SemaDecl.cpp revision 9fa14a547881e7abbe1edcdb92e6d3084be8d8bc
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// getDeclName - Return a pretty name for the specified decl if possible, or
34/// an empty string if not.  This is used for pretty crash reporting.
35std::string Sema::getDeclName(DeclTy *d) {
36  Decl *D = static_cast<Decl *>(d);
37  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
38    return DN->getQualifiedNameAsString();
39  return "";
40}
41
42/// \brief If the identifier refers to a type name within this scope,
43/// return the declaration of that type.
44///
45/// This routine performs ordinary name lookup of the identifier II
46/// within the given scope, with optional C++ scope specifier SS, to
47/// determine whether the name refers to a type. If so, returns an
48/// opaque pointer (actually a QualType) corresponding to that
49/// type. Otherwise, returns NULL.
50///
51/// If name lookup results in an ambiguity, this routine will complain
52/// and then return NULL.
53Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
54                                Scope *S, const CXXScopeSpec *SS) {
55  NamedDecl *IIDecl = 0;
56  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
57                                         false, false);
58  switch (Result.getKind()) {
59  case LookupResult::NotFound:
60  case LookupResult::FoundOverloaded:
61    return 0;
62
63  case LookupResult::AmbiguousBaseSubobjectTypes:
64  case LookupResult::AmbiguousBaseSubobjects:
65  case LookupResult::AmbiguousReference:
66    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
67    return 0;
68
69  case LookupResult::Found:
70    IIDecl = Result.getAsDecl();
71    break;
72  }
73
74  if (IIDecl) {
75    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
76      // Check whether we can use this type
77      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
78
79      return Context.getTypeDeclType(TD).getAsOpaquePtr();
80    }
81
82    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
83      // Check whether we can use this interface.
84      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
85
86      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
87    }
88
89    // Otherwise, could be a variable, function etc.
90  }
91  return 0;
92}
93
94DeclContext *Sema::getContainingDC(DeclContext *DC) {
95  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
96    // A C++ out-of-line method will return to the file declaration context.
97    if (MD->isOutOfLineDefinition())
98      return MD->getLexicalDeclContext();
99
100    // A C++ inline method is parsed *after* the topmost class it was declared
101    // in is fully parsed (it's "complete").
102    // The parsing of a C++ inline method happens at the declaration context of
103    // the topmost (non-nested) class it is lexically declared in.
104    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
105    DC = MD->getParent();
106    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
107      DC = RD;
108
109    // Return the declaration context of the topmost class the inline method is
110    // declared in.
111    return DC;
112  }
113
114  if (isa<ObjCMethodDecl>(DC))
115    return Context.getTranslationUnitDecl();
116
117  return DC->getLexicalParent();
118}
119
120void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
121  assert(getContainingDC(DC) == CurContext &&
122      "The next DeclContext should be lexically contained in the current one.");
123  CurContext = DC;
124  S->setEntity(DC);
125}
126
127void Sema::PopDeclContext() {
128  assert(CurContext && "DeclContext imbalance!");
129
130  CurContext = getContainingDC(CurContext);
131}
132
133/// \brief Determine whether we allow overloading of the function
134/// PrevDecl with another declaration.
135///
136/// This routine determines whether overloading is possible, not
137/// whether some new function is actually an overload. It will return
138/// true in C++ (where we can always provide overloads) or, as an
139/// extension, in C when the previous function is already an
140/// overloaded function declaration or has the "overloadable"
141/// attribute.
142static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
143  if (Context.getLangOptions().CPlusPlus)
144    return true;
145
146  if (isa<OverloadedFunctionDecl>(PrevDecl))
147    return true;
148
149  return PrevDecl->getAttr<OverloadableAttr>() != 0;
150}
151
152/// Add this decl to the scope shadowed decl chains.
153void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
154  // Move up the scope chain until we find the nearest enclosing
155  // non-transparent context. The declaration will be introduced into this
156  // scope.
157  while (S->getEntity() &&
158         ((DeclContext *)S->getEntity())->isTransparentContext())
159    S = S->getParent();
160
161  S->AddDecl(D);
162
163  // Add scoped declarations into their context, so that they can be
164  // found later. Declarations without a context won't be inserted
165  // into any context.
166  CurContext->addDecl(D);
167
168  // C++ [basic.scope]p4:
169  //   -- exactly one declaration shall declare a class name or
170  //   enumeration name that is not a typedef name and the other
171  //   declarations shall all refer to the same object or
172  //   enumerator, or all refer to functions and function templates;
173  //   in this case the class name or enumeration name is hidden.
174  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
175    // We are pushing the name of a tag (enum or class).
176    if (CurContext->getLookupContext()
177          == TD->getDeclContext()->getLookupContext()) {
178      // We're pushing the tag into the current context, which might
179      // require some reshuffling in the identifier resolver.
180      IdentifierResolver::iterator
181        I = IdResolver.begin(TD->getDeclName()),
182        IEnd = IdResolver.end();
183      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
184        NamedDecl *PrevDecl = *I;
185        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
186             PrevDecl = *I, ++I) {
187          if (TD->declarationReplaces(*I)) {
188            // This is a redeclaration. Remove it from the chain and
189            // break out, so that we'll add in the shadowed
190            // declaration.
191            S->RemoveDecl(*I);
192            if (PrevDecl == *I) {
193              IdResolver.RemoveDecl(*I);
194              IdResolver.AddDecl(TD);
195              return;
196            } else {
197              IdResolver.RemoveDecl(*I);
198              break;
199            }
200          }
201        }
202
203        // There is already a declaration with the same name in the same
204        // scope, which is not a tag declaration. It must be found
205        // before we find the new declaration, so insert the new
206        // declaration at the end of the chain.
207        IdResolver.AddShadowedDecl(TD, PrevDecl);
208
209        return;
210      }
211    }
212  } else if (isa<FunctionDecl>(D) &&
213             AllowOverloadingOfFunction(D, Context)) {
214    // We are pushing the name of a function, which might be an
215    // overloaded name.
216    FunctionDecl *FD = cast<FunctionDecl>(D);
217    IdentifierResolver::iterator Redecl
218      = std::find_if(IdResolver.begin(FD->getDeclName()),
219                     IdResolver.end(),
220                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
221                                  FD));
222    if (Redecl != IdResolver.end() && S->isDeclScope(*Redecl)) {
223      // There is already a declaration of a function on our
224      // IdResolver chain. Replace it with this declaration.
225      S->RemoveDecl(*Redecl);
226      IdResolver.RemoveDecl(*Redecl);
227    }
228  }
229
230  IdResolver.AddDecl(D);
231}
232
233void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
234  if (S->decl_empty()) return;
235  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
236	 "Scope shouldn't contain decls!");
237
238  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
239       I != E; ++I) {
240    Decl *TmpD = static_cast<Decl*>(*I);
241    assert(TmpD && "This decl didn't get pushed??");
242
243    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
244    NamedDecl *D = cast<NamedDecl>(TmpD);
245
246    if (!D->getDeclName()) continue;
247
248    // Remove this name from our lexical scope.
249    IdResolver.RemoveDecl(D);
250  }
251}
252
253/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
254/// return 0 if one not found.
255ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
256  // The third "scope" argument is 0 since we aren't enabling lazy built-in
257  // creation from this context.
258  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
259
260  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
261}
262
263/// getNonFieldDeclScope - Retrieves the innermost scope, starting
264/// from S, where a non-field would be declared. This routine copes
265/// with the difference between C and C++ scoping rules in structs and
266/// unions. For example, the following code is well-formed in C but
267/// ill-formed in C++:
268/// @code
269/// struct S6 {
270///   enum { BAR } e;
271/// };
272///
273/// void test_S6() {
274///   struct S6 a;
275///   a.e = BAR;
276/// }
277/// @endcode
278/// For the declaration of BAR, this routine will return a different
279/// scope. The scope S will be the scope of the unnamed enumeration
280/// within S6. In C++, this routine will return the scope associated
281/// with S6, because the enumeration's scope is a transparent
282/// context but structures can contain non-field names. In C, this
283/// routine will return the translation unit scope, since the
284/// enumeration's scope is a transparent context and structures cannot
285/// contain non-field names.
286Scope *Sema::getNonFieldDeclScope(Scope *S) {
287  while (((S->getFlags() & Scope::DeclScope) == 0) ||
288         (S->getEntity() &&
289          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
290         (S->isClassScope() && !getLangOptions().CPlusPlus))
291    S = S->getParent();
292  return S;
293}
294
295void Sema::InitBuiltinVaListType() {
296  if (!Context.getBuiltinVaListType().isNull())
297    return;
298
299  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
300  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
301  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
302  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
303}
304
305/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
306/// file scope.  lazily create a decl for it. ForRedeclaration is true
307/// if we're creating this built-in in anticipation of redeclaring the
308/// built-in.
309NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
310                                     Scope *S, bool ForRedeclaration,
311                                     SourceLocation Loc) {
312  Builtin::ID BID = (Builtin::ID)bid;
313
314  if (Context.BuiltinInfo.hasVAListUse(BID))
315    InitBuiltinVaListType();
316
317  Builtin::Context::GetBuiltinTypeError Error;
318  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
319  switch (Error) {
320  case Builtin::Context::GE_None:
321    // Okay
322    break;
323
324  case Builtin::Context::GE_Missing_FILE:
325    if (ForRedeclaration)
326      Diag(Loc, diag::err_implicit_decl_requires_stdio)
327        << Context.BuiltinInfo.GetName(BID);
328    return 0;
329  }
330
331  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
332    Diag(Loc, diag::ext_implicit_lib_function_decl)
333      << Context.BuiltinInfo.GetName(BID)
334      << R;
335    if (Context.BuiltinInfo.getHeaderName(BID) &&
336        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
337          != diag::MAP_IGNORE)
338      Diag(Loc, diag::note_please_include_header)
339        << Context.BuiltinInfo.getHeaderName(BID)
340        << Context.BuiltinInfo.GetName(BID);
341  }
342
343  FunctionDecl *New = FunctionDecl::Create(Context,
344                                           Context.getTranslationUnitDecl(),
345                                           Loc, II, R,
346                                           FunctionDecl::Extern, false,
347                                           /*hasPrototype=*/true);
348  New->setImplicit();
349
350  // Create Decl objects for each parameter, adding them to the
351  // FunctionDecl.
352  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
353    llvm::SmallVector<ParmVarDecl*, 16> Params;
354    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
355      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
356                                           FT->getArgType(i), VarDecl::None, 0));
357    New->setParams(Context, &Params[0], Params.size());
358  }
359
360  AddKnownFunctionAttributes(New);
361
362  // TUScope is the translation-unit scope to insert this function into.
363  // FIXME: This is hideous. We need to teach PushOnScopeChains to
364  // relate Scopes to DeclContexts, and probably eliminate CurContext
365  // entirely, but we're not there yet.
366  DeclContext *SavedContext = CurContext;
367  CurContext = Context.getTranslationUnitDecl();
368  PushOnScopeChains(New, TUScope);
369  CurContext = SavedContext;
370  return New;
371}
372
373/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
374/// everything from the standard library is defined.
375NamespaceDecl *Sema::GetStdNamespace() {
376  if (!StdNamespace) {
377    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
378    DeclContext *Global = Context.getTranslationUnitDecl();
379    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
380    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
381  }
382  return StdNamespace;
383}
384
385/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
386/// same name and scope as a previous declaration 'Old'.  Figure out
387/// how to resolve this situation, merging decls or emitting
388/// diagnostics as appropriate. Returns true if there was an error,
389/// false otherwise.
390///
391bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
392  bool objc_types = false;
393  // Allow multiple definitions for ObjC built-in typedefs.
394  // FIXME: Verify the underlying types are equivalent!
395  if (getLangOptions().ObjC1) {
396    const IdentifierInfo *TypeID = New->getIdentifier();
397    switch (TypeID->getLength()) {
398    default: break;
399    case 2:
400      if (!TypeID->isStr("id"))
401        break;
402      Context.setObjCIdType(New);
403      objc_types = true;
404      break;
405    case 5:
406      if (!TypeID->isStr("Class"))
407        break;
408      Context.setObjCClassType(New);
409      objc_types = true;
410      return false;
411    case 3:
412      if (!TypeID->isStr("SEL"))
413        break;
414      Context.setObjCSelType(New);
415      objc_types = true;
416      return false;
417    case 8:
418      if (!TypeID->isStr("Protocol"))
419        break;
420      Context.setObjCProtoType(New->getUnderlyingType());
421      objc_types = true;
422      return false;
423    }
424    // Fall through - the typedef name was not a builtin type.
425  }
426  // Verify the old decl was also a type.
427  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
428  if (!Old) {
429    Diag(New->getLocation(), diag::err_redefinition_different_kind)
430      << New->getDeclName();
431    if (!objc_types)
432      Diag(OldD->getLocation(), diag::note_previous_definition);
433    return true;
434  }
435
436  // Determine the "old" type we'll use for checking and diagnostics.
437  QualType OldType;
438  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
439    OldType = OldTypedef->getUnderlyingType();
440  else
441    OldType = Context.getTypeDeclType(Old);
442
443  // If the typedef types are not identical, reject them in all languages and
444  // with any extensions enabled.
445
446  if (OldType != New->getUnderlyingType() &&
447      Context.getCanonicalType(OldType) !=
448      Context.getCanonicalType(New->getUnderlyingType())) {
449    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
450      << New->getUnderlyingType() << OldType;
451    if (!objc_types)
452      Diag(Old->getLocation(), diag::note_previous_definition);
453    return true;
454  }
455  if (objc_types) return false;
456  if (getLangOptions().Microsoft) return false;
457
458  // C++ [dcl.typedef]p2:
459  //   In a given non-class scope, a typedef specifier can be used to
460  //   redefine the name of any type declared in that scope to refer
461  //   to the type to which it already refers.
462  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
463    return false;
464
465  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
466  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
467  // *either* declaration is in a system header. The code below implements
468  // this adhoc compatibility rule. FIXME: The following code will not
469  // work properly when compiling ".i" files (containing preprocessed output).
470  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
471    SourceManager &SrcMgr = Context.getSourceManager();
472    if (SrcMgr.isInSystemHeader(Old->getLocation()))
473      return false;
474    if (SrcMgr.isInSystemHeader(New->getLocation()))
475      return false;
476  }
477
478  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
479  Diag(Old->getLocation(), diag::note_previous_definition);
480  return true;
481}
482
483/// DeclhasAttr - returns true if decl Declaration already has the target
484/// attribute.
485static bool DeclHasAttr(const Decl *decl, const Attr *target) {
486  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
487    if (attr->getKind() == target->getKind())
488      return true;
489
490  return false;
491}
492
493/// MergeAttributes - append attributes from the Old decl to the New one.
494static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
495  Attr *attr = const_cast<Attr*>(Old->getAttrs());
496
497  while (attr) {
498    Attr *tmp = attr;
499    attr = attr->getNext();
500
501    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
502      tmp->setInherited(true);
503      New->addAttr(tmp);
504    } else {
505      tmp->setNext(0);
506      tmp->Destroy(C);
507    }
508  }
509
510  Old->invalidateAttrs();
511}
512
513/// MergeFunctionDecl - We just parsed a function 'New' from
514/// declarator D which has the same name and scope as a previous
515/// declaration 'Old'.  Figure out how to resolve this situation,
516/// merging decls or emitting diagnostics as appropriate.
517///
518/// In C++, New and Old must be declarations that are not
519/// overloaded. Use IsOverload to determine whether New and Old are
520/// overloaded, and to select the Old declaration that New should be
521/// merged with.
522///
523/// Returns true if there was an error, false otherwise.
524bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
525  assert(!isa<OverloadedFunctionDecl>(OldD) &&
526         "Cannot merge with an overloaded function declaration");
527
528  // Verify the old decl was also a function.
