SemaDecl.cpp revision 9d0d8bfd2fc8518847d6aef7c98f140fde087881
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/Expr.h"
21#include "clang/AST/Type.h"
22#include "clang/Parse/DeclSpec.h"
23#include "clang/Parse/Scope.h"
24#include "clang/Basic/LangOptions.h"
25#include "clang/Basic/TargetInfo.h"
26#include "clang/Basic/SourceManager.h"
27// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
28#include "clang/Lex/Preprocessor.h"
29#include "clang/Lex/HeaderSearch.h"
30#include "llvm/ADT/SmallString.h"
31#include "llvm/ADT/SmallSet.h"
32#include "llvm/ADT/DenseSet.h"
33using namespace clang;
34
35Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
36  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
37
38  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
39                 isa<ObjCInterfaceDecl>(IIDecl) ||
40                 isa<TagDecl>(IIDecl)))
41    return IIDecl;
42  return 0;
43}
44
45void Sema::PushDeclContext(DeclContext *CD) {
46  assert( ( (CD->isFunctionOrMethod() && isa<TranslationUnitDecl>(CurContext))
47            || CD->getParent() == CurContext ) &&
48      "The next DeclContext should be directly contained in the current one.");
49  CurContext = CD;
50}
51
52void Sema::PopDeclContext() {
53  assert(CurContext && "DeclContext imbalance!");
54  // If CurContext is a ObjC method, getParent() will return NULL.
55  CurContext = CurContext->isFunctionOrMethod()
56               ? Context.getTranslationUnitDecl()
57                 :  CurContext->getParent();
58}
59
60/// Add this decl to the scope shadowed decl chains.
61void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
62  IdResolver.AddDecl(D, S);
63  S->AddDecl(D);
64}
65
66void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
67  if (S->decl_empty()) return;
68  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
69
70  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
71       I != E; ++I) {
72    Decl *TmpD = static_cast<Decl*>(*I);
73    assert(TmpD && "This decl didn't get pushed??");
74    ScopedDecl *D = dyn_cast<ScopedDecl>(TmpD);
75    assert(D && "This decl isn't a ScopedDecl?");
76
77    IdentifierInfo *II = D->getIdentifier();
78    if (!II) continue;
79
80    // Unlink this decl from the identifier.
81    IdResolver.RemoveDecl(D);
82
83    // This will have to be revisited for C++: there we want to nest stuff in
84    // namespace decls etc.  Even for C, we might want a top-level translation
85    // unit decl or something.
86    if (!CurFunctionDecl)
87      continue;
88
89    // Chain this decl to the containing function, it now owns the memory for
90    // the decl.
91    D->setNext(CurFunctionDecl->getDeclChain());
92    CurFunctionDecl->setDeclChain(D);
93  }
94}
95
96/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
97/// return 0 if one not found.
98ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
99  // The third "scope" argument is 0 since we aren't enabling lazy built-in
100  // creation from this context.
101  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
102
103  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
104}
105
106/// LookupDecl - Look up the inner-most declaration in the specified
107/// namespace.
108Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
109                       Scope *S, bool enableLazyBuiltinCreation) {
110  if (II == 0) return 0;
111  unsigned NS = NSI;
112  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
113    NS |= Decl::IDNS_Tag;
114
115  // Scan up the scope chain looking for a decl that matches this identifier
116  // that is in the appropriate namespace.  This search should not take long, as
117  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
118  NamedDecl *ND = IdResolver.Lookup(II, NS);
119  if (ND) return ND;
120
121  // If we didn't find a use of this identifier, and if the identifier
122  // corresponds to a compiler builtin, create the decl object for the builtin
123  // now, injecting it into translation unit scope, and return it.
124  if (NS & Decl::IDNS_Ordinary) {
125    if (enableLazyBuiltinCreation) {
126      // If this is a builtin on this (or all) targets, create the decl.
127      if (unsigned BuiltinID = II->getBuiltinID())
128        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
129    }
130    if (getLangOptions().ObjC1) {
131      // @interface and @compatibility_alias introduce typedef-like names.
132      // Unlike typedef's, they can only be introduced at file-scope (and are
133      // therefore not scoped decls). They can, however, be shadowed by
134      // other names in IDNS_Ordinary.
135      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
136      if (IDI != ObjCInterfaceDecls.end())
137        return IDI->second;
138      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
139      if (I != ObjCAliasDecls.end())
140        return I->second->getClassInterface();
141    }
142  }
143  return 0;
144}
145
146void Sema::InitBuiltinVaListType()
147{
148  if (!Context.getBuiltinVaListType().isNull())
149    return;
150
151  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
152  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
153  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
154  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
155}
156
157/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
158/// lazily create a decl for it.
159ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
160                                      Scope *S) {
161  Builtin::ID BID = (Builtin::ID)bid;
162
163  if (BID == Builtin::BI__builtin_va_start ||
164       BID == Builtin::BI__builtin_va_copy ||
165       BID == Builtin::BI__builtin_va_end)
166    InitBuiltinVaListType();
167
168  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
169  FunctionDecl *New = FunctionDecl::Create(Context,
170                                           Context.getTranslationUnitDecl(),
171                                           SourceLocation(), II, R,
172                                           FunctionDecl::Extern, false, 0);
173
174  // TUScope is the translation-unit scope to insert this function into.
175  TUScope->AddDecl(New);
176
177  // Add this decl to the end of the identifier info.
178  IdResolver.AddGlobalDecl(New);
179
180  return New;
181}
182
183/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
184/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
185/// situation, merging decls or emitting diagnostics as appropriate.
186///
187TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
188  // Verify the old decl was also a typedef.
189  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
190  if (!Old) {
191    Diag(New->getLocation(), diag::err_redefinition_different_kind,
192         New->getName());
193    Diag(OldD->getLocation(), diag::err_previous_definition);
194    return New;
195  }
196
197  // Allow multiple definitions for ObjC built-in typedefs.
198  // FIXME: Verify the underlying types are equivalent!
199  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
200    return Old;
201
202  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
203  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
204  // *either* declaration is in a system header. The code below implements
205  // this adhoc compatibility rule. FIXME: The following code will not
206  // work properly when compiling ".i" files (containing preprocessed output).
207  SourceManager &SrcMgr = Context.getSourceManager();
208  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
209  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
210  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
211  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
212  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
213
214  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
215  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
216       NewDirType != DirectoryLookup::NormalHeaderDir) ||
217      getLangOptions().Microsoft)
218    return New;
219
220  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
221  // TODO: This is totally simplistic.  It should handle merging functions
222  // together etc, merging extern int X; int X; ...
223  Diag(New->getLocation(), diag::err_redefinition, New->getName());
224  Diag(Old->getLocation(), diag::err_previous_definition);
225  return New;
226}
227
228/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
229static bool DeclHasAttr(const Decl *decl, const Attr *target) {
230  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
231    if (attr->getKind() == target->getKind())
232      return true;
233
234  return false;
235}
236
237/// MergeAttributes - append attributes from the Old decl to the New one.
238static void MergeAttributes(Decl *New, Decl *Old) {
239  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
240
241// FIXME: fix this code to cleanup the Old attrs correctly
242  while (attr) {
243     tmp = attr;
244     attr = attr->getNext();
245
246    if (!DeclHasAttr(New, tmp)) {
247       New->addAttr(tmp);
248    } else {
249       tmp->setNext(0);
250       delete(tmp);
251    }
252  }
253}
254
255/// MergeFunctionDecl - We just parsed a function 'New' from
256/// declarator D which has the same name and scope as a previous
257/// declaration 'Old'.  Figure out how to resolve this situation,
258/// merging decls or emitting diagnostics as appropriate.
259///
260FunctionDecl *Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
261  // Verify the old decl was also a function.
262  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
263  if (!Old) {
264    Diag(New->getLocation(), diag::err_redefinition_different_kind,
265         New->getName());
266    Diag(OldD->getLocation(), diag::err_previous_definition);
267    return New;
268  }
269
270  MergeAttributes(New, Old);
271
272  QualType OldQType = Context.getCanonicalType(Old->getType());
273  QualType NewQType = Context.getCanonicalType(New->getType());
274
275  // C++ [dcl.fct]p3:
276  //   All declarations for a function shall agree exactly in both the
277  //   return type and the parameter-type-list.
278  if (getLangOptions().CPlusPlus && OldQType == NewQType)
279    return MergeCXXFunctionDecl(New, Old);
280
281  // C: Function types need to be compatible, not identical. This handles
282  // duplicate function decls like "void f(int); void f(enum X);" properly.
283  if (!getLangOptions().CPlusPlus &&
284      Context.functionTypesAreCompatible(OldQType, NewQType)) {
285    return New;
286  }
287
288  // A function that has already been declared has been redeclared or defined
289  // with a different type- show appropriate diagnostic
290  diag::kind PrevDiag;
291  if (Old->getBody())
292    PrevDiag = diag::err_previous_definition;
293  else if (Old->isImplicit())
294    PrevDiag = diag::err_previous_implicit_declaration;
295  else
296    PrevDiag = diag::err_previous_declaration;
297
298  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
299  // TODO: This is totally simplistic.  It should handle merging functions
300  // together etc, merging extern int X; int X; ...
301  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
302  Diag(Old->getLocation(), PrevDiag);
303  return New;
304}
305
306/// equivalentArrayTypes - Used to determine whether two array types are
307/// equivalent.
308/// We need to check this explicitly as an incomplete array definition is
309/// considered a VariableArrayType, so will not match a complete array
310/// definition that would be otherwise equivalent.
311static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
312  const ArrayType *NewAT = NewQType->getAsArrayType();
313  const ArrayType *OldAT = OldQType->getAsArrayType();
314
315  if (!NewAT || !OldAT)
316    return false;
317
318  // If either (or both) array types in incomplete we need to strip off the
319  // outer VariableArrayType.  Once the outer VAT is removed the remaining
320  // types must be identical if the array types are to be considered
321  // equivalent.
