SemaDecl.cpp revision a2770ab2cfee53805ff603681317c425389356c2
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/ASTLambda.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/CharUnits.h"
21#include "clang/AST/CommentDiagnostic.h"
22#include "clang/AST/DeclCXX.h"
23#include "clang/AST/DeclObjC.h"
24#include "clang/AST/DeclTemplate.h"
25#include "clang/AST/EvaluatedExprVisitor.h"
26#include "clang/AST/ExprCXX.h"
27#include "clang/AST/StmtCXX.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Sema/CXXFieldCollector.h"
36#include "clang/Sema/DeclSpec.h"
37#include "clang/Sema/DelayedDiagnostic.h"
38#include "clang/Sema/Initialization.h"
39#include "clang/Sema/Lookup.h"
40#include "clang/Sema/ParsedTemplate.h"
41#include "clang/Sema/Scope.h"
42#include "clang/Sema/ScopeInfo.h"
43#include "llvm/ADT/SmallString.h"
44#include "llvm/ADT/Triple.h"
45#include <algorithm>
46#include <cstring>
47#include <functional>
48using namespace clang;
49using namespace sema;
50
51Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
52  if (OwnedType) {
53    Decl *Group[2] = { OwnedType, Ptr };
54    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
55  }
56
57  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
58}
59
60namespace {
61
62class TypeNameValidatorCCC : public CorrectionCandidateCallback {
63 public:
64  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
65      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
66    WantExpressionKeywords = false;
67    WantCXXNamedCasts = false;
68    WantRemainingKeywords = false;
69  }
70
71  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
72    if (NamedDecl *ND = candidate.getCorrectionDecl())
73      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
74          (AllowInvalidDecl || !ND->isInvalidDecl());
75    else
76      return !WantClassName && candidate.isKeyword();
77  }
78
79 private:
80  bool AllowInvalidDecl;
81  bool WantClassName;
82};
83
84}
85
86/// \brief Determine whether the token kind starts a simple-type-specifier.
87bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
88  switch (Kind) {
89  // FIXME: Take into account the current language when deciding whether a
90  // token kind is a valid type specifier
91  case tok::kw_short:
92  case tok::kw_long:
93  case tok::kw___int64:
94  case tok::kw___int128:
95  case tok::kw_signed:
96  case tok::kw_unsigned:
97  case tok::kw_void:
98  case tok::kw_char:
99  case tok::kw_int:
100  case tok::kw_half:
101  case tok::kw_float:
102  case tok::kw_double:
103  case tok::kw_wchar_t:
104  case tok::kw_bool:
105  case tok::kw___underlying_type:
106    return true;
107
108  case tok::annot_typename:
109  case tok::kw_char16_t:
110  case tok::kw_char32_t:
111  case tok::kw_typeof:
112  case tok::annot_decltype:
113  case tok::kw_decltype:
114    return getLangOpts().CPlusPlus;
115
116  default:
117    break;
118  }
119
120  return false;
121}
122
123/// \brief If the identifier refers to a type name within this scope,
124/// return the declaration of that type.
125///
126/// This routine performs ordinary name lookup of the identifier II
127/// within the given scope, with optional C++ scope specifier SS, to
128/// determine whether the name refers to a type. If so, returns an
129/// opaque pointer (actually a QualType) corresponding to that
130/// type. Otherwise, returns NULL.
131///
132/// If name lookup results in an ambiguity, this routine will complain
133/// and then return NULL.
134ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
135                             Scope *S, CXXScopeSpec *SS,
136                             bool isClassName, bool HasTrailingDot,
137                             ParsedType ObjectTypePtr,
138                             bool IsCtorOrDtorName,
139                             bool WantNontrivialTypeSourceInfo,
140                             IdentifierInfo **CorrectedII) {
141  // Determine where we will perform name lookup.
142  DeclContext *LookupCtx = 0;
143  if (ObjectTypePtr) {
144    QualType ObjectType = ObjectTypePtr.get();
145    if (ObjectType->isRecordType())
146      LookupCtx = computeDeclContext(ObjectType);
147  } else if (SS && SS->isNotEmpty()) {
148    LookupCtx = computeDeclContext(*SS, false);
149
150    if (!LookupCtx) {
151      if (isDependentScopeSpecifier(*SS)) {
152        // C++ [temp.res]p3:
153        //   A qualified-id that refers to a type and in which the
154        //   nested-name-specifier depends on a template-parameter (14.6.2)
155        //   shall be prefixed by the keyword typename to indicate that the
156        //   qualified-id denotes a type, forming an
157        //   elaborated-type-specifier (7.1.5.3).
158        //
159        // We therefore do not perform any name lookup if the result would
160        // refer to a member of an unknown specialization.
161        if (!isClassName && !IsCtorOrDtorName)
162          return ParsedType();
163
164        // We know from the grammar that this name refers to a type,
165        // so build a dependent node to describe the type.
166        if (WantNontrivialTypeSourceInfo)
167          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
168
169        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
170        QualType T =
171          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
172                            II, NameLoc);
173
174          return ParsedType::make(T);
175      }
176
177      return ParsedType();
178    }
179
180    if (!LookupCtx->isDependentContext() &&
181        RequireCompleteDeclContext(*SS, LookupCtx))
182      return ParsedType();
183  }
184
185  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
186  // lookup for class-names.
187  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
188                                      LookupOrdinaryName;
189  LookupResult Result(*this, &II, NameLoc, Kind);
190  if (LookupCtx) {
191    // Perform "qualified" name lookup into the declaration context we
192    // computed, which is either the type of the base of a member access
193    // expression or the declaration context associated with a prior
194    // nested-name-specifier.
195    LookupQualifiedName(Result, LookupCtx);
196
197    if (ObjectTypePtr && Result.empty()) {
198      // C++ [basic.lookup.classref]p3:
199      //   If the unqualified-id is ~type-name, the type-name is looked up
200      //   in the context of the entire postfix-expression. If the type T of
201      //   the object expression is of a class type C, the type-name is also
202      //   looked up in the scope of class C. At least one of the lookups shall
203      //   find a name that refers to (possibly cv-qualified) T.
204      LookupName(Result, S);
205    }
206  } else {
207    // Perform unqualified name lookup.
208    LookupName(Result, S);
209  }
210
211  NamedDecl *IIDecl = 0;
212  switch (Result.getResultKind()) {
213  case LookupResult::NotFound:
214  case LookupResult::NotFoundInCurrentInstantiation:
215    if (CorrectedII) {
216      TypeNameValidatorCCC Validator(true, isClassName);
217      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
218                                              Kind, S, SS, Validator);
219      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
220      TemplateTy Template;
221      bool MemberOfUnknownSpecialization;
222      UnqualifiedId TemplateName;
223      TemplateName.setIdentifier(NewII, NameLoc);
224      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
225      CXXScopeSpec NewSS, *NewSSPtr = SS;
226      if (SS && NNS) {
227        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
228        NewSSPtr = &NewSS;
229      }
230      if (Correction && (NNS || NewII != &II) &&
231          // Ignore a correction to a template type as the to-be-corrected
232          // identifier is not a template (typo correction for template names
233          // is handled elsewhere).
234          !(getLangOpts().CPlusPlus && NewSSPtr &&
235            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
236                           false, Template, MemberOfUnknownSpecialization))) {
237        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
238                                    isClassName, HasTrailingDot, ObjectTypePtr,
239                                    IsCtorOrDtorName,
240                                    WantNontrivialTypeSourceInfo);
241        if (Ty) {
242          diagnoseTypo(Correction,
243                       PDiag(diag::err_unknown_type_or_class_name_suggest)
244                         << Result.getLookupName() << isClassName);
245          if (SS && NNS)
246            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
247          *CorrectedII = NewII;
248          return Ty;
249        }
250      }
251    }
252    // If typo correction failed or was not performed, fall through
253  case LookupResult::FoundOverloaded:
254  case LookupResult::FoundUnresolvedValue:
255    Result.suppressDiagnostics();
256    return ParsedType();
257
258  case LookupResult::Ambiguous:
259    // Recover from type-hiding ambiguities by hiding the type.  We'll
260    // do the lookup again when looking for an object, and we can
261    // diagnose the error then.  If we don't do this, then the error
262    // about hiding the type will be immediately followed by an error
263    // that only makes sense if the identifier was treated like a type.
264    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
265      Result.suppressDiagnostics();
266      return ParsedType();
267    }
268
269    // Look to see if we have a type anywhere in the list of results.
270    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
271         Res != ResEnd; ++Res) {
272      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
273        if (!IIDecl ||
274            (*Res)->getLocation().getRawEncoding() <
275              IIDecl->getLocation().getRawEncoding())
276          IIDecl = *Res;
277      }
278    }
279
280    if (!IIDecl) {
281      // None of the entities we found is a type, so there is no way
282      // to even assume that the result is a type. In this case, don't
283      // complain about the ambiguity. The parser will either try to
284      // perform this lookup again (e.g., as an object name), which
285      // will produce the ambiguity, or will complain that it expected
286      // a type name.
287      Result.suppressDiagnostics();
288      return ParsedType();
289    }
290
291    // We found a type within the ambiguous lookup; diagnose the
292    // ambiguity and then return that type. This might be the right
293    // answer, or it might not be, but it suppresses any attempt to
294    // perform the name lookup again.
295    break;
296
297  case LookupResult::Found:
298    IIDecl = Result.getFoundDecl();
299    break;
300  }
301
302  assert(IIDecl && "Didn't find decl");
303
304  QualType T;
305  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
306    DiagnoseUseOfDecl(IIDecl, NameLoc);
307
308    if (T.isNull())
309      T = Context.getTypeDeclType(TD);
310
311    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
312    // constructor or destructor name (in such a case, the scope specifier
313    // will be attached to the enclosing Expr or Decl node).
314    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
315      if (WantNontrivialTypeSourceInfo) {
316        // Construct a type with type-source information.
317        TypeLocBuilder Builder;
318        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
319
320        T = getElaboratedType(ETK_None, *SS, T);
321        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
322        ElabTL.setElaboratedKeywordLoc(SourceLocation());
323        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
324        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
325      } else {
326        T = getElaboratedType(ETK_None, *SS, T);
327      }
328    }
329  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
330    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
331    if (!HasTrailingDot)
332      T = Context.getObjCInterfaceType(IDecl);
333  }
334
335  if (T.isNull()) {
336    // If it's not plausibly a type, suppress diagnostics.
337    Result.suppressDiagnostics();
338    return ParsedType();
339  }
340  return ParsedType::make(T);
341}
342
343/// isTagName() - This method is called *for error recovery purposes only*
344/// to determine if the specified name is a valid tag name ("struct foo").  If
345/// so, this returns the TST for the tag corresponding to it (TST_enum,
346/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
347/// cases in C where the user forgot to specify the tag.
348DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
349  // Do a tag name lookup in this scope.
350  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
351  LookupName(R, S, false);
352  R.suppressDiagnostics();
353  if (R.getResultKind() == LookupResult::Found)
354    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
355      switch (TD->getTagKind()) {
356      case TTK_Struct: return DeclSpec::TST_struct;
357      case TTK_Interface: return DeclSpec::TST_interface;
358      case TTK_Union:  return DeclSpec::TST_union;
359      case TTK_Class:  return DeclSpec::TST_class;
360      case TTK_Enum:   return DeclSpec::TST_enum;
361      }
362    }
363
364  return DeclSpec::TST_unspecified;
365}
366
367/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
368/// if a CXXScopeSpec's type is equal to the type of one of the base classes
369/// then downgrade the missing typename error to a warning.
370/// This is needed for MSVC compatibility; Example:
371/// @code
372/// template<class T> class A {
373/// public:
374///   typedef int TYPE;
375/// };
376/// template<class T> class B : public A<T> {
377/// public:
378///   A<T>::TYPE a; // no typename required because A<T> is a base class.
379/// };
380/// @endcode
381bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
382  if (CurContext->isRecord()) {
383    const Type *Ty = SS->getScopeRep()->getAsType();
384
385    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
386    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
387          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
388      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
389        return true;
390    return S->isFunctionPrototypeScope();
391  }
392  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
393}
394
395bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
396                                   SourceLocation IILoc,
397                                   Scope *S,
398                                   CXXScopeSpec *SS,
399                                   ParsedType &SuggestedType) {
400  // We don't have anything to suggest (yet).
401  SuggestedType = ParsedType();
402
403  // There may have been a typo in the name of the type. Look up typo
404  // results, in case we have something that we can suggest.
405  TypeNameValidatorCCC Validator(false);
406  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
407                                             LookupOrdinaryName, S, SS,
408                                             Validator)) {
409    if (Corrected.isKeyword()) {
410      // We corrected to a keyword.
411      diagnoseTypo(Corrected, PDiag(diag::err_unknown_typename_suggest) << II);
412      II = Corrected.getCorrectionAsIdentifierInfo();
413    } else {
414      // We found a similarly-named type or interface; suggest that.
415      if (!SS || !SS->isSet()) {
416        diagnoseTypo(Corrected,
417                     PDiag(diag::err_unknown_typename_suggest) << II);
418      } else if (DeclContext *DC = computeDeclContext(*SS, false)) {
419        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
420        bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
421                                II->getName().equals(CorrectedStr);
422        diagnoseTypo(Corrected,
423                     PDiag(diag::err_unknown_nested_typename_suggest)
424                       << II << DC << DroppedSpecifier << SS->getRange());
425      } else {
426        llvm_unreachable("could not have corrected a typo here");
427      }
428
429      CXXScopeSpec tmpSS;
430      if (Corrected.getCorrectionSpecifier())
431        tmpSS.MakeTrivial(Context, Corrected.getCorrectionSpecifier(),
432                          SourceRange(IILoc));
433      SuggestedType = getTypeName(*Corrected.getCorrectionAsIdentifierInfo(),
434                                  IILoc, S, tmpSS.isSet() ? &tmpSS : SS, false,
435                                  false, ParsedType(),
436                                  /*IsCtorOrDtorName=*/false,
437                                  /*NonTrivialTypeSourceInfo=*/true);
438    }
439    return true;
440  }
441
442  if (getLangOpts().CPlusPlus) {
443    // See if II is a class template that the user forgot to pass arguments to.
444    UnqualifiedId Name;
445    Name.setIdentifier(II, IILoc);
446    CXXScopeSpec EmptySS;
447    TemplateTy TemplateResult;
448    bool MemberOfUnknownSpecialization;
449    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
450                       Name, ParsedType(), true, TemplateResult,
451                       MemberOfUnknownSpecialization) == TNK_Type_template) {
452      TemplateName TplName = TemplateResult.get();
453      Diag(IILoc, diag::err_template_missing_args) << TplName;
454      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
455        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
456          << TplDecl->getTemplateParameters()->getSourceRange();
457      }
458      return true;
459    }
460  }
461
462  // FIXME: Should we move the logic that tries to recover from a missing tag
463  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
464
465  if (!SS || (!SS->isSet() && !SS->isInvalid()))
466    Diag(IILoc, diag::err_unknown_typename) << II;
467  else if (DeclContext *DC = computeDeclContext(*SS, false))
468    Diag(IILoc, diag::err_typename_nested_not_found)
469      << II << DC << SS->getRange();
470  else if (isDependentScopeSpecifier(*SS)) {
471    unsigned DiagID = diag::err_typename_missing;
472    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
473      DiagID = diag::warn_typename_missing;
474
475    Diag(SS->getRange().getBegin(), DiagID)
476      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
477      << SourceRange(SS->getRange().getBegin(), IILoc)
478      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
479    SuggestedType = ActOnTypenameType(S, SourceLocation(),
480                                      *SS, *II, IILoc).get();
481  } else {
482    assert(SS && SS->isInvalid() &&
483           "Invalid scope specifier has already been diagnosed");
484  }
485
486  return true;
487}
488
489/// \brief Determine whether the given result set contains either a type name
490/// or
491static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
492  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
493                       NextToken.is(tok::less);
494
495  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
496    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
497      return true;
498
499    if (CheckTemplate && isa<TemplateDecl>(*I))
500      return true;
501  }
502
503  return false;
504}
505
506static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
507                                    Scope *S, CXXScopeSpec &SS,
508                                    IdentifierInfo *&Name,
509                                    SourceLocation NameLoc) {
510  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
511  SemaRef.LookupParsedName(R, S, &SS);
512  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
513    const char *TagName = 0;
514    const char *FixItTagName = 0;
515    switch (Tag->getTagKind()) {
516      case TTK_Class:
517        TagName = "class";
518        FixItTagName = "class ";
519        break;
520
521      case TTK_Enum:
522        TagName = "enum";
523        FixItTagName = "enum ";
524        break;
525
526      case TTK_Struct:
527        TagName = "struct";
528        FixItTagName = "struct ";
529        break;
530
531      case TTK_Interface:
532        TagName = "__interface";
533        FixItTagName = "__interface ";
534        break;
535
536      case TTK_Union:
537        TagName = "union";
538        FixItTagName = "union ";
539        break;
540    }
541
542    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
543      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
544      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
545
546    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
547         I != IEnd; ++I)
548      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
549        << Name << TagName;
550
551    // Replace lookup results with just the tag decl.
552    Result.clear(Sema::LookupTagName);
553    SemaRef.LookupParsedName(Result, S, &SS);
554    return true;
555  }
556
557  return false;
558}
559
560/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
561static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
562                                  QualType T, SourceLocation NameLoc) {
563  ASTContext &Context = S.Context;
564
565  TypeLocBuilder Builder;
566  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
567
568  T = S.getElaboratedType(ETK_None, SS, T);
569  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
570  ElabTL.setElaboratedKeywordLoc(SourceLocation());
571  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
572  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
573}
574
575Sema::NameClassification Sema::ClassifyName(Scope *S,
576                                            CXXScopeSpec &SS,
577                                            IdentifierInfo *&Name,
578                                            SourceLocation NameLoc,
579                                            const Token &NextToken,
580                                            bool IsAddressOfOperand,
581                                            CorrectionCandidateCallback *CCC) {
582  DeclarationNameInfo NameInfo(Name, NameLoc);
583  ObjCMethodDecl *CurMethod = getCurMethodDecl();
584
585  if (NextToken.is(tok::coloncolon)) {
586    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
587                                QualType(), false, SS, 0, false);
588
589  }
590
591  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
592  LookupParsedName(Result, S, &SS, !CurMethod);
593
594  // Perform lookup for Objective-C instance variables (including automatically
595  // synthesized instance variables), if we're in an Objective-C method.
596  // FIXME: This lookup really, really needs to be folded in to the normal
597  // unqualified lookup mechanism.
598  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
599    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
600    if (E.get() || E.isInvalid())
601      return E;
602  }
603
604  bool SecondTry = false;
605  bool IsFilteredTemplateName = false;
606
607Corrected:
608  switch (Result.getResultKind()) {
609  case LookupResult::NotFound:
610    // If an unqualified-id is followed by a '(', then we have a function
611    // call.
612    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
613      // In C++, this is an ADL-only call.
614      // FIXME: Reference?
615      if (getLangOpts().CPlusPlus)
616        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
617
618      // C90 6.3.2.2:
619      //   If the expression that precedes the parenthesized argument list in a
620      //   function call consists solely of an identifier, and if no
621      //   declaration is visible for this identifier, the identifier is
622      //   implicitly declared exactly as if, in the innermost block containing
623      //   the function call, the declaration
624      //
625      //     extern int identifier ();
626      //
627      //   appeared.
628      //
629      // We also allow this in C99 as an extension.
630      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
631        Result.addDecl(D);
632        Result.resolveKind();
633        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
634      }
635    }
636
637    // In C, we first see whether there is a tag type by the same name, in
638    // which case it's likely that the user just forget to write "enum",
639    // "struct", or "union".
640    if (!getLangOpts().CPlusPlus && !SecondTry &&
641        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
642      break;
643    }
644
645    // Perform typo correction to determine if there is another name that is
646    // close to this name.
647    if (!SecondTry && CCC) {
648      SecondTry = true;
649      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
650                                                 Result.getLookupKind(), S,
651                                                 &SS, *CCC)) {
652        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
653        unsigned QualifiedDiag = diag::err_no_member_suggest;
654
655        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
656        NamedDecl *UnderlyingFirstDecl
657          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
658        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
659            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
660          UnqualifiedDiag = diag::err_no_template_suggest;
661          QualifiedDiag = diag::err_no_member_template_suggest;
662        } else if (UnderlyingFirstDecl &&
663                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
664                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
665                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
666          UnqualifiedDiag = diag::err_unknown_typename_suggest;
667          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
668        }
669
670        if (SS.isEmpty()) {
671          diagnoseTypo(Corrected, PDiag(UnqualifiedDiag) << Name);
672        } else {// FIXME: is this even reachable? Test it.
673          std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
674          bool DroppedSpecifier = Corrected.WillReplaceSpecifier() &&
675                                  Name->getName().equals(CorrectedStr);
676          diagnoseTypo(Corrected, PDiag(QualifiedDiag)
677                                    << Name << computeDeclContext(SS, false)
678                                    << DroppedSpecifier << SS.getRange());
679        }
680
681        // Update the name, so that the caller has the new name.
682        Name = Corrected.getCorrectionAsIdentifierInfo();
683
684        // Typo correction corrected to a keyword.
685        if (Corrected.isKeyword())
686          return Name;
687
688        // Also update the LookupResult...
689        // FIXME: This should probably go away at some point
690        Result.clear();
691        Result.setLookupName(Corrected.getCorrection());
692        if (FirstDecl)
693          Result.addDecl(FirstDecl);
694
695        // If we found an Objective-C instance variable, let
696        // LookupInObjCMethod build the appropriate expression to
697        // reference the ivar.
698        // FIXME: This is a gross hack.
699        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
700          Result.clear();
701          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
702          return E;
703        }
704
705        goto Corrected;
706      }
707    }
708
709    // We failed to correct; just fall through and let the parser deal with it.
710    Result.suppressDiagnostics();
711    return NameClassification::Unknown();
712
713  case LookupResult::NotFoundInCurrentInstantiation: {
714    // We performed name lookup into the current instantiation, and there were
715    // dependent bases, so we treat this result the same way as any other
716    // dependent nested-name-specifier.
717
718    // C++ [temp.res]p2:
719    //   A name used in a template declaration or definition and that is
720    //   dependent on a template-parameter is assumed not to name a type
721    //   unless the applicable name lookup finds a type name or the name is
722    //   qualified by the keyword typename.
723    //
724    // FIXME: If the next token is '<', we might want to ask the parser to
725    // perform some heroics to see if we actually have a
726    // template-argument-list, which would indicate a missing 'template'
727    // keyword here.
728    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
729                                      NameInfo, IsAddressOfOperand,
730                                      /*TemplateArgs=*/0);
731  }
732
733  case LookupResult::Found:
734  case LookupResult::FoundOverloaded:
735  case LookupResult::FoundUnresolvedValue:
736    break;
737
738  case LookupResult::Ambiguous:
739    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
740        hasAnyAcceptableTemplateNames(Result)) {
741      // C++ [temp.local]p3:
742      //   A lookup that finds an injected-class-name (10.2) can result in an
743      //   ambiguity in certain cases (for example, if it is found in more than
744      //   one base class). If all of the injected-class-names that are found
745      //   refer to specializations of the same class template, and if the name
746      //   is followed by a template-argument-list, the reference refers to the
747      //   class template itself and not a specialization thereof, and is not
748      //   ambiguous.
749      //
750      // This filtering can make an ambiguous result into an unambiguous one,
751      // so try again after filtering out template names.
752      FilterAcceptableTemplateNames(Result);
753      if (!Result.isAmbiguous()) {
754        IsFilteredTemplateName = true;
755        break;
756      }
757    }
758
759    // Diagnose the ambiguity and return an error.
760    return NameClassification::Error();
761  }
762
763  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
764      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
765    // C++ [temp.names]p3:
766    //   After name lookup (3.4) finds that a name is a template-name or that
767    //   an operator-function-id or a literal- operator-id refers to a set of
768    //   overloaded functions any member of which is a function template if
769    //   this is followed by a <, the < is always taken as the delimiter of a
770    //   template-argument-list and never as the less-than operator.
771    if (!IsFilteredTemplateName)
772      FilterAcceptableTemplateNames(Result);
773
774    if (!Result.empty()) {
775      bool IsFunctionTemplate;
776      bool IsVarTemplate;
777      TemplateName Template;
778      if (Result.end() - Result.begin() > 1) {
779        IsFunctionTemplate = true;
780        Template = Context.getOverloadedTemplateName(Result.begin(),
781                                                     Result.end());
782      } else {
783        TemplateDecl *TD
784          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
785        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
786        IsVarTemplate = isa<VarTemplateDecl>(TD);
787
788        if (SS.isSet() && !SS.isInvalid())
789          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
790                                                    /*TemplateKeyword=*/false,
791                                                      TD);
792        else
793          Template = TemplateName(TD);
794      }
795
796      if (IsFunctionTemplate) {
797        // Function templates always go through overload resolution, at which
798        // point we'll perform the various checks (e.g., accessibility) we need
799        // to based on which function we selected.
800        Result.suppressDiagnostics();
801
802        return NameClassification::FunctionTemplate(Template);
803      }
804
805      return IsVarTemplate ? NameClassification::VarTemplate(Template)
806                           : NameClassification::TypeTemplate(Template);
807    }
808  }
809
810  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
811  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
812    DiagnoseUseOfDecl(Type, NameLoc);
813    QualType T = Context.getTypeDeclType(Type);
814    if (SS.isNotEmpty())
815      return buildNestedType(*this, SS, T, NameLoc);
816    return ParsedType::make(T);
817  }
818
819  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
820  if (!Class) {
821    // FIXME: It's unfortunate that we don't have a Type node for handling this.
822    if (ObjCCompatibleAliasDecl *Alias
823                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
824      Class = Alias->getClassInterface();
825  }
826
827  if (Class) {
828    DiagnoseUseOfDecl(Class, NameLoc);
829
830    if (NextToken.is(tok::period)) {
831      // Interface. <something> is parsed as a property reference expression.
832      // Just return "unknown" as a fall-through for now.
833      Result.suppressDiagnostics();
834      return NameClassification::Unknown();
835    }
836
837    QualType T = Context.getObjCInterfaceType(Class);
838    return ParsedType::make(T);
839  }
840
841  // We can have a type template here if we're classifying a template argument.
842  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
843    return NameClassification::TypeTemplate(
844        TemplateName(cast<TemplateDecl>(FirstDecl)));
845
846  // Check for a tag type hidden by a non-type decl in a few cases where it
847  // seems likely a type is wanted instead of the non-type that was found.
848  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
849  if ((NextToken.is(tok::identifier) ||
850       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
851      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
852    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
853    DiagnoseUseOfDecl(Type, NameLoc);
854    QualType T = Context.getTypeDeclType(Type);
855    if (SS.isNotEmpty())
856      return buildNestedType(*this, SS, T, NameLoc);
857    return ParsedType::make(T);
858  }
859
860  if (FirstDecl->isCXXClassMember())
861    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
862
863  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
864  return BuildDeclarationNameExpr(SS, Result, ADL);
865}
866
867// Determines the context to return to after temporarily entering a
868// context.  This depends in an unnecessarily complicated way on the
869// exact ordering of callbacks from the parser.
870DeclContext *Sema::getContainingDC(DeclContext *DC) {
871
872  // Functions defined inline within classes aren't parsed until we've
873  // finished parsing the top-level class, so the top-level class is
874  // the context we'll need to return to.
875  if (isa<FunctionDecl>(DC)) {
876    DC = DC->getLexicalParent();
877
878    // A function not defined within a class will always return to its
879    // lexical context.
880    if (!isa<CXXRecordDecl>(DC))
881      return DC;
882
883    // A C++ inline method/friend is parsed *after* the topmost class
884    // it was declared in is fully parsed ("complete");  the topmost
885    // class is the context we need to return to.
886    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
887      DC = RD;
888
889    // Return the declaration context of the topmost class the inline method is
890    // declared in.
891    return DC;
892  }
893
894  return DC->getLexicalParent();
895}
896
897void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
898  assert(getContainingDC(DC) == CurContext &&
899      "The next DeclContext should be lexically contained in the current one.");
900  CurContext = DC;
901  S->setEntity(DC);
902}
903
904void Sema::PopDeclContext() {
905  assert(CurContext && "DeclContext imbalance!");
906
907  CurContext = getContainingDC(CurContext);
908  assert(CurContext && "Popped translation unit!");
909}
910
911/// EnterDeclaratorContext - Used when we must lookup names in the context
912/// of a declarator's nested name specifier.
913///
914void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
915  // C++0x [basic.lookup.unqual]p13:
916  //   A name used in the definition of a static data member of class
917  //   X (after the qualified-id of the static member) is looked up as
918  //   if the name was used in a member function of X.
919  // C++0x [basic.lookup.unqual]p14:
920  //   If a variable member of a namespace is defined outside of the
921  //   scope of its namespace then any name used in the definition of
922  //   the variable member (after the declarator-id) is looked up as
923  //   if the definition of the variable member occurred in its
924  //   namespace.
925  // Both of these imply that we should push a scope whose context
926  // is the semantic context of the declaration.  We can't use
927  // PushDeclContext here because that context is not necessarily
928  // lexically contained in the current context.  Fortunately,
929  // the containing scope should have the appropriate information.
930
931  assert(!S->getEntity() && "scope already has entity");
932
933#ifndef NDEBUG
934  Scope *Ancestor = S->getParent();
935  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
936  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
937#endif
938
939  CurContext = DC;
940  S->setEntity(DC);
941}
942
943void Sema::ExitDeclaratorContext(Scope *S) {
944  assert(S->getEntity() == CurContext && "Context imbalance!");
945
946  // Switch back to the lexical context.  The safety of this is
947  // enforced by an assert in EnterDeclaratorContext.
948  Scope *Ancestor = S->getParent();
949  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
950  CurContext = Ancestor->getEntity();
951
952  // We don't need to do anything with the scope, which is going to
953  // disappear.
954}
955
956
957void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
958  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
959  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
960    // We assume that the caller has already called
961    // ActOnReenterTemplateScope
962    FD = TFD->getTemplatedDecl();
963  }
964  if (!FD)
965    return;
966
967  // Same implementation as PushDeclContext, but enters the context
968  // from the lexical parent, rather than the top-level class.
969  assert(CurContext == FD->getLexicalParent() &&
970    "The next DeclContext should be lexically contained in the current one.");
971  CurContext = FD;
972  S->setEntity(CurContext);
973
974  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
975    ParmVarDecl *Param = FD->getParamDecl(P);
976    // If the parameter has an identifier, then add it to the scope
977    if (Param->getIdentifier()) {
978      S->AddDecl(Param);
979      IdResolver.AddDecl(Param);
980    }
981  }
982}
983
984
985void Sema::ActOnExitFunctionContext() {
986  // Same implementation as PopDeclContext, but returns to the lexical parent,
987  // rather than the top-level class.
988  assert(CurContext && "DeclContext imbalance!");
989  CurContext = CurContext->getLexicalParent();
990  assert(CurContext && "Popped translation unit!");
991}
992
993
994/// \brief Determine whether we allow overloading of the function
995/// PrevDecl with another declaration.
996///
997/// This routine determines whether overloading is possible, not
998/// whether some new function is actually an overload. It will return
999/// true in C++ (where we can always provide overloads) or, as an
1000/// extension, in C when the previous function is already an
1001/// overloaded function declaration or has the "overloadable"
1002/// attribute.
1003static bool AllowOverloadingOfFunction(LookupResult &Previous,
1004                                       ASTContext &Context) {
1005  if (Context.getLangOpts().CPlusPlus)
1006    return true;
1007
1008  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1009    return true;
1010
1011  return (Previous.getResultKind() == LookupResult::Found
1012          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1013}
1014
1015/// Add this decl to the scope shadowed decl chains.
1016void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1017  // Move up the scope chain until we find the nearest enclosing
1018  // non-transparent context. The declaration will be introduced into this
1019  // scope.
1020  while (S->getEntity() && S->getEntity()->isTransparentContext())
1021    S = S->getParent();
1022
1023  // Add scoped declarations into their context, so that they can be
1024  // found later. Declarations without a context won't be inserted
1025  // into any context.
1026  if (AddToContext)
1027    CurContext->addDecl(D);
1028
1029  // Out-of-line definitions shouldn't be pushed into scope in C++, unless they
1030  // are function-local declarations.
1031  if (getLangOpts().CPlusPlus && D->isOutOfLine() &&
1032      !D->getDeclContext()->getRedeclContext()->Equals(
1033        D->getLexicalDeclContext()->getRedeclContext()) &&
1034      !D->getLexicalDeclContext()->isFunctionOrMethod())
1035    return;
1036
1037  // Template instantiations should also not be pushed into scope.
1038  if (isa<FunctionDecl>(D) &&
1039      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1040    return;
1041
1042  // If this replaces anything in the current scope,
1043  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1044                               IEnd = IdResolver.end();
1045  for (; I != IEnd; ++I) {
1046    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1047      S->RemoveDecl(*I);
1048      IdResolver.RemoveDecl(*I);
1049
1050      // Should only need to replace one decl.
1051      break;
1052    }
1053  }
1054
1055  S->AddDecl(D);
1056
1057  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1058    // Implicitly-generated labels may end up getting generated in an order that
1059    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1060    // the label at the appropriate place in the identifier chain.
1061    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1062      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1063      if (IDC == CurContext) {
1064        if (!S->isDeclScope(*I))
1065          continue;
1066      } else if (IDC->Encloses(CurContext))
1067        break;
1068    }
1069
1070    IdResolver.InsertDeclAfter(I, D);
1071  } else {
1072    IdResolver.AddDecl(D);
1073  }
1074}
1075
1076void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1077  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1078    TUScope->AddDecl(D);
1079}
1080
1081bool Sema::isDeclInScope(NamedDecl *D, DeclContext *Ctx, Scope *S,
1082                         bool ExplicitInstantiationOrSpecialization) {
1083  return IdResolver.isDeclInScope(D, Ctx, S,
1084                                  ExplicitInstantiationOrSpecialization);
1085}
1086
1087Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1088  DeclContext *TargetDC = DC->getPrimaryContext();
1089  do {
1090    if (DeclContext *ScopeDC = S->getEntity())
1091      if (ScopeDC->getPrimaryContext() == TargetDC)
1092        return S;
1093  } while ((S = S->getParent()));
1094
1095  return 0;
1096}
1097
1098static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1099                                            DeclContext*,
1100                                            ASTContext&);
1101
1102/// Filters out lookup results that don't fall within the given scope
1103/// as determined by isDeclInScope.
1104void Sema::FilterLookupForScope(LookupResult &R,
1105                                DeclContext *Ctx, Scope *S,
1106                                bool ConsiderLinkage,
1107                                bool ExplicitInstantiationOrSpecialization) {
1108  LookupResult::Filter F = R.makeFilter();
1109  while (F.hasNext()) {
1110    NamedDecl *D = F.next();
1111
1112    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1113      continue;
1114
1115    if (ConsiderLinkage &&
1116        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1117      continue;
1118
1119    F.erase();
1120  }
1121
1122  F.done();
1123}
1124
1125static bool isUsingDecl(NamedDecl *D) {
1126  return isa<UsingShadowDecl>(D) ||
1127         isa<UnresolvedUsingTypenameDecl>(D) ||
1128         isa<UnresolvedUsingValueDecl>(D);
1129}
1130
1131/// Removes using shadow declarations from the lookup results.
1132static void RemoveUsingDecls(LookupResult &R) {
1133  LookupResult::Filter F = R.makeFilter();
1134  while (F.hasNext())
1135    if (isUsingDecl(F.next()))
1136      F.erase();
1137
1138  F.done();
1139}
1140
1141/// \brief Check for this common pattern:
1142/// @code
1143/// class S {
1144///   S(const S&); // DO NOT IMPLEMENT
1145///   void operator=(const S&); // DO NOT IMPLEMENT
1146/// };
1147/// @endcode
1148static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1149  // FIXME: Should check for private access too but access is set after we get
1150  // the decl here.
1151  if (D->doesThisDeclarationHaveABody())
1152    return false;
1153
1154  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1155    return CD->isCopyConstructor();
1156  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1157    return Method->isCopyAssignmentOperator();
1158  return false;
1159}
1160
1161// We need this to handle
1162//
1163// typedef struct {
1164//   void *foo() { return 0; }
1165// } A;
1166//
1167// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1168// for example. If 'A', foo will have external linkage. If we have '*A',
1169// foo will have no linkage. Since we can't know untill we get to the end
1170// of the typedef, this function finds out if D might have non external linkage.
1171// Callers should verify at the end of the TU if it D has external linkage or
1172// not.
1173bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1174  const DeclContext *DC = D->getDeclContext();
1175  while (!DC->isTranslationUnit()) {
1176    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1177      if (!RD->hasNameForLinkage())
1178        return true;
1179    }
1180    DC = DC->getParent();
1181  }
1182
1183  return !D->isExternallyVisible();
1184}
1185
1186// FIXME: This needs to be refactored; some other isInMainFile users want
1187// these semantics.
1188static bool isMainFileLoc(const Sema &S, SourceLocation Loc) {
1189  if (S.TUKind != TU_Complete)
1190    return false;
1191  return S.SourceMgr.isInMainFile(Loc);
1192}
1193
1194bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1195  assert(D);
1196
1197  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1198    return false;
1199
1200  // Ignore class templates.
1201  if (D->getDeclContext()->isDependentContext() ||
1202      D->getLexicalDeclContext()->isDependentContext())
1203    return false;
1204
1205  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1206    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1207      return false;
1208
1209    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1210      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1211        return false;
1212    } else {
1213      // 'static inline' functions are defined in headers; don't warn.
1214      if (FD->isInlineSpecified() &&
1215          !isMainFileLoc(*this, FD->getLocation()))
1216        return false;
1217    }
1218
1219    if (FD->doesThisDeclarationHaveABody() &&
1220        Context.DeclMustBeEmitted(FD))
1221      return false;
1222  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1223    // Constants and utility variables are defined in headers with internal
1224    // linkage; don't warn.  (Unlike functions, there isn't a convenient marker
1225    // like "inline".)
1226    if (!isMainFileLoc(*this, VD->getLocation()))
1227      return false;
1228
1229    if (Context.DeclMustBeEmitted(VD))
1230      return false;
1231
1232    if (VD->isStaticDataMember() &&
1233        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1234      return false;
1235  } else {
1236    return false;
1237  }
1238
1239  // Only warn for unused decls internal to the translation unit.
1240  return mightHaveNonExternalLinkage(D);
1241}
1242
1243void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1244  if (!D)
1245    return;
1246
1247  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1248    const FunctionDecl *First = FD->getFirstDecl();
1249    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1250      return; // First should already be in the vector.
1251  }
1252
1253  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1254    const VarDecl *First = VD->getFirstDecl();
1255    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1256      return; // First should already be in the vector.
1257  }
1258
1259  if (ShouldWarnIfUnusedFileScopedDecl(D))
1260    UnusedFileScopedDecls.push_back(D);
1261}
1262
1263static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1264  if (D->isInvalidDecl())
1265    return false;
1266
1267  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1268    return false;
1269
1270  if (isa<LabelDecl>(D))
1271    return true;
1272
1273  // White-list anything that isn't a local variable.
1274  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1275      !D->getDeclContext()->isFunctionOrMethod())
1276    return false;
1277
1278  // Types of valid local variables should be complete, so this should succeed.
1279  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1280
1281    // White-list anything with an __attribute__((unused)) type.
1282    QualType Ty = VD->getType();
1283
1284    // Only look at the outermost level of typedef.
1285    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1286      if (TT->getDecl()->hasAttr<UnusedAttr>())
1287        return false;
1288    }
1289
1290    // If we failed to complete the type for some reason, or if the type is
1291    // dependent, don't diagnose the variable.
1292    if (Ty->isIncompleteType() || Ty->isDependentType())
1293      return false;
1294
1295    if (const TagType *TT = Ty->getAs<TagType>()) {
1296      const TagDecl *Tag = TT->getDecl();
1297      if (Tag->hasAttr<UnusedAttr>())
1298        return false;
1299
1300      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1301        if (!RD->hasTrivialDestructor() && !RD->hasAttr<WarnUnusedAttr>())
1302          return false;
1303
1304        if (const Expr *Init = VD->getInit()) {
1305          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1306            Init = Cleanups->getSubExpr();
1307          const CXXConstructExpr *Construct =
1308            dyn_cast<CXXConstructExpr>(Init);
1309          if (Construct && !Construct->isElidable()) {
1310            CXXConstructorDecl *CD = Construct->getConstructor();
1311            if (!CD->isTrivial() && !RD->hasAttr<WarnUnusedAttr>())
1312              return false;
1313          }
1314        }
1315      }
1316    }
1317
1318    // TODO: __attribute__((unused)) templates?
1319  }
1320
1321  return true;
1322}
1323
1324static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1325                                     FixItHint &Hint) {
1326  if (isa<LabelDecl>(D)) {
1327    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1328                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1329    if (AfterColon.isInvalid())
1330      return;
1331    Hint = FixItHint::CreateRemoval(CharSourceRange::
1332                                    getCharRange(D->getLocStart(), AfterColon));
1333  }
1334  return;
1335}
1336
1337/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1338/// unless they are marked attr(unused).
1339void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1340  FixItHint Hint;
1341  if (!ShouldDiagnoseUnusedDecl(D))
1342    return;
1343
1344  GenerateFixForUnusedDecl(D, Context, Hint);
1345
1346  unsigned DiagID;
1347  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1348    DiagID = diag::warn_unused_exception_param;
1349  else if (isa<LabelDecl>(D))
1350    DiagID = diag::warn_unused_label;
1351  else
1352    DiagID = diag::warn_unused_variable;
1353
1354  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1355}
1356
1357static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1358  // Verify that we have no forward references left.  If so, there was a goto
1359  // or address of a label taken, but no definition of it.  Label fwd
1360  // definitions are indicated with a null substmt.
1361  if (L->getStmt() == 0)
1362    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1363}
1364
1365void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1366  if (S->decl_empty()) return;
1367  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1368         "Scope shouldn't contain decls!");
1369
1370  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1371       I != E; ++I) {
1372    Decl *TmpD = (*I);
1373    assert(TmpD && "This decl didn't get pushed??");
1374
1375    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1376    NamedDecl *D = cast<NamedDecl>(TmpD);
1377
1378    if (!D->getDeclName()) continue;
1379
1380    // Diagnose unused variables in this scope.
1381    if (!S->hasUnrecoverableErrorOccurred())
1382      DiagnoseUnusedDecl(D);
1383
1384    // If this was a forward reference to a label, verify it was defined.
1385    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1386      CheckPoppedLabel(LD, *this);
1387
1388    // Remove this name from our lexical scope.
1389    IdResolver.RemoveDecl(D);
1390  }
1391}
1392
1393void Sema::ActOnStartFunctionDeclarator() {
1394  ++InFunctionDeclarator;
1395}
1396
1397void Sema::ActOnEndFunctionDeclarator() {
1398  assert(InFunctionDeclarator);
1399  --InFunctionDeclarator;
1400}
1401
1402/// \brief Look for an Objective-C class in the translation unit.
1403///
1404/// \param Id The name of the Objective-C class we're looking for. If
1405/// typo-correction fixes this name, the Id will be updated
1406/// to the fixed name.
1407///
1408/// \param IdLoc The location of the name in the translation unit.
1409///
1410/// \param DoTypoCorrection If true, this routine will attempt typo correction
1411/// if there is no class with the given name.
1412///
1413/// \returns The declaration of the named Objective-C class, or NULL if the
1414/// class could not be found.
1415ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1416                                              SourceLocation IdLoc,
1417                                              bool DoTypoCorrection) {
1418  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1419  // creation from this context.
1420  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1421
1422  if (!IDecl && DoTypoCorrection) {
1423    // Perform typo correction at the given location, but only if we
1424    // find an Objective-C class name.
1425    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1426    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1427                                       LookupOrdinaryName, TUScope, NULL,
1428                                       Validator)) {
1429      diagnoseTypo(C, PDiag(diag::err_undef_interface_suggest) << Id);
1430      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1431      Id = IDecl->getIdentifier();
1432    }
1433  }
1434  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1435  // This routine must always return a class definition, if any.
1436  if (Def && Def->getDefinition())
1437      Def = Def->getDefinition();
1438  return Def;
1439}
1440
1441/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1442/// from S, where a non-field would be declared. This routine copes
1443/// with the difference between C and C++ scoping rules in structs and
1444/// unions. For example, the following code is well-formed in C but
1445/// ill-formed in C++:
1446/// @code
1447/// struct S6 {
1448///   enum { BAR } e;
1449/// };
1450///
1451/// void test_S6() {
1452///   struct S6 a;
1453///   a.e = BAR;
1454/// }
1455/// @endcode
1456/// For the declaration of BAR, this routine will return a different
1457/// scope. The scope S will be the scope of the unnamed enumeration
1458/// within S6. In C++, this routine will return the scope associated
1459/// with S6, because the enumeration's scope is a transparent
1460/// context but structures can contain non-field names. In C, this
1461/// routine will return the translation unit scope, since the
1462/// enumeration's scope is a transparent context and structures cannot
1463/// contain non-field names.
1464Scope *Sema::getNonFieldDeclScope(Scope *S) {
1465  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1466         (S->getEntity() && S->getEntity()->isTransparentContext()) ||
1467         (S->isClassScope() && !getLangOpts().CPlusPlus))
1468    S = S->getParent();
1469  return S;
1470}
1471
1472/// \brief Looks up the declaration of "struct objc_super" and
1473/// saves it for later use in building builtin declaration of
1474/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1475/// pre-existing declaration exists no action takes place.
1476static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1477                                        IdentifierInfo *II) {
1478  if (!II->isStr("objc_msgSendSuper"))
1479    return;
1480  ASTContext &Context = ThisSema.Context;
1481
1482  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1483                      SourceLocation(), Sema::LookupTagName);
1484  ThisSema.LookupName(Result, S);
1485  if (Result.getResultKind() == LookupResult::Found)
1486    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1487      Context.setObjCSuperType(Context.getTagDeclType(TD));
1488}
1489
1490/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1491/// file scope.  lazily create a decl for it. ForRedeclaration is true
1492/// if we're creating this built-in in anticipation of redeclaring the
1493/// built-in.
1494NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1495                                     Scope *S, bool ForRedeclaration,
1496                                     SourceLocation Loc) {
1497  LookupPredefedObjCSuperType(*this, S, II);
1498
1499  Builtin::ID BID = (Builtin::ID)bid;
1500
1501  ASTContext::GetBuiltinTypeError Error;
1502  QualType R = Context.GetBuiltinType(BID, Error);
1503  switch (Error) {
1504  case ASTContext::GE_None:
1505    // Okay
1506    break;
1507
1508  case ASTContext::GE_Missing_stdio:
1509    if (ForRedeclaration)
1510      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1511        << Context.BuiltinInfo.GetName(BID);
1512    return 0;
1513
1514  case ASTContext::GE_Missing_setjmp:
1515    if (ForRedeclaration)
1516      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1517        << Context.BuiltinInfo.GetName(BID);
1518    return 0;
1519
1520  case ASTContext::GE_Missing_ucontext:
1521    if (ForRedeclaration)
1522      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1523        << Context.BuiltinInfo.GetName(BID);
1524    return 0;
1525  }
1526
1527  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1528    Diag(Loc, diag::ext_implicit_lib_function_decl)
1529      << Context.BuiltinInfo.GetName(BID)
1530      << R;
1531    if (Context.BuiltinInfo.getHeaderName(BID) &&
1532        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1533          != DiagnosticsEngine::Ignored)
1534      Diag(Loc, diag::note_please_include_header)
1535        << Context.BuiltinInfo.getHeaderName(BID)
1536        << Context.BuiltinInfo.GetName(BID);
1537  }
1538
1539  FunctionDecl *New = FunctionDecl::Create(Context,
1540                                           Context.getTranslationUnitDecl(),
1541                                           Loc, Loc, II, R, /*TInfo=*/0,
1542                                           SC_Extern,
1543                                           false,
1544                                           /*hasPrototype=*/true);
1545  New->setImplicit();
1546
1547  // Create Decl objects for each parameter, adding them to the
1548  // FunctionDecl.
1549  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1550    SmallVector<ParmVarDecl*, 16> Params;
1551    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1552      ParmVarDecl *parm =
1553        ParmVarDecl::Create(Context, New, SourceLocation(),
1554                            SourceLocation(), 0,
1555                            FT->getArgType(i), /*TInfo=*/0,
1556                            SC_None, 0);
1557      parm->setScopeInfo(0, i);
1558      Params.push_back(parm);
1559    }
1560    New->setParams(Params);
1561  }
1562
1563  AddKnownFunctionAttributes(New);
1564
1565  // TUScope is the translation-unit scope to insert this function into.
1566  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1567  // relate Scopes to DeclContexts, and probably eliminate CurContext
1568  // entirely, but we're not there yet.
1569  DeclContext *SavedContext = CurContext;
1570  CurContext = Context.getTranslationUnitDecl();
1571  PushOnScopeChains(New, TUScope);
1572  CurContext = SavedContext;
1573  return New;
1574}
1575
1576/// \brief Filter out any previous declarations that the given declaration
1577/// should not consider because they are not permitted to conflict, e.g.,
1578/// because they come from hidden sub-modules and do not refer to the same
1579/// entity.
1580static void filterNonConflictingPreviousDecls(ASTContext &context,
1581                                              NamedDecl *decl,
1582                                              LookupResult &previous){
1583  // This is only interesting when modules are enabled.
1584  if (!context.getLangOpts().Modules)
1585    return;
1586
1587  // Empty sets are uninteresting.
1588  if (previous.empty())
1589    return;
1590
1591  LookupResult::Filter filter = previous.makeFilter();
1592  while (filter.hasNext()) {
1593    NamedDecl *old = filter.next();
1594
1595    // Non-hidden declarations are never ignored.
1596    if (!old->isHidden())
1597      continue;
1598
1599    if (!old->isExternallyVisible())
1600      filter.erase();
1601  }
1602
1603  filter.done();
1604}
1605
1606bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1607  QualType OldType;
1608  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1609    OldType = OldTypedef->getUnderlyingType();
1610  else
1611    OldType = Context.getTypeDeclType(Old);
1612  QualType NewType = New->getUnderlyingType();
1613
1614  if (NewType->isVariablyModifiedType()) {
1615    // Must not redefine a typedef with a variably-modified type.
1616    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1617    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1618      << Kind << NewType;
1619    if (Old->getLocation().isValid())
1620      Diag(Old->getLocation(), diag::note_previous_definition);
1621    New->setInvalidDecl();
1622    return true;
1623  }
1624
1625  if (OldType != NewType &&
1626      !OldType->isDependentType() &&
1627      !NewType->isDependentType() &&
1628      !Context.hasSameType(OldType, NewType)) {
1629    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1630    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1631      << Kind << NewType << OldType;
1632    if (Old->getLocation().isValid())
1633      Diag(Old->getLocation(), diag::note_previous_definition);
1634    New->setInvalidDecl();
1635    return true;
1636  }
1637  return false;
1638}
1639
1640/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1641/// same name and scope as a previous declaration 'Old'.  Figure out
1642/// how to resolve this situation, merging decls or emitting
1643/// diagnostics as appropriate. If there was an error, set New to be invalid.
