SemaDecl.cpp revision 9e2b9e01aeaf38e474da3acce29f2f751b727ad7
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/STLExtras.h"
33#include <algorithm>
34#include <functional>
35#include <queue>
36using namespace clang;
37
38/// getDeclName - Return a pretty name for the specified decl if possible, or
39/// an empty string if not.  This is used for pretty crash reporting.
40std::string Sema::getDeclName(DeclPtrTy d) {
41  Decl *D = d.getAs<Decl>();
42  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
43    return DN->getQualifiedNameAsString();
44  return "";
45}
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                                Scope *S, const CXXScopeSpec *SS) {
64  // C++ [temp.res]p3:
65  //   A qualified-id that refers to a type and in which the
66  //   nested-name-specifier depends on a template-parameter (14.6.2)
67  //   shall be prefixed by the keyword typename to indicate that the
68  //   qualified-id denotes a type, forming an
69  //   elaborated-type-specifier (7.1.5.3).
70  //
71  // We therefore do not perform any name lookup if the result would
72  // refer to a member of an unknown specialization.
73  if (SS && isUnknownSpecialization(*SS))
74    return 0;
75
76  LookupResult Result
77    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
78
79  NamedDecl *IIDecl = 0;
80  switch (Result.getKind()) {
81  case LookupResult::NotFound:
82  case LookupResult::FoundOverloaded:
83    return 0;
84
85  case LookupResult::AmbiguousBaseSubobjectTypes:
86  case LookupResult::AmbiguousBaseSubobjects:
87  case LookupResult::AmbiguousReference: {
88    // Look to see if we have a type anywhere in the list of results.
89    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
90         Res != ResEnd; ++Res) {
91      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
92        if (!IIDecl ||
93            (*Res)->getLocation().getRawEncoding() <
94              IIDecl->getLocation().getRawEncoding())
95          IIDecl = *Res;
96      }
97    }
98
99    if (!IIDecl) {
100      // None of the entities we found is a type, so there is no way
101      // to even assume that the result is a type. In this case, don't
102      // complain about the ambiguity. The parser will either try to
103      // perform this lookup again (e.g., as an object name), which
104      // will produce the ambiguity, or will complain that it expected
105      // a type name.
106      Result.Destroy();
107      return 0;
108    }
109
110    // We found a type within the ambiguous lookup; diagnose the
111    // ambiguity and then return that type. This might be the right
112    // answer, or it might not be, but it suppresses any attempt to
113    // perform the name lookup again.
114    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
115    break;
116  }
117
118  case LookupResult::Found:
119    IIDecl = Result.getAsDecl();
120    break;
121  }
122
123  if (IIDecl) {
124    QualType T;
125
126    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
127      // Check whether we can use this type
128      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
129
130      if (getLangOptions().CPlusPlus) {
131        // C++ [temp.local]p2:
132        //   Within the scope of a class template specialization or
133        //   partial specialization, when the injected-class-name is
134        //   not followed by a <, it is equivalent to the
135        //   injected-class-name followed by the template-argument s
136        //   of the class template specialization or partial
137        //   specialization enclosed in <>.
138        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
139          if (RD->isInjectedClassName())
140            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
141              T = Template->getInjectedClassNameType(Context);
142      }
143
144      if (T.isNull())
145        T = Context.getTypeDeclType(TD);
146    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
147      // Check whether we can use this interface.
148      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
149
150      T = Context.getObjCInterfaceType(IDecl);
151    } else
152      return 0;
153
154    if (SS)
155      T = getQualifiedNameType(*SS, T);
156
157    return T.getAsOpaquePtr();
158  }
159
160  return 0;
161}
162
163/// isTagName() - This method is called *for error recovery purposes only*
164/// to determine if the specified name is a valid tag name ("struct foo").  If
165/// so, this returns the TST for the tag corresponding to it (TST_enum,
166/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
167/// where the user forgot to specify the tag.
168DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
169  // Do a tag name lookup in this scope.
170  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
171  if (R.getKind() == LookupResult::Found)
172    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
173      switch (TD->getTagKind()) {
174      case TagDecl::TK_struct: return DeclSpec::TST_struct;
175      case TagDecl::TK_union:  return DeclSpec::TST_union;
176      case TagDecl::TK_class:  return DeclSpec::TST_class;
177      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
178      }
179    }
180
181  return DeclSpec::TST_unspecified;
182}
183
184
185// Determines the context to return to after temporarily entering a
186// context.  This depends in an unnecessarily complicated way on the
187// exact ordering of callbacks from the parser.
188DeclContext *Sema::getContainingDC(DeclContext *DC) {
189
190  // Functions defined inline within classes aren't parsed until we've
191  // finished parsing the top-level class, so the top-level class is
192  // the context we'll need to return to.
193  if (isa<FunctionDecl>(DC)) {
194    DC = DC->getLexicalParent();
195
196    // A function not defined within a class will always return to its
197    // lexical context.
198    if (!isa<CXXRecordDecl>(DC))
199      return DC;
200
201    // A C++ inline method/friend is parsed *after* the topmost class
202    // it was declared in is fully parsed ("complete");  the topmost
203    // class is the context we need to return to.
204    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
205      DC = RD;
206
207    // Return the declaration context of the topmost class the inline method is
208    // declared in.
209    return DC;
210  }
211
212  if (isa<ObjCMethodDecl>(DC))
213    return Context.getTranslationUnitDecl();
214
215  return DC->getLexicalParent();
216}
217
218void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
219  assert(getContainingDC(DC) == CurContext &&
220      "The next DeclContext should be lexically contained in the current one.");
221  CurContext = DC;
222  S->setEntity(DC);
223}
224
225void Sema::PopDeclContext() {
226  assert(CurContext && "DeclContext imbalance!");
227
228  CurContext = getContainingDC(CurContext);
229}
230
231/// EnterDeclaratorContext - Used when we must lookup names in the context
232/// of a declarator's nested name specifier.
233void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
234  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
235  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
236  CurContext = DC;
237  assert(CurContext && "No context?");
238  S->setEntity(CurContext);
239}
240
241void Sema::ExitDeclaratorContext(Scope *S) {
242  S->setEntity(PreDeclaratorDC);
243  PreDeclaratorDC = 0;
244
245  // Reset CurContext to the nearest enclosing context.
246  while (!S->getEntity() && S->getParent())
247    S = S->getParent();
248  CurContext = static_cast<DeclContext*>(S->getEntity());
249  assert(CurContext && "No context?");
250}
251
252/// \brief Determine whether we allow overloading of the function
253/// PrevDecl with another declaration.
254///
255/// This routine determines whether overloading is possible, not
256/// whether some new function is actually an overload. It will return
257/// true in C++ (where we can always provide overloads) or, as an
258/// extension, in C when the previous function is already an
259/// overloaded function declaration or has the "overloadable"
260/// attribute.
261static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
262  if (Context.getLangOptions().CPlusPlus)
263    return true;
264
265  if (isa<OverloadedFunctionDecl>(PrevDecl))
266    return true;
267
268  return PrevDecl->getAttr<OverloadableAttr>() != 0;
269}
270
271/// Add this decl to the scope shadowed decl chains.
272void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
273  // Move up the scope chain until we find the nearest enclosing
274  // non-transparent context. The declaration will be introduced into this
275  // scope.
276  while (S->getEntity() &&
277         ((DeclContext *)S->getEntity())->isTransparentContext())
278    S = S->getParent();
279
280  S->AddDecl(DeclPtrTy::make(D));
281
282  // Add scoped declarations into their context, so that they can be
283  // found later. Declarations without a context won't be inserted
284  // into any context.
285  CurContext->addDecl(D);
286
287  // C++ [basic.scope]p4:
288  //   -- exactly one declaration shall declare a class name or
289  //   enumeration name that is not a typedef name and the other
290  //   declarations shall all refer to the same object or
291  //   enumerator, or all refer to functions and function templates;
292  //   in this case the class name or enumeration name is hidden.
293  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
294    // We are pushing the name of a tag (enum or class).
295    if (CurContext->getLookupContext()
296          == TD->getDeclContext()->getLookupContext()) {
297      // We're pushing the tag into the current context, which might
298      // require some reshuffling in the identifier resolver.
299      IdentifierResolver::iterator
300        I = IdResolver.begin(TD->getDeclName()),
301        IEnd = IdResolver.end();
302      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
303        NamedDecl *PrevDecl = *I;
304        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
305             PrevDecl = *I, ++I) {
306          if (TD->declarationReplaces(*I)) {
307            // This is a redeclaration. Remove it from the chain and
308            // break out, so that we'll add in the shadowed
309            // declaration.
310            S->RemoveDecl(DeclPtrTy::make(*I));
311            if (PrevDecl == *I) {
312              IdResolver.RemoveDecl(*I);
313              IdResolver.AddDecl(TD);
314              return;
315            } else {
316              IdResolver.RemoveDecl(*I);
317              break;
318            }
319          }
320        }
321
322        // There is already a declaration with the same name in the same
323        // scope, which is not a tag declaration. It must be found
324        // before we find the new declaration, so insert the new
325        // declaration at the end of the chain.
326        IdResolver.AddShadowedDecl(TD, PrevDecl);
327
328        return;
329      }
330    }
331  } else if ((isa<FunctionDecl>(D) &&
332              AllowOverloadingOfFunction(D, Context)) ||
333             isa<FunctionTemplateDecl>(D)) {
334    // We are pushing the name of a function or function template,
335    // which might be an overloaded name.
336    IdentifierResolver::iterator Redecl
337      = std::find_if(IdResolver.begin(D->getDeclName()),
338                     IdResolver.end(),
339                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
340                                  D));
341    if (Redecl != IdResolver.end() &&
342        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
343      // There is already a declaration of a function on our
344      // IdResolver chain. Replace it with this declaration.
345      S->RemoveDecl(DeclPtrTy::make(*Redecl));
346      IdResolver.RemoveDecl(*Redecl);
347    }
348  } else if (isa<ObjCInterfaceDecl>(D)) {
349    // We're pushing an Objective-C interface into the current
350    // context. If there is already an alias declaration, remove it first.
351    for (IdentifierResolver::iterator
352           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
353         I != IEnd; ++I) {
354      if (isa<ObjCCompatibleAliasDecl>(*I)) {
355        S->RemoveDecl(DeclPtrTy::make(*I));
356        IdResolver.RemoveDecl(*I);
357        break;
358      }
359    }
360  }
361
362  IdResolver.AddDecl(D);
363}
364
365void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
366  if (S->decl_empty()) return;
367  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
368	 "Scope shouldn't contain decls!");
369
370  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
371       I != E; ++I) {
372    Decl *TmpD = (*I).getAs<Decl>();
373    assert(TmpD && "This decl didn't get pushed??");
374
375    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
376    NamedDecl *D = cast<NamedDecl>(TmpD);
377
378    if (!D->getDeclName()) continue;
379
380    // Remove this name from our lexical scope.
381    IdResolver.RemoveDecl(D);
382  }
383}
384
385/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
386/// return 0 if one not found.
387ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
388  // The third "scope" argument is 0 since we aren't enabling lazy built-in
389  // creation from this context.
390  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
391
392  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
393}
394
395/// getNonFieldDeclScope - Retrieves the innermost scope, starting
396/// from S, where a non-field would be declared. This routine copes
397/// with the difference between C and C++ scoping rules in structs and
398/// unions. For example, the following code is well-formed in C but
399/// ill-formed in C++:
400/// @code
401/// struct S6 {
402///   enum { BAR } e;
403/// };
404///
405/// void test_S6() {
406///   struct S6 a;
407///   a.e = BAR;
408/// }
409/// @endcode
410/// For the declaration of BAR, this routine will return a different
411/// scope. The scope S will be the scope of the unnamed enumeration
412/// within S6. In C++, this routine will return the scope associated
413/// with S6, because the enumeration's scope is a transparent
414/// context but structures can contain non-field names. In C, this
415/// routine will return the translation unit scope, since the
416/// enumeration's scope is a transparent context and structures cannot
417/// contain non-field names.
418Scope *Sema::getNonFieldDeclScope(Scope *S) {
419  while (((S->getFlags() & Scope::DeclScope) == 0) ||
420         (S->getEntity() &&
421          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
422         (S->isClassScope() && !getLangOptions().CPlusPlus))
423    S = S->getParent();
424  return S;
425}
426
427void Sema::InitBuiltinVaListType() {
428  if (!Context.getBuiltinVaListType().isNull())
429    return;
430
431  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
432  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
433  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
434  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
435}
436
437/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
438/// file scope.  lazily create a decl for it. ForRedeclaration is true
439/// if we're creating this built-in in anticipation of redeclaring the
440/// built-in.
441NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
442                                     Scope *S, bool ForRedeclaration,
443                                     SourceLocation Loc) {
444  Builtin::ID BID = (Builtin::ID)bid;
445
446  if (Context.BuiltinInfo.hasVAListUse(BID))
447    InitBuiltinVaListType();
448
449  ASTContext::GetBuiltinTypeError Error;
450  QualType R = Context.GetBuiltinType(BID, Error);
451  switch (Error) {
452  case ASTContext::GE_None:
453    // Okay
454    break;
455
456  case ASTContext::GE_Missing_stdio:
457    if (ForRedeclaration)
458      Diag(Loc, diag::err_implicit_decl_requires_stdio)
459        << Context.BuiltinInfo.GetName(BID);
460    return 0;
461
462  case ASTContext::GE_Missing_setjmp:
463    if (ForRedeclaration)
464      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
465        << Context.BuiltinInfo.GetName(BID);
466    return 0;
467  }
468
469  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
470    Diag(Loc, diag::ext_implicit_lib_function_decl)
471      << Context.BuiltinInfo.GetName(BID)
472      << R;
473    if (Context.BuiltinInfo.getHeaderName(BID) &&
474        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
475          != Diagnostic::Ignored)
476      Diag(Loc, diag::note_please_include_header)
477        << Context.BuiltinInfo.getHeaderName(BID)
478        << Context.BuiltinInfo.GetName(BID);
479  }
480
481  FunctionDecl *New = FunctionDecl::Create(Context,
482                                           Context.getTranslationUnitDecl(),
483                                           Loc, II, R, /*DInfo=*/0,
484                                           FunctionDecl::Extern, false,
485                                           /*hasPrototype=*/true);
486  New->setImplicit();
487
488  // Create Decl objects for each parameter, adding them to the
489  // FunctionDecl.
490  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
491    llvm::SmallVector<ParmVarDecl*, 16> Params;
492    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
493      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
494                                           FT->getArgType(i), /*DInfo=*/0,
495                                           VarDecl::None, 0));
496    New->setParams(Context, Params.data(), Params.size());
497  }
498
499  AddKnownFunctionAttributes(New);
500
501  // TUScope is the translation-unit scope to insert this function into.
502  // FIXME: This is hideous. We need to teach PushOnScopeChains to
503  // relate Scopes to DeclContexts, and probably eliminate CurContext
504  // entirely, but we're not there yet.
505  DeclContext *SavedContext = CurContext;
506  CurContext = Context.getTranslationUnitDecl();
507  PushOnScopeChains(New, TUScope);
508  CurContext = SavedContext;
509  return New;
510}
511
512/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
513/// everything from the standard library is defined.
514NamespaceDecl *Sema::GetStdNamespace() {
515  if (!StdNamespace) {
516    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
517    DeclContext *Global = Context.getTranslationUnitDecl();
518    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
519    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
520  }
521  return StdNamespace;
522}
523
524/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
525/// same name and scope as a previous declaration 'Old'.  Figure out
526/// how to resolve this situation, merging decls or emitting
527/// diagnostics as appropriate. If there was an error, set New to be invalid.
528///
529void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
530  // If either decl is known invalid already, set the new one to be invalid and
531  // don't bother doing any merging checks.
532  if (New->isInvalidDecl() || OldD->isInvalidDecl())
533    return New->setInvalidDecl();
534
535  // Allow multiple definitions for ObjC built-in typedefs.
536  // FIXME: Verify the underlying types are equivalent!
537  if (getLangOptions().ObjC1) {
538    const IdentifierInfo *TypeID = New->getIdentifier();
539    switch (TypeID->getLength()) {
540    default: break;
541    case 2:
542      if (!TypeID->isStr("id"))
543        break;
544      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
545      // Install the built-in type for 'id', ignoring the current definition.
546      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
547      return;
548    case 5:
549      if (!TypeID->isStr("Class"))
550        break;
551      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
552      // Install the built-in type for 'Class', ignoring the current definition.
553      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
554      return;
555    case 3:
556      if (!TypeID->isStr("SEL"))
557        break;
558      Context.setObjCSelType(Context.getTypeDeclType(New));
559      return;
560    case 8:
561      if (!TypeID->isStr("Protocol"))
562        break;
563      Context.setObjCProtoType(New->getUnderlyingType());
564      return;
565    }
566    // Fall through - the typedef name was not a builtin type.
567  }
568  // Verify the old decl was also a type.
569  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
570  if (!Old) {
571    Diag(New->getLocation(), diag::err_redefinition_different_kind)
572      << New->getDeclName();
573    if (OldD->getLocation().isValid())
574      Diag(OldD->getLocation(), diag::note_previous_definition);
575    return New->setInvalidDecl();
576  }
577
578  // Determine the "old" type we'll use for checking and diagnostics.
579  QualType OldType;
580  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
581    OldType = OldTypedef->getUnderlyingType();
582  else
583    OldType = Context.getTypeDeclType(Old);
584
585  // If the typedef types are not identical, reject them in all languages and
586  // with any extensions enabled.
587
588  if (OldType != New->getUnderlyingType() &&
589      Context.getCanonicalType(OldType) !=
590      Context.getCanonicalType(New->getUnderlyingType())) {
591    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
592      << New->getUnderlyingType() << OldType;
593    if (Old->getLocation().isValid())
594      Diag(Old->getLocation(), diag::note_previous_definition);
595    return New->setInvalidDecl();
596  }
597
598  if (getLangOptions().Microsoft)
599    return;
600
601  // C++ [dcl.typedef]p2:
602  //   In a given non-class scope, a typedef specifier can be used to
603  //   redefine the name of any type declared in that scope to refer
604  //   to the type to which it already refers.
605  if (getLangOptions().CPlusPlus) {
606    if (!isa<CXXRecordDecl>(CurContext))
607      return;
608    Diag(New->getLocation(), diag::err_redefinition)
609      << New->getDeclName();
610    Diag(Old->getLocation(), diag::note_previous_definition);
611    return New->setInvalidDecl();
612  }
613
614  // If we have a redefinition of a typedef in C, emit a warning.  This warning
615  // is normally mapped to an error, but can be controlled with
616  // -Wtypedef-redefinition.  If either the original or the redefinition is
617  // in a system header, don't emit this for compatibility with GCC.
618  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
619      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
620       Context.getSourceManager().isInSystemHeader(New->getLocation())))
621    return;
622
623  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
624    << New->getDeclName();
625  Diag(Old->getLocation(), diag::note_previous_definition);
626  return;
627}
628
629/// DeclhasAttr - returns true if decl Declaration already has the target
630/// attribute.
631static bool
632DeclHasAttr(const Decl *decl, const Attr *target) {
633  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
634    if (attr->getKind() == target->getKind())
635      return true;
636
637  return false;
638}
639
640/// MergeAttributes - append attributes from the Old decl to the New one.
641static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
642  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
643    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
644      Attr *NewAttr = attr->clone(C);
645      NewAttr->setInherited(true);
646      New->addAttr(NewAttr);
647    }
648  }
649}
650
651/// Used in MergeFunctionDecl to keep track of function parameters in
652/// C.
653struct GNUCompatibleParamWarning {
654  ParmVarDecl *OldParm;
655  ParmVarDecl *NewParm;
656  QualType PromotedType;
657};
658
659/// MergeFunctionDecl - We just parsed a function 'New' from
660/// declarator D which has the same name and scope as a previous
661/// declaration 'Old'.  Figure out how to resolve this situation,
662/// merging decls or emitting diagnostics as appropriate.
663///
664/// In C++, New and Old must be declarations that are not
665/// overloaded. Use IsOverload to determine whether New and Old are
666/// overloaded, and to select the Old declaration that New should be
667/// merged with.
668///
669/// Returns true if there was an error, false otherwise.
670bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
671  assert(!isa<OverloadedFunctionDecl>(OldD) &&
672         "Cannot merge with an overloaded function declaration");
673
674  // Verify the old decl was also a function.
675  FunctionDecl *Old = 0;
676  if (FunctionTemplateDecl *OldFunctionTemplate
677        = dyn_cast<FunctionTemplateDecl>(OldD))
678    Old = OldFunctionTemplate->getTemplatedDecl();
679  else
680    Old = dyn_cast<FunctionDecl>(OldD);
681  if (!Old) {
682    Diag(New->getLocation(), diag::err_redefinition_different_kind)
683      << New->getDeclName();
684    Diag(OldD->getLocation(), diag::note_previous_definition);
685    return true;
686  }
687
688  // Determine whether the previous declaration was a definition,
689  // implicit declaration, or a declaration.
690  diag::kind PrevDiag;
691  if (Old->isThisDeclarationADefinition())
692    PrevDiag = diag::note_previous_definition;
693  else if (Old->isImplicit())
694    PrevDiag = diag::note_previous_implicit_declaration;
695  else
696    PrevDiag = diag::note_previous_declaration;
697
698  QualType OldQType = Context.getCanonicalType(Old->getType());
699  QualType NewQType = Context.getCanonicalType(New->getType());
700
701  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
702      New->getStorageClass() == FunctionDecl::Static &&
703      Old->getStorageClass() != FunctionDecl::Static) {
704    Diag(New->getLocation(), diag::err_static_non_static)
705      << New;
706    Diag(Old->getLocation(), PrevDiag);
707    return true;
708  }
709
710  if (getLangOptions().CPlusPlus) {
711    // (C++98 13.1p2):
712    //   Certain function declarations cannot be overloaded:
713    //     -- Function declarations that differ only in the return type
714    //        cannot be overloaded.