529  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
530  if (!Old) {
531    Diag(New->getLocation(), diag::err_redefinition_different_kind)
532      << New->getDeclName();
533    Diag(OldD->getLocation(), diag::note_previous_definition);
534    return true;
535  }
536
537  // Determine whether the previous declaration was a definition,
538  // implicit declaration, or a declaration.
539  diag::kind PrevDiag;
540  if (Old->isThisDeclarationADefinition())
541    PrevDiag = diag::note_previous_definition;
542  else if (Old->isImplicit())
543    PrevDiag = diag::note_previous_implicit_declaration;
544  else
545    PrevDiag = diag::note_previous_declaration;
546
547  QualType OldQType = Context.getCanonicalType(Old->getType());
548  QualType NewQType = Context.getCanonicalType(New->getType());
549
550  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
551      New->getStorageClass() == FunctionDecl::Static &&
552      Old->getStorageClass() != FunctionDecl::Static) {
553    Diag(New->getLocation(), diag::err_static_non_static)
554      << New;
555    Diag(Old->getLocation(), PrevDiag);
556    return true;
557  }
558
559  if (getLangOptions().CPlusPlus) {
560    // (C++98 13.1p2):
561    //   Certain function declarations cannot be overloaded:
562    //     -- Function declarations that differ only in the return type
563    //        cannot be overloaded.
564    QualType OldReturnType
565      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
566    QualType NewReturnType
567      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
568    if (OldReturnType != NewReturnType) {
569      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
570      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
571      return true;
572    }
573
574    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
575    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
576    if (OldMethod && NewMethod) {
577      //    -- Member function declarations with the same name and the
578      //       same parameter types cannot be overloaded if any of them
579      //       is a static member function declaration.
580      if (OldMethod->isStatic() || NewMethod->isStatic()) {
581        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
582        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
583        return true;
584      }
585
586      // C++ [class.mem]p1:
587      //   [...] A member shall not be declared twice in the
588      //   member-specification, except that a nested class or member
589      //   class template can be declared and then later defined.
590      if (OldMethod->getLexicalDeclContext() ==
591            NewMethod->getLexicalDeclContext()) {
592        unsigned NewDiag;
593        if (isa<CXXConstructorDecl>(OldMethod))
594          NewDiag = diag::err_constructor_redeclared;
595        else if (isa<CXXDestructorDecl>(NewMethod))
596          NewDiag = diag::err_destructor_redeclared;
597        else if (isa<CXXConversionDecl>(NewMethod))
598          NewDiag = diag::err_conv_function_redeclared;
599        else
600          NewDiag = diag::err_member_redeclared;
601
602        Diag(New->getLocation(), NewDiag);
603        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
604      }
605    }
606
607    // (C++98 8.3.5p3):
608    //   All declarations for a function shall agree exactly in both the
609    //   return type and the parameter-type-list.
610    if (OldQType == NewQType)
611      return MergeCompatibleFunctionDecls(New, Old);
612
613    // Fall through for conflicting redeclarations and redefinitions.
614  }
615
616  // C: Function types need to be compatible, not identical. This handles
617  // duplicate function decls like "void f(int); void f(enum X);" properly.
618  if (!getLangOptions().CPlusPlus &&
619      Context.typesAreCompatible(OldQType, NewQType)) {
620    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
621    const FunctionProtoType *OldProto = 0;
622    if (isa<FunctionNoProtoType>(NewFuncType) &&
623        (OldProto = OldQType->getAsFunctionProtoType())) {
624      // The old declaration provided a function prototype, but the
625      // new declaration does not. Merge in the prototype.
626      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
627                                                 OldProto->arg_type_end());
628      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
629                                         &ParamTypes[0], ParamTypes.size(),
630                                         OldProto->isVariadic(),
631                                         OldProto->getTypeQuals());
632      New->setType(NewQType);
633      New->setInheritedPrototype();
634
635      // Synthesize a parameter for each argument type.
636      llvm::SmallVector<ParmVarDecl*, 16> Params;
637      for (FunctionProtoType::arg_type_iterator
638             ParamType = OldProto->arg_type_begin(),
639             ParamEnd = OldProto->arg_type_end();
640           ParamType != ParamEnd; ++ParamType) {
641        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
642                                                 SourceLocation(), 0,
643                                                 *ParamType, VarDecl::None,
644                                                 0);
645        Param->setImplicit();
646        Params.push_back(Param);
647      }
648
649      New->setParams(Context, &Params[0], Params.size());
650
651    }
652
653    return MergeCompatibleFunctionDecls(New, Old);
654  }
655
656  // A function that has already been declared has been redeclared or defined
657  // with a different type- show appropriate diagnostic
658  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
659    // The user has declared a builtin function with an incompatible
660    // signature.
661    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
662      // The function the user is redeclaring is a library-defined
663      // function like 'malloc' or 'printf'. Warn about the
664      // redeclaration, then ignore it.
665      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
666      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
667        << Old << Old->getType();
668      return true;
669    }
670
671    PrevDiag = diag::note_previous_builtin_declaration;
672  }
673
674  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
675  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
676  return true;
677}
678
679/// \brief Completes the merge of two function declarations that are
680/// known to be compatible.
681///
682/// This routine handles the merging of attributes and other
683/// properties of function declarations form the old declaration to
684/// the new declaration, once we know that New is in fact a
685/// redeclaration of Old.
686///
687/// \returns false
688bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
689  // Merge the attributes
690  MergeAttributes(New, Old, Context);
691
692  // Merge the storage class.
693  New->setStorageClass(Old->getStorageClass());
694
695  // FIXME: need to implement inline semantics
696
697  // Merge "pure" flag.
698  if (Old->isPure())
699    New->setPure();
700
701  // Merge the "deleted" flag.
702  if (Old->isDeleted())
703    New->setDeleted();
704
705  if (getLangOptions().CPlusPlus)
706    return MergeCXXFunctionDecl(New, Old);
707
708  return false;
709}
710
711/// Predicate for C "tentative" external object definitions (C99 6.9.2).
712static bool isTentativeDefinition(VarDecl *VD) {
713  if (VD->isFileVarDecl())
714    return (!VD->getInit() &&
715            (VD->getStorageClass() == VarDecl::None ||
716             VD->getStorageClass() == VarDecl::Static));
717  return false;
718}
719
720/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
721/// when dealing with C "tentative" external object definitions (C99 6.9.2).
722void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
723  bool VDIsTentative = isTentativeDefinition(VD);
724  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
725
726  // FIXME: I don't think this will actually see all of the
727  // redefinitions. Can't we check this property on-the-fly?
728  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
729                                    E = IdResolver.end();
730       I != E; ++I) {
731    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
732      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
733
734      // Handle the following case:
735      //   int a[10];
736      //   int a[];   - the code below makes sure we set the correct type.
737      //   int a[11]; - this is an error, size isn't 10.
738      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
739          OldDecl->getType()->isConstantArrayType())
740        VD->setType(OldDecl->getType());
741
742      // Check for "tentative" definitions. We can't accomplish this in
743      // MergeVarDecl since the initializer hasn't been attached.
744      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
745        continue;
746
747      // Handle __private_extern__ just like extern.
748      if (OldDecl->getStorageClass() != VarDecl::Extern &&
749          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
750          VD->getStorageClass() != VarDecl::Extern &&
751          VD->getStorageClass() != VarDecl::PrivateExtern) {
752        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
753        Diag(OldDecl->getLocation(), diag::note_previous_definition);
754        // One redefinition error is enough.
755        break;
756      }
757    }
758  }
759}
760
761/// MergeVarDecl - We just parsed a variable 'New' which has the same name
762/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
763/// situation, merging decls or emitting diagnostics as appropriate.
764///
765/// Tentative definition rules (C99 6.9.2p2) are checked by
766/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
767/// definitions here, since the initializer hasn't been attached.
768///
769bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
770  // Verify the old decl was also a variable.
771  VarDecl *Old = dyn_cast<VarDecl>(OldD);
772  if (!Old) {
773    Diag(New->getLocation(), diag::err_redefinition_different_kind)
774      << New->getDeclName();
775    Diag(OldD->getLocation(), diag::note_previous_definition);
776    return true;
777  }
778
779  MergeAttributes(New, Old, Context);
780
781  // Merge the types
782  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
783  if (MergedT.isNull()) {
784    Diag(New->getLocation(), diag::err_redefinition_different_type)
785      << New->getDeclName();
786    Diag(Old->getLocation(), diag::note_previous_definition);
787    return true;
788  }
789  New->setType(MergedT);
790  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
791  if (New->getStorageClass() == VarDecl::Static &&
792      (Old->getStorageClass() == VarDecl::None ||
793       Old->getStorageClass() == VarDecl::Extern)) {
794    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
795    Diag(Old->getLocation(), diag::note_previous_definition);
796    return true;
797  }
798  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
799  if (New->getStorageClass() != VarDecl::Static &&
800      Old->getStorageClass() == VarDecl::Static) {
801    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
802    Diag(Old->getLocation(), diag::note_previous_definition);
803    return true;
804  }
805  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
806  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
807    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
808    Diag(Old->getLocation(), diag::note_previous_definition);
809    return true;
810  }
811  return false;
812}
813
814/// CheckParmsForFunctionDef - Check that the parameters of the given
815/// function are appropriate for the definition of a function. This
816/// takes care of any checks that cannot be performed on the
817/// declaration itself, e.g., that the types of each of the function
818/// parameters are complete.
819bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
820  bool HasInvalidParm = false;
821  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
822    ParmVarDecl *Param = FD->getParamDecl(p);
823
824    // C99 6.7.5.3p4: the parameters in a parameter type list in a
825    // function declarator that is part of a function definition of
826    // that function shall not have incomplete type.
827    if (!Param->isInvalidDecl() &&
828        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
829                               diag::err_typecheck_decl_incomplete_type)) {
830      Param->setInvalidDecl();
831      HasInvalidParm = true;
832    }
833
834    // C99 6.9.1p5: If the declarator includes a parameter type list, the
835    // declaration of each parameter shall include an identifier.
836    if (Param->getIdentifier() == 0 &&
837        !Param->isImplicit() &&
838        !getLangOptions().CPlusPlus)
839      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
840  }
841
842  return HasInvalidParm;
843}
844
845/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
846/// no declarator (e.g. "struct foo;") is parsed.
847Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
848  TagDecl *Tag = 0;
849  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
850      DS.getTypeSpecType() == DeclSpec::TST_struct ||
851      DS.getTypeSpecType() == DeclSpec::TST_union ||
852      DS.getTypeSpecType() == DeclSpec::TST_enum)
853    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
854
855  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
856    if (!Record->getDeclName() && Record->isDefinition() &&
857        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
858      return BuildAnonymousStructOrUnion(S, DS, Record);
859
860    // Microsoft allows unnamed struct/union fields. Don't complain
861    // about them.
862    // FIXME: Should we support Microsoft's extensions in this area?
863    if (Record->getDeclName() && getLangOptions().Microsoft)
864      return Tag;
865  }
866
867  if (!DS.isMissingDeclaratorOk() &&
868      DS.getTypeSpecType() != DeclSpec::TST_error) {
869    // Warn about typedefs of enums without names, since this is an
870    // extension in both Microsoft an GNU.
871    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
872        Tag && isa<EnumDecl>(Tag)) {
873      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
874        << DS.getSourceRange();
875      return Tag;
876    }
877
878    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
879      << DS.getSourceRange();
880    return 0;
881  }
882
883  return Tag;
884}
885
886/// InjectAnonymousStructOrUnionMembers - Inject the members of the
887/// anonymous struct or union AnonRecord into the owning context Owner
888/// and scope S. This routine will be invoked just after we realize
889/// that an unnamed union or struct is actually an anonymous union or
890/// struct, e.g.,
891///
892/// @code
893/// union {
894///   int i;
895///   float f;
896/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
897///    // f into the surrounding scope.x
898/// @endcode
899///
900/// This routine is recursive, injecting the names of nested anonymous
901/// structs/unions into the owning context and scope as well.
902bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
903                                               RecordDecl *AnonRecord) {
904  bool Invalid = false;
905  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
906                               FEnd = AnonRecord->field_end();
907       F != FEnd; ++F) {
908    if ((*F)->getDeclName()) {
909      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
910                                                LookupOrdinaryName, true);
911      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
912        // C++ [class.union]p2:
913        //   The names of the members of an anonymous union shall be
914        //   distinct from the names of any other entity in the
915        //   scope in which the anonymous union is declared.
916        unsigned diagKind
917          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
918                                 : diag::err_anonymous_struct_member_redecl;
919        Diag((*F)->getLocation(), diagKind)
920          << (*F)->getDeclName();
921        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
922        Invalid = true;
923      } else {
924        // C++ [class.union]p2:
925        //   For the purpose of name lookup, after the anonymous union
926        //   definition, the members of the anonymous union are
927        //   considered to have been defined in the scope in which the
928        //   anonymous union is declared.
929        Owner->makeDeclVisibleInContext(*F);
930        S->AddDecl(*F);
931        IdResolver.AddDecl(*F);
932      }
933    } else if (const RecordType *InnerRecordType
934                 = (*F)->getType()->getAsRecordType()) {
935      RecordDecl *InnerRecord = InnerRecordType->getDecl();
936      if (InnerRecord->isAnonymousStructOrUnion())
937        Invalid = Invalid ||
938          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
939    }
940  }
941
942  return Invalid;
943}
944
945/// ActOnAnonymousStructOrUnion - Handle the declaration of an
946/// anonymous structure or union. Anonymous unions are a C++ feature
947/// (C++ [class.union]) and a GNU C extension; anonymous structures
948/// are a GNU C and GNU C++ extension.
949Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
950                                                RecordDecl *Record) {
951  DeclContext *Owner = Record->getDeclContext();
952
953  // Diagnose whether this anonymous struct/union is an extension.
954  if (Record->isUnion() && !getLangOptions().CPlusPlus)
955    Diag(Record->getLocation(), diag::ext_anonymous_union);
956  else if (!Record->isUnion())
957    Diag(Record->getLocation(), diag::ext_anonymous_struct);
958
959  // C and C++ require different kinds of checks for anonymous
960  // structs/unions.
961  bool Invalid = false;
962  if (getLangOptions().CPlusPlus) {
963    const char* PrevSpec = 0;
964    // C++ [class.union]p3:
965    //   Anonymous unions declared in a named namespace or in the
966    //   global namespace shall be declared static.
967    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
968        (isa<TranslationUnitDecl>(Owner) ||
969         (isa<NamespaceDecl>(Owner) &&
970          cast<NamespaceDecl>(Owner)->getDeclName()))) {
971      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
972      Invalid = true;
973
974      // Recover by adding 'static'.
975      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
976    }
977    // C++ [class.union]p3:
978    //   A storage class is not allowed in a declaration of an
979    //   anonymous union in a class scope.
980    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
981             isa<RecordDecl>(Owner)) {
982      Diag(DS.getStorageClassSpecLoc(),
983           diag::err_anonymous_union_with_storage_spec);
984      Invalid = true;
985
986      // Recover by removing the storage specifier.
987      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
988                             PrevSpec);
989    }
990
991    // C++ [class.union]p2:
992    //   The member-specification of an anonymous union shall only
993    //   define non-static data members. [Note: nested types and
994    //   functions cannot be declared within an anonymous union. ]
995    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
996                                 MemEnd = Record->decls_end();
997         Mem != MemEnd; ++Mem) {
998      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
999        // C++ [class.union]p3:
1000        //   An anonymous union shall not have private or protected
1001        //   members (clause 11).
1002        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1003          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1004            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1005          Invalid = true;
1006        }
1007      } else if ((*Mem)->isImplicit()) {
1008        // Any implicit members are fine.