322  // eg. int[][1] and int[1][1] become
323  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
324  // removing the outermost VAT gives
325  //     CAT(1, int) and CAT(1, int)
326  // which are equal, therefore the array types are equivalent.
327  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
328    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
329      return false;
330    NewQType = NewAT->getElementType().getCanonicalType();
331    OldQType = OldAT->getElementType().getCanonicalType();
332  }
333
334  return NewQType == OldQType;
335}
336
337/// MergeVarDecl - We just parsed a variable 'New' which has the same name
338/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
339/// situation, merging decls or emitting diagnostics as appropriate.
340///
341/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
342/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
343///
344VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
345  // Verify the old decl was also a variable.
346  VarDecl *Old = dyn_cast<VarDecl>(OldD);
347  if (!Old) {
348    Diag(New->getLocation(), diag::err_redefinition_different_kind,
349         New->getName());
350    Diag(OldD->getLocation(), diag::err_previous_definition);
351    return New;
352  }
353
354  MergeAttributes(New, Old);
355
356  // Verify the types match.
357  QualType OldCType = Context.getCanonicalType(Old->getType());
358  QualType NewCType = Context.getCanonicalType(New->getType());
359  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
360    Diag(New->getLocation(), diag::err_redefinition, New->getName());
361    Diag(Old->getLocation(), diag::err_previous_definition);
362    return New;
363  }
364  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
365  if (New->getStorageClass() == VarDecl::Static &&
366      (Old->getStorageClass() == VarDecl::None ||
367       Old->getStorageClass() == VarDecl::Extern)) {
368    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
369    Diag(Old->getLocation(), diag::err_previous_definition);
370    return New;
371  }
372  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
373  if (New->getStorageClass() != VarDecl::Static &&
374      Old->getStorageClass() == VarDecl::Static) {
375    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
376    Diag(Old->getLocation(), diag::err_previous_definition);
377    return New;
378  }
379  // We've verified the types match, now handle "tentative" definitions.
380  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
381    // Handle C "tentative" external object definitions (C99 6.9.2).
382    bool OldIsTentative = false;
383    bool NewIsTentative = false;
384
385    if (!Old->getInit() &&
386        (Old->getStorageClass() == VarDecl::None ||
387         Old->getStorageClass() == VarDecl::Static))
388      OldIsTentative = true;
389
390    // FIXME: this check doesn't work (since the initializer hasn't been
391    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
392    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
393    // thrown out the old decl.
394    if (!New->getInit() &&
395        (New->getStorageClass() == VarDecl::None ||
396         New->getStorageClass() == VarDecl::Static))
397      ; // change to NewIsTentative = true; once the code is moved.
398
399    if (NewIsTentative || OldIsTentative)
400      return New;
401  }
402  if (Old->getStorageClass() != VarDecl::Extern &&
403      New->getStorageClass() != VarDecl::Extern) {
404    Diag(New->getLocation(), diag::err_redefinition, New->getName());
405    Diag(Old->getLocation(), diag::err_previous_definition);
406  }
407  return New;
408}
409
410/// CheckParmsForFunctionDef - Check that the parameters of the given
411/// function are appropriate for the definition of a function. This
412/// takes care of any checks that cannot be performed on the
413/// declaration itself, e.g., that the types of each of the function
414/// parameters are complete.
415bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
416  bool HasInvalidParm = false;
417  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
418    ParmVarDecl *Param = FD->getParamDecl(p);
419
420    // C99 6.7.5.3p4: the parameters in a parameter type list in a
421    // function declarator that is part of a function definition of
422    // that function shall not have incomplete type.
423    if (Param->getType()->isIncompleteType() &&
424        !Param->isInvalidDecl()) {
425      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
426           Param->getType().getAsString());
427      Param->setInvalidDecl();
428      HasInvalidParm = true;
429    }
430  }
431
432  return HasInvalidParm;
433}
434
435/// CreateImplicitParameter - Creates an implicit function parameter
436/// in the scope S and with the given type. This routine is used, for
437/// example, to create the implicit "self" parameter in an Objective-C
438/// method.
439ParmVarDecl *
440Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
441                              SourceLocation IdLoc, QualType Type) {
442  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
443                                         VarDecl::None, 0, 0);
444  if (Id)
445    PushOnScopeChains(New, S);
446
447  return New;
448}
449
450/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
451/// no declarator (e.g. "struct foo;") is parsed.
452Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
453  // TODO: emit error on 'int;' or 'const enum foo;'.
454  // TODO: emit error on 'typedef int;'
455  // if (!DS.isMissingDeclaratorOk()) Diag(...);
456
457  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
458}
459
460bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
461  // Get the type before calling CheckSingleAssignmentConstraints(), since
462  // it can promote the expression.
463  QualType InitType = Init->getType();
464
465  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
466  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
467                                  InitType, Init, "initializing");
468}
469
470bool Sema::CheckInitExpr(Expr *expr, InitListExpr *IList, unsigned slot,
471                         QualType ElementType) {
472  Expr *savExpr = expr; // Might be promoted by CheckSingleInitializer.
473  if (CheckSingleInitializer(expr, ElementType))
474    return true; // types weren't compatible.
475
476  if (savExpr != expr) // The type was promoted, update initializer list.
477    IList->setInit(slot, expr);
478  return false;
479}
480
481bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
482  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
483    // C99 6.7.8p14. We have an array of character type with unknown size
484    // being initialized to a string literal.
485    llvm::APSInt ConstVal(32);
486    ConstVal = strLiteral->getByteLength() + 1;
487    // Return a new array type (C99 6.7.8p22).
488    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
489                                         ArrayType::Normal, 0);
490  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
491    // C99 6.7.8p14. We have an array of character type with known size.
492    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
493      Diag(strLiteral->getSourceRange().getBegin(),
494           diag::warn_initializer_string_for_char_array_too_long,
495           strLiteral->getSourceRange());
496  } else {
497    assert(0 && "HandleStringLiteralInit(): Invalid array type");
498  }
499  // Set type from "char *" to "constant array of char".
500  strLiteral->setType(DeclT);
501  // For now, we always return false (meaning success).
502  return false;
503}
504
505StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
506  const ArrayType *AT = DeclType->getAsArrayType();
507  if (AT && AT->getElementType()->isCharType()) {
508    return dyn_cast<StringLiteral>(Init);
509  }
510  return 0;
511}
512
513// CheckInitializerListTypes - Checks the types of elements of an initializer
514// list. This function is recursive: it calls itself to initialize subelements
515// of aggregate types.  Note that the topLevel parameter essentially refers to
516// whether this expression "owns" the initializer list passed in, or if this
517// initialization is taking elements out of a parent initializer.  Each
518// call to this function adds zero or more to startIndex, reports any errors,
519// and returns true if it found any inconsistent types.
520bool Sema::CheckInitializerListTypes(InitListExpr*& IList, QualType &DeclType,
521                                     bool topLevel, unsigned& startIndex) {
522  bool hadError = false;
523
524  if (DeclType->isScalarType()) {
525    // The simplest case: initializing a single scalar
526    if (topLevel) {
527      Diag(IList->getLocStart(), diag::warn_braces_around_scalar_init,
528           IList->getSourceRange());
529    }
530    if (startIndex < IList->getNumInits()) {
531      Expr* expr = IList->getInit(startIndex);
532      if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
533        // FIXME: Should an error be reported here instead?
534        unsigned newIndex = 0;
535        CheckInitializerListTypes(SubInitList, DeclType, true, newIndex);
536      } else {
537        hadError |= CheckInitExpr(expr, IList, startIndex, DeclType);
538      }
539      ++startIndex;
540    }
541    // FIXME: Should an error be reported for empty initializer list + scalar?
542  } else if (DeclType->isVectorType()) {
543    if (startIndex < IList->getNumInits()) {
544      const VectorType *VT = DeclType->getAsVectorType();
545      int maxElements = VT->getNumElements();
546      QualType elementType = VT->getElementType();
547
548      for (int i = 0; i < maxElements; ++i) {
549        // Don't attempt to go past the end of the init list
550        if (startIndex >= IList->getNumInits())
551          break;
552        Expr* expr = IList->getInit(startIndex);
553        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
554          unsigned newIndex = 0;
555          hadError |= CheckInitializerListTypes(SubInitList, elementType,
556                                                true, newIndex);
557          ++startIndex;
558        } else {
559          hadError |= CheckInitializerListTypes(IList, elementType,
560                                                false, startIndex);
561        }
562      }
563    }
564  } else if (DeclType->isAggregateType() || DeclType->isUnionType()) {
565    if (DeclType->isStructureType() || DeclType->isUnionType()) {
566      if (startIndex < IList->getNumInits() && !topLevel &&
567          Context.typesAreCompatible(IList->getInit(startIndex)->getType(),
568                                     DeclType)) {
569        // We found a compatible struct; per the standard, this initializes the
570        // struct.  (The C standard technically says that this only applies for
571        // initializers for declarations with automatic scope; however, this
572        // construct is unambiguous anyway because a struct cannot contain
573        // a type compatible with itself. We'll output an error when we check
574        // if the initializer is constant.)
575        // FIXME: Is a call to CheckSingleInitializer required here?
576        ++startIndex;
577      } else {
578        RecordDecl* structDecl = DeclType->getAsRecordType()->getDecl();
579
580        // If the record is invalid, some of it's members are invalid. To avoid
581        // confusion, we forgo checking the intializer for the entire record.
582        if (structDecl->isInvalidDecl())
583          return true;
584
585        // If structDecl is a forward declaration, this loop won't do anything;
586        // That's okay, because an error should get printed out elsewhere. It
587        // might be worthwhile to skip over the rest of the initializer, though.