715    QualType OldReturnType
716      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
717    QualType NewReturnType
718      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
719    if (OldReturnType != NewReturnType) {
720      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
721      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
722      return true;
723    }
724
725    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
726    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
727    if (OldMethod && NewMethod &&
728        NewMethod->getLexicalDeclContext()->isRecord()) {
729      //    -- Member function declarations with the same name and the
730      //       same parameter types cannot be overloaded if any of them
731      //       is a static member function declaration.
732      if (OldMethod->isStatic() || NewMethod->isStatic()) {
733        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
734        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
735        return true;
736      }
737
738      // C++ [class.mem]p1:
739      //   [...] A member shall not be declared twice in the
740      //   member-specification, except that a nested class or member
741      //   class template can be declared and then later defined.
742      unsigned NewDiag;
743      if (isa<CXXConstructorDecl>(OldMethod))
744        NewDiag = diag::err_constructor_redeclared;
745      else if (isa<CXXDestructorDecl>(NewMethod))
746        NewDiag = diag::err_destructor_redeclared;
747      else if (isa<CXXConversionDecl>(NewMethod))
748        NewDiag = diag::err_conv_function_redeclared;
749      else
750        NewDiag = diag::err_member_redeclared;
751
752      Diag(New->getLocation(), NewDiag);
753      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
754    }
755
756    // (C++98 8.3.5p3):
757    //   All declarations for a function shall agree exactly in both the
758    //   return type and the parameter-type-list.
759    if (OldQType == NewQType)
760      return MergeCompatibleFunctionDecls(New, Old);
761
762    // Fall through for conflicting redeclarations and redefinitions.
763  }
764
765  // C: Function types need to be compatible, not identical. This handles
766  // duplicate function decls like "void f(int); void f(enum X);" properly.
767  if (!getLangOptions().CPlusPlus &&
768      Context.typesAreCompatible(OldQType, NewQType)) {
769    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
770    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
771    const FunctionProtoType *OldProto = 0;
772    if (isa<FunctionNoProtoType>(NewFuncType) &&
773        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
774      // The old declaration provided a function prototype, but the
775      // new declaration does not. Merge in the prototype.
776      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
777      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
778                                                 OldProto->arg_type_end());
779      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
780                                         ParamTypes.data(), ParamTypes.size(),
781                                         OldProto->isVariadic(),
782                                         OldProto->getTypeQuals());
783      New->setType(NewQType);
784      New->setHasInheritedPrototype();
785
786      // Synthesize a parameter for each argument type.
787      llvm::SmallVector<ParmVarDecl*, 16> Params;
788      for (FunctionProtoType::arg_type_iterator
789             ParamType = OldProto->arg_type_begin(),
790             ParamEnd = OldProto->arg_type_end();
791           ParamType != ParamEnd; ++ParamType) {
792        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
793                                                 SourceLocation(), 0,
794                                                 *ParamType, /*DInfo=*/0,
795                                                 VarDecl::None, 0);
796        Param->setImplicit();
797        Params.push_back(Param);
798      }
799
800      New->setParams(Context, Params.data(), Params.size());
801    }
802
803    return MergeCompatibleFunctionDecls(New, Old);
804  }
805
806  // GNU C permits a K&R definition to follow a prototype declaration
807  // if the declared types of the parameters in the K&R definition
808  // match the types in the prototype declaration, even when the
809  // promoted types of the parameters from the K&R definition differ
810  // from the types in the prototype. GCC then keeps the types from
811  // the prototype.
812  //
813  // If a variadic prototype is followed by a non-variadic K&R definition,
814  // the K&R definition becomes variadic.  This is sort of an edge case, but
815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
816  // C99 6.9.1p8.
817  if (!getLangOptions().CPlusPlus &&
818      Old->hasPrototype() && !New->hasPrototype() &&
819      New->getType()->getAsFunctionProtoType() &&
820      Old->getNumParams() == New->getNumParams()) {
821    llvm::SmallVector<QualType, 16> ArgTypes;
822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
823    const FunctionProtoType *OldProto
824      = Old->getType()->getAsFunctionProtoType();
825    const FunctionProtoType *NewProto
826      = New->getType()->getAsFunctionProtoType();
827
828    // Determine whether this is the GNU C extension.
829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
830                                               NewProto->getResultType());
831    bool LooseCompatible = !MergedReturn.isNull();
832    for (unsigned Idx = 0, End = Old->getNumParams();
833         LooseCompatible && Idx != End; ++Idx) {
834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
836      if (Context.typesAreCompatible(OldParm->getType(),
837                                     NewProto->getArgType(Idx))) {
838        ArgTypes.push_back(NewParm->getType());
839      } else if (Context.typesAreCompatible(OldParm->getType(),
840                                            NewParm->getType())) {
841        GNUCompatibleParamWarning Warn
842          = { OldParm, NewParm, NewProto->getArgType(Idx) };
843        Warnings.push_back(Warn);
844        ArgTypes.push_back(NewParm->getType());
845      } else
846        LooseCompatible = false;
847    }
848
849    if (LooseCompatible) {
850      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
851        Diag(Warnings[Warn].NewParm->getLocation(),
852             diag::ext_param_promoted_not_compatible_with_prototype)
853          << Warnings[Warn].PromotedType
854          << Warnings[Warn].OldParm->getType();
855        Diag(Warnings[Warn].OldParm->getLocation(),
856             diag::note_previous_declaration);
857      }
858
859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
860                                           ArgTypes.size(),
861                                           OldProto->isVariadic(), 0));
862      return MergeCompatibleFunctionDecls(New, Old);
863    }
864
865    // Fall through to diagnose conflicting types.
866  }
867
868  // A function that has already been declared has been redeclared or defined
869  // with a different type- show appropriate diagnostic
870  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
871    // The user has declared a builtin function with an incompatible
872    // signature.
873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
874      // The function the user is redeclaring is a library-defined
875      // function like 'malloc' or 'printf'. Warn about the
876      // redeclaration, then pretend that we don't know about this
877      // library built-in.
878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
880        << Old << Old->getType();
881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
882      Old->setInvalidDecl();
883      return false;
884    }
885
886    PrevDiag = diag::note_previous_builtin_declaration;
887  }
888
889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
891  return true;
892}
893
894/// \brief Completes the merge of two function declarations that are
895/// known to be compatible.
896///
897/// This routine handles the merging of attributes and other
898/// properties of function declarations form the old declaration to
899/// the new declaration, once we know that New is in fact a
900/// redeclaration of Old.
901///
902/// \returns false
903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
904  // Merge the attributes
905  MergeAttributes(New, Old, Context);
906
907  // Merge the storage class.
908  if (Old->getStorageClass() != FunctionDecl::Extern)
909    New->setStorageClass(Old->getStorageClass());
910
911  // Merge "inline"
912  if (Old->isInline())
913    New->setInline(true);
914
915  // If this function declaration by itself qualifies as a C99 inline
916  // definition (C99 6.7.4p6), but the previous definition did not,
917  // then the function is not a C99 inline definition.
918  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
919    New->setC99InlineDefinition(false);
920  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
921    // Mark all preceding definitions as not being C99 inline definitions.
922    for (const FunctionDecl *Prev = Old; Prev;
923         Prev = Prev->getPreviousDeclaration())
924      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
925  }
926
927  // Merge "pure" flag.
928  if (Old->isPure())
929    New->setPure();
930
931  // Merge the "deleted" flag.
932  if (Old->isDeleted())
933    New->setDeleted();
934
935  if (getLangOptions().CPlusPlus)
936    return MergeCXXFunctionDecl(New, Old);
937
938  return false;
939}
940
941/// MergeVarDecl - We just parsed a variable 'New' which has the same name
942/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
943/// situation, merging decls or emitting diagnostics as appropriate.
944///
945/// Tentative definition rules (C99 6.9.2p2) are checked by
946/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
947/// definitions here, since the initializer hasn't been attached.
948///
949void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
950  // If either decl is invalid, make sure the new one is marked invalid and
951  // don't do any other checking.
952  if (New->isInvalidDecl() || OldD->isInvalidDecl())
953    return New->setInvalidDecl();
954
955  // Verify the old decl was also a variable.
956  VarDecl *Old = dyn_cast<VarDecl>(OldD);
957  if (!Old) {
958    Diag(New->getLocation(), diag::err_redefinition_different_kind)
959      << New->getDeclName();
960    Diag(OldD->getLocation(), diag::note_previous_definition);
961    return New->setInvalidDecl();
962  }
963
964  MergeAttributes(New, Old, Context);
965
966  // Merge the types
967  QualType MergedT;
968  if (getLangOptions().CPlusPlus) {
969    if (Context.hasSameType(New->getType(), Old->getType()))
970      MergedT = New->getType();
971  } else {
972    MergedT = Context.mergeTypes(New->getType(), Old->getType());
973  }
974  if (MergedT.isNull()) {
975    Diag(New->getLocation(), diag::err_redefinition_different_type)
976      << New->getDeclName();
977    Diag(Old->getLocation(), diag::note_previous_definition);
978    return New->setInvalidDecl();
979  }
980  New->setType(MergedT);
981
982  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
983  if (New->getStorageClass() == VarDecl::Static &&
984      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
985    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
986    Diag(Old->getLocation(), diag::note_previous_definition);
987    return New->setInvalidDecl();
988  }
989  // C99 6.2.2p4:
990  //   For an identifier declared with the storage-class specifier
991  //   extern in a scope in which a prior declaration of that
992  //   identifier is visible,23) if the prior declaration specifies
993  //   internal or external linkage, the linkage of the identifier at
994  //   the later declaration is the same as the linkage specified at
995  //   the prior declaration. If no prior declaration is visible, or
996  //   if the prior declaration specifies no linkage, then the
997  //   identifier has external linkage.
998  if (New->hasExternalStorage() && Old->hasLinkage())
999    /* Okay */;
1000  else if (New->getStorageClass() != VarDecl::Static &&
1001           Old->getStorageClass() == VarDecl::Static) {
1002    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1003    Diag(Old->getLocation(), diag::note_previous_definition);
1004    return New->setInvalidDecl();
1005  }
1006
1007  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1008
1009  // FIXME: The test for external storage here seems wrong? We still
1010  // need to check for mismatches.
1011  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1012      // Don't complain about out-of-line definitions of static members.
1013      !(Old->getLexicalDeclContext()->isRecord() &&
1014        !New->getLexicalDeclContext()->isRecord())) {
1015    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1016    Diag(Old->getLocation(), diag::note_previous_definition);
1017    return New->setInvalidDecl();
1018  }
1019
1020  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1021    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1022    Diag(Old->getLocation(), diag::note_previous_definition);
1023  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1024    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1025    Diag(Old->getLocation(), diag::note_previous_definition);
1026  }
1027
1028  // Keep a chain of previous declarations.
1029  New->setPreviousDeclaration(Old);
1030}
1031
1032/// CheckFallThrough - Check that we don't fall off the end of a
1033/// Statement that should return a value.
1034///
1035/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1036/// MaybeFallThrough iff we might or might not fall off the end and
1037/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1038/// that functions not marked noreturn will return.
1039Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1040  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1041
1042  // FIXME: They should never return 0, fix that, delete this code.
1043  if (cfg == 0)
1044    return NeverFallThrough;
1045  // The CFG leaves in dead things, and we don't want to dead code paths to
1046  // confuse us, so we mark all live things first.
1047  std::queue<CFGBlock*> workq;
1048  llvm::BitVector live(cfg->getNumBlockIDs());
1049  // Prep work queue
1050  workq.push(&cfg->getEntry());
1051  // Solve
1052  while (!workq.empty()) {
1053    CFGBlock *item = workq.front();
1054    workq.pop();
1055    live.set(item->getBlockID());
1056    for (CFGBlock::succ_iterator I=item->succ_begin(),
1057           E=item->succ_end();
1058         I != E;
1059         ++I) {
1060      if ((*I) && !live[(*I)->getBlockID()]) {
1061        live.set((*I)->getBlockID());
1062        workq.push(*I);
1063      }
1064    }
1065  }
1066
1067  // Now we know what is live, we check the live precessors of the exit block
1068  // and look for fall through paths, being careful to ignore normal returns,
1069  // and exceptional paths.
1070  bool HasLiveReturn = false;
1071  bool HasFakeEdge = false;
1072  bool HasPlainEdge = false;
1073  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1074         E = cfg->getExit().pred_end();
1075       I != E;
1076       ++I) {
1077    CFGBlock& B = **I;
1078    if (!live[B.getBlockID()])
1079      continue;
1080    if (B.size() == 0) {
1081      // A labeled empty statement, or the entry block...
1082      HasPlainEdge = true;
1083      continue;
1084    }
1085    Stmt *S = B[B.size()-1];
1086    if (isa<ReturnStmt>(S)) {
1087      HasLiveReturn = true;
1088      continue;
1089    }
1090    if (isa<ObjCAtThrowStmt>(S)) {
1091      HasFakeEdge = true;
1092      continue;
1093    }
1094    if (isa<CXXThrowExpr>(S)) {
1095      HasFakeEdge = true;
1096      continue;
1097    }
1098    bool NoReturnEdge = false;
1099    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1100      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1101      if (CEE->getType().getNoReturnAttr()) {
1102        NoReturnEdge = true;
1103        HasFakeEdge = true;
1104      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1105        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1106          if (FD->hasAttr<NoReturnAttr>()) {
1107            NoReturnEdge = true;
1108            HasFakeEdge = true;
1109          }
1110        }
1111      }
1112    }
1113    // FIXME: Add noreturn message sends.
1114    if (NoReturnEdge == false)
1115      HasPlainEdge = true;
1116  }
1117  if (!HasPlainEdge)
1118    return NeverFallThrough;
1119  if (HasFakeEdge || HasLiveReturn)
1120    return MaybeFallThrough;
1121  // This says AlwaysFallThrough for calls to functions that are not marked
1122  // noreturn, that don't return.  If people would like this warning to be more
1123  // accurate, such functions should be marked as noreturn.
1124  return AlwaysFallThrough;
1125}
1126
1127/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1128/// function that should return a value.  Check that we don't fall off the end
1129/// of a noreturn function.  We assume that functions and blocks not marked
1130/// noreturn will return.
1131void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1132  // FIXME: Would be nice if we had a better way to control cascading errors,
1133  // but for now, avoid them.  The problem is that when Parse sees:
1134  //   int foo() { return a; }
1135  // The return is eaten and the Sema code sees just:
1136  //   int foo() { }
1137  // which this code would then warn about.
1138  if (getDiagnostics().hasErrorOccurred())
1139    return;
1140  bool ReturnsVoid = false;
1141  bool HasNoReturn = false;
1142  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1143    if (FD->getResultType()->isVoidType())
1144      ReturnsVoid = true;
1145    if (FD->hasAttr<NoReturnAttr>())
1146      HasNoReturn = true;
1147  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1148    if (MD->getResultType()->isVoidType())
1149      ReturnsVoid = true;
1150    if (MD->hasAttr<NoReturnAttr>())
1151      HasNoReturn = true;
1152  }
1153
1154  // Short circuit for compilation speed.
1155  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1156       == Diagnostic::Ignored || ReturnsVoid)
1157      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1158          == Diagnostic::Ignored || !HasNoReturn)
1159      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1160          == Diagnostic::Ignored || !ReturnsVoid))
1161    return;
1162  // FIXME: Funtion try block
1163  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1164    switch (CheckFallThrough(Body)) {
1165    case MaybeFallThrough:
1166      if (HasNoReturn)
1167        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1168      else if (!ReturnsVoid)
1169        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1170      break;
1171    case AlwaysFallThrough:
1172      if (HasNoReturn)
1173        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1174      else if (!ReturnsVoid)
1175        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1176      break;
1177    case NeverFallThrough:
1178      if (ReturnsVoid)
1179        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1180      break;
1181    }
1182  }
1183}
1184
1185/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1186/// that should return a value.  Check that we don't fall off the end of a
1187/// noreturn block.  We assume that functions and blocks not marked noreturn
1188/// will return.
1189void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1190  // FIXME: Would be nice if we had a better way to control cascading errors,
1191  // but for now, avoid them.  The problem is that when Parse sees:
1192  //   int foo() { return a; }
1193  // The return is eaten and the Sema code sees just:
1194  //   int foo() { }
1195  // which this code would then warn about.
1196  if (getDiagnostics().hasErrorOccurred())
1197    return;
1198  bool ReturnsVoid = false;
1199  bool HasNoReturn = false;
1200  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1201    if (FT->getResultType()->isVoidType())
1202      ReturnsVoid = true;
1203    if (FT->getNoReturnAttr())
1204      HasNoReturn = true;
1205  }
1206
1207  // Short circuit for compilation speed.
1208  if (ReturnsVoid
1209      && !HasNoReturn
1210      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1211          == Diagnostic::Ignored || !ReturnsVoid))
1212    return;
1213  // FIXME: Funtion try block
1214  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1215    switch (CheckFallThrough(Body)) {
1216    case MaybeFallThrough:
1217      if (HasNoReturn)
1218        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1219      else if (!ReturnsVoid)
1220        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1221      break;
1222    case AlwaysFallThrough:
1223      if (HasNoReturn)
1224        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1225      else if (!ReturnsVoid)
1226        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1227      break;
1228    case NeverFallThrough:
1229      if (ReturnsVoid)
1230        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1231      break;
1232    }
1233  }
1234}
1235
1236/// CheckParmsForFunctionDef - Check that the parameters of the given
1237/// function are appropriate for the definition of a function. This
1238/// takes care of any checks that cannot be performed on the
1239/// declaration itself, e.g., that the types of each of the function
1240/// parameters are complete.
1241bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1242  bool HasInvalidParm = false;
1243
1244  // PIC16 uses section string to encode the info about ISR.
1245  // Flash error if ISR has arguments.
1246  const char *TargetPrefix = Context.Target.getTargetPrefix();
1247  if (strcmp(TargetPrefix, "pic16") == 0) {
1248    unsigned ParamCount = FD->getNumParams();
1249    if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) {
1250        const std::string &SecString = SA->getName();
1251        if (SecString.find("interrupt") != std::string::npos
1252            && ParamCount > 0) {
1253          Diag(FD->getLocation(), diag::warn_ISR_has_arguments)
1254                          << FD->getNameAsString();
1255      }
1256    }
1257  }
1258
1259  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1260    ParmVarDecl *Param = FD->getParamDecl(p);
1261
1262    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1263    // function declarator that is part of a function definition of
1264    // that function shall not have incomplete type.
1265    //
1266    // This is also C++ [dcl.fct]p6.
1267    if (!Param->isInvalidDecl() &&
1268        RequireCompleteType(Param->getLocation(), Param->getType(),
1269                               diag::err_typecheck_decl_incomplete_type)) {
1270      Param->setInvalidDecl();
1271      HasInvalidParm = true;
1272    }
1273
1274    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1275    // declaration of each parameter shall include an identifier.
1276    if (Param->getIdentifier() == 0 &&
1277        !Param->isImplicit() &&
1278        !getLangOptions().CPlusPlus)
1279      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1280  }
1281
1282  return HasInvalidParm;
1283}
1284
1285/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1286/// no declarator (e.g. "struct foo;") is parsed.
1287Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1288  // FIXME: Error on auto/register at file scope
1289  // FIXME: Error on inline/virtual/explicit
1290  // FIXME: Error on invalid restrict
1291  // FIXME: Warn on useless __thread
1292  // FIXME: Warn on useless const/volatile
1293  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1294  // FIXME: Warn on useless attributes
1295  TagDecl *Tag = 0;
1296  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1297      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1298      DS.getTypeSpecType() == DeclSpec::TST_union ||
1299      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1300    if (!DS.getTypeRep()) // We probably had an error
1301      return DeclPtrTy();
1302
1303    // Note that the above type specs guarantee that the
1304    // type rep is a Decl, whereas in many of the others
1305    // it's a Type.
1306    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1307  }
1308
1309  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1310    if (!Record->getDeclName() && Record->isDefinition() &&
1311        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1312      if (getLangOptions().CPlusPlus ||
1313          Record->getDeclContext()->isRecord())
1314        return BuildAnonymousStructOrUnion(S, DS, Record);
1315
1316      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1317        << DS.getSourceRange();
1318    }
1319
1320    // Microsoft allows unnamed struct/union fields. Don't complain
1321    // about them.
1322    // FIXME: Should we support Microsoft's extensions in this area?
1323    if (Record->getDeclName() && getLangOptions().Microsoft)
1324      return DeclPtrTy::make(Tag);
1325  }
1326
1327  if (!DS.isMissingDeclaratorOk() &&
1328      DS.getTypeSpecType() != DeclSpec::TST_error) {
1329    // Warn about typedefs of enums without names, since this is an
1330    // extension in both Microsoft an GNU.
1331    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1332        Tag && isa<EnumDecl>(Tag)) {
1333      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1334        << DS.getSourceRange();
1335      return DeclPtrTy::make(Tag);
1336    }
1337
1338    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1339      << DS.getSourceRange();
1340    return DeclPtrTy();
1341  }
1342
1343  return DeclPtrTy::make(Tag);
1344}
1345
1346/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1347/// anonymous struct or union AnonRecord into the owning context Owner
1348/// and scope S. This routine will be invoked just after we realize
1349/// that an unnamed union or struct is actually an anonymous union or
1350/// struct, e.g.,
1351///
1352/// @code
1353/// union {
1354///   int i;
1355///   float f;
1356/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1357///    // f into the surrounding scope.x
1358/// @endcode
1359///
1360/// This routine is recursive, injecting the names of nested anonymous
1361/// structs/unions into the owning context and scope as well.
1362bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1363                                               RecordDecl *AnonRecord) {
1364  bool Invalid = false;
1365  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1366                               FEnd = AnonRecord->field_end();
1367       F != FEnd; ++F) {
1368    if ((*F)->getDeclName()) {
1369      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1370                                                LookupOrdinaryName, true);
1371      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1372        // C++ [class.union]p2:
1373        //   The names of the members of an anonymous union shall be
1374        //   distinct from the names of any other entity in the
1375        //   scope in which the anonymous union is declared.