1644///
1645void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1646  // If the new decl is known invalid already, don't bother doing any
1647  // merging checks.
1648  if (New->isInvalidDecl()) return;
1649
1650  // Allow multiple definitions for ObjC built-in typedefs.
1651  // FIXME: Verify the underlying types are equivalent!
1652  if (getLangOpts().ObjC1) {
1653    const IdentifierInfo *TypeID = New->getIdentifier();
1654    switch (TypeID->getLength()) {
1655    default: break;
1656    case 2:
1657      {
1658        if (!TypeID->isStr("id"))
1659          break;
1660        QualType T = New->getUnderlyingType();
1661        if (!T->isPointerType())
1662          break;
1663        if (!T->isVoidPointerType()) {
1664          QualType PT = T->getAs<PointerType>()->getPointeeType();
1665          if (!PT->isStructureType())
1666            break;
1667        }
1668        Context.setObjCIdRedefinitionType(T);
1669        // Install the built-in type for 'id', ignoring the current definition.
1670        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1671        return;
1672      }
1673    case 5:
1674      if (!TypeID->isStr("Class"))
1675        break;
1676      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1677      // Install the built-in type for 'Class', ignoring the current definition.
1678      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1679      return;
1680    case 3:
1681      if (!TypeID->isStr("SEL"))
1682        break;
1683      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1684      // Install the built-in type for 'SEL', ignoring the current definition.
1685      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1686      return;
1687    }
1688    // Fall through - the typedef name was not a builtin type.
1689  }
1690
1691  // Verify the old decl was also a type.
1692  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1693  if (!Old) {
1694    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1695      << New->getDeclName();
1696
1697    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1698    if (OldD->getLocation().isValid())
1699      Diag(OldD->getLocation(), diag::note_previous_definition);
1700
1701    return New->setInvalidDecl();
1702  }
1703
1704  // If the old declaration is invalid, just give up here.
1705  if (Old->isInvalidDecl())
1706    return New->setInvalidDecl();
1707
1708  // If the typedef types are not identical, reject them in all languages and
1709  // with any extensions enabled.
1710  if (isIncompatibleTypedef(Old, New))
1711    return;
1712
1713  // The types match.  Link up the redeclaration chain and merge attributes if
1714  // the old declaration was a typedef.
1715  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old)) {
1716    New->setPreviousDecl(Typedef);
1717    mergeDeclAttributes(New, Old);
1718  }
1719
1720  if (getLangOpts().MicrosoftExt)
1721    return;
1722
1723  if (getLangOpts().CPlusPlus) {
1724    // C++ [dcl.typedef]p2:
1725    //   In a given non-class scope, a typedef specifier can be used to
1726    //   redefine the name of any type declared in that scope to refer
1727    //   to the type to which it already refers.
1728    if (!isa<CXXRecordDecl>(CurContext))
1729      return;
1730
1731    // C++0x [dcl.typedef]p4:
1732    //   In a given class scope, a typedef specifier can be used to redefine
1733    //   any class-name declared in that scope that is not also a typedef-name
1734    //   to refer to the type to which it already refers.
1735    //
1736    // This wording came in via DR424, which was a correction to the
1737    // wording in DR56, which accidentally banned code like:
1738    //
1739    //   struct S {
1740    //     typedef struct A { } A;
1741    //   };
1742    //
1743    // in the C++03 standard. We implement the C++0x semantics, which
1744    // allow the above but disallow
1745    //
1746    //   struct S {
1747    //     typedef int I;
1748    //     typedef int I;
1749    //   };
1750    //
1751    // since that was the intent of DR56.
1752    if (!isa<TypedefNameDecl>(Old))
1753      return;
1754
1755    Diag(New->getLocation(), diag::err_redefinition)
1756      << New->getDeclName();
1757    Diag(Old->getLocation(), diag::note_previous_definition);
1758    return New->setInvalidDecl();
1759  }
1760
1761  // Modules always permit redefinition of typedefs, as does C11.
1762  if (getLangOpts().Modules || getLangOpts().C11)
1763    return;
1764
1765  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1766  // is normally mapped to an error, but can be controlled with
1767  // -Wtypedef-redefinition.  If either the original or the redefinition is
1768  // in a system header, don't emit this for compatibility with GCC.
1769  if (getDiagnostics().getSuppressSystemWarnings() &&
1770      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1771       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1772    return;
1773
1774  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1775    << New->getDeclName();
1776  Diag(Old->getLocation(), diag::note_previous_definition);
1777  return;
1778}
1779
1780/// DeclhasAttr - returns true if decl Declaration already has the target
1781/// attribute.
1782static bool
1783DeclHasAttr(const Decl *D, const Attr *A) {
1784  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1785  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1786  // responsible for making sure they are consistent.
1787  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1788  if (AA)
1789    return false;
1790
1791  // The following thread safety attributes can also be duplicated.
1792  switch (A->getKind()) {
1793    case attr::ExclusiveLocksRequired:
1794    case attr::SharedLocksRequired:
1795    case attr::LocksExcluded:
1796    case attr::ExclusiveLockFunction:
1797    case attr::SharedLockFunction:
1798    case attr::UnlockFunction:
1799    case attr::ExclusiveTrylockFunction:
1800    case attr::SharedTrylockFunction:
1801    case attr::GuardedBy:
1802    case attr::PtGuardedBy:
1803    case attr::AcquiredBefore:
1804    case attr::AcquiredAfter:
1805      return false;
1806    default:
1807      ;
1808  }
1809
1810  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1811  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1812  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1813    if ((*i)->getKind() == A->getKind()) {
1814      if (Ann) {
1815        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1816          return true;
1817        continue;
1818      }
1819      // FIXME: Don't hardcode this check
1820      if (OA && isa<OwnershipAttr>(*i))
1821        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1822      return true;
1823    }
1824
1825  return false;
1826}
1827
1828static bool isAttributeTargetADefinition(Decl *D) {
1829  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1830    return VD->isThisDeclarationADefinition();
1831  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1832    return TD->isCompleteDefinition() || TD->isBeingDefined();
1833  return true;
1834}
1835
1836/// Merge alignment attributes from \p Old to \p New, taking into account the
1837/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1838///
1839/// \return \c true if any attributes were added to \p New.
1840static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1841  // Look for alignas attributes on Old, and pick out whichever attribute
1842  // specifies the strictest alignment requirement.
1843  AlignedAttr *OldAlignasAttr = 0;
1844  AlignedAttr *OldStrictestAlignAttr = 0;
1845  unsigned OldAlign = 0;
1846  for (specific_attr_iterator<AlignedAttr>
1847         I = Old->specific_attr_begin<AlignedAttr>(),
1848         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1849    // FIXME: We have no way of representing inherited dependent alignments
1850    // in a case like:
1851    //   template<int A, int B> struct alignas(A) X;
1852    //   template<int A, int B> struct alignas(B) X {};
1853    // For now, we just ignore any alignas attributes which are not on the
1854    // definition in such a case.
1855    if (I->isAlignmentDependent())
1856      return false;
1857
1858    if (I->isAlignas())
1859      OldAlignasAttr = *I;
1860
1861    unsigned Align = I->getAlignment(S.Context);
1862    if (Align > OldAlign) {
1863      OldAlign = Align;
1864      OldStrictestAlignAttr = *I;
1865    }
1866  }
1867
1868  // Look for alignas attributes on New.
1869  AlignedAttr *NewAlignasAttr = 0;
1870  unsigned NewAlign = 0;
1871  for (specific_attr_iterator<AlignedAttr>
1872         I = New->specific_attr_begin<AlignedAttr>(),
1873         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1874    if (I->isAlignmentDependent())
1875      return false;
1876
1877    if (I->isAlignas())
1878      NewAlignasAttr = *I;
1879
1880    unsigned Align = I->getAlignment(S.Context);
1881    if (Align > NewAlign)
1882      NewAlign = Align;
1883  }
1884
1885  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1886    // Both declarations have 'alignas' attributes. We require them to match.
1887    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1888    // fall short. (If two declarations both have alignas, they must both match
1889    // every definition, and so must match each other if there is a definition.)
1890
1891    // If either declaration only contains 'alignas(0)' specifiers, then it
1892    // specifies the natural alignment for the type.
1893    if (OldAlign == 0 || NewAlign == 0) {
1894      QualType Ty;
1895      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1896        Ty = VD->getType();
1897      else
1898        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1899
1900      if (OldAlign == 0)
1901        OldAlign = S.Context.getTypeAlign(Ty);
1902      if (NewAlign == 0)
1903        NewAlign = S.Context.getTypeAlign(Ty);
1904    }
1905
1906    if (OldAlign != NewAlign) {
1907      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1908        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1909        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1910      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1911    }
1912  }
1913
1914  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1915    // C++11 [dcl.align]p6:
1916    //   if any declaration of an entity has an alignment-specifier,
1917    //   every defining declaration of that entity shall specify an
1918    //   equivalent alignment.
1919    // C11 6.7.5/7:
1920    //   If the definition of an object does not have an alignment
1921    //   specifier, any other declaration of that object shall also
1922    //   have no alignment specifier.
1923    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1924      << OldAlignasAttr->isC11();
1925    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1926      << OldAlignasAttr->isC11();
1927  }
1928
1929  bool AnyAdded = false;
1930
1931  // Ensure we have an attribute representing the strictest alignment.
1932  if (OldAlign > NewAlign) {
1933    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1934    Clone->setInherited(true);
1935    New->addAttr(Clone);
1936    AnyAdded = true;
1937  }
1938
1939  // Ensure we have an alignas attribute if the old declaration had one.
1940  if (OldAlignasAttr && !NewAlignasAttr &&
1941      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1942    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1943    Clone->setInherited(true);
1944    New->addAttr(Clone);
1945    AnyAdded = true;
1946  }
1947
1948  return AnyAdded;
1949}
1950
1951static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1952                               bool Override) {
1953  InheritableAttr *NewAttr = NULL;
1954  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1955  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1956    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1957                                      AA->getIntroduced(), AA->getDeprecated(),
1958                                      AA->getObsoleted(), AA->getUnavailable(),
1959                                      AA->getMessage(), Override,
1960                                      AttrSpellingListIndex);
1961  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1962    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1963                                    AttrSpellingListIndex);
1964  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1965    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1966                                        AttrSpellingListIndex);
1967  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1968    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1969                                   AttrSpellingListIndex);
1970  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1971    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1972                                   AttrSpellingListIndex);
1973  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1974    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1975                                FA->getFormatIdx(), FA->getFirstArg(),
1976                                AttrSpellingListIndex);
1977  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1978    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1979                                 AttrSpellingListIndex);
1980  else if (isa<AlignedAttr>(Attr))
1981    // AlignedAttrs are handled separately, because we need to handle all
1982    // such attributes on a declaration at the same time.
1983    NewAttr = 0;
1984  else if (!DeclHasAttr(D, Attr))
1985    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
1986
1987  if (NewAttr) {
1988    NewAttr->setInherited(true);
1989    D->addAttr(NewAttr);
1990    return true;
1991  }
1992
1993  return false;
1994}
1995
1996static const Decl *getDefinition(const Decl *D) {
1997  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
1998    return TD->getDefinition();
1999  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2000    return VD->getDefinition();
2001  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2002    const FunctionDecl* Def;
2003    if (FD->hasBody(Def))
2004      return Def;
2005  }
2006  return NULL;
2007}
2008
2009static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2010  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2011       I != E; ++I) {
2012    Attr *Attribute = *I;
2013    if (Attribute->getKind() == Kind)
2014      return true;
2015  }
2016  return false;
2017}
2018
2019/// checkNewAttributesAfterDef - If we already have a definition, check that
2020/// there are no new attributes in this declaration.
2021static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2022  if (!New->hasAttrs())
2023    return;
2024
2025  const Decl *Def = getDefinition(Old);
2026  if (!Def || Def == New)
2027    return;
2028
2029  AttrVec &NewAttributes = New->getAttrs();
2030  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2031    const Attr *NewAttribute = NewAttributes[I];
2032    if (hasAttribute(Def, NewAttribute->getKind())) {
2033      ++I;
2034      continue; // regular attr merging will take care of validating this.
2035    }
2036
2037    if (isa<C11NoReturnAttr>(NewAttribute)) {
2038      // C's _Noreturn is allowed to be added to a function after it is defined.
2039      ++I;
2040      continue;
2041    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2042      if (AA->isAlignas()) {
2043        // C++11 [dcl.align]p6:
2044        //   if any declaration of an entity has an alignment-specifier,
2045        //   every defining declaration of that entity shall specify an
2046        //   equivalent alignment.
2047        // C11 6.7.5/7:
2048        //   If the definition of an object does not have an alignment
2049        //   specifier, any other declaration of that object shall also
2050        //   have no alignment specifier.
2051        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2052          << AA->isC11();
2053        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2054          << AA->isC11();
2055        NewAttributes.erase(NewAttributes.begin() + I);
2056        --E;
2057        continue;
2058      }
2059    }
2060
2061    S.Diag(NewAttribute->getLocation(),
2062           diag::warn_attribute_precede_definition);
2063    S.Diag(Def->getLocation(), diag::note_previous_definition);
2064    NewAttributes.erase(NewAttributes.begin() + I);
2065    --E;
2066  }
2067}
2068
2069/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2070void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2071                               AvailabilityMergeKind AMK) {
2072  if (!Old->hasAttrs() && !New->hasAttrs())
2073    return;
2074
2075  // attributes declared post-definition are currently ignored
2076  checkNewAttributesAfterDef(*this, New, Old);
2077
2078  if (!Old->hasAttrs())
2079    return;
2080
2081  bool foundAny = New->hasAttrs();
2082
2083  // Ensure that any moving of objects within the allocated map is done before
2084  // we process them.
2085  if (!foundAny) New->setAttrs(AttrVec());
2086
2087  for (specific_attr_iterator<InheritableAttr>
2088         i = Old->specific_attr_begin<InheritableAttr>(),
2089         e = Old->specific_attr_end<InheritableAttr>();
2090       i != e; ++i) {
2091    bool Override = false;
2092    // Ignore deprecated/unavailable/availability attributes if requested.
2093    if (isa<DeprecatedAttr>(*i) ||
2094        isa<UnavailableAttr>(*i) ||
2095        isa<AvailabilityAttr>(*i)) {
2096      switch (AMK) {
2097      case AMK_None:
2098        continue;
2099
2100      case AMK_Redeclaration:
2101        break;
2102
2103      case AMK_Override:
2104        Override = true;
2105        break;
2106      }
2107    }
2108
2109    if (mergeDeclAttribute(*this, New, *i, Override))
2110      foundAny = true;
2111  }
2112
2113  if (mergeAlignedAttrs(*this, New, Old))
2114    foundAny = true;
2115
2116  if (!foundAny) New->dropAttrs();
2117}
2118
2119/// mergeParamDeclAttributes - Copy attributes from the old parameter
2120/// to the new one.
2121static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2122                                     const ParmVarDecl *oldDecl,
2123                                     Sema &S) {
2124  // C++11 [dcl.attr.depend]p2:
2125  //   The first declaration of a function shall specify the
2126  //   carries_dependency attribute for its declarator-id if any declaration
2127  //   of the function specifies the carries_dependency attribute.
2128  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2129      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2130    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2131           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2132    // Find the first declaration of the parameter.
2133    // FIXME: Should we build redeclaration chains for function parameters?
2134    const FunctionDecl *FirstFD =
2135      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDecl();
2136    const ParmVarDecl *FirstVD =
2137      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2138    S.Diag(FirstVD->getLocation(),
2139           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2140  }
2141
2142  if (!oldDecl->hasAttrs())
2143    return;
2144
2145  bool foundAny = newDecl->hasAttrs();
2146
2147  // Ensure that any moving of objects within the allocated map is
2148  // done before we process them.
2149  if (!foundAny) newDecl->setAttrs(AttrVec());
2150
2151  for (specific_attr_iterator<InheritableParamAttr>
2152       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2153       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2154    if (!DeclHasAttr(newDecl, *i)) {
2155      InheritableAttr *newAttr =
2156        cast<InheritableParamAttr>((*i)->clone(S.Context));
2157      newAttr->setInherited(true);
2158      newDecl->addAttr(newAttr);
2159      foundAny = true;
2160    }
2161  }
2162
2163  if (!foundAny) newDecl->dropAttrs();
2164}
2165
2166namespace {
2167
2168/// Used in MergeFunctionDecl to keep track of function parameters in
2169/// C.
2170struct GNUCompatibleParamWarning {
2171  ParmVarDecl *OldParm;
2172  ParmVarDecl *NewParm;
2173  QualType PromotedType;
2174};
2175
2176}
2177
2178/// getSpecialMember - get the special member enum for a method.
2179Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2180  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2181    if (Ctor->isDefaultConstructor())
2182      return Sema::CXXDefaultConstructor;
2183
2184    if (Ctor->isCopyConstructor())
2185      return Sema::CXXCopyConstructor;
2186
2187    if (Ctor->isMoveConstructor())
2188      return Sema::CXXMoveConstructor;
2189  } else if (isa<CXXDestructorDecl>(MD)) {
2190    return Sema::CXXDestructor;
2191  } else if (MD->isCopyAssignmentOperator()) {
2192    return Sema::CXXCopyAssignment;
2193  } else if (MD->isMoveAssignmentOperator()) {
2194    return Sema::CXXMoveAssignment;
2195  }
2196
2197  return Sema::CXXInvalid;
2198}
2199
2200/// canRedefineFunction - checks if a function can be redefined. Currently,
2201/// only extern inline functions can be redefined, and even then only in
2202/// GNU89 mode.
2203static bool canRedefineFunction(const FunctionDecl *FD,
2204                                const LangOptions& LangOpts) {
2205  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2206          !LangOpts.CPlusPlus &&
2207          FD->isInlineSpecified() &&
2208          FD->getStorageClass() == SC_Extern);
2209}
2210
2211const AttributedType *Sema::getCallingConvAttributedType(QualType T) const {
2212  const AttributedType *AT = T->getAs<AttributedType>();
2213  while (AT && !AT->isCallingConv())
2214    AT = AT->getModifiedType()->getAs<AttributedType>();
2215  return AT;
2216}
2217
2218template <typename T>
2219static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2220  const DeclContext *DC = Old->getDeclContext();
2221  if (DC->isRecord())
2222    return false;
2223
2224  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2225  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2226    return true;
2227  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2228    return true;
2229  return false;
2230}
2231
2232/// MergeFunctionDecl - We just parsed a function 'New' from
2233/// declarator D which has the same name and scope as a previous
2234/// declaration 'Old'.  Figure out how to resolve this situation,
2235/// merging decls or emitting diagnostics as appropriate.
2236///
2237/// In C++, New and Old must be declarations that are not
2238/// overloaded. Use IsOverload to determine whether New and Old are
2239/// overloaded, and to select the Old declaration that New should be
2240/// merged with.
2241///
2242/// Returns true if there was an error, false otherwise.
2243bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S,
2244                             bool MergeTypeWithOld) {
2245  // Verify the old decl was also a function.
2246  FunctionDecl *Old = 0;
2247  if (FunctionTemplateDecl *OldFunctionTemplate
2248        = dyn_cast<FunctionTemplateDecl>(OldD))
2249    Old = OldFunctionTemplate->getTemplatedDecl();
2250  else
2251    Old = dyn_cast<FunctionDecl>(OldD);
2252  if (!Old) {
2253    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2254      if (New->getFriendObjectKind()) {
2255        Diag(New->getLocation(), diag::err_using_decl_friend);
2256        Diag(Shadow->getTargetDecl()->getLocation(),
2257             diag::note_using_decl_target);
2258        Diag(Shadow->getUsingDecl()->getLocation(),
2259             diag::note_using_decl) << 0;
2260        return true;
2261      }
2262
2263      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2264      Diag(Shadow->getTargetDecl()->getLocation(),
2265           diag::note_using_decl_target);
2266      Diag(Shadow->getUsingDecl()->getLocation(),
2267           diag::note_using_decl) << 0;
2268      return true;
2269    }
2270
2271    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2272      << New->getDeclName();
2273    Diag(OldD->getLocation(), diag::note_previous_definition);
2274    return true;
2275  }
2276
2277  // If the old declaration is invalid, just give up here.
2278  if (Old->isInvalidDecl())
2279    return true;
2280
2281  // Determine whether the previous declaration was a definition,
2282  // implicit declaration, or a declaration.
2283  diag::kind PrevDiag;
2284  if (Old->isThisDeclarationADefinition())
2285    PrevDiag = diag::note_previous_definition;
2286  else if (Old->isImplicit())
2287    PrevDiag = diag::note_previous_implicit_declaration;
2288  else
2289    PrevDiag = diag::note_previous_declaration;
2290
2291  // Don't complain about this if we're in GNU89 mode and the old function
2292  // is an extern inline function.
2293  // Don't complain about specializations. They are not supposed to have
2294  // storage classes.
2295  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2296      New->getStorageClass() == SC_Static &&
2297      Old->hasExternalFormalLinkage() &&
2298      !New->getTemplateSpecializationInfo() &&
2299      !canRedefineFunction(Old, getLangOpts())) {
2300    if (getLangOpts().MicrosoftExt) {
2301      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2302      Diag(Old->getLocation(), PrevDiag);
2303    } else {
2304      Diag(New->getLocation(), diag::err_static_non_static) << New;
2305      Diag(Old->getLocation(), PrevDiag);
2306      return true;
2307    }
2308  }
2309
2310
2311  // If a function is first declared with a calling convention, but is later
2312  // declared or defined without one, all following decls assume the calling
2313  // convention of the first.
2314  //
2315  // It's OK if a function is first declared without a calling convention,
2316  // but is later declared or defined with the default calling convention.
2317  //
2318  // To test if either decl has an explicit calling convention, we look for
2319  // AttributedType sugar nodes on the type as written.  If they are missing or
2320  // were canonicalized away, we assume the calling convention was implicit.
2321  //
2322  // Note also that we DO NOT return at this point, because we still have
2323  // other tests to run.
2324  QualType OldQType = Context.getCanonicalType(Old->getType());
2325  QualType NewQType = Context.getCanonicalType(New->getType());
2326  const FunctionType *OldType = cast<FunctionType>(OldQType);
2327  const FunctionType *NewType = cast<FunctionType>(NewQType);
2328  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2329  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2330  bool RequiresAdjustment = false;
2331
2332  if (OldTypeInfo.getCC() != NewTypeInfo.getCC()) {
2333    FunctionDecl *First = Old->getFirstDecl();
2334    const FunctionType *FT =
2335        First->getType().getCanonicalType()->castAs<FunctionType>();
2336    FunctionType::ExtInfo FI = FT->getExtInfo();
2337    bool NewCCExplicit = getCallingConvAttributedType(New->getType());
2338    if (!NewCCExplicit) {
2339      // Inherit the CC from the previous declaration if it was specified
2340      // there but not here.
2341      NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2342      RequiresAdjustment = true;
2343    } else {
2344      // Calling conventions aren't compatible, so complain.
2345      bool FirstCCExplicit = getCallingConvAttributedType(First->getType());
2346      Diag(New->getLocation(), diag::err_cconv_change)
2347        << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2348        << !FirstCCExplicit
2349        << (!FirstCCExplicit ? "" :
2350            FunctionType::getNameForCallConv(FI.getCC()));
2351
2352      // Put the note on the first decl, since it is the one that matters.
2353      Diag(First->getLocation(), diag::note_previous_declaration);
2354      return true;
2355    }
2356  }
2357
2358  // FIXME: diagnose the other way around?
2359  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2360    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2361    RequiresAdjustment = true;
2362  }
2363
2364  // Merge regparm attribute.
2365  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2366      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2367    if (NewTypeInfo.getHasRegParm()) {
2368      Diag(New->getLocation(), diag::err_regparm_mismatch)
2369        << NewType->getRegParmType()
2370        << OldType->getRegParmType();
2371      Diag(Old->getLocation(), diag::note_previous_declaration);
2372      return true;
2373    }
2374
2375    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2376    RequiresAdjustment = true;
2377  }
2378
2379  // Merge ns_returns_retained attribute.
2380  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2381    if (NewTypeInfo.getProducesResult()) {
2382      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2383      Diag(Old->getLocation(), diag::note_previous_declaration);
2384      return true;
2385    }
2386
2387    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2388    RequiresAdjustment = true;
2389  }
2390
2391  if (RequiresAdjustment) {
2392    const FunctionType *AdjustedType = New->getType()->getAs<FunctionType>();
2393    AdjustedType = Context.adjustFunctionType(AdjustedType, NewTypeInfo);
2394    New->setType(QualType(AdjustedType, 0));
2395    NewQType = Context.getCanonicalType(New->getType());
2396    NewType = cast<FunctionType>(NewQType);
2397  }
2398
2399  // If this redeclaration makes the function inline, we may need to add it to
2400  // UndefinedButUsed.
2401  if (!Old->isInlined() && New->isInlined() &&
2402      !New->hasAttr<GNUInlineAttr>() &&
2403      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2404      Old->isUsed(false) &&
2405      !Old->isDefined() && !New->isThisDeclarationADefinition())
2406    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2407                                           SourceLocation()));
2408
2409  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2410  // about it.
2411  if (New->hasAttr<GNUInlineAttr>() &&
2412      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2413    UndefinedButUsed.erase(Old->getCanonicalDecl());
2414  }
2415
2416  if (getLangOpts().CPlusPlus) {
2417    // (C++98 13.1p2):
2418    //   Certain function declarations cannot be overloaded:
2419    //     -- Function declarations that differ only in the return type
2420    //        cannot be overloaded.
2421
2422    // Go back to the type source info to compare the declared return types,
2423    // per C++1y [dcl.type.auto]p13:
2424    //   Redeclarations or specializations of a function or function template
2425    //   with a declared return type that uses a placeholder type shall also
2426    //   use that placeholder, not a deduced type.
2427    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2428      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2429      : OldType)->getResultType();
2430    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2431      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2432      : NewType)->getResultType();
2433    QualType ResQT;
2434    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType) &&
2435        !((NewQType->isDependentType() || OldQType->isDependentType()) &&
2436          New->isLocalExternDecl())) {
2437      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2438          OldDeclaredReturnType->isObjCObjectPointerType())
2439        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2440      if (ResQT.isNull()) {
2441        if (New->isCXXClassMember() && New->isOutOfLine())
2442          Diag(New->getLocation(),
2443               diag::err_member_def_does_not_match_ret_type) << New;
2444        else
2445          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2446        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2447        return true;
2448      }
2449      else
2450        NewQType = ResQT;
2451    }
2452
2453    QualType OldReturnType = OldType->getResultType();
2454    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2455    if (OldReturnType != NewReturnType) {
2456      // If this function has a deduced return type and has already been
2457      // defined, copy the deduced value from the old declaration.
2458      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2459      if (OldAT && OldAT->isDeduced()) {
2460        New->setType(
2461            SubstAutoType(New->getType(),
2462                          OldAT->isDependentType() ? Context.DependentTy
2463                                                   : OldAT->getDeducedType()));
2464        NewQType = Context.getCanonicalType(
2465            SubstAutoType(NewQType,
2466                          OldAT->isDependentType() ? Context.DependentTy
2467                                                   : OldAT->getDeducedType()));
2468      }
2469    }
2470
2471    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2472    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2473    if (OldMethod && NewMethod) {
2474      // Preserve triviality.
2475      NewMethod->setTrivial(OldMethod->isTrivial());
2476
2477      // MSVC allows explicit template specialization at class scope:
2478      // 2 CXMethodDecls referring to the same function will be injected.
2479      // We don't want a redeclartion error.
2480      bool IsClassScopeExplicitSpecialization =
2481                              OldMethod->isFunctionTemplateSpecialization() &&
2482                              NewMethod->isFunctionTemplateSpecialization();
2483      bool isFriend = NewMethod->getFriendObjectKind();
2484
2485      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2486          !IsClassScopeExplicitSpecialization) {
2487        //    -- Member function declarations with the same name and the
2488        //       same parameter types cannot be overloaded if any of them
2489        //       is a static member function declaration.
2490        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2491          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2492          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2493          return true;
2494        }
2495
2496        // C++ [class.mem]p1:
2497        //   [...] A member shall not be declared twice in the
2498        //   member-specification, except that a nested class or member
2499        //   class template can be declared and then later defined.
2500        if (ActiveTemplateInstantiations.empty()) {
2501          unsigned NewDiag;
2502          if (isa<CXXConstructorDecl>(OldMethod))
2503            NewDiag = diag::err_constructor_redeclared;
2504          else if (isa<CXXDestructorDecl>(NewMethod))
2505            NewDiag = diag::err_destructor_redeclared;
2506          else if (isa<CXXConversionDecl>(NewMethod))
2507            NewDiag = diag::err_conv_function_redeclared;
2508          else
2509            NewDiag = diag::err_member_redeclared;
2510
2511          Diag(New->getLocation(), NewDiag);
2512        } else {
2513          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2514            << New << New->getType();
2515        }
2516        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2517
2518      // Complain if this is an explicit declaration of a special
2519      // member that was initially declared implicitly.
2520      //
2521      // As an exception, it's okay to befriend such methods in order
2522      // to permit the implicit constructor/destructor/operator calls.
2523      } else if (OldMethod->isImplicit()) {
2524        if (isFriend) {
2525          NewMethod->setImplicit();
2526        } else {
2527          Diag(NewMethod->getLocation(),
2528               diag::err_definition_of_implicitly_declared_member)
2529            << New << getSpecialMember(OldMethod);
2530          return true;
2531        }
2532      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2533        Diag(NewMethod->getLocation(),
2534             diag::err_definition_of_explicitly_defaulted_member)
2535          << getSpecialMember(OldMethod);
2536        return true;
2537      }
2538    }
2539
2540    // C++11 [dcl.attr.noreturn]p1:
2541    //   The first declaration of a function shall specify the noreturn
2542    //   attribute if any declaration of that function specifies the noreturn
2543    //   attribute.
2544    if (New->hasAttr<CXX11NoReturnAttr>() &&
2545        !Old->hasAttr<CXX11NoReturnAttr>()) {
2546      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2547           diag::err_noreturn_missing_on_first_decl);
2548      Diag(Old->getFirstDecl()->getLocation(),
2549           diag::note_noreturn_missing_first_decl);
2550    }
2551
2552    // C++11 [dcl.attr.depend]p2:
2553    //   The first declaration of a function shall specify the
2554    //   carries_dependency attribute for its declarator-id if any declaration
2555    //   of the function specifies the carries_dependency attribute.
2556    if (New->hasAttr<CarriesDependencyAttr>() &&
2557        !Old->hasAttr<CarriesDependencyAttr>()) {
2558      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2559           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2560      Diag(Old->getFirstDecl()->getLocation(),
2561           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2562    }
2563
2564    // (C++98 8.3.5p3):
2565    //   All declarations for a function shall agree exactly in both the
2566    //   return type and the parameter-type-list.
2567    // We also want to respect all the extended bits except noreturn.
2568
2569    // noreturn should now match unless the old type info didn't have it.
2570    QualType OldQTypeForComparison = OldQType;
2571    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2572      assert(OldQType == QualType(OldType, 0));
2573      const FunctionType *OldTypeForComparison
2574        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2575      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2576      assert(OldQTypeForComparison.isCanonical());
2577    }
2578
2579    if (haveIncompatibleLanguageLinkages(Old, New)) {
2580      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2581      Diag(Old->getLocation(), PrevDiag);
2582      return true;
2583    }
2584
2585    if (OldQTypeForComparison == NewQType)
2586      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2587
2588    if ((NewQType->isDependentType() || OldQType->isDependentType()) &&
2589        New->isLocalExternDecl()) {
2590      // It's OK if we couldn't merge types for a local function declaraton
2591      // if either the old or new type is dependent. We'll merge the types
2592      // when we instantiate the function.
2593      return false;
2594    }
2595
2596    // Fall through for conflicting redeclarations and redefinitions.
2597  }
2598
2599  // C: Function types need to be compatible, not identical. This handles
2600  // duplicate function decls like "void f(int); void f(enum X);" properly.
2601  if (!getLangOpts().CPlusPlus &&
2602      Context.typesAreCompatible(OldQType, NewQType)) {
2603    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2604    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2605    const FunctionProtoType *OldProto = 0;
2606    if (MergeTypeWithOld && isa<FunctionNoProtoType>(NewFuncType) &&
2607        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2608      // The old declaration provided a function prototype, but the
2609      // new declaration does not. Merge in the prototype.
2610      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2611      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2612                                                 OldProto->arg_type_end());
2613      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2614                                         ParamTypes,
2615                                         OldProto->getExtProtoInfo());
2616      New->setType(NewQType);
2617      New->setHasInheritedPrototype();
2618
2619      // Synthesize a parameter for each argument type.
2620      SmallVector<ParmVarDecl*, 16> Params;
2621      for (FunctionProtoType::arg_type_iterator
2622             ParamType = OldProto->arg_type_begin(),
2623             ParamEnd = OldProto->arg_type_end();
2624           ParamType != ParamEnd; ++ParamType) {
2625        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2626                                                 SourceLocation(),
2627                                                 SourceLocation(), 0,
2628                                                 *ParamType, /*TInfo=*/0,
2629                                                 SC_None,
2630                                                 0);
2631        Param->setScopeInfo(0, Params.size());
2632        Param->setImplicit();
2633        Params.push_back(Param);
2634      }
2635
2636      New->setParams(Params);
2637    }
2638
2639    return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2640  }
2641
2642  // GNU C permits a K&R definition to follow a prototype declaration
2643  // if the declared types of the parameters in the K&R definition
2644  // match the types in the prototype declaration, even when the
2645  // promoted types of the parameters from the K&R definition differ
2646  // from the types in the prototype. GCC then keeps the types from
2647  // the prototype.
2648  //
2649  // If a variadic prototype is followed by a non-variadic K&R definition,
2650  // the K&R definition becomes variadic.  This is sort of an edge case, but
2651  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2652  // C99 6.9.1p8.
2653  if (!getLangOpts().CPlusPlus &&
2654      Old->hasPrototype() && !New->hasPrototype() &&
2655      New->getType()->getAs<FunctionProtoType>() &&
2656      Old->getNumParams() == New->getNumParams()) {
2657    SmallVector<QualType, 16> ArgTypes;
2658    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2659    const FunctionProtoType *OldProto
2660      = Old->getType()->getAs<FunctionProtoType>();
2661    const FunctionProtoType *NewProto
2662      = New->getType()->getAs<FunctionProtoType>();
2663
2664    // Determine whether this is the GNU C extension.
2665    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2666                                               NewProto->getResultType());
2667    bool LooseCompatible = !MergedReturn.isNull();
2668    for (unsigned Idx = 0, End = Old->getNumParams();
2669         LooseCompatible && Idx != End; ++Idx) {
2670      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2671      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2672      if (Context.typesAreCompatible(OldParm->getType(),
2673                                     NewProto->getArgType(Idx))) {
2674        ArgTypes.push_back(NewParm->getType());
2675      } else if (Context.typesAreCompatible(OldParm->getType(),
2676                                            NewParm->getType(),
2677                                            /*CompareUnqualified=*/true)) {
2678        GNUCompatibleParamWarning Warn
2679          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2680        Warnings.push_back(Warn);
2681        ArgTypes.push_back(NewParm->getType());
2682      } else
2683        LooseCompatible = false;
2684    }
2685
2686    if (LooseCompatible) {
2687      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2688        Diag(Warnings[Warn].NewParm->getLocation(),
2689             diag::ext_param_promoted_not_compatible_with_prototype)
2690          << Warnings[Warn].PromotedType
2691          << Warnings[Warn].OldParm->getType();
2692        if (Warnings[Warn].OldParm->getLocation().isValid())
2693          Diag(Warnings[Warn].OldParm->getLocation(),
2694               diag::note_previous_declaration);
2695      }
2696
2697      if (MergeTypeWithOld)
2698        New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2699                                             OldProto->getExtProtoInfo()));
2700      return MergeCompatibleFunctionDecls(New, Old, S, MergeTypeWithOld);
2701    }
2702
2703    // Fall through to diagnose conflicting types.
2704  }
2705
2706  // A function that has already been declared has been redeclared or
2707  // defined with a different type; show an appropriate diagnostic.
2708
2709  // If the previous declaration was an implicitly-generated builtin
2710  // declaration, then at the very least we should use a specialized note.
2711  unsigned BuiltinID;
2712  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2713    // If it's actually a library-defined builtin function like 'malloc'
2714    // or 'printf', just warn about the incompatible redeclaration.
2715    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2716      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2717      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2718        << Old << Old->getType();
2719
2720      // If this is a global redeclaration, just forget hereafter
2721      // about the "builtin-ness" of the function.
2722      //
2723      // Doing this for local extern declarations is problematic.  If
2724      // the builtin declaration remains visible, a second invalid
2725      // local declaration will produce a hard error; if it doesn't
2726      // remain visible, a single bogus local redeclaration (which is
2727      // actually only a warning) could break all the downstream code.
2728      if (!New->getLexicalDeclContext()->isFunctionOrMethod())
2729        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2730
2731      return false;
2732    }
2733
2734    PrevDiag = diag::note_previous_builtin_declaration;
2735  }
2736
2737  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2738  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2739  return true;
2740}
2741
2742/// \brief Completes the merge of two function declarations that are
2743/// known to be compatible.
2744///
2745/// This routine handles the merging of attributes and other
2746/// properties of function declarations from the old declaration to
2747/// the new declaration, once we know that New is in fact a
2748/// redeclaration of Old.
2749///
2750/// \returns false
2751bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2752                                        Scope *S, bool MergeTypeWithOld) {
2753  // Merge the attributes
2754  mergeDeclAttributes(New, Old);
2755
2756  // Merge "pure" flag.
2757  if (Old->isPure())
2758    New->setPure();
2759
2760  // Merge "used" flag.
2761  New->setIsUsed(Old->isUsed(false));
2762
2763  // Merge attributes from the parameters.  These can mismatch with K&R
2764  // declarations.
2765  if (New->getNumParams() == Old->getNumParams())
2766    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2767      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2768                               *this);
2769
2770  if (getLangOpts().CPlusPlus)
2771    return MergeCXXFunctionDecl(New, Old, S);
2772
2773  // Merge the function types so the we get the composite types for the return
2774  // and argument types. Per C11 6.2.7/4, only update the type if the old decl
2775  // was visible.
2776  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2777  if (!Merged.isNull() && MergeTypeWithOld)
2778    New->setType(Merged);
2779
2780  return false;
2781}
2782
2783
2784void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2785                                ObjCMethodDecl *oldMethod) {
2786
2787  // Merge the attributes, including deprecated/unavailable
2788  AvailabilityMergeKind MergeKind =
2789    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2790                                                   : AMK_Override;
2791  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2792
2793  // Merge attributes from the parameters.
2794  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2795                                       oe = oldMethod->param_end();
2796  for (ObjCMethodDecl::param_iterator
2797         ni = newMethod->param_begin(), ne = newMethod->param_end();
2798       ni != ne && oi != oe; ++ni, ++oi)
2799    mergeParamDeclAttributes(*ni, *oi, *this);
2800
2801  CheckObjCMethodOverride(newMethod, oldMethod);
2802}
2803
2804/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2805/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2806/// emitting diagnostics as appropriate.
2807///
2808/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2809/// to here in AddInitializerToDecl. We can't check them before the initializer
2810/// is attached.
2811void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old,
2812                             bool MergeTypeWithOld) {
2813  if (New->isInvalidDecl() || Old->isInvalidDecl())
2814    return;
2815
2816  QualType MergedT;
2817  if (getLangOpts().CPlusPlus) {
2818    if (New->getType()->isUndeducedType()) {
2819      // We don't know what the new type is until the initializer is attached.
2820      return;
2821    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2822      // These could still be something that needs exception specs checked.
2823      return MergeVarDeclExceptionSpecs(New, Old);
2824    }
2825    // C++ [basic.link]p10:
2826    //   [...] the types specified by all declarations referring to a given
2827    //   object or function shall be identical, except that declarations for an
2828    //   array object can specify array types that differ by the presence or
2829    //   absence of a major array bound (8.3.4).
2830    else if (Old->getType()->isIncompleteArrayType() &&
2831             New->getType()->isArrayType()) {
2832      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2833      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2834      if (Context.hasSameType(OldArray->getElementType(),
2835                              NewArray->getElementType()))
2836        MergedT = New->getType();
2837    } else if (Old->getType()->isArrayType() &&
2838               New->getType()->isIncompleteArrayType()) {
2839      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2840      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2841      if (Context.hasSameType(OldArray->getElementType(),
2842                              NewArray->getElementType()))
2843        MergedT = Old->getType();
2844    } else if (New->getType()->isObjCObjectPointerType() &&
2845               Old->getType()->isObjCObjectPointerType()) {
2846      MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2847                                              Old->getType());
2848    }
2849  } else {
2850    // C 6.2.7p2:
2851    //   All declarations that refer to the same object or function shall have
2852    //   compatible type.
2853    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2854  }
2855  if (MergedT.isNull()) {
2856    // It's OK if we couldn't merge types if either type is dependent, for a
2857    // block-scope variable. In other cases (static data members of class
2858    // templates, variable templates, ...), we require the types to be
2859    // equivalent.
2860    // FIXME: The C++ standard doesn't say anything about this.
2861    if ((New->getType()->isDependentType() ||
2862         Old->getType()->isDependentType()) && New->isLocalVarDecl()) {
2863      // If the old type was dependent, we can't merge with it, so the new type
2864      // becomes dependent for now. We'll reproduce the original type when we
2865      // instantiate the TypeSourceInfo for the variable.
2866      if (!New->getType()->isDependentType() && MergeTypeWithOld)
2867        New->setType(Context.DependentTy);
2868      return;
2869    }
2870
2871    // FIXME: Even if this merging succeeds, some other non-visible declaration
2872    // of this variable might have an incompatible type. For instance:
2873    //
2874    //   extern int arr[];
2875    //   void f() { extern int arr[2]; }
2876    //   void g() { extern int arr[3]; }
2877    //
2878    // Neither C nor C++ requires a diagnostic for this, but we should still try
2879    // to diagnose it.
2880    Diag(New->getLocation(), diag::err_redefinition_different_type)
2881      << New->getDeclName() << New->getType() << Old->getType();
2882    Diag(Old->getLocation(), diag::note_previous_definition);
2883    return New->setInvalidDecl();
2884  }
2885
2886  // Don't actually update the type on the new declaration if the old
2887  // declaration was an extern declaration in a different scope.
2888  if (MergeTypeWithOld)
2889    New->setType(MergedT);
2890}
2891
2892static bool mergeTypeWithPrevious(Sema &S, VarDecl *NewVD, VarDecl *OldVD,
2893                                  LookupResult &Previous) {
2894  // C11 6.2.7p4:
2895  //   For an identifier with internal or external linkage declared
2896  //   in a scope in which a prior declaration of that identifier is
2897  //   visible, if the prior declaration specifies internal or
2898  //   external linkage, the type of the identifier at the later
2899  //   declaration becomes the composite type.
2900  //
2901  // If the variable isn't visible, we do not merge with its type.
2902  if (Previous.isShadowed())
2903    return false;
2904
2905  if (S.getLangOpts().CPlusPlus) {
2906    // C++11 [dcl.array]p3:
2907    //   If there is a preceding declaration of the entity in the same
2908    //   scope in which the bound was specified, an omitted array bound
2909    //   is taken to be the same as in that earlier declaration.
2910    return NewVD->isPreviousDeclInSameBlockScope() ||
2911           (!OldVD->getLexicalDeclContext()->isFunctionOrMethod() &&
2912            !NewVD->getLexicalDeclContext()->isFunctionOrMethod());
2913  } else {
2914    // If the old declaration was function-local, don't merge with its
2915    // type unless we're in the same function.
2916    return !OldVD->getLexicalDeclContext()->isFunctionOrMethod() ||
2917           OldVD->getLexicalDeclContext() == NewVD->getLexicalDeclContext();
2918  }
2919}
2920
2921/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2922/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2923/// situation, merging decls or emitting diagnostics as appropriate.
2924///
2925/// Tentative definition rules (C99 6.9.2p2) are checked by
2926/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2927/// definitions here, since the initializer hasn't been attached.
2928///
2929void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2930  // If the new decl is already invalid, don't do any other checking.
2931  if (New->isInvalidDecl())
2932    return;
2933
2934  // Verify the old decl was also a variable or variable template.
2935  VarDecl *Old = 0;
2936  if (Previous.isSingleResult() &&
2937      (Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2938    if (New->getDescribedVarTemplate())
2939      Old = Old->getDescribedVarTemplate() ? Old : 0;
2940    else
2941      Old = Old->getDescribedVarTemplate() ? 0 : Old;
2942  }
2943  if (!Old) {
2944    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2945      << New->getDeclName();
2946    Diag(Previous.getRepresentativeDecl()->getLocation(),
2947         diag::note_previous_definition);
2948    return New->setInvalidDecl();
2949  }
2950
2951  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2952    return;
2953
2954  // C++ [class.mem]p1:
2955  //   A member shall not be declared twice in the member-specification [...]
2956  //
2957  // Here, we need only consider static data members.
2958  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2959    Diag(New->getLocation(), diag::err_duplicate_member)
2960      << New->getIdentifier();
2961    Diag(Old->getLocation(), diag::note_previous_declaration);
2962    New->setInvalidDecl();
2963  }
2964
2965  mergeDeclAttributes(New, Old);
2966  // Warn if an already-declared variable is made a weak_import in a subsequent
2967  // declaration
2968  if (New->getAttr<WeakImportAttr>() &&
2969      Old->getStorageClass() == SC_None &&
2970      !Old->getAttr<WeakImportAttr>()) {
2971    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2972    Diag(Old->getLocation(), diag::note_previous_definition);
2973    // Remove weak_import attribute on new declaration.
2974    New->dropAttr<WeakImportAttr>();
2975  }
2976
2977  // Merge the types.
2978  MergeVarDeclTypes(New, Old, mergeTypeWithPrevious(*this, New, Old, Previous));
2979
2980  if (New->isInvalidDecl())
2981    return;
2982
2983  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2984  if (New->getStorageClass() == SC_Static &&
2985      !New->isStaticDataMember() &&
2986      Old->hasExternalFormalLinkage()) {
2987    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2988    Diag(Old->getLocation(), diag::note_previous_definition);
2989    return New->setInvalidDecl();
2990  }
2991  // C99 6.2.2p4:
2992  //   For an identifier declared with the storage-class specifier
2993  //   extern in a scope in which a prior declaration of that
2994  //   identifier is visible,23) if the prior declaration specifies
2995  //   internal or external linkage, the linkage of the identifier at
2996  //   the later declaration is the same as the linkage specified at
2997  //   the prior declaration. If no prior declaration is visible, or
2998  //   if the prior declaration specifies no linkage, then the
2999  //   identifier has external linkage.
3000  if (New->hasExternalStorage() && Old->hasLinkage())
3001    /* Okay */;
3002  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
3003           !New->isStaticDataMember() &&
3004           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
3005    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
3006    Diag(Old->getLocation(), diag::note_previous_definition);
3007    return New->setInvalidDecl();
3008  }
3009
3010  // Check if extern is followed by non-extern and vice-versa.
3011  if (New->hasExternalStorage() &&
3012      !Old->hasLinkage() && Old->isLocalVarDecl()) {
3013    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
3014    Diag(Old->getLocation(), diag::note_previous_definition);
3015    return New->setInvalidDecl();
3016  }
3017  if (Old->hasLinkage() && New->isLocalVarDecl() &&
3018      !New->hasExternalStorage()) {
3019    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
3020    Diag(Old->getLocation(), diag::note_previous_definition);
3021    return New->setInvalidDecl();
3022  }
3023
3024  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
3025
3026  // FIXME: The test for external storage here seems wrong? We still
3027  // need to check for mismatches.
3028  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
3029      // Don't complain about out-of-line definitions of static members.
3030      !(Old->getLexicalDeclContext()->isRecord() &&
3031        !New->getLexicalDeclContext()->isRecord())) {
3032    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
3033    Diag(Old->getLocation(), diag::note_previous_definition);
3034    return New->setInvalidDecl();
3035  }
3036
3037  if (New->getTLSKind() != Old->getTLSKind()) {
3038    if (!Old->getTLSKind()) {
3039      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
3040      Diag(Old->getLocation(), diag::note_previous_declaration);
3041    } else if (!New->getTLSKind()) {
3042      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
3043      Diag(Old->getLocation(), diag::note_previous_declaration);
3044    } else {
3045      // Do not allow redeclaration to change the variable between requiring
3046      // static and dynamic initialization.
3047      // FIXME: GCC allows this, but uses the TLS keyword on the first
3048      // declaration to determine the kind. Do we need to be compatible here?
3049      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
3050        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
3051      Diag(Old->getLocation(), diag::note_previous_declaration);
3052    }
3053  }
3054
3055  // C++ doesn't have tentative definitions, so go right ahead and check here.
3056  const VarDecl *Def;
3057  if (getLangOpts().CPlusPlus &&
3058      New->isThisDeclarationADefinition() == VarDecl::Definition &&
3059      (Def = Old->getDefinition())) {
3060    Diag(New->getLocation(), diag::err_redefinition) << New;
3061    Diag(Def->getLocation(), diag::note_previous_definition);
3062    New->setInvalidDecl();
3063    return;
3064  }
3065
3066  if (haveIncompatibleLanguageLinkages(Old, New)) {
3067    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3068    Diag(Old->getLocation(), diag::note_previous_definition);
3069    New->setInvalidDecl();
3070    return;
3071  }
3072
3073  // Merge "used" flag.
3074  New->setIsUsed(Old->isUsed(false));
3075
3076  // Keep a chain of previous declarations.
3077  New->setPreviousDecl(Old);
3078
3079  // Inherit access appropriately.
3080  New->setAccess(Old->getAccess());
3081
3082  if (VarTemplateDecl *VTD = New->getDescribedVarTemplate()) {
3083    if (New->isStaticDataMember() && New->isOutOfLine())
3084      VTD->setAccess(New->getAccess());
3085  }
3086}
3087
3088/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3089/// no declarator (e.g. "struct foo;") is parsed.
3090Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3091                                       DeclSpec &DS) {
3092  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3093}
3094
3095static void HandleTagNumbering(Sema &S, const TagDecl *Tag) {
3096  if (!S.Context.getLangOpts().CPlusPlus)
3097    return;
3098
3099  if (isa<CXXRecordDecl>(Tag->getParent())) {
3100    // If this tag is the direct child of a class, number it if
3101    // it is anonymous.
3102    if (!Tag->getName().empty() || Tag->getTypedefNameForAnonDecl())
3103      return;
3104    MangleNumberingContext &MCtx =
3105        S.Context.getManglingNumberContext(Tag->getParent());
3106    S.Context.setManglingNumber(Tag, MCtx.getManglingNumber(Tag));
3107    return;
3108  }
3109
3110  // If this tag isn't a direct child of a class, number it if it is local.
