2902  // Copy the parameter declarations from the declarator D to the function
2903  // declaration NewFD, if they are available.  First scavenge them into Params.
2904  llvm::SmallVector<ParmVarDecl*, 16> Params;
2905  if (D.getNumTypeObjects() > 0) {
2906    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2907
2908    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2909    // function that takes no arguments, not a function that takes a
2910    // single void argument.
2911    // We let through "const void" here because Sema::GetTypeForDeclarator
2912    // already checks for that case.
2913    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2914        FTI.ArgInfo[0].Param &&
2915        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2916      // Empty arg list, don't push any params.
2917      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2918
2919      // In C++, the empty parameter-type-list must be spelled "void"; a
2920      // typedef of void is not permitted.
2921      if (getLangOptions().CPlusPlus &&
2922          Param->getType().getUnqualifiedType() != Context.VoidTy)
2923        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2924      // FIXME: Leaks decl?
2925    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2926      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2927        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2928        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2929        Param->setDeclContext(NewFD);
2930        Params.push_back(Param);
2931      }
2932    }
2933
2934  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2935    // When we're declaring a function with a typedef, typeof, etc as in the
2936    // following example, we'll need to synthesize (unnamed)
2937    // parameters for use in the declaration.
2938    //
2939    // @code
2940    // typedef void fn(int);
2941    // fn f;
2942    // @endcode
2943
2944    // Synthesize a parameter for each argument type.
2945    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2946         AE = FT->arg_type_end(); AI != AE; ++AI) {
2947      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2948                                               SourceLocation(), 0,
2949                                               *AI, /*DInfo=*/0,
2950                                               VarDecl::None, 0);
2951      Param->setImplicit();
2952      Params.push_back(Param);
2953    }
2954  } else {
2955    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2956           "Should not need args for typedef of non-prototype fn");
2957  }
2958  // Finally, we know we have the right number of parameters, install them.
2959  NewFD->setParams(Context, Params.data(), Params.size());
2960
2961  // If the declarator is a template-id, translate the parser's template
2962  // argument list into our AST format.
2963  bool HasExplicitTemplateArgs = false;
2964  TemplateArgumentListInfo TemplateArgs;
2965  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2966    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2967    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2968    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2969    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2970                                       TemplateId->getTemplateArgs(),
2971                                       TemplateId->NumArgs);
2972    translateTemplateArguments(TemplateArgsPtr,
2973                               TemplateArgs);
2974    TemplateArgsPtr.release();
2975
2976    HasExplicitTemplateArgs = true;
2977
2978    if (FunctionTemplate) {
2979      // FIXME: Diagnose function template with explicit template
2980      // arguments.
2981      HasExplicitTemplateArgs = false;
2982    } else if (!isFunctionTemplateSpecialization &&
2983               !D.getDeclSpec().isFriendSpecified()) {
2984      // We have encountered something that the user meant to be a
2985      // specialization (because it has explicitly-specified template
2986      // arguments) but that was not introduced with a "template<>" (or had
2987      // too few of them).
2988      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2989        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2990        << CodeModificationHint::CreateInsertion(
2991                                   D.getDeclSpec().getSourceRange().getBegin(),
2992                                                 "template<> ");
2993      isFunctionTemplateSpecialization = true;
2994    }
2995  }
2996
2997  if (isFunctionTemplateSpecialization) {
2998      if (CheckFunctionTemplateSpecialization(NewFD,
2999                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3000                                              Previous))
3001        NewFD->setInvalidDecl();
3002  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3003             CheckMemberSpecialization(NewFD, Previous))
3004    NewFD->setInvalidDecl();
3005
3006  // Perform semantic checking on the function declaration.
3007  bool OverloadableAttrRequired = false; // FIXME: HACK!
3008  CheckFunctionDeclaration(NewFD, Previous, isExplicitSpecialization,
3009                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3010
3011  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3012          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3013         "previous declaration set still overloaded");
3014
3015  // If we have a function template, check the template parameter
3016  // list. This will check and merge default template arguments.
3017  if (FunctionTemplate) {
3018    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3019    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3020                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3021             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3022                                                : TPC_FunctionTemplate);
3023  }
3024
3025  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3026    // An out-of-line member function declaration must also be a
3027    // definition (C++ [dcl.meaning]p1).
3028    // Note that this is not the case for explicit specializations of
3029    // function templates or member functions of class templates, per
3030    // C++ [temp.expl.spec]p2.
3031    if (!IsFunctionDefinition && !isFriend &&
3032        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3033      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3034        << D.getCXXScopeSpec().getRange();
3035      NewFD->setInvalidDecl();
3036    } else if (!Redeclaration) {
3037      // The user tried to provide an out-of-line definition for a
3038      // function that is a member of a class or namespace, but there
3039      // was no such member function declared (C++ [class.mfct]p2,
3040      // C++ [namespace.memdef]p2). For example:
3041      //
3042      // class X {
3043      //   void f() const;
3044      // };
3045      //
3046      // void X::f() { } // ill-formed
3047      //
3048      // Complain about this problem, and attempt to suggest close
3049      // matches (e.g., those that differ only in cv-qualifiers and
3050      // whether the parameter types are references).
3051      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3052        << Name << DC << D.getCXXScopeSpec().getRange();
3053      NewFD->setInvalidDecl();
3054
3055      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3056                        ForRedeclaration);
3057      LookupQualifiedName(Prev, DC);
3058      assert(!Prev.isAmbiguous() &&
3059             "Cannot have an ambiguity in previous-declaration lookup");
3060      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3061           Func != FuncEnd; ++Func) {
3062        if (isa<FunctionDecl>(*Func) &&
3063            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3064          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3065      }
3066    }
3067  }
3068
3069  // Handle attributes. We need to have merged decls when handling attributes
3070  // (for example to check for conflicts, etc).
3071  // FIXME: This needs to happen before we merge declarations. Then,
3072  // let attribute merging cope with attribute conflicts.
3073  ProcessDeclAttributes(S, NewFD, D);
3074
3075  // attributes declared post-definition are currently ignored
3076  if (Redeclaration && Previous.isSingleResult()) {
3077    const FunctionDecl *Def;
3078    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3079    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3080      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3081      Diag(Def->getLocation(), diag::note_previous_definition);
3082    }
3083  }
3084
3085  AddKnownFunctionAttributes(NewFD);
3086
3087  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3088    // If a function name is overloadable in C, then every function
3089    // with that name must be marked "overloadable".
3090    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3091      << Redeclaration << NewFD;
3092    if (!Previous.empty())
3093      Diag(Previous.getRepresentativeDecl()->getLocation(),
3094           diag::note_attribute_overloadable_prev_overload);
3095    NewFD->addAttr(::new (Context) OverloadableAttr());
3096  }
3097
3098  // If this is a locally-scoped extern C function, update the
3099  // map of such names.
3100  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3101      && !NewFD->isInvalidDecl())
3102    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3103
3104  // Set this FunctionDecl's range up to the right paren.
3105  NewFD->setLocEnd(D.getSourceRange().getEnd());
3106
3107  if (FunctionTemplate && NewFD->isInvalidDecl())
3108    FunctionTemplate->setInvalidDecl();
3109
3110  if (FunctionTemplate)
3111    return FunctionTemplate;
3112
3113  return NewFD;
3114}
3115
3116/// \brief Perform semantic checking of a new function declaration.
3117///
3118/// Performs semantic analysis of the new function declaration
3119/// NewFD. This routine performs all semantic checking that does not
3120/// require the actual declarator involved in the declaration, and is
3121/// used both for the declaration of functions as they are parsed
3122/// (called via ActOnDeclarator) and for the declaration of functions
3123/// that have been instantiated via C++ template instantiation (called
3124/// via InstantiateDecl).
3125///
3126/// \param IsExplicitSpecialiation whether this new function declaration is
3127/// an explicit specialization of the previous declaration.
3128///
3129/// This sets NewFD->isInvalidDecl() to true if there was an error.
3130void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD,
3131                                    LookupResult &Previous,
3132                                    bool IsExplicitSpecialization,
3133                                    bool &Redeclaration,
3134                                    bool &OverloadableAttrRequired) {
3135  // If NewFD is already known erroneous, don't do any of this checking.
3136  if (NewFD->isInvalidDecl())
3137    return;
3138
3139  if (NewFD->getResultType()->isVariablyModifiedType()) {
3140    // Functions returning a variably modified type violate C99 6.7.5.2p2
3141    // because all functions have linkage.
3142    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3143    return NewFD->setInvalidDecl();
3144  }
3145
3146  if (NewFD->isMain())
3147    CheckMain(NewFD);
3148
3149  // Check for a previous declaration of this name.
3150  if (Previous.empty() && NewFD->isExternC()) {
3151    // Since we did not find anything by this name and we're declaring
3152    // an extern "C" function, look for a non-visible extern "C"
3153    // declaration with the same name.
3154    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3155      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3156    if (Pos != LocallyScopedExternalDecls.end())
3157      Previous.addDecl(Pos->second);
3158  }
3159
3160  // Merge or overload the declaration with an existing declaration of
3161  // the same name, if appropriate.
3162  if (!Previous.empty()) {
3163    // Determine whether NewFD is an overload of PrevDecl or
3164    // a declaration that requires merging. If it's an overload,
3165    // there's no more work to do here; we'll just add the new
3166    // function to the scope.
3167
3168    if (!getLangOptions().CPlusPlus &&
3169        AllowOverloadingOfFunction(Previous, Context)) {
3170      OverloadableAttrRequired = true;
3171
3172      // Functions marked "overloadable" must have a prototype (that
3173      // we can't get through declaration merging).
3174      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3175        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
3176          << NewFD;
3177        Redeclaration = true;
3178
3179        // Turn this into a variadic function with no parameters.
3180        QualType R = Context.getFunctionType(
3181                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
3182                       0, 0, true, 0);
3183        NewFD->setType(R);
3184        return NewFD->setInvalidDecl();
3185      }
3186    }
3187
3188    NamedDecl *OldDecl = 0;
3189    if (!Previous.empty()) {
3190      if (!AllowOverloadingOfFunction(Previous, Context)) {
3191        Redeclaration = true;
3192        OldDecl = Previous.getFoundDecl();
3193      } else if (!IsOverload(NewFD, Previous, OldDecl)) {
3194        if (!isUsingDecl(OldDecl))
3195          Redeclaration = true;
3196      }
3197    }
3198
3199    if (Redeclaration) {
3200      // NewFD and OldDecl represent declarations that need to be
3201      // merged.
3202      if (MergeFunctionDecl(NewFD, OldDecl))
3203        return NewFD->setInvalidDecl();
3204
3205      Previous.clear();
3206      Previous.addDecl(OldDecl);
3207
3208      if (FunctionTemplateDecl *OldTemplateDecl
3209                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3210        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3211        FunctionTemplateDecl *NewTemplateDecl
3212          = NewFD->getDescribedFunctionTemplate();
3213        assert(NewTemplateDecl && "Template/non-template mismatch");
3214        if (CXXMethodDecl *Method
3215              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3216          Method->setAccess(OldTemplateDecl->getAccess());
3217          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3218        }
3219
3220        // If this is an explicit specialization of a member that is a function
3221        // template, mark it as a member specialization.
3222        if (IsExplicitSpecialization &&
3223            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3224          NewTemplateDecl->setMemberSpecialization();
3225          assert(OldTemplateDecl->isMemberSpecialization());
3226        }
3227      } else {
3228        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3229          NewFD->setAccess(OldDecl->getAccess());
3230        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3231      }
3232    }
3233  }
3234
3235  // Semantic checking for this function declaration (in isolation).
3236  if (getLangOptions().CPlusPlus) {
3237    // C++-specific checks.
3238    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3239      CheckConstructor(Constructor);
3240    } else if (CXXDestructorDecl *Destructor =
3241                dyn_cast<CXXDestructorDecl>(NewFD)) {
3242      CXXRecordDecl *Record = Destructor->getParent();
3243      QualType ClassType = Context.getTypeDeclType(Record);
3244
3245      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3246      // type is dependent? Both gcc and edg can handle that.
3247      if (!ClassType->isDependentType()) {
3248        DeclarationName Name
3249          = Context.DeclarationNames.getCXXDestructorName(
3250                                        Context.getCanonicalType(ClassType));
3251        if (NewFD->getDeclName() != Name) {
3252          Diag(NewFD->getLocation(), diag::err_destructor_name);
3253          return NewFD->setInvalidDecl();
3254        }
3255      }
3256
3257      Record->setUserDeclaredDestructor(true);
3258      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3259      // user-defined destructor.
3260      Record->setPOD(false);
3261
3262      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3263      // declared destructor.