1376        unsigned diagKind
1377          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1378                                 : diag::err_anonymous_struct_member_redecl;
1379        Diag((*F)->getLocation(), diagKind)
1380          << (*F)->getDeclName();
1381        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1382        Invalid = true;
1383      } else {
1384        // C++ [class.union]p2:
1385        //   For the purpose of name lookup, after the anonymous union
1386        //   definition, the members of the anonymous union are
1387        //   considered to have been defined in the scope in which the
1388        //   anonymous union is declared.
1389        Owner->makeDeclVisibleInContext(*F);
1390        S->AddDecl(DeclPtrTy::make(*F));
1391        IdResolver.AddDecl(*F);
1392      }
1393    } else if (const RecordType *InnerRecordType
1394                 = (*F)->getType()->getAs<RecordType>()) {
1395      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1396      if (InnerRecord->isAnonymousStructOrUnion())
1397        Invalid = Invalid ||
1398          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1399    }
1400  }
1401
1402  return Invalid;
1403}
1404
1405/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1406/// anonymous structure or union. Anonymous unions are a C++ feature
1407/// (C++ [class.union]) and a GNU C extension; anonymous structures
1408/// are a GNU C and GNU C++ extension.
1409Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1410                                                  RecordDecl *Record) {
1411  DeclContext *Owner = Record->getDeclContext();
1412
1413  // Diagnose whether this anonymous struct/union is an extension.
1414  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1415    Diag(Record->getLocation(), diag::ext_anonymous_union);
1416  else if (!Record->isUnion())
1417    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1418
1419  // C and C++ require different kinds of checks for anonymous
1420  // structs/unions.
1421  bool Invalid = false;
1422  if (getLangOptions().CPlusPlus) {
1423    const char* PrevSpec = 0;
1424    unsigned DiagID;
1425    // C++ [class.union]p3:
1426    //   Anonymous unions declared in a named namespace or in the
1427    //   global namespace shall be declared static.
1428    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1429        (isa<TranslationUnitDecl>(Owner) ||
1430         (isa<NamespaceDecl>(Owner) &&
1431          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1432      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1433      Invalid = true;
1434
1435      // Recover by adding 'static'.
1436      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1437                             PrevSpec, DiagID);
1438    }
1439    // C++ [class.union]p3:
1440    //   A storage class is not allowed in a declaration of an
1441    //   anonymous union in a class scope.
1442    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1443             isa<RecordDecl>(Owner)) {
1444      Diag(DS.getStorageClassSpecLoc(),
1445           diag::err_anonymous_union_with_storage_spec);
1446      Invalid = true;
1447
1448      // Recover by removing the storage specifier.
1449      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1450                             PrevSpec, DiagID);
1451    }
1452
1453    // C++ [class.union]p2:
1454    //   The member-specification of an anonymous union shall only
1455    //   define non-static data members. [Note: nested types and
1456    //   functions cannot be declared within an anonymous union. ]
1457    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1458                                 MemEnd = Record->decls_end();
1459         Mem != MemEnd; ++Mem) {
1460      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1461        // C++ [class.union]p3:
1462        //   An anonymous union shall not have private or protected
1463        //   members (clause 11).
1464        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1465          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1466            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1467          Invalid = true;
1468        }
1469      } else if ((*Mem)->isImplicit()) {
1470        // Any implicit members are fine.
1471      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1472        // This is a type that showed up in an
1473        // elaborated-type-specifier inside the anonymous struct or
1474        // union, but which actually declares a type outside of the
1475        // anonymous struct or union. It's okay.
1476      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1477        if (!MemRecord->isAnonymousStructOrUnion() &&
1478            MemRecord->getDeclName()) {
1479          // This is a nested type declaration.
1480          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1481            << (int)Record->isUnion();
1482          Invalid = true;
1483        }
1484      } else {
1485        // We have something that isn't a non-static data
1486        // member. Complain about it.
1487        unsigned DK = diag::err_anonymous_record_bad_member;
1488        if (isa<TypeDecl>(*Mem))
1489          DK = diag::err_anonymous_record_with_type;
1490        else if (isa<FunctionDecl>(*Mem))
1491          DK = diag::err_anonymous_record_with_function;
1492        else if (isa<VarDecl>(*Mem))
1493          DK = diag::err_anonymous_record_with_static;
1494        Diag((*Mem)->getLocation(), DK)
1495            << (int)Record->isUnion();
1496          Invalid = true;
1497      }
1498    }
1499  }
1500
1501  if (!Record->isUnion() && !Owner->isRecord()) {
1502    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1503      << (int)getLangOptions().CPlusPlus;
1504    Invalid = true;
1505  }
1506
1507  // Create a declaration for this anonymous struct/union.
1508  NamedDecl *Anon = 0;
1509  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1510    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1511                             /*IdentifierInfo=*/0,
1512                             Context.getTypeDeclType(Record), /*DInfo=*/0,
1513                             /*BitWidth=*/0, /*Mutable=*/false,
1514                             DS.getSourceRange().getBegin());
1515    Anon->setAccess(AS_public);
1516    if (getLangOptions().CPlusPlus)
1517      FieldCollector->Add(cast<FieldDecl>(Anon));
1518  } else {
1519    VarDecl::StorageClass SC;
1520    switch (DS.getStorageClassSpec()) {
1521    default: assert(0 && "Unknown storage class!");
1522    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1523    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1524    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1525    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1526    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1527    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1528    case DeclSpec::SCS_mutable:
1529      // mutable can only appear on non-static class members, so it's always
1530      // an error here
1531      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1532      Invalid = true;
1533      SC = VarDecl::None;
1534      break;
1535    }
1536
1537    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1538                           /*IdentifierInfo=*/0,
1539                           Context.getTypeDeclType(Record), /*DInfo=*/0,
1540                           SC, DS.getSourceRange().getBegin());
1541  }
1542  Anon->setImplicit();
1543
1544  // Add the anonymous struct/union object to the current
1545  // context. We'll be referencing this object when we refer to one of
1546  // its members.
1547  Owner->addDecl(Anon);
1548
1549  // Inject the members of the anonymous struct/union into the owning
1550  // context and into the identifier resolver chain for name lookup
1551  // purposes.
1552  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1553    Invalid = true;
1554
1555  // Mark this as an anonymous struct/union type. Note that we do not
1556  // do this until after we have already checked and injected the
1557  // members of this anonymous struct/union type, because otherwise
1558  // the members could be injected twice: once by DeclContext when it
1559  // builds its lookup table, and once by
1560  // InjectAnonymousStructOrUnionMembers.
1561  Record->setAnonymousStructOrUnion(true);
1562
1563  if (Invalid)
1564    Anon->setInvalidDecl();
1565
1566  return DeclPtrTy::make(Anon);
1567}
1568
1569
1570/// GetNameForDeclarator - Determine the full declaration name for the
1571/// given Declarator.
1572DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1573  switch (D.getKind()) {
1574  case Declarator::DK_Abstract:
1575    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1576    return DeclarationName();
1577
1578  case Declarator::DK_Normal:
1579    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1580    return DeclarationName(D.getIdentifier());
1581
1582  case Declarator::DK_Constructor: {
1583    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1584    return Context.DeclarationNames.getCXXConstructorName(
1585                                                Context.getCanonicalType(Ty));
1586  }
1587
1588  case Declarator::DK_Destructor: {
1589    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1590    return Context.DeclarationNames.getCXXDestructorName(
1591                                                Context.getCanonicalType(Ty));
1592  }
1593
1594  case Declarator::DK_Conversion: {
1595    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1596    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1597    return Context.DeclarationNames.getCXXConversionFunctionName(
1598                                                Context.getCanonicalType(Ty));
1599  }
1600
1601  case Declarator::DK_Operator:
1602    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1603    return Context.DeclarationNames.getCXXOperatorName(
1604                                                D.getOverloadedOperator());
1605  }
1606
1607  assert(false && "Unknown name kind");
1608  return DeclarationName();
1609}
1610
1611/// isNearlyMatchingFunction - Determine whether the C++ functions
1612/// Declaration and Definition are "nearly" matching. This heuristic
1613/// is used to improve diagnostics in the case where an out-of-line
1614/// function definition doesn't match any declaration within
1615/// the class or namespace.
1616static bool isNearlyMatchingFunction(ASTContext &Context,
1617                                     FunctionDecl *Declaration,
1618                                     FunctionDecl *Definition) {
1619  if (Declaration->param_size() != Definition->param_size())
1620    return false;
1621  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1622    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1623    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1624
1625    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1626    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1627    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1628      return false;
1629  }
1630
1631  return true;
1632}
1633
1634Sema::DeclPtrTy
1635Sema::HandleDeclarator(Scope *S, Declarator &D,
1636                       MultiTemplateParamsArg TemplateParamLists,
1637                       bool IsFunctionDefinition) {
1638  DeclarationName Name = GetNameForDeclarator(D);
1639
1640  // All of these full declarators require an identifier.  If it doesn't have
1641  // one, the ParsedFreeStandingDeclSpec action should be used.
1642  if (!Name) {
1643    if (!D.isInvalidType())  // Reject this if we think it is valid.
1644      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1645           diag::err_declarator_need_ident)
1646        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1647    return DeclPtrTy();
1648  }
1649
1650  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1651  // we find one that is.
1652  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1653         (S->getFlags() & Scope::TemplateParamScope) != 0)
1654    S = S->getParent();
1655
1656  // If this is an out-of-line definition of a member of a class template
1657  // or class template partial specialization, we may need to rebuild the
1658  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1659  // for more information.
1660  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1661  // handle expressions properly.
1662  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1663  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1664      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1665      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1666       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1667       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1668       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1669    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1670      // FIXME: Preserve type source info.
1671      QualType T = GetTypeFromParser(DS.getTypeRep());
1672      EnterDeclaratorContext(S, DC);
1673      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1674      ExitDeclaratorContext(S);
1675      if (T.isNull())
1676        return DeclPtrTy();
1677      DS.UpdateTypeRep(T.getAsOpaquePtr());
1678    }
1679  }
1680
1681  DeclContext *DC;
1682  NamedDecl *PrevDecl;
1683  NamedDecl *New;
1684
1685  DeclaratorInfo *DInfo = 0;
1686  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1687
1688  // See if this is a redefinition of a variable in the same scope.
1689  if (D.getCXXScopeSpec().isInvalid()) {
1690    DC = CurContext;
1691    PrevDecl = 0;
1692    D.setInvalidType();
1693  } else if (!D.getCXXScopeSpec().isSet()) {
1694    LookupNameKind NameKind = LookupOrdinaryName;
1695
1696    // If the declaration we're planning to build will be a function
1697    // or object with linkage, then look for another declaration with
1698    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1699    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1700      /* Do nothing*/;
1701    else if (R->isFunctionType()) {
1702      if (CurContext->isFunctionOrMethod() ||
1703          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1704        NameKind = LookupRedeclarationWithLinkage;
1705    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1706      NameKind = LookupRedeclarationWithLinkage;
1707    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1708             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1709      NameKind = LookupRedeclarationWithLinkage;
1710
1711    DC = CurContext;
1712    PrevDecl = LookupName(S, Name, NameKind, true,
1713                          NameKind == LookupRedeclarationWithLinkage,
1714                          D.getIdentifierLoc());
1715  } else { // Something like "int foo::x;"
1716    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1717    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1718    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1719
1720    // C++ 7.3.1.2p2:
1721    // Members (including explicit specializations of templates) of a named
1722    // namespace can also be defined outside that namespace by explicit
1723    // qualification of the name being defined, provided that the entity being
1724    // defined was already declared in the namespace and the definition appears
1725    // after the point of declaration in a namespace that encloses the
1726    // declarations namespace.
1727    //
1728    // Note that we only check the context at this point. We don't yet
1729    // have enough information to make sure that PrevDecl is actually
1730    // the declaration we want to match. For example, given:
1731    //
1732    //   class X {
1733    //     void f();
1734    //     void f(float);
1735    //   };
1736    //
1737    //   void X::f(int) { } // ill-formed
1738    //
1739    // In this case, PrevDecl will point to the overload set
1740    // containing the two f's declared in X, but neither of them
1741    // matches.
1742
1743    // First check whether we named the global scope.
1744    if (isa<TranslationUnitDecl>(DC)) {
1745      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1746        << Name << D.getCXXScopeSpec().getRange();
1747    } else if (!CurContext->Encloses(DC)) {
1748      // The qualifying scope doesn't enclose the original declaration.
1749      // Emit diagnostic based on current scope.
1750      SourceLocation L = D.getIdentifierLoc();
1751      SourceRange R = D.getCXXScopeSpec().getRange();
1752      if (isa<FunctionDecl>(CurContext))
1753        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1754      else
1755        Diag(L, diag::err_invalid_declarator_scope)
1756          << Name << cast<NamedDecl>(DC) << R;
1757      D.setInvalidType();
1758    }
1759  }
1760
1761  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1762    // Maybe we will complain about the shadowed template parameter.
1763    if (!D.isInvalidType())
1764      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1765        D.setInvalidType();
1766
1767    // Just pretend that we didn't see the previous declaration.
1768    PrevDecl = 0;
1769  }
1770
1771  // In C++, the previous declaration we find might be a tag type
1772  // (class or enum). In this case, the new declaration will hide the
1773  // tag type. Note that this does does not apply if we're declaring a
1774  // typedef (C++ [dcl.typedef]p4).
1775  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1776      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1777    PrevDecl = 0;
1778
1779  bool Redeclaration = false;
1780  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1781    if (TemplateParamLists.size()) {
1782      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1783      return DeclPtrTy();
1784    }
1785
1786    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1787  } else if (R->isFunctionType()) {
1788    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1789                                  move(TemplateParamLists),
1790                                  IsFunctionDefinition, Redeclaration);
1791  } else {
1792    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1793                                  move(TemplateParamLists),
1794                                  Redeclaration);
1795  }
1796
1797  if (New == 0)
1798    return DeclPtrTy();
1799
1800  // If this has an identifier and is not an invalid redeclaration,
1801  // add it to the scope stack.
1802  if (Name && !(Redeclaration && New->isInvalidDecl()))
1803    PushOnScopeChains(New, S);
1804
1805  return DeclPtrTy::make(New);
1806}
1807
1808/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1809/// types into constant array types in certain situations which would otherwise
1810/// be errors (for GCC compatibility).
1811static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1812                                                    ASTContext &Context,
1813                                                    bool &SizeIsNegative) {
1814  // This method tries to turn a variable array into a constant
1815  // array even when the size isn't an ICE.  This is necessary
1816  // for compatibility with code that depends on gcc's buggy
1817  // constant expression folding, like struct {char x[(int)(char*)2];}
1818  SizeIsNegative = false;
1819
1820  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1821    QualType Pointee = PTy->getPointeeType();
1822    QualType FixedType =
1823        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1824    if (FixedType.isNull()) return FixedType;
1825    FixedType = Context.getPointerType(FixedType);
1826    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1827    return FixedType;
1828  }
1829
1830  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1831  if (!VLATy)
1832    return QualType();
1833  // FIXME: We should probably handle this case
1834  if (VLATy->getElementType()->isVariablyModifiedType())
1835    return QualType();
1836
1837  Expr::EvalResult EvalResult;
1838  if (!VLATy->getSizeExpr() ||
1839      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1840      !EvalResult.Val.isInt())
1841    return QualType();
1842
1843  llvm::APSInt &Res = EvalResult.Val.getInt();
1844  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1845    Expr* ArySizeExpr = VLATy->getSizeExpr();
1846    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1847    // so as to transfer ownership to the ConstantArrayWithExpr.
1848    // Alternatively, we could "clone" it (how?).
1849    // Since we don't know how to do things above, we just use the
1850    // very same Expr*.
1851    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1852                                                Res, ArySizeExpr,
1853                                                ArrayType::Normal, 0,
1854                                                VLATy->getBracketsRange());
1855  }
1856
1857  SizeIsNegative = true;
1858  return QualType();
1859}
1860
1861/// \brief Register the given locally-scoped external C declaration so
1862/// that it can be found later for redeclarations
1863void
1864Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1865                                       Scope *S) {
1866  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1867         "Decl is not a locally-scoped decl!");
1868  // Note that we have a locally-scoped external with this name.
1869  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1870
1871  if (!PrevDecl)
1872    return;
1873
1874  // If there was a previous declaration of this variable, it may be
1875  // in our identifier chain. Update the identifier chain with the new
1876  // declaration.
1877  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1878    // The previous declaration was found on the identifer resolver
1879    // chain, so remove it from its scope.
1880    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1881      S = S->getParent();
1882
1883    if (S)
1884      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1885  }
1886}
1887
1888/// \brief Diagnose function specifiers on a declaration of an identifier that
1889/// does not identify a function.
1890void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1891  // FIXME: We should probably indicate the identifier in question to avoid
1892  // confusion for constructs like "inline int a(), b;"
1893  if (D.getDeclSpec().isInlineSpecified())
1894    Diag(D.getDeclSpec().getInlineSpecLoc(),
1895         diag::err_inline_non_function);
1896
1897  if (D.getDeclSpec().isVirtualSpecified())
1898    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1899         diag::err_virtual_non_function);
1900
1901  if (D.getDeclSpec().isExplicitSpecified())
1902    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1903         diag::err_explicit_non_function);
1904}
1905
1906NamedDecl*
1907Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1908                             QualType R,  DeclaratorInfo *DInfo,
1909                             Decl* PrevDecl, bool &Redeclaration) {
1910  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1911  if (D.getCXXScopeSpec().isSet()) {
1912    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1913      << D.getCXXScopeSpec().getRange();
1914    D.setInvalidType();
1915    // Pretend we didn't see the scope specifier.
1916    DC = 0;
1917  }
1918
1919  if (getLangOptions().CPlusPlus) {
1920    // Check that there are no default arguments (C++ only).
1921    CheckExtraCXXDefaultArguments(D);
1922  }
1923
1924  DiagnoseFunctionSpecifiers(D);
1925
1926  if (D.getDeclSpec().isThreadSpecified())
1927    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1928
1929  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1930  if (!NewTD) return 0;
1931
1932  if (D.isInvalidType())
1933    NewTD->setInvalidDecl();
1934
1935  // Handle attributes prior to checking for duplicates in MergeVarDecl
1936  ProcessDeclAttributes(S, NewTD, D);
1937  // Merge the decl with the existing one if appropriate. If the decl is
1938  // in an outer scope, it isn't the same thing.
1939  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1940    Redeclaration = true;
1941    MergeTypeDefDecl(NewTD, PrevDecl);
1942  }
1943
1944  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1945  // then it shall have block scope.
1946  QualType T = NewTD->getUnderlyingType();
1947  if (T->isVariablyModifiedType()) {
1948    CurFunctionNeedsScopeChecking = true;
1949
1950    if (S->getFnParent() == 0) {
1951      bool SizeIsNegative;
1952      QualType FixedTy =
1953          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1954      if (!FixedTy.isNull()) {
1955        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1956        NewTD->setUnderlyingType(FixedTy);
1957      } else {
1958        if (SizeIsNegative)
1959          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1960        else if (T->isVariableArrayType())
1961          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1962        else
1963          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1964        NewTD->setInvalidDecl();
1965      }
1966    }
1967  }
1968
1969  // If this is the C FILE type, notify the AST context.
1970  if (IdentifierInfo *II = NewTD->getIdentifier())
1971    if (!NewTD->isInvalidDecl() &&
1972        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1973      if (II->isStr("FILE"))
1974        Context.setFILEDecl(NewTD);
1975      else if (II->isStr("jmp_buf"))
1976        Context.setjmp_bufDecl(NewTD);
1977      else if (II->isStr("sigjmp_buf"))
1978        Context.setsigjmp_bufDecl(NewTD);
1979    }
1980
1981  return NewTD;
1982}
1983
1984/// \brief Determines whether the given declaration is an out-of-scope
1985/// previous declaration.
1986///
1987/// This routine should be invoked when name lookup has found a
1988/// previous declaration (PrevDecl) that is not in the scope where a
1989/// new declaration by the same name is being introduced. If the new
1990/// declaration occurs in a local scope, previous declarations with
1991/// linkage may still be considered previous declarations (C99
1992/// 6.2.2p4-5, C++ [basic.link]p6).
1993///
1994/// \param PrevDecl the previous declaration found by name
1995/// lookup
1996///
1997/// \param DC the context in which the new declaration is being
1998/// declared.
1999///
2000/// \returns true if PrevDecl is an out-of-scope previous declaration
2001/// for a new delcaration with the same name.
2002static bool
2003isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2004                                ASTContext &Context) {
2005  if (!PrevDecl)
2006    return 0;
2007
2008  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2009  // case we need to check each of the overloaded functions.
2010  if (!PrevDecl->hasLinkage())
2011    return false;
2012
2013  if (Context.getLangOptions().CPlusPlus) {
2014    // C++ [basic.link]p6:
2015    //   If there is a visible declaration of an entity with linkage
2016    //   having the same name and type, ignoring entities declared
2017    //   outside the innermost enclosing namespace scope, the block
2018    //   scope declaration declares that same entity and receives the
2019    //   linkage of the previous declaration.
2020    DeclContext *OuterContext = DC->getLookupContext();
2021    if (!OuterContext->isFunctionOrMethod())
2022      // This rule only applies to block-scope declarations.
2023      return false;
2024    else {
2025      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2026      if (PrevOuterContext->isRecord())
2027        // We found a member function: ignore it.
2028        return false;
2029      else {
2030        // Find the innermost enclosing namespace for the new and
2031        // previous declarations.
2032        while (!OuterContext->isFileContext())
2033          OuterContext = OuterContext->getParent();
2034        while (!PrevOuterContext->isFileContext())
2035          PrevOuterContext = PrevOuterContext->getParent();
2036
2037        // The previous declaration is in a different namespace, so it
2038        // isn't the same function.
2039        if (OuterContext->getPrimaryContext() !=
2040            PrevOuterContext->getPrimaryContext())
2041          return false;
2042      }
2043    }
2044  }
2045
2046  return true;
2047}
2048
2049NamedDecl*
2050Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2051                              QualType R, DeclaratorInfo *DInfo,
2052                              NamedDecl* PrevDecl,
2053                              MultiTemplateParamsArg TemplateParamLists,
2054                              bool &Redeclaration) {
2055  DeclarationName Name = GetNameForDeclarator(D);
2056
2057  // Check that there are no default arguments (C++ only).