3111  Decl *ManglingContextDecl;
3112  if (MangleNumberingContext *MCtx =
3113          S.getCurrentMangleNumberContext(Tag->getDeclContext(),
3114                                          ManglingContextDecl)) {
3115    S.Context.setManglingNumber(Tag, MCtx->getManglingNumber(Tag));
3116  }
3117}
3118
3119/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3120/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3121/// parameters to cope with template friend declarations.
3122Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3123                                       DeclSpec &DS,
3124                                       MultiTemplateParamsArg TemplateParams,
3125                                       bool IsExplicitInstantiation) {
3126  Decl *TagD = 0;
3127  TagDecl *Tag = 0;
3128  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3129      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3130      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3131      DS.getTypeSpecType() == DeclSpec::TST_union ||
3132      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3133    TagD = DS.getRepAsDecl();
3134
3135    if (!TagD) // We probably had an error
3136      return 0;
3137
3138    // Note that the above type specs guarantee that the
3139    // type rep is a Decl, whereas in many of the others
3140    // it's a Type.
3141    if (isa<TagDecl>(TagD))
3142      Tag = cast<TagDecl>(TagD);
3143    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3144      Tag = CTD->getTemplatedDecl();
3145  }
3146
3147  if (Tag) {
3148    HandleTagNumbering(*this, Tag);
3149    Tag->setFreeStanding();
3150    if (Tag->isInvalidDecl())
3151      return Tag;
3152  }
3153
3154  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3155    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3156    // or incomplete types shall not be restrict-qualified."
3157    if (TypeQuals & DeclSpec::TQ_restrict)
3158      Diag(DS.getRestrictSpecLoc(),
3159           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3160           << DS.getSourceRange();
3161  }
3162
3163  if (DS.isConstexprSpecified()) {
3164    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3165    // and definitions of functions and variables.
3166    if (Tag)
3167      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3168        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3169            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3170            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3171            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3172    else
3173      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3174    // Don't emit warnings after this error.
3175    return TagD;
3176  }
3177
3178  DiagnoseFunctionSpecifiers(DS);
3179
3180  if (DS.isFriendSpecified()) {
3181    // If we're dealing with a decl but not a TagDecl, assume that
3182    // whatever routines created it handled the friendship aspect.
3183    if (TagD && !Tag)
3184      return 0;
3185    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3186  }
3187
3188  CXXScopeSpec &SS = DS.getTypeSpecScope();
3189  bool IsExplicitSpecialization =
3190    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3191  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3192      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3193    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3194    // nested-name-specifier unless it is an explicit instantiation
3195    // or an explicit specialization.
3196    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3197    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3198      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3199          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3200          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3201          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3202      << SS.getRange();
3203    return 0;
3204  }
3205
3206  // Track whether this decl-specifier declares anything.
3207  bool DeclaresAnything = true;
3208
3209  // Handle anonymous struct definitions.
3210  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3211    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3212        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3213      if (getLangOpts().CPlusPlus ||
3214          Record->getDeclContext()->isRecord())
3215        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3216
3217      DeclaresAnything = false;
3218    }
3219  }
3220
3221  // Check for Microsoft C extension: anonymous struct member.
3222  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3223      CurContext->isRecord() &&
3224      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3225    // Handle 2 kinds of anonymous struct:
3226    //   struct STRUCT;
3227    // and
3228    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3229    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3230    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3231        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3232         DS.getRepAsType().get()->isStructureType())) {
3233      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3234        << DS.getSourceRange();
3235      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3236    }
3237  }
3238
3239  // Skip all the checks below if we have a type error.
3240  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3241      (TagD && TagD->isInvalidDecl()))
3242    return TagD;
3243
3244  if (getLangOpts().CPlusPlus &&
3245      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3246    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3247      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3248          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3249        DeclaresAnything = false;
3250
3251  if (!DS.isMissingDeclaratorOk()) {
3252    // Customize diagnostic for a typedef missing a name.
3253    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3254      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3255        << DS.getSourceRange();
3256    else
3257      DeclaresAnything = false;
3258  }
3259
3260  if (DS.isModulePrivateSpecified() &&
3261      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3262    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3263      << Tag->getTagKind()
3264      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3265
3266  ActOnDocumentableDecl(TagD);
3267
3268  // C 6.7/2:
3269  //   A declaration [...] shall declare at least a declarator [...], a tag,
3270  //   or the members of an enumeration.
3271  // C++ [dcl.dcl]p3:
3272  //   [If there are no declarators], and except for the declaration of an
3273  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3274  //   names into the program, or shall redeclare a name introduced by a
3275  //   previous declaration.
3276  if (!DeclaresAnything) {
3277    // In C, we allow this as a (popular) extension / bug. Don't bother
3278    // producing further diagnostics for redundant qualifiers after this.
3279    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3280    return TagD;
3281  }
3282
3283  // C++ [dcl.stc]p1:
3284  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3285  //   init-declarator-list of the declaration shall not be empty.
3286  // C++ [dcl.fct.spec]p1:
3287  //   If a cv-qualifier appears in a decl-specifier-seq, the
3288  //   init-declarator-list of the declaration shall not be empty.
3289  //
3290  // Spurious qualifiers here appear to be valid in C.
3291  unsigned DiagID = diag::warn_standalone_specifier;
3292  if (getLangOpts().CPlusPlus)
3293    DiagID = diag::ext_standalone_specifier;
3294
3295  // Note that a linkage-specification sets a storage class, but
3296  // 'extern "C" struct foo;' is actually valid and not theoretically
3297  // useless.
3298  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3299    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3300      Diag(DS.getStorageClassSpecLoc(), DiagID)
3301        << DeclSpec::getSpecifierName(SCS);
3302
3303  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3304    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3305      << DeclSpec::getSpecifierName(TSCS);
3306  if (DS.getTypeQualifiers()) {
3307    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3308      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3309    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3310      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3311    // Restrict is covered above.
3312    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3313      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3314  }
3315
3316  // Warn about ignored type attributes, for example:
3317  // __attribute__((aligned)) struct A;
3318  // Attributes should be placed after tag to apply to type declaration.
3319  if (!DS.getAttributes().empty()) {
3320    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3321    if (TypeSpecType == DeclSpec::TST_class ||
3322        TypeSpecType == DeclSpec::TST_struct ||
3323        TypeSpecType == DeclSpec::TST_interface ||
3324        TypeSpecType == DeclSpec::TST_union ||
3325        TypeSpecType == DeclSpec::TST_enum) {
3326      AttributeList* attrs = DS.getAttributes().getList();
3327      while (attrs) {
3328        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3329        << attrs->getName()
3330        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3331            TypeSpecType == DeclSpec::TST_struct ? 1 :
3332            TypeSpecType == DeclSpec::TST_union ? 2 :
3333            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3334        attrs = attrs->getNext();
3335      }
3336    }
3337  }
3338
3339  return TagD;
3340}
3341
3342/// We are trying to inject an anonymous member into the given scope;
3343/// check if there's an existing declaration that can't be overloaded.
3344///
3345/// \return true if this is a forbidden redeclaration
3346static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3347                                         Scope *S,
3348                                         DeclContext *Owner,
3349                                         DeclarationName Name,
3350                                         SourceLocation NameLoc,
3351                                         unsigned diagnostic) {
3352  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3353                 Sema::ForRedeclaration);
3354  if (!SemaRef.LookupName(R, S)) return false;
3355
3356  if (R.getAsSingle<TagDecl>())
3357    return false;
3358
3359  // Pick a representative declaration.
3360  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3361  assert(PrevDecl && "Expected a non-null Decl");
3362
3363  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3364    return false;
3365
3366  SemaRef.Diag(NameLoc, diagnostic) << Name;
3367  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3368
3369  return true;
3370}
3371
3372/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3373/// anonymous struct or union AnonRecord into the owning context Owner
3374/// and scope S. This routine will be invoked just after we realize
3375/// that an unnamed union or struct is actually an anonymous union or
3376/// struct, e.g.,
3377///
3378/// @code
3379/// union {
3380///   int i;
3381///   float f;
3382/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3383///    // f into the surrounding scope.x
3384/// @endcode
3385///
3386/// This routine is recursive, injecting the names of nested anonymous
3387/// structs/unions into the owning context and scope as well.
3388static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3389                                         DeclContext *Owner,
3390                                         RecordDecl *AnonRecord,
3391                                         AccessSpecifier AS,
3392                                         SmallVectorImpl<NamedDecl *> &Chaining,
3393                                         bool MSAnonStruct) {
3394  unsigned diagKind
3395    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3396                            : diag::err_anonymous_struct_member_redecl;
3397
3398  bool Invalid = false;
3399
3400  // Look every FieldDecl and IndirectFieldDecl with a name.
3401  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3402                               DEnd = AnonRecord->decls_end();
3403       D != DEnd; ++D) {
3404    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3405        cast<NamedDecl>(*D)->getDeclName()) {
3406      ValueDecl *VD = cast<ValueDecl>(*D);
3407      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3408                                       VD->getLocation(), diagKind)) {
3409        // C++ [class.union]p2:
3410        //   The names of the members of an anonymous union shall be
3411        //   distinct from the names of any other entity in the
3412        //   scope in which the anonymous union is declared.
3413        Invalid = true;
3414      } else {
3415        // C++ [class.union]p2:
3416        //   For the purpose of name lookup, after the anonymous union
3417        //   definition, the members of the anonymous union are
3418        //   considered to have been defined in the scope in which the
3419        //   anonymous union is declared.
3420        unsigned OldChainingSize = Chaining.size();
3421        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3422          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3423               PE = IF->chain_end(); PI != PE; ++PI)
3424            Chaining.push_back(*PI);
3425        else
3426          Chaining.push_back(VD);
3427
3428        assert(Chaining.size() >= 2);
3429        NamedDecl **NamedChain =
3430          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3431        for (unsigned i = 0; i < Chaining.size(); i++)
3432          NamedChain[i] = Chaining[i];
3433
3434        IndirectFieldDecl* IndirectField =
3435          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3436                                    VD->getIdentifier(), VD->getType(),
3437                                    NamedChain, Chaining.size());
3438
3439        IndirectField->setAccess(AS);
3440        IndirectField->setImplicit();
3441        SemaRef.PushOnScopeChains(IndirectField, S);
3442
3443        // That includes picking up the appropriate access specifier.
3444        if (AS != AS_none) IndirectField->setAccess(AS);
3445
3446        Chaining.resize(OldChainingSize);
3447      }
3448    }
3449  }
3450
3451  return Invalid;
3452}
3453
3454/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3455/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3456/// illegal input values are mapped to SC_None.
3457static StorageClass
3458StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3459  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3460  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3461         "Parser allowed 'typedef' as storage class VarDecl.");
3462  switch (StorageClassSpec) {
3463  case DeclSpec::SCS_unspecified:    return SC_None;
3464  case DeclSpec::SCS_extern:
3465    if (DS.isExternInLinkageSpec())
3466      return SC_None;
3467    return SC_Extern;
3468  case DeclSpec::SCS_static:         return SC_Static;
3469  case DeclSpec::SCS_auto:           return SC_Auto;
3470  case DeclSpec::SCS_register:       return SC_Register;
3471  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3472    // Illegal SCSs map to None: error reporting is up to the caller.
3473  case DeclSpec::SCS_mutable:        // Fall through.
3474  case DeclSpec::SCS_typedef:        return SC_None;
3475  }
3476  llvm_unreachable("unknown storage class specifier");
3477}
3478
3479/// BuildAnonymousStructOrUnion - Handle the declaration of an
3480/// anonymous structure or union. Anonymous unions are a C++ feature
3481/// (C++ [class.union]) and a C11 feature; anonymous structures
3482/// are a C11 feature and GNU C++ extension.
3483Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3484                                             AccessSpecifier AS,
3485                                             RecordDecl *Record) {
3486  DeclContext *Owner = Record->getDeclContext();
3487
3488  // Diagnose whether this anonymous struct/union is an extension.
3489  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3490    Diag(Record->getLocation(), diag::ext_anonymous_union);
3491  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3492    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3493  else if (!Record->isUnion() && !getLangOpts().C11)
3494    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3495
3496  // C and C++ require different kinds of checks for anonymous
3497  // structs/unions.
3498  bool Invalid = false;
3499  if (getLangOpts().CPlusPlus) {
3500    const char* PrevSpec = 0;
3501    unsigned DiagID;
3502    if (Record->isUnion()) {
3503      // C++ [class.union]p6:
3504      //   Anonymous unions declared in a named namespace or in the
3505      //   global namespace shall be declared static.
3506      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3507          (isa<TranslationUnitDecl>(Owner) ||
3508           (isa<NamespaceDecl>(Owner) &&
3509            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3510        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3511          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3512
3513        // Recover by adding 'static'.
3514        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3515                               PrevSpec, DiagID);
3516      }
3517      // C++ [class.union]p6:
3518      //   A storage class is not allowed in a declaration of an
3519      //   anonymous union in a class scope.
3520      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3521               isa<RecordDecl>(Owner)) {
3522        Diag(DS.getStorageClassSpecLoc(),
3523             diag::err_anonymous_union_with_storage_spec)
3524          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3525
3526        // Recover by removing the storage specifier.
3527        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3528                               SourceLocation(),
3529                               PrevSpec, DiagID);
3530      }
3531    }
3532
3533    // Ignore const/volatile/restrict qualifiers.
3534    if (DS.getTypeQualifiers()) {
3535      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3536        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3537          << Record->isUnion() << "const"
3538          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3539      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3540        Diag(DS.getVolatileSpecLoc(),
3541             diag::ext_anonymous_struct_union_qualified)
3542          << Record->isUnion() << "volatile"
3543          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3544      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3545        Diag(DS.getRestrictSpecLoc(),
3546             diag::ext_anonymous_struct_union_qualified)
3547          << Record->isUnion() << "restrict"
3548          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3549      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3550        Diag(DS.getAtomicSpecLoc(),
3551             diag::ext_anonymous_struct_union_qualified)
3552          << Record->isUnion() << "_Atomic"
3553          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3554
3555      DS.ClearTypeQualifiers();
3556    }
3557
3558    // C++ [class.union]p2:
3559    //   The member-specification of an anonymous union shall only
3560    //   define non-static data members. [Note: nested types and
3561    //   functions cannot be declared within an anonymous union. ]
3562    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3563                                 MemEnd = Record->decls_end();
3564         Mem != MemEnd; ++Mem) {
3565      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3566        // C++ [class.union]p3:
3567        //   An anonymous union shall not have private or protected
3568        //   members (clause 11).
3569        assert(FD->getAccess() != AS_none);
3570        if (FD->getAccess() != AS_public) {
3571          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3572            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3573          Invalid = true;
3574        }
3575
3576        // C++ [class.union]p1
3577        //   An object of a class with a non-trivial constructor, a non-trivial
3578        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3579        //   assignment operator cannot be a member of a union, nor can an
3580        //   array of such objects.
3581        if (CheckNontrivialField(FD))
3582          Invalid = true;
3583      } else if ((*Mem)->isImplicit()) {
3584        // Any implicit members are fine.
3585      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3586        // This is a type that showed up in an
3587        // elaborated-type-specifier inside the anonymous struct or
3588        // union, but which actually declares a type outside of the
3589        // anonymous struct or union. It's okay.
3590      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3591        if (!MemRecord->isAnonymousStructOrUnion() &&
3592            MemRecord->getDeclName()) {
3593          // Visual C++ allows type definition in anonymous struct or union.
3594          if (getLangOpts().MicrosoftExt)
3595            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3596              << (int)Record->isUnion();
3597          else {
3598            // This is a nested type declaration.
3599            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3600              << (int)Record->isUnion();
3601            Invalid = true;
3602          }
3603        } else {
3604          // This is an anonymous type definition within another anonymous type.
3605          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3606          // not part of standard C++.
3607          Diag(MemRecord->getLocation(),
3608               diag::ext_anonymous_record_with_anonymous_type)
3609            << (int)Record->isUnion();
3610        }
3611      } else if (isa<AccessSpecDecl>(*Mem)) {
3612        // Any access specifier is fine.
3613      } else {
3614        // We have something that isn't a non-static data
3615        // member. Complain about it.
3616        unsigned DK = diag::err_anonymous_record_bad_member;
3617        if (isa<TypeDecl>(*Mem))
3618          DK = diag::err_anonymous_record_with_type;
3619        else if (isa<FunctionDecl>(*Mem))
3620          DK = diag::err_anonymous_record_with_function;
3621        else if (isa<VarDecl>(*Mem))
3622          DK = diag::err_anonymous_record_with_static;
3623
3624        // Visual C++ allows type definition in anonymous struct or union.
3625        if (getLangOpts().MicrosoftExt &&
3626            DK == diag::err_anonymous_record_with_type)
3627          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3628            << (int)Record->isUnion();
3629        else {
3630          Diag((*Mem)->getLocation(), DK)
3631              << (int)Record->isUnion();
3632          Invalid = true;
3633        }
3634      }
3635    }
3636  }
3637
3638  if (!Record->isUnion() && !Owner->isRecord()) {
3639    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3640      << (int)getLangOpts().CPlusPlus;
3641    Invalid = true;
3642  }
3643
3644  // Mock up a declarator.
3645  Declarator Dc(DS, Declarator::MemberContext);
3646  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3647  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3648
3649  // Create a declaration for this anonymous struct/union.
3650  NamedDecl *Anon = 0;
3651  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3652    Anon = FieldDecl::Create(Context, OwningClass,
3653                             DS.getLocStart(),
3654                             Record->getLocation(),
3655                             /*IdentifierInfo=*/0,
3656                             Context.getTypeDeclType(Record),
3657                             TInfo,
3658                             /*BitWidth=*/0, /*Mutable=*/false,
3659                             /*InitStyle=*/ICIS_NoInit);
3660    Anon->setAccess(AS);
3661    if (getLangOpts().CPlusPlus)
3662      FieldCollector->Add(cast<FieldDecl>(Anon));
3663  } else {
3664    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3665    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3666    if (SCSpec == DeclSpec::SCS_mutable) {
3667      // mutable can only appear on non-static class members, so it's always
3668      // an error here
3669      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3670      Invalid = true;
3671      SC = SC_None;
3672    }
3673
3674    Anon = VarDecl::Create(Context, Owner,
3675                           DS.getLocStart(),
3676                           Record->getLocation(), /*IdentifierInfo=*/0,
3677                           Context.getTypeDeclType(Record),
3678                           TInfo, SC);
3679
3680    // Default-initialize the implicit variable. This initialization will be
3681    // trivial in almost all cases, except if a union member has an in-class
3682    // initializer:
3683    //   union { int n = 0; };
3684    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3685  }
3686  Anon->setImplicit();
3687
3688  // Add the anonymous struct/union object to the current
3689  // context. We'll be referencing this object when we refer to one of
3690  // its members.
3691  Owner->addDecl(Anon);
3692
3693  // Inject the members of the anonymous struct/union into the owning
3694  // context and into the identifier resolver chain for name lookup
3695  // purposes.
3696  SmallVector<NamedDecl*, 2> Chain;
3697  Chain.push_back(Anon);
3698
3699  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3700                                          Chain, false))
3701    Invalid = true;
3702
3703  // Mark this as an anonymous struct/union type. Note that we do not
3704  // do this until after we have already checked and injected the
3705  // members of this anonymous struct/union type, because otherwise
3706  // the members could be injected twice: once by DeclContext when it
3707  // builds its lookup table, and once by
3708  // InjectAnonymousStructOrUnionMembers.
3709  Record->setAnonymousStructOrUnion(true);
3710
3711  if (Invalid)
3712    Anon->setInvalidDecl();
3713
3714  return Anon;
3715}
3716
3717/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3718/// Microsoft C anonymous structure.
3719/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3720/// Example:
3721///
3722/// struct A { int a; };
3723/// struct B { struct A; int b; };
3724///
3725/// void foo() {
3726///   B var;
3727///   var.a = 3;
3728/// }
3729///
3730Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3731                                           RecordDecl *Record) {
3732
3733  // If there is no Record, get the record via the typedef.
3734  if (!Record)
3735    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3736
3737  // Mock up a declarator.
3738  Declarator Dc(DS, Declarator::TypeNameContext);
3739  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3740  assert(TInfo && "couldn't build declarator info for anonymous struct");
3741
3742  // Create a declaration for this anonymous struct.
3743  NamedDecl* Anon = FieldDecl::Create(Context,
3744                             cast<RecordDecl>(CurContext),
3745                             DS.getLocStart(),
3746                             DS.getLocStart(),
3747                             /*IdentifierInfo=*/0,
3748                             Context.getTypeDeclType(Record),
3749                             TInfo,
3750                             /*BitWidth=*/0, /*Mutable=*/false,
3751                             /*InitStyle=*/ICIS_NoInit);
3752  Anon->setImplicit();
3753
3754  // Add the anonymous struct object to the current context.
3755  CurContext->addDecl(Anon);
3756
3757  // Inject the members of the anonymous struct into the current
3758  // context and into the identifier resolver chain for name lookup
3759  // purposes.
3760  SmallVector<NamedDecl*, 2> Chain;
3761  Chain.push_back(Anon);
3762
3763  RecordDecl *RecordDef = Record->getDefinition();
3764  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3765                                                        RecordDef, AS_none,
3766                                                        Chain, true))
3767    Anon->setInvalidDecl();
3768
3769  return Anon;
3770}
3771
3772/// GetNameForDeclarator - Determine the full declaration name for the
3773/// given Declarator.
3774DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3775  return GetNameFromUnqualifiedId(D.getName());
3776}
3777
3778/// \brief Retrieves the declaration name from a parsed unqualified-id.
3779DeclarationNameInfo
3780Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3781  DeclarationNameInfo NameInfo;
3782  NameInfo.setLoc(Name.StartLocation);
3783
3784  switch (Name.getKind()) {
3785
3786  case UnqualifiedId::IK_ImplicitSelfParam:
3787  case UnqualifiedId::IK_Identifier:
3788    NameInfo.setName(Name.Identifier);
3789    NameInfo.setLoc(Name.StartLocation);
3790    return NameInfo;
3791
3792  case UnqualifiedId::IK_OperatorFunctionId:
3793    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3794                                           Name.OperatorFunctionId.Operator));
3795    NameInfo.setLoc(Name.StartLocation);
3796    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3797      = Name.OperatorFunctionId.SymbolLocations[0];
3798    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3799      = Name.EndLocation.getRawEncoding();
3800    return NameInfo;
3801
3802  case UnqualifiedId::IK_LiteralOperatorId:
3803    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3804                                                           Name.Identifier));
3805    NameInfo.setLoc(Name.StartLocation);
3806    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3807    return NameInfo;
3808
3809  case UnqualifiedId::IK_ConversionFunctionId: {
3810    TypeSourceInfo *TInfo;
3811    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3812    if (Ty.isNull())
3813      return DeclarationNameInfo();
3814    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3815                                               Context.getCanonicalType(Ty)));
3816    NameInfo.setLoc(Name.StartLocation);
3817    NameInfo.setNamedTypeInfo(TInfo);
3818    return NameInfo;
3819  }
3820
3821  case UnqualifiedId::IK_ConstructorName: {
3822    TypeSourceInfo *TInfo;
3823    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3824    if (Ty.isNull())
3825      return DeclarationNameInfo();
3826    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3827                                              Context.getCanonicalType(Ty)));
3828    NameInfo.setLoc(Name.StartLocation);
3829    NameInfo.setNamedTypeInfo(TInfo);
3830    return NameInfo;
3831  }
3832
3833  case UnqualifiedId::IK_ConstructorTemplateId: {
3834    // In well-formed code, we can only have a constructor
3835    // template-id that refers to the current context, so go there
3836    // to find the actual type being constructed.
3837    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3838    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3839      return DeclarationNameInfo();
3840
3841    // Determine the type of the class being constructed.
3842    QualType CurClassType = Context.getTypeDeclType(CurClass);
3843
3844    // FIXME: Check two things: that the template-id names the same type as
3845    // CurClassType, and that the template-id does not occur when the name
3846    // was qualified.
3847
3848    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3849                                    Context.getCanonicalType(CurClassType)));
3850    NameInfo.setLoc(Name.StartLocation);
3851    // FIXME: should we retrieve TypeSourceInfo?
3852    NameInfo.setNamedTypeInfo(0);
3853    return NameInfo;
3854  }
3855
3856  case UnqualifiedId::IK_DestructorName: {
3857    TypeSourceInfo *TInfo;
3858    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3859    if (Ty.isNull())
3860      return DeclarationNameInfo();
3861    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3862                                              Context.getCanonicalType(Ty)));
3863    NameInfo.setLoc(Name.StartLocation);
3864    NameInfo.setNamedTypeInfo(TInfo);
3865    return NameInfo;
3866  }
3867
3868  case UnqualifiedId::IK_TemplateId: {
3869    TemplateName TName = Name.TemplateId->Template.get();
3870    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3871    return Context.getNameForTemplate(TName, TNameLoc);
3872  }
3873
3874  } // switch (Name.getKind())
3875
3876  llvm_unreachable("Unknown name kind");
3877}
3878
3879static QualType getCoreType(QualType Ty) {
3880  do {
3881    if (Ty->isPointerType() || Ty->isReferenceType())
3882      Ty = Ty->getPointeeType();
3883    else if (Ty->isArrayType())
3884      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3885    else
3886      return Ty.withoutLocalFastQualifiers();
3887  } while (true);
3888}
3889
3890/// hasSimilarParameters - Determine whether the C++ functions Declaration
3891/// and Definition have "nearly" matching parameters. This heuristic is
3892/// used to improve diagnostics in the case where an out-of-line function
3893/// definition doesn't match any declaration within the class or namespace.
3894/// Also sets Params to the list of indices to the parameters that differ
3895/// between the declaration and the definition. If hasSimilarParameters
3896/// returns true and Params is empty, then all of the parameters match.
3897static bool hasSimilarParameters(ASTContext &Context,
3898                                     FunctionDecl *Declaration,
3899                                     FunctionDecl *Definition,
3900                                     SmallVectorImpl<unsigned> &Params) {
3901  Params.clear();
3902  if (Declaration->param_size() != Definition->param_size())
3903    return false;
3904  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3905    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3906    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3907
3908    // The parameter types are identical
3909    if (Context.hasSameType(DefParamTy, DeclParamTy))
3910      continue;
3911
3912    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3913    QualType DefParamBaseTy = getCoreType(DefParamTy);
3914    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3915    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3916
3917    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3918        (DeclTyName && DeclTyName == DefTyName))
3919      Params.push_back(Idx);
3920    else  // The two parameters aren't even close
3921      return false;
3922  }
3923
3924  return true;
3925}
3926
3927/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3928/// declarator needs to be rebuilt in the current instantiation.
3929/// Any bits of declarator which appear before the name are valid for
3930/// consideration here.  That's specifically the type in the decl spec
3931/// and the base type in any member-pointer chunks.
3932static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3933                                                    DeclarationName Name) {
3934  // The types we specifically need to rebuild are:
3935  //   - typenames, typeofs, and decltypes
3936  //   - types which will become injected class names
3937  // Of course, we also need to rebuild any type referencing such a
3938  // type.  It's safest to just say "dependent", but we call out a
3939  // few cases here.
3940
3941  DeclSpec &DS = D.getMutableDeclSpec();
3942  switch (DS.getTypeSpecType()) {
3943  case DeclSpec::TST_typename:
3944  case DeclSpec::TST_typeofType:
3945  case DeclSpec::TST_underlyingType:
3946  case DeclSpec::TST_atomic: {
3947    // Grab the type from the parser.
3948    TypeSourceInfo *TSI = 0;
3949    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3950    if (T.isNull() || !T->isDependentType()) break;
3951
3952    // Make sure there's a type source info.  This isn't really much
3953    // of a waste; most dependent types should have type source info
3954    // attached already.
3955    if (!TSI)
3956      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3957
3958    // Rebuild the type in the current instantiation.
3959    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3960    if (!TSI) return true;
3961
3962    // Store the new type back in the decl spec.
3963    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3964    DS.UpdateTypeRep(LocType);
3965    break;
3966  }
3967
3968  case DeclSpec::TST_decltype:
3969  case DeclSpec::TST_typeofExpr: {
3970    Expr *E = DS.getRepAsExpr();
3971    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3972    if (Result.isInvalid()) return true;
3973    DS.UpdateExprRep(Result.get());
3974    break;
3975  }
3976
3977  default:
3978    // Nothing to do for these decl specs.
3979    break;
3980  }
3981
3982  // It doesn't matter what order we do this in.
3983  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3984    DeclaratorChunk &Chunk = D.getTypeObject(I);
3985
3986    // The only type information in the declarator which can come
3987    // before the declaration name is the base type of a member
3988    // pointer.
3989    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3990      continue;
3991
3992    // Rebuild the scope specifier in-place.
3993    CXXScopeSpec &SS = Chunk.Mem.Scope();
3994    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3995      return true;
3996  }
3997
3998  return false;
3999}
4000
4001Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
4002  D.setFunctionDefinitionKind(FDK_Declaration);
4003  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
4004
4005  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
4006      Dcl && Dcl->getDeclContext()->isFileContext())
4007    Dcl->setTopLevelDeclInObjCContainer();
4008
4009  return Dcl;
4010}
4011
4012/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
4013///   If T is the name of a class, then each of the following shall have a
4014///   name different from T:
4015///     - every static data member of class T;
4016///     - every member function of class T
4017///     - every member of class T that is itself a type;
4018/// \returns true if the declaration name violates these rules.
4019bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
4020                                   DeclarationNameInfo NameInfo) {
4021  DeclarationName Name = NameInfo.getName();
4022
4023  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
4024    if (Record->getIdentifier() && Record->getDeclName() == Name) {
4025      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
4026      return true;
4027    }
4028
4029  return false;
4030}
4031
4032/// \brief Diagnose a declaration whose declarator-id has the given
4033/// nested-name-specifier.
4034///
4035/// \param SS The nested-name-specifier of the declarator-id.
4036///
4037/// \param DC The declaration context to which the nested-name-specifier
4038/// resolves.
4039///
4040/// \param Name The name of the entity being declared.
4041///
4042/// \param Loc The location of the name of the entity being declared.
4043///
4044/// \returns true if we cannot safely recover from this error, false otherwise.
4045bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
4046                                        DeclarationName Name,
4047                                      SourceLocation Loc) {
4048  DeclContext *Cur = CurContext;
4049  while (isa<LinkageSpecDecl>(Cur) || isa<CapturedDecl>(Cur))
4050    Cur = Cur->getParent();
4051
4052  // C++ [dcl.meaning]p1:
4053  //   A declarator-id shall not be qualified except for the definition
4054  //   of a member function (9.3) or static data member (9.4) outside of
4055  //   its class, the definition or explicit instantiation of a function
4056  //   or variable member of a namespace outside of its namespace, or the
4057  //   definition of an explicit specialization outside of its namespace,
4058  //   or the declaration of a friend function that is a member of
4059  //   another class or namespace (11.3). [...]
4060
4061  // The user provided a superfluous scope specifier that refers back to the
4062  // class or namespaces in which the entity is already declared.
4063  //
4064  // class X {
4065  //   void X::f();
4066  // };
4067  if (Cur->Equals(DC)) {
4068    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
4069                                   : diag::err_member_extra_qualification)
4070      << Name << FixItHint::CreateRemoval(SS.getRange());
4071    SS.clear();
4072    return false;
4073  }
4074
4075  // Check whether the qualifying scope encloses the scope of the original
4076  // declaration.
4077  if (!Cur->Encloses(DC)) {
4078    if (Cur->isRecord())
4079      Diag(Loc, diag::err_member_qualification)
4080        << Name << SS.getRange();
4081    else if (isa<TranslationUnitDecl>(DC))
4082      Diag(Loc, diag::err_invalid_declarator_global_scope)
4083        << Name << SS.getRange();
4084    else if (isa<FunctionDecl>(Cur))
4085      Diag(Loc, diag::err_invalid_declarator_in_function)
4086        << Name << SS.getRange();
4087    else if (isa<BlockDecl>(Cur))
4088      Diag(Loc, diag::err_invalid_declarator_in_block)
4089        << Name << SS.getRange();
4090    else
4091      Diag(Loc, diag::err_invalid_declarator_scope)
4092      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4093
4094    return true;
4095  }
4096
4097  if (Cur->isRecord()) {
4098    // Cannot qualify members within a class.
4099    Diag(Loc, diag::err_member_qualification)
4100      << Name << SS.getRange();
4101    SS.clear();
4102
4103    // C++ constructors and destructors with incorrect scopes can break
4104    // our AST invariants by having the wrong underlying types. If
4105    // that's the case, then drop this declaration entirely.
4106    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4107         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4108        !Context.hasSameType(Name.getCXXNameType(),
4109                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4110      return true;
4111
4112    return false;
4113  }
4114
4115  // C++11 [dcl.meaning]p1:
4116  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4117  //   not begin with a decltype-specifer"
4118  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4119  while (SpecLoc.getPrefix())
4120    SpecLoc = SpecLoc.getPrefix();
4121  if (dyn_cast_or_null<DecltypeType>(
4122        SpecLoc.getNestedNameSpecifier()->getAsType()))
4123    Diag(Loc, diag::err_decltype_in_declarator)
4124      << SpecLoc.getTypeLoc().getSourceRange();
4125
4126  return false;
4127}
4128
4129NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4130                                  MultiTemplateParamsArg TemplateParamLists) {
4131  // TODO: consider using NameInfo for diagnostic.
4132  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4133  DeclarationName Name = NameInfo.getName();
4134
4135  // All of these full declarators require an identifier.  If it doesn't have
4136  // one, the ParsedFreeStandingDeclSpec action should be used.
4137  if (!Name) {
4138    if (!D.isInvalidType())  // Reject this if we think it is valid.
4139      Diag(D.getDeclSpec().getLocStart(),
4140           diag::err_declarator_need_ident)
4141        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4142    return 0;
4143  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4144    return 0;
4145
4146  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4147  // we find one that is.
4148  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4149         (S->getFlags() & Scope::TemplateParamScope) != 0)
4150    S = S->getParent();
4151
4152  DeclContext *DC = CurContext;
4153  if (D.getCXXScopeSpec().isInvalid())
4154    D.setInvalidType();
4155  else if (D.getCXXScopeSpec().isSet()) {
4156    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4157                                        UPPC_DeclarationQualifier))
4158      return 0;
4159
4160    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4161    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4162    if (!DC) {
4163      // If we could not compute the declaration context, it's because the
4164      // declaration context is dependent but does not refer to a class,
4165      // class template, or class template partial specialization. Complain
4166      // and return early, to avoid the coming semantic disaster.
4167      Diag(D.getIdentifierLoc(),
4168           diag::err_template_qualified_declarator_no_match)
4169        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4170        << D.getCXXScopeSpec().getRange();
4171      return 0;
4172    }
4173    bool IsDependentContext = DC->isDependentContext();
4174
4175    if (!IsDependentContext &&
4176        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4177      return 0;
4178
4179    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4180      Diag(D.getIdentifierLoc(),
4181           diag::err_member_def_undefined_record)
4182        << Name << DC << D.getCXXScopeSpec().getRange();
4183      D.setInvalidType();
4184    } else if (!D.getDeclSpec().isFriendSpecified()) {
4185      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4186                                      Name, D.getIdentifierLoc())) {
4187        if (DC->isRecord())
4188          return 0;
4189
4190        D.setInvalidType();
4191      }
4192    }
4193
4194    // Check whether we need to rebuild the type of the given
4195    // declaration in the current instantiation.
4196    if (EnteringContext && IsDependentContext &&
4197        TemplateParamLists.size() != 0) {
4198      ContextRAII SavedContext(*this, DC);
4199      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4200        D.setInvalidType();
4201    }
4202  }
4203
4204  if (DiagnoseClassNameShadow(DC, NameInfo))
4205    // If this is a typedef, we'll end up spewing multiple diagnostics.
4206    // Just return early; it's safer.
4207    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4208      return 0;
4209
4210  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4211  QualType R = TInfo->getType();
4212
4213  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4214                                      UPPC_DeclarationType))
4215    D.setInvalidType();
4216
4217  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4218                        ForRedeclaration);
4219
4220  // See if this is a redefinition of a variable in the same scope.
4221  if (!D.getCXXScopeSpec().isSet()) {
4222    bool IsLinkageLookup = false;
4223    bool CreateBuiltins = false;
4224
4225    // If the declaration we're planning to build will be a function
4226    // or object with linkage, then look for another declaration with
4227    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4228    //
4229    // If the declaration we're planning to build will be declared with
4230    // external linkage in the translation unit, create any builtin with
4231    // the same name.
4232    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4233      /* Do nothing*/;
4234    else if (CurContext->isFunctionOrMethod() &&
4235             (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern ||
4236              R->isFunctionType())) {
4237      IsLinkageLookup = true;
4238      CreateBuiltins =
4239          CurContext->getEnclosingNamespaceContext()->isTranslationUnit();
4240    } else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4241               D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4242      CreateBuiltins = true;
4243
4244    if (IsLinkageLookup)
4245      Previous.clear(LookupRedeclarationWithLinkage);
4246
4247    LookupName(Previous, S, CreateBuiltins);
4248  } else { // Something like "int foo::x;"
4249    LookupQualifiedName(Previous, DC);
4250
4251    // C++ [dcl.meaning]p1:
4252    //   When the declarator-id is qualified, the declaration shall refer to a
4253    //  previously declared member of the class or namespace to which the
4254    //  qualifier refers (or, in the case of a namespace, of an element of the
4255    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4256    //  thereof; [...]
4257    //
4258    // Note that we already checked the context above, and that we do not have
4259    // enough information to make sure that Previous contains the declaration
4260    // we want to match. For example, given:
4261    //
4262    //   class X {
4263    //     void f();
4264    //     void f(float);
4265    //   };
4266    //
4267    //   void X::f(int) { } // ill-formed
4268    //
4269    // In this case, Previous will point to the overload set
4270    // containing the two f's declared in X, but neither of them
4271    // matches.
4272
4273    // C++ [dcl.meaning]p1:
4274    //   [...] the member shall not merely have been introduced by a
4275    //   using-declaration in the scope of the class or namespace nominated by
4276    //   the nested-name-specifier of the declarator-id.
4277    RemoveUsingDecls(Previous);
4278  }
4279
4280  if (Previous.isSingleResult() &&
4281      Previous.getFoundDecl()->isTemplateParameter()) {
4282    // Maybe we will complain about the shadowed template parameter.
4283    if (!D.isInvalidType())
4284      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4285                                      Previous.getFoundDecl());
4286
4287    // Just pretend that we didn't see the previous declaration.
4288    Previous.clear();
4289  }
4290
4291  // In C++, the previous declaration we find might be a tag type
4292  // (class or enum). In this case, the new declaration will hide the
4293  // tag type. Note that this does does not apply if we're declaring a
4294  // typedef (C++ [dcl.typedef]p4).
4295  if (Previous.isSingleTagDecl() &&
4296      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4297    Previous.clear();
4298
4299  // Check that there are no default arguments other than in the parameters
4300  // of a function declaration (C++ only).
4301  if (getLangOpts().CPlusPlus)
4302    CheckExtraCXXDefaultArguments(D);
4303
4304  NamedDecl *New;
4305
4306  bool AddToScope = true;
4307  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4308    if (TemplateParamLists.size()) {
4309      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4310      return 0;
4311    }
4312
4313    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4314  } else if (R->isFunctionType()) {
4315    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4316                                  TemplateParamLists,
4317                                  AddToScope);
4318  } else {
4319    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous, TemplateParamLists,
4320                                  AddToScope);
4321  }
4322
4323  if (New == 0)
4324    return 0;
4325
4326  // If this has an identifier and is not an invalid redeclaration or
4327  // function template specialization, add it to the scope stack.
4328  if (New->getDeclName() && AddToScope &&
4329       !(D.isRedeclaration() && New->isInvalidDecl())) {
4330    // Only make a locally-scoped extern declaration visible if it is the first
4331    // declaration of this entity. Qualified lookup for such an entity should
4332    // only find this declaration if there is no visible declaration of it.
4333    bool AddToContext = !D.isRedeclaration() || !New->isLocalExternDecl();
4334    PushOnScopeChains(New, S, AddToContext);
4335    if (!AddToContext)
4336      CurContext->addHiddenDecl(New);
4337  }
4338
4339  return New;
4340}
4341
4342/// Helper method to turn variable array types into constant array
4343/// types in certain situations which would otherwise be errors (for
4344/// GCC compatibility).
4345static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4346                                                    ASTContext &Context,
4347                                                    bool &SizeIsNegative,
4348                                                    llvm::APSInt &Oversized) {
4349  // This method tries to turn a variable array into a constant
4350  // array even when the size isn't an ICE.  This is necessary
4351  // for compatibility with code that depends on gcc's buggy
4352  // constant expression folding, like struct {char x[(int)(char*)2];}
4353  SizeIsNegative = false;
4354  Oversized = 0;
4355
4356  if (T->isDependentType())
4357    return QualType();
4358
4359  QualifierCollector Qs;
4360  const Type *Ty = Qs.strip(T);
4361
4362  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4363    QualType Pointee = PTy->getPointeeType();
4364    QualType FixedType =
4365        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4366                                            Oversized);
4367    if (FixedType.isNull()) return FixedType;
4368    FixedType = Context.getPointerType(FixedType);
4369    return Qs.apply(Context, FixedType);
4370  }
4371  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4372    QualType Inner = PTy->getInnerType();
4373    QualType FixedType =
4374        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4375                                            Oversized);
4376    if (FixedType.isNull()) return FixedType;
4377    FixedType = Context.getParenType(FixedType);
4378    return Qs.apply(Context, FixedType);
4379  }
4380
4381  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4382  if (!VLATy)
4383    return QualType();
4384  // FIXME: We should probably handle this case
4385  if (VLATy->getElementType()->isVariablyModifiedType())
4386    return QualType();
4387
4388  llvm::APSInt Res;
4389  if (!VLATy->getSizeExpr() ||
4390      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4391    return QualType();
4392
4393  // Check whether the array size is negative.
4394  if (Res.isSigned() && Res.isNegative()) {
4395    SizeIsNegative = true;
4396    return QualType();
4397  }
4398
4399  // Check whether the array is too large to be addressed.
4400  unsigned ActiveSizeBits
4401    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4402                                              Res);
4403  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4404    Oversized = Res;
4405    return QualType();
4406  }
4407
4408  return Context.getConstantArrayType(VLATy->getElementType(),
4409                                      Res, ArrayType::Normal, 0);
4410}
4411
4412static void
4413FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4414  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4415    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4416    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4417                                      DstPTL.getPointeeLoc());
4418    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4419    return;
4420  }
4421  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4422    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4423    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4424                                      DstPTL.getInnerLoc());
4425    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4426    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4427    return;
4428  }
4429  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4430  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4431  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4432  TypeLoc DstElemTL = DstATL.getElementLoc();
4433  DstElemTL.initializeFullCopy(SrcElemTL);
4434  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4435  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4436  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4437}
4438
4439/// Helper method to turn variable array types into constant array
4440/// types in certain situations which would otherwise be errors (for
4441/// GCC compatibility).
4442static TypeSourceInfo*
4443TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4444                                              ASTContext &Context,
4445                                              bool &SizeIsNegative,
4446                                              llvm::APSInt &Oversized) {
4447  QualType FixedTy
4448    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4449                                          SizeIsNegative, Oversized);
4450  if (FixedTy.isNull())
4451    return 0;
4452  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4453  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4454                                    FixedTInfo->getTypeLoc());
4455  return FixedTInfo;
4456}
4457
4458/// \brief Register the given locally-scoped extern "C" declaration so
4459/// that it can be found later for redeclarations. We include any extern "C"
4460/// declaration that is not visible in the translation unit here, not just
4461/// function-scope declarations.
4462void
4463Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4464  if (!getLangOpts().CPlusPlus &&
4465      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4466    // Don't need to track declarations in the TU in C.
4467    return;
4468
4469  // Note that we have a locally-scoped external with this name.
4470  // FIXME: There can be multiple such declarations if they are functions marked
4471  // __attribute__((overloadable)) declared in function scope in C.
4472  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4473}
4474
4475NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4476  if (ExternalSource) {
4477    // Load locally-scoped external decls from the external source.
4478    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4479    SmallVector<NamedDecl *, 4> Decls;
4480    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4481    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4482      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4483        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4484      if (Pos == LocallyScopedExternCDecls.end())
4485        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4486    }
4487  }
4488
4489  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4490  return D ? D->getMostRecentDecl() : 0;
4491}
4492
4493/// \brief Diagnose function specifiers on a declaration of an identifier that
4494/// does not identify a function.
4495void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4496  // FIXME: We should probably indicate the identifier in question to avoid
4497  // confusion for constructs like "inline int a(), b;"
4498  if (DS.isInlineSpecified())
4499    Diag(DS.getInlineSpecLoc(),
4500         diag::err_inline_non_function);
4501
4502  if (DS.isVirtualSpecified())
4503    Diag(DS.getVirtualSpecLoc(),
4504         diag::err_virtual_non_function);
4505
4506  if (DS.isExplicitSpecified())
4507    Diag(DS.getExplicitSpecLoc(),
4508         diag::err_explicit_non_function);
4509
4510  if (DS.isNoreturnSpecified())
4511    Diag(DS.getNoreturnSpecLoc(),
4512         diag::err_noreturn_non_function);
4513}
4514
4515NamedDecl*
4516Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4517                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4518  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4519  if (D.getCXXScopeSpec().isSet()) {
4520    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4521      << D.getCXXScopeSpec().getRange();
4522    D.setInvalidType();
4523    // Pretend we didn't see the scope specifier.
4524    DC = CurContext;
4525    Previous.clear();
4526  }
4527
4528  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4529
4530  if (D.getDeclSpec().isConstexprSpecified())
4531    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4532      << 1;
4533
4534  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4535    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4536      << D.getName().getSourceRange();
4537    return 0;
4538  }
4539
4540  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4541  if (!NewTD) return 0;
4542
4543  // Handle attributes prior to checking for duplicates in MergeVarDecl
4544  ProcessDeclAttributes(S, NewTD, D);
4545
4546  CheckTypedefForVariablyModifiedType(S, NewTD);
4547
4548  bool Redeclaration = D.isRedeclaration();
4549  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4550  D.setRedeclaration(Redeclaration);
4551  return ND;
4552}
4553
4554void
4555Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4556  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4557  // then it shall have block scope.
4558  // Note that variably modified types must be fixed before merging the decl so
4559  // that redeclarations will match.
4560  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4561  QualType T = TInfo->getType();
4562  if (T->isVariablyModifiedType()) {
4563    getCurFunction()->setHasBranchProtectedScope();
4564
4565    if (S->getFnParent() == 0) {
4566      bool SizeIsNegative;
4567      llvm::APSInt Oversized;
4568      TypeSourceInfo *FixedTInfo =
4569        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4570                                                      SizeIsNegative,
4571                                                      Oversized);
4572      if (FixedTInfo) {
4573        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4574        NewTD->setTypeSourceInfo(FixedTInfo);
4575      } else {
4576        if (SizeIsNegative)
4577          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4578        else if (T->isVariableArrayType())
4579          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4580        else if (Oversized.getBoolValue())
4581          Diag(NewTD->getLocation(), diag::err_array_too_large)
4582            << Oversized.toString(10);
4583        else
4584          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4585        NewTD->setInvalidDecl();
4586      }
4587    }
4588  }
4589}
4590
4591
4592/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4593/// declares a typedef-name, either using the 'typedef' type specifier or via
4594/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4595NamedDecl*
4596Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4597                           LookupResult &Previous, bool &Redeclaration) {
4598  // Merge the decl with the existing one if appropriate. If the decl is
4599  // in an outer scope, it isn't the same thing.
4600  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4601                       /*ExplicitInstantiationOrSpecialization=*/false);
4602  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4603  if (!Previous.empty()) {
4604    Redeclaration = true;
4605    MergeTypedefNameDecl(NewTD, Previous);
4606  }
4607
4608  // If this is the C FILE type, notify the AST context.
4609  if (IdentifierInfo *II = NewTD->getIdentifier())
4610    if (!NewTD->isInvalidDecl() &&
4611        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4612      if (II->isStr("FILE"))
4613        Context.setFILEDecl(NewTD);
4614      else if (II->isStr("jmp_buf"))
4615        Context.setjmp_bufDecl(NewTD);
4616      else if (II->isStr("sigjmp_buf"))
4617        Context.setsigjmp_bufDecl(NewTD);
4618      else if (II->isStr("ucontext_t"))
4619        Context.setucontext_tDecl(NewTD);
4620    }
4621
4622  return NewTD;
4623}
4624
4625/// \brief Determines whether the given declaration is an out-of-scope
4626/// previous declaration.
4627///
4628/// This routine should be invoked when name lookup has found a
4629/// previous declaration (PrevDecl) that is not in the scope where a
4630/// new declaration by the same name is being introduced. If the new
4631/// declaration occurs in a local scope, previous declarations with
4632/// linkage may still be considered previous declarations (C99
4633/// 6.2.2p4-5, C++ [basic.link]p6).
4634///
4635/// \param PrevDecl the previous declaration found by name
4636/// lookup
4637///
4638/// \param DC the context in which the new declaration is being
4639/// declared.
4640///
4641/// \returns true if PrevDecl is an out-of-scope previous declaration
4642/// for a new delcaration with the same name.
4643static bool
4644isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4645                                ASTContext &Context) {
4646  if (!PrevDecl)
4647    return false;
4648
4649  if (!PrevDecl->hasLinkage())
4650    return false;
4651
4652  if (Context.getLangOpts().CPlusPlus) {
4653    // C++ [basic.link]p6:
4654    //   If there is a visible declaration of an entity with linkage
4655    //   having the same name and type, ignoring entities declared
4656    //   outside the innermost enclosing namespace scope, the block
4657    //   scope declaration declares that same entity and receives the
4658    //   linkage of the previous declaration.
4659    DeclContext *OuterContext = DC->getRedeclContext();
4660    if (!OuterContext->isFunctionOrMethod())
4661      // This rule only applies to block-scope declarations.
4662      return false;
4663
4664    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4665    if (PrevOuterContext->isRecord())
4666      // We found a member function: ignore it.
4667      return false;
4668
4669    // Find the innermost enclosing namespace for the new and
4670    // previous declarations.
4671    OuterContext = OuterContext->getEnclosingNamespaceContext();
4672    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4673
4674    // The previous declaration is in a different namespace, so it
4675    // isn't the same function.
4676    if (!OuterContext->Equals(PrevOuterContext))
4677      return false;
4678  }
4679
4680  return true;
4681}
4682
4683static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4684  CXXScopeSpec &SS = D.getCXXScopeSpec();
4685  if (!SS.isSet()) return;
4686  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4687}
4688
4689bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4690  QualType type = decl->getType();
4691  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4692  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4693    // Various kinds of declaration aren't allowed to be __autoreleasing.