3264      // FIXME: C++0x: don't do this for "= default" destructors
3265      Record->setHasTrivialDestructor(false);
3266    } else if (CXXConversionDecl *Conversion
3267               = dyn_cast<CXXConversionDecl>(NewFD)) {
3268      ActOnConversionDeclarator(Conversion);
3269    }
3270
3271    // Find any virtual functions that this function overrides.
3272    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3273      if (!Method->isFunctionTemplateSpecialization() &&
3274          !Method->getDescribedFunctionTemplate())
3275        AddOverriddenMethods(Method->getParent(), Method);
3276    }
3277
3278    // Additional checks for the destructor; make sure we do this after we
3279    // figure out whether the destructor is virtual.
3280    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3281      if (!Destructor->getParent()->isDependentType())
3282        CheckDestructor(Destructor);
3283
3284    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3285    if (NewFD->isOverloadedOperator() &&
3286        CheckOverloadedOperatorDeclaration(NewFD))
3287      return NewFD->setInvalidDecl();
3288
3289    // In C++, check default arguments now that we have merged decls. Unless
3290    // the lexical context is the class, because in this case this is done
3291    // during delayed parsing anyway.
3292    if (!CurContext->isRecord())
3293      CheckCXXDefaultArguments(NewFD);
3294  }
3295}
3296
3297void Sema::CheckMain(FunctionDecl* FD) {
3298  // C++ [basic.start.main]p3:  A program that declares main to be inline
3299  //   or static is ill-formed.
3300  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3301  //   shall not appear in a declaration of main.
3302  // static main is not an error under C99, but we should warn about it.
3303  bool isInline = FD->isInlineSpecified();
3304  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3305  if (isInline || isStatic) {
3306    unsigned diagID = diag::warn_unusual_main_decl;
3307    if (isInline || getLangOptions().CPlusPlus)
3308      diagID = diag::err_unusual_main_decl;
3309
3310    int which = isStatic + (isInline << 1) - 1;
3311    Diag(FD->getLocation(), diagID) << which;
3312  }
3313
3314  QualType T = FD->getType();
3315  assert(T->isFunctionType() && "function decl is not of function type");
3316  const FunctionType* FT = T->getAs<FunctionType>();
3317
3318  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3319    // TODO: add a replacement fixit to turn the return type into 'int'.
3320    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3321    FD->setInvalidDecl(true);
3322  }
3323
3324  // Treat protoless main() as nullary.
3325  if (isa<FunctionNoProtoType>(FT)) return;
3326
3327  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3328  unsigned nparams = FTP->getNumArgs();
3329  assert(FD->getNumParams() == nparams);
3330
3331  if (nparams > 3) {
3332    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3333    FD->setInvalidDecl(true);
3334    nparams = 3;
3335  }
3336
3337  // FIXME: a lot of the following diagnostics would be improved
3338  // if we had some location information about types.
3339
3340  QualType CharPP =
3341    Context.getPointerType(Context.getPointerType(Context.CharTy));
3342  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3343
3344  for (unsigned i = 0; i < nparams; ++i) {
3345    QualType AT = FTP->getArgType(i);
3346
3347    bool mismatch = true;
3348
3349    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3350      mismatch = false;
3351    else if (Expected[i] == CharPP) {
3352      // As an extension, the following forms are okay:
3353      //   char const **
3354      //   char const * const *
3355      //   char * const *
3356
3357      QualifierCollector qs;
3358      const PointerType* PT;
3359      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3360          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3361          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3362        qs.removeConst();
3363        mismatch = !qs.empty();
3364      }
3365    }
3366
3367    if (mismatch) {
3368      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3369      // TODO: suggest replacing given type with expected type
3370      FD->setInvalidDecl(true);
3371    }
3372  }
3373
3374  if (nparams == 1 && !FD->isInvalidDecl()) {
3375    Diag(FD->getLocation(), diag::warn_main_one_arg);
3376  }
3377}
3378
3379bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3380  // FIXME: Need strict checking.  In C89, we need to check for
3381  // any assignment, increment, decrement, function-calls, or
3382  // commas outside of a sizeof.  In C99, it's the same list,
3383  // except that the aforementioned are allowed in unevaluated
3384  // expressions.  Everything else falls under the
3385  // "may accept other forms of constant expressions" exception.
3386  // (We never end up here for C++, so the constant expression
3387  // rules there don't matter.)
3388  if (Init->isConstantInitializer(Context))
3389    return false;
3390  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3391    << Init->getSourceRange();
3392  return true;
3393}
3394
3395void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3396  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3397}
3398
3399/// AddInitializerToDecl - Adds the initializer Init to the
3400/// declaration dcl. If DirectInit is true, this is C++ direct
3401/// initialization rather than copy initialization.
3402void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3403  Decl *RealDecl = dcl.getAs<Decl>();
3404  // If there is no declaration, there was an error parsing it.  Just ignore
3405  // the initializer.
3406  if (RealDecl == 0)
3407    return;
3408
3409  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3410    // With declarators parsed the way they are, the parser cannot
3411    // distinguish between a normal initializer and a pure-specifier.
3412    // Thus this grotesque test.
3413    IntegerLiteral *IL;
3414    Expr *Init = static_cast<Expr *>(init.get());
3415    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3416        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3417      CheckPureMethod(Method, Init->getSourceRange());
3418    else {
3419      Diag(Method->getLocation(), diag::err_member_function_initialization)
3420        << Method->getDeclName() << Init->getSourceRange();
3421      Method->setInvalidDecl();
3422    }
3423    return;
3424  }
3425
3426  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3427  if (!VDecl) {
3428    if (getLangOptions().CPlusPlus &&
3429        RealDecl->getLexicalDeclContext()->isRecord() &&
3430        isa<NamedDecl>(RealDecl))
3431      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3432        << cast<NamedDecl>(RealDecl)->getDeclName();
3433    else
3434      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3435    RealDecl->setInvalidDecl();
3436    return;
3437  }
3438
3439  // A definition must end up with a complete type, which means it must be
3440  // complete with the restriction that an array type might be completed by the
3441  // initializer; note that later code assumes this restriction.
3442  QualType BaseDeclType = VDecl->getType();
3443  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3444    BaseDeclType = Array->getElementType();
3445  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3446                          diag::err_typecheck_decl_incomplete_type)) {
3447    RealDecl->setInvalidDecl();
3448    return;
3449  }
3450
3451  // The variable can not have an abstract class type.
3452  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3453                             diag::err_abstract_type_in_decl,
3454                             AbstractVariableType))
3455    VDecl->setInvalidDecl();
3456
3457  const VarDecl *Def = 0;
3458  if (VDecl->getDefinition(Def)) {
3459    Diag(VDecl->getLocation(), diag::err_redefinition)
3460      << VDecl->getDeclName();
3461    Diag(Def->getLocation(), diag::note_previous_definition);
3462    VDecl->setInvalidDecl();
3463    return;
3464  }
3465
3466  // Take ownership of the expression, now that we're sure we have somewhere
3467  // to put it.
3468  Expr *Init = init.takeAs<Expr>();
3469  assert(Init && "missing initializer");
3470
3471  // Get the decls type and save a reference for later, since
3472  // CheckInitializerTypes may change it.
3473  QualType DclT = VDecl->getType(), SavT = DclT;
3474  if (VDecl->isBlockVarDecl()) {
3475    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3476      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3477      VDecl->setInvalidDecl();
3478    } else if (!VDecl->isInvalidDecl()) {
3479      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3480                                VDecl->getDeclName(), DirectInit))
3481        VDecl->setInvalidDecl();
3482
3483      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3484      // Don't check invalid declarations to avoid emitting useless diagnostics.
3485      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3486        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3487          CheckForConstantInitializer(Init, DclT);
3488      }
3489    }
3490  } else if (VDecl->isStaticDataMember() &&
3491             VDecl->getLexicalDeclContext()->isRecord()) {
3492    // This is an in-class initialization for a static data member, e.g.,
3493    //
3494    // struct S {
3495    //   static const int value = 17;
3496    // };
3497
3498    // Attach the initializer
3499    VDecl->setInit(Context, Init);
3500
3501    // C++ [class.mem]p4:
3502    //   A member-declarator can contain a constant-initializer only
3503    //   if it declares a static member (9.4) of const integral or
3504    //   const enumeration type, see 9.4.2.
3505    QualType T = VDecl->getType();
3506    if (!T->isDependentType() &&
3507        (!Context.getCanonicalType(T).isConstQualified() ||
3508         !T->isIntegralType())) {
3509      Diag(VDecl->getLocation(), diag::err_member_initialization)
3510        << VDecl->getDeclName() << Init->getSourceRange();
3511      VDecl->setInvalidDecl();
3512    } else {
3513      // C++ [class.static.data]p4:
3514      //   If a static data member is of const integral or const
3515      //   enumeration type, its declaration in the class definition
3516      //   can specify a constant-initializer which shall be an
3517      //   integral constant expression (5.19).
3518      if (!Init->isTypeDependent() &&
3519          !Init->getType()->isIntegralType()) {
3520        // We have a non-dependent, non-integral or enumeration type.
3521        Diag(Init->getSourceRange().getBegin(),
3522             diag::err_in_class_initializer_non_integral_type)
3523          << Init->getType() << Init->getSourceRange();
3524        VDecl->setInvalidDecl();
3525      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3526        // Check whether the expression is a constant expression.
3527        llvm::APSInt Value;
3528        SourceLocation Loc;
3529        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3530          Diag(Loc, diag::err_in_class_initializer_non_constant)
3531            << Init->getSourceRange();
3532          VDecl->setInvalidDecl();
3533        } else if (!VDecl->getType()->isDependentType())
3534          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3535      }
3536    }
3537  } else if (VDecl->isFileVarDecl()) {
3538    if (VDecl->getStorageClass() == VarDecl::Extern)
3539      Diag(VDecl->getLocation(), diag::warn_extern_init);
3540    if (!VDecl->isInvalidDecl())
3541      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3542                                VDecl->getDeclName(), DirectInit))
3543        VDecl->setInvalidDecl();
3544
3545    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3546    // Don't check invalid declarations to avoid emitting useless diagnostics.
3547    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3548      // C99 6.7.8p4. All file scoped initializers need to be constant.
3549      CheckForConstantInitializer(Init, DclT);
3550    }
3551  }
3552  // If the type changed, it means we had an incomplete type that was
3553  // completed by the initializer. For example:
3554  //   int ary[] = { 1, 3, 5 };
3555  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3556  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3557    VDecl->setType(DclT);
3558    Init->setType(DclT);
3559  }
3560
3561  Init = MaybeCreateCXXExprWithTemporaries(Init,
3562                                           /*ShouldDestroyTemporaries=*/true);
3563  // Attach the initializer to the decl.
3564  VDecl->setInit(Context, Init);
3565
3566  // If the previous declaration of VDecl was a tentative definition,
3567  // remove it from the set of tentative definitions.
3568  if (VDecl->getPreviousDeclaration() &&
3569      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3570    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3571    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3572  }
3573
3574  return;
3575}
3576
3577void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3578                                  bool TypeContainsUndeducedAuto) {
3579  Decl *RealDecl = dcl.getAs<Decl>();
3580
3581  // If there is no declaration, there was an error parsing it. Just ignore it.
3582  if (RealDecl == 0)
3583    return;
3584
3585  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3586    QualType Type = Var->getType();
3587
3588    // Record tentative definitions.
3589    if (Var->isTentativeDefinition(Context)) {
3590      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3591        InsertPair =
3592           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3593
3594      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3595      // want the second one in the map.
3596      InsertPair.first->second = Var;
3597
3598      // However, for the list, we don't care about the order, just make sure
3599      // that there are no dupes for a given declaration name.
3600      if (InsertPair.second)
3601        TentativeDefinitionList.push_back(Var->getDeclName());
3602    }
3603
3604    // C++ [dcl.init.ref]p3:
3605    //   The initializer can be omitted for a reference only in a
3606    //   parameter declaration (8.3.5), in the declaration of a
3607    //   function return type, in the declaration of a class member
3608    //   within its class declaration (9.2), and where the extern
3609    //   specifier is explicitly used.
3610    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3611      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3612        << Var->getDeclName()
3613        << SourceRange(Var->getLocation(), Var->getLocation());
3614      Var->setInvalidDecl();
3615      return;
3616    }
3617
3618    // C++0x [dcl.spec.auto]p3
3619    if (TypeContainsUndeducedAuto) {
3620      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3621        << Var->getDeclName() << Type;
3622      Var->setInvalidDecl();
3623      return;
3624    }
3625
3626    // An array without size is an incomplete type, and there are no special
3627    // rules in C++ to make such a definition acceptable.