1009      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1010        // This is a type that showed up in an
1011        // elaborated-type-specifier inside the anonymous struct or
1012        // union, but which actually declares a type outside of the
1013        // anonymous struct or union. It's okay.
1014      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1015        if (!MemRecord->isAnonymousStructOrUnion() &&
1016            MemRecord->getDeclName()) {
1017          // This is a nested type declaration.
1018          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1019            << (int)Record->isUnion();
1020          Invalid = true;
1021        }
1022      } else {
1023        // We have something that isn't a non-static data
1024        // member. Complain about it.
1025        unsigned DK = diag::err_anonymous_record_bad_member;
1026        if (isa<TypeDecl>(*Mem))
1027          DK = diag::err_anonymous_record_with_type;
1028        else if (isa<FunctionDecl>(*Mem))
1029          DK = diag::err_anonymous_record_with_function;
1030        else if (isa<VarDecl>(*Mem))
1031          DK = diag::err_anonymous_record_with_static;
1032        Diag((*Mem)->getLocation(), DK)
1033            << (int)Record->isUnion();
1034          Invalid = true;
1035      }
1036    }
1037  } else {
1038    // FIXME: Check GNU C semantics
1039    if (Record->isUnion() && !Owner->isRecord()) {
1040      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
1041        << (int)getLangOptions().CPlusPlus;
1042      Invalid = true;
1043    }
1044  }
1045
1046  if (!Record->isUnion() && !Owner->isRecord()) {
1047    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1048      << (int)getLangOptions().CPlusPlus;
1049    Invalid = true;
1050  }
1051
1052  // Create a declaration for this anonymous struct/union.
1053  NamedDecl *Anon = 0;
1054  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1055    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1056                             /*IdentifierInfo=*/0,
1057                             Context.getTypeDeclType(Record),
1058                             /*BitWidth=*/0, /*Mutable=*/false);
1059    Anon->setAccess(AS_public);
1060    if (getLangOptions().CPlusPlus)
1061      FieldCollector->Add(cast<FieldDecl>(Anon));
1062  } else {
1063    VarDecl::StorageClass SC;
1064    switch (DS.getStorageClassSpec()) {
1065    default: assert(0 && "Unknown storage class!");
1066    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1067    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1068    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1069    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1070    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1071    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1072    case DeclSpec::SCS_mutable:
1073      // mutable can only appear on non-static class members, so it's always
1074      // an error here
1075      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1076      Invalid = true;
1077      SC = VarDecl::None;
1078      break;
1079    }
1080
1081    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1082                           /*IdentifierInfo=*/0,
1083                           Context.getTypeDeclType(Record),
1084                           SC, DS.getSourceRange().getBegin());
1085  }
1086  Anon->setImplicit();
1087
1088  // Add the anonymous struct/union object to the current
1089  // context. We'll be referencing this object when we refer to one of
1090  // its members.
1091  Owner->addDecl(Anon);
1092
1093  // Inject the members of the anonymous struct/union into the owning
1094  // context and into the identifier resolver chain for name lookup
1095  // purposes.
1096  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1097    Invalid = true;
1098
1099  // Mark this as an anonymous struct/union type. Note that we do not
1100  // do this until after we have already checked and injected the
1101  // members of this anonymous struct/union type, because otherwise
1102  // the members could be injected twice: once by DeclContext when it
1103  // builds its lookup table, and once by
1104  // InjectAnonymousStructOrUnionMembers.
1105  Record->setAnonymousStructOrUnion(true);
1106
1107  if (Invalid)
1108    Anon->setInvalidDecl();
1109
1110  return Anon;
1111}
1112
1113
1114/// GetNameForDeclarator - Determine the full declaration name for the
1115/// given Declarator.
1116DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1117  switch (D.getKind()) {
1118  case Declarator::DK_Abstract:
1119    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1120    return DeclarationName();
1121
1122  case Declarator::DK_Normal:
1123    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1124    return DeclarationName(D.getIdentifier());
1125
1126  case Declarator::DK_Constructor: {
1127    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1128    Ty = Context.getCanonicalType(Ty);
1129    return Context.DeclarationNames.getCXXConstructorName(Ty);
1130  }
1131
1132  case Declarator::DK_Destructor: {
1133    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1134    Ty = Context.getCanonicalType(Ty);
1135    return Context.DeclarationNames.getCXXDestructorName(Ty);
1136  }
1137
1138  case Declarator::DK_Conversion: {
1139    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1140    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1141    Ty = Context.getCanonicalType(Ty);
1142    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1143  }
1144
1145  case Declarator::DK_Operator:
1146    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1147    return Context.DeclarationNames.getCXXOperatorName(
1148                                                D.getOverloadedOperator());
1149  }
1150
1151  assert(false && "Unknown name kind");
1152  return DeclarationName();
1153}
1154
1155/// isNearlyMatchingFunction - Determine whether the C++ functions
1156/// Declaration and Definition are "nearly" matching. This heuristic
1157/// is used to improve diagnostics in the case where an out-of-line
1158/// function definition doesn't match any declaration within
1159/// the class or namespace.
1160static bool isNearlyMatchingFunction(ASTContext &Context,
1161                                     FunctionDecl *Declaration,
1162                                     FunctionDecl *Definition) {
1163  if (Declaration->param_size() != Definition->param_size())
1164    return false;
1165  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1166    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1167    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1168
1169    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1170    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1171    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1172      return false;
1173  }
1174
1175  return true;
1176}
1177
1178Sema::DeclTy *
1179Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1180                      bool IsFunctionDefinition) {
1181  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1182  DeclarationName Name = GetNameForDeclarator(D);
1183
1184  // All of these full declarators require an identifier.  If it doesn't have
1185  // one, the ParsedFreeStandingDeclSpec action should be used.
1186  if (!Name) {
1187    if (!D.getInvalidType())  // Reject this if we think it is valid.
1188      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1189           diag::err_declarator_need_ident)
1190        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1191    return 0;
1192  }
1193
1194  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1195  // we find one that is.
1196  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1197         (S->getFlags() & Scope::TemplateParamScope) != 0)
1198    S = S->getParent();
1199
1200  DeclContext *DC;
1201  NamedDecl *PrevDecl;
1202  NamedDecl *New;
1203  bool InvalidDecl = false;
1204
1205  QualType R = GetTypeForDeclarator(D, S);
1206  if (R.isNull()) {
1207    InvalidDecl = true;
1208    R = Context.IntTy;
1209  }
1210
1211  // See if this is a redefinition of a variable in the same scope.
1212  if (D.getCXXScopeSpec().isInvalid()) {
1213    DC = CurContext;
1214    PrevDecl = 0;
1215    InvalidDecl = true;
1216  } else if (!D.getCXXScopeSpec().isSet()) {
1217    LookupNameKind NameKind = LookupOrdinaryName;
1218
1219    // If the declaration we're planning to build will be a function
1220    // or object with linkage, then look for another declaration with
1221    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1222    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1223      /* Do nothing*/;
1224    else if (R->isFunctionType()) {
1225      if (CurContext->isFunctionOrMethod())
1226        NameKind = LookupRedeclarationWithLinkage;
1227    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1228      NameKind = LookupRedeclarationWithLinkage;
1229
1230    DC = CurContext;
1231    PrevDecl = LookupName(S, Name, NameKind, true,
1232                          D.getDeclSpec().getStorageClassSpec() !=
1233                            DeclSpec::SCS_static,
1234                          D.getIdentifierLoc());
1235  } else { // Something like "int foo::x;"
1236    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1237    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1238
1239    // C++ 7.3.1.2p2:
1240    // Members (including explicit specializations of templates) of a named
1241    // namespace can also be defined outside that namespace by explicit
1242    // qualification of the name being defined, provided that the entity being
1243    // defined was already declared in the namespace and the definition appears
1244    // after the point of declaration in a namespace that encloses the
1245    // declarations namespace.
1246    //
1247    // Note that we only check the context at this point. We don't yet
1248    // have enough information to make sure that PrevDecl is actually
1249    // the declaration we want to match. For example, given:
1250    //
1251    //   class X {
1252    //     void f();
1253    //     void f(float);
1254    //   };
1255    //
1256    //   void X::f(int) { } // ill-formed
1257    //
1258    // In this case, PrevDecl will point to the overload set
1259    // containing the two f's declared in X, but neither of them
1260    // matches.
1261
1262    // First check whether we named the global scope.
1263    if (isa<TranslationUnitDecl>(DC)) {
1264      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1265        << Name << D.getCXXScopeSpec().getRange();
1266    } else if (!CurContext->Encloses(DC)) {
1267      // The qualifying scope doesn't enclose the original declaration.
1268      // Emit diagnostic based on current scope.
1269      SourceLocation L = D.getIdentifierLoc();
1270      SourceRange R = D.getCXXScopeSpec().getRange();
1271      if (isa<FunctionDecl>(CurContext))
1272        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1273      else
1274        Diag(L, diag::err_invalid_declarator_scope)
1275          << Name << cast<NamedDecl>(DC) << R;
1276      InvalidDecl = true;
1277    }
1278  }
1279
1280  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1281    // Maybe we will complain about the shadowed template parameter.
1282    InvalidDecl = InvalidDecl
1283      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1284    // Just pretend that we didn't see the previous declaration.
1285    PrevDecl = 0;
1286  }
1287
1288  // In C++, the previous declaration we find might be a tag type
1289  // (class or enum). In this case, the new declaration will hide the
1290  // tag type. Note that this does does not apply if we're declaring a
1291  // typedef (C++ [dcl.typedef]p4).
1292  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1293      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1294    PrevDecl = 0;
1295
1296  bool Redeclaration = false;
1297  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1298    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1299                                 InvalidDecl, Redeclaration);
1300  } else if (R->isFunctionType()) {
1301    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1302                                  IsFunctionDefinition, InvalidDecl,
1303                                  Redeclaration);
1304  } else {
1305    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1306                                  InvalidDecl, Redeclaration);
1307  }
1308
1309  if (New == 0)
1310    return 0;
1311
1312  // Set the lexical context. If the declarator has a C++ scope specifier, the
1313  // lexical context will be different from the semantic context.
1314  New->setLexicalDeclContext(CurContext);
1315
1316  // If this has an identifier and is not an invalid redeclaration,
1317  // add it to the scope stack.
1318  if (Name && !(Redeclaration && InvalidDecl))
1319    PushOnScopeChains(New, S);
1320  // If any semantic error occurred, mark the decl as invalid.
1321  if (D.getInvalidType() || InvalidDecl)
1322    New->setInvalidDecl();
1323
1324  return New;
1325}
1326
1327/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1328/// types into constant array types in certain situations which would otherwise
1329/// be errors (for GCC compatibility).
1330static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1331                                                    ASTContext &Context,
1332                                                    bool &SizeIsNegative) {
1333  // This method tries to turn a variable array into a constant
1334  // array even when the size isn't an ICE.  This is necessary
1335  // for compatibility with code that depends on gcc's buggy
1336  // constant expression folding, like struct {char x[(int)(char*)2];}
1337  SizeIsNegative = false;
1338
1339  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1340    QualType Pointee = PTy->getPointeeType();
1341    QualType FixedType =
1342        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1343    if (FixedType.isNull()) return FixedType;
1344    FixedType = Context.getPointerType(FixedType);
1345    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1346    return FixedType;
1347  }
1348
1349  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1350  if (!VLATy)
1351    return QualType();
1352  // FIXME: We should probably handle this case
1353  if (VLATy->getElementType()->isVariablyModifiedType())
1354    return QualType();
1355
1356  Expr::EvalResult EvalResult;
1357  if (!VLATy->getSizeExpr() ||
1358      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1359      !EvalResult.Val.isInt())
1360    return QualType();
1361
1362  llvm::APSInt &Res = EvalResult.Val.getInt();
1363  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1364    return Context.getConstantArrayType(VLATy->getElementType(),
1365                                        Res, ArrayType::Normal, 0);
1366
1367  SizeIsNegative = true;
1368  return QualType();
1369}
1370
1371/// \brief Register the given locally-scoped external C declaration so
1372/// that it can be found later for redeclarations
1373void
1374Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1375                                       Scope *S) {
1376  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1377         "Decl is not a locally-scoped decl!");
1378  // Note that we have a locally-scoped external with this name.
1379  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1380
1381  if (!PrevDecl)
1382    return;
1383
1384  // If there was a previous declaration of this variable, it may be
1385  // in our identifier chain. Update the identifier chain with the new
1386  // declaration.
1387  if (IdResolver.ReplaceDecl(PrevDecl, ND)) {
1388    // The previous declaration was found on the identifer resolver
1389    // chain, so remove it from its scope.
1390    while (S && !S->isDeclScope(PrevDecl))
1391      S = S->getParent();
1392
1393    if (S)
1394      S->RemoveDecl(PrevDecl);
1395  }
1396}
1397
1398NamedDecl*
1399Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1400                             QualType R, Decl* LastDeclarator,
1401                             Decl* PrevDecl, bool& InvalidDecl,
1402                             bool &Redeclaration) {
1403  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1404  if (D.getCXXScopeSpec().isSet()) {
1405    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1406      << D.getCXXScopeSpec().getRange();
1407    InvalidDecl = true;
1408    // Pretend we didn't see the scope specifier.
1409    DC = 0;
1410  }
1411
1412  // Check that there are no default arguments (C++ only).
1413  if (getLangOptions().CPlusPlus)
1414    CheckExtraCXXDefaultArguments(D);
1415
1416  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1417  if (!NewTD) return 0;
1418
1419  // Handle attributes prior to checking for duplicates in MergeVarDecl
1420  ProcessDeclAttributes(NewTD, D);
1421  // Merge the decl with the existing one if appropriate. If the decl is
1422  // in an outer scope, it isn't the same thing.
1423  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1424    Redeclaration = true;
1425    if (MergeTypeDefDecl(NewTD, PrevDecl))
1426      InvalidDecl = true;
1427  }
1428
1429  if (S->getFnParent() == 0) {
1430    QualType T = NewTD->getUnderlyingType();
1431    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1432    // then it shall have block scope.
1433    if (T->isVariablyModifiedType()) {
1434      bool SizeIsNegative;
1435      QualType FixedTy =
1436          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1437      if (!FixedTy.isNull()) {
1438        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1439        NewTD->setUnderlyingType(FixedTy);
1440      } else {
1441        if (SizeIsNegative)
1442          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1443        else if (T->isVariableArrayType())
1444          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1445        else
1446          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1447        InvalidDecl = true;
1448      }
1449    }
1450  }
1451  return NewTD;
1452}
1453
1454/// \brief Determines whether the given declaration is an out-of-scope
1455/// previous declaration.
1456///
1457/// This routine should be invoked when name lookup has found a
1458/// previous declaration (PrevDecl) that is not in the scope where a
1459/// new declaration by the same name is being introduced. If the new
1460/// declaration occurs in a local scope, previous declarations with
1461/// linkage may still be considered previous declarations (C99
1462/// 6.2.2p4-5, C++ [basic.link]p6).
1463///
1464/// \param PrevDecl the previous declaration found by name
1465/// lookup
1466///
1467/// \param DC the context in which the new declaration is being
1468/// declared.
1469///
1470/// \returns true if PrevDecl is an out-of-scope previous declaration
1471/// for a new delcaration with the same name.
1472static bool
1473isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1474                                ASTContext &Context) {
1475  if (!PrevDecl)
1476    return 0;
1477
1478  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1479  // case we need to check each of the overloaded functions.
1480  if (!PrevDecl->hasLinkage())
1481    return false;
1482
1483  if (Context.getLangOptions().CPlusPlus) {
1484    // C++ [basic.link]p6:
1485    //   If there is a visible declaration of an entity with linkage
1486    //   having the same name and type, ignoring entities declared
1487    //   outside the innermost enclosing namespace scope, the block
1488    //   scope declaration declares that same entity and receives the
1489    //   linkage of the previous declaration.