4694    unsigned kind = -1U;
4695    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4696      if (var->hasAttr<BlocksAttr>())
4697        kind = 0; // __block
4698      else if (!var->hasLocalStorage())
4699        kind = 1; // global
4700    } else if (isa<ObjCIvarDecl>(decl)) {
4701      kind = 3; // ivar
4702    } else if (isa<FieldDecl>(decl)) {
4703      kind = 2; // field
4704    }
4705
4706    if (kind != -1U) {
4707      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4708        << kind;
4709    }
4710  } else if (lifetime == Qualifiers::OCL_None) {
4711    // Try to infer lifetime.
4712    if (!type->isObjCLifetimeType())
4713      return false;
4714
4715    lifetime = type->getObjCARCImplicitLifetime();
4716    type = Context.getLifetimeQualifiedType(type, lifetime);
4717    decl->setType(type);
4718  }
4719
4720  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4721    // Thread-local variables cannot have lifetime.
4722    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4723        var->getTLSKind()) {
4724      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4725        << var->getType();
4726      return true;
4727    }
4728  }
4729
4730  return false;
4731}
4732
4733static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4734  // 'weak' only applies to declarations with external linkage.
4735  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4736    if (!ND.isExternallyVisible()) {
4737      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4738      ND.dropAttr<WeakAttr>();
4739    }
4740  }
4741  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4742    if (ND.isExternallyVisible()) {
4743      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4744      ND.dropAttr<WeakRefAttr>();
4745    }
4746  }
4747
4748  // 'selectany' only applies to externally visible varable declarations.
4749  // It does not apply to functions.
4750  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4751    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4752      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4753      ND.dropAttr<SelectAnyAttr>();
4754    }
4755  }
4756}
4757
4758/// Given that we are within the definition of the given function,
4759/// will that definition behave like C99's 'inline', where the
4760/// definition is discarded except for optimization purposes?
4761static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4762  // Try to avoid calling GetGVALinkageForFunction.
4763
4764  // All cases of this require the 'inline' keyword.
4765  if (!FD->isInlined()) return false;
4766
4767  // This is only possible in C++ with the gnu_inline attribute.
4768  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4769    return false;
4770
4771  // Okay, go ahead and call the relatively-more-expensive function.
4772
4773#ifndef NDEBUG
4774  // AST quite reasonably asserts that it's working on a function
4775  // definition.  We don't really have a way to tell it that we're
4776  // currently defining the function, so just lie to it in +Asserts
4777  // builds.  This is an awful hack.
4778  FD->setLazyBody(1);
4779#endif
4780
4781  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4782
4783#ifndef NDEBUG
4784  FD->setLazyBody(0);
4785#endif
4786
4787  return isC99Inline;
4788}
4789
4790/// Determine whether a variable is extern "C" prior to attaching
4791/// an initializer. We can't just call isExternC() here, because that
4792/// will also compute and cache whether the declaration is externally
4793/// visible, which might change when we attach the initializer.
4794///
4795/// This can only be used if the declaration is known to not be a
4796/// redeclaration of an internal linkage declaration.
4797///
4798/// For instance:
4799///
4800///   auto x = []{};
4801///
4802/// Attaching the initializer here makes this declaration not externally
4803/// visible, because its type has internal linkage.
4804///
4805/// FIXME: This is a hack.
4806template<typename T>
4807static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4808  if (S.getLangOpts().CPlusPlus) {
4809    // In C++, the overloadable attribute negates the effects of extern "C".
4810    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4811      return false;
4812  }
4813  return D->isExternC();
4814}
4815
4816static bool shouldConsiderLinkage(const VarDecl *VD) {
4817  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4818  if (DC->isFunctionOrMethod())
4819    return VD->hasExternalStorage();
4820  if (DC->isFileContext())
4821    return true;
4822  if (DC->isRecord())
4823    return false;
4824  llvm_unreachable("Unexpected context");
4825}
4826
4827static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4828  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4829  if (DC->isFileContext() || DC->isFunctionOrMethod())
4830    return true;
4831  if (DC->isRecord())
4832    return false;
4833  llvm_unreachable("Unexpected context");
4834}
4835
4836/// Adjust the \c DeclContext for a function or variable that might be a
4837/// function-local external declaration.
4838bool Sema::adjustContextForLocalExternDecl(DeclContext *&DC) {
4839  if (!DC->isFunctionOrMethod())
4840    return false;
4841
4842  // If this is a local extern function or variable declared within a function
4843  // template, don't add it into the enclosing namespace scope until it is
4844  // instantiated; it might have a dependent type right now.
4845  if (DC->isDependentContext())
4846    return true;
4847
4848  // C++11 [basic.link]p7:
4849  //   When a block scope declaration of an entity with linkage is not found to
4850  //   refer to some other declaration, then that entity is a member of the
4851  //   innermost enclosing namespace.
4852  //
4853  // Per C++11 [namespace.def]p6, the innermost enclosing namespace is a
4854  // semantically-enclosing namespace, not a lexically-enclosing one.
4855  while (!DC->isFileContext() && !isa<LinkageSpecDecl>(DC))
4856    DC = DC->getParent();
4857  return true;
4858}
4859
4860NamedDecl *
4861Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4862                              TypeSourceInfo *TInfo, LookupResult &Previous,
4863                              MultiTemplateParamsArg TemplateParamLists,
4864                              bool &AddToScope) {
4865  QualType R = TInfo->getType();
4866  DeclarationName Name = GetNameForDeclarator(D).getName();
4867
4868  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4869  VarDecl::StorageClass SC =
4870    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4871
4872  DeclContext *OriginalDC = DC;
4873  bool IsLocalExternDecl = SC == SC_Extern &&
4874                           adjustContextForLocalExternDecl(DC);
4875
4876  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4877    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4878    // half array type (unless the cl_khr_fp16 extension is enabled).
4879    if (Context.getBaseElementType(R)->isHalfType()) {
4880      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4881      D.setInvalidType();
4882    }
4883  }
4884
4885  if (SCSpec == DeclSpec::SCS_mutable) {
4886    // mutable can only appear on non-static class members, so it's always
4887    // an error here
4888    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4889    D.setInvalidType();
4890    SC = SC_None;
4891  }
4892
4893  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4894      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4895                              D.getDeclSpec().getStorageClassSpecLoc())) {
4896    // In C++11, the 'register' storage class specifier is deprecated.
4897    // Suppress the warning in system macros, it's used in macros in some
4898    // popular C system headers, such as in glibc's htonl() macro.
4899    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4900         diag::warn_deprecated_register)
4901      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4902  }
4903
4904  IdentifierInfo *II = Name.getAsIdentifierInfo();
4905  if (!II) {
4906    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4907      << Name;
4908    return 0;
4909  }
4910
4911  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4912
4913  if (!DC->isRecord() && S->getFnParent() == 0) {
4914    // C99 6.9p2: The storage-class specifiers auto and register shall not
4915    // appear in the declaration specifiers in an external declaration.
4916    if (SC == SC_Auto || SC == SC_Register) {
4917      // If this is a register variable with an asm label specified, then this
4918      // is a GNU extension.
4919      if (SC == SC_Register && D.getAsmLabel())
4920        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4921      else
4922        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4923      D.setInvalidType();
4924    }
4925  }
4926
4927  if (getLangOpts().OpenCL) {
4928    // Set up the special work-group-local storage class for variables in the
4929    // OpenCL __local address space.
4930    if (R.getAddressSpace() == LangAS::opencl_local) {
4931      SC = SC_OpenCLWorkGroupLocal;
4932    }
4933
4934    // OpenCL v1.2 s6.9.b p4:
4935    // The sampler type cannot be used with the __local and __global address
4936    // space qualifiers.
4937    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4938      R.getAddressSpace() == LangAS::opencl_global)) {
4939      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4940    }
4941
4942    // OpenCL 1.2 spec, p6.9 r:
4943    // The event type cannot be used to declare a program scope variable.
4944    // The event type cannot be used with the __local, __constant and __global
4945    // address space qualifiers.
4946    if (R->isEventT()) {
4947      if (S->getParent() == 0) {
4948        Diag(D.getLocStart(), diag::err_event_t_global_var);
4949        D.setInvalidType();
4950      }
4951
4952      if (R.getAddressSpace()) {
4953        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4954        D.setInvalidType();
4955      }
4956    }
4957  }
4958
4959  bool IsExplicitSpecialization = false;
4960  bool IsVariableTemplateSpecialization = false;
4961  bool IsPartialSpecialization = false;
4962  bool IsVariableTemplate = false;
4963  VarTemplateDecl *PrevVarTemplate = 0;
4964  VarDecl *NewVD = 0;
4965  VarTemplateDecl *NewTemplate = 0;
4966  if (!getLangOpts().CPlusPlus) {
4967    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4968                            D.getIdentifierLoc(), II,
4969                            R, TInfo, SC);
4970
4971    if (D.isInvalidType())
4972      NewVD->setInvalidDecl();
4973  } else {
4974    bool Invalid = false;
4975
4976    if (DC->isRecord() && !CurContext->isRecord()) {
4977      // This is an out-of-line definition of a static data member.
4978      switch (SC) {
4979      case SC_None:
4980        break;
4981      case SC_Static:
4982        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4983             diag::err_static_out_of_line)
4984          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4985        break;
4986      case SC_Auto:
4987      case SC_Register:
4988      case SC_Extern:
4989        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4990        // to names of variables declared in a block or to function parameters.
4991        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4992        // of class members
4993
4994        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4995             diag::err_storage_class_for_static_member)
4996          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4997        break;
4998      case SC_PrivateExtern:
4999        llvm_unreachable("C storage class in c++!");
5000      case SC_OpenCLWorkGroupLocal:
5001        llvm_unreachable("OpenCL storage class in c++!");
5002      }
5003    }
5004
5005    if (SC == SC_Static && CurContext->isRecord()) {
5006      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
5007        if (RD->isLocalClass())
5008          Diag(D.getIdentifierLoc(),
5009               diag::err_static_data_member_not_allowed_in_local_class)
5010            << Name << RD->getDeclName();
5011
5012        // C++98 [class.union]p1: If a union contains a static data member,
5013        // the program is ill-formed. C++11 drops this restriction.
5014        if (RD->isUnion())
5015          Diag(D.getIdentifierLoc(),
5016               getLangOpts().CPlusPlus11
5017                 ? diag::warn_cxx98_compat_static_data_member_in_union
5018                 : diag::ext_static_data_member_in_union) << Name;
5019        // We conservatively disallow static data members in anonymous structs.
5020        else if (!RD->getDeclName())
5021          Diag(D.getIdentifierLoc(),
5022               diag::err_static_data_member_not_allowed_in_anon_struct)
5023            << Name << RD->isUnion();
5024      }
5025    }
5026
5027    NamedDecl *PrevDecl = 0;
5028    if (Previous.begin() != Previous.end())
5029      PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5030    PrevVarTemplate = dyn_cast_or_null<VarTemplateDecl>(PrevDecl);
5031
5032    // Match up the template parameter lists with the scope specifier, then
5033    // determine whether we have a template or a template specialization.
5034    TemplateParameterList *TemplateParams =
5035        MatchTemplateParametersToScopeSpecifier(
5036            D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
5037            D.getCXXScopeSpec(), TemplateParamLists,
5038            /*never a friend*/ false, IsExplicitSpecialization, Invalid);
5039    if (TemplateParams) {
5040      if (!TemplateParams->size() &&
5041          D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5042        // There is an extraneous 'template<>' for this variable. Complain
5043        // about it, but allow the declaration of the variable.
5044        Diag(TemplateParams->getTemplateLoc(),
5045             diag::err_template_variable_noparams)
5046          << II
5047          << SourceRange(TemplateParams->getTemplateLoc(),
5048                         TemplateParams->getRAngleLoc());
5049      } else {
5050        // Only C++1y supports variable templates (N3651).
5051        Diag(D.getIdentifierLoc(),
5052             getLangOpts().CPlusPlus1y
5053                 ? diag::warn_cxx11_compat_variable_template
5054                 : diag::ext_variable_template);
5055
5056        if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5057          // This is an explicit specialization or a partial specialization.
5058          // Check that we can declare a specialization here
5059
5060          IsVariableTemplateSpecialization = true;
5061          IsPartialSpecialization = TemplateParams->size() > 0;
5062
5063        } else { // if (TemplateParams->size() > 0)
5064          // This is a template declaration.
5065          IsVariableTemplate = true;
5066
5067          // Check that we can declare a template here.
5068          if (CheckTemplateDeclScope(S, TemplateParams))
5069            return 0;
5070
5071          // If there is a previous declaration with the same name, check
5072          // whether this is a valid redeclaration.
5073          if (PrevDecl && !isDeclInScope(PrevDecl, DC, S))
5074            PrevDecl = PrevVarTemplate = 0;
5075
5076          if (PrevVarTemplate) {
5077            // Ensure that the template parameter lists are compatible.
5078            if (!TemplateParameterListsAreEqual(
5079                    TemplateParams, PrevVarTemplate->getTemplateParameters(),
5080                    /*Complain=*/true, TPL_TemplateMatch))
5081              return 0;
5082          } else if (PrevDecl && PrevDecl->isTemplateParameter()) {
5083            // Maybe we will complain about the shadowed template parameter.
5084            DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5085
5086            // Just pretend that we didn't see the previous declaration.
5087            PrevDecl = 0;
5088          } else if (PrevDecl) {
5089            // C++ [temp]p5:
5090            // ... a template name declared in namespace scope or in class
5091            // scope shall be unique in that scope.
5092            Diag(D.getIdentifierLoc(), diag::err_redefinition_different_kind)
5093                << Name;
5094            Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5095            return 0;
5096          }
5097
5098          // Check the template parameter list of this declaration, possibly
5099          // merging in the template parameter list from the previous variable
5100          // template declaration.
5101          if (CheckTemplateParameterList(
5102                  TemplateParams,
5103                  PrevVarTemplate ? PrevVarTemplate->getTemplateParameters()
5104                                  : 0,
5105                  (D.getCXXScopeSpec().isSet() && DC && DC->isRecord() &&
5106                   DC->isDependentContext())
5107                      ? TPC_ClassTemplateMember
5108                      : TPC_VarTemplate))
5109            Invalid = true;
5110
5111          if (D.getCXXScopeSpec().isSet()) {
5112            // If the name of the template was qualified, we must be defining
5113            // the template out-of-line.
5114            if (!D.getCXXScopeSpec().isInvalid() && !Invalid &&
5115                !PrevVarTemplate) {
5116              Diag(D.getIdentifierLoc(), diag::err_member_decl_does_not_match)
5117                  << Name << DC << /*IsDefinition*/true
5118                  << D.getCXXScopeSpec().getRange();
5119              Invalid = true;
5120            }
5121          }
5122        }
5123      }
5124    } else if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5125      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5126
5127      // We have encountered something that the user meant to be a
5128      // specialization (because it has explicitly-specified template
5129      // arguments) but that was not introduced with a "template<>" (or had
5130      // too few of them).
5131      // FIXME: Differentiate between attempts for explicit instantiations
5132      // (starting with "template") and the rest.
5133      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5134          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5135          << FixItHint::CreateInsertion(D.getDeclSpec().getLocStart(),
5136                                        "template<> ");
5137      IsVariableTemplateSpecialization = true;
5138    }
5139
5140    if (IsVariableTemplateSpecialization) {
5141      if (!PrevVarTemplate) {
5142        Diag(D.getIdentifierLoc(), diag::err_var_spec_no_template)
5143            << IsPartialSpecialization;
5144        return 0;
5145      }
5146
5147      SourceLocation TemplateKWLoc =
5148          TemplateParamLists.size() > 0
5149              ? TemplateParamLists[0]->getTemplateLoc()
5150              : SourceLocation();
5151      DeclResult Res = ActOnVarTemplateSpecialization(
5152          S, PrevVarTemplate, D, TInfo, TemplateKWLoc, TemplateParams, SC,
5153          IsPartialSpecialization);
5154      if (Res.isInvalid())
5155        return 0;
5156      NewVD = cast<VarDecl>(Res.get());
5157      AddToScope = false;
5158    } else
5159      NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
5160                              D.getIdentifierLoc(), II, R, TInfo, SC);
5161
5162    // If this is supposed to be a variable template, create it as such.
5163    if (IsVariableTemplate) {
5164      NewTemplate =
5165          VarTemplateDecl::Create(Context, DC, D.getIdentifierLoc(), Name,
5166                                  TemplateParams, NewVD, PrevVarTemplate);
5167      NewVD->setDescribedVarTemplate(NewTemplate);
5168    }
5169
5170    // If this decl has an auto type in need of deduction, make a note of the
5171    // Decl so we can diagnose uses of it in its own initializer.
5172    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
5173      ParsingInitForAutoVars.insert(NewVD);
5174
5175    if (D.isInvalidType() || Invalid) {
5176      NewVD->setInvalidDecl();
5177      if (NewTemplate)
5178        NewTemplate->setInvalidDecl();
5179    }
5180
5181    SetNestedNameSpecifier(NewVD, D);
5182
5183    // FIXME: Do we need D.getCXXScopeSpec().isSet()?
5184    if (TemplateParams && TemplateParamLists.size() > 1 &&
5185        (!IsVariableTemplateSpecialization || D.getCXXScopeSpec().isSet())) {
5186      NewVD->setTemplateParameterListsInfo(
5187          Context, TemplateParamLists.size() - 1, TemplateParamLists.data());
5188    } else if (IsVariableTemplateSpecialization ||
5189               (!TemplateParams && TemplateParamLists.size() > 0 &&
5190                (D.getCXXScopeSpec().isSet()))) {
5191      NewVD->setTemplateParameterListsInfo(Context,
5192                                           TemplateParamLists.size(),
5193                                           TemplateParamLists.data());
5194    }
5195
5196    if (D.getDeclSpec().isConstexprSpecified())
5197      NewVD->setConstexpr(true);
5198  }
5199
5200  // Set the lexical context. If the declarator has a C++ scope specifier, the
5201  // lexical context will be different from the semantic context.
5202  NewVD->setLexicalDeclContext(CurContext);
5203  if (NewTemplate)
5204    NewTemplate->setLexicalDeclContext(CurContext);
5205
5206  if (IsLocalExternDecl)
5207    NewVD->setLocalExternDecl();
5208
5209  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
5210    if (NewVD->hasLocalStorage()) {
5211      // C++11 [dcl.stc]p4:
5212      //   When thread_local is applied to a variable of block scope the
5213      //   storage-class-specifier static is implied if it does not appear
5214      //   explicitly.
5215      // Core issue: 'static' is not implied if the variable is declared
5216      //   'extern'.
5217      if (SCSpec == DeclSpec::SCS_unspecified &&
5218          TSCS == DeclSpec::TSCS_thread_local &&
5219          DC->isFunctionOrMethod())
5220        NewVD->setTSCSpec(TSCS);
5221      else
5222        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5223             diag::err_thread_non_global)
5224          << DeclSpec::getSpecifierName(TSCS);
5225    } else if (!Context.getTargetInfo().isTLSSupported())
5226      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
5227           diag::err_thread_unsupported);
5228    else
5229      NewVD->setTSCSpec(TSCS);
5230  }
5231
5232  // C99 6.7.4p3
5233  //   An inline definition of a function with external linkage shall
5234  //   not contain a definition of a modifiable object with static or
5235  //   thread storage duration...
5236  // We only apply this when the function is required to be defined
5237  // elsewhere, i.e. when the function is not 'extern inline'.  Note
5238  // that a local variable with thread storage duration still has to
5239  // be marked 'static'.  Also note that it's possible to get these
5240  // semantics in C++ using __attribute__((gnu_inline)).
5241  if (SC == SC_Static && S->getFnParent() != 0 &&
5242      !NewVD->getType().isConstQualified()) {
5243    FunctionDecl *CurFD = getCurFunctionDecl();
5244    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
5245      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5246           diag::warn_static_local_in_extern_inline);
5247      MaybeSuggestAddingStaticToDecl(CurFD);
5248    }
5249  }
5250
5251  if (D.getDeclSpec().isModulePrivateSpecified()) {
5252    if (IsVariableTemplateSpecialization)
5253      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5254          << (IsPartialSpecialization ? 1 : 0)
5255          << FixItHint::CreateRemoval(
5256                 D.getDeclSpec().getModulePrivateSpecLoc());
5257    else if (IsExplicitSpecialization)
5258      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
5259        << 2
5260        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5261    else if (NewVD->hasLocalStorage())
5262      Diag(NewVD->getLocation(), diag::err_module_private_local)
5263        << 0 << NewVD->getDeclName()
5264        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
5265        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5266    else {
5267      NewVD->setModulePrivate();
5268      if (NewTemplate)
5269        NewTemplate->setModulePrivate();
5270    }
5271  }
5272
5273  // Handle attributes prior to checking for duplicates in MergeVarDecl
5274  ProcessDeclAttributes(S, NewVD, D);
5275
5276  if (NewVD->hasAttrs())
5277    CheckAlignasUnderalignment(NewVD);
5278
5279  if (getLangOpts().CUDA) {
5280    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5281    // storage [duration]."
5282    if (SC == SC_None && S->getFnParent() != 0 &&
5283        (NewVD->hasAttr<CUDASharedAttr>() ||
5284         NewVD->hasAttr<CUDAConstantAttr>())) {
5285      NewVD->setStorageClass(SC_Static);
5286    }
5287  }
5288
5289  // In auto-retain/release, infer strong retension for variables of
5290  // retainable type.
5291  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5292    NewVD->setInvalidDecl();
5293
5294  // Handle GNU asm-label extension (encoded as an attribute).
5295  if (Expr *E = (Expr*)D.getAsmLabel()) {
5296    // The parser guarantees this is a string.
5297    StringLiteral *SE = cast<StringLiteral>(E);
5298    StringRef Label = SE->getString();
5299    if (S->getFnParent() != 0) {
5300      switch (SC) {
5301      case SC_None:
5302      case SC_Auto:
5303        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5304        break;
5305      case SC_Register:
5306        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5307          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5308        break;
5309      case SC_Static:
5310      case SC_Extern:
5311      case SC_PrivateExtern:
5312      case SC_OpenCLWorkGroupLocal:
5313        break;
5314      }
5315    }
5316
5317    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5318                                                Context, Label));
5319  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5320    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5321      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5322    if (I != ExtnameUndeclaredIdentifiers.end()) {
5323      NewVD->addAttr(I->second);
5324      ExtnameUndeclaredIdentifiers.erase(I);
5325    }
5326  }
5327
5328  // Diagnose shadowed variables before filtering for scope.
5329  if (!D.getCXXScopeSpec().isSet())
5330    CheckShadow(S, NewVD, Previous);
5331
5332  // Don't consider existing declarations that are in a different
5333  // scope and are out-of-semantic-context declarations (if the new
5334  // declaration has linkage).
5335  FilterLookupForScope(
5336      Previous, OriginalDC, S, shouldConsiderLinkage(NewVD),
5337      IsExplicitSpecialization || IsVariableTemplateSpecialization);
5338
5339  // Check whether the previous declaration is in the same block scope. This
5340  // affects whether we merge types with it, per C++11 [dcl.array]p3.
5341  if (getLangOpts().CPlusPlus &&
5342      NewVD->isLocalVarDecl() && NewVD->hasExternalStorage())
5343    NewVD->setPreviousDeclInSameBlockScope(
5344        Previous.isSingleResult() && !Previous.isShadowed() &&
5345        isDeclInScope(Previous.getFoundDecl(), OriginalDC, S, false));
5346
5347  if (!getLangOpts().CPlusPlus) {
5348    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5349  } else {
5350    // Merge the decl with the existing one if appropriate.
5351    if (!Previous.empty()) {
5352      if (Previous.isSingleResult() &&
5353          isa<FieldDecl>(Previous.getFoundDecl()) &&
5354          D.getCXXScopeSpec().isSet()) {
5355        // The user tried to define a non-static data member
5356        // out-of-line (C++ [dcl.meaning]p1).
5357        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5358          << D.getCXXScopeSpec().getRange();
5359        Previous.clear();
5360        NewVD->setInvalidDecl();
5361      }
5362    } else if (D.getCXXScopeSpec().isSet()) {
5363      // No previous declaration in the qualifying scope.
5364      Diag(D.getIdentifierLoc(), diag::err_no_member)
5365        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5366        << D.getCXXScopeSpec().getRange();
5367      NewVD->setInvalidDecl();
5368    }
5369
5370    if (!IsVariableTemplateSpecialization) {
5371      if (PrevVarTemplate) {
5372        LookupResult PrevDecl(*this, GetNameForDeclarator(D),
5373                              LookupOrdinaryName, ForRedeclaration);
5374        PrevDecl.addDecl(PrevVarTemplate->getTemplatedDecl());
5375        D.setRedeclaration(CheckVariableDeclaration(NewVD, PrevDecl));
5376      } else
5377        D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5378    }
5379
5380    // This is an explicit specialization of a static data member. Check it.
5381    if (IsExplicitSpecialization && !NewVD->isInvalidDecl() &&
5382        CheckMemberSpecialization(NewVD, Previous))
5383      NewVD->setInvalidDecl();
5384  }
5385
5386  ProcessPragmaWeak(S, NewVD);
5387  checkAttributesAfterMerging(*this, *NewVD);
5388
5389  // If this is the first declaration of an extern C variable, update
5390  // the map of such variables.
5391  if (NewVD->isFirstDecl() && !NewVD->isInvalidDecl() &&
5392      isIncompleteDeclExternC(*this, NewVD))
5393    RegisterLocallyScopedExternCDecl(NewVD, S);
5394
5395  if (getLangOpts().CPlusPlus && NewVD->isStaticLocal()) {
5396    Decl *ManglingContextDecl;
5397    if (MangleNumberingContext *MCtx =
5398            getCurrentMangleNumberContext(NewVD->getDeclContext(),
5399                                          ManglingContextDecl)) {
5400      Context.setManglingNumber(NewVD, MCtx->getManglingNumber(NewVD));
5401    }
5402  }
5403
5404  // If we are providing an explicit specialization of a static variable
5405  // template, make a note of that.
5406  if (PrevVarTemplate && PrevVarTemplate->getInstantiatedFromMemberTemplate())
5407    PrevVarTemplate->setMemberSpecialization();
5408
5409  if (NewTemplate) {
5410    ActOnDocumentableDecl(NewTemplate);
5411    return NewTemplate;
5412  }
5413
5414  return NewVD;
5415}
5416
5417/// \brief Diagnose variable or built-in function shadowing.  Implements
5418/// -Wshadow.
5419///
5420/// This method is called whenever a VarDecl is added to a "useful"
5421/// scope.
5422///
5423/// \param S the scope in which the shadowing name is being declared
5424/// \param R the lookup of the name
5425///
5426void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5427  // Return if warning is ignored.
5428  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5429        DiagnosticsEngine::Ignored)
5430    return;
5431
5432  // Don't diagnose declarations at file scope.
5433  if (D->hasGlobalStorage())
5434    return;
5435
5436  DeclContext *NewDC = D->getDeclContext();
5437
5438  // Only diagnose if we're shadowing an unambiguous field or variable.
5439  if (R.getResultKind() != LookupResult::Found)
5440    return;
5441
5442  NamedDecl* ShadowedDecl = R.getFoundDecl();
5443  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5444    return;
5445
5446  // Fields are not shadowed by variables in C++ static methods.
5447  if (isa<FieldDecl>(ShadowedDecl))
5448    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5449      if (MD->isStatic())
5450        return;
5451
5452  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5453    if (shadowedVar->isExternC()) {
5454      // For shadowing external vars, make sure that we point to the global
5455      // declaration, not a locally scoped extern declaration.
5456      for (VarDecl::redecl_iterator
5457             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5458           I != E; ++I)
5459        if (I->isFileVarDecl()) {
5460          ShadowedDecl = *I;
5461          break;
5462        }
5463    }
5464
5465  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5466
5467  // Only warn about certain kinds of shadowing for class members.
5468  if (NewDC && NewDC->isRecord()) {
5469    // In particular, don't warn about shadowing non-class members.
5470    if (!OldDC->isRecord())
5471      return;
5472
5473    // TODO: should we warn about static data members shadowing
5474    // static data members from base classes?
5475
5476    // TODO: don't diagnose for inaccessible shadowed members.
5477    // This is hard to do perfectly because we might friend the
5478    // shadowing context, but that's just a false negative.
5479  }
5480
5481  // Determine what kind of declaration we're shadowing.
5482  unsigned Kind;
5483  if (isa<RecordDecl>(OldDC)) {
5484    if (isa<FieldDecl>(ShadowedDecl))
5485      Kind = 3; // field
5486    else
5487      Kind = 2; // static data member
5488  } else if (OldDC->isFileContext())
5489    Kind = 1; // global
5490  else
5491    Kind = 0; // local
5492
5493  DeclarationName Name = R.getLookupName();
5494
5495  // Emit warning and note.
5496  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5497  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5498}
5499
5500/// \brief Check -Wshadow without the advantage of a previous lookup.
5501void Sema::CheckShadow(Scope *S, VarDecl *D) {
5502  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5503        DiagnosticsEngine::Ignored)
5504    return;
5505
5506  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5507                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5508  LookupName(R, S);
5509  CheckShadow(S, D, R);
5510}
5511
5512/// Check for conflict between this global or extern "C" declaration and
5513/// previous global or extern "C" declarations. This is only used in C++.
5514template<typename T>
5515static bool checkGlobalOrExternCConflict(
5516    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5517  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5518  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5519
5520  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5521    // The common case: this global doesn't conflict with any extern "C"
5522    // declaration.
5523    return false;
5524  }
5525
5526  if (Prev) {
5527    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5528      // Both the old and new declarations have C language linkage. This is a
5529      // redeclaration.
5530      Previous.clear();
5531      Previous.addDecl(Prev);
5532      return true;
5533    }
5534
5535    // This is a global, non-extern "C" declaration, and there is a previous
5536    // non-global extern "C" declaration. Diagnose if this is a variable
5537    // declaration.
5538    if (!isa<VarDecl>(ND))
5539      return false;
5540  } else {
5541    // The declaration is extern "C". Check for any declaration in the
5542    // translation unit which might conflict.
5543    if (IsGlobal) {
5544      // We have already performed the lookup into the translation unit.
5545      IsGlobal = false;
5546      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5547           I != E; ++I) {
5548        if (isa<VarDecl>(*I)) {
5549          Prev = *I;
5550          break;
5551        }
5552      }
5553    } else {
5554      DeclContext::lookup_result R =
5555          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5556      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5557           I != E; ++I) {
5558        if (isa<VarDecl>(*I)) {
5559          Prev = *I;
5560          break;
5561        }
5562        // FIXME: If we have any other entity with this name in global scope,
5563        // the declaration is ill-formed, but that is a defect: it breaks the
5564        // 'stat' hack, for instance. Only variables can have mangled name
5565        // clashes with extern "C" declarations, so only they deserve a
5566        // diagnostic.
5567      }
5568    }
5569
5570    if (!Prev)
5571      return false;
5572  }
5573
5574  // Use the first declaration's location to ensure we point at something which
5575  // is lexically inside an extern "C" linkage-spec.
5576  assert(Prev && "should have found a previous declaration to diagnose");
5577  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5578    Prev = FD->getFirstDecl();
5579  else
5580    Prev = cast<VarDecl>(Prev)->getFirstDecl();
5581
5582  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5583    << IsGlobal << ND;
5584  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5585    << IsGlobal;
5586  return false;
5587}
5588
5589/// Apply special rules for handling extern "C" declarations. Returns \c true
5590/// if we have found that this is a redeclaration of some prior entity.
5591///
5592/// Per C++ [dcl.link]p6:
5593///   Two declarations [for a function or variable] with C language linkage
5594///   with the same name that appear in different scopes refer to the same
5595///   [entity]. An entity with C language linkage shall not be declared with
5596///   the same name as an entity in global scope.
5597template<typename T>
5598static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5599                                                  LookupResult &Previous) {
5600  if (!S.getLangOpts().CPlusPlus) {
5601    // In C, when declaring a global variable, look for a corresponding 'extern'
5602    // variable declared in function scope. We don't need this in C++, because
5603    // we find local extern decls in the surrounding file-scope DeclContext.
5604    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5605      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5606        Previous.clear();
5607        Previous.addDecl(Prev);
5608        return true;
5609      }
5610    }
5611    return false;
5612  }
5613
5614  // A declaration in the translation unit can conflict with an extern "C"
5615  // declaration.
5616  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5617    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5618
5619  // An extern "C" declaration can conflict with a declaration in the
5620  // translation unit or can be a redeclaration of an extern "C" declaration
5621  // in another scope.
5622  if (isIncompleteDeclExternC(S,ND))
5623    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5624
5625  // Neither global nor extern "C": nothing to do.
5626  return false;
5627}
5628
5629void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5630  // If the decl is already known invalid, don't check it.
5631  if (NewVD->isInvalidDecl())
5632    return;
5633
5634  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5635  QualType T = TInfo->getType();
5636
5637  // Defer checking an 'auto' type until its initializer is attached.
5638  if (T->isUndeducedType())
5639    return;
5640
5641  if (T->isObjCObjectType()) {
5642    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5643      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5644    T = Context.getObjCObjectPointerType(T);
5645    NewVD->setType(T);
5646  }
5647
5648  // Emit an error if an address space was applied to decl with local storage.
5649  // This includes arrays of objects with address space qualifiers, but not
5650  // automatic variables that point to other address spaces.
5651  // ISO/IEC TR 18037 S5.1.2
5652  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5653    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5654    NewVD->setInvalidDecl();
5655    return;
5656  }
5657
5658  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5659  // __constant address space.
5660  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5661      && T.getAddressSpace() != LangAS::opencl_constant
5662      && !T->isSamplerT()){
5663    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5664    NewVD->setInvalidDecl();
5665    return;
5666  }
5667
5668  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5669  // scope.
5670  if ((getLangOpts().OpenCLVersion >= 120)
5671      && NewVD->isStaticLocal()) {
5672    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5673    NewVD->setInvalidDecl();
5674    return;
5675  }
5676
5677  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5678      && !NewVD->hasAttr<BlocksAttr>()) {
5679    if (getLangOpts().getGC() != LangOptions::NonGC)
5680      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5681    else {
5682      assert(!getLangOpts().ObjCAutoRefCount);
5683      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5684    }
5685  }
5686
5687  bool isVM = T->isVariablyModifiedType();
5688  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5689      NewVD->hasAttr<BlocksAttr>())
5690    getCurFunction()->setHasBranchProtectedScope();
5691
5692  if ((isVM && NewVD->hasLinkage()) ||
5693      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5694    bool SizeIsNegative;
5695    llvm::APSInt Oversized;
5696    TypeSourceInfo *FixedTInfo =
5697      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5698                                                    SizeIsNegative, Oversized);
5699    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5700      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5701      // FIXME: This won't give the correct result for
5702      // int a[10][n];
5703      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5704
5705      if (NewVD->isFileVarDecl())
5706        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5707        << SizeRange;
5708      else if (NewVD->isStaticLocal())
5709        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5710        << SizeRange;
5711      else
5712        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5713        << SizeRange;
5714      NewVD->setInvalidDecl();
5715      return;
5716    }
5717
5718    if (FixedTInfo == 0) {
5719      if (NewVD->isFileVarDecl())
5720        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5721      else
5722        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5723      NewVD->setInvalidDecl();
5724      return;
5725    }
5726
5727    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5728    NewVD->setType(FixedTInfo->getType());
5729    NewVD->setTypeSourceInfo(FixedTInfo);
5730  }
5731
5732  if (T->isVoidType()) {
5733    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5734    //                    of objects and functions.
5735    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5736      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5737        << T;
5738      NewVD->setInvalidDecl();
5739      return;
5740    }
5741  }
5742
5743  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5744    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5745    NewVD->setInvalidDecl();
5746    return;
5747  }
5748
5749  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5750    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5751    NewVD->setInvalidDecl();
5752    return;
5753  }
5754
5755  if (NewVD->isConstexpr() && !T->isDependentType() &&
5756      RequireLiteralType(NewVD->getLocation(), T,
5757                         diag::err_constexpr_var_non_literal)) {
5758    // Can't perform this check until the type is deduced.
5759    NewVD->setInvalidDecl();
5760    return;
5761  }
5762}
5763
5764/// \brief Perform semantic checking on a newly-created variable
5765/// declaration.
5766///
5767/// This routine performs all of the type-checking required for a
5768/// variable declaration once it has been built. It is used both to
5769/// check variables after they have been parsed and their declarators
5770/// have been translated into a declaration, and to check variables
5771/// that have been instantiated from a template.
5772///
5773/// Sets NewVD->isInvalidDecl() if an error was encountered.
5774///
5775/// Returns true if the variable declaration is a redeclaration.
5776bool Sema::CheckVariableDeclaration(VarDecl *NewVD, LookupResult &Previous) {
5777  CheckVariableDeclarationType(NewVD);
5778
5779  // If the decl is already known invalid, don't check it.
5780  if (NewVD->isInvalidDecl())
5781    return false;
5782
5783  // If we did not find anything by this name, look for a non-visible
5784  // extern "C" declaration with the same name.
5785  if (Previous.empty() &&
5786      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous))
5787    Previous.setShadowed();
5788
5789  // Filter out any non-conflicting previous declarations.
5790  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5791
5792  if (!Previous.empty()) {
5793    MergeVarDecl(NewVD, Previous);
5794    return true;
5795  }
5796  return false;
5797}
5798
5799/// \brief Data used with FindOverriddenMethod
5800struct FindOverriddenMethodData {
5801  Sema *S;
5802  CXXMethodDecl *Method;
5803};
5804
5805/// \brief Member lookup function that determines whether a given C++
5806/// method overrides a method in a base class, to be used with
5807/// CXXRecordDecl::lookupInBases().
5808static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5809                                 CXXBasePath &Path,
5810                                 void *UserData) {
5811  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5812
5813  FindOverriddenMethodData *Data
5814    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5815
5816  DeclarationName Name = Data->Method->getDeclName();
5817
5818  // FIXME: Do we care about other names here too?
5819  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5820    // We really want to find the base class destructor here.
5821    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5822    CanQualType CT = Data->S->Context.getCanonicalType(T);
5823
5824    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5825  }
5826
5827  for (Path.Decls = BaseRecord->lookup(Name);
5828       !Path.Decls.empty();
5829       Path.Decls = Path.Decls.slice(1)) {
5830    NamedDecl *D = Path.Decls.front();
5831    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5832      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5833        return true;
5834    }
5835  }
5836
5837  return false;
5838}
5839
5840namespace {
5841  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5842}
5843/// \brief Report an error regarding overriding, along with any relevant
5844/// overriden methods.
5845///
5846/// \param DiagID the primary error to report.
5847/// \param MD the overriding method.
5848/// \param OEK which overrides to include as notes.
5849static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5850                            OverrideErrorKind OEK = OEK_All) {
5851  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5852  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5853                                      E = MD->end_overridden_methods();
5854       I != E; ++I) {
5855    // This check (& the OEK parameter) could be replaced by a predicate, but
5856    // without lambdas that would be overkill. This is still nicer than writing
5857    // out the diag loop 3 times.
5858    if ((OEK == OEK_All) ||
5859        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5860        (OEK == OEK_Deleted && (*I)->isDeleted()))
5861      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5862  }
5863}
5864
5865/// AddOverriddenMethods - See if a method overrides any in the base classes,
5866/// and if so, check that it's a valid override and remember it.
5867bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5868  // Look for virtual methods in base classes that this method might override.
5869  CXXBasePaths Paths;
5870  FindOverriddenMethodData Data;
5871  Data.Method = MD;
5872  Data.S = this;
5873  bool hasDeletedOverridenMethods = false;
5874  bool hasNonDeletedOverridenMethods = false;
5875  bool AddedAny = false;
5876  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5877    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5878         E = Paths.found_decls_end(); I != E; ++I) {
5879      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5880        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5881        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5882            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5883            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5884            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5885          hasDeletedOverridenMethods |= OldMD->isDeleted();
5886          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5887          AddedAny = true;
5888        }
5889      }
5890    }
5891  }
5892
5893  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5894    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5895  }
5896  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5897    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5898  }
5899
5900  return AddedAny;
5901}
5902
5903namespace {
5904  // Struct for holding all of the extra arguments needed by
5905  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5906  struct ActOnFDArgs {
5907    Scope *S;
5908    Declarator &D;
5909    MultiTemplateParamsArg TemplateParamLists;
5910    bool AddToScope;
5911  };
5912}
5913
5914namespace {
5915
5916// Callback to only accept typo corrections that have a non-zero edit distance.
5917// Also only accept corrections that have the same parent decl.
5918class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5919 public:
5920  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5921                            CXXRecordDecl *Parent)
5922      : Context(Context), OriginalFD(TypoFD),
5923        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5924
5925  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5926    if (candidate.getEditDistance() == 0)
5927      return false;
5928
5929    SmallVector<unsigned, 1> MismatchedParams;
5930    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5931                                          CDeclEnd = candidate.end();
5932         CDecl != CDeclEnd; ++CDecl) {
5933      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5934
5935      if (FD && !FD->hasBody() &&
5936          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5937        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5938          CXXRecordDecl *Parent = MD->getParent();
5939          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5940            return true;
5941        } else if (!ExpectedParent) {
5942          return true;
5943        }
5944      }
5945    }
5946
5947    return false;
5948  }
5949
5950 private:
5951  ASTContext &Context;
5952  FunctionDecl *OriginalFD;
5953  CXXRecordDecl *ExpectedParent;
5954};
5955
5956}
5957
5958/// \brief Generate diagnostics for an invalid function redeclaration.
5959///
5960/// This routine handles generating the diagnostic messages for an invalid
5961/// function redeclaration, including finding possible similar declarations
5962/// or performing typo correction if there are no previous declarations with
5963/// the same name.
5964///
5965/// Returns a NamedDecl iff typo correction was performed and substituting in
5966/// the new declaration name does not cause new errors.
5967static NamedDecl *DiagnoseInvalidRedeclaration(
5968    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5969    ActOnFDArgs &ExtraArgs, bool IsLocalFriend, Scope *S) {
5970  DeclarationName Name = NewFD->getDeclName();
5971  DeclContext *NewDC = NewFD->getDeclContext();
5972  SmallVector<unsigned, 1> MismatchedParams;
5973  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5974  TypoCorrection Correction;
5975  bool IsDefinition = ExtraArgs.D.isFunctionDefinition();
5976  unsigned DiagMsg = IsLocalFriend ? diag::err_no_matching_local_friend
5977                                   : diag::err_member_decl_does_not_match;
5978  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5979                    IsLocalFriend ? Sema::LookupLocalFriendName
5980                                  : Sema::LookupOrdinaryName,
5981                    Sema::ForRedeclaration);
5982
5983  NewFD->setInvalidDecl();
5984  if (IsLocalFriend)
5985    SemaRef.LookupName(Prev, S);
5986  else
5987    SemaRef.LookupQualifiedName(Prev, NewDC);
5988  assert(!Prev.isAmbiguous() &&
5989         "Cannot have an ambiguity in previous-declaration lookup");
5990  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5991  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5992                                      MD ? MD->getParent() : 0);
5993  if (!Prev.empty()) {
5994    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5995         Func != FuncEnd; ++Func) {
5996      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5997      if (FD &&
5998          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5999        // Add 1 to the index so that 0 can mean the mismatch didn't
6000        // involve a parameter
6001        unsigned ParamNum =
6002            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
6003        NearMatches.push_back(std::make_pair(FD, ParamNum));
6004      }
6005    }
6006  // If the qualified name lookup yielded nothing, try typo correction
6007  } else if ((Correction = SemaRef.CorrectTypo(
6008                 Prev.getLookupNameInfo(), Prev.getLookupKind(), S,
6009                 &ExtraArgs.D.getCXXScopeSpec(), Validator,
6010                 IsLocalFriend ? 0 : NewDC))) {
6011    // Set up everything for the call to ActOnFunctionDeclarator
6012    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
6013                              ExtraArgs.D.getIdentifierLoc());
6014    Previous.clear();
6015    Previous.setLookupName(Correction.getCorrection());
6016    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
6017                                    CDeclEnd = Correction.end();
6018         CDecl != CDeclEnd; ++CDecl) {
6019      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
6020      if (FD && !FD->hasBody() &&
6021          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
6022        Previous.addDecl(FD);
6023      }
6024    }
6025    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
6026
6027    NamedDecl *Result;
6028    // Retry building the function declaration with the new previous
6029    // declarations, and with errors suppressed.
6030    {
6031      // Trap errors.
6032      Sema::SFINAETrap Trap(SemaRef);
6033
6034      // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
6035      // pieces need to verify the typo-corrected C++ declaration and hopefully
6036      // eliminate the need for the parameter pack ExtraArgs.
6037      Result = SemaRef.ActOnFunctionDeclarator(
6038          ExtraArgs.S, ExtraArgs.D,
6039          Correction.getCorrectionDecl()->getDeclContext(),
6040          NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
6041          ExtraArgs.AddToScope);
6042
6043      if (Trap.hasErrorOccurred())
6044        Result = 0;
6045    }
6046
6047    if (Result) {
6048      // Determine which correction we picked.
6049      Decl *Canonical = Result->getCanonicalDecl();
6050      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
6051           I != E; ++I)
6052        if ((*I)->getCanonicalDecl() == Canonical)
6053          Correction.setCorrectionDecl(*I);
6054
6055      SemaRef.diagnoseTypo(
6056          Correction,
6057          SemaRef.PDiag(IsLocalFriend
6058                          ? diag::err_no_matching_local_friend_suggest
6059                          : diag::err_member_decl_does_not_match_suggest)
6060            << Name << NewDC << IsDefinition);
6061      return Result;
6062    }
6063
6064    // Pretend the typo correction never occurred
6065    ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
6066                              ExtraArgs.D.getIdentifierLoc());
6067    ExtraArgs.D.setRedeclaration(wasRedeclaration);
6068    Previous.clear();
6069    Previous.setLookupName(Name);
6070  }
6071
6072  SemaRef.Diag(NewFD->getLocation(), DiagMsg)
6073      << Name << NewDC << IsDefinition << NewFD->getLocation();
6074
6075  bool NewFDisConst = false;
6076  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
6077    NewFDisConst = NewMD->isConst();
6078
6079  for (SmallVectorImpl<std::pair<FunctionDecl *, unsigned> >::iterator
6080       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
6081       NearMatch != NearMatchEnd; ++NearMatch) {
6082    FunctionDecl *FD = NearMatch->first;
6083    CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
6084    bool FDisConst = MD && MD->isConst();
6085    bool IsMember = MD || !IsLocalFriend;
6086
6087    // FIXME: These notes are poorly worded for the local friend case.
6088    if (unsigned Idx = NearMatch->second) {
6089      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
6090      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
6091      if (Loc.isInvalid()) Loc = FD->getLocation();
6092      SemaRef.Diag(Loc, IsMember ? diag::note_member_def_close_param_match
6093                                 : diag::note_local_decl_close_param_match)
6094        << Idx << FDParam->getType()
6095        << NewFD->getParamDecl(Idx - 1)->getType();
6096    } else if (FDisConst != NewFDisConst) {
6097      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
6098          << NewFDisConst << FD->getSourceRange().getEnd();
6099    } else
6100      SemaRef.Diag(FD->getLocation(),
6101                   IsMember ? diag::note_member_def_close_match
6102                            : diag::note_local_decl_close_match);
6103  }
6104  return 0;
6105}
6106
6107static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
6108                                                          Declarator &D) {
6109  switch (D.getDeclSpec().getStorageClassSpec()) {
6110  default: llvm_unreachable("Unknown storage class!");
6111  case DeclSpec::SCS_auto:
6112  case DeclSpec::SCS_register:
6113  case DeclSpec::SCS_mutable:
6114    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6115                 diag::err_typecheck_sclass_func);
6116    D.setInvalidType();
6117    break;
6118  case DeclSpec::SCS_unspecified: break;
6119  case DeclSpec::SCS_extern:
6120    if (D.getDeclSpec().isExternInLinkageSpec())
6121      return SC_None;
6122    return SC_Extern;
6123  case DeclSpec::SCS_static: {
6124    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
6125      // C99 6.7.1p5:
6126      //   The declaration of an identifier for a function that has
6127      //   block scope shall have no explicit storage-class specifier
6128      //   other than extern
6129      // See also (C++ [dcl.stc]p4).
6130      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6131                   diag::err_static_block_func);
6132      break;
6133    } else
6134      return SC_Static;
6135  }
6136  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
6137  }
6138
6139  // No explicit storage class has already been returned
6140  return SC_None;
6141}
6142
6143static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
6144                                           DeclContext *DC, QualType &R,
6145                                           TypeSourceInfo *TInfo,
6146                                           FunctionDecl::StorageClass SC,
6147                                           bool &IsVirtualOkay) {
6148  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
6149  DeclarationName Name = NameInfo.getName();
6150
6151  FunctionDecl *NewFD = 0;
6152  bool isInline = D.getDeclSpec().isInlineSpecified();
6153
6154  if (!SemaRef.getLangOpts().CPlusPlus) {
6155    // Determine whether the function was written with a
6156    // prototype. This true when:
6157    //   - there is a prototype in the declarator, or
6158    //   - the type R of the function is some kind of typedef or other reference
6159    //     to a type name (which eventually refers to a function type).
6160    bool HasPrototype =
6161      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
6162      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
6163
6164    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
6165                                 D.getLocStart(), NameInfo, R,
6166                                 TInfo, SC, isInline,
6167                                 HasPrototype, false);
6168    if (D.isInvalidType())
6169      NewFD->setInvalidDecl();
6170
6171    // Set the lexical context.
6172    NewFD->setLexicalDeclContext(SemaRef.CurContext);
6173
6174    return NewFD;
6175  }
6176
6177  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6178  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6179
6180  // Check that the return type is not an abstract class type.
6181  // For record types, this is done by the AbstractClassUsageDiagnoser once
6182  // the class has been completely parsed.
6183  if (!DC->isRecord() &&
6184      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
6185                                     R->getAs<FunctionType>()->getResultType(),
6186                                     diag::err_abstract_type_in_decl,
6187                                     SemaRef.AbstractReturnType))
6188    D.setInvalidType();
6189
6190  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
6191    // This is a C++ constructor declaration.
6192    assert(DC->isRecord() &&
6193           "Constructors can only be declared in a member context");
6194
6195    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
6196    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6197                                      D.getLocStart(), NameInfo,
6198                                      R, TInfo, isExplicit, isInline,
6199                                      /*isImplicitlyDeclared=*/false,
6200                                      isConstexpr);
6201
6202  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6203    // This is a C++ destructor declaration.
6204    if (DC->isRecord()) {
6205      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
6206      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
6207      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
6208                                        SemaRef.Context, Record,
6209                                        D.getLocStart(),
6210                                        NameInfo, R, TInfo, isInline,
6211                                        /*isImplicitlyDeclared=*/false);
6212
6213      // If the class is complete, then we now create the implicit exception
6214      // specification. If the class is incomplete or dependent, we can't do
6215      // it yet.