3628    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3629        !Var->hasExternalStorage()) {
3630      Diag(Var->getLocation(),
3631           diag::err_typecheck_incomplete_array_needs_initializer);
3632      Var->setInvalidDecl();
3633      return;
3634    }
3635
3636    // C++ [temp.expl.spec]p15:
3637    //   An explicit specialization of a static data member of a template is a
3638    //   definition if the declaration includes an initializer; otherwise, it
3639    //   is a declaration.
3640    if (Var->isStaticDataMember() &&
3641        Var->getInstantiatedFromStaticDataMember() &&
3642        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3643      return;
3644
3645    // C++ [dcl.init]p9:
3646    //   If no initializer is specified for an object, and the object
3647    //   is of (possibly cv-qualified) non-POD class type (or array
3648    //   thereof), the object shall be default-initialized; if the
3649    //   object is of const-qualified type, the underlying class type
3650    //   shall have a user-declared default constructor.
3651    //
3652    // FIXME: Diagnose the "user-declared default constructor" bit.
3653    if (getLangOptions().CPlusPlus) {
3654      QualType InitType = Type;
3655      if (const ArrayType *Array = Context.getAsArrayType(Type))
3656        InitType = Context.getBaseElementType(Array);
3657      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3658          InitType->isRecordType() && !InitType->isDependentType()) {
3659        if (!RequireCompleteType(Var->getLocation(), InitType,
3660                                 diag::err_invalid_incomplete_type_use)) {
3661          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3662
3663          CXXConstructorDecl *Constructor
3664            = PerformInitializationByConstructor(InitType,
3665                                                 MultiExprArg(*this, 0, 0),
3666                                                 Var->getLocation(),
3667                                               SourceRange(Var->getLocation(),
3668                                                           Var->getLocation()),
3669                                                 Var->getDeclName(),
3670                                                 IK_Default,
3671                                                 ConstructorArgs);
3672
3673          // FIXME: Location info for the variable initialization?
3674          if (!Constructor)
3675            Var->setInvalidDecl();
3676          else {
3677            // FIXME: Cope with initialization of arrays
3678            if (!Constructor->isTrivial() &&
3679                InitializeVarWithConstructor(Var, Constructor,
3680                                             move_arg(ConstructorArgs)))
3681              Var->setInvalidDecl();
3682
3683            FinalizeVarWithDestructor(Var, InitType);
3684          }
3685        } else {
3686          Var->setInvalidDecl();
3687        }
3688      }
3689
3690      // The variable can not have an abstract class type.
3691      if (RequireNonAbstractType(Var->getLocation(), Type,
3692                                 diag::err_abstract_type_in_decl,
3693                                 AbstractVariableType))
3694        Var->setInvalidDecl();
3695    }
3696
3697#if 0
3698    // FIXME: Temporarily disabled because we are not properly parsing
3699    // linkage specifications on declarations, e.g.,
3700    //
3701    //   extern "C" const CGPoint CGPointerZero;
3702    //
3703    // C++ [dcl.init]p9:
3704    //
3705    //     If no initializer is specified for an object, and the
3706    //     object is of (possibly cv-qualified) non-POD class type (or
3707    //     array thereof), the object shall be default-initialized; if
3708    //     the object is of const-qualified type, the underlying class
3709    //     type shall have a user-declared default
3710    //     constructor. Otherwise, if no initializer is specified for
3711    //     an object, the object and its subobjects, if any, have an
3712    //     indeterminate initial value; if the object or any of its
3713    //     subobjects are of const-qualified type, the program is
3714    //     ill-formed.
3715    //
3716    // This isn't technically an error in C, so we don't diagnose it.
3717    //
3718    // FIXME: Actually perform the POD/user-defined default
3719    // constructor check.
3720    if (getLangOptions().CPlusPlus &&
3721        Context.getCanonicalType(Type).isConstQualified() &&
3722        !Var->hasExternalStorage())
3723      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3724        << Var->getName()
3725        << SourceRange(Var->getLocation(), Var->getLocation());
3726#endif
3727  }
3728}
3729
3730Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3731                                                   DeclPtrTy *Group,
3732                                                   unsigned NumDecls) {
3733  llvm::SmallVector<Decl*, 8> Decls;
3734
3735  if (DS.isTypeSpecOwned())
3736    Decls.push_back((Decl*)DS.getTypeRep());
3737
3738  for (unsigned i = 0; i != NumDecls; ++i)
3739    if (Decl *D = Group[i].getAs<Decl>())
3740      Decls.push_back(D);
3741
3742  // Perform semantic analysis that depends on having fully processed both
3743  // the declarator and initializer.
3744  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3745    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3746    if (!IDecl)
3747      continue;
3748    QualType T = IDecl->getType();
3749
3750    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3751    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3752    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3753      if (T->isDependentType()) {
3754        // If T is dependent, we should not require a complete type.
3755        // (RequireCompleteType shouldn't be called with dependent types.)
3756        // But we still can at least check if we've got an array of unspecified
3757        // size without an initializer.
3758        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3759            !IDecl->getInit()) {
3760          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3761            << T;
3762          IDecl->setInvalidDecl();
3763        }
3764      } else if (!IDecl->isInvalidDecl()) {
3765        // If T is an incomplete array type with an initializer list that is
3766        // dependent on something, its size has not been fixed. We could attempt
3767        // to fix the size for such arrays, but we would still have to check
3768        // here for initializers containing a C++0x vararg expansion, e.g.
3769        // template <typename... Args> void f(Args... args) {
3770        //   int vals[] = { args };
3771        // }
3772        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3773        Expr *Init = IDecl->getInit();
3774        if (IAT && Init &&
3775            (Init->isTypeDependent() || Init->isValueDependent())) {
3776          // Check that the member type of the array is complete, at least.
3777          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3778                                  diag::err_typecheck_decl_incomplete_type))
3779            IDecl->setInvalidDecl();
3780        } else if (RequireCompleteType(IDecl->getLocation(), T,
3781                                      diag::err_typecheck_decl_incomplete_type))
3782          IDecl->setInvalidDecl();
3783      }
3784    }
3785    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3786    // object that has file scope without an initializer, and without a
3787    // storage-class specifier or with the storage-class specifier "static",
3788    // constitutes a tentative definition. Note: A tentative definition with
3789    // external linkage is valid (C99 6.2.2p5).
3790    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3791      if (const IncompleteArrayType *ArrayT
3792          = Context.getAsIncompleteArrayType(T)) {
3793        if (RequireCompleteType(IDecl->getLocation(),
3794                                ArrayT->getElementType(),
3795                                diag::err_illegal_decl_array_incomplete_type))
3796          IDecl->setInvalidDecl();
3797      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3798        // C99 6.9.2p3: If the declaration of an identifier for an object is
3799        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3800        // declared type shall not be an incomplete type.
3801        // NOTE: code such as the following
3802        //     static struct s;
3803        //     struct s { int a; };
3804        // is accepted by gcc. Hence here we issue a warning instead of
3805        // an error and we do not invalidate the static declaration.
3806        // NOTE: to avoid multiple warnings, only check the first declaration.
3807        if (IDecl->getPreviousDeclaration() == 0)
3808          RequireCompleteType(IDecl->getLocation(), T,
3809                              diag::ext_typecheck_decl_incomplete_type);
3810      }
3811    }
3812  }
3813  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3814                                                   Decls.data(), Decls.size()));
3815}
3816
3817
3818/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3819/// to introduce parameters into function prototype scope.
3820Sema::DeclPtrTy
3821Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3822  const DeclSpec &DS = D.getDeclSpec();
3823
3824  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3825  VarDecl::StorageClass StorageClass = VarDecl::None;
3826  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3827    StorageClass = VarDecl::Register;
3828  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3829    Diag(DS.getStorageClassSpecLoc(),
3830         diag::err_invalid_storage_class_in_func_decl);
3831    D.getMutableDeclSpec().ClearStorageClassSpecs();
3832  }
3833
3834  if (D.getDeclSpec().isThreadSpecified())
3835    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3836
3837  DiagnoseFunctionSpecifiers(D);
3838
3839  // Check that there are no default arguments inside the type of this
3840  // parameter (C++ only).
3841  if (getLangOptions().CPlusPlus)
3842    CheckExtraCXXDefaultArguments(D);
3843
3844  DeclaratorInfo *DInfo = 0;
3845  TagDecl *OwnedDecl = 0;
3846  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, &OwnedDecl);
3847
3848  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3849    // C++ [dcl.fct]p6:
3850    //   Types shall not be defined in return or parameter types.
3851    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3852      << Context.getTypeDeclType(OwnedDecl);
3853  }
3854
3855  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3856  // Can this happen for params?  We already checked that they don't conflict
3857  // among each other.  Here they can only shadow globals, which is ok.
3858  IdentifierInfo *II = D.getIdentifier();
3859  if (II) {
3860    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3861      if (PrevDecl->isTemplateParameter()) {
3862        // Maybe we will complain about the shadowed template parameter.
3863        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3864        // Just pretend that we didn't see the previous declaration.
3865        PrevDecl = 0;
3866      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3867        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3868
3869        // Recover by removing the name
3870        II = 0;
3871        D.SetIdentifier(0, D.getIdentifierLoc());
3872      }
3873    }
3874  }
3875
3876  // Parameters can not be abstract class types.
3877  // For record types, this is done by the AbstractClassUsageDiagnoser once
3878  // the class has been completely parsed.
3879  if (!CurContext->isRecord() &&
3880      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3881                             diag::err_abstract_type_in_decl,
3882                             AbstractParamType))
3883    D.setInvalidType(true);
3884
3885  QualType T = adjustParameterType(parmDeclType);
3886
3887  ParmVarDecl *New
3888    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3889                          T, DInfo, StorageClass, 0);
3890
3891  if (D.isInvalidType())
3892    New->setInvalidDecl();
3893
3894  // Parameter declarators cannot be interface types. All ObjC objects are
3895  // passed by reference.
3896  if (T->isObjCInterfaceType()) {
3897    Diag(D.getIdentifierLoc(),
3898         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3899    New->setInvalidDecl();
3900  }
3901
3902  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3903  if (D.getCXXScopeSpec().isSet()) {
3904    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3905      << D.getCXXScopeSpec().getRange();
3906    New->setInvalidDecl();
3907  }
3908
3909  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3910  // duration shall not be qualified by an address-space qualifier."
3911  // Since all parameters have automatic store duration, they can not have
3912  // an address space.
3913  if (T.getAddressSpace() != 0) {
3914    Diag(D.getIdentifierLoc(),
3915         diag::err_arg_with_address_space);
3916    New->setInvalidDecl();
3917  }
3918
3919
3920  // Add the parameter declaration into this scope.
3921  S->AddDecl(DeclPtrTy::make(New));
3922  if (II)
3923    IdResolver.AddDecl(New);
3924
3925  ProcessDeclAttributes(S, New, D);
3926
3927  if (New->hasAttr<BlocksAttr>()) {
3928    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3929  }
3930  return DeclPtrTy::make(New);
3931}
3932
3933void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3934                                           SourceLocation LocAfterDecls) {
3935  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3936         "Not a function declarator!");
3937  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3938
3939  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3940  // for a K&R function.
3941  if (!FTI.hasPrototype) {
3942    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3943      --i;
3944      if (FTI.ArgInfo[i].Param == 0) {
3945        llvm::SmallString<256> Code;
3946        llvm::raw_svector_ostream(Code) << "  int "
3947                                        << FTI.ArgInfo[i].Ident->getName()
3948                                        << ";\n";
3949        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3950          << FTI.ArgInfo[i].Ident
3951          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3952
3953        // Implicitly declare the argument as type 'int' for lack of a better
3954        // type.
3955        DeclSpec DS;
3956        const char* PrevSpec; // unused
3957        unsigned DiagID; // unused
3958        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3959                           PrevSpec, DiagID);
3960        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3961        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3962        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3963      }
3964    }
3965  }
3966}
3967
3968Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3969                                              Declarator &D) {
3970  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3971  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3972         "Not a function declarator!");
3973  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3974
3975  if (FTI.hasPrototype) {
3976    // FIXME: Diagnose arguments without names in C.
3977  }
3978
3979  Scope *ParentScope = FnBodyScope->getParent();
3980
3981  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3982                                  MultiTemplateParamsArg(*this),
3983                                  /*IsFunctionDefinition=*/true);
3984  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3985}
3986
3987Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3988  // Clear the last template instantiation error context.
3989  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
3990
3991  if (!D)
3992    return D;
3993  FunctionDecl *FD = 0;
3994
3995  if (FunctionTemplateDecl *FunTmpl
3996        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3997    FD = FunTmpl->getTemplatedDecl();
3998  else
3999    FD = cast<FunctionDecl>(D.getAs<Decl>());
4000
4001  CurFunctionNeedsScopeChecking = false;
4002
4003  // See if this is a redefinition.