588        int numMembers = structDecl->getNumMembers() -
589                         structDecl->hasFlexibleArrayMember();
590        for (int i = 0; i < numMembers; i++) {
591          // Don't attempt to go past the end of the init list
592          if (startIndex >= IList->getNumInits())
593            break;
594          FieldDecl * curField = structDecl->getMember(i);
595          if (!curField->getIdentifier()) {
596            // Don't initialize unnamed fields, e.g. "int : 20;"
597            continue;
598          }
599          QualType fieldType = curField->getType();
600          Expr* expr = IList->getInit(startIndex);
601          if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
602            unsigned newStart = 0;
603            hadError |= CheckInitializerListTypes(SubInitList, fieldType,
604                                                  true, newStart);
605            ++startIndex;
606          } else {
607            hadError |= CheckInitializerListTypes(IList, fieldType,
608                                                  false, startIndex);
609          }
610          if (DeclType->isUnionType())
611            break;
612        }
613        // FIXME: Implement flexible array initialization GCC extension (it's a
614        // really messy extension to implement, unfortunately...the necessary
615        // information isn't actually even here!)
616      }
617    } else if (DeclType->isArrayType()) {
618      // Check for the special-case of initializing an array with a string.
619      if (startIndex < IList->getNumInits()) {
620        if (StringLiteral *lit = IsStringLiteralInit(IList->getInit(startIndex),
621                                                     DeclType)) {
622          CheckStringLiteralInit(lit, DeclType);
623          ++startIndex;
624          if (topLevel && startIndex < IList->getNumInits()) {
625            // We have leftover initializers; warn
626            Diag(IList->getInit(startIndex)->getLocStart(),
627                 diag::err_excess_initializers_in_char_array_initializer,
628                 IList->getInit(startIndex)->getSourceRange());
629          }
630          return false;
631        }
632      }
633      int maxElements;
634      if (DeclType->isIncompleteArrayType()) {
635        // FIXME: use a proper constant
636        maxElements = 0x7FFFFFFF;
637      } else if (const VariableArrayType *VAT =
638                                DeclType->getAsVariableArrayType()) {
639        // Check for VLAs; in standard C it would be possible to check this
640        // earlier, but I don't know where clang accepts VLAs (gcc accepts
641        // them in all sorts of strange places).
642        Diag(VAT->getSizeExpr()->getLocStart(),
643             diag::err_variable_object_no_init,
644             VAT->getSizeExpr()->getSourceRange());
645        hadError = true;
646        maxElements = 0x7FFFFFFF;
647      } else {
648        const ConstantArrayType *CAT = DeclType->getAsConstantArrayType();
649        maxElements = static_cast<int>(CAT->getSize().getZExtValue());
650      }
651      QualType elementType = DeclType->getAsArrayType()->getElementType();
652      int numElements = 0;
653      for (int i = 0; i < maxElements; ++i, ++numElements) {
654        // Don't attempt to go past the end of the init list
655        if (startIndex >= IList->getNumInits())
656          break;
657        Expr* expr = IList->getInit(startIndex);
658        if (InitListExpr *SubInitList = dyn_cast<InitListExpr>(expr)) {
659          unsigned newIndex = 0;
660          hadError |= CheckInitializerListTypes(SubInitList, elementType,
661                                                true, newIndex);
662          ++startIndex;
663        } else {
664          hadError |= CheckInitializerListTypes(IList, elementType,
665                                                false, startIndex);
666        }
667      }
668      if (DeclType->isIncompleteArrayType()) {
669        // If this is an incomplete array type, the actual type needs to
670        // be calculated here
671        if (numElements == 0) {
672          // Sizing an array implicitly to zero is not allowed
673          // (It could in theory be allowed, but it doesn't really matter.)
674          Diag(IList->getLocStart(),
675               diag::err_at_least_one_initializer_needed_to_size_array);
676          hadError = true;
677        } else {
678          llvm::APSInt ConstVal(32);
679          ConstVal = numElements;
680          DeclType = Context.getConstantArrayType(elementType, ConstVal,
681                                                  ArrayType::Normal, 0);
682        }
683      }
684    } else {
685      assert(0 && "Aggregate that isn't a function or array?!");
686    }
687  } else {
688    // In C, all types are either scalars or aggregates, but
689    // additional handling is needed here for C++ (and possibly others?).
690    assert(0 && "Unsupported initializer type");
691  }
692
693  // If this init list is a base list, we set the type; an initializer doesn't
694  // fundamentally have a type, but this makes the ASTs a bit easier to read
695  if (topLevel)
696    IList->setType(DeclType);
697
698  if (topLevel && startIndex < IList->getNumInits()) {
699    // We have leftover initializers; warn
700    Diag(IList->getInit(startIndex)->getLocStart(),
701         diag::warn_excess_initializers,
702         IList->getInit(startIndex)->getSourceRange());
703  }
704  return hadError;
705}
706
707bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
708  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
709  // of unknown size ("[]") or an object type that is not a variable array type.
710  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
711    return Diag(VAT->getSizeExpr()->getLocStart(),
712                diag::err_variable_object_no_init,
713                VAT->getSizeExpr()->getSourceRange());
714
715  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
716  if (!InitList) {
717    // FIXME: Handle wide strings
718    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
719      return CheckStringLiteralInit(strLiteral, DeclType);
720
721    if (DeclType->isArrayType())
722      return Diag(Init->getLocStart(),
723                  diag::err_array_init_list_required,
724                  Init->getSourceRange());
725
726    return CheckSingleInitializer(Init, DeclType);
727  }
728  unsigned newIndex = 0;
729  return CheckInitializerListTypes(InitList, DeclType, true, newIndex);
730}
731
732Sema::DeclTy *
733Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
734  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
735  IdentifierInfo *II = D.getIdentifier();
736
737  // All of these full declarators require an identifier.  If it doesn't have
738  // one, the ParsedFreeStandingDeclSpec action should be used.
739  if (II == 0) {
740    Diag(D.getDeclSpec().getSourceRange().getBegin(),
741         diag::err_declarator_need_ident,
742         D.getDeclSpec().getSourceRange(), D.getSourceRange());
743    return 0;
744  }
745
746  // The scope passed in may not be a decl scope.  Zip up the scope tree until
747  // we find one that is.
748  while ((S->getFlags() & Scope::DeclScope) == 0)
749    S = S->getParent();
750
751  // See if this is a redefinition of a variable in the same scope.
752  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
753  ScopedDecl *New;
754  bool InvalidDecl = false;
755
756  // In C++, the previous declaration we find might be a tag type
757  // (class or enum). In this case, the new declaration will hide the
758  // tag type.
759  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
760    PrevDecl = 0;
761
762  QualType R = GetTypeForDeclarator(D, S);
763  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
764
765  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
766    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
767    if (!NewTD) return 0;
768
769    // Handle attributes prior to checking for duplicates in MergeVarDecl
770    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
771                         D.getAttributes());
772    // Merge the decl with the existing one if appropriate. If the decl is
773    // in an outer scope, it isn't the same thing.
774    if (PrevDecl && S->isDeclScope(PrevDecl)) {
775      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
776      if (NewTD == 0) return 0;
777    }
778    New = NewTD;
779    if (S->getParent() == 0) {
780      // C99 6.7.7p2: If a typedef name specifies a variably modified type
781      // then it shall have block scope.
782      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
783        // FIXME: Diagnostic needs to be fixed.
784        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
785        InvalidDecl = true;
786      }
787    }
788  } else if (R.getTypePtr()->isFunctionType()) {
789    FunctionDecl::StorageClass SC = FunctionDecl::None;
790    switch (D.getDeclSpec().getStorageClassSpec()) {
791      default: assert(0 && "Unknown storage class!");
792      case DeclSpec::SCS_auto:
793      case DeclSpec::SCS_register:
794        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
795             R.getAsString());
796        InvalidDecl = true;
797        break;
798      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
799      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
800      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
801      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
802    }
803
804    bool isInline = D.getDeclSpec().isInlineSpecified();
805    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
806                                               D.getIdentifierLoc(),
807                                               II, R, SC, isInline,
808                                               LastDeclarator);
809    // Handle attributes.
810    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
811                         D.getAttributes());
812
813    // Copy the parameter declarations from the declarator D to
814    // the function declaration NewFD, if they are available.
815    if (D.getNumTypeObjects() > 0 &&
816        D.getTypeObject(0).Fun.hasPrototype) {
817      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
818
819      // Create Decl objects for each parameter, adding them to the
820      // FunctionDecl.
821      llvm::SmallVector<ParmVarDecl*, 16> Params;
822
823      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
824      // function that takes no arguments, not a function that takes a
825      // single void argument.
826      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
827          FTI.ArgInfo[0].Param &&
828          !((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType().getCVRQualifiers() &&
829          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
830        // empty arg list, don't push any params.
831        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
832
833        // In C++, the empty parameter-type-list must be spelled "void"; a
834        // typedef of void is not permitted.
835        if (getLangOptions().CPlusPlus &&
836            Param->getType() != Context.VoidTy) {
837          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
838        }
839
840      } else {
841        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
842          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
843      }
844
845      NewFD->setParams(&Params[0], Params.size());
846    }
847
848    // Merge the decl with the existing one if appropriate. Since C functions
849    // are in a flat namespace, make sure we consider decls in outer scopes.
850    if (PrevDecl) {
851      NewFD = MergeFunctionDecl(NewFD, PrevDecl);
852      if (NewFD == 0) return 0;
853    }
854    New = NewFD;
855
856    // In C++, check default arguments now that we have merged decls.
857    if (getLangOptions().CPlusPlus)
858      CheckCXXDefaultArguments(NewFD);
859  } else {
860    if (R.getTypePtr()->isObjCInterfaceType()) {
861      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
862           D.getIdentifier()->getName());
863      InvalidDecl = true;
864    }
865
866    VarDecl *NewVD;
867    VarDecl::StorageClass SC;
868    switch (D.getDeclSpec().getStorageClassSpec()) {
869    default: assert(0 && "Unknown storage class!");
870    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
871    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
872    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
873    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
874    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
875    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
876    }
877    if (S->getParent() == 0) {
878      // C99 6.9p2: The storage-class specifiers auto and register shall not
879      // appear in the declaration specifiers in an external declaration.