2058  if (getLangOptions().CPlusPlus)
2059    CheckExtraCXXDefaultArguments(D);
2060
2061  VarDecl *NewVD;
2062  VarDecl::StorageClass SC;
2063  switch (D.getDeclSpec().getStorageClassSpec()) {
2064  default: assert(0 && "Unknown storage class!");
2065  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2066  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2067  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2068  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2069  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2070  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2071  case DeclSpec::SCS_mutable:
2072    // mutable can only appear on non-static class members, so it's always
2073    // an error here
2074    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2075    D.setInvalidType();
2076    SC = VarDecl::None;
2077    break;
2078  }
2079
2080  IdentifierInfo *II = Name.getAsIdentifierInfo();
2081  if (!II) {
2082    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2083      << Name.getAsString();
2084    return 0;
2085  }
2086
2087  DiagnoseFunctionSpecifiers(D);
2088
2089  if (!DC->isRecord() && S->getFnParent() == 0) {
2090    // C99 6.9p2: The storage-class specifiers auto and register shall not
2091    // appear in the declaration specifiers in an external declaration.
2092    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2093
2094      // If this is a register variable with an asm label specified, then this
2095      // is a GNU extension.
2096      if (SC == VarDecl::Register && D.getAsmLabel())
2097        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2098      else
2099        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2100      D.setInvalidType();
2101    }
2102  }
2103  if (DC->isRecord() && !CurContext->isRecord()) {
2104    // This is an out-of-line definition of a static data member.
2105    if (SC == VarDecl::Static) {
2106      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2107           diag::err_static_out_of_line)
2108        << CodeModificationHint::CreateRemoval(
2109                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2110    } else if (SC == VarDecl::None)
2111      SC = VarDecl::Static;
2112  }
2113  if (SC == VarDecl::Static) {
2114    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2115      if (RD->isLocalClass())
2116        Diag(D.getIdentifierLoc(),
2117             diag::err_static_data_member_not_allowed_in_local_class)
2118          << Name << RD->getDeclName();
2119    }
2120  }
2121
2122  // Check that we can declare a template here.
2123  if (TemplateParamLists.size() &&
2124      CheckTemplateDeclScope(S, TemplateParamLists))
2125    return 0;
2126
2127  // Match up the template parameter lists with the scope specifier, then
2128  // determine whether we have a template or a template specialization.
2129  if (TemplateParameterList *TemplateParams
2130      = MatchTemplateParametersToScopeSpecifier(
2131                                  D.getDeclSpec().getSourceRange().getBegin(),
2132                                                D.getCXXScopeSpec(),
2133                        (TemplateParameterList**)TemplateParamLists.get(),
2134                                                 TemplateParamLists.size())) {
2135    if (TemplateParams->size() > 0) {
2136      // There is no such thing as a variable template.
2137      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2138        << II
2139        << SourceRange(TemplateParams->getTemplateLoc(),
2140                       TemplateParams->getRAngleLoc());
2141      return 0;
2142    } else {
2143      // There is an extraneous 'template<>' for this variable. Complain
2144      // about it, but allow the declaration of the variable.
2145      Diag(TemplateParams->getTemplateLoc(),
2146           diag::err_template_variable_noparams)
2147        << II
2148        << SourceRange(TemplateParams->getTemplateLoc(),
2149                       TemplateParams->getRAngleLoc());
2150    }
2151  }
2152
2153  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2154                          II, R, DInfo, SC,
2155                          // FIXME: Move to DeclGroup...
2156                          D.getDeclSpec().getSourceRange().getBegin());
2157
2158  if (D.isInvalidType())
2159    NewVD->setInvalidDecl();
2160
2161  if (D.getDeclSpec().isThreadSpecified()) {
2162    if (NewVD->hasLocalStorage())
2163      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2164    else if (!Context.Target.isTLSSupported())
2165      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2166    else
2167      NewVD->setThreadSpecified(true);
2168  }
2169
2170  // Set the lexical context. If the declarator has a C++ scope specifier, the
2171  // lexical context will be different from the semantic context.
2172  NewVD->setLexicalDeclContext(CurContext);
2173
2174  // Handle attributes prior to checking for duplicates in MergeVarDecl
2175  ProcessDeclAttributes(S, NewVD, D);
2176
2177  // Handle GNU asm-label extension (encoded as an attribute).
2178  if (Expr *E = (Expr*) D.getAsmLabel()) {
2179    // The parser guarantees this is a string.
2180    StringLiteral *SE = cast<StringLiteral>(E);
2181    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2182                                                        SE->getByteLength())));
2183  }
2184
2185  // If name lookup finds a previous declaration that is not in the
2186  // same scope as the new declaration, this may still be an
2187  // acceptable redeclaration.
2188  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2189      !(NewVD->hasLinkage() &&
2190        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2191    PrevDecl = 0;
2192
2193  // Merge the decl with the existing one if appropriate.
2194  if (PrevDecl) {
2195    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2196      // The user tried to define a non-static data member
2197      // out-of-line (C++ [dcl.meaning]p1).
2198      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2199        << D.getCXXScopeSpec().getRange();
2200      PrevDecl = 0;
2201      NewVD->setInvalidDecl();
2202    }
2203  } else if (D.getCXXScopeSpec().isSet()) {
2204    // No previous declaration in the qualifying scope.
2205    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2206      << Name << D.getCXXScopeSpec().getRange();
2207    NewVD->setInvalidDecl();
2208  }
2209
2210  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2211
2212  // attributes declared post-definition are currently ignored
2213  if (PrevDecl) {
2214    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2215    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2216      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2217      Diag(Def->getLocation(), diag::note_previous_definition);
2218    }
2219  }
2220
2221  // If this is a locally-scoped extern C variable, update the map of
2222  // such variables.
2223  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2224      !NewVD->isInvalidDecl())
2225    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2226
2227  return NewVD;
2228}
2229
2230/// \brief Perform semantic checking on a newly-created variable
2231/// declaration.
2232///
2233/// This routine performs all of the type-checking required for a
2234/// variable declaration once it has been built. It is used both to
2235/// check variables after they have been parsed and their declarators
2236/// have been translated into a declaration, and to check variables
2237/// that have been instantiated from a template.
2238///
2239/// Sets NewVD->isInvalidDecl() if an error was encountered.
2240void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2241                                    bool &Redeclaration) {
2242  // If the decl is already known invalid, don't check it.
2243  if (NewVD->isInvalidDecl())
2244    return;
2245
2246  QualType T = NewVD->getType();
2247
2248  if (T->isObjCInterfaceType()) {
2249    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2250    return NewVD->setInvalidDecl();
2251  }
2252
2253  // The variable can not have an abstract class type.
2254  if (RequireNonAbstractType(NewVD->getLocation(), T,
2255                             diag::err_abstract_type_in_decl,
2256                             AbstractVariableType))
2257    return NewVD->setInvalidDecl();
2258
2259  // Emit an error if an address space was applied to decl with local storage.
2260  // This includes arrays of objects with address space qualifiers, but not
2261  // automatic variables that point to other address spaces.
2262  // ISO/IEC TR 18037 S5.1.2
2263  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2264    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2265    return NewVD->setInvalidDecl();
2266  }
2267
2268  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2269      && !NewVD->hasAttr<BlocksAttr>())
2270    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2271
2272  bool isVM = T->isVariablyModifiedType();
2273  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2274      NewVD->hasAttr<BlocksAttr>())
2275    CurFunctionNeedsScopeChecking = true;
2276
2277  if ((isVM && NewVD->hasLinkage()) ||
2278      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2279    bool SizeIsNegative;
2280    QualType FixedTy =
2281        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2282
2283    if (FixedTy.isNull() && T->isVariableArrayType()) {
2284      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2285      // FIXME: This won't give the correct result for
2286      // int a[10][n];
2287      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2288
2289      if (NewVD->isFileVarDecl())
2290        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2291        << SizeRange;
2292      else if (NewVD->getStorageClass() == VarDecl::Static)
2293        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2294        << SizeRange;
2295      else
2296        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2297        << SizeRange;
2298      return NewVD->setInvalidDecl();
2299    }
2300
2301    if (FixedTy.isNull()) {
2302      if (NewVD->isFileVarDecl())
2303        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2304      else
2305        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2306      return NewVD->setInvalidDecl();
2307    }
2308
2309    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2310    NewVD->setType(FixedTy);
2311  }
2312
2313  if (!PrevDecl && NewVD->isExternC(Context)) {
2314    // Since we did not find anything by this name and we're declaring
2315    // an extern "C" variable, look for a non-visible extern "C"
2316    // declaration with the same name.
2317    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2318      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2319    if (Pos != LocallyScopedExternalDecls.end())
2320      PrevDecl = Pos->second;
2321  }
2322
2323  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2324    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2325      << T;
2326    return NewVD->setInvalidDecl();
2327  }
2328
2329  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2330    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2331    return NewVD->setInvalidDecl();
2332  }
2333
2334  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2335    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2336    return NewVD->setInvalidDecl();
2337  }
2338
2339  if (PrevDecl) {
2340    Redeclaration = true;
2341    MergeVarDecl(NewVD, PrevDecl);
2342  }
2343}
2344
2345NamedDecl*
2346Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2347                              QualType R, DeclaratorInfo *DInfo,
2348                              NamedDecl* PrevDecl,
2349                              MultiTemplateParamsArg TemplateParamLists,
2350                              bool IsFunctionDefinition, bool &Redeclaration) {
2351  assert(R.getTypePtr()->isFunctionType());
2352
2353  DeclarationName Name = GetNameForDeclarator(D);
2354  FunctionDecl::StorageClass SC = FunctionDecl::None;
2355  switch (D.getDeclSpec().getStorageClassSpec()) {
2356  default: assert(0 && "Unknown storage class!");
2357  case DeclSpec::SCS_auto:
2358  case DeclSpec::SCS_register:
2359  case DeclSpec::SCS_mutable:
2360    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2361         diag::err_typecheck_sclass_func);
2362    D.setInvalidType();
2363    break;
2364  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2365  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2366  case DeclSpec::SCS_static: {
2367    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2368      // C99 6.7.1p5:
2369      //   The declaration of an identifier for a function that has
2370      //   block scope shall have no explicit storage-class specifier
2371      //   other than extern
2372      // See also (C++ [dcl.stc]p4).
2373      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2374           diag::err_static_block_func);
2375      SC = FunctionDecl::None;
2376    } else
2377      SC = FunctionDecl::Static;
2378    break;
2379  }
2380  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2381  }
2382
2383  if (D.getDeclSpec().isThreadSpecified())
2384    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2385
2386  bool isFriend = D.getDeclSpec().isFriendSpecified();
2387  bool isInline = D.getDeclSpec().isInlineSpecified();
2388  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2389  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2390
2391  // Check that the return type is not an abstract class type.
2392  // For record types, this is done by the AbstractClassUsageDiagnoser once
2393  // the class has been completely parsed.
2394  if (!DC->isRecord() &&
2395      RequireNonAbstractType(D.getIdentifierLoc(),
2396                             R->getAsFunctionType()->getResultType(),
2397                             diag::err_abstract_type_in_decl,
2398                             AbstractReturnType))
2399    D.setInvalidType();
2400
2401  // Do not allow returning a objc interface by-value.
2402  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2403    Diag(D.getIdentifierLoc(),
2404         diag::err_object_cannot_be_passed_returned_by_value) << 0
2405      << R->getAsFunctionType()->getResultType();
2406    D.setInvalidType();
2407  }
2408
2409  // Check that we can declare a template here.
2410  if (TemplateParamLists.size() &&
2411      CheckTemplateDeclScope(S, TemplateParamLists))
2412    return 0;
2413
2414  bool isVirtualOkay = false;
2415  FunctionDecl *NewFD;
2416  if (isFriend) {
2417    // DC is the namespace in which the function is being declared.
2418    assert(DC->isFileContext() || D.getCXXScopeSpec().isSet());
2419
2420    // C++ [class.friend]p5
2421    //   A function can be defined in a friend declaration of a
2422    //   class . . . . Such a function is implicitly inline.
2423    isInline |= IsFunctionDefinition;
2424
2425    NewFD = FriendFunctionDecl::Create(Context, DC,
2426                                       D.getIdentifierLoc(), Name, R, DInfo,
2427                                       isInline,
2428                                       D.getDeclSpec().getFriendSpecLoc());
2429
2430  } else if (D.getKind() == Declarator::DK_Constructor) {
2431    // This is a C++ constructor declaration.
2432    assert(DC->isRecord() &&
2433           "Constructors can only be declared in a member context");
2434
2435    R = CheckConstructorDeclarator(D, R, SC);
2436
2437    // Create the new declaration
2438    NewFD = CXXConstructorDecl::Create(Context,
2439                                       cast<CXXRecordDecl>(DC),
2440                                       D.getIdentifierLoc(), Name, R, DInfo,
2441                                       isExplicit, isInline,
2442                                       /*isImplicitlyDeclared=*/false);
2443  } else if (D.getKind() == Declarator::DK_Destructor) {
2444    // This is a C++ destructor declaration.
2445    if (DC->isRecord()) {
2446      R = CheckDestructorDeclarator(D, SC);
2447
2448      NewFD = CXXDestructorDecl::Create(Context,
2449                                        cast<CXXRecordDecl>(DC),
2450                                        D.getIdentifierLoc(), Name, R,
2451                                        isInline,
2452                                        /*isImplicitlyDeclared=*/false);
2453
2454      isVirtualOkay = true;
2455    } else {
2456      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2457
2458      // Create a FunctionDecl to satisfy the function definition parsing
2459      // code path.
2460      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2461                                   Name, R, DInfo, SC, isInline,
2462                                   /*hasPrototype=*/true,
2463                                   // FIXME: Move to DeclGroup...
2464                                   D.getDeclSpec().getSourceRange().getBegin());
2465      D.setInvalidType();
2466    }
2467  } else if (D.getKind() == Declarator::DK_Conversion) {
2468    if (!DC->isRecord()) {
2469      Diag(D.getIdentifierLoc(),
2470           diag::err_conv_function_not_member);
2471      return 0;
2472    }
2473
2474    CheckConversionDeclarator(D, R, SC);
2475    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2476                                      D.getIdentifierLoc(), Name, R, DInfo,
2477                                      isInline, isExplicit);
2478
2479    isVirtualOkay = true;
2480  } else if (DC->isRecord()) {
2481    // If the of the function is the same as the name of the record, then this
2482    // must be an invalid constructor that has a return type.
2483    // (The parser checks for a return type and makes the declarator a
2484    // constructor if it has no return type).
2485    // must have an invalid constructor that has a return type
2486    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2487      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2488        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2489        << SourceRange(D.getIdentifierLoc());
2490      return 0;
2491    }
2492
2493    // This is a C++ method declaration.
2494    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2495                                  D.getIdentifierLoc(), Name, R, DInfo,
2496                                  (SC == FunctionDecl::Static), isInline);
2497
2498    isVirtualOkay = (SC != FunctionDecl::Static);
2499  } else {
2500    // Determine whether the function was written with a
2501    // prototype. This true when:
2502    //   - we're in C++ (where every function has a prototype),
2503    //   - there is a prototype in the declarator, or
2504    //   - the type R of the function is some kind of typedef or other reference
2505    //     to a type name (which eventually refers to a function type).
2506    bool HasPrototype =
2507       getLangOptions().CPlusPlus ||
2508       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2509       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2510
2511    NewFD = FunctionDecl::Create(Context, DC,
2512                                 D.getIdentifierLoc(),
2513                                 Name, R, DInfo, SC, isInline, HasPrototype,
2514                                 // FIXME: Move to DeclGroup...
2515                                 D.getDeclSpec().getSourceRange().getBegin());
2516  }
2517
2518  if (D.isInvalidType())
2519    NewFD->setInvalidDecl();
2520
2521  // Set the lexical context. If the declarator has a C++
2522  // scope specifier, the lexical context will be different
2523  // from the semantic context.
2524  NewFD->setLexicalDeclContext(CurContext);
2525
2526  // Match up the template parameter lists with the scope specifier, then
2527  // determine whether we have a template or a template specialization.
2528  FunctionTemplateDecl *FunctionTemplate = 0;
2529  if (TemplateParameterList *TemplateParams
2530        = MatchTemplateParametersToScopeSpecifier(
2531                                  D.getDeclSpec().getSourceRange().getBegin(),
2532                                  D.getCXXScopeSpec(),
2533                           (TemplateParameterList**)TemplateParamLists.get(),
2534                                                  TemplateParamLists.size())) {
2535    if (TemplateParams->size() > 0) {
2536      // This is a function template
2537      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2538                                                      NewFD->getLocation(),
2539                                                      Name, TemplateParams,
2540                                                      NewFD);
2541      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2542    } else {
2543      // FIXME: Handle function template specializations
2544    }
2545
2546    // FIXME: Free this memory properly.
2547    TemplateParamLists.release();
2548  }
2549
2550  // C++ [dcl.fct.spec]p5:
2551  //   The virtual specifier shall only be used in declarations of
2552  //   nonstatic class member functions that appear within a
2553  //   member-specification of a class declaration; see 10.3.
2554  //
2555  if (isVirtual && !NewFD->isInvalidDecl()) {
2556    if (!isVirtualOkay) {
2557       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2558           diag::err_virtual_non_function);
2559    } else if (!CurContext->isRecord()) {
2560      // 'virtual' was specified outside of the class.
2561      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2562        << CodeModificationHint::CreateRemoval(
2563                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2564    } else {
2565      // Okay: Add virtual to the method.
2566      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2567      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2568      CurClass->setAggregate(false);
2569      CurClass->setPOD(false);
2570      CurClass->setEmpty(false);
2571      CurClass->setPolymorphic(true);
2572      CurClass->setHasTrivialConstructor(false);
2573      CurClass->setHasTrivialCopyConstructor(false);
2574      CurClass->setHasTrivialCopyAssignment(false);
2575    }
2576  }
2577
2578  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2579    // Look for virtual methods in base classes that this method might override.
2580
2581    BasePaths Paths;
2582    if (LookupInBases(cast<CXXRecordDecl>(DC),
2583                      MemberLookupCriteria(NewMD), Paths)) {
2584      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2585           E = Paths.found_decls_end(); I != E; ++I) {
2586        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2587          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2588              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2589            NewMD->addOverriddenMethod(OldMD);
2590        }
2591      }
2592    }
2593  }
2594
2595  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2596      !CurContext->isRecord()) {
2597    // C++ [class.static]p1:
2598    //   A data or function member of a class may be declared static
2599    //   in a class definition, in which case it is a static member of
2600    //   the class.
2601
2602    // Complain about the 'static' specifier if it's on an out-of-line
2603    // member function definition.
2604    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2605         diag::err_static_out_of_line)
2606      << CodeModificationHint::CreateRemoval(
2607                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2608  }
2609
2610  // Handle GNU asm-label extension (encoded as an attribute).
2611  if (Expr *E = (Expr*) D.getAsmLabel()) {
2612    // The parser guarantees this is a string.
2613    StringLiteral *SE = cast<StringLiteral>(E);
2614    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2615                                                        SE->getByteLength())));
2616  }
2617
2618  // Copy the parameter declarations from the declarator D to the function
2619  // declaration NewFD, if they are available.  First scavenge them into Params.
2620  llvm::SmallVector<ParmVarDecl*, 16> Params;
2621  if (D.getNumTypeObjects() > 0) {
2622    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2623
2624    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2625    // function that takes no arguments, not a function that takes a
2626    // single void argument.
2627    // We let through "const void" here because Sema::GetTypeForDeclarator
2628    // already checks for that case.
2629    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2630        FTI.ArgInfo[0].Param &&
2631        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2632      // Empty arg list, don't push any params.
2633      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2634
2635      // In C++, the empty parameter-type-list must be spelled "void"; a
2636      // typedef of void is not permitted.
2637      if (getLangOptions().CPlusPlus &&
2638          Param->getType().getUnqualifiedType() != Context.VoidTy)
2639        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2640      // FIXME: Leaks decl?
2641    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2642      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2643        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2644        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2645        Param->setDeclContext(NewFD);
2646        Params.push_back(Param);
2647      }
2648    }
2649
2650  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2651    // When we're declaring a function with a typedef, typeof, etc as in the
2652    // following example, we'll need to synthesize (unnamed)
2653    // parameters for use in the declaration.
2654    //
2655    // @code
2656    // typedef void fn(int);
2657    // fn f;
2658    // @endcode
2659
2660    // Synthesize a parameter for each argument type.
2661    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2662         AE = FT->arg_type_end(); AI != AE; ++AI) {
2663      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2664                                               SourceLocation(), 0,
2665                                               *AI, /*DInfo=*/0,
2666                                               VarDecl::None, 0);
2667      Param->setImplicit();
2668      Params.push_back(Param);
2669    }
2670  } else {
2671    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2672           "Should not need args for typedef of non-prototype fn");
2673  }
2674  // Finally, we know we have the right number of parameters, install them.
2675  NewFD->setParams(Context, Params.data(), Params.size());
2676
2677  // If name lookup finds a previous declaration that is not in the
2678  // same scope as the new declaration, this may still be an
2679  // acceptable redeclaration.
2680  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2681      !(NewFD->hasLinkage() &&
2682        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2683    PrevDecl = 0;
2684
2685  // Perform semantic checking on the function declaration.
2686  bool OverloadableAttrRequired = false; // FIXME: HACK!
2687  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2688                           /*FIXME:*/OverloadableAttrRequired);
2689
2690  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2691    // An out-of-line member function declaration must also be a
2692    // definition (C++ [dcl.meaning]p1).
2693    if (!IsFunctionDefinition && !isFriend) {
2694      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2695        << D.getCXXScopeSpec().getRange();
2696      NewFD->setInvalidDecl();
2697    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2698      // The user tried to provide an out-of-line definition for a
2699      // function that is a member of a class or namespace, but there
2700      // was no such member function declared (C++ [class.mfct]p2,
2701      // C++ [namespace.memdef]p2). For example:
2702      //
2703      // class X {
2704      //   void f() const;
2705      // };
2706      //
2707      // void X::f() { } // ill-formed
2708      //
2709      // Complain about this problem, and attempt to suggest close
2710      // matches (e.g., those that differ only in cv-qualifiers and
2711      // whether the parameter types are references).