4004  const FunctionDecl *Definition;
4005  if (FD->getBody(Definition)) {
4006    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4007    Diag(Definition->getLocation(), diag::note_previous_definition);
4008  }
4009
4010  // Builtin functions cannot be defined.
4011  if (unsigned BuiltinID = FD->getBuiltinID()) {
4012    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4013      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4014      FD->setInvalidDecl();
4015    }
4016  }
4017
4018  // The return type of a function definition must be complete
4019  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4020  QualType ResultType = FD->getResultType();
4021  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4022      !FD->isInvalidDecl() &&
4023      RequireCompleteType(FD->getLocation(), ResultType,
4024                          diag::err_func_def_incomplete_result))
4025    FD->setInvalidDecl();
4026
4027  // GNU warning -Wmissing-prototypes:
4028  //   Warn if a global function is defined without a previous
4029  //   prototype declaration. This warning is issued even if the
4030  //   definition itself provides a prototype. The aim is to detect
4031  //   global functions that fail to be declared in header files.
4032  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
4033      !FD->isMain()) {
4034    bool MissingPrototype = true;
4035    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4036         Prev; Prev = Prev->getPreviousDeclaration()) {
4037      // Ignore any declarations that occur in function or method
4038      // scope, because they aren't visible from the header.
4039      if (Prev->getDeclContext()->isFunctionOrMethod())
4040        continue;
4041
4042      MissingPrototype = !Prev->getType()->isFunctionProtoType();
4043      break;
4044    }
4045
4046    if (MissingPrototype)
4047      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4048  }
4049
4050  if (FnBodyScope)
4051    PushDeclContext(FnBodyScope, FD);
4052
4053  // Check the validity of our function parameters
4054  CheckParmsForFunctionDef(FD);
4055
4056  // Introduce our parameters into the function scope
4057  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4058    ParmVarDecl *Param = FD->getParamDecl(p);
4059    Param->setOwningFunction(FD);
4060
4061    // If this has an identifier, add it to the scope stack.
4062    if (Param->getIdentifier() && FnBodyScope)
4063      PushOnScopeChains(Param, FnBodyScope);
4064  }
4065
4066  // Checking attributes of current function definition
4067  // dllimport attribute.
4068  if (FD->getAttr<DLLImportAttr>() &&
4069      (!FD->getAttr<DLLExportAttr>())) {
4070    // dllimport attribute cannot be applied to definition.
4071    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4072      Diag(FD->getLocation(),
4073           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4074        << "dllimport";
4075      FD->setInvalidDecl();
4076      return DeclPtrTy::make(FD);
4077    } else {
4078      // If a symbol previously declared dllimport is later defined, the
4079      // attribute is ignored in subsequent references, and a warning is
4080      // emitted.
4081      Diag(FD->getLocation(),
4082           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4083        << FD->getNameAsCString() << "dllimport";
4084    }
4085  }
4086  return DeclPtrTy::make(FD);
4087}
4088
4089Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4090  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4091}
4092
4093Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4094                                              bool IsInstantiation) {
4095  Decl *dcl = D.getAs<Decl>();
4096  Stmt *Body = BodyArg.takeAs<Stmt>();
4097
4098  FunctionDecl *FD = 0;
4099  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4100  if (FunTmpl)
4101    FD = FunTmpl->getTemplatedDecl();
4102  else
4103    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4104
4105  if (FD) {
4106    FD->setBody(Body);
4107    if (FD->isMain())
4108      // C and C++ allow for main to automagically return 0.
4109      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4110      FD->setHasImplicitReturnZero(true);
4111    else
4112      CheckFallThroughForFunctionDef(FD, Body);
4113
4114    if (!FD->isInvalidDecl())
4115      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4116
4117    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD)) {
4118      // C++ [basic.def.odr]p2:
4119      //   [...] A virtual member function is used if it is not pure. [...]
4120      if (Method->isVirtual() && !Method->isPure())
4121        MarkDeclarationReferenced(Method->getLocation(), Method);
4122
4123      if (!Method->isInlined())
4124        MaybeMarkVirtualImplicitMembersReferenced(Method->getLocation(),
4125                                                  Method);
4126    }
4127    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4128  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4129    assert(MD == getCurMethodDecl() && "Method parsing confused");
4130    MD->setBody(Body);
4131    CheckFallThroughForFunctionDef(MD, Body);
4132    MD->setEndLoc(Body->getLocEnd());
4133
4134    if (!MD->isInvalidDecl())
4135      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4136  } else {
4137    Body->Destroy(Context);
4138    return DeclPtrTy();
4139  }
4140  if (!IsInstantiation)
4141    PopDeclContext();
4142
4143  // Verify and clean out per-function state.
4144
4145  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4146
4147  // Check goto/label use.
4148  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4149       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4150    LabelStmt *L = I->second;
4151
4152    // Verify that we have no forward references left.  If so, there was a goto
4153    // or address of a label taken, but no definition of it.  Label fwd
4154    // definitions are indicated with a null substmt.
4155    if (L->getSubStmt() != 0)
4156      continue;
4157
4158    // Emit error.
4159    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4160
4161    // At this point, we have gotos that use the bogus label.  Stitch it into
4162    // the function body so that they aren't leaked and that the AST is well
4163    // formed.
4164    if (Body == 0) {
4165      // The whole function wasn't parsed correctly, just delete this.
4166      L->Destroy(Context);
4167      continue;
4168    }
4169
4170    // Otherwise, the body is valid: we want to stitch the label decl into the
4171    // function somewhere so that it is properly owned and so that the goto
4172    // has a valid target.  Do this by creating a new compound stmt with the
4173    // label in it.
4174
4175    // Give the label a sub-statement.
4176    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4177
4178    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4179                               cast<CXXTryStmt>(Body)->getTryBlock() :
4180                               cast<CompoundStmt>(Body);
4181    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4182    Elements.push_back(L);
4183    Compound->setStmts(Context, &Elements[0], Elements.size());
4184  }
4185  FunctionLabelMap.clear();
4186
4187  if (!Body) return D;
4188
4189  // Verify that that gotos and switch cases don't jump into scopes illegally.
4190  if (CurFunctionNeedsScopeChecking)
4191    DiagnoseInvalidJumps(Body);
4192
4193  // C++ constructors that have function-try-blocks can't have return
4194  // statements in the handlers of that block. (C++ [except.handle]p14)
4195  // Verify this.
4196  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4197    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4198
4199  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4200    MarkBaseAndMemberDestructorsReferenced(Destructor);
4201
4202  // If any errors have occurred, clear out any temporaries that may have
4203  // been leftover. This ensures that these temporaries won't be picked up for
4204  // deletion in some later function.
4205  if (PP.getDiagnostics().hasErrorOccurred())
4206    ExprTemporaries.clear();
4207
4208  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4209  return D;
4210}
4211
4212/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4213/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4214NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4215                                          IdentifierInfo &II, Scope *S) {
4216  // Before we produce a declaration for an implicitly defined
4217  // function, see whether there was a locally-scoped declaration of
4218  // this name as a function or variable. If so, use that
4219  // (non-visible) declaration, and complain about it.
4220  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4221    = LocallyScopedExternalDecls.find(&II);
4222  if (Pos != LocallyScopedExternalDecls.end()) {
4223    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4224    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4225    return Pos->second;
4226  }
4227
4228  // Extension in C99.  Legal in C90, but warn about it.
4229  if (II.getName().startswith("__builtin_"))
4230    Diag(Loc, diag::warn_builtin_unknown) << &II;
4231  else if (getLangOptions().C99)
4232    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4233  else
4234    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4235
4236  // Set a Declarator for the implicit definition: int foo();
4237  const char *Dummy;
4238  DeclSpec DS;
4239  unsigned DiagID;
4240  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4241  Error = Error; // Silence warning.
4242  assert(!Error && "Error setting up implicit decl!");
4243  Declarator D(DS, Declarator::BlockContext);
4244  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4245                                             0, 0, false, SourceLocation(),
4246                                             false, 0,0,0, Loc, Loc, D),
4247                SourceLocation());
4248  D.SetIdentifier(&II, Loc);
4249
4250  // Insert this function into translation-unit scope.
4251
4252  DeclContext *PrevDC = CurContext;
4253  CurContext = Context.getTranslationUnitDecl();
4254
4255  FunctionDecl *FD =
4256 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4257  FD->setImplicit();
4258
4259  CurContext = PrevDC;
4260
4261  AddKnownFunctionAttributes(FD);
4262
4263  return FD;
4264}
4265
4266/// \brief Adds any function attributes that we know a priori based on
4267/// the declaration of this function.
4268///
4269/// These attributes can apply both to implicitly-declared builtins
4270/// (like __builtin___printf_chk) or to library-declared functions
4271/// like NSLog or printf.
4272void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4273  if (FD->isInvalidDecl())
4274    return;
4275
4276  // If this is a built-in function, map its builtin attributes to
4277  // actual attributes.
4278  if (unsigned BuiltinID = FD->getBuiltinID()) {
4279    // Handle printf-formatting attributes.
4280    unsigned FormatIdx;
4281    bool HasVAListArg;
4282    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4283      if (!FD->getAttr<FormatAttr>())
4284        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4285                                             HasVAListArg ? 0 : FormatIdx + 2));
4286    }
4287
4288    // Mark const if we don't care about errno and that is the only
4289    // thing preventing the function from being const. This allows
4290    // IRgen to use LLVM intrinsics for such functions.
4291    if (!getLangOptions().MathErrno &&
4292        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4293      if (!FD->getAttr<ConstAttr>())
4294        FD->addAttr(::new (Context) ConstAttr());
4295    }
4296
4297    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4298      FD->addAttr(::new (Context) NoReturnAttr());
4299  }
4300
4301  IdentifierInfo *Name = FD->getIdentifier();
4302  if (!Name)
4303    return;
4304  if ((!getLangOptions().CPlusPlus &&
4305       FD->getDeclContext()->isTranslationUnit()) ||
4306      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4307       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4308       LinkageSpecDecl::lang_c)) {
4309    // Okay: this could be a libc/libm/Objective-C function we know
4310    // about.
4311  } else
4312    return;
4313
4314  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4315    // FIXME: NSLog and NSLogv should be target specific
4316    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4317      // FIXME: We known better than our headers.
4318      const_cast<FormatAttr *>(Format)->setType("printf");
4319    } else
4320      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4321                                             Name->isStr("NSLogv") ? 0 : 2));
4322  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4323    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4324    // target-specific builtins, perhaps?
4325    if (!FD->getAttr<FormatAttr>())
4326      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4327                                             Name->isStr("vasprintf") ? 0 : 3));
4328  }
4329}
4330
4331TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4332                                    DeclaratorInfo *DInfo) {
4333  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4334  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4335
4336  if (!DInfo) {
4337    assert(D.isInvalidType() && "no declarator info for valid type");
4338    DInfo = Context.getTrivialDeclaratorInfo(T);
4339  }
4340
4341  // Scope manipulation handled by caller.
4342  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4343                                           D.getIdentifierLoc(),
4344                                           D.getIdentifier(),
4345                                           DInfo);
4346
4347  if (const TagType *TT = T->getAs<TagType>()) {
4348    TagDecl *TD = TT->getDecl();
4349
4350    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4351    // keep track of the TypedefDecl.
4352    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4353      TD->setTypedefForAnonDecl(NewTD);
4354  }
4355
4356  if (D.isInvalidType())
4357    NewTD->setInvalidDecl();
4358  return NewTD;
4359}
4360
4361
4362/// \brief Determine whether a tag with a given kind is acceptable
4363/// as a redeclaration of the given tag declaration.
4364///
4365/// \returns true if the new tag kind is acceptable, false otherwise.
4366bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4367                                        TagDecl::TagKind NewTag,
4368                                        SourceLocation NewTagLoc,
4369                                        const IdentifierInfo &Name) {
4370  // C++ [dcl.type.elab]p3:
4371  //   The class-key or enum keyword present in the
4372  //   elaborated-type-specifier shall agree in kind with the
4373  //   declaration to which the name in theelaborated-type-specifier
4374  //   refers. This rule also applies to the form of
4375  //   elaborated-type-specifier that declares a class-name or
4376  //   friend class since it can be construed as referring to the
4377  //   definition of the class. Thus, in any
4378  //   elaborated-type-specifier, the enum keyword shall be used to
4379  //   refer to an enumeration (7.2), the union class-keyshall be
4380  //   used to refer to a union (clause 9), and either the class or
4381  //   struct class-key shall be used to refer to a class (clause 9)
4382  //   declared using the class or struct class-key.
4383  TagDecl::TagKind OldTag = Previous->getTagKind();
4384  if (OldTag == NewTag)
4385    return true;
4386
4387  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4388      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4389    // Warn about the struct/class tag mismatch.