880      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
881        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
882             R.getAsString());
883        InvalidDecl = true;
884      }
885      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
886                              II, R, SC, LastDeclarator);
887    } else {
888      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
889                              II, R, SC, LastDeclarator);
890    }
891    // Handle attributes prior to checking for duplicates in MergeVarDecl
892    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
893                         D.getAttributes());
894
895    // Emit an error if an address space was applied to decl with local storage.
896    // This includes arrays of objects with address space qualifiers, but not
897    // automatic variables that point to other address spaces.
898    // ISO/IEC TR 18037 S5.1.2
899    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
900      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
901      InvalidDecl = true;
902    }
903    // Merge the decl with the existing one if appropriate. If the decl is
904    // in an outer scope, it isn't the same thing.
905    if (PrevDecl && S->isDeclScope(PrevDecl)) {
906      NewVD = MergeVarDecl(NewVD, PrevDecl);
907      if (NewVD == 0) return 0;
908    }
909    New = NewVD;
910  }
911
912  // If this has an identifier, add it to the scope stack.
913  if (II)
914    PushOnScopeChains(New, S);
915  // If any semantic error occurred, mark the decl as invalid.
916  if (D.getInvalidType() || InvalidDecl)
917    New->setInvalidDecl();
918
919  return New;
920}
921
922bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
923  SourceLocation loc;
924  // FIXME: Remove the isReference check and handle assignment to a reference.
925  if (!DclT->isReferenceType() && !Init->isConstantExpr(Context, &loc)) {
926    assert(loc.isValid() && "isConstantExpr didn't return a loc!");
927    Diag(loc, diag::err_init_element_not_constant, Init->getSourceRange());
928    return true;
929  }
930  return false;
931}
932
933void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
934  Decl *RealDecl = static_cast<Decl *>(dcl);
935  Expr *Init = static_cast<Expr *>(init);
936  assert(Init && "missing initializer");
937
938  // If there is no declaration, there was an error parsing it.  Just ignore
939  // the initializer.
940  if (RealDecl == 0) {
941    delete Init;
942    return;
943  }
944
945  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
946  if (!VDecl) {
947    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
948         diag::err_illegal_initializer);
949    RealDecl->setInvalidDecl();
950    return;
951  }
952  // Get the decls type and save a reference for later, since
953  // CheckInitializerTypes may change it.
954  QualType DclT = VDecl->getType(), SavT = DclT;
955  if (VDecl->isBlockVarDecl()) {
956    VarDecl::StorageClass SC = VDecl->getStorageClass();
957    if (SC == VarDecl::Extern) { // C99 6.7.8p5
958      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
959      VDecl->setInvalidDecl();
960    } else if (!VDecl->isInvalidDecl()) {
961      if (CheckInitializerTypes(Init, DclT))
962        VDecl->setInvalidDecl();
963      if (SC == VarDecl::Static) // C99 6.7.8p4.
964        CheckForConstantInitializer(Init, DclT);
965    }
966  } else if (VDecl->isFileVarDecl()) {
967    if (VDecl->getStorageClass() == VarDecl::Extern)
968      Diag(VDecl->getLocation(), diag::warn_extern_init);
969    if (!VDecl->isInvalidDecl())
970      if (CheckInitializerTypes(Init, DclT))
971        VDecl->setInvalidDecl();
972
973    // C99 6.7.8p4. All file scoped initializers need to be constant.
974    CheckForConstantInitializer(Init, DclT);
975  }
976  // If the type changed, it means we had an incomplete type that was
977  // completed by the initializer. For example:
978  //   int ary[] = { 1, 3, 5 };
979  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
980  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
981    VDecl->setType(DclT);
982    Init->setType(DclT);
983  }
984
985  // Attach the initializer to the decl.
986  VDecl->setInit(Init);
987  return;
988}
989
990/// The declarators are chained together backwards, reverse the list.
991Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
992  // Often we have single declarators, handle them quickly.
993  Decl *GroupDecl = static_cast<Decl*>(group);
994  if (GroupDecl == 0)
995    return 0;
996
997  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
998  ScopedDecl *NewGroup = 0;
999  if (Group->getNextDeclarator() == 0)
1000    NewGroup = Group;
1001  else { // reverse the list.
1002    while (Group) {
1003      ScopedDecl *Next = Group->getNextDeclarator();
1004      Group->setNextDeclarator(NewGroup);
1005      NewGroup = Group;
1006      Group = Next;
1007    }
1008  }
1009  // Perform semantic analysis that depends on having fully processed both
1010  // the declarator and initializer.
1011  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1012    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1013    if (!IDecl)
1014      continue;
1015    QualType T = IDecl->getType();
1016
1017    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1018    // static storage duration, it shall not have a variable length array.
1019    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1020        IDecl->getStorageClass() == VarDecl::Static) {
1021      if (T->getAsVariableArrayType()) {
1022        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1023        IDecl->setInvalidDecl();
1024      }
1025    }
1026    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1027    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1028    if (IDecl->isBlockVarDecl() &&
1029        IDecl->getStorageClass() != VarDecl::Extern) {
1030      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1031        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1032             T.getAsString());
1033        IDecl->setInvalidDecl();
1034      }
1035    }
1036    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1037    // object that has file scope without an initializer, and without a
1038    // storage-class specifier or with the storage-class specifier "static",
1039    // constitutes a tentative definition. Note: A tentative definition with
1040    // external linkage is valid (C99 6.2.2p5).
1041    if (IDecl && !IDecl->getInit() &&
1042        (IDecl->getStorageClass() == VarDecl::Static ||
1043         IDecl->getStorageClass() == VarDecl::None)) {
1044      if (T->isIncompleteArrayType()) {
1045        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1046        // array to be completed. Don't issue a diagnostic.
1047      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1048        // C99 6.9.2p3: If the declaration of an identifier for an object is
1049        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1050        // declared type shall not be an incomplete type.
1051        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1052             T.getAsString());
1053        IDecl->setInvalidDecl();
1054      }
1055    }
1056  }
1057  return NewGroup;
1058}
1059
1060/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1061/// to introduce parameters into function prototype scope.
1062Sema::DeclTy *
1063Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1064  DeclSpec &DS = D.getDeclSpec();
1065
1066  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1067  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1068      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1069    Diag(DS.getStorageClassSpecLoc(),
1070         diag::err_invalid_storage_class_in_func_decl);
1071    DS.ClearStorageClassSpecs();
1072  }
1073  if (DS.isThreadSpecified()) {
1074    Diag(DS.getThreadSpecLoc(),
1075         diag::err_invalid_storage_class_in_func_decl);
1076    DS.ClearStorageClassSpecs();
1077  }
1078
1079
1080  // In this context, we *do not* check D.getInvalidType(). If the declarator
1081  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1082  // though it will not reflect the user specified type.
1083  QualType parmDeclType = GetTypeForDeclarator(D, S);
1084
1085  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1086
1087  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1088  // Can this happen for params?  We already checked that they don't conflict
1089  // among each other.  Here they can only shadow globals, which is ok.
1090  IdentifierInfo *II = D.getIdentifier();
1091  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1092    if (S->isDeclScope(PrevDecl)) {
1093      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1094           dyn_cast<NamedDecl>(PrevDecl)->getName());
1095
1096      // Recover by removing the name
1097      II = 0;
1098      D.SetIdentifier(0, D.getIdentifierLoc());
1099    }
1100  }
1101
1102  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1103  // Doing the promotion here has a win and a loss. The win is the type for
1104  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1105  // code generator). The loss is the orginal type isn't preserved. For example:
1106  //
1107  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1108  //    int blockvardecl[5];
1109  //    sizeof(parmvardecl);  // size == 4
1110  //    sizeof(blockvardecl); // size == 20
1111  // }
1112  //
1113  // For expressions, all implicit conversions are captured using the
1114  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1115  //
1116  // FIXME: If a source translation tool needs to see the original type, then
1117  // we need to consider storing both types (in ParmVarDecl)...
1118  //
1119  if (parmDeclType->isArrayType()) {
1120    // int x[restrict 4] ->  int *restrict
1121    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1122  } else if (parmDeclType->isFunctionType())
1123    parmDeclType = Context.getPointerType(parmDeclType);
1124
1125  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1126                                         D.getIdentifierLoc(), II,
1127                                         parmDeclType, VarDecl::None,
1128                                         0, 0);
1129
1130  if (D.getInvalidType())
1131    New->setInvalidDecl();
1132
1133  if (II)
1134    PushOnScopeChains(New, S);
1135
1136  HandleDeclAttributes(New, D.getAttributes(), 0);
1137  return New;
1138
1139}
1140
1141Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1142  assert(CurFunctionDecl == 0 && "Function parsing confused");
1143  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1144         "Not a function declarator!");
1145  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1146
1147  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1148  // for a K&R function.
1149  if (!FTI.hasPrototype) {
1150    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1151      if (FTI.ArgInfo[i].Param == 0) {
1152        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1153             FTI.ArgInfo[i].Ident->getName());
1154        // Implicitly declare the argument as type 'int' for lack of a better
1155        // type.
1156        DeclSpec DS;
1157        const char* PrevSpec; // unused
1158        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1159                           PrevSpec);
1160        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1161        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1162        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1163      }
1164    }
1165
1166    // Since this is a function definition, act as though we have information
1167    // about the arguments.
1168    if (FTI.NumArgs)
1169      FTI.hasPrototype = true;
1170  } else {
1171    // FIXME: Diagnose arguments without names in C.
1172  }
1173
1174  Scope *GlobalScope = FnBodyScope->getParent();
1175
1176  // See if this is a redefinition.