6216      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
6217          Record->getDefinition() && !Record->isBeingDefined() &&
6218          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
6219        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
6220      }
6221
6222      // The Microsoft ABI requires that we perform the destructor body
6223      // checks (i.e. operator delete() lookup) at every declaration, as
6224      // any translation unit may need to emit a deleting destructor.
6225      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
6226          !Record->isDependentType() && Record->getDefinition() &&
6227          !Record->isBeingDefined()) {
6228        SemaRef.CheckDestructor(NewDD);
6229      }
6230
6231      IsVirtualOkay = true;
6232      return NewDD;
6233
6234    } else {
6235      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
6236      D.setInvalidType();
6237
6238      // Create a FunctionDecl to satisfy the function definition parsing
6239      // code path.
6240      return FunctionDecl::Create(SemaRef.Context, DC,
6241                                  D.getLocStart(),
6242                                  D.getIdentifierLoc(), Name, R, TInfo,
6243                                  SC, isInline,
6244                                  /*hasPrototype=*/true, isConstexpr);
6245    }
6246
6247  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
6248    if (!DC->isRecord()) {
6249      SemaRef.Diag(D.getIdentifierLoc(),
6250           diag::err_conv_function_not_member);
6251      return 0;
6252    }
6253
6254    SemaRef.CheckConversionDeclarator(D, R, SC);
6255    IsVirtualOkay = true;
6256    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
6257                                     D.getLocStart(), NameInfo,
6258                                     R, TInfo, isInline, isExplicit,
6259                                     isConstexpr, SourceLocation());
6260
6261  } else if (DC->isRecord()) {
6262    // If the name of the function is the same as the name of the record,
6263    // then this must be an invalid constructor that has a return type.
6264    // (The parser checks for a return type and makes the declarator a
6265    // constructor if it has no return type).
6266    if (Name.getAsIdentifierInfo() &&
6267        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
6268      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
6269        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
6270        << SourceRange(D.getIdentifierLoc());
6271      return 0;
6272    }
6273
6274    // This is a C++ method declaration.
6275    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
6276                                               cast<CXXRecordDecl>(DC),
6277                                               D.getLocStart(), NameInfo, R,
6278                                               TInfo, SC, isInline,
6279                                               isConstexpr, SourceLocation());
6280    IsVirtualOkay = !Ret->isStatic();
6281    return Ret;
6282  } else {
6283    // Determine whether the function was written with a
6284    // prototype. This true when:
6285    //   - we're in C++ (where every function has a prototype),
6286    return FunctionDecl::Create(SemaRef.Context, DC,
6287                                D.getLocStart(),
6288                                NameInfo, R, TInfo, SC, isInline,
6289                                true/*HasPrototype*/, isConstexpr);
6290  }
6291}
6292
6293void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6294  // In C++, the empty parameter-type-list must be spelled "void"; a
6295  // typedef of void is not permitted.
6296  if (getLangOpts().CPlusPlus &&
6297      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6298    bool IsTypeAlias = false;
6299    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6300      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6301    else if (const TemplateSpecializationType *TST =
6302               Param->getType()->getAs<TemplateSpecializationType>())
6303      IsTypeAlias = TST->isTypeAlias();
6304    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6305      << IsTypeAlias;
6306  }
6307}
6308
6309enum OpenCLParamType {
6310  ValidKernelParam,
6311  PtrPtrKernelParam,
6312  PtrKernelParam,
6313  InvalidKernelParam,
6314  RecordKernelParam
6315};
6316
6317static OpenCLParamType getOpenCLKernelParameterType(QualType PT) {
6318  if (PT->isPointerType()) {
6319    QualType PointeeType = PT->getPointeeType();
6320    return PointeeType->isPointerType() ? PtrPtrKernelParam : PtrKernelParam;
6321  }
6322
6323  // TODO: Forbid the other integer types (size_t, ptrdiff_t...) when they can
6324  // be used as builtin types.
6325
6326  if (PT->isImageType())
6327    return PtrKernelParam;
6328
6329  if (PT->isBooleanType())
6330    return InvalidKernelParam;
6331
6332  if (PT->isEventT())
6333    return InvalidKernelParam;
6334
6335  if (PT->isHalfType())
6336    return InvalidKernelParam;
6337
6338  if (PT->isRecordType())
6339    return RecordKernelParam;
6340
6341  return ValidKernelParam;
6342}
6343
6344static void checkIsValidOpenCLKernelParameter(
6345  Sema &S,
6346  Declarator &D,
6347  ParmVarDecl *Param,
6348  llvm::SmallPtrSet<const Type *, 16> &ValidTypes) {
6349  QualType PT = Param->getType();
6350
6351  // Cache the valid types we encounter to avoid rechecking structs that are
6352  // used again
6353  if (ValidTypes.count(PT.getTypePtr()))
6354    return;
6355
6356  switch (getOpenCLKernelParameterType(PT)) {
6357  case PtrPtrKernelParam:
6358    // OpenCL v1.2 s6.9.a:
6359    // A kernel function argument cannot be declared as a
6360    // pointer to a pointer type.
6361    S.Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_param);
6362    D.setInvalidType();
6363    return;
6364
6365    // OpenCL v1.2 s6.9.k:
6366    // Arguments to kernel functions in a program cannot be declared with the
6367    // built-in scalar types bool, half, size_t, ptrdiff_t, intptr_t, and
6368    // uintptr_t or a struct and/or union that contain fields declared to be
6369    // one of these built-in scalar types.
6370
6371  case InvalidKernelParam:
6372    // OpenCL v1.2 s6.8 n:
6373    // A kernel function argument cannot be declared
6374    // of event_t type.
6375    S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6376    D.setInvalidType();
6377    return;
6378
6379  case PtrKernelParam:
6380  case ValidKernelParam:
6381    ValidTypes.insert(PT.getTypePtr());
6382    return;
6383
6384  case RecordKernelParam:
6385    break;
6386  }
6387
6388  // Track nested structs we will inspect
6389  SmallVector<const Decl *, 4> VisitStack;
6390
6391  // Track where we are in the nested structs. Items will migrate from
6392  // VisitStack to HistoryStack as we do the DFS for bad field.
6393  SmallVector<const FieldDecl *, 4> HistoryStack;
6394  HistoryStack.push_back((const FieldDecl *) 0);
6395
6396  const RecordDecl *PD = PT->castAs<RecordType>()->getDecl();
6397  VisitStack.push_back(PD);
6398
6399  assert(VisitStack.back() && "First decl null?");
6400
6401  do {
6402    const Decl *Next = VisitStack.pop_back_val();
6403    if (!Next) {
6404      assert(!HistoryStack.empty());
6405      // Found a marker, we have gone up a level
6406      if (const FieldDecl *Hist = HistoryStack.pop_back_val())
6407        ValidTypes.insert(Hist->getType().getTypePtr());
6408
6409      continue;
6410    }
6411
6412    // Adds everything except the original parameter declaration (which is not a
6413    // field itself) to the history stack.
6414    const RecordDecl *RD;
6415    if (const FieldDecl *Field = dyn_cast<FieldDecl>(Next)) {
6416      HistoryStack.push_back(Field);
6417      RD = Field->getType()->castAs<RecordType>()->getDecl();
6418    } else {
6419      RD = cast<RecordDecl>(Next);
6420    }
6421
6422    // Add a null marker so we know when we've gone back up a level
6423    VisitStack.push_back((const Decl *) 0);
6424
6425    for (RecordDecl::field_iterator I = RD->field_begin(),
6426           E = RD->field_end(); I != E; ++I) {
6427      const FieldDecl *FD = *I;
6428      QualType QT = FD->getType();
6429
6430      if (ValidTypes.count(QT.getTypePtr()))
6431        continue;
6432
6433      OpenCLParamType ParamType = getOpenCLKernelParameterType(QT);
6434      if (ParamType == ValidKernelParam)
6435        continue;
6436
6437      if (ParamType == RecordKernelParam) {
6438        VisitStack.push_back(FD);
6439        continue;
6440      }
6441
6442      // OpenCL v1.2 s6.9.p:
6443      // Arguments to kernel functions that are declared to be a struct or union
6444      // do not allow OpenCL objects to be passed as elements of the struct or
6445      // union.
6446      if (ParamType == PtrKernelParam || ParamType == PtrPtrKernelParam) {
6447        S.Diag(Param->getLocation(),
6448               diag::err_record_with_pointers_kernel_param)
6449          << PT->isUnionType()
6450          << PT;
6451      } else {
6452        S.Diag(Param->getLocation(), diag::err_bad_kernel_param_type) << PT;
6453      }
6454
6455      S.Diag(PD->getLocation(), diag::note_within_field_of_type)
6456        << PD->getDeclName();
6457
6458      // We have an error, now let's go back up through history and show where
6459      // the offending field came from
6460      for (ArrayRef<const FieldDecl *>::const_iterator I = HistoryStack.begin() + 1,
6461             E = HistoryStack.end(); I != E; ++I) {
6462        const FieldDecl *OuterField = *I;
6463        S.Diag(OuterField->getLocation(), diag::note_within_field_of_type)
6464          << OuterField->getType();
6465      }
6466
6467      S.Diag(FD->getLocation(), diag::note_illegal_field_declared_here)
6468        << QT->isPointerType()
6469        << QT;
6470      D.setInvalidType();
6471      return;
6472    }
6473  } while (!VisitStack.empty());
6474}
6475
6476NamedDecl*
6477Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6478                              TypeSourceInfo *TInfo, LookupResult &Previous,
6479                              MultiTemplateParamsArg TemplateParamLists,
6480                              bool &AddToScope) {
6481  QualType R = TInfo->getType();
6482
6483  assert(R.getTypePtr()->isFunctionType());
6484
6485  // TODO: consider using NameInfo for diagnostic.
6486  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6487  DeclarationName Name = NameInfo.getName();
6488  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6489
6490  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6491    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6492         diag::err_invalid_thread)
6493      << DeclSpec::getSpecifierName(TSCS);
6494
6495  if (D.isFirstDeclarationOfMember())
6496    adjustMemberFunctionCC(R, D.isStaticMember());
6497
6498  bool isFriend = false;
6499  FunctionTemplateDecl *FunctionTemplate = 0;
6500  bool isExplicitSpecialization = false;
6501  bool isFunctionTemplateSpecialization = false;
6502
6503  bool isDependentClassScopeExplicitSpecialization = false;
6504  bool HasExplicitTemplateArgs = false;
6505  TemplateArgumentListInfo TemplateArgs;
6506
6507  bool isVirtualOkay = false;
6508
6509  DeclContext *OriginalDC = DC;
6510  bool IsLocalExternDecl = adjustContextForLocalExternDecl(DC);
6511
6512  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6513                                              isVirtualOkay);
6514  if (!NewFD) return 0;
6515
6516  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6517    NewFD->setTopLevelDeclInObjCContainer();
6518
6519  // Set the lexical context. If this is a function-scope declaration, or has a
6520  // C++ scope specifier, or is the object of a friend declaration, the lexical
6521  // context will be different from the semantic context.
6522  NewFD->setLexicalDeclContext(CurContext);
6523
6524  if (IsLocalExternDecl)
6525    NewFD->setLocalExternDecl();
6526
6527  if (getLangOpts().CPlusPlus) {
6528    bool isInline = D.getDeclSpec().isInlineSpecified();
6529    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6530    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6531    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6532    isFriend = D.getDeclSpec().isFriendSpecified();
6533    if (isFriend && !isInline && D.isFunctionDefinition()) {
6534      // C++ [class.friend]p5
6535      //   A function can be defined in a friend declaration of a
6536      //   class . . . . Such a function is implicitly inline.
6537      NewFD->setImplicitlyInline();
6538    }
6539
6540    // If this is a method defined in an __interface, and is not a constructor
6541    // or an overloaded operator, then set the pure flag (isVirtual will already
6542    // return true).
6543    if (const CXXRecordDecl *Parent =
6544          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6545      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6546        NewFD->setPure(true);
6547    }
6548
6549    SetNestedNameSpecifier(NewFD, D);
6550    isExplicitSpecialization = false;
6551    isFunctionTemplateSpecialization = false;
6552    if (D.isInvalidType())
6553      NewFD->setInvalidDecl();
6554
6555    // Match up the template parameter lists with the scope specifier, then
6556    // determine whether we have a template or a template specialization.
6557    bool Invalid = false;
6558    if (TemplateParameterList *TemplateParams =
6559            MatchTemplateParametersToScopeSpecifier(
6560                D.getDeclSpec().getLocStart(), D.getIdentifierLoc(),
6561                D.getCXXScopeSpec(), TemplateParamLists, isFriend,
6562                isExplicitSpecialization, Invalid)) {
6563      if (TemplateParams->size() > 0) {
6564        // This is a function template
6565
6566        // Check that we can declare a template here.
6567        if (CheckTemplateDeclScope(S, TemplateParams))
6568          return 0;
6569
6570        // A destructor cannot be a template.
6571        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6572          Diag(NewFD->getLocation(), diag::err_destructor_template);
6573          return 0;
6574        }
6575
6576        // If we're adding a template to a dependent context, we may need to
6577        // rebuilding some of the types used within the template parameter list,
6578        // now that we know what the current instantiation is.
6579        if (DC->isDependentContext()) {
6580          ContextRAII SavedContext(*this, DC);
6581          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6582            Invalid = true;
6583        }
6584
6585
6586        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6587                                                        NewFD->getLocation(),
6588                                                        Name, TemplateParams,
6589                                                        NewFD);
6590        FunctionTemplate->setLexicalDeclContext(CurContext);
6591        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6592
6593        // For source fidelity, store the other template param lists.
6594        if (TemplateParamLists.size() > 1) {
6595          NewFD->setTemplateParameterListsInfo(Context,
6596                                               TemplateParamLists.size() - 1,
6597                                               TemplateParamLists.data());
6598        }
6599      } else {
6600        // This is a function template specialization.
6601        isFunctionTemplateSpecialization = true;
6602        // For source fidelity, store all the template param lists.
6603        NewFD->setTemplateParameterListsInfo(Context,
6604                                             TemplateParamLists.size(),
6605                                             TemplateParamLists.data());
6606
6607        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6608        if (isFriend) {
6609          // We want to remove the "template<>", found here.
6610          SourceRange RemoveRange = TemplateParams->getSourceRange();
6611
6612          // If we remove the template<> and the name is not a
6613          // template-id, we're actually silently creating a problem:
6614          // the friend declaration will refer to an untemplated decl,
6615          // and clearly the user wants a template specialization.  So
6616          // we need to insert '<>' after the name.
6617          SourceLocation InsertLoc;
6618          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6619            InsertLoc = D.getName().getSourceRange().getEnd();
6620            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6621          }
6622
6623          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6624            << Name << RemoveRange
6625            << FixItHint::CreateRemoval(RemoveRange)
6626            << FixItHint::CreateInsertion(InsertLoc, "<>");
6627        }
6628      }
6629    }
6630    else {
6631      // All template param lists were matched against the scope specifier:
6632      // this is NOT (an explicit specialization of) a template.
6633      if (TemplateParamLists.size() > 0)
6634        // For source fidelity, store all the template param lists.
6635        NewFD->setTemplateParameterListsInfo(Context,
6636                                             TemplateParamLists.size(),
6637                                             TemplateParamLists.data());
6638    }
6639
6640    if (Invalid) {
6641      NewFD->setInvalidDecl();
6642      if (FunctionTemplate)
6643        FunctionTemplate->setInvalidDecl();
6644    }
6645
6646    // C++ [dcl.fct.spec]p5:
6647    //   The virtual specifier shall only be used in declarations of
6648    //   nonstatic class member functions that appear within a
6649    //   member-specification of a class declaration; see 10.3.
6650    //
6651    if (isVirtual && !NewFD->isInvalidDecl()) {
6652      if (!isVirtualOkay) {
6653        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6654             diag::err_virtual_non_function);
6655      } else if (!CurContext->isRecord()) {
6656        // 'virtual' was specified outside of the class.
6657        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6658             diag::err_virtual_out_of_class)
6659          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6660      } else if (NewFD->getDescribedFunctionTemplate()) {
6661        // C++ [temp.mem]p3:
6662        //  A member function template shall not be virtual.
6663        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6664             diag::err_virtual_member_function_template)
6665          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6666      } else {
6667        // Okay: Add virtual to the method.
6668        NewFD->setVirtualAsWritten(true);
6669      }
6670
6671      if (getLangOpts().CPlusPlus1y &&
6672          NewFD->getResultType()->isUndeducedType())
6673        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6674    }
6675
6676    if (getLangOpts().CPlusPlus1y && NewFD->isDependentContext() &&
6677        NewFD->getResultType()->isUndeducedType()) {
6678      // If the function template is referenced directly (for instance, as a
6679      // member of the current instantiation), pretend it has a dependent type.
6680      // This is not really justified by the standard, but is the only sane
6681      // thing to do.
6682      const FunctionProtoType *FPT =
6683          NewFD->getType()->castAs<FunctionProtoType>();
6684      QualType Result = SubstAutoType(FPT->getResultType(),
6685                                       Context.DependentTy);
6686      NewFD->setType(Context.getFunctionType(Result, FPT->getArgTypes(),
6687                                             FPT->getExtProtoInfo()));
6688    }
6689
6690    // C++ [dcl.fct.spec]p3:
6691    //  The inline specifier shall not appear on a block scope function
6692    //  declaration.
6693    if (isInline && !NewFD->isInvalidDecl()) {
6694      if (CurContext->isFunctionOrMethod()) {
6695        // 'inline' is not allowed on block scope function declaration.
6696        Diag(D.getDeclSpec().getInlineSpecLoc(),
6697             diag::err_inline_declaration_block_scope) << Name
6698          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6699      }
6700    }
6701
6702    // C++ [dcl.fct.spec]p6:
6703    //  The explicit specifier shall be used only in the declaration of a
6704    //  constructor or conversion function within its class definition;
6705    //  see 12.3.1 and 12.3.2.
6706    if (isExplicit && !NewFD->isInvalidDecl()) {
6707      if (!CurContext->isRecord()) {
6708        // 'explicit' was specified outside of the class.
6709        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6710             diag::err_explicit_out_of_class)
6711          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6712      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6713                 !isa<CXXConversionDecl>(NewFD)) {
6714        // 'explicit' was specified on a function that wasn't a constructor
6715        // or conversion function.
6716        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6717             diag::err_explicit_non_ctor_or_conv_function)
6718          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6719      }
6720    }
6721
6722    if (isConstexpr) {
6723      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6724      // are implicitly inline.
6725      NewFD->setImplicitlyInline();
6726
6727      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6728      // be either constructors or to return a literal type. Therefore,
6729      // destructors cannot be declared constexpr.
6730      if (isa<CXXDestructorDecl>(NewFD))
6731        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6732    }
6733
6734    // If __module_private__ was specified, mark the function accordingly.
6735    if (D.getDeclSpec().isModulePrivateSpecified()) {
6736      if (isFunctionTemplateSpecialization) {
6737        SourceLocation ModulePrivateLoc
6738          = D.getDeclSpec().getModulePrivateSpecLoc();
6739        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6740          << 0
6741          << FixItHint::CreateRemoval(ModulePrivateLoc);
6742      } else {
6743        NewFD->setModulePrivate();
6744        if (FunctionTemplate)
6745          FunctionTemplate->setModulePrivate();
6746      }
6747    }
6748
6749    if (isFriend) {
6750      if (FunctionTemplate) {
6751        FunctionTemplate->setObjectOfFriendDecl();
6752        FunctionTemplate->setAccess(AS_public);
6753      }
6754      NewFD->setObjectOfFriendDecl();
6755      NewFD->setAccess(AS_public);
6756    }
6757
6758    // If a function is defined as defaulted or deleted, mark it as such now.
6759    switch (D.getFunctionDefinitionKind()) {
6760      case FDK_Declaration:
6761      case FDK_Definition:
6762        break;
6763
6764      case FDK_Defaulted:
6765        NewFD->setDefaulted();
6766        break;
6767
6768      case FDK_Deleted:
6769        NewFD->setDeletedAsWritten();
6770        break;
6771    }
6772
6773    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6774        D.isFunctionDefinition()) {
6775      // C++ [class.mfct]p2:
6776      //   A member function may be defined (8.4) in its class definition, in
6777      //   which case it is an inline member function (7.1.2)
6778      NewFD->setImplicitlyInline();
6779    }
6780
6781    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6782        !CurContext->isRecord()) {
6783      // C++ [class.static]p1:
6784      //   A data or function member of a class may be declared static
6785      //   in a class definition, in which case it is a static member of
6786      //   the class.
6787
6788      // Complain about the 'static' specifier if it's on an out-of-line
6789      // member function definition.
6790      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6791           diag::err_static_out_of_line)
6792        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6793    }
6794
6795    // C++11 [except.spec]p15:
6796    //   A deallocation function with no exception-specification is treated
6797    //   as if it were specified with noexcept(true).
6798    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6799    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6800         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6801        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6802      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6803      EPI.ExceptionSpecType = EST_BasicNoexcept;
6804      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6805                                             FPT->getArgTypes(), EPI));
6806    }
6807
6808    // C++11 [replacement.functions]p3:
6809    //  The program's definitions shall not be specified as inline.
6810    //
6811    // N.B. We diagnose declarations instead of definitions per LWG issue 2340.
6812    if (isInline && NewFD->isReplaceableGlobalAllocationFunction())
6813      Diag(D.getDeclSpec().getInlineSpecLoc(),
6814           diag::err_operator_new_delete_declared_inline)
6815        << NewFD->getDeclName();
6816  }
6817
6818  // Filter out previous declarations that don't match the scope.
6819  FilterLookupForScope(Previous, OriginalDC, S, shouldConsiderLinkage(NewFD),
6820                       isExplicitSpecialization ||
6821                       isFunctionTemplateSpecialization);
6822
6823  // Handle GNU asm-label extension (encoded as an attribute).
6824  if (Expr *E = (Expr*) D.getAsmLabel()) {
6825    // The parser guarantees this is a string.
6826    StringLiteral *SE = cast<StringLiteral>(E);
6827    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6828                                                SE->getString()));
6829  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6830    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6831      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6832    if (I != ExtnameUndeclaredIdentifiers.end()) {
6833      NewFD->addAttr(I->second);
6834      ExtnameUndeclaredIdentifiers.erase(I);
6835    }
6836  }
6837
6838  // Copy the parameter declarations from the declarator D to the function
6839  // declaration NewFD, if they are available.  First scavenge them into Params.
6840  SmallVector<ParmVarDecl*, 16> Params;
6841  if (D.isFunctionDeclarator()) {
6842    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6843
6844    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6845    // function that takes no arguments, not a function that takes a
6846    // single void argument.
6847    // We let through "const void" here because Sema::GetTypeForDeclarator
6848    // already checks for that case.
6849    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6850        FTI.ArgInfo[0].Param &&
6851        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6852      // Empty arg list, don't push any params.
6853      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6854    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6855      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6856        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6857        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6858        Param->setDeclContext(NewFD);
6859        Params.push_back(Param);
6860
6861        if (Param->isInvalidDecl())
6862          NewFD->setInvalidDecl();
6863      }
6864    }
6865
6866  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6867    // When we're declaring a function with a typedef, typeof, etc as in the
6868    // following example, we'll need to synthesize (unnamed)
6869    // parameters for use in the declaration.
6870    //
6871    // @code
6872    // typedef void fn(int);
6873    // fn f;
6874    // @endcode
6875
6876    // Synthesize a parameter for each argument type.
6877    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6878         AE = FT->arg_type_end(); AI != AE; ++AI) {
6879      ParmVarDecl *Param =
6880        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6881      Param->setScopeInfo(0, Params.size());
6882      Params.push_back(Param);
6883    }
6884  } else {
6885    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6886           "Should not need args for typedef of non-prototype fn");
6887  }
6888
6889  // Finally, we know we have the right number of parameters, install them.
6890  NewFD->setParams(Params);
6891
6892  // Find all anonymous symbols defined during the declaration of this function
6893  // and add to NewFD. This lets us track decls such 'enum Y' in:
6894  //
6895  //   void f(enum Y {AA} x) {}
6896  //
6897  // which would otherwise incorrectly end up in the translation unit scope.
6898  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6899  DeclsInPrototypeScope.clear();
6900
6901  if (D.getDeclSpec().isNoreturnSpecified())
6902    NewFD->addAttr(
6903        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6904                                       Context));
6905
6906  // Functions returning a variably modified type violate C99 6.7.5.2p2
6907  // because all functions have linkage.
6908  if (!NewFD->isInvalidDecl() &&
6909      NewFD->getResultType()->isVariablyModifiedType()) {
6910    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6911    NewFD->setInvalidDecl();
6912  }
6913
6914  // Handle attributes.
6915  ProcessDeclAttributes(S, NewFD, D);
6916
6917  QualType RetType = NewFD->getResultType();
6918  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6919      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6920  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6921      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6922    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6923    // Attach the attribute to the new decl. Don't apply the attribute if it
6924    // returns an instance of the class (e.g. assignment operators).
6925    if (!MD || MD->getParent() != Ret) {
6926      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6927                                                        Context));
6928    }
6929  }
6930
6931  if (!getLangOpts().CPlusPlus) {
6932    // Perform semantic checking on the function declaration.
6933    bool isExplicitSpecialization=false;
6934    if (!NewFD->isInvalidDecl() && NewFD->isMain())
6935      CheckMain(NewFD, D.getDeclSpec());
6936
6937    if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
6938      CheckMSVCRTEntryPoint(NewFD);
6939
6940    if (!NewFD->isInvalidDecl())
6941      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6942                                                  isExplicitSpecialization));
6943    else if (!Previous.empty())
6944      // Make graceful recovery from an invalid redeclaration.
6945      D.setRedeclaration(true);
6946    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6947            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6948           "previous declaration set still overloaded");
6949  } else {
6950    // If the declarator is a template-id, translate the parser's template
6951    // argument list into our AST format.
6952    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6953      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6954      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6955      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6956      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6957                                         TemplateId->NumArgs);
6958      translateTemplateArguments(TemplateArgsPtr,
6959                                 TemplateArgs);
6960
6961      HasExplicitTemplateArgs = true;
6962
6963      if (NewFD->isInvalidDecl()) {
6964        HasExplicitTemplateArgs = false;
6965      } else if (FunctionTemplate) {
6966        // Function template with explicit template arguments.
6967        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6968          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6969
6970        HasExplicitTemplateArgs = false;
6971      } else if (!isFunctionTemplateSpecialization &&
6972                 !D.getDeclSpec().isFriendSpecified()) {
6973        // We have encountered something that the user meant to be a
6974        // specialization (because it has explicitly-specified template
6975        // arguments) but that was not introduced with a "template<>" (or had
6976        // too few of them).
6977        // FIXME: Differentiate between attempts for explicit instantiations
6978        // (starting with "template") and the rest.
6979        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6980          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6981          << FixItHint::CreateInsertion(
6982                                    D.getDeclSpec().getLocStart(),
6983                                        "template<> ");
6984        isFunctionTemplateSpecialization = true;
6985      } else {
6986        // "friend void foo<>(int);" is an implicit specialization decl.
6987        isFunctionTemplateSpecialization = true;
6988      }
6989    } else if (isFriend && isFunctionTemplateSpecialization) {
6990      // This combination is only possible in a recovery case;  the user
6991      // wrote something like:
6992      //   template <> friend void foo(int);
6993      // which we're recovering from as if the user had written:
6994      //   friend void foo<>(int);
6995      // Go ahead and fake up a template id.
6996      HasExplicitTemplateArgs = true;
6997        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6998      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6999    }
7000
7001    // If it's a friend (and only if it's a friend), it's possible
7002    // that either the specialized function type or the specialized
7003    // template is dependent, and therefore matching will fail.  In
7004    // this case, don't check the specialization yet.
7005    bool InstantiationDependent = false;
7006    if (isFunctionTemplateSpecialization && isFriend &&
7007        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
7008         TemplateSpecializationType::anyDependentTemplateArguments(
7009            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
7010            InstantiationDependent))) {
7011      assert(HasExplicitTemplateArgs &&
7012             "friend function specialization without template args");
7013      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
7014                                                       Previous))
7015        NewFD->setInvalidDecl();
7016    } else if (isFunctionTemplateSpecialization) {
7017      if (CurContext->isDependentContext() && CurContext->isRecord()
7018          && !isFriend) {
7019        isDependentClassScopeExplicitSpecialization = true;
7020        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
7021          diag::ext_function_specialization_in_class :
7022          diag::err_function_specialization_in_class)
7023          << NewFD->getDeclName();
7024      } else if (CheckFunctionTemplateSpecialization(NewFD,
7025                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
7026                                                     Previous))
7027        NewFD->setInvalidDecl();
7028
7029      // C++ [dcl.stc]p1:
7030      //   A storage-class-specifier shall not be specified in an explicit
7031      //   specialization (14.7.3)
7032      FunctionTemplateSpecializationInfo *Info =
7033          NewFD->getTemplateSpecializationInfo();
7034      if (Info && SC != SC_None) {
7035        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
7036          Diag(NewFD->getLocation(),
7037               diag::err_explicit_specialization_inconsistent_storage_class)
7038            << SC
7039            << FixItHint::CreateRemoval(
7040                                      D.getDeclSpec().getStorageClassSpecLoc());
7041
7042        else
7043          Diag(NewFD->getLocation(),
7044               diag::ext_explicit_specialization_storage_class)
7045            << FixItHint::CreateRemoval(
7046                                      D.getDeclSpec().getStorageClassSpecLoc());
7047      }
7048
7049    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
7050      if (CheckMemberSpecialization(NewFD, Previous))
7051          NewFD->setInvalidDecl();
7052    }
7053
7054    // Perform semantic checking on the function declaration.
7055    if (!isDependentClassScopeExplicitSpecialization) {
7056      if (!NewFD->isInvalidDecl() && NewFD->isMain())
7057        CheckMain(NewFD, D.getDeclSpec());
7058
7059      if (!NewFD->isInvalidDecl() && NewFD->isMSVCRTEntryPoint())
7060        CheckMSVCRTEntryPoint(NewFD);
7061
7062      if (NewFD->isInvalidDecl()) {
7063        // If this is a class member, mark the class invalid immediately.
7064        // This avoids some consistency errors later.
7065        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
7066          methodDecl->getParent()->setInvalidDecl();
7067      } else
7068        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
7069                                                    isExplicitSpecialization));
7070    }
7071
7072    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
7073            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
7074           "previous declaration set still overloaded");
7075
7076    NamedDecl *PrincipalDecl = (FunctionTemplate
7077                                ? cast<NamedDecl>(FunctionTemplate)
7078                                : NewFD);
7079
7080    if (isFriend && D.isRedeclaration()) {
7081      AccessSpecifier Access = AS_public;
7082      if (!NewFD->isInvalidDecl())
7083        Access = NewFD->getPreviousDecl()->getAccess();
7084
7085      NewFD->setAccess(Access);
7086      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
7087    }
7088
7089    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
7090        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
7091      PrincipalDecl->setNonMemberOperator();
7092
7093    // If we have a function template, check the template parameter
7094    // list. This will check and merge default template arguments.
7095    if (FunctionTemplate) {
7096      FunctionTemplateDecl *PrevTemplate =
7097                                     FunctionTemplate->getPreviousDecl();
7098      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
7099                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
7100                            D.getDeclSpec().isFriendSpecified()
7101                              ? (D.isFunctionDefinition()
7102                                   ? TPC_FriendFunctionTemplateDefinition
7103                                   : TPC_FriendFunctionTemplate)
7104                              : (D.getCXXScopeSpec().isSet() &&
7105                                 DC && DC->isRecord() &&
7106                                 DC->isDependentContext())
7107                                  ? TPC_ClassTemplateMember
7108                                  : TPC_FunctionTemplate);
7109    }
7110
7111    if (NewFD->isInvalidDecl()) {
7112      // Ignore all the rest of this.
7113    } else if (!D.isRedeclaration()) {
7114      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
7115                                       AddToScope };
7116      // Fake up an access specifier if it's supposed to be a class member.
7117      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
7118        NewFD->setAccess(AS_public);
7119
7120      // Qualified decls generally require a previous declaration.
7121      if (D.getCXXScopeSpec().isSet()) {
7122        // ...with the major exception of templated-scope or
7123        // dependent-scope friend declarations.
7124
7125        // TODO: we currently also suppress this check in dependent
7126        // contexts because (1) the parameter depth will be off when
7127        // matching friend templates and (2) we might actually be
7128        // selecting a friend based on a dependent factor.  But there
7129        // are situations where these conditions don't apply and we
7130        // can actually do this check immediately.
7131        if (isFriend &&
7132            (TemplateParamLists.size() ||
7133             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
7134             CurContext->isDependentContext())) {
7135          // ignore these
7136        } else {
7137          // The user tried to provide an out-of-line definition for a
7138          // function that is a member of a class or namespace, but there
7139          // was no such member function declared (C++ [class.mfct]p2,
7140          // C++ [namespace.memdef]p2). For example:
7141          //
7142          // class X {
7143          //   void f() const;
7144          // };
7145          //
7146          // void X::f() { } // ill-formed
7147          //
7148          // Complain about this problem, and attempt to suggest close
7149          // matches (e.g., those that differ only in cv-qualifiers and
7150          // whether the parameter types are references).
7151
7152          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7153                  *this, Previous, NewFD, ExtraArgs, false, 0)) {
7154            AddToScope = ExtraArgs.AddToScope;
7155            return Result;
7156          }
7157        }
7158
7159        // Unqualified local friend declarations are required to resolve
7160        // to something.
7161      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
7162        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(
7163                *this, Previous, NewFD, ExtraArgs, true, S)) {
7164          AddToScope = ExtraArgs.AddToScope;
7165          return Result;
7166        }
7167      }
7168
7169    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
7170               !isFriend && !isFunctionTemplateSpecialization &&
7171               !isExplicitSpecialization) {
7172      // An out-of-line member function declaration must also be a
7173      // definition (C++ [dcl.meaning]p1).
7174      // Note that this is not the case for explicit specializations of
7175      // function templates or member functions of class templates, per
7176      // C++ [temp.expl.spec]p2. We also allow these declarations as an
7177      // extension for compatibility with old SWIG code which likes to
7178      // generate them.
7179      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
7180        << D.getCXXScopeSpec().getRange();
7181    }
7182  }
7183
7184  ProcessPragmaWeak(S, NewFD);
7185  checkAttributesAfterMerging(*this, *NewFD);
7186
7187  AddKnownFunctionAttributes(NewFD);
7188
7189  if (NewFD->hasAttr<OverloadableAttr>() &&
7190      !NewFD->getType()->getAs<FunctionProtoType>()) {
7191    Diag(NewFD->getLocation(),
7192         diag::err_attribute_overloadable_no_prototype)
7193      << NewFD;
7194
7195    // Turn this into a variadic function with no parameters.
7196    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
7197    FunctionProtoType::ExtProtoInfo EPI(
7198        Context.getDefaultCallingConvention(true, false));
7199    EPI.Variadic = true;
7200    EPI.ExtInfo = FT->getExtInfo();
7201
7202    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
7203    NewFD->setType(R);
7204  }
7205
7206  // If there's a #pragma GCC visibility in scope, and this isn't a class
7207  // member, set the visibility of this function.
7208  if (!DC->isRecord() && NewFD->isExternallyVisible())
7209    AddPushedVisibilityAttribute(NewFD);
7210
7211  // If there's a #pragma clang arc_cf_code_audited in scope, consider
7212  // marking the function.
7213  AddCFAuditedAttribute(NewFD);
7214
7215  // If this is the first declaration of an extern C variable, update
7216  // the map of such variables.
7217  if (NewFD->isFirstDecl() && !NewFD->isInvalidDecl() &&
7218      isIncompleteDeclExternC(*this, NewFD))
7219    RegisterLocallyScopedExternCDecl(NewFD, S);
7220
7221  // Set this FunctionDecl's range up to the right paren.
7222  NewFD->setRangeEnd(D.getSourceRange().getEnd());
7223
7224  if (getLangOpts().CPlusPlus) {
7225    if (FunctionTemplate) {
7226      if (NewFD->isInvalidDecl())
7227        FunctionTemplate->setInvalidDecl();
7228      return FunctionTemplate;
7229    }
7230  }
7231
7232  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
7233    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
7234    if ((getLangOpts().OpenCLVersion >= 120)
7235        && (SC == SC_Static)) {
7236      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
7237      D.setInvalidType();
7238    }
7239
7240    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
7241    if (!NewFD->getResultType()->isVoidType()) {
7242      Diag(D.getIdentifierLoc(),
7243           diag::err_expected_kernel_void_return_type);
7244      D.setInvalidType();
7245    }
7246
7247    llvm::SmallPtrSet<const Type *, 16> ValidTypes;
7248    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
7249         PE = NewFD->param_end(); PI != PE; ++PI) {
7250      ParmVarDecl *Param = *PI;
7251      checkIsValidOpenCLKernelParameter(*this, D, Param, ValidTypes);
7252    }
7253  }
7254
7255  MarkUnusedFileScopedDecl(NewFD);
7256
7257  if (getLangOpts().CUDA)
7258    if (IdentifierInfo *II = NewFD->getIdentifier())
7259      if (!NewFD->isInvalidDecl() &&
7260          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
7261        if (II->isStr("cudaConfigureCall")) {
7262          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
7263            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
7264
7265          Context.setcudaConfigureCallDecl(NewFD);
7266        }
7267      }
7268
7269  // Here we have an function template explicit specialization at class scope.
7270  // The actually specialization will be postponed to template instatiation
7271  // time via the ClassScopeFunctionSpecializationDecl node.
7272  if (isDependentClassScopeExplicitSpecialization) {
7273    ClassScopeFunctionSpecializationDecl *NewSpec =
7274                         ClassScopeFunctionSpecializationDecl::Create(
7275                                Context, CurContext, SourceLocation(),
7276                                cast<CXXMethodDecl>(NewFD),
7277                                HasExplicitTemplateArgs, TemplateArgs);
7278    CurContext->addDecl(NewSpec);
7279    AddToScope = false;
7280  }
7281
7282  return NewFD;
7283}
7284
7285/// \brief Perform semantic checking of a new function declaration.
7286///
7287/// Performs semantic analysis of the new function declaration
7288/// NewFD. This routine performs all semantic checking that does not
7289/// require the actual declarator involved in the declaration, and is
7290/// used both for the declaration of functions as they are parsed
7291/// (called via ActOnDeclarator) and for the declaration of functions
7292/// that have been instantiated via C++ template instantiation (called
7293/// via InstantiateDecl).
7294///
7295/// \param IsExplicitSpecialization whether this new function declaration is
7296/// an explicit specialization of the previous declaration.
7297///
7298/// This sets NewFD->isInvalidDecl() to true if there was an error.
7299///
7300/// \returns true if the function declaration is a redeclaration.
7301bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
7302                                    LookupResult &Previous,
7303                                    bool IsExplicitSpecialization) {
7304  assert(!NewFD->getResultType()->isVariablyModifiedType()
7305         && "Variably modified return types are not handled here");
7306
7307  // Determine whether the type of this function should be merged with
7308  // a previous visible declaration. This never happens for functions in C++,
7309  // and always happens in C if the previous declaration was visible.
7310  bool MergeTypeWithPrevious = !getLangOpts().CPlusPlus &&
7311                               !Previous.isShadowed();
7312
7313  // Filter out any non-conflicting previous declarations.
7314  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7315
7316  bool Redeclaration = false;
7317  NamedDecl *OldDecl = 0;
7318
7319  // Merge or overload the declaration with an existing declaration of
7320  // the same name, if appropriate.
7321  if (!Previous.empty()) {
7322    // Determine whether NewFD is an overload of PrevDecl or
7323    // a declaration that requires merging. If it's an overload,
7324    // there's no more work to do here; we'll just add the new
7325    // function to the scope.
7326    if (!AllowOverloadingOfFunction(Previous, Context)) {
7327      NamedDecl *Candidate = Previous.getFoundDecl();
7328      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
7329        Redeclaration = true;
7330        OldDecl = Candidate;
7331      }
7332    } else {
7333      switch (CheckOverload(S, NewFD, Previous, OldDecl,
7334                            /*NewIsUsingDecl*/ false)) {
7335      case Ovl_Match:
7336        Redeclaration = true;
7337        break;
7338
7339      case Ovl_NonFunction:
7340        Redeclaration = true;
7341        break;
7342
7343      case Ovl_Overload:
7344        Redeclaration = false;
7345        break;
7346      }
7347
7348      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7349        // If a function name is overloadable in C, then every function
7350        // with that name must be marked "overloadable".
7351        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7352          << Redeclaration << NewFD;
7353        NamedDecl *OverloadedDecl = 0;
7354        if (Redeclaration)
7355          OverloadedDecl = OldDecl;
7356        else if (!Previous.empty())
7357          OverloadedDecl = Previous.getRepresentativeDecl();
7358        if (OverloadedDecl)
7359          Diag(OverloadedDecl->getLocation(),
7360               diag::note_attribute_overloadable_prev_overload);
7361        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7362                                                        Context));
7363      }
7364    }
7365  }
7366
7367  // Check for a previous extern "C" declaration with this name.
7368  if (!Redeclaration &&
7369      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
7370    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
7371    if (!Previous.empty()) {
7372      // This is an extern "C" declaration with the same name as a previous
7373      // declaration, and thus redeclares that entity...
7374      Redeclaration = true;
7375      OldDecl = Previous.getFoundDecl();
7376      MergeTypeWithPrevious = false;
7377
7378      // ... except in the presence of __attribute__((overloadable)).
7379      if (OldDecl->hasAttr<OverloadableAttr>()) {
7380        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
7381          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
7382            << Redeclaration << NewFD;
7383          Diag(Previous.getFoundDecl()->getLocation(),
7384               diag::note_attribute_overloadable_prev_overload);
7385          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
7386                                                          Context));
7387        }
7388        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
7389          Redeclaration = false;
7390          OldDecl = 0;
7391        }
7392      }
7393    }
7394  }
7395
7396  // C++11 [dcl.constexpr]p8:
7397  //   A constexpr specifier for a non-static member function that is not
7398  //   a constructor declares that member function to be const.
7399  //
7400  // This needs to be delayed until we know whether this is an out-of-line
7401  // definition of a static member function.
7402  //
7403  // This rule is not present in C++1y, so we produce a backwards
7404  // compatibility warning whenever it happens in C++11.
7405  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
7406  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
7407      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
7408      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
7409    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
7410    if (FunctionTemplateDecl *OldTD =
7411          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
7412      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
7413    if (!OldMD || !OldMD->isStatic()) {
7414      const FunctionProtoType *FPT =
7415        MD->getType()->castAs<FunctionProtoType>();
7416      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
7417      EPI.TypeQuals |= Qualifiers::Const;
7418      MD->setType(Context.getFunctionType(FPT->getResultType(),
7419                                          FPT->getArgTypes(), EPI));
7420
7421      // Warn that we did this, if we're not performing template instantiation.
7422      // In that case, we'll have warned already when the template was defined.
7423      if (ActiveTemplateInstantiations.empty()) {
7424        SourceLocation AddConstLoc;
7425        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
7426                .IgnoreParens().getAs<FunctionTypeLoc>())
7427          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
7428
7429        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
7430          << FixItHint::CreateInsertion(AddConstLoc, " const");
7431      }
7432    }
7433  }
7434
7435  if (Redeclaration) {
7436    // NewFD and OldDecl represent declarations that need to be
7437    // merged.
7438    if (MergeFunctionDecl(NewFD, OldDecl, S, MergeTypeWithPrevious)) {
7439      NewFD->setInvalidDecl();
7440      return Redeclaration;
7441    }
7442
7443    Previous.clear();
7444    Previous.addDecl(OldDecl);
7445
7446    if (FunctionTemplateDecl *OldTemplateDecl
7447                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
7448      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
7449      FunctionTemplateDecl *NewTemplateDecl
7450        = NewFD->getDescribedFunctionTemplate();
7451      assert(NewTemplateDecl && "Template/non-template mismatch");
7452      if (CXXMethodDecl *Method
7453            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
7454        Method->setAccess(OldTemplateDecl->getAccess());
7455        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
7456      }
7457
7458      // If this is an explicit specialization of a member that is a function
7459      // template, mark it as a member specialization.
7460      if (IsExplicitSpecialization &&
7461          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
7462        NewTemplateDecl->setMemberSpecialization();
7463        assert(OldTemplateDecl->isMemberSpecialization());
7464      }
7465
7466    } else {
7467      // This needs to happen first so that 'inline' propagates.
7468      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7469
7470      if (isa<CXXMethodDecl>(NewFD)) {
7471        // A valid redeclaration of a C++ method must be out-of-line,
7472        // but (unfortunately) it's not necessarily a definition
7473        // because of templates, which means that the previous
7474        // declaration is not necessarily from the class definition.
7475
7476        // For just setting the access, that doesn't matter.
7477        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7478        NewFD->setAccess(oldMethod->getAccess());
7479
7480        // Update the key-function state if necessary for this ABI.
7481        if (NewFD->isInlined() &&
7482            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7483          // setNonKeyFunction needs to work with the original
7484          // declaration from the class definition, and isVirtual() is
7485          // just faster in that case, so map back to that now.
7486          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDecl());
7487          if (oldMethod->isVirtual()) {
7488            Context.setNonKeyFunction(oldMethod);
7489          }
7490        }
7491      }
7492    }
7493  }
7494
7495  // Semantic checking for this function declaration (in isolation).
7496  if (getLangOpts().CPlusPlus) {
7497    // C++-specific checks.
7498    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7499      CheckConstructor(Constructor);
7500    } else if (CXXDestructorDecl *Destructor =
7501                dyn_cast<CXXDestructorDecl>(NewFD)) {
7502      CXXRecordDecl *Record = Destructor->getParent();
7503      QualType ClassType = Context.getTypeDeclType(Record);
7504
7505      // FIXME: Shouldn't we be able to perform this check even when the class
7506      // type is dependent? Both gcc and edg can handle that.
7507      if (!ClassType->isDependentType()) {
7508        DeclarationName Name
7509          = Context.DeclarationNames.getCXXDestructorName(
7510                                        Context.getCanonicalType(ClassType));
7511        if (NewFD->getDeclName() != Name) {
7512          Diag(NewFD->getLocation(), diag::err_destructor_name);
7513          NewFD->setInvalidDecl();
7514          return Redeclaration;
7515        }
7516      }
7517    } else if (CXXConversionDecl *Conversion
7518               = dyn_cast<CXXConversionDecl>(NewFD)) {
7519      ActOnConversionDeclarator(Conversion);
7520    }
7521
7522    // Find any virtual functions that this function overrides.
7523    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7524      if (!Method->isFunctionTemplateSpecialization() &&
7525          !Method->getDescribedFunctionTemplate() &&
7526          Method->isCanonicalDecl()) {
7527        if (AddOverriddenMethods(Method->getParent(), Method)) {
7528          // If the function was marked as "static", we have a problem.
7529          if (NewFD->getStorageClass() == SC_Static) {
7530            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7531          }
7532        }
7533      }
7534
7535      if (Method->isStatic())
7536        checkThisInStaticMemberFunctionType(Method);
7537    }
7538
7539    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7540    if (NewFD->isOverloadedOperator() &&
7541        CheckOverloadedOperatorDeclaration(NewFD)) {
7542      NewFD->setInvalidDecl();
7543      return Redeclaration;
7544    }
7545
7546    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7547    if (NewFD->getLiteralIdentifier() &&
7548        CheckLiteralOperatorDeclaration(NewFD)) {
7549      NewFD->setInvalidDecl();
7550      return Redeclaration;
7551    }
7552
7553    // In C++, check default arguments now that we have merged decls. Unless
7554    // the lexical context is the class, because in this case this is done
7555    // during delayed parsing anyway.
7556    if (!CurContext->isRecord())
7557      CheckCXXDefaultArguments(NewFD);
7558
7559    // If this function declares a builtin function, check the type of this
7560    // declaration against the expected type for the builtin.
7561    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7562      ASTContext::GetBuiltinTypeError Error;
7563      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7564      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7565      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7566        // The type of this function differs from the type of the builtin,
7567        // so forget about the builtin entirely.
7568        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7569      }
7570    }
7571
7572    // If this function is declared as being extern "C", then check to see if
7573    // the function returns a UDT (class, struct, or union type) that is not C
7574    // compatible, and if it does, warn the user.
7575    // But, issue any diagnostic on the first declaration only.
7576    if (NewFD->isExternC() && Previous.empty()) {
7577      QualType R = NewFD->getResultType();
7578      if (R->isIncompleteType() && !R->isVoidType())
7579        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7580            << NewFD << R;
7581      else if (!R.isPODType(Context) && !R->isVoidType() &&
7582               !R->isObjCObjectPointerType())
7583        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7584    }
7585  }
7586  return Redeclaration;
7587}
7588
7589static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7590  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7591  if (!TSI)
7592    return SourceRange();
7593
7594  TypeLoc TL = TSI->getTypeLoc();
7595  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7596  if (!FunctionTL)
7597    return SourceRange();
7598
7599  TypeLoc ResultTL = FunctionTL.getResultLoc();
7600  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7601    return ResultTL.getSourceRange();
7602
7603  return SourceRange();
7604}
7605
7606void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7607  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7608  //   static or constexpr is ill-formed.
7609  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7610  //   appear in a declaration of main.
7611  // static main is not an error under C99, but we should warn about it.
7612  // We accept _Noreturn main as an extension.
7613  if (FD->getStorageClass() == SC_Static)
7614    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7615         ? diag::err_static_main : diag::warn_static_main)
7616      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7617  if (FD->isInlineSpecified())
7618    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7619      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7620  if (DS.isNoreturnSpecified()) {
7621    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7622    SourceRange NoreturnRange(NoreturnLoc,
7623                              PP.getLocForEndOfToken(NoreturnLoc));
7624    Diag(NoreturnLoc, diag::ext_noreturn_main);
7625    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7626      << FixItHint::CreateRemoval(NoreturnRange);
7627  }
7628  if (FD->isConstexpr()) {
7629    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7630      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7631    FD->setConstexpr(false);
7632  }
7633
7634  QualType T = FD->getType();
7635  assert(T->isFunctionType() && "function decl is not of function type");
7636  const FunctionType* FT = T->castAs<FunctionType>();
7637
7638  // All the standards say that main() should should return 'int'.
7639  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7640    // In C and C++, main magically returns 0 if you fall off the end;
7641    // set the flag which tells us that.
7642    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7643    FD->setHasImplicitReturnZero(true);
7644
7645  // In C with GNU extensions we allow main() to have non-integer return
7646  // type, but we should warn about the extension, and we disable the
7647  // implicit-return-zero rule.
7648  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7649    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7650
7651    SourceRange ResultRange = getResultSourceRange(FD);
7652    if (ResultRange.isValid())
7653      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7654          << FixItHint::CreateReplacement(ResultRange, "int");
7655
7656  // Otherwise, this is just a flat-out error.