4390    bool isTemplate = false;
4391    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4392      isTemplate = Record->getDescribedClassTemplate();
4393
4394    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4395      << (NewTag == TagDecl::TK_class)
4396      << isTemplate << &Name
4397      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4398                              OldTag == TagDecl::TK_class? "class" : "struct");
4399    Diag(Previous->getLocation(), diag::note_previous_use);
4400    return true;
4401  }
4402  return false;
4403}
4404
4405/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4406/// former case, Name will be non-null.  In the later case, Name will be null.
4407/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4408/// reference/declaration/definition of a tag.
4409Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4410                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4411                               IdentifierInfo *Name, SourceLocation NameLoc,
4412                               AttributeList *Attr, AccessSpecifier AS,
4413                               MultiTemplateParamsArg TemplateParameterLists,
4414                               bool &OwnedDecl, bool &IsDependent) {
4415  // If this is not a definition, it must have a name.
4416  assert((Name != 0 || TUK == TUK_Definition) &&
4417         "Nameless record must be a definition!");
4418
4419  OwnedDecl = false;
4420  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4421
4422  // FIXME: Check explicit specializations more carefully.
4423  bool isExplicitSpecialization = false;
4424  if (TUK != TUK_Reference) {
4425    if (TemplateParameterList *TemplateParams
4426          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4427                        (TemplateParameterList**)TemplateParameterLists.get(),
4428                                              TemplateParameterLists.size(),
4429                                                    isExplicitSpecialization)) {
4430      if (TemplateParams->size() > 0) {
4431        // This is a declaration or definition of a class template (which may
4432        // be a member of another template).
4433        OwnedDecl = false;
4434        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4435                                               SS, Name, NameLoc, Attr,
4436                                               TemplateParams,
4437                                               AS);
4438        TemplateParameterLists.release();
4439        return Result.get();
4440      } else {
4441        // The "template<>" header is extraneous.
4442        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4443          << ElaboratedType::getNameForTagKind(Kind) << Name;
4444        isExplicitSpecialization = true;
4445      }
4446    }
4447
4448    TemplateParameterLists.release();
4449  }
4450
4451  DeclContext *SearchDC = CurContext;
4452  DeclContext *DC = CurContext;
4453  bool isStdBadAlloc = false;
4454  bool Invalid = false;
4455
4456  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4457                                                   : NotForRedeclaration);
4458
4459  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4460
4461  if (Name && SS.isNotEmpty()) {
4462    // We have a nested-name tag ('struct foo::bar').
4463
4464    // Check for invalid 'foo::'.
4465    if (SS.isInvalid()) {
4466      Name = 0;
4467      goto CreateNewDecl;
4468    }
4469
4470    // If this is a friend or a reference to a class in a dependent
4471    // context, don't try to make a decl for it.
4472    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4473      DC = computeDeclContext(SS, false);
4474      if (!DC) {
4475        IsDependent = true;
4476        return DeclPtrTy();
4477      }
4478    }
4479
4480    if (RequireCompleteDeclContext(SS))
4481      return DeclPtrTy::make((Decl *)0);
4482
4483    DC = computeDeclContext(SS, true);
4484    SearchDC = DC;
4485    // Look-up name inside 'foo::'.
4486    LookupQualifiedName(Previous, DC);
4487
4488    if (Previous.isAmbiguous())
4489      return DeclPtrTy();
4490
4491    // A tag 'foo::bar' must already exist.
4492    if (Previous.empty()) {
4493      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4494      Name = 0;
4495      Invalid = true;
4496      goto CreateNewDecl;
4497    }
4498  } else if (Name) {
4499    // If this is a named struct, check to see if there was a previous forward
4500    // declaration or definition.
4501    // FIXME: We're looking into outer scopes here, even when we
4502    // shouldn't be. Doing so can result in ambiguities that we
4503    // shouldn't be diagnosing.
4504    LookupName(Previous, S);
4505
4506    // Note:  there used to be some attempt at recovery here.
4507    if (Previous.isAmbiguous())
4508      return DeclPtrTy();
4509
4510    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4511      // FIXME: This makes sure that we ignore the contexts associated
4512      // with C structs, unions, and enums when looking for a matching
4513      // tag declaration or definition. See the similar lookup tweak
4514      // in Sema::LookupName; is there a better way to deal with this?
4515      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4516        SearchDC = SearchDC->getParent();
4517    }
4518  }
4519
4520  if (Previous.isSingleResult() &&
4521      Previous.getFoundDecl()->isTemplateParameter()) {
4522    // Maybe we will complain about the shadowed template parameter.
4523    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4524    // Just pretend that we didn't see the previous declaration.
4525    Previous.clear();
4526  }
4527
4528  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4529      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4530    // This is a declaration of or a reference to "std::bad_alloc".
4531    isStdBadAlloc = true;
4532
4533    if (Previous.empty() && StdBadAlloc) {
4534      // std::bad_alloc has been implicitly declared (but made invisible to
4535      // name lookup). Fill in this implicit declaration as the previous
4536      // declaration, so that the declarations get chained appropriately.
4537      Previous.addDecl(StdBadAlloc);
4538    }
4539  }
4540
4541  if (!Previous.empty()) {
4542    assert(Previous.isSingleResult());
4543    NamedDecl *PrevDecl = Previous.getFoundDecl();
4544    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4545      // If this is a use of a previous tag, or if the tag is already declared
4546      // in the same scope (so that the definition/declaration completes or
4547      // rementions the tag), reuse the decl.
4548      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4549          isDeclInScope(PrevDecl, SearchDC, S)) {
4550        // Make sure that this wasn't declared as an enum and now used as a
4551        // struct or something similar.
4552        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4553          bool SafeToContinue
4554            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4555               Kind != TagDecl::TK_enum);
4556          if (SafeToContinue)
4557            Diag(KWLoc, diag::err_use_with_wrong_tag)
4558              << Name
4559              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4560                                                  PrevTagDecl->getKindName());
4561          else
4562            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4563          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4564
4565          if (SafeToContinue)
4566            Kind = PrevTagDecl->getTagKind();
4567          else {
4568            // Recover by making this an anonymous redefinition.
4569            Name = 0;
4570            Previous.clear();
4571            Invalid = true;
4572          }
4573        }
4574
4575        if (!Invalid) {
4576          // If this is a use, just return the declaration we found.
4577
4578          // FIXME: In the future, return a variant or some other clue
4579          // for the consumer of this Decl to know it doesn't own it.
4580          // For our current ASTs this shouldn't be a problem, but will
4581          // need to be changed with DeclGroups.
4582          if (TUK == TUK_Reference || TUK == TUK_Friend)
4583            return DeclPtrTy::make(PrevTagDecl);
4584
4585          // Diagnose attempts to redefine a tag.
4586          if (TUK == TUK_Definition) {
4587            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4588              // If we're defining a specialization and the previous definition
4589              // is from an implicit instantiation, don't emit an error
4590              // here; we'll catch this in the general case below.
4591              if (!isExplicitSpecialization ||
4592                  !isa<CXXRecordDecl>(Def) ||
4593                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4594                                               == TSK_ExplicitSpecialization) {
4595                Diag(NameLoc, diag::err_redefinition) << Name;
4596                Diag(Def->getLocation(), diag::note_previous_definition);
4597                // If this is a redefinition, recover by making this
4598                // struct be anonymous, which will make any later
4599                // references get the previous definition.
4600                Name = 0;
4601                Previous.clear();
4602                Invalid = true;
4603              }
4604            } else {
4605              // If the type is currently being defined, complain
4606              // about a nested redefinition.
4607              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4608              if (Tag->isBeingDefined()) {
4609                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4610                Diag(PrevTagDecl->getLocation(),
4611                     diag::note_previous_definition);
4612                Name = 0;
4613                Previous.clear();
4614                Invalid = true;
4615              }
4616            }
4617
4618            // Okay, this is definition of a previously declared or referenced
4619            // tag PrevDecl. We're going to create a new Decl for it.
4620          }
4621        }
4622        // If we get here we have (another) forward declaration or we
4623        // have a definition.  Just create a new decl.
4624
4625      } else {
4626        // If we get here, this is a definition of a new tag type in a nested
4627        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4628        // new decl/type.  We set PrevDecl to NULL so that the entities
4629        // have distinct types.
4630        Previous.clear();
4631      }
4632      // If we get here, we're going to create a new Decl. If PrevDecl
4633      // is non-NULL, it's a definition of the tag declared by
4634      // PrevDecl. If it's NULL, we have a new definition.
4635    } else {
4636      // PrevDecl is a namespace, template, or anything else
4637      // that lives in the IDNS_Tag identifier namespace.
4638      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4639        // The tag name clashes with a namespace name, issue an error and
4640        // recover by making this tag be anonymous.
4641        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4642        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4643        Name = 0;
4644        Previous.clear();
4645        Invalid = true;
4646      } else {
4647        // The existing declaration isn't relevant to us; we're in a
4648        // new scope, so clear out the previous declaration.
4649        Previous.clear();
4650      }
4651    }
4652  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4653    // C++ [basic.scope.pdecl]p5:
4654    //   -- for an elaborated-type-specifier of the form
4655    //
4656    //          class-key identifier
4657    //
4658    //      if the elaborated-type-specifier is used in the
4659    //      decl-specifier-seq or parameter-declaration-clause of a
4660    //      function defined in namespace scope, the identifier is
4661    //      declared as a class-name in the namespace that contains
4662    //      the declaration; otherwise, except as a friend
4663    //      declaration, the identifier is declared in the smallest
4664    //      non-class, non-function-prototype scope that contains the
4665    //      declaration.
4666    //
4667    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4668    // C structs and unions.
4669    //
4670    // It is an error in C++ to declare (rather than define) an enum
4671    // type, including via an elaborated type specifier.  We'll
4672    // diagnose that later; for now, declare the enum in the same
4673    // scope as we would have picked for any other tag type.
4674    //
4675    // GNU C also supports this behavior as part of its incomplete
4676    // enum types extension, while GNU C++ does not.
4677    //
4678    // Find the context where we'll be declaring the tag.
4679    // FIXME: We would like to maintain the current DeclContext as the
4680    // lexical context,
4681    while (SearchDC->isRecord())
4682      SearchDC = SearchDC->getParent();
4683
4684    // Find the scope where we'll be declaring the tag.
4685    while (S->isClassScope() ||
4686           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4687           ((S->getFlags() & Scope::DeclScope) == 0) ||
4688           (S->getEntity() &&
4689            ((DeclContext *)S->getEntity())->isTransparentContext()))
4690      S = S->getParent();
4691
4692  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4693    // C++ [namespace.memdef]p3:
4694    //   If a friend declaration in a non-local class first declares a
4695    //   class or function, the friend class or function is a member of
4696    //   the innermost enclosing namespace.
4697    while (!SearchDC->isFileContext())
4698      SearchDC = SearchDC->getParent();
4699
4700    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4701    while (S->getEntity() != SearchDC)
4702      S = S->getParent();
4703  }
4704
4705CreateNewDecl:
4706
4707  TagDecl *PrevDecl = 0;
4708  if (Previous.isSingleResult())
4709    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4710
4711  // If there is an identifier, use the location of the identifier as the
4712  // location of the decl, otherwise use the location of the struct/union
4713  // keyword.
4714  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4715
4716  // Otherwise, create a new declaration. If there is a previous
4717  // declaration of the same entity, the two will be linked via
4718  // PrevDecl.
4719  TagDecl *New;
4720
4721  if (Kind == TagDecl::TK_enum) {
4722    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4723    // enum X { A, B, C } D;    D should chain to X.
4724    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4725                           cast_or_null<EnumDecl>(PrevDecl));
4726    // If this is an undefined enum, warn.
4727    if (TUK != TUK_Definition && !Invalid)  {
4728      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4729                                              : diag::ext_forward_ref_enum;
4730      Diag(Loc, DK);
4731    }
4732  } else {
4733    // struct/union/class
4734
4735    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4736    // struct X { int A; } D;    D should chain to X.
4737    if (getLangOptions().CPlusPlus) {
4738      // FIXME: Look for a way to use RecordDecl for simple structs.
4739      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4740                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4741
4742      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4743        StdBadAlloc = cast<CXXRecordDecl>(New);
4744    } else
4745      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4746                               cast_or_null<RecordDecl>(PrevDecl));
4747  }
4748
4749  if (Kind != TagDecl::TK_enum) {
4750    // Handle #pragma pack: if the #pragma pack stack has non-default
4751    // alignment, make up a packed attribute for this decl. These
4752    // attributes are checked when the ASTContext lays out the
4753    // structure.