1490    DeclContext *OuterContext = DC->getLookupContext();
1491    if (!OuterContext->isFunctionOrMethod())
1492      // This rule only applies to block-scope declarations.
1493      return false;
1494    else {
1495      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1496      if (PrevOuterContext->isRecord())
1497        // We found a member function: ignore it.
1498        return false;
1499      else {
1500        // Find the innermost enclosing namespace for the new and
1501        // previous declarations.
1502        while (!OuterContext->isFileContext())
1503          OuterContext = OuterContext->getParent();
1504        while (!PrevOuterContext->isFileContext())
1505          PrevOuterContext = PrevOuterContext->getParent();
1506
1507        // The previous declaration is in a different namespace, so it
1508        // isn't the same function.
1509        if (OuterContext->getPrimaryContext() !=
1510            PrevOuterContext->getPrimaryContext())
1511          return false;
1512      }
1513    }
1514  }
1515
1516  return true;
1517}
1518
1519NamedDecl*
1520Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1521                              QualType R, Decl* LastDeclarator,
1522                              NamedDecl* PrevDecl, bool& InvalidDecl,
1523                              bool &Redeclaration) {
1524  DeclarationName Name = GetNameForDeclarator(D);
1525
1526  // Check that there are no default arguments (C++ only).
1527  if (getLangOptions().CPlusPlus)
1528    CheckExtraCXXDefaultArguments(D);
1529
1530  if (R.getTypePtr()->isObjCInterfaceType()) {
1531    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object);
1532    InvalidDecl = true;
1533  }
1534
1535  VarDecl *NewVD;
1536  VarDecl::StorageClass SC;
1537  switch (D.getDeclSpec().getStorageClassSpec()) {
1538  default: assert(0 && "Unknown storage class!");
1539  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1540  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1541  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1542  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1543  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1544  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1545  case DeclSpec::SCS_mutable:
1546    // mutable can only appear on non-static class members, so it's always
1547    // an error here
1548    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1549    InvalidDecl = true;
1550    SC = VarDecl::None;
1551    break;
1552  }
1553
1554  IdentifierInfo *II = Name.getAsIdentifierInfo();
1555  if (!II) {
1556    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1557      << Name.getAsString();
1558    return 0;
1559  }
1560
1561  if (DC->isRecord()) {
1562    // This is a static data member for a C++ class.
1563    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1564                                    D.getIdentifierLoc(), II,
1565                                    R);
1566  } else {
1567    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1568    if (S->getFnParent() == 0) {
1569      // C99 6.9p2: The storage-class specifiers auto and register shall not
1570      // appear in the declaration specifiers in an external declaration.
1571      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1572        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1573        InvalidDecl = true;
1574      }
1575    }
1576    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1577                            II, R, SC,
1578                            // FIXME: Move to DeclGroup...
1579                            D.getDeclSpec().getSourceRange().getBegin());
1580    NewVD->setThreadSpecified(ThreadSpecified);
1581  }
1582  NewVD->setNextDeclarator(LastDeclarator);
1583
1584  // Handle attributes prior to checking for duplicates in MergeVarDecl
1585  ProcessDeclAttributes(NewVD, D);
1586
1587  // Handle GNU asm-label extension (encoded as an attribute).
1588  if (Expr *E = (Expr*) D.getAsmLabel()) {
1589    // The parser guarantees this is a string.
1590    StringLiteral *SE = cast<StringLiteral>(E);
1591    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1592                                                        SE->getByteLength())));
1593  }
1594
1595  // Emit an error if an address space was applied to decl with local storage.
1596  // This includes arrays of objects with address space qualifiers, but not
1597  // automatic variables that point to other address spaces.
1598  // ISO/IEC TR 18037 S5.1.2
1599  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1600    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1601    InvalidDecl = true;
1602  }
1603
1604  if (NewVD->hasLocalStorage() && NewVD->getType().isObjCGCWeak()) {
1605    Diag(D.getIdentifierLoc(), diag::warn_attribute_weak_on_local);
1606  }
1607
1608  bool isIllegalVLA = R->isVariableArrayType() && NewVD->hasGlobalStorage();
1609  bool isIllegalVM = R->isVariablyModifiedType() && NewVD->hasLinkage();
1610  if (isIllegalVLA || isIllegalVM) {
1611    bool SizeIsNegative;
1612    QualType FixedTy =
1613        TryToFixInvalidVariablyModifiedType(R, Context, SizeIsNegative);
1614    if (!FixedTy.isNull()) {
1615      Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1616      NewVD->setType(FixedTy);
1617    } else if (R->isVariableArrayType()) {
1618      NewVD->setInvalidDecl();
1619
1620      const VariableArrayType *VAT = Context.getAsVariableArrayType(R);
1621      // FIXME: This won't give the correct result for
1622      // int a[10][n];
1623      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1624
1625      if (NewVD->isFileVarDecl())
1626        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1627          << SizeRange;
1628      else if (NewVD->getStorageClass() == VarDecl::Static)
1629        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1630          << SizeRange;
1631      else
1632        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1633            << SizeRange;
1634    } else {
1635      InvalidDecl = true;
1636
1637      if (NewVD->isFileVarDecl())
1638        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1639      else
1640        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1641    }
1642  }
1643
1644  // If name lookup finds a previous declaration that is not in the
1645  // same scope as the new declaration, this may still be an
1646  // acceptable redeclaration.
1647  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1648      !(NewVD->hasLinkage() &&
1649        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1650    PrevDecl = 0;
1651
1652  if (!PrevDecl && NewVD->isExternC(Context)) {
1653    // Since we did not find anything by this name and we're declaring
1654    // an extern "C" variable, look for a non-visible extern "C"
1655    // declaration with the same name.
1656    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1657      = LocallyScopedExternalDecls.find(Name);
1658    if (Pos != LocallyScopedExternalDecls.end())
1659      PrevDecl = Pos->second;
1660  }
1661
1662  // Merge the decl with the existing one if appropriate.
1663  if (PrevDecl) {
1664    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1665      // The user tried to define a non-static data member
1666      // out-of-line (C++ [dcl.meaning]p1).
1667      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1668        << D.getCXXScopeSpec().getRange();
1669      NewVD->Destroy(Context);
1670      return 0;
1671    }
1672
1673    Redeclaration = true;
1674    if (MergeVarDecl(NewVD, PrevDecl))
1675      InvalidDecl = true;
1676
1677    if (D.getCXXScopeSpec().isSet()) {
1678      // No previous declaration in the qualifying scope.
1679      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1680        << Name << D.getCXXScopeSpec().getRange();
1681      InvalidDecl = true;
1682    }
1683  }
1684
1685  // If this is a locally-scoped extern C variable, update the map of
1686  // such variables.
1687  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1688      !InvalidDecl)
1689    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1690
1691  return NewVD;
1692}
1693
1694NamedDecl*
1695Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1696                              QualType R, Decl *LastDeclarator,
1697                              NamedDecl* PrevDecl, bool IsFunctionDefinition,
1698                              bool& InvalidDecl, bool &Redeclaration) {
1699  assert(R.getTypePtr()->isFunctionType());
1700
1701  DeclarationName Name = GetNameForDeclarator(D);
1702  FunctionDecl::StorageClass SC = FunctionDecl::None;
1703  switch (D.getDeclSpec().getStorageClassSpec()) {
1704  default: assert(0 && "Unknown storage class!");
1705  case DeclSpec::SCS_auto:
1706  case DeclSpec::SCS_register:
1707  case DeclSpec::SCS_mutable:
1708    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1709         diag::err_typecheck_sclass_func);
1710    InvalidDecl = true;
1711    break;
1712  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1713  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1714  case DeclSpec::SCS_static: {
1715    if (DC->getLookupContext()->isFunctionOrMethod()) {
1716      // C99 6.7.1p5:
1717      //   The declaration of an identifier for a function that has
1718      //   block scope shall have no explicit storage-class specifier
1719      //   other than extern
1720      // See also (C++ [dcl.stc]p4).
1721      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1722           diag::err_static_block_func);
1723      SC = FunctionDecl::None;
1724    } else
1725      SC = FunctionDecl::Static;
1726    break;
1727  }
1728  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1729  }
1730
1731  bool isInline = D.getDeclSpec().isInlineSpecified();
1732  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1733  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1734
1735  FunctionDecl *NewFD;
1736  if (D.getKind() == Declarator::DK_Constructor) {
1737    // This is a C++ constructor declaration.
1738    assert(DC->isRecord() &&
1739           "Constructors can only be declared in a member context");
1740
1741    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1742
1743    // Create the new declaration
1744    NewFD = CXXConstructorDecl::Create(Context,
1745                                       cast<CXXRecordDecl>(DC),
1746                                       D.getIdentifierLoc(), Name, R,
1747                                       isExplicit, isInline,
1748                                       /*isImplicitlyDeclared=*/false);
1749
1750    if (InvalidDecl)
1751      NewFD->setInvalidDecl();
1752  } else if (D.getKind() == Declarator::DK_Destructor) {
1753    // This is a C++ destructor declaration.
1754    if (DC->isRecord()) {
1755      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1756
1757      NewFD = CXXDestructorDecl::Create(Context,
1758                                        cast<CXXRecordDecl>(DC),
1759                                        D.getIdentifierLoc(), Name, R,
1760                                        isInline,
1761                                        /*isImplicitlyDeclared=*/false);
1762
1763      if (InvalidDecl)
1764        NewFD->setInvalidDecl();
1765    } else {
1766      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1767
1768      // Create a FunctionDecl to satisfy the function definition parsing
1769      // code path.
1770      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1771                                   Name, R, SC, isInline,
1772                                   /*hasPrototype=*/true,
1773                                   // FIXME: Move to DeclGroup...
1774                                   D.getDeclSpec().getSourceRange().getBegin());
1775      InvalidDecl = true;
1776      NewFD->setInvalidDecl();
1777    }
1778  } else if (D.getKind() == Declarator::DK_Conversion) {
1779    if (!DC->isRecord()) {
1780      Diag(D.getIdentifierLoc(),
1781           diag::err_conv_function_not_member);
1782      return 0;
1783    } else {
1784      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1785
1786      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1787                                        D.getIdentifierLoc(), Name, R,
1788                                        isInline, isExplicit);
1789
1790      if (InvalidDecl)
1791        NewFD->setInvalidDecl();
1792    }
1793  } else if (DC->isRecord()) {
1794    // This is a C++ method declaration.
1795    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1796                                  D.getIdentifierLoc(), Name, R,
1797                                  (SC == FunctionDecl::Static), isInline);
1798  } else {
1799    NewFD = FunctionDecl::Create(Context, DC,
1800                                 D.getIdentifierLoc(),
1801                                 Name, R, SC, isInline,
1802                                 /*hasPrototype=*/
1803                                   (getLangOptions().CPlusPlus ||
1804                                    (D.getNumTypeObjects() &&
1805                                     D.getTypeObject(0).Fun.hasPrototype)),
1806                                 // FIXME: Move to DeclGroup...
1807                                 D.getDeclSpec().getSourceRange().getBegin());
1808  }
1809  NewFD->setNextDeclarator(LastDeclarator);
1810
1811  // Set the lexical context. If the declarator has a C++
1812  // scope specifier, the lexical context will be different
1813  // from the semantic context.
1814  NewFD->setLexicalDeclContext(CurContext);
1815
1816  // Handle GNU asm-label extension (encoded as an attribute).
1817  if (Expr *E = (Expr*) D.getAsmLabel()) {
1818    // The parser guarantees this is a string.
1819    StringLiteral *SE = cast<StringLiteral>(E);
1820    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1821                                                        SE->getByteLength())));
1822  }
1823
1824  // Copy the parameter declarations from the declarator D to
1825  // the function declaration NewFD, if they are available.
1826  if (D.getNumTypeObjects() > 0) {
1827    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1828
1829    // Create Decl objects for each parameter, adding them to the
1830    // FunctionDecl.
1831    llvm::SmallVector<ParmVarDecl*, 16> Params;
1832
1833    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1834    // function that takes no arguments, not a function that takes a
1835    // single void argument.
1836    // We let through "const void" here because Sema::GetTypeForDeclarator
1837    // already checks for that case.
1838    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1839        FTI.ArgInfo[0].Param &&
1840        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1841      // empty arg list, don't push any params.
1842      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1843
1844      // In C++, the empty parameter-type-list must be spelled "void"; a
1845      // typedef of void is not permitted.
1846      if (getLangOptions().CPlusPlus &&
1847          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1848        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1849      }
1850    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1851      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1852        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1853    }
1854
1855    NewFD->setParams(Context, &Params[0], Params.size());
1856  } else if (R->getAsTypedefType()) {
1857    // When we're declaring a function with a typedef, as in the
1858    // following example, we'll need to synthesize (unnamed)
1859    // parameters for use in the declaration.
1860    //
1861    // @code
1862    // typedef void fn(int);
1863    // fn f;
1864    // @endcode
1865    const FunctionProtoType *FT = R->getAsFunctionProtoType();
1866    if (!FT) {
1867      // This is a typedef of a function with no prototype, so we
1868      // don't need to do anything.
1869    } else if ((FT->getNumArgs() == 0) ||
1870               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1871                FT->getArgType(0)->isVoidType())) {
1872      // This is a zero-argument function. We don't need to do anything.
1873    } else {
1874      // Synthesize a parameter for each argument type.
1875      llvm::SmallVector<ParmVarDecl*, 16> Params;
1876      for (FunctionProtoType::arg_type_iterator ArgType = FT->arg_type_begin();
1877           ArgType != FT->arg_type_end(); ++ArgType) {
1878        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1879                                                 SourceLocation(), 0,
1880                                                 *ArgType, VarDecl::None,
1881                                                 0);
1882        Param->setImplicit();
1883        Params.push_back(Param);
1884      }
1885
1886      NewFD->setParams(Context, &Params[0], Params.size());
1887    }
1888  }
1889
1890  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1891    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1892  else if (isa<CXXDestructorDecl>(NewFD)) {
1893    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1894    Record->setUserDeclaredDestructor(true);
1895    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1896    // user-defined destructor.
1897    Record->setPOD(false);
1898  } else if (CXXConversionDecl *Conversion =
1899             dyn_cast<CXXConversionDecl>(NewFD))
1900    ActOnConversionDeclarator(Conversion);
1901
1902  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1903  if (NewFD->isOverloadedOperator() &&
1904      CheckOverloadedOperatorDeclaration(NewFD))
1905    NewFD->setInvalidDecl();
1906
1907  // If name lookup finds a previous declaration that is not in the
1908  // same scope as the new declaration, this may still be an
1909  // acceptable redeclaration.
1910  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1911      !(NewFD->hasLinkage() &&
1912        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1913    PrevDecl = 0;
1914
1915  if (!PrevDecl && NewFD->isExternC(Context)) {
1916    // Since we did not find anything by this name and we're declaring
1917    // an extern "C" function, look for a non-visible extern "C"
1918    // declaration with the same name.
1919    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1920      = LocallyScopedExternalDecls.find(Name);
1921    if (Pos != LocallyScopedExternalDecls.end())
1922      PrevDecl = Pos->second;
1923  }
1924
1925  // Merge or overload the declaration with an existing declaration of
1926  // the same name, if appropriate.
1927  bool OverloadableAttrRequired = false;
1928  if (PrevDecl) {
1929    // Determine whether NewFD is an overload of PrevDecl or
1930    // a declaration that requires merging. If it's an overload,
1931    // there's no more work to do here; we'll just add the new
1932    // function to the scope.