7657  } else {
7658    SourceRange ResultRange = getResultSourceRange(FD);
7659    if (ResultRange.isValid())
7660      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7661          << FixItHint::CreateReplacement(ResultRange, "int");
7662    else
7663      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7664
7665    FD->setInvalidDecl(true);
7666  }
7667
7668  // Treat protoless main() as nullary.
7669  if (isa<FunctionNoProtoType>(FT)) return;
7670
7671  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7672  unsigned nparams = FTP->getNumArgs();
7673  assert(FD->getNumParams() == nparams);
7674
7675  bool HasExtraParameters = (nparams > 3);
7676
7677  // Darwin passes an undocumented fourth argument of type char**.  If
7678  // other platforms start sprouting these, the logic below will start
7679  // getting shifty.
7680  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7681    HasExtraParameters = false;
7682
7683  if (HasExtraParameters) {
7684    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7685    FD->setInvalidDecl(true);
7686    nparams = 3;
7687  }
7688
7689  // FIXME: a lot of the following diagnostics would be improved
7690  // if we had some location information about types.
7691
7692  QualType CharPP =
7693    Context.getPointerType(Context.getPointerType(Context.CharTy));
7694  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7695
7696  for (unsigned i = 0; i < nparams; ++i) {
7697    QualType AT = FTP->getArgType(i);
7698
7699    bool mismatch = true;
7700
7701    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7702      mismatch = false;
7703    else if (Expected[i] == CharPP) {
7704      // As an extension, the following forms are okay:
7705      //   char const **
7706      //   char const * const *
7707      //   char * const *
7708
7709      QualifierCollector qs;
7710      const PointerType* PT;
7711      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7712          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7713          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7714                              Context.CharTy)) {
7715        qs.removeConst();
7716        mismatch = !qs.empty();
7717      }
7718    }
7719
7720    if (mismatch) {
7721      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7722      // TODO: suggest replacing given type with expected type
7723      FD->setInvalidDecl(true);
7724    }
7725  }
7726
7727  if (nparams == 1 && !FD->isInvalidDecl()) {
7728    Diag(FD->getLocation(), diag::warn_main_one_arg);
7729  }
7730
7731  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7732    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7733    FD->setInvalidDecl();
7734  }
7735}
7736
7737void Sema::CheckMSVCRTEntryPoint(FunctionDecl *FD) {
7738  QualType T = FD->getType();
7739  assert(T->isFunctionType() && "function decl is not of function type");
7740  const FunctionType *FT = T->castAs<FunctionType>();
7741
7742  // Set an implicit return of 'zero' if the function can return some integral,
7743  // enumeration, pointer or nullptr type.
7744  if (FT->getResultType()->isIntegralOrEnumerationType() ||
7745      FT->getResultType()->isAnyPointerType() ||
7746      FT->getResultType()->isNullPtrType())
7747    // DllMain is exempt because a return value of zero means it failed.
7748    if (FD->getName() != "DllMain")
7749      FD->setHasImplicitReturnZero(true);
7750
7751  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7752    Diag(FD->getLocation(), diag::err_mainlike_template_decl) << FD->getName();
7753    FD->setInvalidDecl();
7754  }
7755}
7756
7757bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7758  // FIXME: Need strict checking.  In C89, we need to check for
7759  // any assignment, increment, decrement, function-calls, or
7760  // commas outside of a sizeof.  In C99, it's the same list,
7761  // except that the aforementioned are allowed in unevaluated
7762  // expressions.  Everything else falls under the
7763  // "may accept other forms of constant expressions" exception.
7764  // (We never end up here for C++, so the constant expression
7765  // rules there don't matter.)
7766  if (Init->isConstantInitializer(Context, false))
7767    return false;
7768  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7769    << Init->getSourceRange();
7770  return true;
7771}
7772
7773namespace {
7774  // Visits an initialization expression to see if OrigDecl is evaluated in
7775  // its own initialization and throws a warning if it does.
7776  class SelfReferenceChecker
7777      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7778    Sema &S;
7779    Decl *OrigDecl;
7780    bool isRecordType;
7781    bool isPODType;
7782    bool isReferenceType;
7783
7784  public:
7785    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7786
7787    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7788                                                    S(S), OrigDecl(OrigDecl) {
7789      isPODType = false;
7790      isRecordType = false;
7791      isReferenceType = false;
7792      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7793        isPODType = VD->getType().isPODType(S.Context);
7794        isRecordType = VD->getType()->isRecordType();
7795        isReferenceType = VD->getType()->isReferenceType();
7796      }
7797    }
7798
7799    // For most expressions, the cast is directly above the DeclRefExpr.
7800    // For conditional operators, the cast can be outside the conditional
7801    // operator if both expressions are DeclRefExpr's.
7802    void HandleValue(Expr *E) {
7803      if (isReferenceType)
7804        return;
7805      E = E->IgnoreParenImpCasts();
7806      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7807        HandleDeclRefExpr(DRE);
7808        return;
7809      }
7810
7811      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7812        HandleValue(CO->getTrueExpr());
7813        HandleValue(CO->getFalseExpr());
7814        return;
7815      }
7816
7817      if (isa<MemberExpr>(E)) {
7818        Expr *Base = E->IgnoreParenImpCasts();
7819        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7820          // Check for static member variables and don't warn on them.
7821          if (!isa<FieldDecl>(ME->getMemberDecl()))
7822            return;
7823          Base = ME->getBase()->IgnoreParenImpCasts();
7824        }
7825        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7826          HandleDeclRefExpr(DRE);
7827        return;
7828      }
7829    }
7830
7831    // Reference types are handled here since all uses of references are
7832    // bad, not just r-value uses.
7833    void VisitDeclRefExpr(DeclRefExpr *E) {
7834      if (isReferenceType)
7835        HandleDeclRefExpr(E);
7836    }
7837
7838    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7839      if (E->getCastKind() == CK_LValueToRValue ||
7840          (isRecordType && E->getCastKind() == CK_NoOp))
7841        HandleValue(E->getSubExpr());
7842
7843      Inherited::VisitImplicitCastExpr(E);
7844    }
7845
7846    void VisitMemberExpr(MemberExpr *E) {
7847      // Don't warn on arrays since they can be treated as pointers.
7848      if (E->getType()->canDecayToPointerType()) return;
7849
7850      // Warn when a non-static method call is followed by non-static member
7851      // field accesses, which is followed by a DeclRefExpr.
7852      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7853      bool Warn = (MD && !MD->isStatic());
7854      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7855      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7856        if (!isa<FieldDecl>(ME->getMemberDecl()))
7857          Warn = false;
7858        Base = ME->getBase()->IgnoreParenImpCasts();
7859      }
7860
7861      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7862        if (Warn)
7863          HandleDeclRefExpr(DRE);
7864        return;
7865      }
7866
7867      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7868      // Visit that expression.
7869      Visit(Base);
7870    }
7871
7872    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7873      if (E->getNumArgs() > 0)
7874        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7875          HandleDeclRefExpr(DRE);
7876
7877      Inherited::VisitCXXOperatorCallExpr(E);
7878    }
7879
7880    void VisitUnaryOperator(UnaryOperator *E) {
7881      // For POD record types, addresses of its own members are well-defined.
7882      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7883          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7884        if (!isPODType)
7885          HandleValue(E->getSubExpr());
7886        return;
7887      }
7888      Inherited::VisitUnaryOperator(E);
7889    }
7890
7891    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7892
7893    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7894      Decl* ReferenceDecl = DRE->getDecl();
7895      if (OrigDecl != ReferenceDecl) return;
7896      unsigned diag;
7897      if (isReferenceType) {
7898        diag = diag::warn_uninit_self_reference_in_reference_init;
7899      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7900        diag = diag::warn_static_self_reference_in_init;
7901      } else {
7902        diag = diag::warn_uninit_self_reference_in_init;
7903      }
7904
7905      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7906                            S.PDiag(diag)
7907                              << DRE->getNameInfo().getName()
7908                              << OrigDecl->getLocation()
7909                              << DRE->getSourceRange());
7910    }
7911  };
7912
7913  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7914  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7915                                 bool DirectInit) {
7916    // Parameters arguments are occassionially constructed with itself,
7917    // for instance, in recursive functions.  Skip them.
7918    if (isa<ParmVarDecl>(OrigDecl))
7919      return;
7920
7921    E = E->IgnoreParens();
7922
7923    // Skip checking T a = a where T is not a record or reference type.
7924    // Doing so is a way to silence uninitialized warnings.
7925    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7926      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7927        if (ICE->getCastKind() == CK_LValueToRValue)
7928          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7929            if (DRE->getDecl() == OrigDecl)
7930              return;
7931
7932    SelfReferenceChecker(S, OrigDecl).Visit(E);
7933  }
7934}
7935
7936/// AddInitializerToDecl - Adds the initializer Init to the
7937/// declaration dcl. If DirectInit is true, this is C++ direct
7938/// initialization rather than copy initialization.
7939void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7940                                bool DirectInit, bool TypeMayContainAuto) {
7941  // If there is no declaration, there was an error parsing it.  Just ignore
7942  // the initializer.
7943  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7944    return;
7945
7946  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7947    // With declarators parsed the way they are, the parser cannot
7948    // distinguish between a normal initializer and a pure-specifier.
7949    // Thus this grotesque test.
7950    IntegerLiteral *IL;
7951    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7952        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7953      CheckPureMethod(Method, Init->getSourceRange());
7954    else {
7955      Diag(Method->getLocation(), diag::err_member_function_initialization)
7956        << Method->getDeclName() << Init->getSourceRange();
7957      Method->setInvalidDecl();
7958    }
7959    return;
7960  }
7961
7962  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7963  if (!VDecl) {
7964    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7965    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7966    RealDecl->setInvalidDecl();
7967    return;
7968  }
7969  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7970
7971  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7972  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7973    Expr *DeduceInit = Init;
7974    // Initializer could be a C++ direct-initializer. Deduction only works if it
7975    // contains exactly one expression.
7976    if (CXXDirectInit) {
7977      if (CXXDirectInit->getNumExprs() == 0) {
7978        // It isn't possible to write this directly, but it is possible to
7979        // end up in this situation with "auto x(some_pack...);"
7980        Diag(CXXDirectInit->getLocStart(),
7981             VDecl->isInitCapture() ? diag::err_init_capture_no_expression
7982                                    : diag::err_auto_var_init_no_expression)
7983          << VDecl->getDeclName() << VDecl->getType()
7984          << VDecl->getSourceRange();
7985        RealDecl->setInvalidDecl();
7986        return;
7987      } else if (CXXDirectInit->getNumExprs() > 1) {
7988        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7989             VDecl->isInitCapture()
7990                 ? diag::err_init_capture_multiple_expressions
7991                 : diag::err_auto_var_init_multiple_expressions)
7992          << VDecl->getDeclName() << VDecl->getType()
7993          << VDecl->getSourceRange();
7994        RealDecl->setInvalidDecl();
7995        return;
7996      } else {
7997        DeduceInit = CXXDirectInit->getExpr(0);
7998      }
7999    }
8000
8001    // Expressions default to 'id' when we're in a debugger.
8002    bool DefaultedToAuto = false;
8003    if (getLangOpts().DebuggerCastResultToId &&
8004        Init->getType() == Context.UnknownAnyTy) {
8005      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8006      if (Result.isInvalid()) {
8007        VDecl->setInvalidDecl();
8008        return;
8009      }
8010      Init = Result.take();
8011      DefaultedToAuto = true;
8012    }
8013
8014    QualType DeducedType;
8015    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
8016            DAR_Failed)
8017      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
8018    if (DeducedType.isNull()) {
8019      RealDecl->setInvalidDecl();
8020      return;
8021    }
8022    VDecl->setType(DeducedType);
8023    assert(VDecl->isLinkageValid());
8024
8025    // In ARC, infer lifetime.
8026    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
8027      VDecl->setInvalidDecl();
8028
8029    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
8030    // 'id' instead of a specific object type prevents most of our usual checks.
8031    // We only want to warn outside of template instantiations, though:
8032    // inside a template, the 'id' could have come from a parameter.
8033    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
8034        DeducedType->isObjCIdType()) {
8035      SourceLocation Loc =
8036          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
8037      Diag(Loc, diag::warn_auto_var_is_id)
8038        << VDecl->getDeclName() << DeduceInit->getSourceRange();
8039    }
8040
8041    // If this is a redeclaration, check that the type we just deduced matches
8042    // the previously declared type.
8043    if (VarDecl *Old = VDecl->getPreviousDecl()) {
8044      // We never need to merge the type, because we cannot form an incomplete
8045      // array of auto, nor deduce such a type.
8046      MergeVarDeclTypes(VDecl, Old, /*MergeTypeWithPrevious*/false);
8047    }
8048
8049    // Check the deduced type is valid for a variable declaration.
8050    CheckVariableDeclarationType(VDecl);
8051    if (VDecl->isInvalidDecl())
8052      return;
8053  }
8054
8055  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
8056    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
8057    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
8058    VDecl->setInvalidDecl();
8059    return;
8060  }
8061
8062  if (!VDecl->getType()->isDependentType()) {
8063    // A definition must end up with a complete type, which means it must be
8064    // complete with the restriction that an array type might be completed by
8065    // the initializer; note that later code assumes this restriction.
8066    QualType BaseDeclType = VDecl->getType();
8067    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
8068      BaseDeclType = Array->getElementType();
8069    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
8070                            diag::err_typecheck_decl_incomplete_type)) {
8071      RealDecl->setInvalidDecl();
8072      return;
8073    }
8074
8075    // The variable can not have an abstract class type.
8076    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
8077                               diag::err_abstract_type_in_decl,
8078                               AbstractVariableType))
8079      VDecl->setInvalidDecl();
8080  }
8081
8082  const VarDecl *Def;
8083  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
8084    Diag(VDecl->getLocation(), diag::err_redefinition)
8085      << VDecl->getDeclName();
8086    Diag(Def->getLocation(), diag::note_previous_definition);
8087    VDecl->setInvalidDecl();
8088    return;
8089  }
8090
8091  const VarDecl* PrevInit = 0;
8092  if (getLangOpts().CPlusPlus) {
8093    // C++ [class.static.data]p4
8094    //   If a static data member is of const integral or const
8095    //   enumeration type, its declaration in the class definition can
8096    //   specify a constant-initializer which shall be an integral
8097    //   constant expression (5.19). In that case, the member can appear
8098    //   in integral constant expressions. The member shall still be
8099    //   defined in a namespace scope if it is used in the program and the
8100    //   namespace scope definition shall not contain an initializer.
8101    //
8102    // We already performed a redefinition check above, but for static
8103    // data members we also need to check whether there was an in-class
8104    // declaration with an initializer.
8105    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
8106      Diag(VDecl->getLocation(), diag::err_redefinition)
8107        << VDecl->getDeclName();
8108      Diag(PrevInit->getLocation(), diag::note_previous_definition);
8109      return;
8110    }
8111
8112    if (VDecl->hasLocalStorage())
8113      getCurFunction()->setHasBranchProtectedScope();
8114
8115    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
8116      VDecl->setInvalidDecl();
8117      return;
8118    }
8119  }
8120
8121  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
8122  // a kernel function cannot be initialized."
8123  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
8124    Diag(VDecl->getLocation(), diag::err_local_cant_init);
8125    VDecl->setInvalidDecl();
8126    return;
8127  }
8128
8129  // Get the decls type and save a reference for later, since
8130  // CheckInitializerTypes may change it.
8131  QualType DclT = VDecl->getType(), SavT = DclT;
8132
8133  // Expressions default to 'id' when we're in a debugger
8134  // and we are assigning it to a variable of Objective-C pointer type.
8135  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
8136      Init->getType() == Context.UnknownAnyTy) {
8137    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
8138    if (Result.isInvalid()) {
8139      VDecl->setInvalidDecl();
8140      return;
8141    }
8142    Init = Result.take();
8143  }
8144
8145  // Perform the initialization.
8146  if (!VDecl->isInvalidDecl()) {
8147    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
8148    InitializationKind Kind
8149      = DirectInit ?
8150          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
8151                                                           Init->getLocStart(),
8152                                                           Init->getLocEnd())
8153                        : InitializationKind::CreateDirectList(
8154                                                          VDecl->getLocation())
8155                   : InitializationKind::CreateCopy(VDecl->getLocation(),
8156                                                    Init->getLocStart());
8157
8158    MultiExprArg Args = Init;
8159    if (CXXDirectInit)
8160      Args = MultiExprArg(CXXDirectInit->getExprs(),
8161                          CXXDirectInit->getNumExprs());
8162
8163    InitializationSequence InitSeq(*this, Entity, Kind, Args);
8164    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
8165    if (Result.isInvalid()) {
8166      VDecl->setInvalidDecl();
8167      return;
8168    }
8169
8170    Init = Result.takeAs<Expr>();
8171  }
8172
8173  // Check for self-references within variable initializers.
8174  // Variables declared within a function/method body (except for references)
8175  // are handled by a dataflow analysis.
8176  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
8177      VDecl->getType()->isReferenceType()) {
8178    CheckSelfReference(*this, RealDecl, Init, DirectInit);
8179  }
8180
8181  // If the type changed, it means we had an incomplete type that was
8182  // completed by the initializer. For example:
8183  //   int ary[] = { 1, 3, 5 };
8184  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
8185  if (!VDecl->isInvalidDecl() && (DclT != SavT))
8186    VDecl->setType(DclT);
8187
8188  if (!VDecl->isInvalidDecl()) {
8189    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
8190
8191    if (VDecl->hasAttr<BlocksAttr>())
8192      checkRetainCycles(VDecl, Init);
8193
8194    // It is safe to assign a weak reference into a strong variable.
8195    // Although this code can still have problems:
8196    //   id x = self.weakProp;
8197    //   id y = self.weakProp;
8198    // we do not warn to warn spuriously when 'x' and 'y' are on separate
8199    // paths through the function. This should be revisited if
8200    // -Wrepeated-use-of-weak is made flow-sensitive.
8201    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
8202      DiagnosticsEngine::Level Level =
8203        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
8204                                 Init->getLocStart());
8205      if (Level != DiagnosticsEngine::Ignored)
8206        getCurFunction()->markSafeWeakUse(Init);
8207    }
8208  }
8209
8210  // The initialization is usually a full-expression.
8211  //
8212  // FIXME: If this is a braced initialization of an aggregate, it is not
8213  // an expression, and each individual field initializer is a separate
8214  // full-expression. For instance, in:
8215  //
8216  //   struct Temp { ~Temp(); };
8217  //   struct S { S(Temp); };
8218  //   struct T { S a, b; } t = { Temp(), Temp() }
8219  //
8220  // we should destroy the first Temp before constructing the second.
8221  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
8222                                          false,
8223                                          VDecl->isConstexpr());
8224  if (Result.isInvalid()) {
8225    VDecl->setInvalidDecl();
8226    return;
8227  }
8228  Init = Result.take();
8229
8230  // Attach the initializer to the decl.
8231  VDecl->setInit(Init);
8232
8233  if (VDecl->isLocalVarDecl()) {
8234    // C99 6.7.8p4: All the expressions in an initializer for an object that has
8235    // static storage duration shall be constant expressions or string literals.
8236    // C++ does not have this restriction.
8237    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl()) {
8238      if (VDecl->getStorageClass() == SC_Static)
8239        CheckForConstantInitializer(Init, DclT);
8240      // C89 is stricter than C99 for non-static aggregate types.
8241      // C89 6.5.7p3: All the expressions [...] in an initializer list
8242      // for an object that has aggregate or union type shall be
8243      // constant expressions.
8244      else if (!getLangOpts().C99 && VDecl->getType()->isAggregateType() &&
8245               isa<InitListExpr>(Init) &&
8246               !Init->isConstantInitializer(Context, false))
8247        Diag(Init->getExprLoc(),
8248             diag::ext_aggregate_init_not_constant)
8249          << Init->getSourceRange();
8250    }
8251  } else if (VDecl->isStaticDataMember() &&
8252             VDecl->getLexicalDeclContext()->isRecord()) {
8253    // This is an in-class initialization for a static data member, e.g.,
8254    //
8255    // struct S {
8256    //   static const int value = 17;
8257    // };
8258
8259    // C++ [class.mem]p4:
8260    //   A member-declarator can contain a constant-initializer only
8261    //   if it declares a static member (9.4) of const integral or
8262    //   const enumeration type, see 9.4.2.
8263    //
8264    // C++11 [class.static.data]p3:
8265    //   If a non-volatile const static data member is of integral or
8266    //   enumeration type, its declaration in the class definition can
8267    //   specify a brace-or-equal-initializer in which every initalizer-clause
8268    //   that is an assignment-expression is a constant expression. A static
8269    //   data member of literal type can be declared in the class definition
8270    //   with the constexpr specifier; if so, its declaration shall specify a
8271    //   brace-or-equal-initializer in which every initializer-clause that is
8272    //   an assignment-expression is a constant expression.
8273
8274    // Do nothing on dependent types.
8275    if (DclT->isDependentType()) {
8276
8277    // Allow any 'static constexpr' members, whether or not they are of literal
8278    // type. We separately check that every constexpr variable is of literal
8279    // type.
8280    } else if (VDecl->isConstexpr()) {
8281
8282    // Require constness.
8283    } else if (!DclT.isConstQualified()) {
8284      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
8285        << Init->getSourceRange();
8286      VDecl->setInvalidDecl();
8287
8288    // We allow integer constant expressions in all cases.
8289    } else if (DclT->isIntegralOrEnumerationType()) {
8290      // Check whether the expression is a constant expression.
8291      SourceLocation Loc;
8292      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
8293        // In C++11, a non-constexpr const static data member with an
8294        // in-class initializer cannot be volatile.
8295        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
8296      else if (Init->isValueDependent())
8297        ; // Nothing to check.
8298      else if (Init->isIntegerConstantExpr(Context, &Loc))
8299        ; // Ok, it's an ICE!
8300      else if (Init->isEvaluatable(Context)) {
8301        // If we can constant fold the initializer through heroics, accept it,
8302        // but report this as a use of an extension for -pedantic.
8303        Diag(Loc, diag::ext_in_class_initializer_non_constant)
8304          << Init->getSourceRange();
8305      } else {
8306        // Otherwise, this is some crazy unknown case.  Report the issue at the
8307        // location provided by the isIntegerConstantExpr failed check.
8308        Diag(Loc, diag::err_in_class_initializer_non_constant)
8309          << Init->getSourceRange();
8310        VDecl->setInvalidDecl();
8311      }
8312
8313    // We allow foldable floating-point constants as an extension.
8314    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
8315      // In C++98, this is a GNU extension. In C++11, it is not, but we support
8316      // it anyway and provide a fixit to add the 'constexpr'.
8317      if (getLangOpts().CPlusPlus11) {
8318        Diag(VDecl->getLocation(),
8319             diag::ext_in_class_initializer_float_type_cxx11)
8320            << DclT << Init->getSourceRange();
8321        Diag(VDecl->getLocStart(),
8322             diag::note_in_class_initializer_float_type_cxx11)
8323            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8324      } else {
8325        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
8326          << DclT << Init->getSourceRange();
8327
8328        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
8329          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
8330            << Init->getSourceRange();
8331          VDecl->setInvalidDecl();
8332        }
8333      }
8334
8335    // Suggest adding 'constexpr' in C++11 for literal types.
8336    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
8337      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
8338        << DclT << Init->getSourceRange()
8339        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
8340      VDecl->setConstexpr(true);
8341
8342    } else {
8343      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
8344        << DclT << Init->getSourceRange();
8345      VDecl->setInvalidDecl();
8346    }
8347  } else if (VDecl->isFileVarDecl()) {
8348    if (VDecl->getStorageClass() == SC_Extern &&
8349        (!getLangOpts().CPlusPlus ||
8350         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
8351           VDecl->isExternC())) &&
8352        !isTemplateInstantiation(VDecl->getTemplateSpecializationKind()))
8353      Diag(VDecl->getLocation(), diag::warn_extern_init);
8354
8355    // C99 6.7.8p4. All file scoped initializers need to be constant.
8356    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
8357      CheckForConstantInitializer(Init, DclT);
8358    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
8359             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
8360             !Init->isValueDependent() && !VDecl->isConstexpr() &&
8361             !Init->isConstantInitializer(
8362                 Context, VDecl->getType()->isReferenceType())) {
8363      // GNU C++98 edits for __thread, [basic.start.init]p4:
8364      //   An object of thread storage duration shall not require dynamic
8365      //   initialization.
8366      // FIXME: Need strict checking here.
8367      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
8368      if (getLangOpts().CPlusPlus11)
8369        Diag(VDecl->getLocation(), diag::note_use_thread_local);
8370    }
8371  }
8372
8373  // We will represent direct-initialization similarly to copy-initialization:
8374  //    int x(1);  -as-> int x = 1;
8375  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
8376  //
8377  // Clients that want to distinguish between the two forms, can check for
8378  // direct initializer using VarDecl::getInitStyle().
8379  // A major benefit is that clients that don't particularly care about which
8380  // exactly form was it (like the CodeGen) can handle both cases without
8381  // special case code.
8382
8383  // C++ 8.5p11:
8384  // The form of initialization (using parentheses or '=') is generally
8385  // insignificant, but does matter when the entity being initialized has a
8386  // class type.
8387  if (CXXDirectInit) {
8388    assert(DirectInit && "Call-style initializer must be direct init.");
8389    VDecl->setInitStyle(VarDecl::CallInit);
8390  } else if (DirectInit) {
8391    // This must be list-initialization. No other way is direct-initialization.
8392    VDecl->setInitStyle(VarDecl::ListInit);
8393  }
8394
8395  CheckCompleteVariableDeclaration(VDecl);
8396}
8397
8398/// ActOnInitializerError - Given that there was an error parsing an
8399/// initializer for the given declaration, try to return to some form
8400/// of sanity.
8401void Sema::ActOnInitializerError(Decl *D) {
8402  // Our main concern here is re-establishing invariants like "a
8403  // variable's type is either dependent or complete".
8404  if (!D || D->isInvalidDecl()) return;
8405
8406  VarDecl *VD = dyn_cast<VarDecl>(D);
8407  if (!VD) return;
8408
8409  // Auto types are meaningless if we can't make sense of the initializer.
8410  if (ParsingInitForAutoVars.count(D)) {
8411    D->setInvalidDecl();
8412    return;
8413  }
8414
8415  QualType Ty = VD->getType();
8416  if (Ty->isDependentType()) return;
8417
8418  // Require a complete type.
8419  if (RequireCompleteType(VD->getLocation(),
8420                          Context.getBaseElementType(Ty),
8421                          diag::err_typecheck_decl_incomplete_type)) {
8422    VD->setInvalidDecl();
8423    return;
8424  }
8425
8426  // Require an abstract type.
8427  if (RequireNonAbstractType(VD->getLocation(), Ty,
8428                             diag::err_abstract_type_in_decl,
8429                             AbstractVariableType)) {
8430    VD->setInvalidDecl();
8431    return;
8432  }
8433
8434  // Don't bother complaining about constructors or destructors,
8435  // though.
8436}
8437
8438void Sema::ActOnUninitializedDecl(Decl *RealDecl,
8439                                  bool TypeMayContainAuto) {
8440  // If there is no declaration, there was an error parsing it. Just ignore it.
8441  if (RealDecl == 0)
8442    return;
8443
8444  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
8445    QualType Type = Var->getType();
8446
8447    // C++11 [dcl.spec.auto]p3
8448    if (TypeMayContainAuto && Type->getContainedAutoType()) {
8449      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
8450        << Var->getDeclName() << Type;
8451      Var->setInvalidDecl();
8452      return;
8453    }
8454
8455    // C++11 [class.static.data]p3: A static data member can be declared with
8456    // the constexpr specifier; if so, its declaration shall specify
8457    // a brace-or-equal-initializer.
8458    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
8459    // the definition of a variable [...] or the declaration of a static data
8460    // member.
8461    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
8462      if (Var->isStaticDataMember())
8463        Diag(Var->getLocation(),
8464             diag::err_constexpr_static_mem_var_requires_init)
8465          << Var->getDeclName();
8466      else
8467        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
8468      Var->setInvalidDecl();
8469      return;
8470    }
8471
8472    switch (Var->isThisDeclarationADefinition()) {
8473    case VarDecl::Definition:
8474      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
8475        break;
8476
8477      // We have an out-of-line definition of a static data member
8478      // that has an in-class initializer, so we type-check this like
8479      // a declaration.
8480      //
8481      // Fall through
8482
8483    case VarDecl::DeclarationOnly:
8484      // It's only a declaration.
8485
8486      // Block scope. C99 6.7p7: If an identifier for an object is
8487      // declared with no linkage (C99 6.2.2p6), the type for the
8488      // object shall be complete.
8489      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
8490          !Var->hasLinkage() && !Var->isInvalidDecl() &&
8491          RequireCompleteType(Var->getLocation(), Type,
8492                              diag::err_typecheck_decl_incomplete_type))
8493        Var->setInvalidDecl();
8494
8495      // Make sure that the type is not abstract.
8496      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8497          RequireNonAbstractType(Var->getLocation(), Type,
8498                                 diag::err_abstract_type_in_decl,
8499                                 AbstractVariableType))
8500        Var->setInvalidDecl();
8501      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8502          Var->getStorageClass() == SC_PrivateExtern) {
8503        Diag(Var->getLocation(), diag::warn_private_extern);
8504        Diag(Var->getLocation(), diag::note_private_extern);
8505      }
8506
8507      return;
8508
8509    case VarDecl::TentativeDefinition:
8510      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8511      // object that has file scope without an initializer, and without a
8512      // storage-class specifier or with the storage-class specifier "static",
8513      // constitutes a tentative definition. Note: A tentative definition with
8514      // external linkage is valid (C99 6.2.2p5).
8515      if (!Var->isInvalidDecl()) {
8516        if (const IncompleteArrayType *ArrayT
8517                                    = Context.getAsIncompleteArrayType(Type)) {
8518          if (RequireCompleteType(Var->getLocation(),
8519                                  ArrayT->getElementType(),
8520                                  diag::err_illegal_decl_array_incomplete_type))
8521            Var->setInvalidDecl();
8522        } else if (Var->getStorageClass() == SC_Static) {
8523          // C99 6.9.2p3: If the declaration of an identifier for an object is
8524          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8525          // declared type shall not be an incomplete type.
8526          // NOTE: code such as the following
8527          //     static struct s;
8528          //     struct s { int a; };
8529          // is accepted by gcc. Hence here we issue a warning instead of
8530          // an error and we do not invalidate the static declaration.
8531          // NOTE: to avoid multiple warnings, only check the first declaration.
8532          if (Var->isFirstDecl())
8533            RequireCompleteType(Var->getLocation(), Type,
8534                                diag::ext_typecheck_decl_incomplete_type);
8535        }
8536      }
8537
8538      // Record the tentative definition; we're done.
8539      if (!Var->isInvalidDecl())
8540        TentativeDefinitions.push_back(Var);
8541      return;
8542    }
8543
8544    // Provide a specific diagnostic for uninitialized variable
8545    // definitions with incomplete array type.
8546    if (Type->isIncompleteArrayType()) {
8547      Diag(Var->getLocation(),
8548           diag::err_typecheck_incomplete_array_needs_initializer);
8549      Var->setInvalidDecl();
8550      return;
8551    }
8552
8553    // Provide a specific diagnostic for uninitialized variable
8554    // definitions with reference type.
8555    if (Type->isReferenceType()) {
8556      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8557        << Var->getDeclName()
8558        << SourceRange(Var->getLocation(), Var->getLocation());
8559      Var->setInvalidDecl();
8560      return;
8561    }
8562
8563    // Do not attempt to type-check the default initializer for a
8564    // variable with dependent type.
8565    if (Type->isDependentType())
8566      return;
8567
8568    if (Var->isInvalidDecl())
8569      return;
8570
8571    if (RequireCompleteType(Var->getLocation(),
8572                            Context.getBaseElementType(Type),
8573                            diag::err_typecheck_decl_incomplete_type)) {
8574      Var->setInvalidDecl();
8575      return;
8576    }
8577
8578    // The variable can not have an abstract class type.
8579    if (RequireNonAbstractType(Var->getLocation(), Type,
8580                               diag::err_abstract_type_in_decl,
8581                               AbstractVariableType)) {
8582      Var->setInvalidDecl();
8583      return;
8584    }
8585
8586    // Check for jumps past the implicit initializer.  C++0x
8587    // clarifies that this applies to a "variable with automatic
8588    // storage duration", not a "local variable".
8589    // C++11 [stmt.dcl]p3
8590    //   A program that jumps from a point where a variable with automatic
8591    //   storage duration is not in scope to a point where it is in scope is
8592    //   ill-formed unless the variable has scalar type, class type with a
8593    //   trivial default constructor and a trivial destructor, a cv-qualified
8594    //   version of one of these types, or an array of one of the preceding
8595    //   types and is declared without an initializer.
8596    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8597      if (const RecordType *Record
8598            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8599        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8600        // Mark the function for further checking even if the looser rules of
8601        // C++11 do not require such checks, so that we can diagnose
8602        // incompatibilities with C++98.
8603        if (!CXXRecord->isPOD())
8604          getCurFunction()->setHasBranchProtectedScope();
8605      }
8606    }
8607
8608    // C++03 [dcl.init]p9:
8609    //   If no initializer is specified for an object, and the
8610    //   object is of (possibly cv-qualified) non-POD class type (or
8611    //   array thereof), the object shall be default-initialized; if
8612    //   the object is of const-qualified type, the underlying class
8613    //   type shall have a user-declared default
8614    //   constructor. Otherwise, if no initializer is specified for
8615    //   a non- static object, the object and its subobjects, if
8616    //   any, have an indeterminate initial value); if the object
8617    //   or any of its subobjects are of const-qualified type, the
8618    //   program is ill-formed.
8619    // C++0x [dcl.init]p11:
8620    //   If no initializer is specified for an object, the object is
8621    //   default-initialized; [...].
8622    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8623    InitializationKind Kind
8624      = InitializationKind::CreateDefault(Var->getLocation());
8625
8626    InitializationSequence InitSeq(*this, Entity, Kind, None);
8627    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8628    if (Init.isInvalid())
8629      Var->setInvalidDecl();
8630    else if (Init.get()) {
8631      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8632      // This is important for template substitution.
8633      Var->setInitStyle(VarDecl::CallInit);
8634    }
8635
8636    CheckCompleteVariableDeclaration(Var);
8637  }
8638}
8639
8640void Sema::ActOnCXXForRangeDecl(Decl *D) {
8641  VarDecl *VD = dyn_cast<VarDecl>(D);
8642  if (!VD) {
8643    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8644    D->setInvalidDecl();
8645    return;
8646  }
8647
8648  VD->setCXXForRangeDecl(true);
8649
8650  // for-range-declaration cannot be given a storage class specifier.
8651  int Error = -1;
8652  switch (VD->getStorageClass()) {
8653  case SC_None:
8654    break;
8655  case SC_Extern:
8656    Error = 0;
8657    break;
8658  case SC_Static:
8659    Error = 1;
8660    break;
8661  case SC_PrivateExtern:
8662    Error = 2;
8663    break;
8664  case SC_Auto:
8665    Error = 3;
8666    break;
8667  case SC_Register:
8668    Error = 4;
8669    break;
8670  case SC_OpenCLWorkGroupLocal:
8671    llvm_unreachable("Unexpected storage class");
8672  }
8673  if (VD->isConstexpr())
8674    Error = 5;
8675  if (Error != -1) {
8676    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8677      << VD->getDeclName() << Error;
8678    D->setInvalidDecl();
8679  }
8680}
8681
8682void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8683  if (var->isInvalidDecl()) return;
8684
8685  // In ARC, don't allow jumps past the implicit initialization of a
8686  // local retaining variable.
8687  if (getLangOpts().ObjCAutoRefCount &&
8688      var->hasLocalStorage()) {
8689    switch (var->getType().getObjCLifetime()) {
8690    case Qualifiers::OCL_None:
8691    case Qualifiers::OCL_ExplicitNone:
8692    case Qualifiers::OCL_Autoreleasing:
8693      break;
8694
8695    case Qualifiers::OCL_Weak:
8696    case Qualifiers::OCL_Strong:
8697      getCurFunction()->setHasBranchProtectedScope();
8698      break;
8699    }
8700  }
8701
8702  if (var->isThisDeclarationADefinition() &&
8703      var->isExternallyVisible() && var->hasLinkage() &&
8704      getDiagnostics().getDiagnosticLevel(
8705                       diag::warn_missing_variable_declarations,
8706                       var->getLocation())) {
8707    // Find a previous declaration that's not a definition.
8708    VarDecl *prev = var->getPreviousDecl();
8709    while (prev && prev->isThisDeclarationADefinition())
8710      prev = prev->getPreviousDecl();
8711
8712    if (!prev)
8713      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8714  }
8715
8716  if (var->getTLSKind() == VarDecl::TLS_Static &&
8717      var->getType().isDestructedType()) {
8718    // GNU C++98 edits for __thread, [basic.start.term]p3:
8719    //   The type of an object with thread storage duration shall not
8720    //   have a non-trivial destructor.
8721    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8722    if (getLangOpts().CPlusPlus11)
8723      Diag(var->getLocation(), diag::note_use_thread_local);
8724  }
8725
8726  // All the following checks are C++ only.
8727  if (!getLangOpts().CPlusPlus) return;
8728
8729  QualType type = var->getType();
8730  if (type->isDependentType()) return;
8731
8732  // __block variables might require us to capture a copy-initializer.
8733  if (var->hasAttr<BlocksAttr>()) {
8734    // It's currently invalid to ever have a __block variable with an
8735    // array type; should we diagnose that here?
8736
8737    // Regardless, we don't want to ignore array nesting when
8738    // constructing this copy.
8739    if (type->isStructureOrClassType()) {
8740      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8741      SourceLocation poi = var->getLocation();
8742      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8743      ExprResult result
8744        = PerformMoveOrCopyInitialization(
8745            InitializedEntity::InitializeBlock(poi, type, false),
8746            var, var->getType(), varRef, /*AllowNRVO=*/true);
8747      if (!result.isInvalid()) {
8748        result = MaybeCreateExprWithCleanups(result);
8749        Expr *init = result.takeAs<Expr>();
8750        Context.setBlockVarCopyInits(var, init);
8751      }
8752    }
8753  }
8754
8755  Expr *Init = var->getInit();
8756  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8757  QualType baseType = Context.getBaseElementType(type);
8758
8759  if (!var->getDeclContext()->isDependentContext() &&
8760      Init && !Init->isValueDependent()) {
8761    if (IsGlobal && !var->isConstexpr() &&
8762        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8763                                            var->getLocation())
8764          != DiagnosticsEngine::Ignored) {
8765      // Warn about globals which don't have a constant initializer.  Don't
8766      // warn about globals with a non-trivial destructor because we already
8767      // warned about them.
8768      CXXRecordDecl *RD = baseType->getAsCXXRecordDecl();
8769      if (!(RD && !RD->hasTrivialDestructor()) &&
8770          !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8771        Diag(var->getLocation(), diag::warn_global_constructor)
8772          << Init->getSourceRange();
8773    }
8774
8775    if (var->isConstexpr()) {
8776      SmallVector<PartialDiagnosticAt, 8> Notes;
8777      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8778        SourceLocation DiagLoc = var->getLocation();
8779        // If the note doesn't add any useful information other than a source
8780        // location, fold it into the primary diagnostic.
8781        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8782              diag::note_invalid_subexpr_in_const_expr) {
8783          DiagLoc = Notes[0].first;
8784          Notes.clear();
8785        }
8786        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8787          << var << Init->getSourceRange();
8788        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8789          Diag(Notes[I].first, Notes[I].second);
8790      }
8791    } else if (var->isUsableInConstantExpressions(Context)) {
8792      // Check whether the initializer of a const variable of integral or
8793      // enumeration type is an ICE now, since we can't tell whether it was
8794      // initialized by a constant expression if we check later.
8795      var->checkInitIsICE();
8796    }
8797  }
8798
8799  // Require the destructor.
8800  if (const RecordType *recordType = baseType->getAs<RecordType>())
8801    FinalizeVarWithDestructor(var, recordType);
8802}
8803
8804/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8805/// any semantic actions necessary after any initializer has been attached.
8806void
8807Sema::FinalizeDeclaration(Decl *ThisDecl) {
8808  // Note that we are no longer parsing the initializer for this declaration.
8809  ParsingInitForAutoVars.erase(ThisDecl);
8810
8811  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8812  if (!VD)
8813    return;
8814
8815  if (UsedAttr *Attr = VD->getAttr<UsedAttr>()) {
8816    if (!Attr->isInherited() && !VD->isThisDeclarationADefinition()) {
8817      Diag(Attr->getLocation(), diag::warn_attribute_ignored) << "used";
8818      VD->dropAttr<UsedAttr>();
8819    }
8820  }
8821
8822  const DeclContext *DC = VD->getDeclContext();
8823  // If there's a #pragma GCC visibility in scope, and this isn't a class
8824  // member, set the visibility of this variable.
8825  if (!DC->isRecord() && VD->isExternallyVisible())
8826    AddPushedVisibilityAttribute(VD);
8827
8828  if (VD->isFileVarDecl())
8829    MarkUnusedFileScopedDecl(VD);
8830
8831  // Now we have parsed the initializer and can update the table of magic
8832  // tag values.
8833  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8834      !VD->getType()->isIntegralOrEnumerationType())
8835    return;
8836
8837  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8838         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8839         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8840       I != E; ++I) {
8841    const Expr *MagicValueExpr = VD->getInit();
8842    if (!MagicValueExpr) {
8843      continue;
8844    }
8845    llvm::APSInt MagicValueInt;
8846    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8847      Diag(I->getRange().getBegin(),
8848           diag::err_type_tag_for_datatype_not_ice)
8849        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8850      continue;
8851    }
8852    if (MagicValueInt.getActiveBits() > 64) {
8853      Diag(I->getRange().getBegin(),
8854           diag::err_type_tag_for_datatype_too_large)
8855        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8856      continue;
8857    }
8858    uint64_t MagicValue = MagicValueInt.getZExtValue();
8859    RegisterTypeTagForDatatype(I->getArgumentKind(),
8860                               MagicValue,
8861                               I->getMatchingCType(),
8862                               I->getLayoutCompatible(),
8863                               I->getMustBeNull());
8864  }
8865}
8866
8867Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8868                                                   ArrayRef<Decl *> Group) {
8869  SmallVector<Decl*, 8> Decls;
8870
8871  if (DS.isTypeSpecOwned())
8872    Decls.push_back(DS.getRepAsDecl());
8873
8874  DeclaratorDecl *FirstDeclaratorInGroup = 0;
8875  for (unsigned i = 0, e = Group.size(); i != e; ++i)
8876    if (Decl *D = Group[i]) {
8877      if (DeclaratorDecl *DD = dyn_cast<DeclaratorDecl>(D))
8878        if (!FirstDeclaratorInGroup)
8879          FirstDeclaratorInGroup = DD;
8880      Decls.push_back(D);
8881    }
8882
8883  if (DeclSpec::isDeclRep(DS.getTypeSpecType())) {
8884    if (TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl())) {
8885      HandleTagNumbering(*this, Tag);
8886      if (!Tag->hasNameForLinkage() && !Tag->hasDeclaratorForAnonDecl())
8887        Tag->setDeclaratorForAnonDecl(FirstDeclaratorInGroup);
8888    }
8889  }
8890
8891  return BuildDeclaratorGroup(Decls, DS.containsPlaceholderType());
8892}
8893
8894/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8895/// group, performing any necessary semantic checking.
8896Sema::DeclGroupPtrTy
8897Sema::BuildDeclaratorGroup(llvm::MutableArrayRef<Decl *> Group,
8898                           bool TypeMayContainAuto) {
8899  // C++0x [dcl.spec.auto]p7:
8900  //   If the type deduced for the template parameter U is not the same in each
8901  //   deduction, the program is ill-formed.
8902  // FIXME: When initializer-list support is added, a distinction is needed
8903  // between the deduced type U and the deduced type which 'auto' stands for.
8904  //   auto a = 0, b = { 1, 2, 3 };
8905  // is legal because the deduced type U is 'int' in both cases.
8906  if (TypeMayContainAuto && Group.size() > 1) {
8907    QualType Deduced;
8908    CanQualType DeducedCanon;
8909    VarDecl *DeducedDecl = 0;
8910    for (unsigned i = 0, e = Group.size(); i != e; ++i) {
8911      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8912        AutoType *AT = D->getType()->getContainedAutoType();
8913        // Don't reissue diagnostics when instantiating a template.
8914        if (AT && D->isInvalidDecl())
8915          break;
8916        QualType U = AT ? AT->getDeducedType() : QualType();
8917        if (!U.isNull()) {
8918          CanQualType UCanon = Context.getCanonicalType(U);
8919          if (Deduced.isNull()) {
8920            Deduced = U;
8921            DeducedCanon = UCanon;
8922            DeducedDecl = D;
8923          } else if (DeducedCanon != UCanon) {
8924            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8925                 diag::err_auto_different_deductions)
8926              << (AT->isDecltypeAuto() ? 1 : 0)
8927              << Deduced << DeducedDecl->getDeclName()
8928              << U << D->getDeclName()
8929              << DeducedDecl->getInit()->getSourceRange()
8930              << D->getInit()->getSourceRange();
8931            D->setInvalidDecl();
8932            break;
8933          }
8934        }
8935      }
8936    }
8937  }
8938
8939  ActOnDocumentableDecls(Group);
8940
8941  return DeclGroupPtrTy::make(
8942      DeclGroupRef::Create(Context, Group.data(), Group.size()));
8943}
8944
8945void Sema::ActOnDocumentableDecl(Decl *D) {
8946  ActOnDocumentableDecls(D);
8947}
8948
8949void Sema::ActOnDocumentableDecls(ArrayRef<Decl *> Group) {
8950  // Don't parse the comment if Doxygen diagnostics are ignored.
8951  if (Group.empty() || !Group[0])
8952   return;
8953
8954  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8955                               Group[0]->getLocation())
8956        == DiagnosticsEngine::Ignored)
8957    return;
8958
8959  if (Group.size() >= 2) {
8960    // This is a decl group.  Normally it will contain only declarations
8961    // produced from declarator list.  But in case we have any definitions or
8962    // additional declaration references:
8963    //   'typedef struct S {} S;'
8964    //   'typedef struct S *S;'
8965    //   'struct S *pS;'
8966    // FinalizeDeclaratorGroup adds these as separate declarations.
8967    Decl *MaybeTagDecl = Group[0];
8968    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8969      Group = Group.slice(1);
8970    }
8971  }
8972
8973  // See if there are any new comments that are not attached to a decl.
8974  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8975  if (!Comments.empty() &&
8976      !Comments.back()->isAttached()) {
8977    // There is at least one comment that not attached to a decl.
8978    // Maybe it should be attached to one of these decls?
8979    //
8980    // Note that this way we pick up not only comments that precede the
8981    // declaration, but also comments that *follow* the declaration -- thanks to
8982    // the lookahead in the lexer: we've consumed the semicolon and looked
8983    // ahead through comments.
8984    for (unsigned i = 0, e = Group.size(); i != e; ++i)
8985      Context.getCommentForDecl(Group[i], &PP);
8986  }
8987}
8988
8989/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8990/// to introduce parameters into function prototype scope.
8991Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8992  const DeclSpec &DS = D.getDeclSpec();
8993
8994  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8995
8996  // C++03 [dcl.stc]p2 also permits 'auto'.
8997  VarDecl::StorageClass StorageClass = SC_None;
8998  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8999    StorageClass = SC_Register;
9000  } else if (getLangOpts().CPlusPlus &&
9001             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
9002    StorageClass = SC_Auto;
9003  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
9004    Diag(DS.getStorageClassSpecLoc(),
9005         diag::err_invalid_storage_class_in_func_decl);
9006    D.getMutableDeclSpec().ClearStorageClassSpecs();
9007  }
9008
9009  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
9010    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
9011      << DeclSpec::getSpecifierName(TSCS);
9012  if (DS.isConstexprSpecified())
9013    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
9014      << 0;
9015
9016  DiagnoseFunctionSpecifiers(DS);
9017
9018  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9019  QualType parmDeclType = TInfo->getType();
9020
9021  if (getLangOpts().CPlusPlus) {
9022    // Check that there are no default arguments inside the type of this
9023    // parameter.
9024    CheckExtraCXXDefaultArguments(D);
9025
9026    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
9027    if (D.getCXXScopeSpec().isSet()) {
9028      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
9029        << D.getCXXScopeSpec().getRange();
9030      D.getCXXScopeSpec().clear();
9031    }
9032  }
9033
9034  // Ensure we have a valid name
9035  IdentifierInfo *II = 0;
9036  if (D.hasName()) {
9037    II = D.getIdentifier();
9038    if (!II) {
9039      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
9040        << GetNameForDeclarator(D).getName().getAsString();
9041      D.setInvalidType(true);
9042    }
9043  }
9044
9045  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
9046  if (II) {
9047    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
9048                   ForRedeclaration);
9049    LookupName(R, S);
9050    if (R.isSingleResult()) {
9051      NamedDecl *PrevDecl = R.getFoundDecl();
9052      if (PrevDecl->isTemplateParameter()) {
9053        // Maybe we will complain about the shadowed template parameter.
9054        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9055        // Just pretend that we didn't see the previous declaration.
9056        PrevDecl = 0;
9057      } else if (S->isDeclScope(PrevDecl)) {
9058        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
9059        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9060
9061        // Recover by removing the name
9062        II = 0;
9063        D.SetIdentifier(0, D.getIdentifierLoc());
9064        D.setInvalidType(true);
9065      }
9066    }
9067  }
9068
9069  // Temporarily put parameter variables in the translation unit, not
9070  // the enclosing context.  This prevents them from accidentally
9071  // looking like class members in C++.
9072  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
9073                                    D.getLocStart(),
9074                                    D.getIdentifierLoc(), II,
9075                                    parmDeclType, TInfo,
9076                                    StorageClass);
9077
9078  if (D.isInvalidType())
9079    New->setInvalidDecl();
9080
9081  assert(S->isFunctionPrototypeScope());
9082  assert(S->getFunctionPrototypeDepth() >= 1);
9083  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
9084                    S->getNextFunctionPrototypeIndex());
9085
9086  // Add the parameter declaration into this scope.
9087  S->AddDecl(New);
9088  if (II)
9089    IdResolver.AddDecl(New);
9090
9091  ProcessDeclAttributes(S, New, D);
9092
9093  if (D.getDeclSpec().isModulePrivateSpecified())
9094    Diag(New->getLocation(), diag::err_module_private_local)
9095      << 1 << New->getDeclName()
9096      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9097      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9098
9099  if (New->hasAttr<BlocksAttr>()) {
9100    Diag(New->getLocation(), diag::err_block_on_nonlocal);
9101  }
9102  return New;
9103}
9104
9105/// \brief Synthesizes a variable for a parameter arising from a
9106/// typedef.