4754    //
4755    // It is important for implementing the correct semantics that this
4756    // happen here (in act on tag decl). The #pragma pack stack is
4757    // maintained as a result of parser callbacks which can occur at
4758    // many points during the parsing of a struct declaration (because
4759    // the #pragma tokens are effectively skipped over during the
4760    // parsing of the struct).
4761    if (unsigned Alignment = getPragmaPackAlignment())
4762      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4763  }
4764
4765  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4766    // C++ [dcl.typedef]p3:
4767    //   [...] Similarly, in a given scope, a class or enumeration
4768    //   shall not be declared with the same name as a typedef-name
4769    //   that is declared in that scope and refers to a type other
4770    //   than the class or enumeration itself.
4771    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4772                        ForRedeclaration);
4773    LookupName(Lookup, S);
4774    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4775    NamedDecl *PrevTypedefNamed = PrevTypedef;
4776    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4777        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4778          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4779      Diag(Loc, diag::err_tag_definition_of_typedef)
4780        << Context.getTypeDeclType(New)
4781        << PrevTypedef->getUnderlyingType();
4782      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4783      Invalid = true;
4784    }
4785  }
4786
4787  // If this is a specialization of a member class (of a class template),
4788  // check the specialization.
4789  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4790    Invalid = true;
4791
4792  if (Invalid)
4793    New->setInvalidDecl();
4794
4795  if (Attr)
4796    ProcessDeclAttributeList(S, New, Attr);
4797
4798  // If we're declaring or defining a tag in function prototype scope
4799  // in C, note that this type can only be used within the function.
4800  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4801    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4802
4803  // Set the lexical context. If the tag has a C++ scope specifier, the
4804  // lexical context will be different from the semantic context.
4805  New->setLexicalDeclContext(CurContext);
4806
4807  // Mark this as a friend decl if applicable.
4808  if (TUK == TUK_Friend)
4809    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4810
4811  // Set the access specifier.
4812  if (!Invalid && TUK != TUK_Friend)
4813    SetMemberAccessSpecifier(New, PrevDecl, AS);
4814
4815  if (TUK == TUK_Definition)
4816    New->startDefinition();
4817
4818  // If this has an identifier, add it to the scope stack.
4819  if (TUK == TUK_Friend) {
4820    // We might be replacing an existing declaration in the lookup tables;
4821    // if so, borrow its access specifier.
4822    if (PrevDecl)
4823      New->setAccess(PrevDecl->getAccess());
4824
4825    // Friend tag decls are visible in fairly strange ways.
4826    if (!CurContext->isDependentContext()) {
4827      DeclContext *DC = New->getDeclContext()->getLookupContext();
4828      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4829      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4830        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4831    }
4832  } else if (Name) {
4833    S = getNonFieldDeclScope(S);
4834    PushOnScopeChains(New, S);
4835  } else {
4836    CurContext->addDecl(New);
4837  }
4838
4839  // If this is the C FILE type, notify the AST context.
4840  if (IdentifierInfo *II = New->getIdentifier())
4841    if (!New->isInvalidDecl() &&
4842        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4843        II->isStr("FILE"))
4844      Context.setFILEDecl(New);
4845
4846  OwnedDecl = true;
4847  return DeclPtrTy::make(New);
4848}
4849
4850void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4851  AdjustDeclIfTemplate(TagD);
4852  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4853
4854  // Enter the tag context.
4855  PushDeclContext(S, Tag);
4856
4857  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4858    FieldCollector->StartClass();
4859
4860    if (Record->getIdentifier()) {
4861      // C++ [class]p2:
4862      //   [...] The class-name is also inserted into the scope of the
4863      //   class itself; this is known as the injected-class-name. For
4864      //   purposes of access checking, the injected-class-name is treated
4865      //   as if it were a public member name.
4866      CXXRecordDecl *InjectedClassName
4867        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4868                                CurContext, Record->getLocation(),
4869                                Record->getIdentifier(),
4870                                Record->getTagKeywordLoc(),
4871                                Record);
4872      InjectedClassName->setImplicit();
4873      InjectedClassName->setAccess(AS_public);
4874      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4875        InjectedClassName->setDescribedClassTemplate(Template);
4876      PushOnScopeChains(InjectedClassName, S);
4877      assert(InjectedClassName->isInjectedClassName() &&
4878             "Broken injected-class-name");
4879    }
4880  }
4881}
4882
4883void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4884                                    SourceLocation RBraceLoc) {
4885  AdjustDeclIfTemplate(TagD);
4886  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4887  Tag->setRBraceLoc(RBraceLoc);
4888
4889  if (isa<CXXRecordDecl>(Tag))
4890    FieldCollector->FinishClass();
4891
4892  // Exit this scope of this tag's definition.
4893  PopDeclContext();
4894
4895  // Notify the consumer that we've defined a tag.
4896  Consumer.HandleTagDeclDefinition(Tag);
4897}
4898
4899// Note that FieldName may be null for anonymous bitfields.
4900bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4901                          QualType FieldTy, const Expr *BitWidth,
4902                          bool *ZeroWidth) {
4903  // Default to true; that shouldn't confuse checks for emptiness
4904  if (ZeroWidth)
4905    *ZeroWidth = true;
4906
4907  // C99 6.7.2.1p4 - verify the field type.
4908  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4909  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4910    // Handle incomplete types with specific error.
4911    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4912      return true;
4913    if (FieldName)
4914      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4915        << FieldName << FieldTy << BitWidth->getSourceRange();
4916    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4917      << FieldTy << BitWidth->getSourceRange();
4918  }
4919
4920  // If the bit-width is type- or value-dependent, don't try to check
4921  // it now.
4922  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4923    return false;
4924
4925  llvm::APSInt Value;
4926  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4927    return true;
4928
4929  if (Value != 0 && ZeroWidth)
4930    *ZeroWidth = false;
4931
4932  // Zero-width bitfield is ok for anonymous field.
4933  if (Value == 0 && FieldName)
4934    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4935
4936  if (Value.isSigned() && Value.isNegative()) {
4937    if (FieldName)
4938      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4939               << FieldName << Value.toString(10);
4940    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4941      << Value.toString(10);
4942  }
4943
4944  if (!FieldTy->isDependentType()) {
4945    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4946    if (Value.getZExtValue() > TypeSize) {
4947      if (FieldName)
4948        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4949          << FieldName << (unsigned)TypeSize;
4950      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4951        << (unsigned)TypeSize;
4952    }
4953  }
4954
4955  return false;
4956}
4957
4958/// ActOnField - Each field of a struct/union/class is passed into this in order
4959/// to create a FieldDecl object for it.
4960Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4961                                 SourceLocation DeclStart,
4962                                 Declarator &D, ExprTy *BitfieldWidth) {
4963  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4964                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4965                               AS_public);
4966  return DeclPtrTy::make(Res);
4967}
4968
4969/// HandleField - Analyze a field of a C struct or a C++ data member.
4970///
4971FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4972                             SourceLocation DeclStart,
4973                             Declarator &D, Expr *BitWidth,
4974                             AccessSpecifier AS) {
4975  IdentifierInfo *II = D.getIdentifier();
4976  SourceLocation Loc = DeclStart;
4977  if (II) Loc = D.getIdentifierLoc();
4978
4979  DeclaratorInfo *DInfo = 0;
4980  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4981  if (getLangOptions().CPlusPlus)
4982    CheckExtraCXXDefaultArguments(D);
4983
4984  DiagnoseFunctionSpecifiers(D);
4985
4986  if (D.getDeclSpec().isThreadSpecified())
4987    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4988
4989  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
4990                                         ForRedeclaration);
4991
4992  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4993    // Maybe we will complain about the shadowed template parameter.
4994    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4995    // Just pretend that we didn't see the previous declaration.
4996    PrevDecl = 0;
4997  }
4998
4999  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5000    PrevDecl = 0;
5001
5002  bool Mutable
5003    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5004  SourceLocation TSSL = D.getSourceRange().getBegin();
5005  FieldDecl *NewFD
5006    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
5007                     AS, PrevDecl, &D);
5008  if (NewFD->isInvalidDecl() && PrevDecl) {
5009    // Don't introduce NewFD into scope; there's already something
5010    // with the same name in the same scope.
5011  } else if (II) {
5012    PushOnScopeChains(NewFD, S);
5013  } else
5014    Record->addDecl(NewFD);
5015
5016  return NewFD;
5017}
5018
5019/// \brief Build a new FieldDecl and check its well-formedness.
5020///
5021/// This routine builds a new FieldDecl given the fields name, type,
5022/// record, etc. \p PrevDecl should refer to any previous declaration
5023/// with the same name and in the same scope as the field to be
5024/// created.
5025///
5026/// \returns a new FieldDecl.
5027///
5028/// \todo The Declarator argument is a hack. It will be removed once
5029FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5030                                DeclaratorInfo *DInfo,
5031                                RecordDecl *Record, SourceLocation Loc,
5032                                bool Mutable, Expr *BitWidth,
5033                                SourceLocation TSSL,
5034                                AccessSpecifier AS, NamedDecl *PrevDecl,
5035                                Declarator *D) {
5036  IdentifierInfo *II = Name.getAsIdentifierInfo();
5037  bool InvalidDecl = false;
5038  if (D) InvalidDecl = D->isInvalidType();
5039
5040  // If we receive a broken type, recover by assuming 'int' and
5041  // marking this declaration as invalid.
5042  if (T.isNull()) {
5043    InvalidDecl = true;
5044    T = Context.IntTy;
5045  }
5046
5047  QualType EltTy = Context.getBaseElementType(T);
5048  if (!EltTy->isDependentType() &&
5049      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5050    InvalidDecl = true;
5051
5052  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5053  // than a variably modified type.
5054  if (!InvalidDecl && T->isVariablyModifiedType()) {
5055    bool SizeIsNegative;
5056    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5057                                                           SizeIsNegative);
5058    if (!FixedTy.isNull()) {
5059      Diag(Loc, diag::warn_illegal_constant_array_size);
5060      T = FixedTy;
5061    } else {
5062      if (SizeIsNegative)
5063        Diag(Loc, diag::err_typecheck_negative_array_size);
5064      else
5065        Diag(Loc, diag::err_typecheck_field_variable_size);
5066      InvalidDecl = true;
5067    }
5068  }
5069
5070  // Fields can not have abstract class types
5071  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5072                                             diag::err_abstract_type_in_decl,
5073                                             AbstractFieldType))
5074    InvalidDecl = true;
5075
5076  bool ZeroWidth = false;
5077  // If this is declared as a bit-field, check the bit-field.
5078  if (!InvalidDecl && BitWidth &&
5079      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5080    InvalidDecl = true;
5081    DeleteExpr(BitWidth);
5082    BitWidth = 0;
5083    ZeroWidth = false;
5084  }
5085
5086  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
5087                                       BitWidth, Mutable);
5088  if (InvalidDecl)
5089    NewFD->setInvalidDecl();
5090
5091  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5092    Diag(Loc, diag::err_duplicate_member) << II;
5093    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5094    NewFD->setInvalidDecl();
5095  }
5096
5097  if (getLangOptions().CPlusPlus) {
5098    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5099
5100    if (!T->isPODType())
5101      CXXRecord->setPOD(false);
5102    if (!ZeroWidth)
5103      CXXRecord->setEmpty(false);
5104
5105    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5106      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5107
5108      if (!RDecl->hasTrivialConstructor())
5109        CXXRecord->setHasTrivialConstructor(false);
5110      if (!RDecl->hasTrivialCopyConstructor())
5111        CXXRecord->setHasTrivialCopyConstructor(false);
5112      if (!RDecl->hasTrivialCopyAssignment())
5113        CXXRecord->setHasTrivialCopyAssignment(false);
5114      if (!RDecl->hasTrivialDestructor())
5115        CXXRecord->setHasTrivialDestructor(false);
5116
5117      // C++ 9.5p1: An object of a class with a non-trivial
5118      // constructor, a non-trivial copy constructor, a non-trivial
5119      // destructor, or a non-trivial copy assignment operator
5120      // cannot be a member of a union, nor can an array of such
5121      // objects.
5122      // TODO: C++0x alters this restriction significantly.
5123      if (Record->isUnion()) {
5124        // We check for copy constructors before constructors
5125        // because otherwise we'll never get complaints about
5126        // copy constructors.
5127
5128        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5129
5130        CXXSpecialMember member;
5131        if (!RDecl->hasTrivialCopyConstructor())
5132          member = CXXCopyConstructor;
5133        else if (!RDecl->hasTrivialConstructor())
5134          member = CXXDefaultConstructor;
5135        else if (!RDecl->hasTrivialCopyAssignment())
5136          member = CXXCopyAssignment;
5137        else if (!RDecl->hasTrivialDestructor())
5138          member = CXXDestructor;
5139        else
5140          member = invalid;
5141
5142        if (member != invalid) {
5143          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5144          DiagnoseNontrivial(RT, member);
5145          NewFD->setInvalidDecl();
5146        }
5147      }
5148    }
5149  }
5150
5151  // FIXME: We need to pass in the attributes given an AST
5152  // representation, not a parser representation.