2712      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2713        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2714      NewFD->setInvalidDecl();
2715
2716      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2717                                              true);
2718      assert(!Prev.isAmbiguous() &&
2719             "Cannot have an ambiguity in previous-declaration lookup");
2720      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2721           Func != FuncEnd; ++Func) {
2722        if (isa<FunctionDecl>(*Func) &&
2723            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2724          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2725      }
2726
2727      PrevDecl = 0;
2728    }
2729  }
2730
2731  // Handle attributes. We need to have merged decls when handling attributes
2732  // (for example to check for conflicts, etc).
2733  // FIXME: This needs to happen before we merge declarations. Then,
2734  // let attribute merging cope with attribute conflicts.
2735  ProcessDeclAttributes(S, NewFD, D);
2736
2737  // attributes declared post-definition are currently ignored
2738  if (PrevDecl) {
2739    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2740    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2741      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2742      Diag(Def->getLocation(), diag::note_previous_definition);
2743    }
2744  }
2745
2746  AddKnownFunctionAttributes(NewFD);
2747
2748  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2749    // If a function name is overloadable in C, then every function
2750    // with that name must be marked "overloadable".
2751    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2752      << Redeclaration << NewFD;
2753    if (PrevDecl)
2754      Diag(PrevDecl->getLocation(),
2755           diag::note_attribute_overloadable_prev_overload);
2756    NewFD->addAttr(::new (Context) OverloadableAttr());
2757  }
2758
2759  // If this is a locally-scoped extern C function, update the
2760  // map of such names.
2761  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2762      && !NewFD->isInvalidDecl())
2763    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2764
2765  // Set this FunctionDecl's range up to the right paren.
2766  NewFD->setLocEnd(D.getSourceRange().getEnd());
2767
2768  if (FunctionTemplate && NewFD->isInvalidDecl())
2769    FunctionTemplate->setInvalidDecl();
2770
2771  if (FunctionTemplate)
2772    return FunctionTemplate;
2773
2774  return NewFD;
2775}
2776
2777/// \brief Perform semantic checking of a new function declaration.
2778///
2779/// Performs semantic analysis of the new function declaration
2780/// NewFD. This routine performs all semantic checking that does not
2781/// require the actual declarator involved in the declaration, and is
2782/// used both for the declaration of functions as they are parsed
2783/// (called via ActOnDeclarator) and for the declaration of functions
2784/// that have been instantiated via C++ template instantiation (called
2785/// via InstantiateDecl).
2786///
2787/// This sets NewFD->isInvalidDecl() to true if there was an error.
2788void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2789                                    bool &Redeclaration,
2790                                    bool &OverloadableAttrRequired) {
2791  // If NewFD is already known erroneous, don't do any of this checking.
2792  if (NewFD->isInvalidDecl())
2793    return;
2794
2795  if (NewFD->getResultType()->isVariablyModifiedType()) {
2796    // Functions returning a variably modified type violate C99 6.7.5.2p2
2797    // because all functions have linkage.
2798    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2799    return NewFD->setInvalidDecl();
2800  }
2801
2802  if (NewFD->isMain(Context)) CheckMain(NewFD);
2803
2804  // Semantic checking for this function declaration (in isolation).
2805  if (getLangOptions().CPlusPlus) {
2806    // C++-specific checks.
2807    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2808      CheckConstructor(Constructor);
2809    } else if (isa<CXXDestructorDecl>(NewFD)) {
2810      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2811      QualType ClassType = Context.getTypeDeclType(Record);
2812      if (!ClassType->isDependentType()) {
2813        DeclarationName Name
2814          = Context.DeclarationNames.getCXXDestructorName(
2815                                        Context.getCanonicalType(ClassType));
2816        if (NewFD->getDeclName() != Name) {
2817          Diag(NewFD->getLocation(), diag::err_destructor_name);
2818          return NewFD->setInvalidDecl();
2819        }
2820      }
2821      Record->setUserDeclaredDestructor(true);
2822      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2823      // user-defined destructor.
2824      Record->setPOD(false);
2825
2826      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2827      // declared destructor.
2828      // FIXME: C++0x: don't do this for "= default" destructors
2829      Record->setHasTrivialDestructor(false);
2830    } else if (CXXConversionDecl *Conversion
2831               = dyn_cast<CXXConversionDecl>(NewFD))
2832      ActOnConversionDeclarator(Conversion);
2833
2834    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2835    if (NewFD->isOverloadedOperator() &&
2836        CheckOverloadedOperatorDeclaration(NewFD))
2837      return NewFD->setInvalidDecl();
2838  }
2839
2840  // C99 6.7.4p6:
2841  //   [... ] For a function with external linkage, the following
2842  //   restrictions apply: [...] If all of the file scope declarations
2843  //   for a function in a translation unit include the inline
2844  //   function specifier without extern, then the definition in that
2845  //   translation unit is an inline definition. An inline definition
2846  //   does not provide an external definition for the function, and
2847  //   does not forbid an external definition in another translation
2848  //   unit.
2849  //
2850  // Here we determine whether this function, in isolation, would be a
2851  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2852  // previous declarations.
2853  if (NewFD->isInline() && getLangOptions().C99 &&
2854      NewFD->getStorageClass() == FunctionDecl::None &&
2855      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2856    NewFD->setC99InlineDefinition(true);
2857
2858  // Check for a previous declaration of this name.
2859  if (!PrevDecl && NewFD->isExternC(Context)) {
2860    // Since we did not find anything by this name and we're declaring
2861    // an extern "C" function, look for a non-visible extern "C"
2862    // declaration with the same name.
2863    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2864      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2865    if (Pos != LocallyScopedExternalDecls.end())
2866      PrevDecl = Pos->second;
2867  }
2868
2869  // Merge or overload the declaration with an existing declaration of
2870  // the same name, if appropriate.
2871  if (PrevDecl) {
2872    // Determine whether NewFD is an overload of PrevDecl or
2873    // a declaration that requires merging. If it's an overload,
2874    // there's no more work to do here; we'll just add the new
2875    // function to the scope.
2876    OverloadedFunctionDecl::function_iterator MatchedDecl;
2877
2878    if (!getLangOptions().CPlusPlus &&
2879        AllowOverloadingOfFunction(PrevDecl, Context)) {
2880      OverloadableAttrRequired = true;
2881
2882      // Functions marked "overloadable" must have a prototype (that
2883      // we can't get through declaration merging).
2884      if (!NewFD->getType()->getAsFunctionProtoType()) {
2885        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2886          << NewFD;
2887        Redeclaration = true;
2888
2889        // Turn this into a variadic function with no parameters.
2890        QualType R = Context.getFunctionType(
2891                       NewFD->getType()->getAsFunctionType()->getResultType(),
2892                       0, 0, true, 0);
2893        NewFD->setType(R);
2894        return NewFD->setInvalidDecl();
2895      }
2896    }
2897
2898    if (PrevDecl &&
2899        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2900         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2901        !isa<UsingDecl>(PrevDecl)) {
2902      Redeclaration = true;
2903      Decl *OldDecl = PrevDecl;
2904
2905      // If PrevDecl was an overloaded function, extract the
2906      // FunctionDecl that matched.
2907      if (isa<OverloadedFunctionDecl>(PrevDecl))
2908        OldDecl = *MatchedDecl;
2909
2910      // NewFD and OldDecl represent declarations that need to be
2911      // merged.
2912      if (MergeFunctionDecl(NewFD, OldDecl))
2913        return NewFD->setInvalidDecl();
2914
2915      if (FunctionTemplateDecl *OldTemplateDecl
2916            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2917        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2918      else {
2919        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2920          NewFD->setAccess(OldDecl->getAccess());
2921        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2922      }
2923    }
2924  }
2925
2926  // In C++, check default arguments now that we have merged decls. Unless
2927  // the lexical context is the class, because in this case this is done
2928  // during delayed parsing anyway.
2929  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2930    CheckCXXDefaultArguments(NewFD);
2931}
2932
2933void Sema::CheckMain(FunctionDecl* FD) {
2934  // C++ [basic.start.main]p3:  A program that declares main to be inline
2935  //   or static is ill-formed.
2936  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2937  //   shall not appear in a declaration of main.
2938  // static main is not an error under C99, but we should warn about it.
2939  bool isInline = FD->isInline();
2940  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2941  if (isInline || isStatic) {
2942    unsigned diagID = diag::warn_unusual_main_decl;
2943    if (isInline || getLangOptions().CPlusPlus)
2944      diagID = diag::err_unusual_main_decl;
2945
2946    int which = isStatic + (isInline << 1) - 1;
2947    Diag(FD->getLocation(), diagID) << which;
2948  }
2949
2950  QualType T = FD->getType();
2951  assert(T->isFunctionType() && "function decl is not of function type");
2952  const FunctionType* FT = T->getAsFunctionType();
2953
2954  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2955    // TODO: add a replacement fixit to turn the return type into 'int'.
2956    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2957    FD->setInvalidDecl(true);
2958  }
2959
2960  // Treat protoless main() as nullary.
2961  if (isa<FunctionNoProtoType>(FT)) return;
2962
2963  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2964  unsigned nparams = FTP->getNumArgs();
2965  assert(FD->getNumParams() == nparams);
2966
2967  if (nparams > 3) {
2968    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2969    FD->setInvalidDecl(true);
2970    nparams = 3;
2971  }
2972
2973  // FIXME: a lot of the following diagnostics would be improved
2974  // if we had some location information about types.
2975
2976  QualType CharPP =
2977    Context.getPointerType(Context.getPointerType(Context.CharTy));
2978  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2979
2980  for (unsigned i = 0; i < nparams; ++i) {
2981    QualType AT = FTP->getArgType(i);
2982
2983    bool mismatch = true;
2984
2985    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2986      mismatch = false;
2987    else if (Expected[i] == CharPP) {
2988      // As an extension, the following forms are okay:
2989      //   char const **
2990      //   char const * const *
2991      //   char * const *
2992
2993      QualifierSet qs;
2994      const PointerType* PT;
2995      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2996          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2997          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2998        qs.removeConst();
2999        mismatch = !qs.empty();
3000      }
3001    }
3002
3003    if (mismatch) {
3004      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3005      // TODO: suggest replacing given type with expected type
3006      FD->setInvalidDecl(true);
3007    }
3008  }
3009
3010  if (nparams == 1 && !FD->isInvalidDecl()) {
3011    Diag(FD->getLocation(), diag::warn_main_one_arg);
3012  }
3013}
3014
3015bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3016  // FIXME: Need strict checking.  In C89, we need to check for
3017  // any assignment, increment, decrement, function-calls, or
3018  // commas outside of a sizeof.  In C99, it's the same list,
3019  // except that the aforementioned are allowed in unevaluated
3020  // expressions.  Everything else falls under the
3021  // "may accept other forms of constant expressions" exception.
3022  // (We never end up here for C++, so the constant expression
3023  // rules there don't matter.)
3024  if (Init->isConstantInitializer(Context))
3025    return false;
3026  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3027    << Init->getSourceRange();
3028  return true;
3029}
3030
3031void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3032  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3033}
3034
3035/// AddInitializerToDecl - Adds the initializer Init to the
3036/// declaration dcl. If DirectInit is true, this is C++ direct
3037/// initialization rather than copy initialization.
3038void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3039  Decl *RealDecl = dcl.getAs<Decl>();
3040  // If there is no declaration, there was an error parsing it.  Just ignore
3041  // the initializer.
3042  if (RealDecl == 0)
3043    return;
3044
3045  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3046    // With declarators parsed the way they are, the parser cannot
3047    // distinguish between a normal initializer and a pure-specifier.
3048    // Thus this grotesque test.
3049    IntegerLiteral *IL;
3050    Expr *Init = static_cast<Expr *>(init.get());
3051    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3052        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3053      if (Method->isVirtualAsWritten()) {
3054        Method->setPure();
3055
3056        // A class is abstract if at least one function is pure virtual.
3057        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3058      } else if (!Method->isInvalidDecl()) {
3059        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3060          << Method->getDeclName() << Init->getSourceRange();
3061        Method->setInvalidDecl();
3062      }
3063    } else {
3064      Diag(Method->getLocation(), diag::err_member_function_initialization)
3065        << Method->getDeclName() << Init->getSourceRange();
3066      Method->setInvalidDecl();
3067    }
3068    return;
3069  }
3070
3071  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3072  if (!VDecl) {
3073    if (getLangOptions().CPlusPlus &&
3074        RealDecl->getLexicalDeclContext()->isRecord() &&
3075        isa<NamedDecl>(RealDecl))
3076      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3077        << cast<NamedDecl>(RealDecl)->getDeclName();
3078    else
3079      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3080    RealDecl->setInvalidDecl();
3081    return;
3082  }
3083
3084  if (!VDecl->getType()->isArrayType() &&
3085      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3086                          diag::err_typecheck_decl_incomplete_type)) {
3087    RealDecl->setInvalidDecl();
3088    return;
3089  }
3090
3091  const VarDecl *Def = 0;
3092  if (VDecl->getDefinition(Def)) {
3093    Diag(VDecl->getLocation(), diag::err_redefinition)
3094      << VDecl->getDeclName();
3095    Diag(Def->getLocation(), diag::note_previous_definition);
3096    VDecl->setInvalidDecl();
3097    return;
3098  }
3099
3100  // Take ownership of the expression, now that we're sure we have somewhere
3101  // to put it.
3102  Expr *Init = init.takeAs<Expr>();
3103  assert(Init && "missing initializer");
3104
3105  // Get the decls type and save a reference for later, since
3106  // CheckInitializerTypes may change it.
3107  QualType DclT = VDecl->getType(), SavT = DclT;
3108  if (VDecl->isBlockVarDecl()) {
3109    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3110      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3111      VDecl->setInvalidDecl();
3112    } else if (!VDecl->isInvalidDecl()) {
3113      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3114                                VDecl->getDeclName(), DirectInit))
3115        VDecl->setInvalidDecl();
3116
3117      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3118      // Don't check invalid declarations to avoid emitting useless diagnostics.
3119      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3120        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3121          CheckForConstantInitializer(Init, DclT);
3122      }
3123    }
3124  } else if (VDecl->isStaticDataMember() &&
3125             VDecl->getLexicalDeclContext()->isRecord()) {
3126    // This is an in-class initialization for a static data member, e.g.,
3127    //
3128    // struct S {
3129    //   static const int value = 17;
3130    // };
3131
3132    // Attach the initializer
3133    VDecl->setInit(Context, Init);
3134
3135    // C++ [class.mem]p4:
3136    //   A member-declarator can contain a constant-initializer only
3137    //   if it declares a static member (9.4) of const integral or
3138    //   const enumeration type, see 9.4.2.
3139    QualType T = VDecl->getType();
3140    if (!T->isDependentType() &&
3141        (!Context.getCanonicalType(T).isConstQualified() ||
3142         !T->isIntegralType())) {
3143      Diag(VDecl->getLocation(), diag::err_member_initialization)
3144        << VDecl->getDeclName() << Init->getSourceRange();
3145      VDecl->setInvalidDecl();
3146    } else {
3147      // C++ [class.static.data]p4:
3148      //   If a static data member is of const integral or const
3149      //   enumeration type, its declaration in the class definition
3150      //   can specify a constant-initializer which shall be an
3151      //   integral constant expression (5.19).
3152      if (!Init->isTypeDependent() &&
3153          !Init->getType()->isIntegralType()) {
3154        // We have a non-dependent, non-integral or enumeration type.
3155        Diag(Init->getSourceRange().getBegin(),
3156             diag::err_in_class_initializer_non_integral_type)
3157          << Init->getType() << Init->getSourceRange();
3158        VDecl->setInvalidDecl();
3159      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3160        // Check whether the expression is a constant expression.
3161        llvm::APSInt Value;
3162        SourceLocation Loc;
3163        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3164          Diag(Loc, diag::err_in_class_initializer_non_constant)
3165            << Init->getSourceRange();
3166          VDecl->setInvalidDecl();
3167        } else if (!VDecl->getType()->isDependentType())
3168          ImpCastExprToType(Init, VDecl->getType());
3169      }
3170    }
3171  } else if (VDecl->isFileVarDecl()) {
3172    if (VDecl->getStorageClass() == VarDecl::Extern)
3173      Diag(VDecl->getLocation(), diag::warn_extern_init);
3174    if (!VDecl->isInvalidDecl())
3175      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3176                                VDecl->getDeclName(), DirectInit))
3177        VDecl->setInvalidDecl();
3178
3179    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3180    // Don't check invalid declarations to avoid emitting useless diagnostics.
3181    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3182      // C99 6.7.8p4. All file scoped initializers need to be constant.
3183      CheckForConstantInitializer(Init, DclT);
3184    }
3185  }
3186  // If the type changed, it means we had an incomplete type that was
3187  // completed by the initializer. For example:
3188  //   int ary[] = { 1, 3, 5 };
3189  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3190  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3191    VDecl->setType(DclT);
3192    Init->setType(DclT);
3193  }
3194
3195  Init = MaybeCreateCXXExprWithTemporaries(Init,
3196                                           /*ShouldDestroyTemporaries=*/true);
3197  // Attach the initializer to the decl.
3198  VDecl->setInit(Context, Init);
3199
3200  // If the previous declaration of VDecl was a tentative definition,
3201  // remove it from the set of tentative definitions.
3202  if (VDecl->getPreviousDeclaration() &&
3203      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3204    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3205      = TentativeDefinitions.find(VDecl->getDeclName());
3206    assert(Pos != TentativeDefinitions.end() &&
3207           "Unrecorded tentative definition?");
3208    TentativeDefinitions.erase(Pos);
3209  }
3210
3211  return;
3212}
3213
3214void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3215                                  bool TypeContainsUndeducedAuto) {
3216  Decl *RealDecl = dcl.getAs<Decl>();
3217
3218  // If there is no declaration, there was an error parsing it. Just ignore it.
3219  if (RealDecl == 0)
3220    return;
3221
3222  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3223    QualType Type = Var->getType();
3224
3225    // Record tentative definitions.
3226    if (Var->isTentativeDefinition(Context))
3227      TentativeDefinitions[Var->getDeclName()] = Var;
3228
3229    // C++ [dcl.init.ref]p3:
3230    //   The initializer can be omitted for a reference only in a
3231    //   parameter declaration (8.3.5), in the declaration of a
3232    //   function return type, in the declaration of a class member
3233    //   within its class declaration (9.2), and where the extern
3234    //   specifier is explicitly used.
3235    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3236      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3237        << Var->getDeclName()
3238        << SourceRange(Var->getLocation(), Var->getLocation());
3239      Var->setInvalidDecl();
3240      return;
3241    }
3242
3243    // C++0x [dcl.spec.auto]p3
3244    if (TypeContainsUndeducedAuto) {
3245      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3246        << Var->getDeclName() << Type;
3247      Var->setInvalidDecl();
3248      return;
3249    }
3250
3251    // C++ [dcl.init]p9:
3252    //
3253    //   If no initializer is specified for an object, and the object
3254    //   is of (possibly cv-qualified) non-POD class type (or array
3255    //   thereof), the object shall be default-initialized; if the
3256    //   object is of const-qualified type, the underlying class type
3257    //   shall have a user-declared default constructor.
3258    if (getLangOptions().CPlusPlus) {
3259      QualType InitType = Type;
3260      if (const ArrayType *Array = Context.getAsArrayType(Type))
3261        InitType = Array->getElementType();
3262      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3263          InitType->isRecordType() && !InitType->isDependentType()) {
3264        CXXRecordDecl *RD =
3265          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3266        CXXConstructorDecl *Constructor = 0;
3267        if (!RequireCompleteType(Var->getLocation(), InitType,
3268                                    diag::err_invalid_incomplete_type_use))
3269          Constructor
3270            = PerformInitializationByConstructor(InitType, 0, 0,
3271                                                 Var->getLocation(),
3272                                               SourceRange(Var->getLocation(),
3273                                                           Var->getLocation()),
3274                                                 Var->getDeclName(),
3275                                                 IK_Default);
3276        if (!Constructor)
3277          Var->setInvalidDecl();
3278        else {
3279          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor())
3280            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3281          FinalizeVarWithDestructor(Var, InitType);
3282        }
3283      }
3284    }
3285
3286#if 0
3287    // FIXME: Temporarily disabled because we are not properly parsing
3288    // linkage specifications on declarations, e.g.,
3289    //
3290    //   extern "C" const CGPoint CGPointerZero;
3291    //
3292    // C++ [dcl.init]p9:
3293    //
3294    //     If no initializer is specified for an object, and the
3295    //     object is of (possibly cv-qualified) non-POD class type (or
3296    //     array thereof), the object shall be default-initialized; if
3297    //     the object is of const-qualified type, the underlying class
3298    //     type shall have a user-declared default
3299    //     constructor. Otherwise, if no initializer is specified for
3300    //     an object, the object and its subobjects, if any, have an
3301    //     indeterminate initial value; if the object or any of its
3302    //     subobjects are of const-qualified type, the program is
3303    //     ill-formed.
3304    //
3305    // This isn't technically an error in C, so we don't diagnose it.
3306    //
3307    // FIXME: Actually perform the POD/user-defined default
3308    // constructor check.
3309    if (getLangOptions().CPlusPlus &&
3310        Context.getCanonicalType(Type).isConstQualified() &&
3311        !Var->hasExternalStorage())
3312      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3313        << Var->getName()
3314        << SourceRange(Var->getLocation(), Var->getLocation());
3315#endif
3316  }
3317}
3318
3319Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3320                                                   DeclPtrTy *Group,
3321                                                   unsigned NumDecls) {
3322  llvm::SmallVector<Decl*, 8> Decls;
3323
3324  if (DS.isTypeSpecOwned())
3325    Decls.push_back((Decl*)DS.getTypeRep());
3326
3327  for (unsigned i = 0; i != NumDecls; ++i)
3328    if (Decl *D = Group[i].getAs<Decl>())
3329      Decls.push_back(D);
3330
3331  // Perform semantic analysis that depends on having fully processed both
3332  // the declarator and initializer.