1933    OverloadedFunctionDecl::function_iterator MatchedDecl;
1934
1935    if (!getLangOptions().CPlusPlus &&
1936        AllowOverloadingOfFunction(PrevDecl, Context)) {
1937      OverloadableAttrRequired = true;
1938
1939      // Functions marked "overloadable" must have a prototype (that
1940      // we can't get through declaration merging).
1941      if (!R->getAsFunctionProtoType()) {
1942        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
1943          << NewFD;
1944        InvalidDecl = true;
1945        Redeclaration = true;
1946
1947        // Turn this into a variadic function with no parameters.
1948        R = Context.getFunctionType(R->getAsFunctionType()->getResultType(),
1949                                    0, 0, true, 0);
1950        NewFD->setType(R);
1951      }
1952    }
1953
1954    if (PrevDecl &&
1955        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1956         !IsOverload(NewFD, PrevDecl, MatchedDecl))) {
1957      Redeclaration = true;
1958      Decl *OldDecl = PrevDecl;
1959
1960      // If PrevDecl was an overloaded function, extract the
1961      // FunctionDecl that matched.
1962      if (isa<OverloadedFunctionDecl>(PrevDecl))
1963        OldDecl = *MatchedDecl;
1964
1965      // NewFD and PrevDecl represent declarations that need to be
1966      // merged.
1967      if (MergeFunctionDecl(NewFD, OldDecl))
1968        InvalidDecl = true;
1969
1970      if (!InvalidDecl) {
1971        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1972
1973        // An out-of-line member function declaration must also be a
1974        // definition (C++ [dcl.meaning]p1).
1975        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1976            !InvalidDecl) {
1977          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1978            << D.getCXXScopeSpec().getRange();
1979          NewFD->setInvalidDecl();
1980        }
1981      }
1982    }
1983  }
1984
1985  if (D.getCXXScopeSpec().isSet() &&
1986      (!PrevDecl || !Redeclaration)) {
1987    // The user tried to provide an out-of-line definition for a
1988    // function that is a member of a class or namespace, but there
1989    // was no such member function declared (C++ [class.mfct]p2,
1990    // C++ [namespace.memdef]p2). For example:
1991    //
1992    // class X {
1993    //   void f() const;
1994    // };
1995    //
1996    // void X::f() { } // ill-formed
1997    //
1998    // Complain about this problem, and attempt to suggest close
1999    // matches (e.g., those that differ only in cv-qualifiers and
2000    // whether the parameter types are references).
2001    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2002      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2003    InvalidDecl = true;
2004
2005    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2006                                            true);
2007    assert(!Prev.isAmbiguous() &&
2008           "Cannot have an ambiguity in previous-declaration lookup");
2009    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2010         Func != FuncEnd; ++Func) {
2011      if (isa<FunctionDecl>(*Func) &&
2012          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2013        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2014    }
2015
2016    PrevDecl = 0;
2017  }
2018
2019  // Handle attributes. We need to have merged decls when handling attributes
2020  // (for example to check for conflicts, etc).
2021  ProcessDeclAttributes(NewFD, D);
2022  AddKnownFunctionAttributes(NewFD);
2023
2024  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2025    // If a function name is overloadable in C, then every function
2026    // with that name must be marked "overloadable".
2027    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2028      << Redeclaration << NewFD;
2029    if (PrevDecl)
2030      Diag(PrevDecl->getLocation(),
2031           diag::note_attribute_overloadable_prev_overload);
2032    NewFD->addAttr(::new (Context) OverloadableAttr());
2033  }
2034
2035  if (getLangOptions().CPlusPlus) {
2036    // In C++, check default arguments now that we have merged decls. Unless
2037    // the lexical context is the class, because in this case this is done
2038    // during delayed parsing anyway.
2039    if (!CurContext->isRecord())
2040      CheckCXXDefaultArguments(NewFD);
2041
2042    // An out-of-line member function declaration must also be a
2043    // definition (C++ [dcl.meaning]p1).
2044    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
2045      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2046        << D.getCXXScopeSpec().getRange();
2047      InvalidDecl = true;
2048    }
2049  }
2050
2051  // If this is a locally-scoped extern C function, update the
2052  // map of such names.
2053  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2054      && !InvalidDecl)
2055    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2056
2057  return NewFD;
2058}
2059
2060bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2061  // FIXME: Need strict checking.  In C89, we need to check for
2062  // any assignment, increment, decrement, function-calls, or
2063  // commas outside of a sizeof.  In C99, it's the same list,
2064  // except that the aforementioned are allowed in unevaluated
2065  // expressions.  Everything else falls under the
2066  // "may accept other forms of constant expressions" exception.
2067  // (We never end up here for C++, so the constant expression
2068  // rules there don't matter.)
2069  if (Init->isConstantInitializer(Context))
2070    return false;
2071  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2072    << Init->getSourceRange();
2073  return true;
2074}
2075
2076void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2077  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2078}
2079
2080/// AddInitializerToDecl - Adds the initializer Init to the
2081/// declaration dcl. If DirectInit is true, this is C++ direct
2082/// initialization rather than copy initialization.
2083void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2084  Decl *RealDecl = static_cast<Decl *>(dcl);
2085  // If there is no declaration, there was an error parsing it.  Just ignore
2086  // the initializer.
2087  if (RealDecl == 0)
2088    return;
2089
2090  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2091  if (!VDecl) {
2092    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2093    RealDecl->setInvalidDecl();
2094    return;
2095  }
2096
2097  // Take ownership of the expression, now that we're sure we have somewhere
2098  // to put it.
2099  Expr *Init = static_cast<Expr *>(init.release());
2100  assert(Init && "missing initializer");
2101
2102  // Get the decls type and save a reference for later, since
2103  // CheckInitializerTypes may change it.
2104  QualType DclT = VDecl->getType(), SavT = DclT;
2105  if (VDecl->isBlockVarDecl()) {
2106    VarDecl::StorageClass SC = VDecl->getStorageClass();
2107    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2108      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2109      VDecl->setInvalidDecl();
2110    } else if (!VDecl->isInvalidDecl()) {
2111      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2112                                VDecl->getDeclName(), DirectInit))
2113        VDecl->setInvalidDecl();
2114
2115      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2116      // Don't check invalid declarations to avoid emitting useless diagnostics.
2117      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2118        if (SC == VarDecl::Static) // C99 6.7.8p4.
2119          CheckForConstantInitializer(Init, DclT);
2120      }
2121    }
2122  } else if (VDecl->isFileVarDecl()) {
2123    if (VDecl->getStorageClass() == VarDecl::Extern)
2124      Diag(VDecl->getLocation(), diag::warn_extern_init);
2125    if (!VDecl->isInvalidDecl())
2126      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2127                                VDecl->getDeclName(), DirectInit))
2128        VDecl->setInvalidDecl();
2129
2130    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2131    // Don't check invalid declarations to avoid emitting useless diagnostics.
2132    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2133      // C99 6.7.8p4. All file scoped initializers need to be constant.
2134      CheckForConstantInitializer(Init, DclT);
2135    }
2136  }
2137  // If the type changed, it means we had an incomplete type that was
2138  // completed by the initializer. For example:
2139  //   int ary[] = { 1, 3, 5 };
2140  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2141  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2142    VDecl->setType(DclT);
2143    Init->setType(DclT);
2144  }
2145
2146  // Attach the initializer to the decl.
2147  VDecl->setInit(Init);
2148  return;
2149}
2150
2151void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2152  Decl *RealDecl = static_cast<Decl *>(dcl);
2153
2154  // If there is no declaration, there was an error parsing it. Just ignore it.
2155  if (RealDecl == 0)
2156    return;
2157
2158  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2159    QualType Type = Var->getType();
2160    // C++ [dcl.init.ref]p3:
2161    //   The initializer can be omitted for a reference only in a
2162    //   parameter declaration (8.3.5), in the declaration of a
2163    //   function return type, in the declaration of a class member
2164    //   within its class declaration (9.2), and where the extern
2165    //   specifier is explicitly used.
2166    if (Type->isReferenceType() &&
2167        Var->getStorageClass() != VarDecl::Extern &&
2168        Var->getStorageClass() != VarDecl::PrivateExtern) {
2169      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2170        << Var->getDeclName()
2171        << SourceRange(Var->getLocation(), Var->getLocation());
2172      Var->setInvalidDecl();
2173      return;
2174    }
2175
2176    // C++ [dcl.init]p9:
2177    //
2178    //   If no initializer is specified for an object, and the object
2179    //   is of (possibly cv-qualified) non-POD class type (or array
2180    //   thereof), the object shall be default-initialized; if the
2181    //   object is of const-qualified type, the underlying class type
2182    //   shall have a user-declared default constructor.
2183    if (getLangOptions().CPlusPlus) {
2184      QualType InitType = Type;
2185      if (const ArrayType *Array = Context.getAsArrayType(Type))
2186        InitType = Array->getElementType();
2187      if (Var->getStorageClass() != VarDecl::Extern &&
2188          Var->getStorageClass() != VarDecl::PrivateExtern &&
2189          InitType->isRecordType()) {
2190        const CXXConstructorDecl *Constructor = 0;
2191        if (!DiagnoseIncompleteType(Var->getLocation(), InitType,
2192                                    diag::err_invalid_incomplete_type_use))
2193          Constructor
2194            = PerformInitializationByConstructor(InitType, 0, 0,
2195                                                 Var->getLocation(),
2196                                               SourceRange(Var->getLocation(),
2197                                                           Var->getLocation()),
2198                                                 Var->getDeclName(),
2199                                                 IK_Default);
2200        if (!Constructor)
2201          Var->setInvalidDecl();
2202      }
2203    }
2204
2205#if 0
2206    // FIXME: Temporarily disabled because we are not properly parsing
2207    // linkage specifications on declarations, e.g.,
2208    //
2209    //   extern "C" const CGPoint CGPointerZero;
2210    //
2211    // C++ [dcl.init]p9:
2212    //
2213    //     If no initializer is specified for an object, and the
2214    //     object is of (possibly cv-qualified) non-POD class type (or
2215    //     array thereof), the object shall be default-initialized; if
2216    //     the object is of const-qualified type, the underlying class
2217    //     type shall have a user-declared default
2218    //     constructor. Otherwise, if no initializer is specified for
2219    //     an object, the object and its subobjects, if any, have an
2220    //     indeterminate initial value; if the object or any of its
2221    //     subobjects are of const-qualified type, the program is
2222    //     ill-formed.
2223    //
2224    // This isn't technically an error in C, so we don't diagnose it.
2225    //
2226    // FIXME: Actually perform the POD/user-defined default
2227    // constructor check.
2228    if (getLangOptions().CPlusPlus &&
2229        Context.getCanonicalType(Type).isConstQualified() &&
2230        Var->getStorageClass() != VarDecl::Extern)
2231      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2232        << Var->getName()
2233        << SourceRange(Var->getLocation(), Var->getLocation());
2234#endif
2235  }
2236}
2237
2238/// The declarators are chained together backwards, reverse the list.
2239Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2240  // Often we have single declarators, handle them quickly.
2241  Decl *Group = static_cast<Decl*>(group);
2242  if (Group == 0)
2243    return 0;
2244
2245  Decl *NewGroup = 0;
2246  if (Group->getNextDeclarator() == 0)
2247    NewGroup = Group;
2248  else { // reverse the list.
2249    while (Group) {
2250      Decl *Next = Group->getNextDeclarator();
2251      Group->setNextDeclarator(NewGroup);
2252      NewGroup = Group;
2253      Group = Next;
2254    }
2255  }
2256  // Perform semantic analysis that depends on having fully processed both
2257  // the declarator and initializer.
2258  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2259    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2260    if (!IDecl)
2261      continue;
2262    QualType T = IDecl->getType();
2263
2264    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2265    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2266    if (IDecl->isBlockVarDecl() &&
2267        IDecl->getStorageClass() != VarDecl::Extern) {
2268      if (!IDecl->isInvalidDecl() &&
2269          DiagnoseIncompleteType(IDecl->getLocation(), T,
2270                                 diag::err_typecheck_decl_incomplete_type))
2271        IDecl->setInvalidDecl();
2272    }
2273    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2274    // object that has file scope without an initializer, and without a
2275    // storage-class specifier or with the storage-class specifier "static",
2276    // constitutes a tentative definition. Note: A tentative definition with
2277    // external linkage is valid (C99 6.2.2p5).
2278    if (isTentativeDefinition(IDecl)) {
2279      if (T->isIncompleteArrayType()) {
2280        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2281        // array to be completed. Don't issue a diagnostic.
2282      } else if (!IDecl->isInvalidDecl() &&
2283                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2284                                        diag::err_typecheck_decl_incomplete_type))
2285        // C99 6.9.2p3: If the declaration of an identifier for an object is
2286        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2287        // declared type shall not be an incomplete type.
2288        IDecl->setInvalidDecl();
2289    }
2290    if (IDecl->isFileVarDecl())
2291      CheckForFileScopedRedefinitions(S, IDecl);
2292  }
2293  return NewGroup;
2294}
2295
2296/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2297/// to introduce parameters into function prototype scope.
2298Sema::DeclTy *
2299Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2300  const DeclSpec &DS = D.getDeclSpec();
2301
2302  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2303  VarDecl::StorageClass StorageClass = VarDecl::None;
2304  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2305    StorageClass = VarDecl::Register;
2306  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2307    Diag(DS.getStorageClassSpecLoc(),
2308         diag::err_invalid_storage_class_in_func_decl);
2309    D.getMutableDeclSpec().ClearStorageClassSpecs();
2310  }
2311  if (DS.isThreadSpecified()) {
2312    Diag(DS.getThreadSpecLoc(),
2313         diag::err_invalid_storage_class_in_func_decl);
2314    D.getMutableDeclSpec().ClearStorageClassSpecs();
2315  }
2316
2317  // Check that there are no default arguments inside the type of this
2318  // parameter (C++ only).
2319  if (getLangOptions().CPlusPlus)
2320    CheckExtraCXXDefaultArguments(D);
2321
2322  // In this context, we *do not* check D.getInvalidType(). If the declarator
2323  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2324  // though it will not reflect the user specified type.
2325  QualType parmDeclType = GetTypeForDeclarator(D, S);
2326
2327  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2328
2329  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2330  // Can this happen for params?  We already checked that they don't conflict
2331  // among each other.  Here they can only shadow globals, which is ok.
2332  IdentifierInfo *II = D.getIdentifier();
2333  if (II) {
2334    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2335      if (PrevDecl->isTemplateParameter()) {
2336        // Maybe we will complain about the shadowed template parameter.
2337        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2338        // Just pretend that we didn't see the previous declaration.
2339        PrevDecl = 0;
2340      } else if (S->isDeclScope(PrevDecl)) {
2341        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2342
2343        // Recover by removing the name
2344        II = 0;
2345        D.SetIdentifier(0, D.getIdentifierLoc());
2346      }
2347    }
2348  }
2349
2350  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2351  // Doing the promotion here has a win and a loss. The win is the type for
2352  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2353  // code generator). The loss is the orginal type isn't preserved. For example:
2354  //
2355  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2356  //    int blockvardecl[5];
2357  //    sizeof(parmvardecl);  // size == 4
2358  //    sizeof(blockvardecl); // size == 20
2359  // }
2360  //
2361  // For expressions, all implicit conversions are captured using the
2362  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2363  //
2364  // FIXME: If a source translation tool needs to see the original type, then
2365  // we need to consider storing both types (in ParmVarDecl)...
2366  //
2367  if (parmDeclType->isArrayType()) {
2368    // int x[restrict 4] ->  int *restrict
2369    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2370  } else if (parmDeclType->isFunctionType())
2371    parmDeclType = Context.getPointerType(parmDeclType);
2372
2373  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2374                                         D.getIdentifierLoc(), II,
2375                                         parmDeclType, StorageClass,
2376                                         0);
2377
2378  if (D.getInvalidType())
2379    New->setInvalidDecl();
2380
2381  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2382  if (D.getCXXScopeSpec().isSet()) {
2383    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2384      << D.getCXXScopeSpec().getRange();
2385    New->setInvalidDecl();
2386  }
2387  // Parameter declarators cannot be interface types. All ObjC objects are
2388  // passed by reference.