9107ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
9108                                              SourceLocation Loc,
9109                                              QualType T) {
9110  /* FIXME: setting StartLoc == Loc.
9111     Would it be worth to modify callers so as to provide proper source
9112     location for the unnamed parameters, embedding the parameter's type? */
9113  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
9114                                T, Context.getTrivialTypeSourceInfo(T, Loc),
9115                                           SC_None, 0);
9116  Param->setImplicit();
9117  return Param;
9118}
9119
9120void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
9121                                    ParmVarDecl * const *ParamEnd) {
9122  // Don't diagnose unused-parameter errors in template instantiations; we
9123  // will already have done so in the template itself.
9124  if (!ActiveTemplateInstantiations.empty())
9125    return;
9126
9127  for (; Param != ParamEnd; ++Param) {
9128    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
9129        !(*Param)->hasAttr<UnusedAttr>()) {
9130      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
9131        << (*Param)->getDeclName();
9132    }
9133  }
9134}
9135
9136void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
9137                                                  ParmVarDecl * const *ParamEnd,
9138                                                  QualType ReturnTy,
9139                                                  NamedDecl *D) {
9140  if (LangOpts.NumLargeByValueCopy == 0) // No check.
9141    return;
9142
9143  // Warn if the return value is pass-by-value and larger than the specified
9144  // threshold.
9145  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
9146    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
9147    if (Size > LangOpts.NumLargeByValueCopy)
9148      Diag(D->getLocation(), diag::warn_return_value_size)
9149          << D->getDeclName() << Size;
9150  }
9151
9152  // Warn if any parameter is pass-by-value and larger than the specified
9153  // threshold.
9154  for (; Param != ParamEnd; ++Param) {
9155    QualType T = (*Param)->getType();
9156    if (T->isDependentType() || !T.isPODType(Context))
9157      continue;
9158    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
9159    if (Size > LangOpts.NumLargeByValueCopy)
9160      Diag((*Param)->getLocation(), diag::warn_parameter_size)
9161          << (*Param)->getDeclName() << Size;
9162  }
9163}
9164
9165ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
9166                                  SourceLocation NameLoc, IdentifierInfo *Name,
9167                                  QualType T, TypeSourceInfo *TSInfo,
9168                                  VarDecl::StorageClass StorageClass) {
9169  // In ARC, infer a lifetime qualifier for appropriate parameter types.
9170  if (getLangOpts().ObjCAutoRefCount &&
9171      T.getObjCLifetime() == Qualifiers::OCL_None &&
9172      T->isObjCLifetimeType()) {
9173
9174    Qualifiers::ObjCLifetime lifetime;
9175
9176    // Special cases for arrays:
9177    //   - if it's const, use __unsafe_unretained
9178    //   - otherwise, it's an error
9179    if (T->isArrayType()) {
9180      if (!T.isConstQualified()) {
9181        DelayedDiagnostics.add(
9182            sema::DelayedDiagnostic::makeForbiddenType(
9183            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
9184      }
9185      lifetime = Qualifiers::OCL_ExplicitNone;
9186    } else {
9187      lifetime = T->getObjCARCImplicitLifetime();
9188    }
9189    T = Context.getLifetimeQualifiedType(T, lifetime);
9190  }
9191
9192  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
9193                                         Context.getAdjustedParameterType(T),
9194                                         TSInfo,
9195                                         StorageClass, 0);
9196
9197  // Parameters can not be abstract class types.
9198  // For record types, this is done by the AbstractClassUsageDiagnoser once
9199  // the class has been completely parsed.
9200  if (!CurContext->isRecord() &&
9201      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
9202                             AbstractParamType))
9203    New->setInvalidDecl();
9204
9205  // Parameter declarators cannot be interface types. All ObjC objects are
9206  // passed by reference.
9207  if (T->isObjCObjectType()) {
9208    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
9209    Diag(NameLoc,
9210         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
9211      << FixItHint::CreateInsertion(TypeEndLoc, "*");
9212    T = Context.getObjCObjectPointerType(T);
9213    New->setType(T);
9214  }
9215
9216  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
9217  // duration shall not be qualified by an address-space qualifier."
9218  // Since all parameters have automatic store duration, they can not have
9219  // an address space.
9220  if (T.getAddressSpace() != 0) {
9221    Diag(NameLoc, diag::err_arg_with_address_space);
9222    New->setInvalidDecl();
9223  }
9224
9225  return New;
9226}
9227
9228void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
9229                                           SourceLocation LocAfterDecls) {
9230  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
9231
9232  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
9233  // for a K&R function.
9234  if (!FTI.hasPrototype) {
9235    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
9236      --i;
9237      if (FTI.ArgInfo[i].Param == 0) {
9238        SmallString<256> Code;
9239        llvm::raw_svector_ostream(Code) << "  int "
9240                                        << FTI.ArgInfo[i].Ident->getName()
9241                                        << ";\n";
9242        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
9243          << FTI.ArgInfo[i].Ident
9244          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
9245
9246        // Implicitly declare the argument as type 'int' for lack of a better
9247        // type.
9248        AttributeFactory attrs;
9249        DeclSpec DS(attrs);
9250        const char* PrevSpec; // unused
9251        unsigned DiagID; // unused
9252        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
9253                           PrevSpec, DiagID);
9254        // Use the identifier location for the type source range.
9255        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
9256        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
9257        Declarator ParamD(DS, Declarator::KNRTypeListContext);
9258        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
9259        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
9260      }
9261    }
9262  }
9263}
9264
9265Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
9266  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
9267  assert(D.isFunctionDeclarator() && "Not a function declarator!");
9268  Scope *ParentScope = FnBodyScope->getParent();
9269
9270  D.setFunctionDefinitionKind(FDK_Definition);
9271  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
9272  return ActOnStartOfFunctionDef(FnBodyScope, DP);
9273}
9274
9275static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
9276                             const FunctionDecl*& PossibleZeroParamPrototype) {
9277  // Don't warn about invalid declarations.
9278  if (FD->isInvalidDecl())
9279    return false;
9280
9281  // Or declarations that aren't global.
9282  if (!FD->isGlobal())
9283    return false;
9284
9285  // Don't warn about C++ member functions.
9286  if (isa<CXXMethodDecl>(FD))
9287    return false;
9288
9289  // Don't warn about 'main'.
9290  if (FD->isMain())
9291    return false;
9292
9293  // Don't warn about inline functions.
9294  if (FD->isInlined())
9295    return false;
9296
9297  // Don't warn about function templates.
9298  if (FD->getDescribedFunctionTemplate())
9299    return false;
9300
9301  // Don't warn about function template specializations.
9302  if (FD->isFunctionTemplateSpecialization())
9303    return false;
9304
9305  // Don't warn for OpenCL kernels.
9306  if (FD->hasAttr<OpenCLKernelAttr>())
9307    return false;
9308
9309  bool MissingPrototype = true;
9310  for (const FunctionDecl *Prev = FD->getPreviousDecl();
9311       Prev; Prev = Prev->getPreviousDecl()) {
9312    // Ignore any declarations that occur in function or method
9313    // scope, because they aren't visible from the header.
9314    if (Prev->getLexicalDeclContext()->isFunctionOrMethod())
9315      continue;
9316
9317    MissingPrototype = !Prev->getType()->isFunctionProtoType();
9318    if (FD->getNumParams() == 0)
9319      PossibleZeroParamPrototype = Prev;
9320    break;
9321  }
9322
9323  return MissingPrototype;
9324}
9325
9326void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
9327  // Don't complain if we're in GNU89 mode and the previous definition
9328  // was an extern inline function.
9329  const FunctionDecl *Definition;
9330  if (!FD->isDefined(Definition) ||
9331      canRedefineFunction(Definition, getLangOpts()))
9332    return;
9333
9334  if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
9335      Definition->getStorageClass() == SC_Extern)
9336    Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
9337        << FD->getDeclName() << getLangOpts().CPlusPlus;
9338  else
9339    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
9340
9341  Diag(Definition->getLocation(), diag::note_previous_definition);
9342  FD->setInvalidDecl();
9343}
9344
9345Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
9346  // Clear the last template instantiation error context.
9347  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
9348
9349  if (!D)
9350    return D;
9351  FunctionDecl *FD = 0;
9352
9353  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
9354    FD = FunTmpl->getTemplatedDecl();
9355  else
9356    FD = cast<FunctionDecl>(D);
9357  // If we are instantiating a generic lambda call operator, push
9358  // a LambdaScopeInfo onto the function stack.  But use the information
9359  // that's already been calculated (ActOnLambdaExpr) when analyzing the
9360  // template version, to prime the current LambdaScopeInfo.
9361  if (isGenericLambdaCallOperatorSpecialization(FD)) {
9362    CXXMethodDecl *CallOperator = cast<CXXMethodDecl>(D);
9363    CXXRecordDecl *LambdaClass = CallOperator->getParent();
9364    LambdaExpr    *LE = LambdaClass->getLambdaExpr();
9365    assert(LE &&
9366     "No LambdaExpr of closure class when instantiating a generic lambda!");
9367    assert(ActiveTemplateInstantiations.size() &&
9368      "There should be an active template instantiation on the stack "
9369      "when instantiating a generic lambda!");
9370    PushLambdaScope();
9371    LambdaScopeInfo *LSI = getCurLambda();
9372    LSI->CallOperator = CallOperator;
9373    LSI->Lambda = LambdaClass;
9374    LSI->ReturnType = CallOperator->getResultType();
9375
9376    if (LE->getCaptureDefault() == LCD_None)
9377      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_None;
9378    else if (LE->getCaptureDefault() == LCD_ByCopy)
9379      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByval;
9380    else if (LE->getCaptureDefault() == LCD_ByRef)
9381      LSI->ImpCaptureStyle = CapturingScopeInfo::ImpCap_LambdaByref;
9382
9383    LSI->IntroducerRange = LE->getIntroducerRange();
9384  }
9385  else
9386    // Enter a new function scope
9387    PushFunctionScope();
9388
9389  // See if this is a redefinition.
9390  if (!FD->isLateTemplateParsed())
9391    CheckForFunctionRedefinition(FD);
9392
9393  // Builtin functions cannot be defined.
9394  if (unsigned BuiltinID = FD->getBuiltinID()) {
9395    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
9396        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
9397      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
9398      FD->setInvalidDecl();
9399    }
9400  }
9401
9402  // The return type of a function definition must be complete
9403  // (C99 6.9.1p3, C++ [dcl.fct]p6).
9404  QualType ResultType = FD->getResultType();
9405  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
9406      !FD->isInvalidDecl() &&
9407      RequireCompleteType(FD->getLocation(), ResultType,
9408                          diag::err_func_def_incomplete_result))
9409    FD->setInvalidDecl();
9410
9411  // GNU warning -Wmissing-prototypes:
9412  //   Warn if a global function is defined without a previous
9413  //   prototype declaration. This warning is issued even if the
9414  //   definition itself provides a prototype. The aim is to detect
9415  //   global functions that fail to be declared in header files.
9416  const FunctionDecl *PossibleZeroParamPrototype = 0;
9417  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
9418    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
9419
9420    if (PossibleZeroParamPrototype) {
9421      // We found a declaration that is not a prototype,
9422      // but that could be a zero-parameter prototype
9423      if (TypeSourceInfo *TI =
9424              PossibleZeroParamPrototype->getTypeSourceInfo()) {
9425        TypeLoc TL = TI->getTypeLoc();
9426        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
9427          Diag(PossibleZeroParamPrototype->getLocation(),
9428               diag::note_declaration_not_a_prototype)
9429            << PossibleZeroParamPrototype
9430            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
9431      }
9432    }
9433  }
9434
9435  if (FnBodyScope)
9436    PushDeclContext(FnBodyScope, FD);
9437
9438  // Check the validity of our function parameters
9439  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
9440                           /*CheckParameterNames=*/true);
9441
9442  // Introduce our parameters into the function scope
9443  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
9444    ParmVarDecl *Param = FD->getParamDecl(p);
9445    Param->setOwningFunction(FD);
9446
9447    // If this has an identifier, add it to the scope stack.
9448    if (Param->getIdentifier() && FnBodyScope) {
9449      CheckShadow(FnBodyScope, Param);
9450
9451      PushOnScopeChains(Param, FnBodyScope);
9452    }
9453  }
9454
9455  // If we had any tags defined in the function prototype,
9456  // introduce them into the function scope.
9457  if (FnBodyScope) {
9458    for (ArrayRef<NamedDecl *>::iterator
9459             I = FD->getDeclsInPrototypeScope().begin(),
9460             E = FD->getDeclsInPrototypeScope().end();
9461         I != E; ++I) {
9462      NamedDecl *D = *I;
9463
9464      // Some of these decls (like enums) may have been pinned to the translation unit
9465      // for lack of a real context earlier. If so, remove from the translation unit
9466      // and reattach to the current context.
9467      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
9468        // Is the decl actually in the context?
9469        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
9470               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
9471          if (*DI == D) {
9472            Context.getTranslationUnitDecl()->removeDecl(D);
9473            break;
9474          }
9475        }
9476        // Either way, reassign the lexical decl context to our FunctionDecl.
9477        D->setLexicalDeclContext(CurContext);
9478      }
9479
9480      // If the decl has a non-null name, make accessible in the current scope.
9481      if (!D->getName().empty())
9482        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
9483
9484      // Similarly, dive into enums and fish their constants out, making them
9485      // accessible in this scope.
9486      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
9487        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
9488               EE = ED->enumerator_end(); EI != EE; ++EI)
9489          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
9490      }
9491    }
9492  }
9493
9494  // Ensure that the function's exception specification is instantiated.
9495  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
9496    ResolveExceptionSpec(D->getLocation(), FPT);
9497
9498  // Checking attributes of current function definition
9499  // dllimport attribute.
9500  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
9501  if (DA && (!FD->getAttr<DLLExportAttr>())) {
9502    // dllimport attribute cannot be directly applied to definition.
9503    // Microsoft accepts dllimport for functions defined within class scope.
9504    if (!DA->isInherited() &&
9505        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
9506      Diag(FD->getLocation(),
9507           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
9508        << "dllimport";
9509      FD->setInvalidDecl();
9510      return D;
9511    }
9512
9513    // Visual C++ appears to not think this is an issue, so only issue
9514    // a warning when Microsoft extensions are disabled.
9515    if (!LangOpts.MicrosoftExt) {
9516      // If a symbol previously declared dllimport is later defined, the
9517      // attribute is ignored in subsequent references, and a warning is
9518      // emitted.
9519      Diag(FD->getLocation(),
9520           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
9521        << FD->getName() << "dllimport";
9522    }
9523  }
9524  // We want to attach documentation to original Decl (which might be
9525  // a function template).
9526  ActOnDocumentableDecl(D);
9527  return D;
9528}
9529
9530/// \brief Given the set of return statements within a function body,
9531/// compute the variables that are subject to the named return value
9532/// optimization.
9533///
9534/// Each of the variables that is subject to the named return value
9535/// optimization will be marked as NRVO variables in the AST, and any
9536/// return statement that has a marked NRVO variable as its NRVO candidate can
9537/// use the named return value optimization.
9538///
9539/// This function applies a very simplistic algorithm for NRVO: if every return
9540/// statement in the function has the same NRVO candidate, that candidate is
9541/// the NRVO variable.
9542///
9543/// FIXME: Employ a smarter algorithm that accounts for multiple return
9544/// statements and the lifetimes of the NRVO candidates. We should be able to
9545/// find a maximal set of NRVO variables.
9546void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
9547  ReturnStmt **Returns = Scope->Returns.data();
9548
9549  const VarDecl *NRVOCandidate = 0;
9550  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
9551    if (!Returns[I]->getNRVOCandidate())
9552      return;
9553
9554    if (!NRVOCandidate)
9555      NRVOCandidate = Returns[I]->getNRVOCandidate();
9556    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9557      return;
9558  }
9559
9560  if (NRVOCandidate)
9561    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9562}
9563
9564bool Sema::canSkipFunctionBody(Decl *D) {
9565  if (!Consumer.shouldSkipFunctionBody(D))
9566    return false;
9567
9568  if (isa<ObjCMethodDecl>(D))
9569    return true;
9570
9571  FunctionDecl *FD = 0;
9572  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9573    FD = FTD->getTemplatedDecl();
9574  else
9575    FD = cast<FunctionDecl>(D);
9576
9577  // We cannot skip the body of a function (or function template) which is
9578  // constexpr, since we may need to evaluate its body in order to parse the
9579  // rest of the file.
9580  // We cannot skip the body of a function with an undeduced return type,
9581  // because any callers of that function need to know the type.
9582  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9583}
9584
9585Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9586  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9587    FD->setHasSkippedBody();
9588  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9589    MD->setHasSkippedBody();
9590  return ActOnFinishFunctionBody(Decl, 0);
9591}
9592
9593Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9594  return ActOnFinishFunctionBody(D, BodyArg, false);
9595}
9596
9597Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9598                                    bool IsInstantiation) {
9599  FunctionDecl *FD = 0;
9600  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9601  if (FunTmpl)
9602    FD = FunTmpl->getTemplatedDecl();
9603  else
9604    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9605
9606  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9607  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9608
9609  if (FD) {
9610    FD->setBody(Body);
9611
9612    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9613        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9614      // If the function has a deduced result type but contains no 'return'
9615      // statements, the result type as written must be exactly 'auto', and
9616      // the deduced result type is 'void'.
9617      if (!FD->getResultType()->getAs<AutoType>()) {
9618        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9619          << FD->getResultType();
9620        FD->setInvalidDecl();
9621      } else {
9622        // Substitute 'void' for the 'auto' in the type.
9623        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9624            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9625        Context.adjustDeducedFunctionResultType(
9626            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9627      }
9628    }
9629
9630    // The only way to be included in UndefinedButUsed is if there is an
9631    // ODR use before the definition. Avoid the expensive map lookup if this
9632    // is the first declaration.
9633    if (!FD->isFirstDecl() && FD->getPreviousDecl()->isUsed()) {
9634      if (!FD->isExternallyVisible())
9635        UndefinedButUsed.erase(FD);
9636      else if (FD->isInlined() &&
9637               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9638               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9639        UndefinedButUsed.erase(FD);
9640    }
9641
9642    // If the function implicitly returns zero (like 'main') or is naked,
9643    // don't complain about missing return statements.
9644    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9645      WP.disableCheckFallThrough();
9646
9647    // MSVC permits the use of pure specifier (=0) on function definition,
9648    // defined at class scope, warn about this non standard construct.
9649    if (getLangOpts().MicrosoftExt && FD->isPure() && FD->isCanonicalDecl())
9650      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9651
9652    if (!FD->isInvalidDecl()) {
9653      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9654      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9655                                             FD->getResultType(), FD);
9656
9657      // If this is a constructor, we need a vtable.
9658      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9659        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9660
9661      // Try to apply the named return value optimization. We have to check
9662      // if we can do this here because lambdas keep return statements around
9663      // to deduce an implicit return type.
9664      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9665          !FD->isDependentContext())
9666        computeNRVO(Body, getCurFunction());
9667    }
9668
9669    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9670           "Function parsing confused");
9671  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9672    assert(MD == getCurMethodDecl() && "Method parsing confused");
9673    MD->setBody(Body);
9674    if (!MD->isInvalidDecl()) {
9675      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9676      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9677                                             MD->getResultType(), MD);
9678
9679      if (Body)
9680        computeNRVO(Body, getCurFunction());
9681    }
9682    if (getCurFunction()->ObjCShouldCallSuper) {
9683      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9684        << MD->getSelector().getAsString();
9685      getCurFunction()->ObjCShouldCallSuper = false;
9686    }
9687  } else {
9688    return 0;
9689  }
9690
9691  assert(!getCurFunction()->ObjCShouldCallSuper &&
9692         "This should only be set for ObjC methods, which should have been "
9693         "handled in the block above.");
9694
9695  // Verify and clean out per-function state.
9696  if (Body) {
9697    // C++ constructors that have function-try-blocks can't have return
9698    // statements in the handlers of that block. (C++ [except.handle]p14)
9699    // Verify this.
9700    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9701      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9702
9703    // Verify that gotos and switch cases don't jump into scopes illegally.
9704    if (getCurFunction()->NeedsScopeChecking() &&
9705        !dcl->isInvalidDecl() &&
9706        !hasAnyUnrecoverableErrorsInThisFunction() &&
9707        !PP.isCodeCompletionEnabled())
9708      DiagnoseInvalidJumps(Body);
9709
9710    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9711      if (!Destructor->getParent()->isDependentType())
9712        CheckDestructor(Destructor);
9713
9714      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9715                                             Destructor->getParent());
9716    }
9717
9718    // If any errors have occurred, clear out any temporaries that may have
9719    // been leftover. This ensures that these temporaries won't be picked up for
9720    // deletion in some later function.
9721    if (PP.getDiagnostics().hasErrorOccurred() ||
9722        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9723      DiscardCleanupsInEvaluationContext();
9724    }
9725    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9726        !isa<FunctionTemplateDecl>(dcl)) {
9727      // Since the body is valid, issue any analysis-based warnings that are
9728      // enabled.
9729      ActivePolicy = &WP;
9730    }
9731
9732    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9733        (!CheckConstexprFunctionDecl(FD) ||
9734         !CheckConstexprFunctionBody(FD, Body)))
9735      FD->setInvalidDecl();
9736
9737    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9738    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9739    assert(MaybeODRUseExprs.empty() &&
9740           "Leftover expressions for odr-use checking");
9741  }
9742
9743  if (!IsInstantiation)
9744    PopDeclContext();
9745
9746  PopFunctionScopeInfo(ActivePolicy, dcl);
9747
9748  // If any errors have occurred, clear out any temporaries that may have
9749  // been leftover. This ensures that these temporaries won't be picked up for
9750  // deletion in some later function.
9751  if (getDiagnostics().hasErrorOccurred()) {
9752    DiscardCleanupsInEvaluationContext();
9753  }
9754
9755  return dcl;
9756}
9757
9758
9759/// When we finish delayed parsing of an attribute, we must attach it to the
9760/// relevant Decl.
9761void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9762                                       ParsedAttributes &Attrs) {
9763  // Always attach attributes to the underlying decl.
9764  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9765    D = TD->getTemplatedDecl();
9766  ProcessDeclAttributeList(S, D, Attrs.getList());
9767
9768  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9769    if (Method->isStatic())
9770      checkThisInStaticMemberFunctionAttributes(Method);
9771}
9772
9773
9774/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9775/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9776NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9777                                          IdentifierInfo &II, Scope *S) {
9778  // Before we produce a declaration for an implicitly defined
9779  // function, see whether there was a locally-scoped declaration of
9780  // this name as a function or variable. If so, use that
9781  // (non-visible) declaration, and complain about it.
9782  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9783    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9784    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9785    return ExternCPrev;
9786  }
9787
9788  // Extension in C99.  Legal in C90, but warn about it.
9789  unsigned diag_id;
9790  if (II.getName().startswith("__builtin_"))
9791    diag_id = diag::warn_builtin_unknown;
9792  else if (getLangOpts().C99)
9793    diag_id = diag::ext_implicit_function_decl;
9794  else
9795    diag_id = diag::warn_implicit_function_decl;
9796  Diag(Loc, diag_id) << &II;
9797
9798  // Because typo correction is expensive, only do it if the implicit
9799  // function declaration is going to be treated as an error.
9800  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9801    TypoCorrection Corrected;
9802    DeclFilterCCC<FunctionDecl> Validator;
9803    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9804                                      LookupOrdinaryName, S, 0, Validator)))
9805      diagnoseTypo(Corrected, PDiag(diag::note_function_suggestion),
9806                   /*ErrorRecovery*/false);
9807  }
9808
9809  // Set a Declarator for the implicit definition: int foo();
9810  const char *Dummy;
9811  AttributeFactory attrFactory;
9812  DeclSpec DS(attrFactory);
9813  unsigned DiagID;
9814  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9815  (void)Error; // Silence warning.
9816  assert(!Error && "Error setting up implicit decl!");
9817  SourceLocation NoLoc;
9818  Declarator D(DS, Declarator::BlockContext);
9819  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9820                                             /*IsAmbiguous=*/false,
9821                                             /*RParenLoc=*/NoLoc,
9822                                             /*ArgInfo=*/0,
9823                                             /*NumArgs=*/0,
9824                                             /*EllipsisLoc=*/NoLoc,
9825                                             /*RParenLoc=*/NoLoc,
9826                                             /*TypeQuals=*/0,
9827                                             /*RefQualifierIsLvalueRef=*/true,
9828                                             /*RefQualifierLoc=*/NoLoc,
9829                                             /*ConstQualifierLoc=*/NoLoc,
9830                                             /*VolatileQualifierLoc=*/NoLoc,
9831                                             /*MutableLoc=*/NoLoc,
9832                                             EST_None,
9833                                             /*ESpecLoc=*/NoLoc,
9834                                             /*Exceptions=*/0,
9835                                             /*ExceptionRanges=*/0,
9836                                             /*NumExceptions=*/0,
9837                                             /*NoexceptExpr=*/0,
9838                                             Loc, Loc, D),
9839                DS.getAttributes(),
9840                SourceLocation());
9841  D.SetIdentifier(&II, Loc);
9842
9843  // Insert this function into translation-unit scope.
9844
9845  DeclContext *PrevDC = CurContext;
9846  CurContext = Context.getTranslationUnitDecl();
9847
9848  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9849  FD->setImplicit();
9850
9851  CurContext = PrevDC;
9852
9853  AddKnownFunctionAttributes(FD);
9854
9855  return FD;
9856}
9857
9858/// \brief Adds any function attributes that we know a priori based on
9859/// the declaration of this function.
9860///
9861/// These attributes can apply both to implicitly-declared builtins
9862/// (like __builtin___printf_chk) or to library-declared functions
9863/// like NSLog or printf.
9864///
9865/// We need to check for duplicate attributes both here and where user-written
9866/// attributes are applied to declarations.
9867void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9868  if (FD->isInvalidDecl())
9869    return;
9870
9871  // If this is a built-in function, map its builtin attributes to
9872  // actual attributes.
9873  if (unsigned BuiltinID = FD->getBuiltinID()) {
9874    // Handle printf-formatting attributes.
9875    unsigned FormatIdx;
9876    bool HasVAListArg;
9877    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9878      if (!FD->getAttr<FormatAttr>()) {
9879        const char *fmt = "printf";
9880        unsigned int NumParams = FD->getNumParams();
9881        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9882            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9883          fmt = "NSString";
9884        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9885                                               &Context.Idents.get(fmt),
9886                                               FormatIdx+1,
9887                                               HasVAListArg ? 0 : FormatIdx+2));
9888      }
9889    }
9890    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9891                                             HasVAListArg)) {
9892     if (!FD->getAttr<FormatAttr>())
9893       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9894                                              &Context.Idents.get("scanf"),
9895                                              FormatIdx+1,
9896                                              HasVAListArg ? 0 : FormatIdx+2));
9897    }
9898
9899    // Mark const if we don't care about errno and that is the only
9900    // thing preventing the function from being const. This allows
9901    // IRgen to use LLVM intrinsics for such functions.
9902    if (!getLangOpts().MathErrno &&
9903        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9904      if (!FD->getAttr<ConstAttr>())
9905        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9906    }
9907
9908    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9909        !FD->getAttr<ReturnsTwiceAttr>())
9910      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9911    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9912      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9913    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9914      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9915  }
9916
9917  IdentifierInfo *Name = FD->getIdentifier();
9918  if (!Name)
9919    return;
9920  if ((!getLangOpts().CPlusPlus &&
9921       FD->getDeclContext()->isTranslationUnit()) ||
9922      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9923       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9924       LinkageSpecDecl::lang_c)) {
9925    // Okay: this could be a libc/libm/Objective-C function we know
9926    // about.
9927  } else
9928    return;
9929
9930  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9931    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9932    // target-specific builtins, perhaps?
9933    if (!FD->getAttr<FormatAttr>())
9934      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9935                                             &Context.Idents.get("printf"), 2,
9936                                             Name->isStr("vasprintf") ? 0 : 3));
9937  }
9938
9939  if (Name->isStr("__CFStringMakeConstantString")) {
9940    // We already have a __builtin___CFStringMakeConstantString,
9941    // but builds that use -fno-constant-cfstrings don't go through that.
9942    if (!FD->getAttr<FormatArgAttr>())
9943      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9944  }
9945}
9946
9947TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9948                                    TypeSourceInfo *TInfo) {
9949  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9950  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9951
9952  if (!TInfo) {
9953    assert(D.isInvalidType() && "no declarator info for valid type");
9954    TInfo = Context.getTrivialTypeSourceInfo(T);
9955  }
9956
9957  // Scope manipulation handled by caller.
9958  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9959                                           D.getLocStart(),
9960                                           D.getIdentifierLoc(),
9961                                           D.getIdentifier(),
9962                                           TInfo);
9963
9964  // Bail out immediately if we have an invalid declaration.
9965  if (D.isInvalidType()) {
9966    NewTD->setInvalidDecl();
9967    return NewTD;
9968  }
9969
9970  if (D.getDeclSpec().isModulePrivateSpecified()) {
9971    if (CurContext->isFunctionOrMethod())
9972      Diag(NewTD->getLocation(), diag::err_module_private_local)
9973        << 2 << NewTD->getDeclName()
9974        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9975        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9976    else
9977      NewTD->setModulePrivate();
9978  }
9979
9980  // C++ [dcl.typedef]p8:
9981  //   If the typedef declaration defines an unnamed class (or
9982  //   enum), the first typedef-name declared by the declaration
9983  //   to be that class type (or enum type) is used to denote the
9984  //   class type (or enum type) for linkage purposes only.
9985  // We need to check whether the type was declared in the declaration.
9986  switch (D.getDeclSpec().getTypeSpecType()) {
9987  case TST_enum:
9988  case TST_struct:
9989  case TST_interface:
9990  case TST_union:
9991  case TST_class: {
9992    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9993
9994    // Do nothing if the tag is not anonymous or already has an
9995    // associated typedef (from an earlier typedef in this decl group).
9996    if (tagFromDeclSpec->getIdentifier()) break;
9997    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9998
9999    // A well-formed anonymous tag must always be a TUK_Definition.
10000    assert(tagFromDeclSpec->isThisDeclarationADefinition());
10001
10002    // The type must match the tag exactly;  no qualifiers allowed.
10003    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
10004      break;
10005
10006    // Otherwise, set this is the anon-decl typedef for the tag.
10007    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
10008    break;
10009  }
10010
10011  default:
10012    break;
10013  }
10014
10015  return NewTD;
10016}
10017
10018
10019/// \brief Check that this is a valid underlying type for an enum declaration.
10020bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
10021  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
10022  QualType T = TI->getType();
10023
10024  if (T->isDependentType())
10025    return false;
10026
10027  if (const BuiltinType *BT = T->getAs<BuiltinType>())
10028    if (BT->isInteger())
10029      return false;
10030
10031  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
10032  return true;
10033}
10034
10035/// Check whether this is a valid redeclaration of a previous enumeration.
10036/// \return true if the redeclaration was invalid.
10037bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
10038                                  QualType EnumUnderlyingTy,
10039                                  const EnumDecl *Prev) {
10040  bool IsFixed = !EnumUnderlyingTy.isNull();
10041
10042  if (IsScoped != Prev->isScoped()) {
10043    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
10044      << Prev->isScoped();
10045    Diag(Prev->getLocation(), diag::note_previous_use);
10046    return true;
10047  }
10048
10049  if (IsFixed && Prev->isFixed()) {
10050    if (!EnumUnderlyingTy->isDependentType() &&
10051        !Prev->getIntegerType()->isDependentType() &&
10052        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
10053                                        Prev->getIntegerType())) {
10054      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
10055        << EnumUnderlyingTy << Prev->getIntegerType();
10056      Diag(Prev->getLocation(), diag::note_previous_use);
10057      return true;
10058    }
10059  } else if (IsFixed != Prev->isFixed()) {
10060    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
10061      << Prev->isFixed();
10062    Diag(Prev->getLocation(), diag::note_previous_use);
10063    return true;
10064  }
10065
10066  return false;
10067}
10068
10069/// \brief Get diagnostic %select index for tag kind for
10070/// redeclaration diagnostic message.
10071/// WARNING: Indexes apply to particular diagnostics only!
10072///
10073/// \returns diagnostic %select index.
10074static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
10075  switch (Tag) {
10076  case TTK_Struct: return 0;
10077  case TTK_Interface: return 1;
10078  case TTK_Class:  return 2;
10079  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
10080  }
10081}
10082
10083/// \brief Determine if tag kind is a class-key compatible with
10084/// class for redeclaration (class, struct, or __interface).
10085///
10086/// \returns true iff the tag kind is compatible.
10087static bool isClassCompatTagKind(TagTypeKind Tag)
10088{
10089  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
10090}
10091
10092/// \brief Determine whether a tag with a given kind is acceptable
10093/// as a redeclaration of the given tag declaration.
10094///
10095/// \returns true if the new tag kind is acceptable, false otherwise.
10096bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
10097                                        TagTypeKind NewTag, bool isDefinition,
10098                                        SourceLocation NewTagLoc,
10099                                        const IdentifierInfo &Name) {
10100  // C++ [dcl.type.elab]p3:
10101  //   The class-key or enum keyword present in the
10102  //   elaborated-type-specifier shall agree in kind with the
10103  //   declaration to which the name in the elaborated-type-specifier
10104  //   refers. This rule also applies to the form of
10105  //   elaborated-type-specifier that declares a class-name or
10106  //   friend class since it can be construed as referring to the
10107  //   definition of the class. Thus, in any
10108  //   elaborated-type-specifier, the enum keyword shall be used to
10109  //   refer to an enumeration (7.2), the union class-key shall be
10110  //   used to refer to a union (clause 9), and either the class or
10111  //   struct class-key shall be used to refer to a class (clause 9)
10112  //   declared using the class or struct class-key.
10113  TagTypeKind OldTag = Previous->getTagKind();
10114  if (!isDefinition || !isClassCompatTagKind(NewTag))
10115    if (OldTag == NewTag)
10116      return true;
10117
10118  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
10119    // Warn about the struct/class tag mismatch.
10120    bool isTemplate = false;
10121    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
10122      isTemplate = Record->getDescribedClassTemplate();
10123
10124    if (!ActiveTemplateInstantiations.empty()) {
10125      // In a template instantiation, do not offer fix-its for tag mismatches
10126      // since they usually mess up the template instead of fixing the problem.
10127      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10128        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10129        << getRedeclDiagFromTagKind(OldTag);
10130      return true;
10131    }
10132
10133    if (isDefinition) {
10134      // On definitions, check previous tags and issue a fix-it for each
10135      // one that doesn't match the current tag.
10136      if (Previous->getDefinition()) {
10137        // Don't suggest fix-its for redefinitions.
10138        return true;
10139      }
10140
10141      bool previousMismatch = false;
10142      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
10143           E(Previous->redecls_end()); I != E; ++I) {
10144        if (I->getTagKind() != NewTag) {
10145          if (!previousMismatch) {
10146            previousMismatch = true;
10147            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
10148              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10149              << getRedeclDiagFromTagKind(I->getTagKind());
10150          }
10151          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
10152            << getRedeclDiagFromTagKind(NewTag)
10153            << FixItHint::CreateReplacement(I->getInnerLocStart(),
10154                 TypeWithKeyword::getTagTypeKindName(NewTag));
10155        }
10156      }
10157      return true;
10158    }
10159
10160    // Check for a previous definition.  If current tag and definition
10161    // are same type, do nothing.  If no definition, but disagree with
10162    // with previous tag type, give a warning, but no fix-it.
10163    const TagDecl *Redecl = Previous->getDefinition() ?
10164                            Previous->getDefinition() : Previous;
10165    if (Redecl->getTagKind() == NewTag) {
10166      return true;
10167    }
10168
10169    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
10170      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
10171      << getRedeclDiagFromTagKind(OldTag);
10172    Diag(Redecl->getLocation(), diag::note_previous_use);
10173
10174    // If there is a previous defintion, suggest a fix-it.
10175    if (Previous->getDefinition()) {
10176        Diag(NewTagLoc, diag::note_struct_class_suggestion)
10177          << getRedeclDiagFromTagKind(Redecl->getTagKind())
10178          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
10179               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
10180    }
10181
10182    return true;
10183  }
10184  return false;
10185}
10186
10187/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
10188/// former case, Name will be non-null.  In the later case, Name will be null.
10189/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
10190/// reference/declaration/definition of a tag.
10191Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
10192                     SourceLocation KWLoc, CXXScopeSpec &SS,
10193                     IdentifierInfo *Name, SourceLocation NameLoc,
10194                     AttributeList *Attr, AccessSpecifier AS,
10195                     SourceLocation ModulePrivateLoc,
10196                     MultiTemplateParamsArg TemplateParameterLists,
10197                     bool &OwnedDecl, bool &IsDependent,
10198                     SourceLocation ScopedEnumKWLoc,
10199                     bool ScopedEnumUsesClassTag,
10200                     TypeResult UnderlyingType) {
10201  // If this is not a definition, it must have a name.
10202  IdentifierInfo *OrigName = Name;
10203  assert((Name != 0 || TUK == TUK_Definition) &&
10204         "Nameless record must be a definition!");
10205  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
10206
10207  OwnedDecl = false;
10208  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
10209  bool ScopedEnum = ScopedEnumKWLoc.isValid();
10210
10211  // FIXME: Check explicit specializations more carefully.
10212  bool isExplicitSpecialization = false;
10213  bool Invalid = false;
10214
10215  // We only need to do this matching if we have template parameters
10216  // or a scope specifier, which also conveniently avoids this work
10217  // for non-C++ cases.
10218  if (TemplateParameterLists.size() > 0 ||
10219      (SS.isNotEmpty() && TUK != TUK_Reference)) {
10220    if (TemplateParameterList *TemplateParams =
10221            MatchTemplateParametersToScopeSpecifier(
10222                KWLoc, NameLoc, SS, TemplateParameterLists, TUK == TUK_Friend,
10223                isExplicitSpecialization, Invalid)) {
10224      if (Kind == TTK_Enum) {
10225        Diag(KWLoc, diag::err_enum_template);
10226        return 0;
10227      }
10228
10229      if (TemplateParams->size() > 0) {
10230        // This is a declaration or definition of a class template (which may
10231        // be a member of another template).
10232
10233        if (Invalid)
10234          return 0;
10235
10236        OwnedDecl = false;
10237        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
10238                                               SS, Name, NameLoc, Attr,
10239                                               TemplateParams, AS,
10240                                               ModulePrivateLoc,
10241                                               TemplateParameterLists.size()-1,
10242                                               TemplateParameterLists.data());
10243        return Result.get();
10244      } else {
10245        // The "template<>" header is extraneous.
10246        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
10247          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
10248        isExplicitSpecialization = true;
10249      }
10250    }
10251  }
10252
10253  // Figure out the underlying type if this a enum declaration. We need to do
10254  // this early, because it's needed to detect if this is an incompatible
10255  // redeclaration.
10256  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
10257
10258  if (Kind == TTK_Enum) {
10259    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
10260      // No underlying type explicitly specified, or we failed to parse the
10261      // type, default to int.
10262      EnumUnderlying = Context.IntTy.getTypePtr();
10263    else if (UnderlyingType.get()) {
10264      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
10265      // integral type; any cv-qualification is ignored.
10266      TypeSourceInfo *TI = 0;
10267      GetTypeFromParser(UnderlyingType.get(), &TI);
10268      EnumUnderlying = TI;
10269
10270      if (CheckEnumUnderlyingType(TI))
10271        // Recover by falling back to int.
10272        EnumUnderlying = Context.IntTy.getTypePtr();
10273
10274      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
10275                                          UPPC_FixedUnderlyingType))
10276        EnumUnderlying = Context.IntTy.getTypePtr();
10277
10278    } else if (getLangOpts().MicrosoftMode)
10279      // Microsoft enums are always of int type.
10280      EnumUnderlying = Context.IntTy.getTypePtr();
10281  }
10282
10283  DeclContext *SearchDC = CurContext;
10284  DeclContext *DC = CurContext;
10285  bool isStdBadAlloc = false;
10286
10287  RedeclarationKind Redecl = ForRedeclaration;
10288  if (TUK == TUK_Friend || TUK == TUK_Reference)
10289    Redecl = NotForRedeclaration;
10290
10291  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
10292  bool FriendSawTagOutsideEnclosingNamespace = false;
10293  if (Name && SS.isNotEmpty()) {
10294    // We have a nested-name tag ('struct foo::bar').
10295
10296    // Check for invalid 'foo::'.
10297    if (SS.isInvalid()) {
10298      Name = 0;
10299      goto CreateNewDecl;
10300    }
10301
10302    // If this is a friend or a reference to a class in a dependent
10303    // context, don't try to make a decl for it.
10304    if (TUK == TUK_Friend || TUK == TUK_Reference) {
10305      DC = computeDeclContext(SS, false);
10306      if (!DC) {
10307        IsDependent = true;
10308        return 0;
10309      }
10310    } else {
10311      DC = computeDeclContext(SS, true);
10312      if (!DC) {
10313        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
10314          << SS.getRange();
10315        return 0;
10316      }
10317    }
10318
10319    if (RequireCompleteDeclContext(SS, DC))
10320      return 0;
10321
10322    SearchDC = DC;
10323    // Look-up name inside 'foo::'.
10324    LookupQualifiedName(Previous, DC);
10325
10326    if (Previous.isAmbiguous())
10327      return 0;
10328
10329    if (Previous.empty()) {
10330      // Name lookup did not find anything. However, if the
10331      // nested-name-specifier refers to the current instantiation,
10332      // and that current instantiation has any dependent base
10333      // classes, we might find something at instantiation time: treat
10334      // this as a dependent elaborated-type-specifier.
10335      // But this only makes any sense for reference-like lookups.
10336      if (Previous.wasNotFoundInCurrentInstantiation() &&
10337          (TUK == TUK_Reference || TUK == TUK_Friend)) {
10338        IsDependent = true;
10339        return 0;
10340      }
10341
10342      // A tag 'foo::bar' must already exist.
10343      Diag(NameLoc, diag::err_not_tag_in_scope)
10344        << Kind << Name << DC << SS.getRange();
10345      Name = 0;
10346      Invalid = true;
10347      goto CreateNewDecl;
10348    }
10349  } else if (Name) {
10350    // If this is a named struct, check to see if there was a previous forward
10351    // declaration or definition.
10352    // FIXME: We're looking into outer scopes here, even when we
10353    // shouldn't be. Doing so can result in ambiguities that we
10354    // shouldn't be diagnosing.
10355    LookupName(Previous, S);
10356
10357    // When declaring or defining a tag, ignore ambiguities introduced
10358    // by types using'ed into this scope.
10359    if (Previous.isAmbiguous() &&
10360        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
10361      LookupResult::Filter F = Previous.makeFilter();
10362      while (F.hasNext()) {
10363        NamedDecl *ND = F.next();
10364        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
10365          F.erase();
10366      }
10367      F.done();
10368    }
10369
10370    // C++11 [namespace.memdef]p3:
10371    //   If the name in a friend declaration is neither qualified nor
10372    //   a template-id and the declaration is a function or an
10373    //   elaborated-type-specifier, the lookup to determine whether
10374    //   the entity has been previously declared shall not consider
10375    //   any scopes outside the innermost enclosing namespace.
10376    //
10377    // Does it matter that this should be by scope instead of by
10378    // semantic context?
10379    if (!Previous.empty() && TUK == TUK_Friend) {
10380      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
10381      LookupResult::Filter F = Previous.makeFilter();
10382      while (F.hasNext()) {
10383        NamedDecl *ND = F.next();
10384        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
10385        if (DC->isFileContext() &&
10386            !EnclosingNS->Encloses(ND->getDeclContext())) {
10387          F.erase();
10388          FriendSawTagOutsideEnclosingNamespace = true;
10389        }
10390      }
10391      F.done();
10392    }
10393
10394    // Note:  there used to be some attempt at recovery here.
10395    if (Previous.isAmbiguous())
10396      return 0;
10397
10398    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
10399      // FIXME: This makes sure that we ignore the contexts associated
10400      // with C structs, unions, and enums when looking for a matching
10401      // tag declaration or definition. See the similar lookup tweak
10402      // in Sema::LookupName; is there a better way to deal with this?
10403      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
10404        SearchDC = SearchDC->getParent();
10405    }
10406  } else if (S->isFunctionPrototypeScope()) {
10407    // If this is an enum declaration in function prototype scope, set its
10408    // initial context to the translation unit.
10409    // FIXME: [citation needed]
10410    SearchDC = Context.getTranslationUnitDecl();
10411  }
10412
10413  if (Previous.isSingleResult() &&
10414      Previous.getFoundDecl()->isTemplateParameter()) {
10415    // Maybe we will complain about the shadowed template parameter.
10416    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
10417    // Just pretend that we didn't see the previous declaration.
10418    Previous.clear();
10419  }
10420
10421  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
10422      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
10423    // This is a declaration of or a reference to "std::bad_alloc".
10424    isStdBadAlloc = true;
10425
10426    if (Previous.empty() && StdBadAlloc) {
10427      // std::bad_alloc has been implicitly declared (but made invisible to
10428      // name lookup). Fill in this implicit declaration as the previous
10429      // declaration, so that the declarations get chained appropriately.
10430      Previous.addDecl(getStdBadAlloc());
10431    }
10432  }
10433
10434  // If we didn't find a previous declaration, and this is a reference
10435  // (or friend reference), move to the correct scope.  In C++, we
10436  // also need to do a redeclaration lookup there, just in case
10437  // there's a shadow friend decl.
10438  if (Name && Previous.empty() &&
10439      (TUK == TUK_Reference || TUK == TUK_Friend)) {
10440    if (Invalid) goto CreateNewDecl;
10441    assert(SS.isEmpty());
10442
10443    if (TUK == TUK_Reference) {
10444      // C++ [basic.scope.pdecl]p5:
10445      //   -- for an elaborated-type-specifier of the form
10446      //
10447      //          class-key identifier
10448      //
10449      //      if the elaborated-type-specifier is used in the
10450      //      decl-specifier-seq or parameter-declaration-clause of a
10451      //      function defined in namespace scope, the identifier is
10452      //      declared as a class-name in the namespace that contains
10453      //      the declaration; otherwise, except as a friend
10454      //      declaration, the identifier is declared in the smallest
10455      //      non-class, non-function-prototype scope that contains the
10456      //      declaration.
10457      //
10458      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
10459      // C structs and unions.
10460      //
10461      // It is an error in C++ to declare (rather than define) an enum
10462      // type, including via an elaborated type specifier.  We'll
10463      // diagnose that later; for now, declare the enum in the same
10464      // scope as we would have picked for any other tag type.
10465      //
10466      // GNU C also supports this behavior as part of its incomplete
10467      // enum types extension, while GNU C++ does not.
10468      //
10469      // Find the context where we'll be declaring the tag.
10470      // FIXME: We would like to maintain the current DeclContext as the
10471      // lexical context,
10472      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
10473        SearchDC = SearchDC->getParent();
10474
10475      // Find the scope where we'll be declaring the tag.
10476      while (S->isClassScope() ||
10477             (getLangOpts().CPlusPlus &&
10478              S->isFunctionPrototypeScope()) ||
10479             ((S->getFlags() & Scope::DeclScope) == 0) ||
10480             (S->getEntity() && S->getEntity()->isTransparentContext()))
10481        S = S->getParent();
10482    } else {
10483      assert(TUK == TUK_Friend);
10484      // C++ [namespace.memdef]p3:
10485      //   If a friend declaration in a non-local class first declares a
10486      //   class or function, the friend class or function is a member of
10487      //   the innermost enclosing namespace.
10488      SearchDC = SearchDC->getEnclosingNamespaceContext();
10489    }
10490
10491    // In C++, we need to do a redeclaration lookup to properly
10492    // diagnose some problems.
10493    if (getLangOpts().CPlusPlus) {
10494      Previous.setRedeclarationKind(ForRedeclaration);
10495      LookupQualifiedName(Previous, SearchDC);
10496    }
10497  }
10498
10499  if (!Previous.empty()) {
10500    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
10501
10502    // It's okay to have a tag decl in the same scope as a typedef
10503    // which hides a tag decl in the same scope.  Finding this
10504    // insanity with a redeclaration lookup can only actually happen
10505    // in C++.
10506    //
10507    // This is also okay for elaborated-type-specifiers, which is
10508    // technically forbidden by the current standard but which is
10509    // okay according to the likely resolution of an open issue;
10510    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
10511    if (getLangOpts().CPlusPlus) {
10512      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10513        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
10514          TagDecl *Tag = TT->getDecl();
10515          if (Tag->getDeclName() == Name &&
10516              Tag->getDeclContext()->getRedeclContext()
10517                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
10518            PrevDecl = Tag;
10519            Previous.clear();
10520            Previous.addDecl(Tag);
10521            Previous.resolveKind();
10522          }
10523        }
10524      }
10525    }
10526
10527    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
10528      // If this is a use of a previous tag, or if the tag is already declared
10529      // in the same scope (so that the definition/declaration completes or
10530      // rementions the tag), reuse the decl.
10531      if (TUK == TUK_Reference || TUK == TUK_Friend ||
10532          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
10533        // Make sure that this wasn't declared as an enum and now used as a
10534        // struct or something similar.
10535        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
10536                                          TUK == TUK_Definition, KWLoc,
10537                                          *Name)) {
10538          bool SafeToContinue
10539            = (PrevTagDecl->getTagKind() != TTK_Enum &&
10540               Kind != TTK_Enum);
10541          if (SafeToContinue)
10542            Diag(KWLoc, diag::err_use_with_wrong_tag)
10543              << Name
10544              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10545                                              PrevTagDecl->getKindName());
10546          else
10547            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10548          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10549
10550          if (SafeToContinue)
10551            Kind = PrevTagDecl->getTagKind();
10552          else {
10553            // Recover by making this an anonymous redefinition.
10554            Name = 0;
10555            Previous.clear();
10556            Invalid = true;
10557          }
10558        }
10559
10560        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10561          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10562
10563          // If this is an elaborated-type-specifier for a scoped enumeration,
10564          // the 'class' keyword is not necessary and not permitted.
10565          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10566            if (ScopedEnum)
10567              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10568                << PrevEnum->isScoped()
10569                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10570            return PrevTagDecl;
10571          }
10572
10573          QualType EnumUnderlyingTy;
10574          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10575            EnumUnderlyingTy = TI->getType();
10576          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10577            EnumUnderlyingTy = QualType(T, 0);
10578
10579          // All conflicts with previous declarations are recovered by
10580          // returning the previous declaration, unless this is a definition,
10581          // in which case we want the caller to bail out.
10582          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10583                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10584            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10585        }
10586
10587        // C++11 [class.mem]p1:
10588        //   A member shall not be declared twice in the member-specification,
10589        //   except that a nested class or member class template can be declared
10590        //   and then later defined.