1177  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1178                             GlobalScope);
1179  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(PrevDcl)) {
1180    if (FD->getBody()) {
1181      Diag(D.getIdentifierLoc(), diag::err_redefinition,
1182           D.getIdentifier()->getName());
1183      Diag(FD->getLocation(), diag::err_previous_definition);
1184    }
1185  }
1186  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1187  FunctionDecl *FD = cast<FunctionDecl>(decl);
1188  CurFunctionDecl = FD;
1189  PushDeclContext(FD);
1190
1191  // Check the validity of our function parameters
1192  CheckParmsForFunctionDef(FD);
1193
1194  // Introduce our parameters into the function scope
1195  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1196    ParmVarDecl *Param = FD->getParamDecl(p);
1197    // If this has an identifier, add it to the scope stack.
1198    if (Param->getIdentifier())
1199      PushOnScopeChains(Param, FnBodyScope);
1200  }
1201
1202  return FD;
1203}
1204
1205Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1206  Decl *dcl = static_cast<Decl *>(D);
1207  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1208    FD->setBody((Stmt*)Body);
1209    assert(FD == CurFunctionDecl && "Function parsing confused");
1210    CurFunctionDecl = 0;
1211  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1212    MD->setBody((Stmt*)Body);
1213    CurMethodDecl = 0;
1214  }
1215  PopDeclContext();
1216  // Verify and clean out per-function state.
1217
1218  // Check goto/label use.
1219  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1220       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1221    // Verify that we have no forward references left.  If so, there was a goto
1222    // or address of a label taken, but no definition of it.  Label fwd
1223    // definitions are indicated with a null substmt.
1224    if (I->second->getSubStmt() == 0) {
1225      LabelStmt *L = I->second;
1226      // Emit error.
1227      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1228
1229      // At this point, we have gotos that use the bogus label.  Stitch it into
1230      // the function body so that they aren't leaked and that the AST is well
1231      // formed.
1232      if (Body) {
1233        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1234        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1235      } else {
1236        // The whole function wasn't parsed correctly, just delete this.
1237        delete L;
1238      }
1239    }
1240  }
1241  LabelMap.clear();
1242
1243  return D;
1244}
1245
1246/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1247/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1248ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1249                                           IdentifierInfo &II, Scope *S) {
1250  if (getLangOptions().C99)  // Extension in C99.
1251    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1252  else  // Legal in C90, but warn about it.
1253    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1254
1255  // FIXME: handle stuff like:
1256  // void foo() { extern float X(); }
1257  // void bar() { X(); }  <-- implicit decl for X in another scope.
1258
1259  // Set a Declarator for the implicit definition: int foo();
1260  const char *Dummy;
1261  DeclSpec DS;
1262  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1263  Error = Error; // Silence warning.
1264  assert(!Error && "Error setting up implicit decl!");
1265  Declarator D(DS, Declarator::BlockContext);
1266  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1267  D.SetIdentifier(&II, Loc);
1268
1269  // Find translation-unit scope to insert this function into.
1270  if (Scope *FnS = S->getFnParent())
1271    S = FnS->getParent();   // Skip all scopes in a function at once.
1272  while (S->getParent())
1273    S = S->getParent();
1274
1275  FunctionDecl *FD =
1276    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(S, D, 0)));
1277  FD->setImplicit();
1278  return FD;
1279}
1280
1281
1282TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1283                                    ScopedDecl *LastDeclarator) {
1284  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1285  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1286
1287  // Scope manipulation handled by caller.
1288  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1289                                           D.getIdentifierLoc(),
1290                                           D.getIdentifier(),
1291                                           T, LastDeclarator);
1292  if (D.getInvalidType())
1293    NewTD->setInvalidDecl();
1294  return NewTD;
1295}
1296
1297/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1298/// former case, Name will be non-null.  In the later case, Name will be null.
1299/// TagType indicates what kind of tag this is. TK indicates whether this is a
1300/// reference/declaration/definition of a tag.
1301Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1302                             SourceLocation KWLoc, IdentifierInfo *Name,
1303                             SourceLocation NameLoc, AttributeList *Attr) {
1304  // If this is a use of an existing tag, it must have a name.
1305  assert((Name != 0 || TK == TK_Definition) &&
1306         "Nameless record must be a definition!");
1307
1308  Decl::Kind Kind;
1309  switch (TagType) {
1310  default: assert(0 && "Unknown tag type!");
1311  case DeclSpec::TST_struct: Kind = Decl::Struct; break;
1312  case DeclSpec::TST_union:  Kind = Decl::Union; break;
1313  case DeclSpec::TST_class:  Kind = Decl::Class; break;
1314  case DeclSpec::TST_enum:   Kind = Decl::Enum; break;
1315  }
1316
1317  // If this is a named struct, check to see if there was a previous forward
1318  // declaration or definition.
1319  if (TagDecl *PrevDecl =
1320          dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1321
1322    // If this is a use of a previous tag, or if the tag is already declared in
1323    // the same scope (so that the definition/declaration completes or
1324    // rementions the tag), reuse the decl.
1325    if (TK == TK_Reference || S->isDeclScope(PrevDecl)) {
1326      // Make sure that this wasn't declared as an enum and now used as a struct
1327      // or something similar.
1328      if (PrevDecl->getKind() != Kind) {
1329        Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1330        Diag(PrevDecl->getLocation(), diag::err_previous_use);
1331      }
1332
1333      // If this is a use or a forward declaration, we're good.
1334      if (TK != TK_Definition)
1335        return PrevDecl;
1336
1337      // Diagnose attempts to redefine a tag.
1338      if (PrevDecl->isDefinition()) {
1339        Diag(NameLoc, diag::err_redefinition, Name->getName());
1340        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1341        // If this is a redefinition, recover by making this struct be
1342        // anonymous, which will make any later references get the previous
1343        // definition.
1344        Name = 0;
1345      } else {
1346        // Okay, this is definition of a previously declared or referenced tag.
1347        // Move the location of the decl to be the definition site.
1348        PrevDecl->setLocation(NameLoc);
1349        return PrevDecl;
1350      }
1351    }
1352    // If we get here, this is a definition of a new struct type in a nested
1353    // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1354    // type.
1355  }
1356
1357  // If there is an identifier, use the location of the identifier as the
1358  // location of the decl, otherwise use the location of the struct/union
1359  // keyword.
1360  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1361
1362  // Otherwise, if this is the first time we've seen this tag, create the decl.
1363  TagDecl *New;
1364  switch (Kind) {
1365  default: assert(0 && "Unknown tag kind!");
1366  case Decl::Enum:
1367    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1368    // enum X { A, B, C } D;    D should chain to X.
1369    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1370    // If this is an undefined enum, warn.
1371    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1372    break;
1373  case Decl::Union:
1374  case Decl::Struct:
1375  case Decl::Class:
1376    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1377    // struct X { int A; } D;    D should chain to X.
1378    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1379    break;
1380  }
1381
1382  // If this has an identifier, add it to the scope stack.
1383  if (Name) {
1384    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1385    // we find one that is.
1386    while ((S->getFlags() & Scope::DeclScope) == 0)
1387      S = S->getParent();
1388
1389    // Add it to the decl chain.
1390    PushOnScopeChains(New, S);
1391  }
1392
1393  HandleDeclAttributes(New, Attr, 0);
1394  return New;
1395}
1396
1397/// ActOnField - Each field of a struct/union/class is passed into this in order
1398/// to create a FieldDecl object for it.
1399Sema::DeclTy *Sema::ActOnField(Scope *S,
1400                               SourceLocation DeclStart,
1401                               Declarator &D, ExprTy *BitfieldWidth) {
1402  IdentifierInfo *II = D.getIdentifier();
1403  Expr *BitWidth = (Expr*)BitfieldWidth;
1404  SourceLocation Loc = DeclStart;
1405  if (II) Loc = D.getIdentifierLoc();
1406
1407  // FIXME: Unnamed fields can be handled in various different ways, for
1408  // example, unnamed unions inject all members into the struct namespace!
1409
1410
1411  if (BitWidth) {
1412    // TODO: Validate.
1413    //printf("WARNING: BITFIELDS IGNORED!\n");
1414
1415    // 6.7.2.1p3
1416    // 6.7.2.1p4
1417
1418  } else {
1419    // Not a bitfield.
1420
1421    // validate II.
1422
1423  }
1424
1425  QualType T = GetTypeForDeclarator(D, S);
1426  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1427  bool InvalidDecl = false;
1428
1429  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1430  // than a variably modified type.
1431  if (T->isVariablyModifiedType()) {
1432    // FIXME: This diagnostic needs work
1433    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1434    InvalidDecl = true;
1435  }
1436  // FIXME: Chain fielddecls together.
1437  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1438
1439  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1440                       D.getAttributes());
1441
1442  if (D.getInvalidType() || InvalidDecl)
1443    NewFD->setInvalidDecl();
1444  return NewFD;
1445}
1446
1447/// TranslateIvarVisibility - Translate visibility from a token ID to an
1448///  AST enum value.
1449static ObjCIvarDecl::AccessControl
1450TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1451  switch (ivarVisibility) {
1452    case tok::objc_private: return ObjCIvarDecl::Private;
1453    case tok::objc_public: return ObjCIvarDecl::Public;
1454    case tok::objc_protected: return ObjCIvarDecl::Protected;
1455    case tok::objc_package: return ObjCIvarDecl::Package;
1456    default: assert(false && "Unknown visitibility kind");
1457  }
1458}
1459
1460/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1461/// in order to create an IvarDecl object for it.
1462Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1463                              SourceLocation DeclStart,
1464                              Declarator &D, ExprTy *BitfieldWidth,
1465                              tok::ObjCKeywordKind Visibility) {
1466  IdentifierInfo *II = D.getIdentifier();
1467  Expr *BitWidth = (Expr*)BitfieldWidth;
1468  SourceLocation Loc = DeclStart;
1469  if (II) Loc = D.getIdentifierLoc();
1470
1471  // FIXME: Unnamed fields can be handled in various different ways, for
1472  // example, unnamed unions inject all members into the struct namespace!
1473
1474
1475  if (BitWidth) {
1476    // TODO: Validate.
1477    //printf("WARNING: BITFIELDS IGNORED!\n");
1478
1479    // 6.7.2.1p3
1480    // 6.7.2.1p4
1481
1482  } else {
1483    // Not a bitfield.