2389  if (parmDeclType->isObjCInterfaceType()) {
2390    Diag(D.getIdentifierLoc(), diag::err_object_cannot_be_by_value)
2391         << "passed";
2392    New->setInvalidDecl();
2393  }
2394
2395  // Add the parameter declaration into this scope.
2396  S->AddDecl(New);
2397  if (II)
2398    IdResolver.AddDecl(New);
2399
2400  ProcessDeclAttributes(New, D);
2401  return New;
2402
2403}
2404
2405void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2406  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2407         "Not a function declarator!");
2408  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2409
2410  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2411  // for a K&R function.
2412  if (!FTI.hasPrototype) {
2413    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2414      if (FTI.ArgInfo[i].Param == 0) {
2415        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2416          << FTI.ArgInfo[i].Ident;
2417        // Implicitly declare the argument as type 'int' for lack of a better
2418        // type.
2419        DeclSpec DS;
2420        const char* PrevSpec; // unused
2421        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2422                           PrevSpec);
2423        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2424        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2425        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2426      }
2427    }
2428  }
2429}
2430
2431Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2432  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2433  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2434         "Not a function declarator!");
2435  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2436
2437  if (FTI.hasPrototype) {
2438    // FIXME: Diagnose arguments without names in C.
2439  }
2440
2441  Scope *ParentScope = FnBodyScope->getParent();
2442
2443  return ActOnStartOfFunctionDef(FnBodyScope,
2444                                 ActOnDeclarator(ParentScope, D, 0,
2445                                                 /*IsFunctionDefinition=*/true));
2446}
2447
2448Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2449  Decl *decl = static_cast<Decl*>(D);
2450  FunctionDecl *FD = cast<FunctionDecl>(decl);
2451
2452  ActiveScope = FnBodyScope;
2453
2454  // See if this is a redefinition.
2455  const FunctionDecl *Definition;
2456  if (FD->getBody(Definition)) {
2457    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2458    Diag(Definition->getLocation(), diag::note_previous_definition);
2459  }
2460
2461  // Builtin functions cannot be defined.
2462  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2463    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2464      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2465      FD->setInvalidDecl();
2466    }
2467  }
2468
2469  // The return type of a function definition must be complete
2470  // (C99 6.9.1p3)
2471  if (FD->getResultType()->isIncompleteType() &&
2472      !FD->getResultType()->isVoidType()) {
2473    Diag(FD->getLocation(), diag::err_func_def_incomplete_result) << FD;
2474    FD->setInvalidDecl();
2475  }
2476
2477  PushDeclContext(FnBodyScope, FD);
2478
2479  // Check the validity of our function parameters
2480  CheckParmsForFunctionDef(FD);
2481
2482  // Introduce our parameters into the function scope
2483  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2484    ParmVarDecl *Param = FD->getParamDecl(p);
2485    Param->setOwningFunction(FD);
2486
2487    // If this has an identifier, add it to the scope stack.
2488    if (Param->getIdentifier())
2489      PushOnScopeChains(Param, FnBodyScope);
2490  }
2491
2492  // Checking attributes of current function definition
2493  // dllimport attribute.
2494  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2495    // dllimport attribute cannot be applied to definition.
2496    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2497      Diag(FD->getLocation(),
2498           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2499        << "dllimport";
2500      FD->setInvalidDecl();
2501      return FD;
2502    } else {
2503      // If a symbol previously declared dllimport is later defined, the
2504      // attribute is ignored in subsequent references, and a warning is
2505      // emitted.
2506      Diag(FD->getLocation(),
2507           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2508        << FD->getNameAsCString() << "dllimport";
2509    }
2510  }
2511  return FD;
2512}
2513
2514static bool StatementCreatesScope(Stmt* S) {
2515  bool result = false;
2516  if (DeclStmt* DS = dyn_cast<DeclStmt>(S)) {
2517    for (DeclStmt::decl_iterator i = DS->decl_begin();
2518         i != DS->decl_end(); ++i) {
2519      if (VarDecl* D = dyn_cast<VarDecl>(*i)) {
2520        result |= D->getType()->isVariablyModifiedType();
2521        result |= !!D->getAttr<CleanupAttr>();
2522      } else if (TypedefDecl* D = dyn_cast<TypedefDecl>(*i)) {
2523        result |= D->getUnderlyingType()->isVariablyModifiedType();
2524      }
2525    }
2526  }
2527
2528  return result;
2529}
2530
2531void Sema::RecursiveCalcLabelScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2532                                    llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2533                                    std::vector<void*>& ScopeStack,
2534                                    Stmt* CurStmt,
2535                                    Stmt* ParentCompoundStmt) {
2536  for (Stmt::child_iterator i = CurStmt->child_begin();
2537       i != CurStmt->child_end(); ++i) {
2538    if (!*i) continue;
2539    if (StatementCreatesScope(*i))  {
2540      ScopeStack.push_back(*i);
2541      PopScopeMap[*i] = ParentCompoundStmt;
2542    } else if (isa<LabelStmt>(CurStmt)) {
2543      LabelScopeMap[CurStmt] = ScopeStack.size() ? ScopeStack.back() : 0;
2544    }
2545    if (isa<DeclStmt>(*i)) continue;
2546    Stmt* CurCompound = isa<CompoundStmt>(*i) ? *i : ParentCompoundStmt;
2547    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack,
2548                             *i, CurCompound);
2549  }
2550
2551  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2552    ScopeStack.pop_back();
2553  }
2554}
2555
2556void Sema::RecursiveCalcJumpScopes(llvm::DenseMap<Stmt*, void*>& LabelScopeMap,
2557                                   llvm::DenseMap<void*, Stmt*>& PopScopeMap,
2558                                   llvm::DenseMap<Stmt*, void*>& GotoScopeMap,
2559                                   std::vector<void*>& ScopeStack,
2560                                   Stmt* CurStmt) {
2561  for (Stmt::child_iterator i = CurStmt->child_begin();
2562       i != CurStmt->child_end(); ++i) {
2563    if (!*i) continue;
2564    if (StatementCreatesScope(*i))  {
2565      ScopeStack.push_back(*i);
2566    } else if (GotoStmt* GS = dyn_cast<GotoStmt>(*i)) {
2567      void* LScope = LabelScopeMap[GS->getLabel()];
2568      if (LScope) {
2569        bool foundScopeInStack = false;
2570        for (unsigned i = ScopeStack.size(); i > 0; --i) {
2571          if (LScope == ScopeStack[i-1]) {
2572            foundScopeInStack = true;
2573            break;
2574          }
2575        }
2576        if (!foundScopeInStack) {
2577          Diag(GS->getSourceRange().getBegin(), diag::err_goto_into_scope);
2578        }
2579      }
2580    }
2581    if (isa<DeclStmt>(*i)) continue;
2582    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap,
2583                            ScopeStack, *i);
2584  }
2585
2586  while (ScopeStack.size() && PopScopeMap[ScopeStack.back()] == CurStmt) {
2587    ScopeStack.pop_back();
2588  }
2589}
2590
2591Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2592  Decl *dcl = static_cast<Decl *>(D);
2593  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2594  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2595    FD->setBody(Body);
2596    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2597  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2598    assert(MD == getCurMethodDecl() && "Method parsing confused");
2599    MD->setBody((Stmt*)Body);
2600  } else {
2601    Body->Destroy(Context);
2602    return 0;
2603  }
2604  PopDeclContext();
2605
2606  // FIXME: Temporary hack to workaround nested C++ functions. For example:
2607  // class C2 {
2608  //   void f() {
2609  //     class LC1 {
2610  //       int m() { return 1; }
2611  //     };
2612  //   }
2613  // };
2614  if (ActiveScope == 0)
2615    return D;
2616
2617  // Verify and clean out per-function state.
2618
2619  bool HaveLabels = !ActiveScope->LabelMap.empty();
2620  // Check goto/label use.
2621  for (Scope::LabelMapTy::iterator I = ActiveScope->LabelMap.begin(),
2622       E = ActiveScope->LabelMap.end(); I != E; ++I) {
2623    // Verify that we have no forward references left.  If so, there was a goto
2624    // or address of a label taken, but no definition of it.  Label fwd
2625    // definitions are indicated with a null substmt.
2626    LabelStmt *L = static_cast<LabelStmt*>(I->second);
2627    if (L->getSubStmt() == 0) {
2628      // Emit error.
2629      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2630
2631      // At this point, we have gotos that use the bogus label.  Stitch it into
2632      // the function body so that they aren't leaked and that the AST is well
2633      // formed.
2634      if (Body) {
2635#if 0
2636        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2637        // and the AST is malformed anyway.  We should just blow away 'L'.
2638        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2639        cast<CompoundStmt>(Body)->push_back(L);
2640#else
2641        L->Destroy(Context);
2642#endif
2643      } else {
2644        // The whole function wasn't parsed correctly, just delete this.
2645        L->Destroy(Context);
2646      }
2647    }
2648  }
2649  // This reset is for both functions and methods.
2650  ActiveScope = 0;
2651
2652  if (!Body) return D;
2653
2654  if (HaveLabels) {
2655    llvm::DenseMap<Stmt*, void*> LabelScopeMap;
2656    llvm::DenseMap<void*, Stmt*> PopScopeMap;
2657    llvm::DenseMap<Stmt*, void*> GotoScopeMap;
2658    std::vector<void*> ScopeStack;
2659    RecursiveCalcLabelScopes(LabelScopeMap, PopScopeMap, ScopeStack, Body, Body);
2660    RecursiveCalcJumpScopes(LabelScopeMap, PopScopeMap, GotoScopeMap, ScopeStack, Body);
2661  }
2662
2663  return D;
2664}
2665
2666/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2667/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2668NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2669                                          IdentifierInfo &II, Scope *S) {
2670  // Before we produce a declaration for an implicitly defined
2671  // function, see whether there was a locally-scoped declaration of
2672  // this name as a function or variable. If so, use that
2673  // (non-visible) declaration, and complain about it.
2674  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2675    = LocallyScopedExternalDecls.find(&II);
2676  if (Pos != LocallyScopedExternalDecls.end()) {
2677    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
2678    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
2679    return Pos->second;
2680  }
2681
2682  // Extension in C99.  Legal in C90, but warn about it.
2683  if (getLangOptions().C99)
2684    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2685  else
2686    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2687
2688  // FIXME: handle stuff like:
2689  // void foo() { extern float X(); }
2690  // void bar() { X(); }  <-- implicit decl for X in another scope.
2691
2692  // Set a Declarator for the implicit definition: int foo();
2693  const char *Dummy;
2694  DeclSpec DS;
2695  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2696  Error = Error; // Silence warning.
2697  assert(!Error && "Error setting up implicit decl!");
2698  Declarator D(DS, Declarator::BlockContext);
2699  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(),
2700                                             0, 0, 0, Loc, D),
2701                SourceLocation());
2702  D.SetIdentifier(&II, Loc);
2703
2704  // Insert this function into translation-unit scope.
2705
2706  DeclContext *PrevDC = CurContext;
2707  CurContext = Context.getTranslationUnitDecl();
2708
2709  FunctionDecl *FD =
2710    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2711  FD->setImplicit();
2712
2713  CurContext = PrevDC;
2714
2715  AddKnownFunctionAttributes(FD);
2716
2717  return FD;
2718}
2719
2720/// \brief Adds any function attributes that we know a priori based on
2721/// the declaration of this function.
2722///
2723/// These attributes can apply both to implicitly-declared builtins
2724/// (like __builtin___printf_chk) or to library-declared functions
2725/// like NSLog or printf.
2726void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2727  if (FD->isInvalidDecl())
2728    return;
2729
2730  // If this is a built-in function, map its builtin attributes to
2731  // actual attributes.
2732  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2733    // Handle printf-formatting attributes.
2734    unsigned FormatIdx;
2735    bool HasVAListArg;
2736    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2737      if (!FD->getAttr<FormatAttr>())
2738        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
2739                                               FormatIdx + 2));
2740    }
2741
2742    // Mark const if we don't care about errno and that is the only
2743    // thing preventing the function from being const. This allows
2744    // IRgen to use LLVM intrinsics for such functions.
2745    if (!getLangOptions().MathErrno &&
2746        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
2747      if (!FD->getAttr<ConstAttr>())
2748        FD->addAttr(::new (Context) ConstAttr());
2749    }
2750  }
2751
2752  IdentifierInfo *Name = FD->getIdentifier();
2753  if (!Name)
2754    return;
2755  if ((!getLangOptions().CPlusPlus &&
2756       FD->getDeclContext()->isTranslationUnit()) ||
2757      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2758       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2759       LinkageSpecDecl::lang_c)) {
2760    // Okay: this could be a libc/libm/Objective-C function we know
2761    // about.
2762  } else
2763    return;
2764
2765  unsigned KnownID;
2766  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2767    if (KnownFunctionIDs[KnownID] == Name)
2768      break;
2769
2770  switch (KnownID) {
2771  case id_NSLog:
2772  case id_NSLogv:
2773    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2774      // FIXME: We known better than our headers.
2775      const_cast<FormatAttr *>(Format)->setType("printf");
2776    } else
2777      FD->addAttr(::new (Context) FormatAttr("printf", 1, 2));
2778    break;
2779
2780  case id_asprintf:
2781  case id_vasprintf:
2782    if (!FD->getAttr<FormatAttr>())
2783      FD->addAttr(::new (Context) FormatAttr("printf", 2, 3));
2784    break;
2785
2786  default:
2787    // Unknown function or known function without any attributes to
2788    // add. Do nothing.
2789    break;
2790  }
2791}
2792
2793TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2794                                    Decl *LastDeclarator) {
2795  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2796  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2797
2798  // Scope manipulation handled by caller.
2799  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2800                                           D.getIdentifierLoc(),
2801                                           D.getIdentifier(),
2802                                           T);
2803  NewTD->setNextDeclarator(LastDeclarator);
2804  if (D.getInvalidType())
2805    NewTD->setInvalidDecl();
2806  return NewTD;
2807}
2808
2809/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2810/// former case, Name will be non-null.  In the later case, Name will be null.
2811/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2812/// reference/declaration/definition of a tag.
2813Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2814                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2815                             IdentifierInfo *Name, SourceLocation NameLoc,
2816                             AttributeList *Attr) {
2817  // If this is not a definition, it must have a name.
2818  assert((Name != 0 || TK == TK_Definition) &&
2819         "Nameless record must be a definition!");
2820
2821  TagDecl::TagKind Kind;
2822  switch (TagSpec) {
2823  default: assert(0 && "Unknown tag type!");
2824  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2825  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2826  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2827  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2828  }
2829
2830  DeclContext *SearchDC = CurContext;
2831  DeclContext *DC = CurContext;
2832  NamedDecl *PrevDecl = 0;
2833
2834  bool Invalid = false;
2835
2836  if (Name && SS.isNotEmpty()) {
2837    // We have a nested-name tag ('struct foo::bar').
2838
2839    // Check for invalid 'foo::'.
2840    if (SS.isInvalid()) {
2841      Name = 0;
2842      goto CreateNewDecl;
2843    }
2844
2845    DC = static_cast<DeclContext*>(SS.getScopeRep());
2846    SearchDC = DC;
2847    // Look-up name inside 'foo::'.
2848    PrevDecl = dyn_cast_or_null<TagDecl>(
2849                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
2850
2851    // A tag 'foo::bar' must already exist.