5153  if (D)
5154    // FIXME: What to pass instead of TUScope?
5155    ProcessDeclAttributes(TUScope, NewFD, *D);
5156
5157  if (T.isObjCGCWeak())
5158    Diag(Loc, diag::warn_attribute_weak_on_field);
5159
5160  NewFD->setAccess(AS);
5161
5162  // C++ [dcl.init.aggr]p1:
5163  //   An aggregate is an array or a class (clause 9) with [...] no
5164  //   private or protected non-static data members (clause 11).
5165  // A POD must be an aggregate.
5166  if (getLangOptions().CPlusPlus &&
5167      (AS == AS_private || AS == AS_protected)) {
5168    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5169    CXXRecord->setAggregate(false);
5170    CXXRecord->setPOD(false);
5171  }
5172
5173  return NewFD;
5174}
5175
5176/// DiagnoseNontrivial - Given that a class has a non-trivial
5177/// special member, figure out why.
5178void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5179  QualType QT(T, 0U);
5180  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5181
5182  // Check whether the member was user-declared.
5183  switch (member) {
5184  case CXXDefaultConstructor:
5185    if (RD->hasUserDeclaredConstructor()) {
5186      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5187      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5188        const FunctionDecl *body = 0;
5189        ci->getBody(body);
5190        if (!body ||
5191            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5192          SourceLocation CtorLoc = ci->getLocation();
5193          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5194          return;
5195        }
5196      }
5197
5198      assert(0 && "found no user-declared constructors");
5199      return;
5200    }
5201    break;
5202
5203  case CXXCopyConstructor:
5204    if (RD->hasUserDeclaredCopyConstructor()) {
5205      SourceLocation CtorLoc =
5206        RD->getCopyConstructor(Context, 0)->getLocation();
5207      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5208      return;
5209    }
5210    break;
5211
5212  case CXXCopyAssignment:
5213    if (RD->hasUserDeclaredCopyAssignment()) {
5214      // FIXME: this should use the location of the copy
5215      // assignment, not the type.
5216      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5217      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5218      return;
5219    }
5220    break;
5221
5222  case CXXDestructor:
5223    if (RD->hasUserDeclaredDestructor()) {
5224      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5225      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5226      return;
5227    }
5228    break;
5229  }
5230
5231  typedef CXXRecordDecl::base_class_iterator base_iter;
5232
5233  // Virtual bases and members inhibit trivial copying/construction,
5234  // but not trivial destruction.
5235  if (member != CXXDestructor) {
5236    // Check for virtual bases.  vbases includes indirect virtual bases,
5237    // so we just iterate through the direct bases.
5238    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5239      if (bi->isVirtual()) {
5240        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5241        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5242        return;
5243      }
5244
5245    // Check for virtual methods.
5246    typedef CXXRecordDecl::method_iterator meth_iter;
5247    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5248         ++mi) {
5249      if (mi->isVirtual()) {
5250        SourceLocation MLoc = mi->getSourceRange().getBegin();
5251        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5252        return;
5253      }
5254    }
5255  }
5256
5257  bool (CXXRecordDecl::*hasTrivial)() const;
5258  switch (member) {
5259  case CXXDefaultConstructor:
5260    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5261  case CXXCopyConstructor:
5262    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5263  case CXXCopyAssignment:
5264    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5265  case CXXDestructor:
5266    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5267  default:
5268    assert(0 && "unexpected special member"); return;
5269  }
5270
5271  // Check for nontrivial bases (and recurse).
5272  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5273    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5274    assert(BaseRT && "Don't know how to handle dependent bases");
5275    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5276    if (!(BaseRecTy->*hasTrivial)()) {
5277      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5278      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5279      DiagnoseNontrivial(BaseRT, member);
5280      return;
5281    }
5282  }
5283
5284  // Check for nontrivial members (and recurse).
5285  typedef RecordDecl::field_iterator field_iter;
5286  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5287       ++fi) {
5288    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5289    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5290      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5291
5292      if (!(EltRD->*hasTrivial)()) {
5293        SourceLocation FLoc = (*fi)->getLocation();
5294        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5295        DiagnoseNontrivial(EltRT, member);
5296        return;
5297      }
5298    }
5299  }
5300
5301  assert(0 && "found no explanation for non-trivial member");
5302}
5303
5304/// TranslateIvarVisibility - Translate visibility from a token ID to an
5305///  AST enum value.
5306static ObjCIvarDecl::AccessControl
5307TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5308  switch (ivarVisibility) {
5309  default: assert(0 && "Unknown visitibility kind");
5310  case tok::objc_private: return ObjCIvarDecl::Private;
5311  case tok::objc_public: return ObjCIvarDecl::Public;
5312  case tok::objc_protected: return ObjCIvarDecl::Protected;
5313  case tok::objc_package: return ObjCIvarDecl::Package;
5314  }
5315}
5316
5317/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5318/// in order to create an IvarDecl object for it.
5319Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5320                                SourceLocation DeclStart,
5321                                DeclPtrTy IntfDecl,
5322                                Declarator &D, ExprTy *BitfieldWidth,
5323                                tok::ObjCKeywordKind Visibility) {
5324
5325  IdentifierInfo *II = D.getIdentifier();
5326  Expr *BitWidth = (Expr*)BitfieldWidth;
5327  SourceLocation Loc = DeclStart;
5328  if (II) Loc = D.getIdentifierLoc();
5329
5330  // FIXME: Unnamed fields can be handled in various different ways, for
5331  // example, unnamed unions inject all members into the struct namespace!
5332
5333  DeclaratorInfo *DInfo = 0;
5334  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5335
5336  if (BitWidth) {
5337    // 6.7.2.1p3, 6.7.2.1p4
5338    if (VerifyBitField(Loc, II, T, BitWidth)) {
5339      D.setInvalidType();
5340      DeleteExpr(BitWidth);
5341      BitWidth = 0;
5342    }
5343  } else {
5344    // Not a bitfield.
5345
5346    // validate II.
5347
5348  }
5349
5350  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5351  // than a variably modified type.
5352  if (T->isVariablyModifiedType()) {
5353    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5354    D.setInvalidType();
5355  }
5356
5357  // Get the visibility (access control) for this ivar.
5358  ObjCIvarDecl::AccessControl ac =
5359    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5360                                        : ObjCIvarDecl::None;
5361  // Must set ivar's DeclContext to its enclosing interface.
5362  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5363  DeclContext *EnclosingContext;
5364  if (ObjCImplementationDecl *IMPDecl =
5365      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5366    // Case of ivar declared in an implementation. Context is that of its class.
5367    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5368    assert(IDecl && "No class- ActOnIvar");
5369    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5370  } else
5371    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5372  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5373
5374  // Construct the decl.
5375  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5376                                             EnclosingContext, Loc, II, T,
5377                                             DInfo, ac, (Expr *)BitfieldWidth);
5378
5379  if (II) {
5380    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5381                                           ForRedeclaration);
5382    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5383        && !isa<TagDecl>(PrevDecl)) {
5384      Diag(Loc, diag::err_duplicate_member) << II;
5385      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5386      NewID->setInvalidDecl();
5387    }
5388  }
5389
5390  // Process attributes attached to the ivar.
5391  ProcessDeclAttributes(S, NewID, D);
5392
5393  if (D.isInvalidType())
5394    NewID->setInvalidDecl();
5395
5396  if (II) {
5397    // FIXME: When interfaces are DeclContexts, we'll need to add
5398    // these to the interface.
5399    S->AddDecl(DeclPtrTy::make(NewID));
5400    IdResolver.AddDecl(NewID);
5401  }
5402
5403  return DeclPtrTy::make(NewID);
5404}
5405
5406void Sema::ActOnFields(Scope* S,
5407                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5408                       DeclPtrTy *Fields, unsigned NumFields,
5409                       SourceLocation LBrac, SourceLocation RBrac,
5410                       AttributeList *Attr) {
5411  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5412  assert(EnclosingDecl && "missing record or interface decl");
5413
5414  // If the decl this is being inserted into is invalid, then it may be a
5415  // redeclaration or some other bogus case.  Don't try to add fields to it.
5416  if (EnclosingDecl->isInvalidDecl()) {
5417    // FIXME: Deallocate fields?
5418    return;
5419  }
5420
5421
5422  // Verify that all the fields are okay.
5423  unsigned NumNamedMembers = 0;
5424  llvm::SmallVector<FieldDecl*, 32> RecFields;
5425
5426  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5427  for (unsigned i = 0; i != NumFields; ++i) {
5428    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5429
5430    // Get the type for the field.
5431    Type *FDTy = FD->getType().getTypePtr();
5432
5433    if (!FD->isAnonymousStructOrUnion()) {
5434      // Remember all fields written by the user.
5435      RecFields.push_back(FD);
5436    }
5437
5438    // If the field is already invalid for some reason, don't emit more
5439    // diagnostics about it.
5440    if (FD->isInvalidDecl()) {
5441      EnclosingDecl->setInvalidDecl();
5442      continue;
5443    }
5444
5445    // C99 6.7.2.1p2:
5446    //   A structure or union shall not contain a member with
5447    //   incomplete or function type (hence, a structure shall not
5448    //   contain an instance of itself, but may contain a pointer to
5449    //   an instance of itself), except that the last member of a
5450    //   structure with more than one named member may have incomplete
5451    //   array type; such a structure (and any union containing,
5452    //   possibly recursively, a member that is such a structure)
5453    //   shall not be a member of a structure or an element of an
5454    //   array.
5455    if (FDTy->isFunctionType()) {
5456      // Field declared as a function.
5457      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5458        << FD->getDeclName();
5459      FD->setInvalidDecl();
5460      EnclosingDecl->setInvalidDecl();
5461      continue;
5462    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5463               Record && Record->isStruct()) {
5464      // Flexible array member.
5465      if (NumNamedMembers < 1) {
5466        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5467          << FD->getDeclName();
5468        FD->setInvalidDecl();
5469        EnclosingDecl->setInvalidDecl();
5470        continue;
5471      }
5472      // Okay, we have a legal flexible array member at the end of the struct.
5473      if (Record)
5474        Record->setHasFlexibleArrayMember(true);
5475    } else if (!FDTy->isDependentType() &&
5476               RequireCompleteType(FD->getLocation(), FD->getType(),
5477                                   diag::err_field_incomplete)) {
5478      // Incomplete type
5479      FD->setInvalidDecl();
5480      EnclosingDecl->setInvalidDecl();
5481      continue;
5482    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5483      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5484        // If this is a member of a union, then entire union becomes "flexible".
5485        if (Record && Record->isUnion()) {
5486          Record->setHasFlexibleArrayMember(true);
5487        } else {
5488          // If this is a struct/class and this is not the last element, reject
5489          // it.  Note that GCC supports variable sized arrays in the middle of
5490          // structures.
5491          if (i != NumFields-1)
5492            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5493              << FD->getDeclName() << FD->getType();
5494          else {
5495            // We support flexible arrays at the end of structs in
5496            // other structs as an extension.
5497            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5498              << FD->getDeclName();
5499            if (Record)
5500              Record->setHasFlexibleArrayMember(true);
5501          }
5502        }
5503      }
5504      if (Record && FDTTy->getDecl()->hasObjectMember())
5505        Record->setHasObjectMember(true);
5506    } else if (FDTy->isObjCInterfaceType()) {
5507      /// A field cannot be an Objective-c object
5508      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5509      FD->setInvalidDecl();
5510      EnclosingDecl->setInvalidDecl();
5511      continue;
5512    } else if (getLangOptions().ObjC1 &&
5513               getLangOptions().getGCMode() != LangOptions::NonGC &&
5514               Record &&
5515               (FD->getType()->isObjCObjectPointerType() ||
5516                FD->getType().isObjCGCStrong()))
5517      Record->setHasObjectMember(true);
5518    // Keep track of the number of named members.
5519    if (FD->getIdentifier())
5520      ++NumNamedMembers;
5521  }
5522
5523  // Okay, we successfully defined 'Record'.
5524  if (Record) {
5525    Record->completeDefinition(Context);
5526  } else {
5527    ObjCIvarDecl **ClsFields =
5528      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5529    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5530      ID->setIVarList(ClsFields, RecFields.size(), Context);
5531      ID->setLocEnd(RBrac);
5532      // Add ivar's to class's DeclContext.