3333  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3334    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3335    if (!IDecl)
3336      continue;
3337    QualType T = IDecl->getType();
3338
3339    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3340    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3341    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3342      if (!IDecl->isInvalidDecl() &&
3343          RequireCompleteType(IDecl->getLocation(), T,
3344                              diag::err_typecheck_decl_incomplete_type))
3345        IDecl->setInvalidDecl();
3346    }
3347    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3348    // object that has file scope without an initializer, and without a
3349    // storage-class specifier or with the storage-class specifier "static",
3350    // constitutes a tentative definition. Note: A tentative definition with
3351    // external linkage is valid (C99 6.2.2p5).
3352    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3353      if (const IncompleteArrayType *ArrayT
3354          = Context.getAsIncompleteArrayType(T)) {
3355        if (RequireCompleteType(IDecl->getLocation(),
3356                                ArrayT->getElementType(),
3357                                diag::err_illegal_decl_array_incomplete_type))
3358          IDecl->setInvalidDecl();
3359      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3360        // C99 6.9.2p3: If the declaration of an identifier for an object is
3361        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3362        // declared type shall not be an incomplete type.
3363        // NOTE: code such as the following
3364        //     static struct s;
3365        //     struct s { int a; };
3366        // is accepted by gcc. Hence here we issue a warning instead of
3367        // an error and we do not invalidate the static declaration.
3368        // NOTE: to avoid multiple warnings, only check the first declaration.
3369        if (IDecl->getPreviousDeclaration() == 0)
3370          RequireCompleteType(IDecl->getLocation(), T,
3371                              diag::ext_typecheck_decl_incomplete_type);
3372      }
3373    }
3374  }
3375  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3376                                                   Decls.data(), Decls.size()));
3377}
3378
3379
3380/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3381/// to introduce parameters into function prototype scope.
3382Sema::DeclPtrTy
3383Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3384  const DeclSpec &DS = D.getDeclSpec();
3385
3386  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3387  VarDecl::StorageClass StorageClass = VarDecl::None;
3388  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3389    StorageClass = VarDecl::Register;
3390  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3391    Diag(DS.getStorageClassSpecLoc(),
3392         diag::err_invalid_storage_class_in_func_decl);
3393    D.getMutableDeclSpec().ClearStorageClassSpecs();
3394  }
3395
3396  if (D.getDeclSpec().isThreadSpecified())
3397    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3398
3399  DiagnoseFunctionSpecifiers(D);
3400
3401  // Check that there are no default arguments inside the type of this
3402  // parameter (C++ only).
3403  if (getLangOptions().CPlusPlus)
3404    CheckExtraCXXDefaultArguments(D);
3405
3406  DeclaratorInfo *DInfo = 0;
3407  TagDecl *OwnedDecl = 0;
3408  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3409                                               &OwnedDecl);
3410
3411  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3412    // C++ [dcl.fct]p6:
3413    //   Types shall not be defined in return or parameter types.
3414    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3415      << Context.getTypeDeclType(OwnedDecl);
3416  }
3417
3418  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3419  // Can this happen for params?  We already checked that they don't conflict
3420  // among each other.  Here they can only shadow globals, which is ok.
3421  IdentifierInfo *II = D.getIdentifier();
3422  if (II) {
3423    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3424      if (PrevDecl->isTemplateParameter()) {
3425        // Maybe we will complain about the shadowed template parameter.
3426        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3427        // Just pretend that we didn't see the previous declaration.
3428        PrevDecl = 0;
3429      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3430        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3431
3432        // Recover by removing the name
3433        II = 0;
3434        D.SetIdentifier(0, D.getIdentifierLoc());
3435      }
3436    }
3437  }
3438
3439  // Parameters can not be abstract class types.
3440  // For record types, this is done by the AbstractClassUsageDiagnoser once
3441  // the class has been completely parsed.
3442  if (!CurContext->isRecord() &&
3443      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3444                             diag::err_abstract_type_in_decl,
3445                             AbstractParamType))
3446    D.setInvalidType(true);
3447
3448  QualType T = adjustParameterType(parmDeclType);
3449
3450  ParmVarDecl *New;
3451  if (T == parmDeclType) // parameter type did not need adjustment
3452    New = ParmVarDecl::Create(Context, CurContext,
3453                              D.getIdentifierLoc(), II,
3454                              parmDeclType, DInfo, StorageClass,
3455                              0);
3456  else // keep track of both the adjusted and unadjusted types
3457    New = OriginalParmVarDecl::Create(Context, CurContext,
3458                                      D.getIdentifierLoc(), II, T, DInfo,
3459                                      parmDeclType, StorageClass, 0);
3460
3461  if (D.isInvalidType())
3462    New->setInvalidDecl();
3463
3464  // Parameter declarators cannot be interface types. All ObjC objects are
3465  // passed by reference.
3466  if (T->isObjCInterfaceType()) {
3467    Diag(D.getIdentifierLoc(),
3468         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3469    New->setInvalidDecl();
3470  }
3471
3472  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3473  if (D.getCXXScopeSpec().isSet()) {
3474    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3475      << D.getCXXScopeSpec().getRange();
3476    New->setInvalidDecl();
3477  }
3478
3479  // Add the parameter declaration into this scope.
3480  S->AddDecl(DeclPtrTy::make(New));
3481  if (II)
3482    IdResolver.AddDecl(New);
3483
3484  ProcessDeclAttributes(S, New, D);
3485
3486  if (New->hasAttr<BlocksAttr>()) {
3487    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3488  }
3489  return DeclPtrTy::make(New);
3490}
3491
3492void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3493                                           SourceLocation LocAfterDecls) {
3494  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3495         "Not a function declarator!");
3496  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3497
3498  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3499  // for a K&R function.
3500  if (!FTI.hasPrototype) {
3501    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3502      --i;
3503      if (FTI.ArgInfo[i].Param == 0) {
3504        std::string Code = "  int ";
3505        Code += FTI.ArgInfo[i].Ident->getName();
3506        Code += ";\n";
3507        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3508          << FTI.ArgInfo[i].Ident
3509          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3510
3511        // Implicitly declare the argument as type 'int' for lack of a better
3512        // type.
3513        DeclSpec DS;
3514        const char* PrevSpec; // unused
3515        unsigned DiagID; // unused
3516        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3517                           PrevSpec, DiagID);
3518        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3519        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3520        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3521      }
3522    }
3523  }
3524}
3525
3526Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3527                                              Declarator &D) {
3528  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3529  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3530         "Not a function declarator!");
3531  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3532
3533  if (FTI.hasPrototype) {
3534    // FIXME: Diagnose arguments without names in C.
3535  }
3536
3537  Scope *ParentScope = FnBodyScope->getParent();
3538
3539  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3540                                  MultiTemplateParamsArg(*this),
3541                                  /*IsFunctionDefinition=*/true);
3542  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3543}
3544
3545Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3546  if (!D)
3547    return D;
3548  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3549
3550  CurFunctionNeedsScopeChecking = false;
3551
3552  // See if this is a redefinition.
3553  const FunctionDecl *Definition;
3554  if (FD->getBody(Definition)) {
3555    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3556    Diag(Definition->getLocation(), diag::note_previous_definition);
3557  }
3558
3559  // Builtin functions cannot be defined.
3560  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3561    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3562      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3563      FD->setInvalidDecl();
3564    }
3565  }
3566
3567  // The return type of a function definition must be complete
3568  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3569  QualType ResultType = FD->getResultType();
3570  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3571      !FD->isInvalidDecl() &&
3572      RequireCompleteType(FD->getLocation(), ResultType,
3573                          diag::err_func_def_incomplete_result))
3574    FD->setInvalidDecl();
3575
3576  // GNU warning -Wmissing-prototypes:
3577  //   Warn if a global function is defined without a previous
3578  //   prototype declaration. This warning is issued even if the
3579  //   definition itself provides a prototype. The aim is to detect
3580  //   global functions that fail to be declared in header files.
3581  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3582      !FD->isMain(Context)) {
3583    bool MissingPrototype = true;
3584    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3585         Prev; Prev = Prev->getPreviousDeclaration()) {
3586      // Ignore any declarations that occur in function or method
3587      // scope, because they aren't visible from the header.
3588      if (Prev->getDeclContext()->isFunctionOrMethod())
3589        continue;
3590
3591      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3592      break;
3593    }
3594
3595    if (MissingPrototype)
3596      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3597  }
3598
3599  if (FnBodyScope)
3600    PushDeclContext(FnBodyScope, FD);
3601
3602  // Check the validity of our function parameters
3603  CheckParmsForFunctionDef(FD);
3604
3605  // Introduce our parameters into the function scope
3606  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3607    ParmVarDecl *Param = FD->getParamDecl(p);
3608    Param->setOwningFunction(FD);
3609
3610    // If this has an identifier, add it to the scope stack.
3611    if (Param->getIdentifier() && FnBodyScope)
3612      PushOnScopeChains(Param, FnBodyScope);
3613  }
3614
3615  // Checking attributes of current function definition
3616  // dllimport attribute.
3617  if (FD->getAttr<DLLImportAttr>() &&
3618      (!FD->getAttr<DLLExportAttr>())) {
3619    // dllimport attribute cannot be applied to definition.
3620    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3621      Diag(FD->getLocation(),
3622           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3623        << "dllimport";
3624      FD->setInvalidDecl();
3625      return DeclPtrTy::make(FD);
3626    } else {
3627      // If a symbol previously declared dllimport is later defined, the
3628      // attribute is ignored in subsequent references, and a warning is
3629      // emitted.
3630      Diag(FD->getLocation(),
3631           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3632        << FD->getNameAsCString() << "dllimport";
3633    }
3634  }
3635  return DeclPtrTy::make(FD);
3636}
3637
3638Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3639  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3640}
3641
3642Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3643                                              bool IsInstantiation) {
3644  Decl *dcl = D.getAs<Decl>();
3645  Stmt *Body = BodyArg.takeAs<Stmt>();
3646  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3647    FD->setBody(Body);
3648    if (FD->isMain(Context))
3649      // C and C++ allow for main to automagically return 0.
3650      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3651      FD->setHasImplicitReturnZero(true);
3652    else
3653      CheckFallThroughForFunctionDef(FD, Body);
3654
3655    if (!FD->isInvalidDecl())
3656      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3657
3658    // C++ [basic.def.odr]p2:
3659    //   [...] A virtual member function is used if it is not pure. [...]
3660    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3661      if (Method->isVirtual() && !Method->isPure())
3662        MarkDeclarationReferenced(Method->getLocation(), Method);
3663
3664    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3665  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3666    assert(MD == getCurMethodDecl() && "Method parsing confused");
3667    MD->setBody(Body);
3668    CheckFallThroughForFunctionDef(MD, Body);
3669    MD->setEndLoc(Body->getLocEnd());
3670
3671    if (!MD->isInvalidDecl())
3672      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3673  } else {
3674    Body->Destroy(Context);
3675    return DeclPtrTy();
3676  }
3677  if (!IsInstantiation)
3678    PopDeclContext();
3679
3680  // Verify and clean out per-function state.
3681
3682  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3683
3684  // Check goto/label use.
3685  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3686       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3687    LabelStmt *L = I->second;
3688
3689    // Verify that we have no forward references left.  If so, there was a goto
3690    // or address of a label taken, but no definition of it.  Label fwd
3691    // definitions are indicated with a null substmt.
3692    if (L->getSubStmt() != 0)
3693      continue;
3694
3695    // Emit error.
3696    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3697
3698    // At this point, we have gotos that use the bogus label.  Stitch it into
3699    // the function body so that they aren't leaked and that the AST is well
3700    // formed.
3701    if (Body == 0) {
3702      // The whole function wasn't parsed correctly, just delete this.
3703      L->Destroy(Context);
3704      continue;
3705    }
3706
3707    // Otherwise, the body is valid: we want to stitch the label decl into the
3708    // function somewhere so that it is properly owned and so that the goto
3709    // has a valid target.  Do this by creating a new compound stmt with the
3710    // label in it.
3711
3712    // Give the label a sub-statement.
3713    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3714
3715    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3716                               cast<CXXTryStmt>(Body)->getTryBlock() :
3717                               cast<CompoundStmt>(Body);
3718    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3719    Elements.push_back(L);
3720    Compound->setStmts(Context, &Elements[0], Elements.size());
3721  }
3722  FunctionLabelMap.clear();
3723
3724  if (!Body) return D;
3725
3726  // Verify that that gotos and switch cases don't jump into scopes illegally.
3727  if (CurFunctionNeedsScopeChecking)
3728    DiagnoseInvalidJumps(Body);
3729
3730  // C++ constructors that have function-try-blocks can't have return
3731  // statements in the handlers of that block. (C++ [except.handle]p14)
3732  // Verify this.
3733  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3734    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3735
3736  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3737    Destructor->computeBaseOrMembersToDestroy(Context);
3738  return D;
3739}
3740
3741/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3742/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3743NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3744                                          IdentifierInfo &II, Scope *S) {
3745  // Before we produce a declaration for an implicitly defined
3746  // function, see whether there was a locally-scoped declaration of
3747  // this name as a function or variable. If so, use that
3748  // (non-visible) declaration, and complain about it.
3749  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3750    = LocallyScopedExternalDecls.find(&II);
3751  if (Pos != LocallyScopedExternalDecls.end()) {
3752    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3753    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3754    return Pos->second;
3755  }
3756
3757  // Extension in C99.  Legal in C90, but warn about it.
3758  if (getLangOptions().C99)
3759    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3760  else
3761    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3762
3763  // FIXME: handle stuff like:
3764  // void foo() { extern float X(); }
3765  // void bar() { X(); }  <-- implicit decl for X in another scope.
3766
3767  // Set a Declarator for the implicit definition: int foo();
3768  const char *Dummy;
3769  DeclSpec DS;
3770  unsigned DiagID;
3771  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3772  Error = Error; // Silence warning.
3773  assert(!Error && "Error setting up implicit decl!");
3774  Declarator D(DS, Declarator::BlockContext);
3775  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3776                                             0, 0, false, SourceLocation(),
3777                                             false, 0,0,0, Loc, Loc, D),
3778                SourceLocation());
3779  D.SetIdentifier(&II, Loc);
3780
3781  // Insert this function into translation-unit scope.
3782
3783  DeclContext *PrevDC = CurContext;
3784  CurContext = Context.getTranslationUnitDecl();
3785
3786  FunctionDecl *FD =
3787 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3788  FD->setImplicit();
3789
3790  CurContext = PrevDC;
3791
3792  AddKnownFunctionAttributes(FD);
3793
3794  return FD;
3795}
3796
3797/// \brief Adds any function attributes that we know a priori based on
3798/// the declaration of this function.
3799///
3800/// These attributes can apply both to implicitly-declared builtins
3801/// (like __builtin___printf_chk) or to library-declared functions
3802/// like NSLog or printf.
3803void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3804  if (FD->isInvalidDecl())
3805    return;
3806
3807  // If this is a built-in function, map its builtin attributes to
3808  // actual attributes.
3809  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3810    // Handle printf-formatting attributes.
3811    unsigned FormatIdx;
3812    bool HasVAListArg;
3813    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3814      if (!FD->getAttr<FormatAttr>())
3815        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3816                                             HasVAListArg ? 0 : FormatIdx + 2));
3817    }
3818
3819    // Mark const if we don't care about errno and that is the only
3820    // thing preventing the function from being const. This allows
3821    // IRgen to use LLVM intrinsics for such functions.
3822    if (!getLangOptions().MathErrno &&
3823        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3824      if (!FD->getAttr<ConstAttr>())
3825        FD->addAttr(::new (Context) ConstAttr());
3826    }
3827
3828    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3829      FD->addAttr(::new (Context) NoReturnAttr());
3830  }
3831
3832  IdentifierInfo *Name = FD->getIdentifier();
3833  if (!Name)
3834    return;
3835  if ((!getLangOptions().CPlusPlus &&
3836       FD->getDeclContext()->isTranslationUnit()) ||
3837      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3838       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3839       LinkageSpecDecl::lang_c)) {
3840    // Okay: this could be a libc/libm/Objective-C function we know
3841    // about.
3842  } else
3843    return;
3844
3845  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3846    // FIXME: NSLog and NSLogv should be target specific
3847    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3848      // FIXME: We known better than our headers.
3849      const_cast<FormatAttr *>(Format)->setType("printf");
3850    } else
3851      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3852                                             Name->isStr("NSLogv") ? 0 : 2));
3853  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3854    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3855    // target-specific builtins, perhaps?
3856    if (!FD->getAttr<FormatAttr>())
3857      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3858                                             Name->isStr("vasprintf") ? 0 : 3));
3859  }
3860}
3861
3862TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3863  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3864  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3865
3866  // Scope manipulation handled by caller.
3867  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3868                                           D.getIdentifierLoc(),
3869                                           D.getIdentifier(),
3870                                           T);
3871
3872  if (TagType *TT = dyn_cast<TagType>(T)) {
3873    TagDecl *TD = TT->getDecl();
3874
3875    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3876    // keep track of the TypedefDecl.
3877    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3878      TD->setTypedefForAnonDecl(NewTD);
3879  }
3880
3881  if (D.isInvalidType())
3882    NewTD->setInvalidDecl();
3883  return NewTD;
3884}
3885
3886
3887/// \brief Determine whether a tag with a given kind is acceptable
3888/// as a redeclaration of the given tag declaration.
3889///
3890/// \returns true if the new tag kind is acceptable, false otherwise.
3891bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3892                                        TagDecl::TagKind NewTag,
3893                                        SourceLocation NewTagLoc,
3894                                        const IdentifierInfo &Name) {
3895  // C++ [dcl.type.elab]p3:
3896  //   The class-key or enum keyword present in the
3897  //   elaborated-type-specifier shall agree in kind with the
3898  //   declaration to which the name in theelaborated-type-specifier
3899  //   refers. This rule also applies to the form of
3900  //   elaborated-type-specifier that declares a class-name or
3901  //   friend class since it can be construed as referring to the
3902  //   definition of the class. Thus, in any
3903  //   elaborated-type-specifier, the enum keyword shall be used to
3904  //   refer to an enumeration (7.2), the union class-keyshall be
3905  //   used to refer to a union (clause 9), and either the class or
3906  //   struct class-key shall be used to refer to a class (clause 9)
3907  //   declared using the class or struct class-key.
3908  TagDecl::TagKind OldTag = Previous->getTagKind();
3909  if (OldTag == NewTag)
3910    return true;
3911
3912  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3913      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3914    // Warn about the struct/class tag mismatch.
3915    bool isTemplate = false;
3916    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3917      isTemplate = Record->getDescribedClassTemplate();
3918
3919    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3920      << (NewTag == TagDecl::TK_class)
3921      << isTemplate << &Name
3922      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3923                              OldTag == TagDecl::TK_class? "class" : "struct");
3924    Diag(Previous->getLocation(), diag::note_previous_use);
3925    return true;
3926  }
3927  return false;
3928}
3929
3930/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3931/// former case, Name will be non-null.  In the later case, Name will be null.
3932/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3933/// reference/declaration/definition of a tag.
3934Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3935                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3936                               IdentifierInfo *Name, SourceLocation NameLoc,
3937                               AttributeList *Attr, AccessSpecifier AS,
3938                               MultiTemplateParamsArg TemplateParameterLists,
3939                               bool &OwnedDecl) {
3940  // If this is not a definition, it must have a name.
3941  assert((Name != 0 || TUK == TUK_Definition) &&
3942         "Nameless record must be a definition!");
3943
3944  OwnedDecl = false;
3945  TagDecl::TagKind Kind;
3946  switch (TagSpec) {
3947  default: assert(0 && "Unknown tag type!");
3948  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3949  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3950  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3951  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3952  }
3953
3954  if (TUK != TUK_Reference) {
3955    if (TemplateParameterList *TemplateParams
3956          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3957                        (TemplateParameterList**)TemplateParameterLists.get(),
3958                                              TemplateParameterLists.size())) {
3959      if (TemplateParams->size() > 0) {
3960        // This is a declaration or definition of a class template (which may
3961        // be a member of another template).
3962        OwnedDecl = false;
3963        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3964                                               SS, Name, NameLoc, Attr,
3965                                               move(TemplateParameterLists),
3966                                               AS);
3967        return Result.get();
3968      } else {
3969        // FIXME: diagnose the extraneous 'template<>', once we recover
3970        // slightly better in ParseTemplate.cpp from bogus template
3971        // parameters.
3972      }
3973    }
3974  }
3975
3976  DeclContext *SearchDC = CurContext;
3977  DeclContext *DC = CurContext;
3978  NamedDecl *PrevDecl = 0;
3979
3980  bool Invalid = false;
3981
3982  if (Name && SS.isNotEmpty()) {
3983    // We have a nested-name tag ('struct foo::bar').
3984
3985    // Check for invalid 'foo::'.
3986    if (SS.isInvalid()) {
3987      Name = 0;
3988      goto CreateNewDecl;
3989    }
3990
3991    if (RequireCompleteDeclContext(SS))
3992      return DeclPtrTy::make((Decl *)0);
3993
3994    DC = computeDeclContext(SS, true);
3995    SearchDC = DC;
3996    // Look-up name inside 'foo::'.
3997    PrevDecl
3998      = dyn_cast_or_null<TagDecl>(
3999               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4000
4001    // A tag 'foo::bar' must already exist.
4002    if (PrevDecl == 0) {
4003      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4004      Name = 0;
4005      Invalid = true;
4006      goto CreateNewDecl;
4007    }
4008  } else if (Name) {
4009    // If this is a named struct, check to see if there was a previous forward
4010    // declaration or definition.
4011    // FIXME: We're looking into outer scopes here, even when we
4012    // shouldn't be. Doing so can result in ambiguities that we
4013    // shouldn't be diagnosing.