1484
1485    // validate II.
1486
1487  }
1488
1489  QualType T = GetTypeForDeclarator(D, S);
1490  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1491  bool InvalidDecl = false;
1492
1493  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1494  // than a variably modified type.
1495  if (T->isVariablyModifiedType()) {
1496    // FIXME: This diagnostic needs work
1497    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1498    InvalidDecl = true;
1499  }
1500
1501  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1502
1503  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1504                       D.getAttributes());
1505
1506  if (D.getInvalidType() || InvalidDecl)
1507    NewID->setInvalidDecl();
1508  // If we have visibility info, make sure the AST is set accordingly.
1509  if (Visibility != tok::objc_not_keyword)
1510    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1511  return NewID;
1512}
1513
1514void Sema::ActOnFields(Scope* S,
1515                       SourceLocation RecLoc, DeclTy *RecDecl,
1516                       DeclTy **Fields, unsigned NumFields,
1517                       SourceLocation LBrac, SourceLocation RBrac) {
1518  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1519  assert(EnclosingDecl && "missing record or interface decl");
1520  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1521
1522  if (Record && Record->isDefinition()) {
1523    // Diagnose code like:
1524    //     struct S { struct S {} X; };
1525    // We discover this when we complete the outer S.  Reject and ignore the
1526    // outer S.
1527    Diag(Record->getLocation(), diag::err_nested_redefinition,
1528         Record->getKindName());
1529    Diag(RecLoc, diag::err_previous_definition);
1530    Record->setInvalidDecl();
1531    return;
1532  }
1533  // Verify that all the fields are okay.
1534  unsigned NumNamedMembers = 0;
1535  llvm::SmallVector<FieldDecl*, 32> RecFields;
1536  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1537
1538  for (unsigned i = 0; i != NumFields; ++i) {
1539
1540    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1541    assert(FD && "missing field decl");
1542
1543    // Remember all fields.
1544    RecFields.push_back(FD);
1545
1546    // Get the type for the field.
1547    Type *FDTy = FD->getType().getTypePtr();
1548
1549    // C99 6.7.2.1p2 - A field may not be a function type.
1550    if (FDTy->isFunctionType()) {
1551      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1552           FD->getName());
1553      FD->setInvalidDecl();
1554      EnclosingDecl->setInvalidDecl();
1555      continue;
1556    }
1557    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1558    if (FDTy->isIncompleteType()) {
1559      if (!Record) {  // Incomplete ivar type is always an error.
1560        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1561        FD->setInvalidDecl();
1562        EnclosingDecl->setInvalidDecl();
1563        continue;
1564      }
1565      if (i != NumFields-1 ||                   // ... that the last member ...
1566          Record->getKind() != Decl::Struct ||  // ... of a structure ...
1567          !FDTy->isArrayType()) {         //... may have incomplete array type.
1568        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1569        FD->setInvalidDecl();
1570        EnclosingDecl->setInvalidDecl();
1571        continue;
1572      }
1573      if (NumNamedMembers < 1) {  //... must have more than named member ...
1574        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1575             FD->getName());
1576        FD->setInvalidDecl();
1577        EnclosingDecl->setInvalidDecl();
1578        continue;
1579      }
1580      // Okay, we have a legal flexible array member at the end of the struct.
1581      if (Record)
1582        Record->setHasFlexibleArrayMember(true);
1583    }
1584    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1585    /// field of another structure or the element of an array.
1586    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1587      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1588        // If this is a member of a union, then entire union becomes "flexible".
1589        if (Record && Record->getKind() == Decl::Union) {
1590          Record->setHasFlexibleArrayMember(true);
1591        } else {
1592          // If this is a struct/class and this is not the last element, reject
1593          // it.  Note that GCC supports variable sized arrays in the middle of
1594          // structures.
1595          if (i != NumFields-1) {
1596            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1597                 FD->getName());
1598            FD->setInvalidDecl();
1599            EnclosingDecl->setInvalidDecl();
1600            continue;
1601          }
1602          // We support flexible arrays at the end of structs in other structs
1603          // as an extension.
1604          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1605               FD->getName());
1606          if (Record)
1607            Record->setHasFlexibleArrayMember(true);
1608        }
1609      }
1610    }
1611    /// A field cannot be an Objective-c object
1612    if (FDTy->isObjCInterfaceType()) {
1613      Diag(FD->getLocation(), diag::err_statically_allocated_object,
1614           FD->getName());
1615      FD->setInvalidDecl();
1616      EnclosingDecl->setInvalidDecl();
1617      continue;
1618    }
1619    // Keep track of the number of named members.
1620    if (IdentifierInfo *II = FD->getIdentifier()) {
1621      // Detect duplicate member names.
1622      if (!FieldIDs.insert(II)) {
1623        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
1624        // Find the previous decl.
1625        SourceLocation PrevLoc;
1626        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
1627          assert(i != e && "Didn't find previous def!");
1628          if (RecFields[i]->getIdentifier() == II) {
1629            PrevLoc = RecFields[i]->getLocation();
1630            break;
1631          }
1632        }
1633        Diag(PrevLoc, diag::err_previous_definition);
1634        FD->setInvalidDecl();
1635        EnclosingDecl->setInvalidDecl();
1636        continue;
1637      }
1638      ++NumNamedMembers;
1639    }
1640  }
1641
1642  // Okay, we successfully defined 'Record'.
1643  if (Record) {
1644    Record->defineBody(&RecFields[0], RecFields.size());
1645    Consumer.HandleTagDeclDefinition(Record);
1646  } else {
1647    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
1648    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
1649      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
1650    else if (ObjCImplementationDecl *IMPDecl =
1651               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
1652      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
1653      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
1654      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
1655    }
1656  }
1657}
1658
1659Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
1660                                      DeclTy *lastEnumConst,
1661                                      SourceLocation IdLoc, IdentifierInfo *Id,
1662                                      SourceLocation EqualLoc, ExprTy *val) {
1663  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
1664  EnumConstantDecl *LastEnumConst =
1665    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
1666  Expr *Val = static_cast<Expr*>(val);
1667
1668  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1669  // we find one that is.
1670  while ((S->getFlags() & Scope::DeclScope) == 0)
1671    S = S->getParent();
1672
1673  // Verify that there isn't already something declared with this name in this
1674  // scope.
1675  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
1676    if (S->isDeclScope(PrevDecl)) {
1677      if (isa<EnumConstantDecl>(PrevDecl))
1678        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
1679      else
1680        Diag(IdLoc, diag::err_redefinition, Id->getName());
1681      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1682      delete Val;
1683      return 0;
1684    }
1685  }
1686
1687  llvm::APSInt EnumVal(32);
1688  QualType EltTy;
1689  if (Val) {
1690    // Make sure to promote the operand type to int.
1691    UsualUnaryConversions(Val);
1692
1693    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
1694    SourceLocation ExpLoc;
1695    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
1696      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
1697           Id->getName());
1698      delete Val;
1699      Val = 0;  // Just forget about it.
1700    } else {
1701      EltTy = Val->getType();
1702    }
1703  }
1704
1705  if (!Val) {
1706    if (LastEnumConst) {
1707      // Assign the last value + 1.
1708      EnumVal = LastEnumConst->getInitVal();
1709      ++EnumVal;
1710
1711      // Check for overflow on increment.
1712      if (EnumVal < LastEnumConst->getInitVal())
1713        Diag(IdLoc, diag::warn_enum_value_overflow);
1714
1715      EltTy = LastEnumConst->getType();
1716    } else {
1717      // First value, set to zero.
1718      EltTy = Context.IntTy;
1719      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
1720    }
1721  }
1722
1723  EnumConstantDecl *New =
1724    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
1725                             Val, EnumVal,
1726                             LastEnumConst);
1727
1728  // Register this decl in the current scope stack.
1729  PushOnScopeChains(New, S);
1730  return New;
1731}
1732
1733void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
1734                         DeclTy **Elements, unsigned NumElements) {
1735  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
1736  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
1737
1738  // TODO: If the result value doesn't fit in an int, it must be a long or long
1739  // long value.  ISO C does not support this, but GCC does as an extension,
1740  // emit a warning.
1741  unsigned IntWidth = Context.Target.getIntWidth();
1742
1743  // Verify that all the values are okay, compute the size of the values, and
1744  // reverse the list.
1745  unsigned NumNegativeBits = 0;
1746  unsigned NumPositiveBits = 0;
1747
1748  // Keep track of whether all elements have type int.
1749  bool AllElementsInt = true;
1750
1751  EnumConstantDecl *EltList = 0;
1752  for (unsigned i = 0; i != NumElements; ++i) {
1753    EnumConstantDecl *ECD =
1754      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1755    if (!ECD) continue;  // Already issued a diagnostic.
1756
1757    // If the enum value doesn't fit in an int, emit an extension warning.
1758    const llvm::APSInt &InitVal = ECD->getInitVal();
1759    assert(InitVal.getBitWidth() >= IntWidth &&
1760           "Should have promoted value to int");
1761    if (InitVal.getBitWidth() > IntWidth) {
1762      llvm::APSInt V(InitVal);
1763      V.trunc(IntWidth);
1764      V.extend(InitVal.getBitWidth());
1765      if (V != InitVal)
1766        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
1767             InitVal.toString());
1768    }
1769
1770    // Keep track of the size of positive and negative values.
1771    if (InitVal.isUnsigned() || InitVal.isNonNegative())
1772      NumPositiveBits = std::max(NumPositiveBits,
1773                                 (unsigned)InitVal.getActiveBits());
1774    else
1775      NumNegativeBits = std::max(NumNegativeBits,
1776                                 (unsigned)InitVal.getMinSignedBits());
1777
1778    // Keep track of whether every enum element has type int (very commmon).
1779    if (AllElementsInt)
1780      AllElementsInt = ECD->getType() == Context.IntTy;
1781
1782    ECD->setNextDeclarator(EltList);
1783    EltList = ECD;
1784  }
1785
1786  // Figure out the type that should be used for this enum.