2852    if (PrevDecl == 0) {
2853      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2854      Name = 0;
2855      goto CreateNewDecl;
2856    }
2857  } else if (Name) {
2858    // If this is a named struct, check to see if there was a previous forward
2859    // declaration or definition.
2860    // FIXME: We're looking into outer scopes here, even when we
2861    // shouldn't be. Doing so can result in ambiguities that we
2862    // shouldn't be diagnosing.
2863    LookupResult R = LookupName(S, Name, LookupTagName,
2864                                /*RedeclarationOnly=*/(TK != TK_Reference));
2865    if (R.isAmbiguous()) {
2866      DiagnoseAmbiguousLookup(R, Name, NameLoc);
2867      // FIXME: This is not best way to recover from case like:
2868      //
2869      // struct S s;
2870      //
2871      // causes needless err_ovl_no_viable_function_in_init latter.
2872      Name = 0;
2873      PrevDecl = 0;
2874      Invalid = true;
2875    }
2876    else
2877      PrevDecl = R;
2878
2879    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2880      // FIXME: This makes sure that we ignore the contexts associated
2881      // with C structs, unions, and enums when looking for a matching
2882      // tag declaration or definition. See the similar lookup tweak
2883      // in Sema::LookupName; is there a better way to deal with this?
2884      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2885        SearchDC = SearchDC->getParent();
2886    }
2887  }
2888
2889  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2890    // Maybe we will complain about the shadowed template parameter.
2891    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2892    // Just pretend that we didn't see the previous declaration.
2893    PrevDecl = 0;
2894  }
2895
2896  if (PrevDecl) {
2897    // Check whether the previous declaration is usable.
2898    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
2899
2900    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2901      // If this is a use of a previous tag, or if the tag is already declared
2902      // in the same scope (so that the definition/declaration completes or
2903      // rementions the tag), reuse the decl.
2904      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2905        // Make sure that this wasn't declared as an enum and now used as a
2906        // struct or something similar.
2907        if (PrevTagDecl->getTagKind() != Kind) {
2908          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2909          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2910          // Recover by making this an anonymous redefinition.
2911          Name = 0;
2912          PrevDecl = 0;
2913          Invalid = true;
2914        } else {
2915          // If this is a use, just return the declaration we found.
2916
2917          // FIXME: In the future, return a variant or some other clue
2918          // for the consumer of this Decl to know it doesn't own it.
2919          // For our current ASTs this shouldn't be a problem, but will
2920          // need to be changed with DeclGroups.
2921          if (TK == TK_Reference)
2922            return PrevDecl;
2923
2924          // Diagnose attempts to redefine a tag.
2925          if (TK == TK_Definition) {
2926            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2927              Diag(NameLoc, diag::err_redefinition) << Name;
2928              Diag(Def->getLocation(), diag::note_previous_definition);
2929              // If this is a redefinition, recover by making this
2930              // struct be anonymous, which will make any later
2931              // references get the previous definition.
2932              Name = 0;
2933              PrevDecl = 0;
2934              Invalid = true;
2935            } else {
2936              // If the type is currently being defined, complain
2937              // about a nested redefinition.
2938              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
2939              if (Tag->isBeingDefined()) {
2940                Diag(NameLoc, diag::err_nested_redefinition) << Name;
2941                Diag(PrevTagDecl->getLocation(),
2942                     diag::note_previous_definition);
2943                Name = 0;
2944                PrevDecl = 0;
2945                Invalid = true;
2946              }
2947            }
2948
2949            // Okay, this is definition of a previously declared or referenced
2950            // tag PrevDecl. We're going to create a new Decl for it.
2951          }
2952        }
2953        // If we get here we have (another) forward declaration or we
2954        // have a definition.  Just create a new decl.
2955      } else {
2956        // If we get here, this is a definition of a new tag type in a nested
2957        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2958        // new decl/type.  We set PrevDecl to NULL so that the entities
2959        // have distinct types.
2960        PrevDecl = 0;
2961      }
2962      // If we get here, we're going to create a new Decl. If PrevDecl
2963      // is non-NULL, it's a definition of the tag declared by
2964      // PrevDecl. If it's NULL, we have a new definition.
2965    } else {
2966      // PrevDecl is a namespace, template, or anything else
2967      // that lives in the IDNS_Tag identifier namespace.
2968      if (isDeclInScope(PrevDecl, SearchDC, S)) {
2969        // The tag name clashes with a namespace name, issue an error and
2970        // recover by making this tag be anonymous.
2971        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2972        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2973        Name = 0;
2974        PrevDecl = 0;
2975        Invalid = true;
2976      } else {
2977        // The existing declaration isn't relevant to us; we're in a
2978        // new scope, so clear out the previous declaration.
2979        PrevDecl = 0;
2980      }
2981    }
2982  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
2983             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
2984    // C.scope.pdecl]p5:
2985    //   -- for an elaborated-type-specifier of the form
2986    //
2987    //          class-key identifier
2988    //
2989    //      if the elaborated-type-specifier is used in the
2990    //      decl-specifier-seq or parameter-declaration-clause of a
2991    //      function defined in namespace scope, the identifier is
2992    //      declared as a class-name in the namespace that contains
2993    //      the declaration; otherwise, except as a friend
2994    //      declaration, the identifier is declared in the smallest
2995    //      non-class, non-function-prototype scope that contains the
2996    //      declaration.
2997    //
2998    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
2999    // C structs and unions.
3000    //
3001    // GNU C also supports this behavior as part of its incomplete
3002    // enum types extension, while GNU C++ does not.
3003    //
3004    // Find the context where we'll be declaring the tag.
3005    // FIXME: We would like to maintain the current DeclContext as the
3006    // lexical context,
3007    while (SearchDC->isRecord())
3008      SearchDC = SearchDC->getParent();
3009
3010    // Find the scope where we'll be declaring the tag.
3011    while (S->isClassScope() ||
3012           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3013           ((S->getFlags() & Scope::DeclScope) == 0) ||
3014           (S->getEntity() &&
3015            ((DeclContext *)S->getEntity())->isTransparentContext()))
3016      S = S->getParent();
3017  }
3018
3019CreateNewDecl:
3020
3021  // If there is an identifier, use the location of the identifier as the
3022  // location of the decl, otherwise use the location of the struct/union
3023  // keyword.
3024  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3025
3026  // Otherwise, create a new declaration. If there is a previous
3027  // declaration of the same entity, the two will be linked via
3028  // PrevDecl.
3029  TagDecl *New;
3030
3031  if (Kind == TagDecl::TK_enum) {
3032    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3033    // enum X { A, B, C } D;    D should chain to X.
3034    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3035                           cast_or_null<EnumDecl>(PrevDecl));
3036    // If this is an undefined enum, warn.
3037    if (TK != TK_Definition && !Invalid)  {
3038      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3039                                              : diag::ext_forward_ref_enum;
3040      Diag(Loc, DK);
3041    }
3042  } else {
3043    // struct/union/class
3044
3045    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3046    // struct X { int A; } D;    D should chain to X.
3047    if (getLangOptions().CPlusPlus)
3048      // FIXME: Look for a way to use RecordDecl for simple structs.
3049      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3050                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3051    else
3052      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3053                               cast_or_null<RecordDecl>(PrevDecl));
3054  }
3055
3056  if (Kind != TagDecl::TK_enum) {
3057    // Handle #pragma pack: if the #pragma pack stack has non-default
3058    // alignment, make up a packed attribute for this decl. These
3059    // attributes are checked when the ASTContext lays out the
3060    // structure.
3061    //
3062    // It is important for implementing the correct semantics that this
3063    // happen here (in act on tag decl). The #pragma pack stack is
3064    // maintained as a result of parser callbacks which can occur at
3065    // many points during the parsing of a struct declaration (because
3066    // the #pragma tokens are effectively skipped over during the
3067    // parsing of the struct).
3068    if (unsigned Alignment = getPragmaPackAlignment())
3069      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3070  }
3071
3072  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3073    // C++ [dcl.typedef]p3:
3074    //   [...] Similarly, in a given scope, a class or enumeration
3075    //   shall not be declared with the same name as a typedef-name
3076    //   that is declared in that scope and refers to a type other
3077    //   than the class or enumeration itself.
3078    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3079    TypedefDecl *PrevTypedef = 0;
3080    if (Lookup.getKind() == LookupResult::Found)
3081      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3082
3083    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3084        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3085          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3086      Diag(Loc, diag::err_tag_definition_of_typedef)
3087        << Context.getTypeDeclType(New)
3088        << PrevTypedef->getUnderlyingType();
3089      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3090      Invalid = true;
3091    }
3092  }
3093
3094  if (Invalid)
3095    New->setInvalidDecl();
3096
3097  if (Attr)
3098    ProcessDeclAttributeList(New, Attr);
3099
3100  // If we're declaring or defining a tag in function prototype scope
3101  // in C, note that this type can only be used within the function.
3102  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3103    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3104
3105  // Set the lexical context. If the tag has a C++ scope specifier, the
3106  // lexical context will be different from the semantic context.
3107  New->setLexicalDeclContext(CurContext);
3108
3109  if (TK == TK_Definition)
3110    New->startDefinition();
3111
3112  // If this has an identifier, add it to the scope stack.
3113  if (Name) {
3114    S = getNonFieldDeclScope(S);
3115    PushOnScopeChains(New, S);
3116  } else {
3117    CurContext->addDecl(New);
3118  }
3119
3120  return New;
3121}
3122
3123void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3124  AdjustDeclIfTemplate(TagD);
3125  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3126
3127  // Enter the tag context.
3128  PushDeclContext(S, Tag);
3129
3130  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3131    FieldCollector->StartClass();
3132
3133    if (Record->getIdentifier()) {
3134      // C++ [class]p2:
3135      //   [...] The class-name is also inserted into the scope of the
3136      //   class itself; this is known as the injected-class-name. For
3137      //   purposes of access checking, the injected-class-name is treated
3138      //   as if it were a public member name.
3139      RecordDecl *InjectedClassName
3140        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3141                                CurContext, Record->getLocation(),
3142                                Record->getIdentifier(), Record);
3143      InjectedClassName->setImplicit();
3144      PushOnScopeChains(InjectedClassName, S);
3145    }
3146  }
3147}
3148
3149void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3150  AdjustDeclIfTemplate(TagD);
3151  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3152
3153  if (isa<CXXRecordDecl>(Tag))
3154    FieldCollector->FinishClass();
3155
3156  // Exit this scope of this tag's definition.
3157  PopDeclContext();
3158
3159  // Notify the consumer that we've defined a tag.
3160  Consumer.HandleTagDeclDefinition(Tag);
3161}
3162
3163bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3164                          QualType FieldTy, const Expr *BitWidth) {
3165  // C99 6.7.2.1p4 - verify the field type.
3166  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3167  if (!FieldTy->isIntegralType()) {
3168    // Handle incomplete types with specific error.
3169    if (FieldTy->isIncompleteType())
3170      return Diag(FieldLoc, diag::err_field_incomplete)
3171        << FieldTy << BitWidth->getSourceRange();
3172    return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3173      << FieldName << BitWidth->getSourceRange();
3174  }
3175
3176  llvm::APSInt Value;
3177  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3178    return true;
3179
3180  // Zero-width bitfield is ok for anonymous field.
3181  if (Value == 0 && FieldName)
3182    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3183
3184  if (Value.isNegative())
3185    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3186
3187  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3188  // FIXME: We won't need the 0 size once we check that the field type is valid.
3189  if (TypeSize && Value.getZExtValue() > TypeSize)
3190    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3191       << FieldName << (unsigned)TypeSize;
3192
3193  return false;
3194}
3195
3196/// ActOnField - Each field of a struct/union/class is passed into this in order
3197/// to create a FieldDecl object for it.
3198Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3199                               SourceLocation DeclStart,
3200                               Declarator &D, ExprTy *BitfieldWidth) {
3201  return HandleField(S, static_cast<RecordDecl*>(TagD), DeclStart, D,
3202                     static_cast<Expr*>(BitfieldWidth));
3203}
3204
3205/// HandleField - Analyze a field of a C struct or a C++ data member.
3206///
3207FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3208                             SourceLocation DeclStart,
3209                             Declarator &D, Expr *BitWidth) {
3210  IdentifierInfo *II = D.getIdentifier();
3211  SourceLocation Loc = DeclStart;
3212  if (II) Loc = D.getIdentifierLoc();
3213
3214  QualType T = GetTypeForDeclarator(D, S);
3215  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3216  bool InvalidDecl = false;
3217
3218  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3219  // than a variably modified type.
3220  if (T->isVariablyModifiedType()) {
3221    bool SizeIsNegative;
3222    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3223                                                           SizeIsNegative);
3224    if (!FixedTy.isNull()) {
3225      Diag(Loc, diag::warn_illegal_constant_array_size);
3226      T = FixedTy;
3227    } else {
3228      if (SizeIsNegative)
3229        Diag(Loc, diag::err_typecheck_negative_array_size);
3230      else
3231        Diag(Loc, diag::err_typecheck_field_variable_size);
3232      T = Context.IntTy;
3233      InvalidDecl = true;
3234    }
3235  }
3236
3237  if (BitWidth) {
3238    if (VerifyBitField(Loc, II, T, BitWidth)) {
3239      InvalidDecl = true;
3240      DeleteExpr(BitWidth);
3241      BitWidth = 0;
3242    }
3243  } else {
3244    // Not a bitfield.
3245
3246    // validate II.
3247
3248  }
3249
3250  FieldDecl *NewFD = FieldDecl::Create(Context, Record,
3251                                       Loc, II, T, BitWidth,
3252                                       D.getDeclSpec().getStorageClassSpec() ==
3253                                       DeclSpec::SCS_mutable);
3254
3255  if (II) {
3256    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3257    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3258        && !isa<TagDecl>(PrevDecl)) {
3259      Diag(Loc, diag::err_duplicate_member) << II;
3260      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3261      NewFD->setInvalidDecl();
3262      Record->setInvalidDecl();
3263    }
3264  }
3265
3266  if (getLangOptions().CPlusPlus) {
3267    CheckExtraCXXDefaultArguments(D);
3268    if (!T->isPODType())
3269      cast<CXXRecordDecl>(Record)->setPOD(false);
3270  }
3271
3272  ProcessDeclAttributes(NewFD, D);
3273  if (T.isObjCGCWeak())
3274    Diag(Loc, diag::warn_attribute_weak_on_field);
3275
3276  if (D.getInvalidType() || InvalidDecl)
3277    NewFD->setInvalidDecl();
3278
3279  if (II) {
3280    PushOnScopeChains(NewFD, S);
3281  } else
3282    Record->addDecl(NewFD);
3283
3284  return NewFD;
3285}
3286
3287/// TranslateIvarVisibility - Translate visibility from a token ID to an
3288///  AST enum value.
3289static ObjCIvarDecl::AccessControl
3290TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3291  switch (ivarVisibility) {
3292  default: assert(0 && "Unknown visitibility kind");
3293  case tok::objc_private: return ObjCIvarDecl::Private;
3294  case tok::objc_public: return ObjCIvarDecl::Public;
3295  case tok::objc_protected: return ObjCIvarDecl::Protected;
3296  case tok::objc_package: return ObjCIvarDecl::Package;
3297  }
3298}
3299
3300/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3301/// in order to create an IvarDecl object for it.
3302Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3303                              SourceLocation DeclStart,
3304                              Declarator &D, ExprTy *BitfieldWidth,
3305                              tok::ObjCKeywordKind Visibility) {
3306
3307  IdentifierInfo *II = D.getIdentifier();
3308  Expr *BitWidth = (Expr*)BitfieldWidth;
3309  SourceLocation Loc = DeclStart;
3310  if (II) Loc = D.getIdentifierLoc();
3311
3312  // FIXME: Unnamed fields can be handled in various different ways, for
3313  // example, unnamed unions inject all members into the struct namespace!