5533      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5534        ClsFields[i]->setLexicalDeclContext(ID);
5535        ID->addDecl(ClsFields[i]);
5536      }
5537      // Must enforce the rule that ivars in the base classes may not be
5538      // duplicates.
5539      if (ID->getSuperClass()) {
5540        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5541             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5542          ObjCIvarDecl* Ivar = (*IVI);
5543
5544          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5545            ObjCIvarDecl* prevIvar =
5546              ID->getSuperClass()->lookupInstanceVariable(II);
5547            if (prevIvar) {
5548              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5549              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5550            }
5551          }
5552        }
5553      }
5554    } else if (ObjCImplementationDecl *IMPDecl =
5555                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5556      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5557      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5558        // Ivar declared in @implementation never belongs to the implementation.
5559        // Only it is in implementation's lexical context.
5560        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5561      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5562    }
5563  }
5564
5565  if (Attr)
5566    ProcessDeclAttributeList(S, Record, Attr);
5567}
5568
5569EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5570                                          EnumConstantDecl *LastEnumConst,
5571                                          SourceLocation IdLoc,
5572                                          IdentifierInfo *Id,
5573                                          ExprArg val) {
5574  Expr *Val = (Expr *)val.get();
5575
5576  llvm::APSInt EnumVal(32);
5577  QualType EltTy;
5578  if (Val) {
5579    if (Val->isTypeDependent())
5580      EltTy = Context.DependentTy;
5581    else {
5582      // Make sure to promote the operand type to int.
5583      UsualUnaryConversions(Val);
5584      if (Val != val.get()) {
5585        val.release();
5586        val = Val;
5587      }
5588
5589      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5590      SourceLocation ExpLoc;
5591      if (!Val->isValueDependent() &&
5592          VerifyIntegerConstantExpression(Val, &EnumVal)) {
5593        Val = 0;
5594      } else {
5595        EltTy = Val->getType();
5596      }
5597    }
5598  }
5599
5600  if (!Val) {
5601    if (LastEnumConst) {
5602      // Assign the last value + 1.
5603      EnumVal = LastEnumConst->getInitVal();
5604      ++EnumVal;
5605
5606      // Check for overflow on increment.
5607      if (EnumVal < LastEnumConst->getInitVal())
5608        Diag(IdLoc, diag::warn_enum_value_overflow);
5609
5610      EltTy = LastEnumConst->getType();
5611    } else {
5612      // First value, set to zero.
5613      EltTy = Context.IntTy;
5614      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5615    }
5616  }
5617
5618  assert(!EltTy.isNull() && "Enum constant with NULL type");
5619
5620  val.release();
5621  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5622                                  Val, EnumVal);
5623}
5624
5625
5626Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5627                                        DeclPtrTy lastEnumConst,
5628                                        SourceLocation IdLoc,
5629                                        IdentifierInfo *Id,
5630                                        SourceLocation EqualLoc, ExprTy *val) {
5631  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5632  EnumConstantDecl *LastEnumConst =
5633    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5634  Expr *Val = static_cast<Expr*>(val);
5635
5636  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5637  // we find one that is.
5638  S = getNonFieldDeclScope(S);
5639
5640  // Verify that there isn't already something declared with this name in this
5641  // scope.
5642  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5643  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5644    // Maybe we will complain about the shadowed template parameter.
5645    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5646    // Just pretend that we didn't see the previous declaration.
5647    PrevDecl = 0;
5648  }
5649
5650  if (PrevDecl) {
5651    // When in C++, we may get a TagDecl with the same name; in this case the
5652    // enum constant will 'hide' the tag.
5653    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5654           "Received TagDecl when not in C++!");
5655    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5656      if (isa<EnumConstantDecl>(PrevDecl))
5657        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5658      else
5659        Diag(IdLoc, diag::err_redefinition) << Id;
5660      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5661      if (Val) Val->Destroy(Context);
5662      return DeclPtrTy();
5663    }
5664  }
5665
5666  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5667                                            IdLoc, Id, Owned(Val));
5668
5669  // Register this decl in the current scope stack.
5670  if (New)
5671    PushOnScopeChains(New, S);
5672
5673  return DeclPtrTy::make(New);
5674}
5675
5676void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5677                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5678                         DeclPtrTy *Elements, unsigned NumElements,
5679                         Scope *S, AttributeList *Attr) {
5680  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5681  QualType EnumType = Context.getTypeDeclType(Enum);
5682
5683  if (Attr)
5684    ProcessDeclAttributeList(S, Enum, Attr);
5685
5686  // TODO: If the result value doesn't fit in an int, it must be a long or long
5687  // long value.  ISO C does not support this, but GCC does as an extension,
5688  // emit a warning.
5689  unsigned IntWidth = Context.Target.getIntWidth();
5690  unsigned CharWidth = Context.Target.getCharWidth();
5691  unsigned ShortWidth = Context.Target.getShortWidth();
5692
5693  // Verify that all the values are okay, compute the size of the values, and
5694  // reverse the list.
5695  unsigned NumNegativeBits = 0;
5696  unsigned NumPositiveBits = 0;
5697
5698  // Keep track of whether all elements have type int.
5699  bool AllElementsInt = true;
5700
5701  for (unsigned i = 0; i != NumElements; ++i) {
5702    EnumConstantDecl *ECD =
5703      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5704    if (!ECD) continue;  // Already issued a diagnostic.
5705
5706    // If the enum value doesn't fit in an int, emit an extension warning.
5707    const llvm::APSInt &InitVal = ECD->getInitVal();
5708    assert(InitVal.getBitWidth() >= IntWidth &&
5709           "Should have promoted value to int");
5710    if (InitVal.getBitWidth() > IntWidth) {
5711      llvm::APSInt V(InitVal);
5712      V.trunc(IntWidth);
5713      V.extend(InitVal.getBitWidth());
5714      if (V != InitVal)
5715        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5716          << InitVal.toString(10);
5717    }
5718
5719    // Keep track of the size of positive and negative values.
5720    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5721      NumPositiveBits = std::max(NumPositiveBits,
5722                                 (unsigned)InitVal.getActiveBits());
5723    else
5724      NumNegativeBits = std::max(NumNegativeBits,
5725                                 (unsigned)InitVal.getMinSignedBits());
5726
5727    // Keep track of whether every enum element has type int (very commmon).
5728    if (AllElementsInt)
5729      AllElementsInt = ECD->getType() == Context.IntTy;
5730  }
5731
5732  // Figure out the type that should be used for this enum.
5733  // FIXME: Support -fshort-enums.
5734  QualType BestType;
5735  unsigned BestWidth;
5736
5737  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5738
5739  if (NumNegativeBits) {
5740    // If there is a negative value, figure out the smallest integer type (of
5741    // int/long/longlong) that fits.
5742    // If it's packed, check also if it fits a char or a short.
5743    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5744        BestType = Context.SignedCharTy;
5745        BestWidth = CharWidth;
5746    } else if (Packed && NumNegativeBits <= ShortWidth &&
5747               NumPositiveBits < ShortWidth) {
5748        BestType = Context.ShortTy;
5749        BestWidth = ShortWidth;
5750    }
5751    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5752      BestType = Context.IntTy;
5753      BestWidth = IntWidth;
5754    } else {
5755      BestWidth = Context.Target.getLongWidth();
5756
5757      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5758        BestType = Context.LongTy;
5759      else {
5760        BestWidth = Context.Target.getLongLongWidth();
5761
5762        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5763          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5764        BestType = Context.LongLongTy;
5765      }
5766    }
5767  } else {
5768    // If there is no negative value, figure out which of uint, ulong, ulonglong
5769    // fits.
5770    // If it's packed, check also if it fits a char or a short.
5771    if (Packed && NumPositiveBits <= CharWidth) {
5772        BestType = Context.UnsignedCharTy;
5773        BestWidth = CharWidth;
5774    } else if (Packed && NumPositiveBits <= ShortWidth) {
5775        BestType = Context.UnsignedShortTy;
5776        BestWidth = ShortWidth;
5777    }
5778    else if (NumPositiveBits <= IntWidth) {
5779      BestType = Context.UnsignedIntTy;
5780      BestWidth = IntWidth;
5781    } else if (NumPositiveBits <=
5782               (BestWidth = Context.Target.getLongWidth())) {
5783      BestType = Context.UnsignedLongTy;
5784    } else {
5785      BestWidth = Context.Target.getLongLongWidth();
5786      assert(NumPositiveBits <= BestWidth &&
5787             "How could an initializer get larger than ULL?");
5788      BestType = Context.UnsignedLongLongTy;
5789    }
5790  }
5791
5792  // Loop over all of the enumerator constants, changing their types to match
5793  // the type of the enum if needed.
5794  for (unsigned i = 0; i != NumElements; ++i) {
5795    EnumConstantDecl *ECD =
5796      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5797    if (!ECD) continue;  // Already issued a diagnostic.
5798
5799    // Standard C says the enumerators have int type, but we allow, as an
5800    // extension, the enumerators to be larger than int size.  If each
5801    // enumerator value fits in an int, type it as an int, otherwise type it the
5802    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5803    // that X has type 'int', not 'unsigned'.
5804    if (ECD->getType() == Context.IntTy) {
5805      // Make sure the init value is signed.
5806      llvm::APSInt IV = ECD->getInitVal();
5807      IV.setIsSigned(true);
5808      ECD->setInitVal(IV);
5809
5810      if (getLangOptions().CPlusPlus)
5811        // C++ [dcl.enum]p4: Following the closing brace of an
5812        // enum-specifier, each enumerator has the type of its
5813        // enumeration.
5814        ECD->setType(EnumType);
5815      continue;  // Already int type.
5816    }
5817
5818    // Determine whether the value fits into an int.
5819    llvm::APSInt InitVal = ECD->getInitVal();
5820    bool FitsInInt;
5821    if (InitVal.isUnsigned() || !InitVal.isNegative())
5822      FitsInInt = InitVal.getActiveBits() < IntWidth;
5823    else
5824      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5825
5826    // If it fits into an integer type, force it.  Otherwise force it to match
5827    // the enum decl type.
5828    QualType NewTy;
5829    unsigned NewWidth;
5830    bool NewSign;
5831    if (FitsInInt) {
5832      NewTy = Context.IntTy;
5833      NewWidth = IntWidth;
5834      NewSign = true;
5835    } else if (ECD->getType() == BestType) {
5836      // Already the right type!
5837      if (getLangOptions().CPlusPlus)
5838        // C++ [dcl.enum]p4: Following the closing brace of an
5839        // enum-specifier, each enumerator has the type of its
5840        // enumeration.
5841        ECD->setType(EnumType);
5842      continue;
5843    } else {
5844      NewTy = BestType;
5845      NewWidth = BestWidth;
5846      NewSign = BestType->isSignedIntegerType();
5847    }
5848
5849    // Adjust the APSInt value.
5850    InitVal.extOrTrunc(NewWidth);
5851    InitVal.setIsSigned(NewSign);
5852    ECD->setInitVal(InitVal);
5853
5854    // Adjust the Expr initializer and type.
5855    if (ECD->getInitExpr())
5856      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5857                                                      CastExpr::CK_IntegralCast,
5858                                                      ECD->getInitExpr(),
5859                                                      /*isLvalue=*/false));
5860    if (getLangOptions().CPlusPlus)
5861      // C++ [dcl.enum]p4: Following the closing brace of an
5862      // enum-specifier, each enumerator has the type of its
5863      // enumeration.
5864      ECD->setType(EnumType);
5865    else
5866      ECD->setType(NewTy);
5867  }
5868
5869  Enum->completeDefinition(Context, BestType);
5870}
5871
5872Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5873                                            ExprArg expr) {
5874  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5875
5876  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5877                                                   Loc, AsmString);
5878  CurContext->addDecl(New);
5879  return DeclPtrTy::make(New);
5880}
5881
5882void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5883                             SourceLocation PragmaLoc,
5884                             SourceLocation NameLoc) {
5885  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
5886
5887  if (PrevDecl) {
5888    PrevDecl->addAttr(::new (Context) WeakAttr());
5889  } else {
5890    (void)WeakUndeclaredIdentifiers.insert(
5891      std::pair<IdentifierInfo*,WeakInfo>
5892        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5893  }
5894}
5895
5896void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5897                                IdentifierInfo* AliasName,
5898                                SourceLocation PragmaLoc,
5899                                SourceLocation NameLoc,
5900                                SourceLocation AliasNameLoc) {
5901  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
5902  WeakInfo W = WeakInfo(Name, NameLoc);
5903
5904  if (PrevDecl) {
5905    if (!PrevDecl->hasAttr<AliasAttr>())
5906      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5907        DeclApplyPragmaWeak(TUScope, ND, W);
5908  } else {
5909    (void)WeakUndeclaredIdentifiers.insert(
5910      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5911  }
5912}
5913