1787  // FIXME: Support attribute(packed) on enums and -fshort-enums.
1788  QualType BestType;
1789  unsigned BestWidth;
1790
1791  if (NumNegativeBits) {
1792    // If there is a negative value, figure out the smallest integer type (of
1793    // int/long/longlong) that fits.
1794    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
1795      BestType = Context.IntTy;
1796      BestWidth = IntWidth;
1797    } else {
1798      BestWidth = Context.Target.getLongWidth();
1799
1800      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
1801        BestType = Context.LongTy;
1802      else {
1803        BestWidth = Context.Target.getLongLongWidth();
1804
1805        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
1806          Diag(Enum->getLocation(), diag::warn_enum_too_large);
1807        BestType = Context.LongLongTy;
1808      }
1809    }
1810  } else {
1811    // If there is no negative value, figure out which of uint, ulong, ulonglong
1812    // fits.
1813    if (NumPositiveBits <= IntWidth) {
1814      BestType = Context.UnsignedIntTy;
1815      BestWidth = IntWidth;
1816    } else if (NumPositiveBits <=
1817               (BestWidth = Context.Target.getLongWidth())) {
1818      BestType = Context.UnsignedLongTy;
1819    } else {
1820      BestWidth = Context.Target.getLongLongWidth();
1821      assert(NumPositiveBits <= BestWidth &&
1822             "How could an initializer get larger than ULL?");
1823      BestType = Context.UnsignedLongLongTy;
1824    }
1825  }
1826
1827  // Loop over all of the enumerator constants, changing their types to match
1828  // the type of the enum if needed.
1829  for (unsigned i = 0; i != NumElements; ++i) {
1830    EnumConstantDecl *ECD =
1831      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
1832    if (!ECD) continue;  // Already issued a diagnostic.
1833
1834    // Standard C says the enumerators have int type, but we allow, as an
1835    // extension, the enumerators to be larger than int size.  If each
1836    // enumerator value fits in an int, type it as an int, otherwise type it the
1837    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
1838    // that X has type 'int', not 'unsigned'.
1839    if (ECD->getType() == Context.IntTy) {
1840      // Make sure the init value is signed.
1841      llvm::APSInt IV = ECD->getInitVal();
1842      IV.setIsSigned(true);
1843      ECD->setInitVal(IV);
1844      continue;  // Already int type.
1845    }
1846
1847    // Determine whether the value fits into an int.
1848    llvm::APSInt InitVal = ECD->getInitVal();
1849    bool FitsInInt;
1850    if (InitVal.isUnsigned() || !InitVal.isNegative())
1851      FitsInInt = InitVal.getActiveBits() < IntWidth;
1852    else
1853      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
1854
1855    // If it fits into an integer type, force it.  Otherwise force it to match
1856    // the enum decl type.
1857    QualType NewTy;
1858    unsigned NewWidth;
1859    bool NewSign;
1860    if (FitsInInt) {
1861      NewTy = Context.IntTy;
1862      NewWidth = IntWidth;
1863      NewSign = true;
1864    } else if (ECD->getType() == BestType) {
1865      // Already the right type!
1866      continue;
1867    } else {
1868      NewTy = BestType;
1869      NewWidth = BestWidth;
1870      NewSign = BestType->isSignedIntegerType();
1871    }
1872
1873    // Adjust the APSInt value.
1874    InitVal.extOrTrunc(NewWidth);
1875    InitVal.setIsSigned(NewSign);
1876    ECD->setInitVal(InitVal);
1877
1878    // Adjust the Expr initializer and type.
1879    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
1880    ECD->setType(NewTy);
1881  }
1882
1883  Enum->defineElements(EltList, BestType);
1884  Consumer.HandleTagDeclDefinition(Enum);
1885}
1886
1887Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
1888                                          ExprTy *expr) {
1889  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
1890
1891  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
1892}
1893
1894Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
1895                                     SourceLocation LBrace,
1896                                     SourceLocation RBrace,
1897                                     const char *Lang,
1898                                     unsigned StrSize,
1899                                     DeclTy *D) {
1900  LinkageSpecDecl::LanguageIDs Language;
1901  Decl *dcl = static_cast<Decl *>(D);
1902  if (strncmp(Lang, "\"C\"", StrSize) == 0)
1903    Language = LinkageSpecDecl::lang_c;
1904  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
1905    Language = LinkageSpecDecl::lang_cxx;
1906  else {
1907    Diag(Loc, diag::err_bad_language);
1908    return 0;
1909  }
1910
1911  // FIXME: Add all the various semantics of linkage specifications
1912  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
1913}
1914
1915void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
1916
1917  switch (Attr->getKind()) {
1918  case AttributeList::AT_vector_size:
1919    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1920      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
1921      if (!newType.isNull()) // install the new vector type into the decl
1922        vDecl->setType(newType);
1923    }
1924    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1925      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
1926                                                   Attr);
1927      if (!newType.isNull()) // install the new vector type into the decl
1928        tDecl->setUnderlyingType(newType);
1929    }
1930    break;
1931  case AttributeList::AT_ocu_vector_type:
1932    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
1933      HandleOCUVectorTypeAttribute(tDecl, Attr);
1934    else
1935      Diag(Attr->getLoc(),
1936           diag::err_typecheck_ocu_vector_not_typedef);
1937    break;
1938  case AttributeList::AT_address_space:
1939    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
1940      QualType newType = HandleAddressSpaceTypeAttribute(
1941                                                  tDecl->getUnderlyingType(),
1942                                                  Attr);
1943      tDecl->setUnderlyingType(newType);
1944    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
1945      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
1946                                                         Attr);
1947      // install the new addr spaced type into the decl
1948      vDecl->setType(newType);
1949    }
1950    break;
1951  case AttributeList::AT_deprecated:
1952    HandleDeprecatedAttribute(New, Attr);
1953    break;
1954  case AttributeList::AT_visibility:
1955    HandleVisibilityAttribute(New, Attr);
1956    break;
1957  case AttributeList::AT_weak:
1958    HandleWeakAttribute(New, Attr);
1959    break;
1960  case AttributeList::AT_dllimport:
1961    HandleDLLImportAttribute(New, Attr);
1962    break;
1963  case AttributeList::AT_dllexport:
1964    HandleDLLExportAttribute(New, Attr);
1965    break;
1966  case AttributeList::AT_nothrow:
1967    HandleNothrowAttribute(New, Attr);
1968    break;
1969  case AttributeList::AT_stdcall:
1970    HandleStdCallAttribute(New, Attr);
1971    break;
1972  case AttributeList::AT_fastcall:
1973    HandleFastCallAttribute(New, Attr);
1974    break;
1975  case AttributeList::AT_aligned:
1976    HandleAlignedAttribute(New, Attr);
1977    break;
1978  case AttributeList::AT_packed:
1979    HandlePackedAttribute(New, Attr);
1980    break;
1981  case AttributeList::AT_annotate:
1982    HandleAnnotateAttribute(New, Attr);
1983    break;
1984  case AttributeList::AT_noreturn:
1985    HandleNoReturnAttribute(New, Attr);
1986    break;
1987  case AttributeList::AT_format:
1988    HandleFormatAttribute(New, Attr);
1989    break;
1990  default:
1991#if 0
1992    // TODO: when we have the full set of attributes, warn about unknown ones.
1993    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
1994         Attr->getName()->getName());
1995#endif
1996    break;
1997  }
1998}
1999
2000void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2001                                AttributeList *declarator_postfix) {
2002  while (declspec_prefix) {
2003    HandleDeclAttribute(New, declspec_prefix);
2004    declspec_prefix = declspec_prefix->getNext();
2005  }
2006  while (declarator_postfix) {
2007    HandleDeclAttribute(New, declarator_postfix);
2008    declarator_postfix = declarator_postfix->getNext();
2009  }
2010}
2011
2012void Sema::HandleOCUVectorTypeAttribute(TypedefDecl *tDecl,
2013                                        AttributeList *rawAttr) {
2014  QualType curType = tDecl->getUnderlyingType();
2015  // check the attribute arguments.
2016  if (rawAttr->getNumArgs() != 1) {
2017    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2018         std::string("1"));
2019    return;
2020  }
2021  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2022  llvm::APSInt vecSize(32);
2023  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2024    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2025         "ocu_vector_type", sizeExpr->getSourceRange());
2026    return;
2027  }
2028  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2029  // in conjunction with complex types (pointers, arrays, functions, etc.).
2030  Type *canonType = curType.getCanonicalType().getTypePtr();
2031  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2032    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2033         curType.getCanonicalType().getAsString());
2034    return;
2035  }
2036  // unlike gcc's vector_size attribute, the size is specified as the
2037  // number of elements, not the number of bytes.
2038  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2039
2040  if (vectorSize == 0) {
2041    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2042         sizeExpr->getSourceRange());
2043    return;
2044  }
2045  // Instantiate/Install the vector type, the number of elements is > 0.
2046  tDecl->setUnderlyingType(Context.getOCUVectorType(curType, vectorSize));
2047  // Remember this typedef decl, we will need it later for diagnostics.
2048  OCUVectorDecls.push_back(tDecl);
2049}
2050
2051QualType Sema::HandleVectorTypeAttribute(QualType curType,
2052                                         AttributeList *rawAttr) {
2053  // check the attribute arugments.
2054  if (rawAttr->getNumArgs() != 1) {
2055    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2056         std::string("1"));
2057    return QualType();
2058  }
2059  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2060  llvm::APSInt vecSize(32);
2061  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2062    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2063         "vector_size", sizeExpr->getSourceRange());
2064    return QualType();
2065  }
2066  // navigate to the base type - we need to provide for vector pointers,
2067  // vector arrays, and functions returning vectors.