3314
3315  QualType T = GetTypeForDeclarator(D, S);
3316  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3317  bool InvalidDecl = false;
3318
3319  if (BitWidth) {
3320    // 6.7.2.1p3, 6.7.2.1p4
3321    if (VerifyBitField(Loc, II, T, BitWidth)) {
3322      InvalidDecl = true;
3323      DeleteExpr(BitWidth);
3324      BitWidth = 0;
3325    }
3326  } else {
3327    // Not a bitfield.
3328
3329    // validate II.
3330
3331  }
3332
3333  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3334  // than a variably modified type.
3335  if (T->isVariablyModifiedType()) {
3336    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3337    InvalidDecl = true;
3338  }
3339
3340  // Get the visibility (access control) for this ivar.
3341  ObjCIvarDecl::AccessControl ac =
3342    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3343                                        : ObjCIvarDecl::None;
3344
3345  // Construct the decl.
3346  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, CurContext, Loc, II, T,ac,
3347                                             (Expr *)BitfieldWidth);
3348
3349  if (II) {
3350    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3351    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3352        && !isa<TagDecl>(PrevDecl)) {
3353      Diag(Loc, diag::err_duplicate_member) << II;
3354      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3355      NewID->setInvalidDecl();
3356    }
3357  }
3358
3359  // Process attributes attached to the ivar.
3360  ProcessDeclAttributes(NewID, D);
3361
3362  if (D.getInvalidType() || InvalidDecl)
3363    NewID->setInvalidDecl();
3364
3365  if (II) {
3366    // FIXME: When interfaces are DeclContexts, we'll need to add
3367    // these to the interface.
3368    S->AddDecl(NewID);
3369    IdResolver.AddDecl(NewID);
3370  }
3371
3372  return NewID;
3373}
3374
3375void Sema::ActOnFields(Scope* S,
3376                       SourceLocation RecLoc, DeclTy *RecDecl,
3377                       DeclTy **Fields, unsigned NumFields,
3378                       SourceLocation LBrac, SourceLocation RBrac,
3379                       AttributeList *Attr) {
3380  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3381  assert(EnclosingDecl && "missing record or interface decl");
3382
3383  // If the decl this is being inserted into is invalid, then it may be a
3384  // redeclaration or some other bogus case.  Don't try to add fields to it.
3385  if (EnclosingDecl->isInvalidDecl()) {
3386    // FIXME: Deallocate fields?
3387    return;
3388  }
3389
3390
3391  // Verify that all the fields are okay.
3392  unsigned NumNamedMembers = 0;
3393  llvm::SmallVector<FieldDecl*, 32> RecFields;
3394
3395  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3396  for (unsigned i = 0; i != NumFields; ++i) {
3397    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3398    assert(FD && "missing field decl");
3399
3400    // Get the type for the field.
3401    Type *FDTy = FD->getType().getTypePtr();
3402
3403    if (!FD->isAnonymousStructOrUnion()) {
3404      // Remember all fields written by the user.
3405      RecFields.push_back(FD);
3406    }
3407
3408    // If the field is already invalid for some reason, don't emit more
3409    // diagnostics about it.
3410    if (FD->isInvalidDecl())
3411      continue;
3412
3413    // C99 6.7.2.1p2 - A field may not be a function type.
3414    if (FDTy->isFunctionType()) {
3415      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3416        << FD->getDeclName();
3417      FD->setInvalidDecl();
3418      EnclosingDecl->setInvalidDecl();
3419      continue;
3420    }
3421    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3422    if (FDTy->isIncompleteType()) {
3423      if (!Record) {  // Incomplete ivar type is always an error.
3424        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3425                               diag::err_field_incomplete);
3426        FD->setInvalidDecl();
3427        EnclosingDecl->setInvalidDecl();
3428        continue;
3429      }
3430      if (i != NumFields-1 ||                   // ... that the last member ...
3431          !Record->isStruct() ||  // ... of a structure ...
3432          !FDTy->isArrayType()) {         //... may have incomplete array type.
3433        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3434                               diag::err_field_incomplete);
3435        FD->setInvalidDecl();
3436        EnclosingDecl->setInvalidDecl();
3437        continue;
3438      }
3439      if (NumNamedMembers < 1) {  //... must have more than named member ...
3440        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3441          << FD->getDeclName();
3442        FD->setInvalidDecl();
3443        EnclosingDecl->setInvalidDecl();
3444        continue;
3445      }
3446      // Okay, we have a legal flexible array member at the end of the struct.
3447      if (Record)
3448        Record->setHasFlexibleArrayMember(true);
3449    }
3450    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3451    /// field of another structure or the element of an array.
3452    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3453      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3454        // If this is a member of a union, then entire union becomes "flexible".
3455        if (Record && Record->isUnion()) {
3456          Record->setHasFlexibleArrayMember(true);
3457        } else {
3458          // If this is a struct/class and this is not the last element, reject
3459          // it.  Note that GCC supports variable sized arrays in the middle of
3460          // structures.
3461          if (i != NumFields-1) {
3462            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3463              << FD->getDeclName();
3464            FD->setInvalidDecl();
3465            EnclosingDecl->setInvalidDecl();
3466            continue;
3467          }
3468          // We support flexible arrays at the end of structs in other structs
3469          // as an extension.
3470          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3471            << FD->getDeclName();
3472          if (Record)
3473            Record->setHasFlexibleArrayMember(true);
3474        }
3475      }
3476    }
3477    /// A field cannot be an Objective-c object
3478    if (FDTy->isObjCInterfaceType()) {
3479      Diag(FD->getLocation(), diag::err_statically_allocated_object);
3480      FD->setInvalidDecl();
3481      EnclosingDecl->setInvalidDecl();
3482      continue;
3483    }
3484    // Keep track of the number of named members.
3485    if (FD->getIdentifier())
3486      ++NumNamedMembers;
3487  }
3488
3489  // Okay, we successfully defined 'Record'.
3490  if (Record) {
3491    Record->completeDefinition(Context);
3492  } else {
3493    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3494    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3495      ID->setIVarList(ClsFields, RecFields.size(), Context);
3496      ID->setLocEnd(RBrac);
3497
3498      // Must enforce the rule that ivars in the base classes may not be
3499      // duplicates.
3500      if (ID->getSuperClass()) {
3501        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3502             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3503          ObjCIvarDecl* Ivar = (*IVI);
3504          IdentifierInfo *II = Ivar->getIdentifier();
3505          ObjCIvarDecl* prevIvar =
3506            ID->getSuperClass()->lookupInstanceVariable(II);
3507          if (prevIvar) {
3508            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3509            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3510          }
3511        }
3512      }
3513    } else if (ObjCImplementationDecl *IMPDecl =
3514                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3515      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3516      IMPDecl->setIVarList(ClsFields, RecFields.size(), Context);
3517      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3518    }
3519  }
3520
3521  if (Attr)
3522    ProcessDeclAttributeList(Record, Attr);
3523}
3524
3525Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3526                                      DeclTy *lastEnumConst,
3527                                      SourceLocation IdLoc, IdentifierInfo *Id,
3528                                      SourceLocation EqualLoc, ExprTy *val) {
3529  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3530  EnumConstantDecl *LastEnumConst =
3531    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3532  Expr *Val = static_cast<Expr*>(val);
3533
3534  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3535  // we find one that is.
3536  S = getNonFieldDeclScope(S);
3537
3538  // Verify that there isn't already something declared with this name in this
3539  // scope.
3540  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3541  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3542    // Maybe we will complain about the shadowed template parameter.
3543    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3544    // Just pretend that we didn't see the previous declaration.
3545    PrevDecl = 0;
3546  }
3547
3548  if (PrevDecl) {
3549    // When in C++, we may get a TagDecl with the same name; in this case the
3550    // enum constant will 'hide' the tag.
3551    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3552           "Received TagDecl when not in C++!");
3553    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3554      if (isa<EnumConstantDecl>(PrevDecl))
3555        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3556      else
3557        Diag(IdLoc, diag::err_redefinition) << Id;
3558      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3559      if (Val) Val->Destroy(Context);
3560      return 0;
3561    }
3562  }
3563
3564  llvm::APSInt EnumVal(32);
3565  QualType EltTy;
3566  if (Val) {
3567    // Make sure to promote the operand type to int.
3568    UsualUnaryConversions(Val);
3569
3570    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3571    SourceLocation ExpLoc;
3572    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3573      Val->Destroy(Context);
3574      Val = 0;  // Just forget about it.
3575    } else {
3576      EltTy = Val->getType();
3577    }
3578  }
3579
3580  if (!Val) {
3581    if (LastEnumConst) {
3582      // Assign the last value + 1.
3583      EnumVal = LastEnumConst->getInitVal();
3584      ++EnumVal;
3585
3586      // Check for overflow on increment.
3587      if (EnumVal < LastEnumConst->getInitVal())
3588        Diag(IdLoc, diag::warn_enum_value_overflow);
3589
3590      EltTy = LastEnumConst->getType();
3591    } else {
3592      // First value, set to zero.
3593      EltTy = Context.IntTy;
3594      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3595    }
3596  }
3597
3598  EnumConstantDecl *New =
3599    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3600                             Val, EnumVal);
3601
3602  // Register this decl in the current scope stack.
3603  PushOnScopeChains(New, S);
3604
3605  return New;
3606}
3607
3608// FIXME: For consistency with ActOnFields(), we should have the parser
3609// pass in the source location for the left/right braces.
3610void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3611                         DeclTy **Elements, unsigned NumElements) {
3612  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3613  QualType EnumType = Context.getTypeDeclType(Enum);
3614
3615  // TODO: If the result value doesn't fit in an int, it must be a long or long
3616  // long value.  ISO C does not support this, but GCC does as an extension,
3617  // emit a warning.
3618  unsigned IntWidth = Context.Target.getIntWidth();
3619
3620  // Verify that all the values are okay, compute the size of the values, and
3621  // reverse the list.
3622  unsigned NumNegativeBits = 0;
3623  unsigned NumPositiveBits = 0;
3624
3625  // Keep track of whether all elements have type int.
3626  bool AllElementsInt = true;
3627
3628  for (unsigned i = 0; i != NumElements; ++i) {
3629    EnumConstantDecl *ECD =
3630      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3631    if (!ECD) continue;  // Already issued a diagnostic.
3632
3633    // If the enum value doesn't fit in an int, emit an extension warning.
3634    const llvm::APSInt &InitVal = ECD->getInitVal();
3635    assert(InitVal.getBitWidth() >= IntWidth &&
3636           "Should have promoted value to int");
3637    if (InitVal.getBitWidth() > IntWidth) {
3638      llvm::APSInt V(InitVal);
3639      V.trunc(IntWidth);
3640      V.extend(InitVal.getBitWidth());
3641      if (V != InitVal)
3642        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3643          << InitVal.toString(10);
3644    }
3645
3646    // Keep track of the size of positive and negative values.
3647    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3648      NumPositiveBits = std::max(NumPositiveBits,
3649                                 (unsigned)InitVal.getActiveBits());
3650    else
3651      NumNegativeBits = std::max(NumNegativeBits,
3652                                 (unsigned)InitVal.getMinSignedBits());
3653
3654    // Keep track of whether every enum element has type int (very commmon).
3655    if (AllElementsInt)
3656      AllElementsInt = ECD->getType() == Context.IntTy;
3657  }
3658
3659  // Figure out the type that should be used for this enum.
3660  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3661  QualType BestType;
3662  unsigned BestWidth;
3663
3664  if (NumNegativeBits) {
3665    // If there is a negative value, figure out the smallest integer type (of
3666    // int/long/longlong) that fits.
3667    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3668      BestType = Context.IntTy;
3669      BestWidth = IntWidth;
3670    } else {
3671      BestWidth = Context.Target.getLongWidth();
3672
3673      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3674        BestType = Context.LongTy;
3675      else {
3676        BestWidth = Context.Target.getLongLongWidth();
3677
3678        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3679          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3680        BestType = Context.LongLongTy;
3681      }
3682    }
3683  } else {
3684    // If there is no negative value, figure out which of uint, ulong, ulonglong
3685    // fits.
3686    if (NumPositiveBits <= IntWidth) {
3687      BestType = Context.UnsignedIntTy;
3688      BestWidth = IntWidth;
3689    } else if (NumPositiveBits <=
3690               (BestWidth = Context.Target.getLongWidth())) {
3691      BestType = Context.UnsignedLongTy;
3692    } else {
3693      BestWidth = Context.Target.getLongLongWidth();
3694      assert(NumPositiveBits <= BestWidth &&
3695             "How could an initializer get larger than ULL?");
3696      BestType = Context.UnsignedLongLongTy;
3697    }
3698  }
3699
3700  // Loop over all of the enumerator constants, changing their types to match
3701  // the type of the enum if needed.
3702  for (unsigned i = 0; i != NumElements; ++i) {
3703    EnumConstantDecl *ECD =
3704      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3705    if (!ECD) continue;  // Already issued a diagnostic.
3706
3707    // Standard C says the enumerators have int type, but we allow, as an
3708    // extension, the enumerators to be larger than int size.  If each
3709    // enumerator value fits in an int, type it as an int, otherwise type it the
3710    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3711    // that X has type 'int', not 'unsigned'.
3712    if (ECD->getType() == Context.IntTy) {
3713      // Make sure the init value is signed.
3714      llvm::APSInt IV = ECD->getInitVal();
3715      IV.setIsSigned(true);
3716      ECD->setInitVal(IV);
3717
3718      if (getLangOptions().CPlusPlus)
3719        // C++ [dcl.enum]p4: Following the closing brace of an
3720        // enum-specifier, each enumerator has the type of its
3721        // enumeration.
3722        ECD->setType(EnumType);
3723      continue;  // Already int type.
3724    }
3725
3726    // Determine whether the value fits into an int.
3727    llvm::APSInt InitVal = ECD->getInitVal();
3728    bool FitsInInt;
3729    if (InitVal.isUnsigned() || !InitVal.isNegative())
3730      FitsInInt = InitVal.getActiveBits() < IntWidth;
3731    else
3732      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3733
3734    // If it fits into an integer type, force it.  Otherwise force it to match
3735    // the enum decl type.
3736    QualType NewTy;
3737    unsigned NewWidth;
3738    bool NewSign;
3739    if (FitsInInt) {
3740      NewTy = Context.IntTy;
3741      NewWidth = IntWidth;
3742      NewSign = true;
3743    } else if (ECD->getType() == BestType) {
3744      // Already the right type!
3745      if (getLangOptions().CPlusPlus)
3746        // C++ [dcl.enum]p4: Following the closing brace of an
3747        // enum-specifier, each enumerator has the type of its
3748        // enumeration.
3749        ECD->setType(EnumType);
3750      continue;
3751    } else {
3752      NewTy = BestType;
3753      NewWidth = BestWidth;
3754      NewSign = BestType->isSignedIntegerType();
3755    }
3756
3757    // Adjust the APSInt value.
3758    InitVal.extOrTrunc(NewWidth);
3759    InitVal.setIsSigned(NewSign);
3760    ECD->setInitVal(InitVal);
3761
3762    // Adjust the Expr initializer and type.
3763    if (ECD->getInitExpr())
3764      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3765                                                      /*isLvalue=*/false));
3766    if (getLangOptions().CPlusPlus)
3767      // C++ [dcl.enum]p4: Following the closing brace of an
3768      // enum-specifier, each enumerator has the type of its
3769      // enumeration.
3770      ECD->setType(EnumType);
3771    else
3772      ECD->setType(NewTy);
3773  }
3774
3775  Enum->completeDefinition(Context, BestType);
3776}
3777
3778Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3779                                          ExprArg expr) {
3780  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3781
3782  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3783}
3784
3785