4014    LookupResult R = LookupName(S, Name, LookupTagName,
4015                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4016    if (R.isAmbiguous()) {
4017      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4018      // FIXME: This is not best way to recover from case like:
4019      //
4020      // struct S s;
4021      //
4022      // causes needless "incomplete type" error later.
4023      Name = 0;
4024      PrevDecl = 0;
4025      Invalid = true;
4026    } else
4027      PrevDecl = R;
4028
4029    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4030      // FIXME: This makes sure that we ignore the contexts associated
4031      // with C structs, unions, and enums when looking for a matching
4032      // tag declaration or definition. See the similar lookup tweak
4033      // in Sema::LookupName; is there a better way to deal with this?
4034      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4035        SearchDC = SearchDC->getParent();
4036    }
4037  }
4038
4039  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4040    // Maybe we will complain about the shadowed template parameter.
4041    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4042    // Just pretend that we didn't see the previous declaration.
4043    PrevDecl = 0;
4044  }
4045
4046  if (PrevDecl) {
4047    // Check whether the previous declaration is usable.
4048    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4049
4050    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4051      // If this is a use of a previous tag, or if the tag is already declared
4052      // in the same scope (so that the definition/declaration completes or
4053      // rementions the tag), reuse the decl.
4054      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4055          isDeclInScope(PrevDecl, SearchDC, S)) {
4056        // Make sure that this wasn't declared as an enum and now used as a
4057        // struct or something similar.
4058        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4059          bool SafeToContinue
4060            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4061               Kind != TagDecl::TK_enum);
4062          if (SafeToContinue)
4063            Diag(KWLoc, diag::err_use_with_wrong_tag)
4064              << Name
4065              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4066                                                  PrevTagDecl->getKindName());
4067          else
4068            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4069          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4070
4071          if (SafeToContinue)
4072            Kind = PrevTagDecl->getTagKind();
4073          else {
4074            // Recover by making this an anonymous redefinition.
4075            Name = 0;
4076            PrevDecl = 0;
4077            Invalid = true;
4078          }
4079        }
4080
4081        if (!Invalid) {
4082          // If this is a use, just return the declaration we found.
4083
4084          // FIXME: In the future, return a variant or some other clue
4085          // for the consumer of this Decl to know it doesn't own it.
4086          // For our current ASTs this shouldn't be a problem, but will
4087          // need to be changed with DeclGroups.
4088          if (TUK == TUK_Reference)
4089            return DeclPtrTy::make(PrevDecl);
4090
4091          // If this is a friend, make sure we create the new
4092          // declaration in the appropriate semantic context.
4093          if (TUK == TUK_Friend)
4094            SearchDC = PrevDecl->getDeclContext();
4095
4096          // Diagnose attempts to redefine a tag.
4097          if (TUK == TUK_Definition) {
4098            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4099              Diag(NameLoc, diag::err_redefinition) << Name;
4100              Diag(Def->getLocation(), diag::note_previous_definition);
4101              // If this is a redefinition, recover by making this
4102              // struct be anonymous, which will make any later
4103              // references get the previous definition.
4104              Name = 0;
4105              PrevDecl = 0;
4106              Invalid = true;
4107            } else {
4108              // If the type is currently being defined, complain
4109              // about a nested redefinition.
4110              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4111              if (Tag->isBeingDefined()) {
4112                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4113                Diag(PrevTagDecl->getLocation(),
4114                     diag::note_previous_definition);
4115                Name = 0;
4116                PrevDecl = 0;
4117                Invalid = true;
4118              }
4119            }
4120
4121            // Okay, this is definition of a previously declared or referenced
4122            // tag PrevDecl. We're going to create a new Decl for it.
4123          }
4124        }
4125        // If we get here we have (another) forward declaration or we
4126        // have a definition.  Just create a new decl.
4127
4128      } else {
4129        // If we get here, this is a definition of a new tag type in a nested
4130        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4131        // new decl/type.  We set PrevDecl to NULL so that the entities
4132        // have distinct types.
4133        PrevDecl = 0;
4134      }
4135      // If we get here, we're going to create a new Decl. If PrevDecl
4136      // is non-NULL, it's a definition of the tag declared by
4137      // PrevDecl. If it's NULL, we have a new definition.
4138    } else {
4139      // PrevDecl is a namespace, template, or anything else
4140      // that lives in the IDNS_Tag identifier namespace.
4141      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4142        // The tag name clashes with a namespace name, issue an error and
4143        // recover by making this tag be anonymous.
4144        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4145        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4146        Name = 0;
4147        PrevDecl = 0;
4148        Invalid = true;
4149      } else {
4150        // The existing declaration isn't relevant to us; we're in a
4151        // new scope, so clear out the previous declaration.
4152        PrevDecl = 0;
4153      }
4154    }
4155  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4156             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4157    // C++ [basic.scope.pdecl]p5:
4158    //   -- for an elaborated-type-specifier of the form
4159    //
4160    //          class-key identifier
4161    //
4162    //      if the elaborated-type-specifier is used in the
4163    //      decl-specifier-seq or parameter-declaration-clause of a
4164    //      function defined in namespace scope, the identifier is
4165    //      declared as a class-name in the namespace that contains
4166    //      the declaration; otherwise, except as a friend
4167    //      declaration, the identifier is declared in the smallest
4168    //      non-class, non-function-prototype scope that contains the
4169    //      declaration.
4170    //
4171    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4172    // C structs and unions.
4173    //
4174    // GNU C also supports this behavior as part of its incomplete
4175    // enum types extension, while GNU C++ does not.
4176    //
4177    // Find the context where we'll be declaring the tag.
4178    // FIXME: We would like to maintain the current DeclContext as the
4179    // lexical context,
4180    while (SearchDC->isRecord())
4181      SearchDC = SearchDC->getParent();
4182
4183    // Find the scope where we'll be declaring the tag.
4184    while (S->isClassScope() ||
4185           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4186           ((S->getFlags() & Scope::DeclScope) == 0) ||
4187           (S->getEntity() &&
4188            ((DeclContext *)S->getEntity())->isTransparentContext()))
4189      S = S->getParent();
4190
4191  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4192    // C++ [namespace.memdef]p3:
4193    //   If a friend declaration in a non-local class first declares a
4194    //   class or function, the friend class or function is a member of
4195    //   the innermost enclosing namespace.
4196    while (!SearchDC->isFileContext())
4197      SearchDC = SearchDC->getParent();
4198
4199    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4200    while (S->getEntity() != SearchDC)
4201      S = S->getParent();
4202  }
4203
4204CreateNewDecl:
4205
4206  // If there is an identifier, use the location of the identifier as the
4207  // location of the decl, otherwise use the location of the struct/union
4208  // keyword.
4209  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4210
4211  // Otherwise, create a new declaration. If there is a previous
4212  // declaration of the same entity, the two will be linked via
4213  // PrevDecl.
4214  TagDecl *New;
4215
4216  if (Kind == TagDecl::TK_enum) {
4217    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4218    // enum X { A, B, C } D;    D should chain to X.
4219    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4220                           cast_or_null<EnumDecl>(PrevDecl));
4221    // If this is an undefined enum, warn.
4222    if (TUK != TUK_Definition && !Invalid)  {
4223      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4224                                              : diag::ext_forward_ref_enum;
4225      Diag(Loc, DK);
4226    }
4227  } else {
4228    // struct/union/class
4229
4230    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4231    // struct X { int A; } D;    D should chain to X.
4232    if (getLangOptions().CPlusPlus)
4233      // FIXME: Look for a way to use RecordDecl for simple structs.
4234      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4235                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4236    else
4237      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4238                               cast_or_null<RecordDecl>(PrevDecl));
4239  }
4240
4241  if (Kind != TagDecl::TK_enum) {
4242    // Handle #pragma pack: if the #pragma pack stack has non-default
4243    // alignment, make up a packed attribute for this decl. These
4244    // attributes are checked when the ASTContext lays out the
4245    // structure.
4246    //
4247    // It is important for implementing the correct semantics that this
4248    // happen here (in act on tag decl). The #pragma pack stack is
4249    // maintained as a result of parser callbacks which can occur at
4250    // many points during the parsing of a struct declaration (because
4251    // the #pragma tokens are effectively skipped over during the
4252    // parsing of the struct).
4253    if (unsigned Alignment = getPragmaPackAlignment())
4254      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4255  }
4256
4257  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4258    // C++ [dcl.typedef]p3:
4259    //   [...] Similarly, in a given scope, a class or enumeration
4260    //   shall not be declared with the same name as a typedef-name
4261    //   that is declared in that scope and refers to a type other
4262    //   than the class or enumeration itself.
4263    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4264    TypedefDecl *PrevTypedef = 0;
4265    if (Lookup.getKind() == LookupResult::Found)
4266      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4267
4268    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4269        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4270          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4271      Diag(Loc, diag::err_tag_definition_of_typedef)
4272        << Context.getTypeDeclType(New)
4273        << PrevTypedef->getUnderlyingType();
4274      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4275      Invalid = true;
4276    }
4277  }
4278
4279  if (Invalid)
4280    New->setInvalidDecl();
4281
4282  if (Attr)
4283    ProcessDeclAttributeList(S, New, Attr);
4284
4285  // If we're declaring or defining a tag in function prototype scope
4286  // in C, note that this type can only be used within the function.
4287  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4288    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4289
4290  // Set the lexical context. If the tag has a C++ scope specifier, the
4291  // lexical context will be different from the semantic context.
4292  New->setLexicalDeclContext(CurContext);
4293
4294  // Set the access specifier.
4295  if (!Invalid && TUK != TUK_Friend)
4296    SetMemberAccessSpecifier(New, PrevDecl, AS);
4297
4298  if (TUK == TUK_Definition)
4299    New->startDefinition();
4300
4301  // If this has an identifier, add it to the scope stack.
4302  if (Name && TUK != TUK_Friend) {
4303    S = getNonFieldDeclScope(S);
4304    PushOnScopeChains(New, S);
4305  } else {
4306    CurContext->addDecl(New);
4307  }
4308
4309  // If this is the C FILE type, notify the AST context.
4310  if (IdentifierInfo *II = New->getIdentifier())
4311    if (!New->isInvalidDecl() &&
4312        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4313        II->isStr("FILE"))
4314      Context.setFILEDecl(New);
4315
4316  OwnedDecl = true;
4317  return DeclPtrTy::make(New);
4318}
4319
4320void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4321  AdjustDeclIfTemplate(TagD);
4322  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4323
4324  // Enter the tag context.
4325  PushDeclContext(S, Tag);
4326
4327  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4328    FieldCollector->StartClass();
4329
4330    if (Record->getIdentifier()) {
4331      // C++ [class]p2:
4332      //   [...] The class-name is also inserted into the scope of the
4333      //   class itself; this is known as the injected-class-name. For
4334      //   purposes of access checking, the injected-class-name is treated
4335      //   as if it were a public member name.
4336      CXXRecordDecl *InjectedClassName
4337        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4338                                CurContext, Record->getLocation(),
4339                                Record->getIdentifier(),
4340                                Record->getTagKeywordLoc(),
4341                                Record);
4342      InjectedClassName->setImplicit();
4343      InjectedClassName->setAccess(AS_public);
4344      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4345        InjectedClassName->setDescribedClassTemplate(Template);
4346      PushOnScopeChains(InjectedClassName, S);
4347      assert(InjectedClassName->isInjectedClassName() &&
4348             "Broken injected-class-name");
4349    }
4350  }
4351}
4352
4353void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4354                                    SourceLocation RBraceLoc) {
4355  AdjustDeclIfTemplate(TagD);
4356  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4357  Tag->setRBraceLoc(RBraceLoc);
4358
4359  if (isa<CXXRecordDecl>(Tag))
4360    FieldCollector->FinishClass();
4361
4362  // Exit this scope of this tag's definition.
4363  PopDeclContext();
4364
4365  // Notify the consumer that we've defined a tag.
4366  Consumer.HandleTagDeclDefinition(Tag);
4367}
4368
4369// Note that FieldName may be null for anonymous bitfields.
4370bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4371                          QualType FieldTy, const Expr *BitWidth,
4372                          bool *ZeroWidth) {
4373  // Default to true; that shouldn't confuse checks for emptiness
4374  if (ZeroWidth)
4375    *ZeroWidth = true;
4376
4377  // C99 6.7.2.1p4 - verify the field type.
4378  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4379  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4380    // Handle incomplete types with specific error.
4381    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4382      return true;
4383    if (FieldName)
4384      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4385        << FieldName << FieldTy << BitWidth->getSourceRange();
4386    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4387      << FieldTy << BitWidth->getSourceRange();
4388  }
4389
4390  // If the bit-width is type- or value-dependent, don't try to check
4391  // it now.
4392  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4393    return false;
4394
4395  llvm::APSInt Value;
4396  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4397    return true;
4398
4399  if (Value != 0 && ZeroWidth)
4400    *ZeroWidth = false;
4401
4402  // Zero-width bitfield is ok for anonymous field.
4403  if (Value == 0 && FieldName)
4404    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4405
4406  if (Value.isSigned() && Value.isNegative()) {
4407    if (FieldName)
4408      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4409               << FieldName << Value.toString(10);
4410    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4411      << Value.toString(10);
4412  }
4413
4414  if (!FieldTy->isDependentType()) {
4415    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4416    if (Value.getZExtValue() > TypeSize) {
4417      if (FieldName)
4418        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4419          << FieldName << (unsigned)TypeSize;
4420      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4421        << (unsigned)TypeSize;
4422    }
4423  }
4424
4425  return false;
4426}
4427
4428/// ActOnField - Each field of a struct/union/class is passed into this in order
4429/// to create a FieldDecl object for it.
4430Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4431                                 SourceLocation DeclStart,
4432                                 Declarator &D, ExprTy *BitfieldWidth) {
4433  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4434                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4435                               AS_public);
4436  return DeclPtrTy::make(Res);
4437}
4438
4439/// HandleField - Analyze a field of a C struct or a C++ data member.
4440///
4441FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4442                             SourceLocation DeclStart,
4443                             Declarator &D, Expr *BitWidth,
4444                             AccessSpecifier AS) {
4445  IdentifierInfo *II = D.getIdentifier();
4446  SourceLocation Loc = DeclStart;
4447  if (II) Loc = D.getIdentifierLoc();
4448
4449  DeclaratorInfo *DInfo = 0;
4450  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4451  if (getLangOptions().CPlusPlus)
4452    CheckExtraCXXDefaultArguments(D);
4453
4454  DiagnoseFunctionSpecifiers(D);
4455
4456  if (D.getDeclSpec().isThreadSpecified())
4457    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4458
4459  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4460
4461  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4462    // Maybe we will complain about the shadowed template parameter.
4463    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4464    // Just pretend that we didn't see the previous declaration.
4465    PrevDecl = 0;
4466  }
4467
4468  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4469    PrevDecl = 0;
4470
4471  bool Mutable
4472    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4473  SourceLocation TSSL = D.getSourceRange().getBegin();
4474  FieldDecl *NewFD
4475    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4476                     AS, PrevDecl, &D);
4477  if (NewFD->isInvalidDecl() && PrevDecl) {
4478    // Don't introduce NewFD into scope; there's already something
4479    // with the same name in the same scope.
4480  } else if (II) {
4481    PushOnScopeChains(NewFD, S);
4482  } else
4483    Record->addDecl(NewFD);
4484
4485  return NewFD;
4486}
4487
4488/// \brief Build a new FieldDecl and check its well-formedness.
4489///
4490/// This routine builds a new FieldDecl given the fields name, type,
4491/// record, etc. \p PrevDecl should refer to any previous declaration
4492/// with the same name and in the same scope as the field to be
4493/// created.
4494///
4495/// \returns a new FieldDecl.
4496///
4497/// \todo The Declarator argument is a hack. It will be removed once
4498FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4499                                DeclaratorInfo *DInfo,
4500                                RecordDecl *Record, SourceLocation Loc,
4501                                bool Mutable, Expr *BitWidth,
4502                                SourceLocation TSSL,
4503                                AccessSpecifier AS, NamedDecl *PrevDecl,
4504                                Declarator *D) {
4505  IdentifierInfo *II = Name.getAsIdentifierInfo();
4506  bool InvalidDecl = false;
4507  if (D) InvalidDecl = D->isInvalidType();
4508
4509  // If we receive a broken type, recover by assuming 'int' and
4510  // marking this declaration as invalid.
4511  if (T.isNull()) {
4512    InvalidDecl = true;
4513    T = Context.IntTy;
4514  }
4515
4516  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4517  // than a variably modified type.
4518  if (T->isVariablyModifiedType()) {
4519    bool SizeIsNegative;
4520    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4521                                                           SizeIsNegative);
4522    if (!FixedTy.isNull()) {
4523      Diag(Loc, diag::warn_illegal_constant_array_size);
4524      T = FixedTy;
4525    } else {
4526      if (SizeIsNegative)
4527        Diag(Loc, diag::err_typecheck_negative_array_size);
4528      else
4529        Diag(Loc, diag::err_typecheck_field_variable_size);
4530      InvalidDecl = true;
4531    }
4532  }
4533
4534  // Fields can not have abstract class types
4535  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4536                             AbstractFieldType))
4537    InvalidDecl = true;
4538
4539  bool ZeroWidth = false;
4540  // If this is declared as a bit-field, check the bit-field.
4541  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4542    InvalidDecl = true;
4543    DeleteExpr(BitWidth);
4544    BitWidth = 0;
4545    ZeroWidth = false;
4546  }
4547
4548  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4549                                       BitWidth, Mutable, TSSL);
4550  if (InvalidDecl)
4551    NewFD->setInvalidDecl();
4552
4553  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4554    Diag(Loc, diag::err_duplicate_member) << II;
4555    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4556    NewFD->setInvalidDecl();
4557  }
4558
4559  if (getLangOptions().CPlusPlus) {
4560    QualType EltTy = Context.getBaseElementType(T);
4561
4562    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4563
4564    if (!T->isPODType())
4565      CXXRecord->setPOD(false);
4566    if (!ZeroWidth)
4567      CXXRecord->setEmpty(false);
4568
4569    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4570      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4571
4572      if (!RDecl->hasTrivialConstructor())
4573        CXXRecord->setHasTrivialConstructor(false);
4574      if (!RDecl->hasTrivialCopyConstructor())
4575        CXXRecord->setHasTrivialCopyConstructor(false);
4576      if (!RDecl->hasTrivialCopyAssignment())
4577        CXXRecord->setHasTrivialCopyAssignment(false);
4578      if (!RDecl->hasTrivialDestructor())
4579        CXXRecord->setHasTrivialDestructor(false);
4580
4581      // C++ 9.5p1: An object of a class with a non-trivial
4582      // constructor, a non-trivial copy constructor, a non-trivial
4583      // destructor, or a non-trivial copy assignment operator
4584      // cannot be a member of a union, nor can an array of such
4585      // objects.
4586      // TODO: C++0x alters this restriction significantly.
4587      if (Record->isUnion()) {
4588        // We check for copy constructors before constructors
4589        // because otherwise we'll never get complaints about
4590        // copy constructors.
4591
4592        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4593
4594        CXXSpecialMember member;
4595        if (!RDecl->hasTrivialCopyConstructor())
4596          member = CXXCopyConstructor;
4597        else if (!RDecl->hasTrivialConstructor())
4598          member = CXXDefaultConstructor;
4599        else if (!RDecl->hasTrivialCopyAssignment())
4600          member = CXXCopyAssignment;
4601        else if (!RDecl->hasTrivialDestructor())
4602          member = CXXDestructor;
4603        else
4604          member = invalid;
4605
4606        if (member != invalid) {
4607          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4608          DiagnoseNontrivial(RT, member);
4609          NewFD->setInvalidDecl();
4610        }
4611      }
4612    }
4613  }
4614
4615  // FIXME: We need to pass in the attributes given an AST
4616  // representation, not a parser representation.
4617  if (D)
4618    // FIXME: What to pass instead of TUScope?
4619    ProcessDeclAttributes(TUScope, NewFD, *D);
4620
4621  if (T.isObjCGCWeak())
4622    Diag(Loc, diag::warn_attribute_weak_on_field);
4623
4624  NewFD->setAccess(AS);
4625
4626  // C++ [dcl.init.aggr]p1:
4627  //   An aggregate is an array or a class (clause 9) with [...] no
4628  //   private or protected non-static data members (clause 11).
4629  // A POD must be an aggregate.
4630  if (getLangOptions().CPlusPlus &&
4631      (AS == AS_private || AS == AS_protected)) {
4632    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4633    CXXRecord->setAggregate(false);
4634    CXXRecord->setPOD(false);
4635  }
4636
4637  return NewFD;
4638}
4639
4640/// DiagnoseNontrivial - Given that a class has a non-trivial
4641/// special member, figure out why.
4642void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4643  QualType QT(T, 0U);
4644  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4645
4646  // Check whether the member was user-declared.
4647  switch (member) {
4648  case CXXDefaultConstructor:
4649    if (RD->hasUserDeclaredConstructor()) {
4650      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4651      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4652        if (!ci->isImplicitlyDefined(Context)) {
4653          SourceLocation CtorLoc = ci->getLocation();
4654          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4655          return;
4656        }
4657
4658      assert(0 && "found no user-declared constructors");
4659      return;
4660    }
4661    break;
4662
4663  case CXXCopyConstructor:
4664    if (RD->hasUserDeclaredCopyConstructor()) {
4665      SourceLocation CtorLoc =
4666        RD->getCopyConstructor(Context, 0)->getLocation();
4667      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4668      return;
4669    }
4670    break;
4671
4672  case CXXCopyAssignment:
4673    if (RD->hasUserDeclaredCopyAssignment()) {
4674      // FIXME: this should use the location of the copy
4675      // assignment, not the type.
4676      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4677      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4678      return;
4679    }
4680    break;
4681
4682  case CXXDestructor:
4683    if (RD->hasUserDeclaredDestructor()) {
4684      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4685      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4686      return;
4687    }
4688    break;
4689  }
4690
4691  typedef CXXRecordDecl::base_class_iterator base_iter;
4692
4693  // Virtual bases and members inhibit trivial copying/construction,
4694  // but not trivial destruction.