2068  Type *canonType = curType.getCanonicalType().getTypePtr();
2069
2070  if (canonType->isPointerType() || canonType->isArrayType() ||
2071      canonType->isFunctionType()) {
2072    assert(0 && "HandleVector(): Complex type construction unimplemented");
2073    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2074        do {
2075          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2076            canonType = PT->getPointeeType().getTypePtr();
2077          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2078            canonType = AT->getElementType().getTypePtr();
2079          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2080            canonType = FT->getResultType().getTypePtr();
2081        } while (canonType->isPointerType() || canonType->isArrayType() ||
2082                 canonType->isFunctionType());
2083    */
2084  }
2085  // the base type must be integer or float.
2086  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2087    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2088         curType.getCanonicalType().getAsString());
2089    return QualType();
2090  }
2091  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2092  // vecSize is specified in bytes - convert to bits.
2093  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2094
2095  // the vector size needs to be an integral multiple of the type size.
2096  if (vectorSize % typeSize) {
2097    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2098         sizeExpr->getSourceRange());
2099    return QualType();
2100  }
2101  if (vectorSize == 0) {
2102    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2103         sizeExpr->getSourceRange());
2104    return QualType();
2105  }
2106  // Instantiate the vector type, the number of elements is > 0, and not
2107  // required to be a power of 2, unlike GCC.
2108  return Context.getVectorType(curType, vectorSize/typeSize);
2109}
2110
2111void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2112  // check the attribute arguments.
2113  if (rawAttr->getNumArgs() > 0) {
2114    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2115         std::string("0"));
2116    return;
2117  }
2118
2119  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2120    TD->addAttr(new PackedAttr);
2121  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2122    // If the alignment is less than or equal to 8 bits, the packed attribute
2123    // has no effect.
2124    if (Context.getTypeAlign(FD->getType()) <= 8)
2125      Diag(rawAttr->getLoc(),
2126           diag::warn_attribute_ignored_for_field_of_type,
2127           rawAttr->getName()->getName(), FD->getType().getAsString());
2128    else
2129      FD->addAttr(new PackedAttr);
2130  } else
2131    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2132         rawAttr->getName()->getName());
2133}
2134
2135void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2136  // check the attribute arguments.
2137  if (rawAttr->getNumArgs() != 0) {
2138    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2139         std::string("0"));
2140    return;
2141  }
2142
2143  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2144
2145  if (!Fn) {
2146    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2147         "noreturn", "function");
2148    return;
2149  }
2150
2151  d->addAttr(new NoReturnAttr());
2152}
2153
2154void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2155  // check the attribute arguments.
2156  if (rawAttr->getNumArgs() != 0) {
2157    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2158         std::string("0"));
2159    return;
2160  }
2161
2162  d->addAttr(new DeprecatedAttr());
2163}
2164
2165void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2166  // check the attribute arguments.
2167  if (rawAttr->getNumArgs() != 1) {
2168    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2169         std::string("1"));
2170    return;
2171  }
2172
2173  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2174  Arg = Arg->IgnoreParenCasts();
2175  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2176
2177  if (Str == 0 || Str->isWide()) {
2178    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2179         "visibility", std::string("1"));
2180    return;
2181  }
2182
2183  const char *TypeStr = Str->getStrData();
2184  unsigned TypeLen = Str->getByteLength();
2185  llvm::GlobalValue::VisibilityTypes type;
2186
2187  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2188    type = llvm::GlobalValue::DefaultVisibility;
2189  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2190    type = llvm::GlobalValue::HiddenVisibility;
2191  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2192    type = llvm::GlobalValue::HiddenVisibility; // FIXME
2193  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2194    type = llvm::GlobalValue::ProtectedVisibility;
2195  else {
2196    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2197           "visibility", TypeStr);
2198    return;
2199  }
2200
2201  d->addAttr(new VisibilityAttr(type));
2202}
2203
2204void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2205  // check the attribute arguments.
2206  if (rawAttr->getNumArgs() != 0) {
2207    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2208         std::string("0"));
2209    return;
2210  }
2211
2212  d->addAttr(new WeakAttr());
2213}
2214
2215void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2216  // check the attribute arguments.
2217  if (rawAttr->getNumArgs() != 0) {
2218    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2219         std::string("0"));
2220    return;
2221  }
2222
2223  d->addAttr(new DLLImportAttr());
2224}
2225
2226void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2227  // check the attribute arguments.
2228  if (rawAttr->getNumArgs() != 0) {
2229    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2230         std::string("0"));
2231    return;
2232  }
2233
2234  d->addAttr(new DLLExportAttr());
2235}
2236
2237void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2238  // check the attribute arguments.
2239  if (rawAttr->getNumArgs() != 0) {
2240    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2241         std::string("0"));
2242    return;
2243  }
2244
2245  d->addAttr(new StdCallAttr());
2246}
2247
2248void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2249  // check the attribute arguments.
2250  if (rawAttr->getNumArgs() != 0) {
2251    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2252         std::string("0"));
2253    return;
2254  }
2255
2256  d->addAttr(new FastCallAttr());
2257}
2258
2259void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2260  // check the attribute arguments.
2261  if (rawAttr->getNumArgs() != 0) {
2262    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2263         std::string("0"));
2264    return;
2265  }
2266
2267  d->addAttr(new NoThrowAttr());
2268}
2269
2270static const FunctionTypeProto *getFunctionProto(Decl *d) {
2271  ValueDecl *decl = dyn_cast<ValueDecl>(d);
2272  if (!decl) return 0;
2273
2274  QualType Ty = decl->getType();
2275
2276  if (Ty->isFunctionPointerType()) {
2277    const PointerType *PtrTy = Ty->getAsPointerType();
2278    Ty = PtrTy->getPointeeType();
2279  }
2280
2281  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2282    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2283
2284  return 0;
2285}
2286
2287
2288/// Handle __attribute__((format(type,idx,firstarg))) attributes
2289/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2290void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2291
2292  if (!rawAttr->getParameterName()) {
2293    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2294           "format", std::string("1"));
2295    return;
2296  }
2297
2298  if (rawAttr->getNumArgs() != 2) {
2299    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2300         std::string("3"));
2301    return;
2302  }
2303
2304  // GCC ignores the format attribute on K&R style function
2305  // prototypes, so we ignore it as well
2306  const FunctionTypeProto *proto = getFunctionProto(d);
2307
2308  if (!proto) {
2309    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2310           "format", "function");
2311    return;
2312  }
2313
2314  // FIXME: in C++ the implicit 'this' function parameter also counts.
2315  // this is needed in order to be compatible with GCC
2316  // the index must start in 1 and the limit is numargs+1
2317  unsigned NumArgs  = proto->getNumArgs();
2318  unsigned FirstIdx = 1;
2319
2320  const char *Format = rawAttr->getParameterName()->getName();
2321  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2322
2323  // Normalize the argument, __foo__ becomes foo.
2324  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2325      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2326    Format += 2;
2327    FormatLen -= 4;
2328  }
2329
2330  if (!((FormatLen == 5 && !memcmp(Format, "scanf", 5))
2331     || (FormatLen == 6 && !memcmp(Format, "printf", 6))
2332     || (FormatLen == 7 && !memcmp(Format, "strfmon", 7))
2333     || (FormatLen == 8 && !memcmp(Format, "strftime", 8)))) {
2334    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2335           "format", rawAttr->getParameterName()->getName());
2336    return;
2337  }
2338
2339  // checks for the 2nd argument
2340  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2341  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2342  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2343    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2344           "format", std::string("2"), IdxExpr->getSourceRange());
2345    return;
2346  }
2347
2348  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2349    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2350           "format", std::string("2"), IdxExpr->getSourceRange());
2351    return;
2352  }
2353
2354  // make sure the format string is really a string
2355  QualType Ty = proto->getArgType(Idx.getZExtValue()-1);
2356  if (!Ty->isPointerType() ||
2357      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2358    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2359         IdxExpr->getSourceRange());
2360    return;
2361  }
2362
2363
2364  // check the 3rd argument
2365  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2366  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2367  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2368    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2369           "format", std::string("3"), FirstArgExpr->getSourceRange());
2370    return;
2371  }
2372
2373  // check if the function is variadic if the 3rd argument non-zero
2374  if (FirstArg != 0) {
2375    if (proto->isVariadic()) {
2376      ++NumArgs; // +1 for ...
2377    } else {
2378      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2379      return;
2380    }
2381  }
2382
2383  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2384  // the input is just the current time + the format string
2385  if (FormatLen == 8 && !memcmp(Format, "strftime", 8)) {
2386    if (FirstArg != 0) {
2387      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2388             FirstArgExpr->getSourceRange());
2389      return;
2390    }
2391  // if 0 it disables parameter checking (to use with e.g. va_list)
2392  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2393    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2394           "format", std::string("3"), FirstArgExpr->getSourceRange());
2395    return;
2396  }
2397
2398  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2399                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2400}
2401
2402void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2403  // check the attribute arguments.
2404  if (rawAttr->getNumArgs() != 1) {
2405    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2406         std::string("1"));
2407    return;
2408  }
2409  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2410  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2411
2412  // Make sure that there is a string literal as the annotation's single
2413  // argument.
2414  if (!SE) {
2415    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2416    return;
2417  }
2418  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2419                                          SE->getByteLength())));
2420}
2421
2422void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2423{
2424  // check the attribute arguments.
2425  if (rawAttr->getNumArgs() > 1) {
2426    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2427         std::string("1"));
2428    return;
2429  }
2430
2431  unsigned Align = 0;
2432
2433  if (rawAttr->getNumArgs() == 0) {
2434    // FIXME: This should be the target specific maximum alignment.
2435    // (For now we just use 128 bits which is the maximum on X86.
2436    Align = 128;
2437    return;
2438  } else {
2439    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2440    llvm::APSInt alignment(32);
2441    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2442      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2443           "aligned", alignmentExpr->getSourceRange());
2444      return;
2445    }
2446
2447    Align = alignment.getZExtValue() * 8;
2448  }
2449
2450  d->addAttr(new AlignedAttr(Align));
2451}
2452