4695  if (member != CXXDestructor) {
4696    // Check for virtual bases.  vbases includes indirect virtual bases,
4697    // so we just iterate through the direct bases.
4698    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4699      if (bi->isVirtual()) {
4700        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4701        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4702        return;
4703      }
4704
4705    // Check for virtual methods.
4706    typedef CXXRecordDecl::method_iterator meth_iter;
4707    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4708         ++mi) {
4709      if (mi->isVirtual()) {
4710        SourceLocation MLoc = mi->getSourceRange().getBegin();
4711        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4712        return;
4713      }
4714    }
4715  }
4716
4717  bool (CXXRecordDecl::*hasTrivial)() const;
4718  switch (member) {
4719  case CXXDefaultConstructor:
4720    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4721  case CXXCopyConstructor:
4722    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4723  case CXXCopyAssignment:
4724    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4725  case CXXDestructor:
4726    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4727  default:
4728    assert(0 && "unexpected special member"); return;
4729  }
4730
4731  // Check for nontrivial bases (and recurse).
4732  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4733    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4734    assert(BaseRT);
4735    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4736    if (!(BaseRecTy->*hasTrivial)()) {
4737      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4738      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4739      DiagnoseNontrivial(BaseRT, member);
4740      return;
4741    }
4742  }
4743
4744  // Check for nontrivial members (and recurse).
4745  typedef RecordDecl::field_iterator field_iter;
4746  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4747       ++fi) {
4748    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4749    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4750      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4751
4752      if (!(EltRD->*hasTrivial)()) {
4753        SourceLocation FLoc = (*fi)->getLocation();
4754        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4755        DiagnoseNontrivial(EltRT, member);
4756        return;
4757      }
4758    }
4759  }
4760
4761  assert(0 && "found no explanation for non-trivial member");
4762}
4763
4764/// TranslateIvarVisibility - Translate visibility from a token ID to an
4765///  AST enum value.
4766static ObjCIvarDecl::AccessControl
4767TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4768  switch (ivarVisibility) {
4769  default: assert(0 && "Unknown visitibility kind");
4770  case tok::objc_private: return ObjCIvarDecl::Private;
4771  case tok::objc_public: return ObjCIvarDecl::Public;
4772  case tok::objc_protected: return ObjCIvarDecl::Protected;
4773  case tok::objc_package: return ObjCIvarDecl::Package;
4774  }
4775}
4776
4777/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4778/// in order to create an IvarDecl object for it.
4779Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4780                                SourceLocation DeclStart,
4781                                DeclPtrTy IntfDecl,
4782                                Declarator &D, ExprTy *BitfieldWidth,
4783                                tok::ObjCKeywordKind Visibility) {
4784
4785  IdentifierInfo *II = D.getIdentifier();
4786  Expr *BitWidth = (Expr*)BitfieldWidth;
4787  SourceLocation Loc = DeclStart;
4788  if (II) Loc = D.getIdentifierLoc();
4789
4790  // FIXME: Unnamed fields can be handled in various different ways, for
4791  // example, unnamed unions inject all members into the struct namespace!
4792
4793  DeclaratorInfo *DInfo = 0;
4794  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4795
4796  if (BitWidth) {
4797    // 6.7.2.1p3, 6.7.2.1p4
4798    if (VerifyBitField(Loc, II, T, BitWidth)) {
4799      D.setInvalidType();
4800      DeleteExpr(BitWidth);
4801      BitWidth = 0;
4802    }
4803  } else {
4804    // Not a bitfield.
4805
4806    // validate II.
4807
4808  }
4809
4810  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4811  // than a variably modified type.
4812  if (T->isVariablyModifiedType()) {
4813    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4814    D.setInvalidType();
4815  }
4816
4817  // Get the visibility (access control) for this ivar.
4818  ObjCIvarDecl::AccessControl ac =
4819    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4820                                        : ObjCIvarDecl::None;
4821  // Must set ivar's DeclContext to its enclosing interface.
4822  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4823  DeclContext *EnclosingContext;
4824  if (ObjCImplementationDecl *IMPDecl =
4825      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4826    // Case of ivar declared in an implementation. Context is that of its class.
4827    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4828    assert(IDecl && "No class- ActOnIvar");
4829    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4830  } else
4831    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4832  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4833
4834  // Construct the decl.
4835  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4836                                             EnclosingContext, Loc, II, T,
4837                                             DInfo, ac, (Expr *)BitfieldWidth);
4838
4839  if (II) {
4840    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4841    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4842        && !isa<TagDecl>(PrevDecl)) {
4843      Diag(Loc, diag::err_duplicate_member) << II;
4844      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4845      NewID->setInvalidDecl();
4846    }
4847  }
4848
4849  // Process attributes attached to the ivar.
4850  ProcessDeclAttributes(S, NewID, D);
4851
4852  if (D.isInvalidType())
4853    NewID->setInvalidDecl();
4854
4855  if (II) {
4856    // FIXME: When interfaces are DeclContexts, we'll need to add
4857    // these to the interface.
4858    S->AddDecl(DeclPtrTy::make(NewID));
4859    IdResolver.AddDecl(NewID);
4860  }
4861
4862  return DeclPtrTy::make(NewID);
4863}
4864
4865void Sema::ActOnFields(Scope* S,
4866                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4867                       DeclPtrTy *Fields, unsigned NumFields,
4868                       SourceLocation LBrac, SourceLocation RBrac,
4869                       AttributeList *Attr) {
4870  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4871  assert(EnclosingDecl && "missing record or interface decl");
4872
4873  // If the decl this is being inserted into is invalid, then it may be a
4874  // redeclaration or some other bogus case.  Don't try to add fields to it.
4875  if (EnclosingDecl->isInvalidDecl()) {
4876    // FIXME: Deallocate fields?
4877    return;
4878  }
4879
4880
4881  // Verify that all the fields are okay.
4882  unsigned NumNamedMembers = 0;
4883  llvm::SmallVector<FieldDecl*, 32> RecFields;
4884
4885  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4886  for (unsigned i = 0; i != NumFields; ++i) {
4887    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4888
4889    // Get the type for the field.
4890    Type *FDTy = FD->getType().getTypePtr();
4891
4892    if (!FD->isAnonymousStructOrUnion()) {
4893      // Remember all fields written by the user.
4894      RecFields.push_back(FD);
4895    }
4896
4897    // If the field is already invalid for some reason, don't emit more
4898    // diagnostics about it.
4899    if (FD->isInvalidDecl())
4900      continue;
4901
4902    // C99 6.7.2.1p2:
4903    //   A structure or union shall not contain a member with
4904    //   incomplete or function type (hence, a structure shall not
4905    //   contain an instance of itself, but may contain a pointer to
4906    //   an instance of itself), except that the last member of a
4907    //   structure with more than one named member may have incomplete
4908    //   array type; such a structure (and any union containing,
4909    //   possibly recursively, a member that is such a structure)
4910    //   shall not be a member of a structure or an element of an
4911    //   array.
4912    if (FDTy->isFunctionType()) {
4913      // Field declared as a function.
4914      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4915        << FD->getDeclName();
4916      FD->setInvalidDecl();
4917      EnclosingDecl->setInvalidDecl();
4918      continue;
4919    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4920               Record && Record->isStruct()) {
4921      // Flexible array member.
4922      if (NumNamedMembers < 1) {
4923        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4924          << FD->getDeclName();
4925        FD->setInvalidDecl();
4926        EnclosingDecl->setInvalidDecl();
4927        continue;
4928      }
4929      // Okay, we have a legal flexible array member at the end of the struct.
4930      if (Record)
4931        Record->setHasFlexibleArrayMember(true);
4932    } else if (!FDTy->isDependentType() &&
4933               RequireCompleteType(FD->getLocation(), FD->getType(),
4934                                   diag::err_field_incomplete)) {
4935      // Incomplete type
4936      FD->setInvalidDecl();
4937      EnclosingDecl->setInvalidDecl();
4938      continue;
4939    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4940      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4941        // If this is a member of a union, then entire union becomes "flexible".
4942        if (Record && Record->isUnion()) {
4943          Record->setHasFlexibleArrayMember(true);
4944        } else {
4945          // If this is a struct/class and this is not the last element, reject
4946          // it.  Note that GCC supports variable sized arrays in the middle of
4947          // structures.
4948          if (i != NumFields-1)
4949            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4950              << FD->getDeclName() << FD->getType();
4951          else {
4952            // We support flexible arrays at the end of structs in
4953            // other structs as an extension.
4954            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4955              << FD->getDeclName();
4956            if (Record)
4957              Record->setHasFlexibleArrayMember(true);
4958          }
4959        }
4960      }
4961      if (Record && FDTTy->getDecl()->hasObjectMember())
4962        Record->setHasObjectMember(true);
4963    } else if (FDTy->isObjCInterfaceType()) {
4964      /// A field cannot be an Objective-c object
4965      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4966      FD->setInvalidDecl();
4967      EnclosingDecl->setInvalidDecl();
4968      continue;
4969    } else if (getLangOptions().ObjC1 &&
4970               getLangOptions().getGCMode() != LangOptions::NonGC &&
4971               Record &&
4972               (FD->getType()->isObjCObjectPointerType() ||
4973                FD->getType().isObjCGCStrong()))
4974      Record->setHasObjectMember(true);
4975    // Keep track of the number of named members.
4976    if (FD->getIdentifier())
4977      ++NumNamedMembers;
4978  }
4979
4980  // Okay, we successfully defined 'Record'.
4981  if (Record) {
4982    Record->completeDefinition(Context);
4983  } else {
4984    ObjCIvarDecl **ClsFields =
4985      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4986    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4987      ID->setIVarList(ClsFields, RecFields.size(), Context);
4988      ID->setLocEnd(RBrac);
4989      // Add ivar's to class's DeclContext.
4990      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4991        ClsFields[i]->setLexicalDeclContext(ID);
4992        ID->addDecl(ClsFields[i]);
4993      }
4994      // Must enforce the rule that ivars in the base classes may not be
4995      // duplicates.
4996      if (ID->getSuperClass()) {
4997        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4998             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4999          ObjCIvarDecl* Ivar = (*IVI);
5000
5001          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5002            ObjCIvarDecl* prevIvar =
5003              ID->getSuperClass()->lookupInstanceVariable(II);
5004            if (prevIvar) {
5005              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5006              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5007            }
5008          }
5009        }
5010      }
5011    } else if (ObjCImplementationDecl *IMPDecl =
5012                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5013      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5014      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5015        // Ivar declared in @implementation never belongs to the implementation.
5016        // Only it is in implementation's lexical context.
5017        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5018      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5019    }
5020  }
5021
5022  if (Attr)
5023    ProcessDeclAttributeList(S, Record, Attr);
5024}
5025
5026EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5027                                          EnumConstantDecl *LastEnumConst,
5028                                          SourceLocation IdLoc,
5029                                          IdentifierInfo *Id,
5030                                          ExprArg val) {
5031  Expr *Val = (Expr *)val.get();
5032
5033  llvm::APSInt EnumVal(32);
5034  QualType EltTy;
5035  if (Val && !Val->isTypeDependent()) {
5036    // Make sure to promote the operand type to int.
5037    UsualUnaryConversions(Val);
5038    if (Val != val.get()) {
5039      val.release();
5040      val = Val;
5041    }
5042
5043    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5044    SourceLocation ExpLoc;
5045    if (!Val->isValueDependent() &&
5046        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5047      Val = 0;
5048    } else {
5049      EltTy = Val->getType();
5050    }
5051  }
5052
5053  if (!Val) {
5054    if (LastEnumConst) {
5055      // Assign the last value + 1.
5056      EnumVal = LastEnumConst->getInitVal();
5057      ++EnumVal;
5058
5059      // Check for overflow on increment.
5060      if (EnumVal < LastEnumConst->getInitVal())
5061        Diag(IdLoc, diag::warn_enum_value_overflow);
5062
5063      EltTy = LastEnumConst->getType();
5064    } else {
5065      // First value, set to zero.
5066      EltTy = Context.IntTy;
5067      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5068    }
5069  }
5070
5071  val.release();
5072  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5073                                  Val, EnumVal);
5074}
5075
5076
5077Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5078                                        DeclPtrTy lastEnumConst,
5079                                        SourceLocation IdLoc,
5080                                        IdentifierInfo *Id,
5081                                        SourceLocation EqualLoc, ExprTy *val) {
5082  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5083  EnumConstantDecl *LastEnumConst =
5084    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5085  Expr *Val = static_cast<Expr*>(val);
5086
5087  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5088  // we find one that is.
5089  S = getNonFieldDeclScope(S);
5090
5091  // Verify that there isn't already something declared with this name in this
5092  // scope.
5093  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5094  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5095    // Maybe we will complain about the shadowed template parameter.
5096    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5097    // Just pretend that we didn't see the previous declaration.
5098    PrevDecl = 0;
5099  }
5100
5101  if (PrevDecl) {
5102    // When in C++, we may get a TagDecl with the same name; in this case the
5103    // enum constant will 'hide' the tag.
5104    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5105           "Received TagDecl when not in C++!");
5106    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5107      if (isa<EnumConstantDecl>(PrevDecl))
5108        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5109      else
5110        Diag(IdLoc, diag::err_redefinition) << Id;
5111      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5112      if (Val) Val->Destroy(Context);
5113      return DeclPtrTy();
5114    }
5115  }
5116
5117  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5118                                            IdLoc, Id, Owned(Val));
5119
5120  // Register this decl in the current scope stack.
5121  if (New)
5122    PushOnScopeChains(New, S);
5123
5124  return DeclPtrTy::make(New);
5125}
5126
5127void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5128                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5129                         DeclPtrTy *Elements, unsigned NumElements,
5130                         Scope *S, AttributeList *Attr) {
5131  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5132  QualType EnumType = Context.getTypeDeclType(Enum);
5133
5134  if (Attr)
5135    ProcessDeclAttributeList(S, Enum, Attr);
5136
5137  // TODO: If the result value doesn't fit in an int, it must be a long or long
5138  // long value.  ISO C does not support this, but GCC does as an extension,
5139  // emit a warning.
5140  unsigned IntWidth = Context.Target.getIntWidth();
5141  unsigned CharWidth = Context.Target.getCharWidth();
5142  unsigned ShortWidth = Context.Target.getShortWidth();
5143
5144  // Verify that all the values are okay, compute the size of the values, and
5145  // reverse the list.
5146  unsigned NumNegativeBits = 0;
5147  unsigned NumPositiveBits = 0;
5148
5149  // Keep track of whether all elements have type int.
5150  bool AllElementsInt = true;
5151
5152  for (unsigned i = 0; i != NumElements; ++i) {
5153    EnumConstantDecl *ECD =
5154      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5155    if (!ECD) continue;  // Already issued a diagnostic.
5156
5157    // If the enum value doesn't fit in an int, emit an extension warning.
5158    const llvm::APSInt &InitVal = ECD->getInitVal();
5159    assert(InitVal.getBitWidth() >= IntWidth &&
5160           "Should have promoted value to int");
5161    if (InitVal.getBitWidth() > IntWidth) {
5162      llvm::APSInt V(InitVal);
5163      V.trunc(IntWidth);
5164      V.extend(InitVal.getBitWidth());
5165      if (V != InitVal)
5166        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5167          << InitVal.toString(10);
5168    }
5169
5170    // Keep track of the size of positive and negative values.
5171    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5172      NumPositiveBits = std::max(NumPositiveBits,
5173                                 (unsigned)InitVal.getActiveBits());
5174    else
5175      NumNegativeBits = std::max(NumNegativeBits,
5176                                 (unsigned)InitVal.getMinSignedBits());
5177
5178    // Keep track of whether every enum element has type int (very commmon).
5179    if (AllElementsInt)
5180      AllElementsInt = ECD->getType() == Context.IntTy;
5181  }
5182
5183  // Figure out the type that should be used for this enum.
5184  // FIXME: Support -fshort-enums.
5185  QualType BestType;
5186  unsigned BestWidth;
5187
5188  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5189
5190  if (NumNegativeBits) {
5191    // If there is a negative value, figure out the smallest integer type (of
5192    // int/long/longlong) that fits.
5193    // If it's packed, check also if it fits a char or a short.
5194    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5195        BestType = Context.SignedCharTy;
5196        BestWidth = CharWidth;
5197    } else if (Packed && NumNegativeBits <= ShortWidth &&
5198               NumPositiveBits < ShortWidth) {
5199        BestType = Context.ShortTy;
5200        BestWidth = ShortWidth;
5201    }
5202    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5203      BestType = Context.IntTy;
5204      BestWidth = IntWidth;
5205    } else {
5206      BestWidth = Context.Target.getLongWidth();
5207
5208      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5209        BestType = Context.LongTy;
5210      else {
5211        BestWidth = Context.Target.getLongLongWidth();
5212
5213        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5214          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5215        BestType = Context.LongLongTy;
5216      }
5217    }
5218  } else {
5219    // If there is no negative value, figure out which of uint, ulong, ulonglong
5220    // fits.
5221    // If it's packed, check also if it fits a char or a short.
5222    if (Packed && NumPositiveBits <= CharWidth) {
5223        BestType = Context.UnsignedCharTy;
5224        BestWidth = CharWidth;
5225    } else if (Packed && NumPositiveBits <= ShortWidth) {
5226        BestType = Context.UnsignedShortTy;
5227        BestWidth = ShortWidth;
5228    }
5229    else if (NumPositiveBits <= IntWidth) {
5230      BestType = Context.UnsignedIntTy;
5231      BestWidth = IntWidth;
5232    } else if (NumPositiveBits <=
5233               (BestWidth = Context.Target.getLongWidth())) {
5234      BestType = Context.UnsignedLongTy;
5235    } else {
5236      BestWidth = Context.Target.getLongLongWidth();
5237      assert(NumPositiveBits <= BestWidth &&
5238             "How could an initializer get larger than ULL?");
5239      BestType = Context.UnsignedLongLongTy;
5240    }
5241  }
5242
5243  // Loop over all of the enumerator constants, changing their types to match
5244  // the type of the enum if needed.
5245  for (unsigned i = 0; i != NumElements; ++i) {
5246    EnumConstantDecl *ECD =
5247      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5248    if (!ECD) continue;  // Already issued a diagnostic.
5249
5250    // Standard C says the enumerators have int type, but we allow, as an
5251    // extension, the enumerators to be larger than int size.  If each
5252    // enumerator value fits in an int, type it as an int, otherwise type it the
5253    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5254    // that X has type 'int', not 'unsigned'.
5255    if (ECD->getType() == Context.IntTy) {
5256      // Make sure the init value is signed.
5257      llvm::APSInt IV = ECD->getInitVal();
5258      IV.setIsSigned(true);
5259      ECD->setInitVal(IV);
5260
5261      if (getLangOptions().CPlusPlus)
5262        // C++ [dcl.enum]p4: Following the closing brace of an
5263        // enum-specifier, each enumerator has the type of its
5264        // enumeration.
5265        ECD->setType(EnumType);
5266      continue;  // Already int type.
5267    }
5268
5269    // Determine whether the value fits into an int.
5270    llvm::APSInt InitVal = ECD->getInitVal();
5271    bool FitsInInt;
5272    if (InitVal.isUnsigned() || !InitVal.isNegative())
5273      FitsInInt = InitVal.getActiveBits() < IntWidth;
5274    else
5275      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5276
5277    // If it fits into an integer type, force it.  Otherwise force it to match
5278    // the enum decl type.
5279    QualType NewTy;
5280    unsigned NewWidth;
5281    bool NewSign;
5282    if (FitsInInt) {
5283      NewTy = Context.IntTy;
5284      NewWidth = IntWidth;
5285      NewSign = true;
5286    } else if (ECD->getType() == BestType) {
5287      // Already the right type!
5288      if (getLangOptions().CPlusPlus)
5289        // C++ [dcl.enum]p4: Following the closing brace of an
5290        // enum-specifier, each enumerator has the type of its
5291        // enumeration.
5292        ECD->setType(EnumType);
5293      continue;
5294    } else {
5295      NewTy = BestType;
5296      NewWidth = BestWidth;
5297      NewSign = BestType->isSignedIntegerType();
5298    }
5299
5300    // Adjust the APSInt value.
5301    InitVal.extOrTrunc(NewWidth);
5302    InitVal.setIsSigned(NewSign);
5303    ECD->setInitVal(InitVal);
5304
5305    // Adjust the Expr initializer and type.
5306    if (ECD->getInitExpr())
5307      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5308                                                      CastExpr::CK_Unknown,
5309                                                      ECD->getInitExpr(),
5310                                                      /*isLvalue=*/false));
5311    if (getLangOptions().CPlusPlus)
5312      // C++ [dcl.enum]p4: Following the closing brace of an
5313      // enum-specifier, each enumerator has the type of its
5314      // enumeration.
5315      ECD->setType(EnumType);
5316    else
5317      ECD->setType(NewTy);
5318  }
5319
5320  Enum->completeDefinition(Context, BestType);
5321}
5322
5323Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5324                                            ExprArg expr) {
5325  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5326
5327  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5328                                                   Loc, AsmString);
5329  CurContext->addDecl(New);
5330  return DeclPtrTy::make(New);
5331}
5332
5333void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5334                             SourceLocation PragmaLoc,
5335                             SourceLocation NameLoc) {
5336  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5337
5338  if (PrevDecl) {
5339    PrevDecl->addAttr(::new (Context) WeakAttr());
5340  } else {
5341    (void)WeakUndeclaredIdentifiers.insert(
5342      std::pair<IdentifierInfo*,WeakInfo>
5343        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5344  }
5345}
5346
5347void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5348                                IdentifierInfo* AliasName,
5349                                SourceLocation PragmaLoc,
5350                                SourceLocation NameLoc,
5351                                SourceLocation AliasNameLoc) {
5352  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5353  WeakInfo W = WeakInfo(Name, NameLoc);
5354
5355  if (PrevDecl) {
5356    if (!PrevDecl->hasAttr<AliasAttr>())
5357      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5358        DeclApplyPragmaWeak(TUScope, ND, W);
5359  } else {
5360    (void)WeakUndeclaredIdentifiers.insert(
5361      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5362  }
5363}
5364