10591        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10592            S->isDeclScope(PrevDecl)) {
10593          Diag(NameLoc, diag::ext_member_redeclared);
10594          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10595        }
10596
10597        if (!Invalid) {
10598          // If this is a use, just return the declaration we found.
10599
10600          // FIXME: In the future, return a variant or some other clue
10601          // for the consumer of this Decl to know it doesn't own it.
10602          // For our current ASTs this shouldn't be a problem, but will
10603          // need to be changed with DeclGroups.
10604          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10605               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10606            return PrevTagDecl;
10607
10608          // Diagnose attempts to redefine a tag.
10609          if (TUK == TUK_Definition) {
10610            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10611              // If we're defining a specialization and the previous definition
10612              // is from an implicit instantiation, don't emit an error
10613              // here; we'll catch this in the general case below.
10614              bool IsExplicitSpecializationAfterInstantiation = false;
10615              if (isExplicitSpecialization) {
10616                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10617                  IsExplicitSpecializationAfterInstantiation =
10618                    RD->getTemplateSpecializationKind() !=
10619                    TSK_ExplicitSpecialization;
10620                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10621                  IsExplicitSpecializationAfterInstantiation =
10622                    ED->getTemplateSpecializationKind() !=
10623                    TSK_ExplicitSpecialization;
10624              }
10625
10626              if (!IsExplicitSpecializationAfterInstantiation) {
10627                // A redeclaration in function prototype scope in C isn't
10628                // visible elsewhere, so merely issue a warning.
10629                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10630                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10631                else
10632                  Diag(NameLoc, diag::err_redefinition) << Name;
10633                Diag(Def->getLocation(), diag::note_previous_definition);
10634                // If this is a redefinition, recover by making this
10635                // struct be anonymous, which will make any later
10636                // references get the previous definition.
10637                Name = 0;
10638                Previous.clear();
10639                Invalid = true;
10640              }
10641            } else {
10642              // If the type is currently being defined, complain
10643              // about a nested redefinition.
10644              const TagType *Tag
10645                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10646              if (Tag->isBeingDefined()) {
10647                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10648                Diag(PrevTagDecl->getLocation(),
10649                     diag::note_previous_definition);
10650                Name = 0;
10651                Previous.clear();
10652                Invalid = true;
10653              }
10654            }
10655
10656            // Okay, this is definition of a previously declared or referenced
10657            // tag PrevDecl. We're going to create a new Decl for it.
10658          }
10659        }
10660        // If we get here we have (another) forward declaration or we
10661        // have a definition.  Just create a new decl.
10662
10663      } else {
10664        // If we get here, this is a definition of a new tag type in a nested
10665        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10666        // new decl/type.  We set PrevDecl to NULL so that the entities
10667        // have distinct types.
10668        Previous.clear();
10669      }
10670      // If we get here, we're going to create a new Decl. If PrevDecl
10671      // is non-NULL, it's a definition of the tag declared by
10672      // PrevDecl. If it's NULL, we have a new definition.
10673
10674
10675    // Otherwise, PrevDecl is not a tag, but was found with tag
10676    // lookup.  This is only actually possible in C++, where a few
10677    // things like templates still live in the tag namespace.
10678    } else {
10679      // Use a better diagnostic if an elaborated-type-specifier
10680      // found the wrong kind of type on the first
10681      // (non-redeclaration) lookup.
10682      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10683          !Previous.isForRedeclaration()) {
10684        unsigned Kind = 0;
10685        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10686        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10687        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10688        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10689        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10690        Invalid = true;
10691
10692      // Otherwise, only diagnose if the declaration is in scope.
10693      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10694                                isExplicitSpecialization)) {
10695        // do nothing
10696
10697      // Diagnose implicit declarations introduced by elaborated types.
10698      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10699        unsigned Kind = 0;
10700        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10701        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10702        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10703        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10704        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10705        Invalid = true;
10706
10707      // Otherwise it's a declaration.  Call out a particularly common
10708      // case here.
10709      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10710        unsigned Kind = 0;
10711        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10712        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10713          << Name << Kind << TND->getUnderlyingType();
10714        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10715        Invalid = true;
10716
10717      // Otherwise, diagnose.
10718      } else {
10719        // The tag name clashes with something else in the target scope,
10720        // issue an error and recover by making this tag be anonymous.
10721        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10722        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10723        Name = 0;
10724        Invalid = true;
10725      }
10726
10727      // The existing declaration isn't relevant to us; we're in a
10728      // new scope, so clear out the previous declaration.
10729      Previous.clear();
10730    }
10731  }
10732
10733CreateNewDecl:
10734
10735  TagDecl *PrevDecl = 0;
10736  if (Previous.isSingleResult())
10737    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10738
10739  // If there is an identifier, use the location of the identifier as the
10740  // location of the decl, otherwise use the location of the struct/union
10741  // keyword.
10742  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10743
10744  // Otherwise, create a new declaration. If there is a previous
10745  // declaration of the same entity, the two will be linked via
10746  // PrevDecl.
10747  TagDecl *New;
10748
10749  bool IsForwardReference = false;
10750  if (Kind == TTK_Enum) {
10751    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10752    // enum X { A, B, C } D;    D should chain to X.
10753    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10754                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10755                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10756    // If this is an undefined enum, warn.
10757    if (TUK != TUK_Definition && !Invalid) {
10758      TagDecl *Def;
10759      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10760          cast<EnumDecl>(New)->isFixed()) {
10761        // C++0x: 7.2p2: opaque-enum-declaration.
10762        // Conflicts are diagnosed above. Do nothing.
10763      }
10764      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10765        Diag(Loc, diag::ext_forward_ref_enum_def)
10766          << New;
10767        Diag(Def->getLocation(), diag::note_previous_definition);
10768      } else {
10769        unsigned DiagID = diag::ext_forward_ref_enum;
10770        if (getLangOpts().MicrosoftMode)
10771          DiagID = diag::ext_ms_forward_ref_enum;
10772        else if (getLangOpts().CPlusPlus)
10773          DiagID = diag::err_forward_ref_enum;
10774        Diag(Loc, DiagID);
10775
10776        // If this is a forward-declared reference to an enumeration, make a
10777        // note of it; we won't actually be introducing the declaration into
10778        // the declaration context.
10779        if (TUK == TUK_Reference)
10780          IsForwardReference = true;
10781      }
10782    }
10783
10784    if (EnumUnderlying) {
10785      EnumDecl *ED = cast<EnumDecl>(New);
10786      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10787        ED->setIntegerTypeSourceInfo(TI);
10788      else
10789        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10790      ED->setPromotionType(ED->getIntegerType());
10791    }
10792
10793  } else {
10794    // struct/union/class
10795
10796    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10797    // struct X { int A; } D;    D should chain to X.
10798    if (getLangOpts().CPlusPlus) {
10799      // FIXME: Look for a way to use RecordDecl for simple structs.
10800      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10801                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10802
10803      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10804        StdBadAlloc = cast<CXXRecordDecl>(New);
10805    } else
10806      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10807                               cast_or_null<RecordDecl>(PrevDecl));
10808  }
10809
10810  // Maybe add qualifier info.
10811  if (SS.isNotEmpty()) {
10812    if (SS.isSet()) {
10813      // If this is either a declaration or a definition, check the
10814      // nested-name-specifier against the current context. We don't do this
10815      // for explicit specializations, because they have similar checking
10816      // (with more specific diagnostics) in the call to
10817      // CheckMemberSpecialization, below.
10818      if (!isExplicitSpecialization &&
10819          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10820          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10821        Invalid = true;
10822
10823      New->setQualifierInfo(SS.getWithLocInContext(Context));
10824      if (TemplateParameterLists.size() > 0) {
10825        New->setTemplateParameterListsInfo(Context,
10826                                           TemplateParameterLists.size(),
10827                                           TemplateParameterLists.data());
10828      }
10829    }
10830    else
10831      Invalid = true;
10832  }
10833
10834  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10835    // Add alignment attributes if necessary; these attributes are checked when
10836    // the ASTContext lays out the structure.
10837    //
10838    // It is important for implementing the correct semantics that this
10839    // happen here (in act on tag decl). The #pragma pack stack is
10840    // maintained as a result of parser callbacks which can occur at
10841    // many points during the parsing of a struct declaration (because
10842    // the #pragma tokens are effectively skipped over during the
10843    // parsing of the struct).
10844    if (TUK == TUK_Definition) {
10845      AddAlignmentAttributesForRecord(RD);
10846      AddMsStructLayoutForRecord(RD);
10847    }
10848  }
10849
10850  if (ModulePrivateLoc.isValid()) {
10851    if (isExplicitSpecialization)
10852      Diag(New->getLocation(), diag::err_module_private_specialization)
10853        << 2
10854        << FixItHint::CreateRemoval(ModulePrivateLoc);
10855    // __module_private__ does not apply to local classes. However, we only
10856    // diagnose this as an error when the declaration specifiers are
10857    // freestanding. Here, we just ignore the __module_private__.
10858    else if (!SearchDC->isFunctionOrMethod())
10859      New->setModulePrivate();
10860  }
10861
10862  // If this is a specialization of a member class (of a class template),
10863  // check the specialization.
10864  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10865    Invalid = true;
10866
10867  if (Invalid)
10868    New->setInvalidDecl();
10869
10870  if (Attr)
10871    ProcessDeclAttributeList(S, New, Attr);
10872
10873  // If we're declaring or defining a tag in function prototype scope
10874  // in C, note that this type can only be used within the function.
10875  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10876    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10877
10878  // Set the lexical context. If the tag has a C++ scope specifier, the
10879  // lexical context will be different from the semantic context.
10880  New->setLexicalDeclContext(CurContext);
10881
10882  // Mark this as a friend decl if applicable.
10883  // In Microsoft mode, a friend declaration also acts as a forward
10884  // declaration so we always pass true to setObjectOfFriendDecl to make
10885  // the tag name visible.
10886  if (TUK == TUK_Friend)
10887    New->setObjectOfFriendDecl(!FriendSawTagOutsideEnclosingNamespace &&
10888                               getLangOpts().MicrosoftExt);
10889
10890  // Set the access specifier.
10891  if (!Invalid && SearchDC->isRecord())
10892    SetMemberAccessSpecifier(New, PrevDecl, AS);
10893
10894  if (TUK == TUK_Definition)
10895    New->startDefinition();
10896
10897  // If this has an identifier, add it to the scope stack.
10898  if (TUK == TUK_Friend) {
10899    // We might be replacing an existing declaration in the lookup tables;
10900    // if so, borrow its access specifier.
10901    if (PrevDecl)
10902      New->setAccess(PrevDecl->getAccess());
10903
10904    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10905    DC->makeDeclVisibleInContext(New);
10906    if (Name) // can be null along some error paths
10907      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10908        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10909  } else if (Name) {
10910    S = getNonFieldDeclScope(S);
10911    PushOnScopeChains(New, S, !IsForwardReference);
10912    if (IsForwardReference)
10913      SearchDC->makeDeclVisibleInContext(New);
10914
10915  } else {
10916    CurContext->addDecl(New);
10917  }
10918
10919  // If this is the C FILE type, notify the AST context.
10920  if (IdentifierInfo *II = New->getIdentifier())
10921    if (!New->isInvalidDecl() &&
10922        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10923        II->isStr("FILE"))
10924      Context.setFILEDecl(New);
10925
10926  // If we were in function prototype scope (and not in C++ mode), add this
10927  // tag to the list of decls to inject into the function definition scope.
10928  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10929      InFunctionDeclarator && Name)
10930    DeclsInPrototypeScope.push_back(New);
10931
10932  if (PrevDecl)
10933    mergeDeclAttributes(New, PrevDecl);
10934
10935  // If there's a #pragma GCC visibility in scope, set the visibility of this
10936  // record.
10937  AddPushedVisibilityAttribute(New);
10938
10939  OwnedDecl = true;
10940  // In C++, don't return an invalid declaration. We can't recover well from
10941  // the cases where we make the type anonymous.
10942  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10943}
10944
10945void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10946  AdjustDeclIfTemplate(TagD);
10947  TagDecl *Tag = cast<TagDecl>(TagD);
10948
10949  // Enter the tag context.
10950  PushDeclContext(S, Tag);
10951
10952  ActOnDocumentableDecl(TagD);
10953
10954  // If there's a #pragma GCC visibility in scope, set the visibility of this
10955  // record.
10956  AddPushedVisibilityAttribute(Tag);
10957}
10958
10959Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10960  assert(isa<ObjCContainerDecl>(IDecl) &&
10961         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10962  DeclContext *OCD = cast<DeclContext>(IDecl);
10963  assert(getContainingDC(OCD) == CurContext &&
10964      "The next DeclContext should be lexically contained in the current one.");
10965  CurContext = OCD;
10966  return IDecl;
10967}
10968
10969void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10970                                           SourceLocation FinalLoc,
10971                                           bool IsFinalSpelledSealed,
10972                                           SourceLocation LBraceLoc) {
10973  AdjustDeclIfTemplate(TagD);
10974  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10975
10976  FieldCollector->StartClass();
10977
10978  if (!Record->getIdentifier())
10979    return;
10980
10981  if (FinalLoc.isValid())
10982    Record->addAttr(new (Context)
10983                    FinalAttr(FinalLoc, Context, IsFinalSpelledSealed));
10984
10985  // C++ [class]p2:
10986  //   [...] The class-name is also inserted into the scope of the
10987  //   class itself; this is known as the injected-class-name. For
10988  //   purposes of access checking, the injected-class-name is treated
10989  //   as if it were a public member name.
10990  CXXRecordDecl *InjectedClassName
10991    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10992                            Record->getLocStart(), Record->getLocation(),
10993                            Record->getIdentifier(),
10994                            /*PrevDecl=*/0,
10995                            /*DelayTypeCreation=*/true);
10996  Context.getTypeDeclType(InjectedClassName, Record);
10997  InjectedClassName->setImplicit();
10998  InjectedClassName->setAccess(AS_public);
10999  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
11000      InjectedClassName->setDescribedClassTemplate(Template);
11001  PushOnScopeChains(InjectedClassName, S);
11002  assert(InjectedClassName->isInjectedClassName() &&
11003         "Broken injected-class-name");
11004}
11005
11006void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
11007                                    SourceLocation RBraceLoc) {
11008  AdjustDeclIfTemplate(TagD);
11009  TagDecl *Tag = cast<TagDecl>(TagD);
11010  Tag->setRBraceLoc(RBraceLoc);
11011
11012  // Make sure we "complete" the definition even it is invalid.
11013  if (Tag->isBeingDefined()) {
11014    assert(Tag->isInvalidDecl() && "We should already have completed it");
11015    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11016      RD->completeDefinition();
11017  }
11018
11019  if (isa<CXXRecordDecl>(Tag))
11020    FieldCollector->FinishClass();
11021
11022  // Exit this scope of this tag's definition.
11023  PopDeclContext();
11024
11025  if (getCurLexicalContext()->isObjCContainer() &&
11026      Tag->getDeclContext()->isFileContext())
11027    Tag->setTopLevelDeclInObjCContainer();
11028
11029  // Notify the consumer that we've defined a tag.
11030  if (!Tag->isInvalidDecl())
11031    Consumer.HandleTagDeclDefinition(Tag);
11032}
11033
11034void Sema::ActOnObjCContainerFinishDefinition() {
11035  // Exit this scope of this interface definition.
11036  PopDeclContext();
11037}
11038
11039void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
11040  assert(DC == CurContext && "Mismatch of container contexts");
11041  OriginalLexicalContext = DC;
11042  ActOnObjCContainerFinishDefinition();
11043}
11044
11045void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
11046  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
11047  OriginalLexicalContext = 0;
11048}
11049
11050void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
11051  AdjustDeclIfTemplate(TagD);
11052  TagDecl *Tag = cast<TagDecl>(TagD);
11053  Tag->setInvalidDecl();
11054
11055  // Make sure we "complete" the definition even it is invalid.
11056  if (Tag->isBeingDefined()) {
11057    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
11058      RD->completeDefinition();
11059  }
11060
11061  // We're undoing ActOnTagStartDefinition here, not
11062  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
11063  // the FieldCollector.
11064
11065  PopDeclContext();
11066}
11067
11068// Note that FieldName may be null for anonymous bitfields.
11069ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
11070                                IdentifierInfo *FieldName,
11071                                QualType FieldTy, bool IsMsStruct,
11072                                Expr *BitWidth, bool *ZeroWidth) {
11073  // Default to true; that shouldn't confuse checks for emptiness
11074  if (ZeroWidth)
11075    *ZeroWidth = true;
11076
11077  // C99 6.7.2.1p4 - verify the field type.
11078  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
11079  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
11080    // Handle incomplete types with specific error.
11081    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
11082      return ExprError();
11083    if (FieldName)
11084      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
11085        << FieldName << FieldTy << BitWidth->getSourceRange();
11086    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
11087      << FieldTy << BitWidth->getSourceRange();
11088  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
11089                                             UPPC_BitFieldWidth))
11090    return ExprError();
11091
11092  // If the bit-width is type- or value-dependent, don't try to check
11093  // it now.
11094  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
11095    return Owned(BitWidth);
11096
11097  llvm::APSInt Value;
11098  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
11099  if (ICE.isInvalid())
11100    return ICE;
11101  BitWidth = ICE.take();
11102
11103  if (Value != 0 && ZeroWidth)
11104    *ZeroWidth = false;
11105
11106  // Zero-width bitfield is ok for anonymous field.
11107  if (Value == 0 && FieldName)
11108    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
11109
11110  if (Value.isSigned() && Value.isNegative()) {
11111    if (FieldName)
11112      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
11113               << FieldName << Value.toString(10);
11114    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
11115      << Value.toString(10);
11116  }
11117
11118  if (!FieldTy->isDependentType()) {
11119    uint64_t TypeSize = Context.getTypeSize(FieldTy);
11120    if (Value.getZExtValue() > TypeSize) {
11121      if (!getLangOpts().CPlusPlus || IsMsStruct) {
11122        if (FieldName)
11123          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
11124            << FieldName << (unsigned)Value.getZExtValue()
11125            << (unsigned)TypeSize;
11126
11127        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
11128          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11129      }
11130
11131      if (FieldName)
11132        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
11133          << FieldName << (unsigned)Value.getZExtValue()
11134          << (unsigned)TypeSize;
11135      else
11136        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
11137          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
11138    }
11139  }
11140
11141  return Owned(BitWidth);
11142}
11143
11144/// ActOnField - Each field of a C struct/union is passed into this in order
11145/// to create a FieldDecl object for it.
11146Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
11147                       Declarator &D, Expr *BitfieldWidth) {
11148  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
11149                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
11150                               /*InitStyle=*/ICIS_NoInit, AS_public);
11151  return Res;
11152}
11153
11154/// HandleField - Analyze a field of a C struct or a C++ data member.
11155///
11156FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
11157                             SourceLocation DeclStart,
11158                             Declarator &D, Expr *BitWidth,
11159                             InClassInitStyle InitStyle,
11160                             AccessSpecifier AS) {
11161  IdentifierInfo *II = D.getIdentifier();
11162  SourceLocation Loc = DeclStart;
11163  if (II) Loc = D.getIdentifierLoc();
11164
11165  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11166  QualType T = TInfo->getType();
11167  if (getLangOpts().CPlusPlus) {
11168    CheckExtraCXXDefaultArguments(D);
11169
11170    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
11171                                        UPPC_DataMemberType)) {
11172      D.setInvalidType();
11173      T = Context.IntTy;
11174      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
11175    }
11176  }
11177
11178  // TR 18037 does not allow fields to be declared with address spaces.
11179  if (T.getQualifiers().hasAddressSpace()) {
11180    Diag(Loc, diag::err_field_with_address_space);
11181    D.setInvalidType();
11182  }
11183
11184  // OpenCL 1.2 spec, s6.9 r:
11185  // The event type cannot be used to declare a structure or union field.
11186  if (LangOpts.OpenCL && T->isEventT()) {
11187    Diag(Loc, diag::err_event_t_struct_field);
11188    D.setInvalidType();
11189  }
11190
11191  DiagnoseFunctionSpecifiers(D.getDeclSpec());
11192
11193  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
11194    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
11195         diag::err_invalid_thread)
11196      << DeclSpec::getSpecifierName(TSCS);
11197
11198  // Check to see if this name was declared as a member previously
11199  NamedDecl *PrevDecl = 0;
11200  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
11201  LookupName(Previous, S);
11202  switch (Previous.getResultKind()) {
11203    case LookupResult::Found:
11204    case LookupResult::FoundUnresolvedValue:
11205      PrevDecl = Previous.getAsSingle<NamedDecl>();
11206      break;
11207
11208    case LookupResult::FoundOverloaded:
11209      PrevDecl = Previous.getRepresentativeDecl();
11210      break;
11211
11212    case LookupResult::NotFound:
11213    case LookupResult::NotFoundInCurrentInstantiation:
11214    case LookupResult::Ambiguous:
11215      break;
11216  }
11217  Previous.suppressDiagnostics();
11218
11219  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11220    // Maybe we will complain about the shadowed template parameter.
11221    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
11222    // Just pretend that we didn't see the previous declaration.
11223    PrevDecl = 0;
11224  }
11225
11226  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
11227    PrevDecl = 0;
11228
11229  bool Mutable
11230    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
11231  SourceLocation TSSL = D.getLocStart();
11232  FieldDecl *NewFD
11233    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
11234                     TSSL, AS, PrevDecl, &D);
11235
11236  if (NewFD->isInvalidDecl())
11237    Record->setInvalidDecl();
11238
11239  if (D.getDeclSpec().isModulePrivateSpecified())
11240    NewFD->setModulePrivate();
11241
11242  if (NewFD->isInvalidDecl() && PrevDecl) {
11243    // Don't introduce NewFD into scope; there's already something
11244    // with the same name in the same scope.
11245  } else if (II) {
11246    PushOnScopeChains(NewFD, S);
11247  } else
11248    Record->addDecl(NewFD);
11249
11250  return NewFD;
11251}
11252
11253/// \brief Build a new FieldDecl and check its well-formedness.
11254///
11255/// This routine builds a new FieldDecl given the fields name, type,
11256/// record, etc. \p PrevDecl should refer to any previous declaration
11257/// with the same name and in the same scope as the field to be
11258/// created.
11259///
11260/// \returns a new FieldDecl.
11261///
11262/// \todo The Declarator argument is a hack. It will be removed once
11263FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
11264                                TypeSourceInfo *TInfo,
11265                                RecordDecl *Record, SourceLocation Loc,
11266                                bool Mutable, Expr *BitWidth,
11267                                InClassInitStyle InitStyle,
11268                                SourceLocation TSSL,
11269                                AccessSpecifier AS, NamedDecl *PrevDecl,
11270                                Declarator *D) {
11271  IdentifierInfo *II = Name.getAsIdentifierInfo();
11272  bool InvalidDecl = false;
11273  if (D) InvalidDecl = D->isInvalidType();
11274
11275  // If we receive a broken type, recover by assuming 'int' and
11276  // marking this declaration as invalid.
11277  if (T.isNull()) {
11278    InvalidDecl = true;
11279    T = Context.IntTy;
11280  }
11281
11282  QualType EltTy = Context.getBaseElementType(T);
11283  if (!EltTy->isDependentType()) {
11284    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
11285      // Fields of incomplete type force their record to be invalid.
11286      Record->setInvalidDecl();
11287      InvalidDecl = true;
11288    } else {
11289      NamedDecl *Def;
11290      EltTy->isIncompleteType(&Def);
11291      if (Def && Def->isInvalidDecl()) {
11292        Record->setInvalidDecl();
11293        InvalidDecl = true;
11294      }
11295    }
11296  }
11297
11298  // OpenCL v1.2 s6.9.c: bitfields are not supported.
11299  if (BitWidth && getLangOpts().OpenCL) {
11300    Diag(Loc, diag::err_opencl_bitfields);
11301    InvalidDecl = true;
11302  }
11303
11304  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11305  // than a variably modified type.
11306  if (!InvalidDecl && T->isVariablyModifiedType()) {
11307    bool SizeIsNegative;
11308    llvm::APSInt Oversized;
11309
11310    TypeSourceInfo *FixedTInfo =
11311      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
11312                                                    SizeIsNegative,
11313                                                    Oversized);
11314    if (FixedTInfo) {
11315      Diag(Loc, diag::warn_illegal_constant_array_size);
11316      TInfo = FixedTInfo;
11317      T = FixedTInfo->getType();
11318    } else {
11319      if (SizeIsNegative)
11320        Diag(Loc, diag::err_typecheck_negative_array_size);
11321      else if (Oversized.getBoolValue())
11322        Diag(Loc, diag::err_array_too_large)
11323          << Oversized.toString(10);
11324      else
11325        Diag(Loc, diag::err_typecheck_field_variable_size);
11326      InvalidDecl = true;
11327    }
11328  }
11329
11330  // Fields can not have abstract class types
11331  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
11332                                             diag::err_abstract_type_in_decl,
11333                                             AbstractFieldType))
11334    InvalidDecl = true;
11335
11336  bool ZeroWidth = false;
11337  // If this is declared as a bit-field, check the bit-field.
11338  if (!InvalidDecl && BitWidth) {
11339    BitWidth = VerifyBitField(Loc, II, T, Record->isMsStruct(Context), BitWidth,
11340                              &ZeroWidth).take();
11341    if (!BitWidth) {
11342      InvalidDecl = true;
11343      BitWidth = 0;
11344      ZeroWidth = false;
11345    }
11346  }
11347
11348  // Check that 'mutable' is consistent with the type of the declaration.
11349  if (!InvalidDecl && Mutable) {
11350    unsigned DiagID = 0;
11351    if (T->isReferenceType())
11352      DiagID = diag::err_mutable_reference;
11353    else if (T.isConstQualified())
11354      DiagID = diag::err_mutable_const;
11355
11356    if (DiagID) {
11357      SourceLocation ErrLoc = Loc;
11358      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
11359        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
11360      Diag(ErrLoc, DiagID);
11361      Mutable = false;
11362      InvalidDecl = true;
11363    }
11364  }
11365
11366  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
11367                                       BitWidth, Mutable, InitStyle);
11368  if (InvalidDecl)
11369    NewFD->setInvalidDecl();
11370
11371  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
11372    Diag(Loc, diag::err_duplicate_member) << II;
11373    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11374    NewFD->setInvalidDecl();
11375  }
11376
11377  if (!InvalidDecl && getLangOpts().CPlusPlus) {
11378    if (Record->isUnion()) {
11379      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11380        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
11381        if (RDecl->getDefinition()) {
11382          // C++ [class.union]p1: An object of a class with a non-trivial
11383          // constructor, a non-trivial copy constructor, a non-trivial
11384          // destructor, or a non-trivial copy assignment operator
11385          // cannot be a member of a union, nor can an array of such
11386          // objects.
11387          if (CheckNontrivialField(NewFD))
11388            NewFD->setInvalidDecl();
11389        }
11390      }
11391
11392      // C++ [class.union]p1: If a union contains a member of reference type,
11393      // the program is ill-formed, except when compiling with MSVC extensions
11394      // enabled.
11395      if (EltTy->isReferenceType()) {
11396        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
11397                                    diag::ext_union_member_of_reference_type :
11398                                    diag::err_union_member_of_reference_type)
11399          << NewFD->getDeclName() << EltTy;
11400        if (!getLangOpts().MicrosoftExt)
11401          NewFD->setInvalidDecl();
11402      }
11403    }
11404  }
11405
11406  // FIXME: We need to pass in the attributes given an AST
11407  // representation, not a parser representation.
11408  if (D) {
11409    // FIXME: The current scope is almost... but not entirely... correct here.
11410    ProcessDeclAttributes(getCurScope(), NewFD, *D);
11411
11412    if (NewFD->hasAttrs())
11413      CheckAlignasUnderalignment(NewFD);
11414  }
11415
11416  // In auto-retain/release, infer strong retension for fields of
11417  // retainable type.
11418  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
11419    NewFD->setInvalidDecl();
11420
11421  if (T.isObjCGCWeak())
11422    Diag(Loc, diag::warn_attribute_weak_on_field);
11423
11424  NewFD->setAccess(AS);
11425  return NewFD;
11426}
11427
11428bool Sema::CheckNontrivialField(FieldDecl *FD) {
11429  assert(FD);
11430  assert(getLangOpts().CPlusPlus && "valid check only for C++");
11431
11432  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
11433    return false;
11434
11435  QualType EltTy = Context.getBaseElementType(FD->getType());
11436  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
11437    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
11438    if (RDecl->getDefinition()) {
11439      // We check for copy constructors before constructors
11440      // because otherwise we'll never get complaints about
11441      // copy constructors.
11442
11443      CXXSpecialMember member = CXXInvalid;
11444      // We're required to check for any non-trivial constructors. Since the
11445      // implicit default constructor is suppressed if there are any
11446      // user-declared constructors, we just need to check that there is a
11447      // trivial default constructor and a trivial copy constructor. (We don't
11448      // worry about move constructors here, since this is a C++98 check.)
11449      if (RDecl->hasNonTrivialCopyConstructor())
11450        member = CXXCopyConstructor;
11451      else if (!RDecl->hasTrivialDefaultConstructor())
11452        member = CXXDefaultConstructor;
11453      else if (RDecl->hasNonTrivialCopyAssignment())
11454        member = CXXCopyAssignment;
11455      else if (RDecl->hasNonTrivialDestructor())
11456        member = CXXDestructor;
11457
11458      if (member != CXXInvalid) {
11459        if (!getLangOpts().CPlusPlus11 &&
11460            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
11461          // Objective-C++ ARC: it is an error to have a non-trivial field of
11462          // a union. However, system headers in Objective-C programs
11463          // occasionally have Objective-C lifetime objects within unions,
11464          // and rather than cause the program to fail, we make those
11465          // members unavailable.
11466          SourceLocation Loc = FD->getLocation();
11467          if (getSourceManager().isInSystemHeader(Loc)) {
11468            if (!FD->hasAttr<UnavailableAttr>())
11469              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
11470                                  "this system field has retaining ownership"));
11471            return false;
11472          }
11473        }
11474
11475        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
11476               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
11477               diag::err_illegal_union_or_anon_struct_member)
11478          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
11479        DiagnoseNontrivial(RDecl, member);
11480        return !getLangOpts().CPlusPlus11;
11481      }
11482    }
11483  }
11484
11485  return false;
11486}
11487
11488/// TranslateIvarVisibility - Translate visibility from a token ID to an
11489///  AST enum value.
11490static ObjCIvarDecl::AccessControl
11491TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
11492  switch (ivarVisibility) {
11493  default: llvm_unreachable("Unknown visitibility kind");
11494  case tok::objc_private: return ObjCIvarDecl::Private;
11495  case tok::objc_public: return ObjCIvarDecl::Public;
11496  case tok::objc_protected: return ObjCIvarDecl::Protected;
11497  case tok::objc_package: return ObjCIvarDecl::Package;
11498  }
11499}
11500
11501/// ActOnIvar - Each ivar field of an objective-c class is passed into this
11502/// in order to create an IvarDecl object for it.
11503Decl *Sema::ActOnIvar(Scope *S,
11504                                SourceLocation DeclStart,
11505                                Declarator &D, Expr *BitfieldWidth,
11506                                tok::ObjCKeywordKind Visibility) {
11507
11508  IdentifierInfo *II = D.getIdentifier();
11509  Expr *BitWidth = (Expr*)BitfieldWidth;
11510  SourceLocation Loc = DeclStart;
11511  if (II) Loc = D.getIdentifierLoc();
11512
11513  // FIXME: Unnamed fields can be handled in various different ways, for
11514  // example, unnamed unions inject all members into the struct namespace!
11515
11516  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
11517  QualType T = TInfo->getType();
11518
11519  if (BitWidth) {
11520    // 6.7.2.1p3, 6.7.2.1p4
11521    BitWidth = VerifyBitField(Loc, II, T, /*IsMsStruct*/false, BitWidth).take();
11522    if (!BitWidth)
11523      D.setInvalidType();
11524  } else {
11525    // Not a bitfield.
11526
11527    // validate II.
11528
11529  }
11530  if (T->isReferenceType()) {
11531    Diag(Loc, diag::err_ivar_reference_type);
11532    D.setInvalidType();
11533  }
11534  // C99 6.7.2.1p8: A member of a structure or union may have any type other
11535  // than a variably modified type.
11536  else if (T->isVariablyModifiedType()) {
11537    Diag(Loc, diag::err_typecheck_ivar_variable_size);
11538    D.setInvalidType();
11539  }
11540
11541  // Get the visibility (access control) for this ivar.
11542  ObjCIvarDecl::AccessControl ac =
11543    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
11544                                        : ObjCIvarDecl::None;
11545  // Must set ivar's DeclContext to its enclosing interface.
11546  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11547  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11548    return 0;
11549  ObjCContainerDecl *EnclosingContext;
11550  if (ObjCImplementationDecl *IMPDecl =
11551      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11552    if (LangOpts.ObjCRuntime.isFragile()) {
11553    // Case of ivar declared in an implementation. Context is that of its class.
11554      EnclosingContext = IMPDecl->getClassInterface();
11555      assert(EnclosingContext && "Implementation has no class interface!");
11556    }
11557    else
11558      EnclosingContext = EnclosingDecl;
11559  } else {
11560    if (ObjCCategoryDecl *CDecl =
11561        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11562      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11563        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11564        return 0;
11565      }
11566    }
11567    EnclosingContext = EnclosingDecl;
11568  }
11569
11570  // Construct the decl.
11571  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11572                                             DeclStart, Loc, II, T,
11573                                             TInfo, ac, (Expr *)BitfieldWidth);
11574
11575  if (II) {
11576    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11577                                           ForRedeclaration);
11578    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11579        && !isa<TagDecl>(PrevDecl)) {
11580      Diag(Loc, diag::err_duplicate_member) << II;
11581      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11582      NewID->setInvalidDecl();
11583    }
11584  }
11585
11586  // Process attributes attached to the ivar.
11587  ProcessDeclAttributes(S, NewID, D);
11588
11589  if (D.isInvalidType())
11590    NewID->setInvalidDecl();
11591
11592  // In ARC, infer 'retaining' for ivars of retainable type.
11593  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11594    NewID->setInvalidDecl();
11595
11596  if (D.getDeclSpec().isModulePrivateSpecified())
11597    NewID->setModulePrivate();
11598
11599  if (II) {
11600    // FIXME: When interfaces are DeclContexts, we'll need to add
11601    // these to the interface.
11602    S->AddDecl(NewID);
11603    IdResolver.AddDecl(NewID);
11604  }
11605
11606  if (LangOpts.ObjCRuntime.isNonFragile() &&
11607      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11608    Diag(Loc, diag::warn_ivars_in_interface);
11609
11610  return NewID;
11611}
11612
11613/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11614/// class and class extensions. For every class \@interface and class
11615/// extension \@interface, if the last ivar is a bitfield of any type,
11616/// then add an implicit `char :0` ivar to the end of that interface.
11617void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11618                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11619  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11620    return;
11621
11622  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11623  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11624
11625  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11626    return;
11627  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11628  if (!ID) {
11629    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11630      if (!CD->IsClassExtension())
11631        return;
11632    }
11633    // No need to add this to end of @implementation.
11634    else
11635      return;
11636  }
11637  // All conditions are met. Add a new bitfield to the tail end of ivars.
11638  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11639  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11640
11641  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11642                              DeclLoc, DeclLoc, 0,
11643                              Context.CharTy,
11644                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11645                                                               DeclLoc),
11646                              ObjCIvarDecl::Private, BW,
11647                              true);
11648  AllIvarDecls.push_back(Ivar);
11649}
11650
11651void Sema::ActOnFields(Scope *S, SourceLocation RecLoc, Decl *EnclosingDecl,
11652                       ArrayRef<Decl *> Fields, SourceLocation LBrac,
11653                       SourceLocation RBrac, AttributeList *Attr) {
11654  assert(EnclosingDecl && "missing record or interface decl");
11655
11656  // If this is an Objective-C @implementation or category and we have
11657  // new fields here we should reset the layout of the interface since
11658  // it will now change.
11659  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11660    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11661    switch (DC->getKind()) {
11662    default: break;
11663    case Decl::ObjCCategory:
11664      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11665      break;
11666    case Decl::ObjCImplementation:
11667      Context.
11668        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11669      break;
11670    }
11671  }
11672
11673  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11674
11675  // Start counting up the number of named members; make sure to include
11676  // members of anonymous structs and unions in the total.
11677  unsigned NumNamedMembers = 0;
11678  if (Record) {
11679    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11680                                   e = Record->decls_end(); i != e; i++) {
11681      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11682        if (IFD->getDeclName())
11683          ++NumNamedMembers;
11684    }
11685  }
11686
11687  // Verify that all the fields are okay.
11688  SmallVector<FieldDecl*, 32> RecFields;
11689
11690  bool ARCErrReported = false;
11691  for (ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11692       i != end; ++i) {
11693    FieldDecl *FD = cast<FieldDecl>(*i);
11694
11695    // Get the type for the field.
11696    const Type *FDTy = FD->getType().getTypePtr();
11697
11698    if (!FD->isAnonymousStructOrUnion()) {
11699      // Remember all fields written by the user.
11700      RecFields.push_back(FD);
11701    }
11702
11703    // If the field is already invalid for some reason, don't emit more
11704    // diagnostics about it.
11705    if (FD->isInvalidDecl()) {
11706      EnclosingDecl->setInvalidDecl();
11707      continue;
11708    }
11709
11710    // C99 6.7.2.1p2:
11711    //   A structure or union shall not contain a member with
11712    //   incomplete or function type (hence, a structure shall not
11713    //   contain an instance of itself, but may contain a pointer to
11714    //   an instance of itself), except that the last member of a
11715    //   structure with more than one named member may have incomplete
11716    //   array type; such a structure (and any union containing,
11717    //   possibly recursively, a member that is such a structure)
11718    //   shall not be a member of a structure or an element of an
11719    //   array.
11720    if (FDTy->isFunctionType()) {
11721      // Field declared as a function.
11722      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11723        << FD->getDeclName();
11724      FD->setInvalidDecl();
11725      EnclosingDecl->setInvalidDecl();
11726      continue;
11727    } else if (FDTy->isIncompleteArrayType() && Record &&
11728               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11729                ((getLangOpts().MicrosoftExt ||
11730                  getLangOpts().CPlusPlus) &&
11731                 (i + 1 == Fields.end() || Record->isUnion())))) {
11732      // Flexible array member.
11733      // Microsoft and g++ is more permissive regarding flexible array.
11734      // It will accept flexible array in union and also
11735      // as the sole element of a struct/class.
11736      if (getLangOpts().MicrosoftExt) {
11737        if (Record->isUnion())
11738          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11739            << FD->getDeclName();
11740        else if (Fields.size() == 1)
11741          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11742            << FD->getDeclName() << Record->getTagKind();
11743      } else if (getLangOpts().CPlusPlus) {
11744        if (Record->isUnion())
11745          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11746            << FD->getDeclName();
11747        else if (Fields.size() == 1)
11748          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11749            << FD->getDeclName() << Record->getTagKind();
11750      } else if (!getLangOpts().C99) {
11751      if (Record->isUnion())
11752        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11753          << FD->getDeclName();
11754      else
11755        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11756          << FD->getDeclName() << Record->getTagKind();
11757      } else if (NumNamedMembers < 1) {
11758        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11759          << FD->getDeclName();
11760        FD->setInvalidDecl();
11761        EnclosingDecl->setInvalidDecl();
11762        continue;
11763      }
11764      if (!FD->getType()->isDependentType() &&
11765          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11766        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11767          << FD->getDeclName() << FD->getType();
11768        FD->setInvalidDecl();
11769        EnclosingDecl->setInvalidDecl();
11770        continue;
11771      }
11772      // Okay, we have a legal flexible array member at the end of the struct.
11773      if (Record)
11774        Record->setHasFlexibleArrayMember(true);
11775    } else if (!FDTy->isDependentType() &&
11776               RequireCompleteType(FD->getLocation(), FD->getType(),
11777                                   diag::err_field_incomplete)) {
11778      // Incomplete type
11779      FD->setInvalidDecl();
11780      EnclosingDecl->setInvalidDecl();
11781      continue;
11782    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11783      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11784        // If this is a member of a union, then entire union becomes "flexible".
11785        if (Record && Record->isUnion()) {
11786          Record->setHasFlexibleArrayMember(true);
11787        } else {
11788          // If this is a struct/class and this is not the last element, reject
11789          // it.  Note that GCC supports variable sized arrays in the middle of
11790          // structures.
11791          if (i + 1 != Fields.end())
11792            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11793              << FD->getDeclName() << FD->getType();
11794          else {
11795            // We support flexible arrays at the end of structs in
11796            // other structs as an extension.
11797            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11798              << FD->getDeclName();
11799            if (Record)
11800              Record->setHasFlexibleArrayMember(true);
11801          }
11802        }
11803      }
11804      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11805          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11806                                 diag::err_abstract_type_in_decl,
11807                                 AbstractIvarType)) {
11808        // Ivars can not have abstract class types
11809        FD->setInvalidDecl();
11810      }
11811      if (Record && FDTTy->getDecl()->hasObjectMember())
11812        Record->setHasObjectMember(true);
11813      if (Record && FDTTy->getDecl()->hasVolatileMember())
11814        Record->setHasVolatileMember(true);
11815    } else if (FDTy->isObjCObjectType()) {
11816      /// A field cannot be an Objective-c object
11817      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11818        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11819      QualType T = Context.getObjCObjectPointerType(FD->getType());
11820      FD->setType(T);
11821    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11822               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11823      // It's an error in ARC if a field has lifetime.
11824      // We don't want to report this in a system header, though,
11825      // so we just make the field unavailable.
11826      // FIXME: that's really not sufficient; we need to make the type
11827      // itself invalid to, say, initialize or copy.
11828      QualType T = FD->getType();
11829      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11830      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11831        SourceLocation loc = FD->getLocation();
11832        if (getSourceManager().isInSystemHeader(loc)) {
11833          if (!FD->hasAttr<UnavailableAttr>()) {
11834            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11835                              "this system field has retaining ownership"));
11836          }
11837        } else {
11838          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11839            << T->isBlockPointerType() << Record->getTagKind();
11840        }
11841        ARCErrReported = true;
11842      }
11843    } else if (getLangOpts().ObjC1 &&
11844               getLangOpts().getGC() != LangOptions::NonGC &&
11845               Record && !Record->hasObjectMember()) {
11846      if (FD->getType()->isObjCObjectPointerType() ||
11847          FD->getType().isObjCGCStrong())
11848        Record->setHasObjectMember(true);
11849      else if (Context.getAsArrayType(FD->getType())) {
11850        QualType BaseType = Context.getBaseElementType(FD->getType());
11851        if (BaseType->isRecordType() &&
11852            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11853          Record->setHasObjectMember(true);
11854        else if (BaseType->isObjCObjectPointerType() ||
11855                 BaseType.isObjCGCStrong())
11856               Record->setHasObjectMember(true);
11857      }
11858    }
11859    if (Record && FD->getType().isVolatileQualified())
11860      Record->setHasVolatileMember(true);
11861    // Keep track of the number of named members.
11862    if (FD->getIdentifier())
11863      ++NumNamedMembers;
11864  }
11865
11866  // Okay, we successfully defined 'Record'.
11867  if (Record) {
11868    bool Completed = false;
11869    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11870      if (!CXXRecord->isInvalidDecl()) {
11871        // Set access bits correctly on the directly-declared conversions.
11872        for (CXXRecordDecl::conversion_iterator
11873               I = CXXRecord->conversion_begin(),
11874               E = CXXRecord->conversion_end(); I != E; ++I)
11875          I.setAccess((*I)->getAccess());
11876
11877        if (!CXXRecord->isDependentType()) {
11878          if (CXXRecord->hasUserDeclaredDestructor()) {
11879            // Adjust user-defined destructor exception spec.
11880            if (getLangOpts().CPlusPlus11)
11881              AdjustDestructorExceptionSpec(CXXRecord,
11882                                            CXXRecord->getDestructor());
11883
11884            // The Microsoft ABI requires that we perform the destructor body
11885            // checks (i.e. operator delete() lookup) at every declaration, as
11886            // any translation unit may need to emit a deleting destructor.
11887            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11888              CheckDestructor(CXXRecord->getDestructor());
11889          }
11890
11891          // Add any implicitly-declared members to this class.
11892          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11893
11894          // If we have virtual base classes, we may end up finding multiple
11895          // final overriders for a given virtual function. Check for this
11896          // problem now.
11897          if (CXXRecord->getNumVBases()) {
11898            CXXFinalOverriderMap FinalOverriders;
11899            CXXRecord->getFinalOverriders(FinalOverriders);
11900
11901            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11902                                             MEnd = FinalOverriders.end();
11903                 M != MEnd; ++M) {
11904              for (OverridingMethods::iterator SO = M->second.begin(),
11905                                            SOEnd = M->second.end();
11906                   SO != SOEnd; ++SO) {
11907                assert(SO->second.size() > 0 &&
11908                       "Virtual function without overridding functions?");
11909                if (SO->second.size() == 1)
11910                  continue;
11911
11912                // C++ [class.virtual]p2:
11913                //   In a derived class, if a virtual member function of a base
11914                //   class subobject has more than one final overrider the
11915                //   program is ill-formed.
11916                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11917                  << (const NamedDecl *)M->first << Record;
11918                Diag(M->first->getLocation(),
11919                     diag::note_overridden_virtual_function);
11920                for (OverridingMethods::overriding_iterator
11921                          OM = SO->second.begin(),
11922                       OMEnd = SO->second.end();
11923                     OM != OMEnd; ++OM)
11924                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11925                    << (const NamedDecl *)M->first << OM->Method->getParent();
11926
11927                Record->setInvalidDecl();
11928              }
11929            }
11930            CXXRecord->completeDefinition(&FinalOverriders);
11931            Completed = true;
11932          }
11933        }
11934      }
11935    }
11936
11937    if (!Completed)
11938      Record->completeDefinition();
11939
11940    if (Record->hasAttrs())
11941      CheckAlignasUnderalignment(Record);
11942
11943    // Check if the structure/union declaration is a language extension.
11944    if (!getLangOpts().CPlusPlus) {
11945      bool ZeroSize = true;
11946      bool IsEmpty = true;
11947      unsigned NonBitFields = 0;
11948      for (RecordDecl::field_iterator I = Record->field_begin(),
11949                                      E = Record->field_end();
11950           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11951        IsEmpty = false;
11952        if (I->isUnnamedBitfield()) {
11953          if (I->getBitWidthValue(Context) > 0)
11954            ZeroSize = false;
11955        } else {
11956          ++NonBitFields;
11957          QualType FieldType = I->getType();
11958          if (FieldType->isIncompleteType() ||
11959              !Context.getTypeSizeInChars(FieldType).isZero())
11960            ZeroSize = false;
11961        }
11962      }
11963
11964      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11965      // C++.
11966      if (ZeroSize)
11967        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11968            << Record->isUnion() << (NonBitFields > 1);
11969
11970      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11971      // are accepted by GCC.
11972      if (NonBitFields == 0) {
11973        if (IsEmpty)
11974          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11975        else
11976          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11977      }
11978    }
11979  } else {
11980    ObjCIvarDecl **ClsFields =
11981      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11982    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11983      ID->setEndOfDefinitionLoc(RBrac);
11984      // Add ivar's to class's DeclContext.
11985      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11986        ClsFields[i]->setLexicalDeclContext(ID);
11987        ID->addDecl(ClsFields[i]);
11988      }
11989      // Must enforce the rule that ivars in the base classes may not be
11990      // duplicates.
11991      if (ID->getSuperClass())
11992        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11993    } else if (ObjCImplementationDecl *IMPDecl =
11994                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11995      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11996      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11997        // Ivar declared in @implementation never belongs to the implementation.
11998        // Only it is in implementation's lexical context.
11999        ClsFields[I]->setLexicalDeclContext(IMPDecl);
12000      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
12001      IMPDecl->setIvarLBraceLoc(LBrac);
12002      IMPDecl->setIvarRBraceLoc(RBrac);
12003    } else if (ObjCCategoryDecl *CDecl =
12004                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
12005      // case of ivars in class extension; all other cases have been
12006      // reported as errors elsewhere.
12007      // FIXME. Class extension does not have a LocEnd field.
12008      // CDecl->setLocEnd(RBrac);
12009      // Add ivar's to class extension's DeclContext.
12010      // Diagnose redeclaration of private ivars.
12011      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
12012      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
12013        if (IDecl) {
12014          if (const ObjCIvarDecl *ClsIvar =
12015              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
12016            Diag(ClsFields[i]->getLocation(),
12017                 diag::err_duplicate_ivar_declaration);
12018            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
12019            continue;
12020          }
12021          for (ObjCInterfaceDecl::known_extensions_iterator
12022                 Ext = IDecl->known_extensions_begin(),
12023                 ExtEnd = IDecl->known_extensions_end();
12024               Ext != ExtEnd; ++Ext) {
12025            if (const ObjCIvarDecl *ClsExtIvar
12026                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
12027              Diag(ClsFields[i]->getLocation(),
12028                   diag::err_duplicate_ivar_declaration);
12029              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
12030              continue;
12031            }
12032          }
12033        }
12034        ClsFields[i]->setLexicalDeclContext(CDecl);
12035        CDecl->addDecl(ClsFields[i]);
12036      }
12037      CDecl->setIvarLBraceLoc(LBrac);
12038      CDecl->setIvarRBraceLoc(RBrac);
12039    }
12040  }
12041
12042  if (Attr)
12043    ProcessDeclAttributeList(S, Record, Attr);
12044}
12045
12046/// \brief Determine whether the given integral value is representable within
12047/// the given type T.
12048static bool isRepresentableIntegerValue(ASTContext &Context,
12049                                        llvm::APSInt &Value,
12050                                        QualType T) {
12051  assert(T->isIntegralType(Context) && "Integral type required!");
12052  unsigned BitWidth = Context.getIntWidth(T);
12053
12054  if (Value.isUnsigned() || Value.isNonNegative()) {
12055    if (T->isSignedIntegerOrEnumerationType())
12056      --BitWidth;
12057    return Value.getActiveBits() <= BitWidth;
12058  }
12059  return Value.getMinSignedBits() <= BitWidth;
12060}
12061
12062// \brief Given an integral type, return the next larger integral type
12063// (or a NULL type of no such type exists).
12064static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
12065  // FIXME: Int128/UInt128 support, which also needs to be introduced into
12066  // enum checking below.
12067  assert(T->isIntegralType(Context) && "Integral type required!");
12068  const unsigned NumTypes = 4;
12069  QualType SignedIntegralTypes[NumTypes] = {
12070    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
12071  };
12072  QualType UnsignedIntegralTypes[NumTypes] = {
12073    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
12074    Context.UnsignedLongLongTy
12075  };
12076
12077  unsigned BitWidth = Context.getTypeSize(T);
12078  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
12079                                                        : UnsignedIntegralTypes;
12080  for (unsigned I = 0; I != NumTypes; ++I)
12081    if (Context.getTypeSize(Types[I]) > BitWidth)
12082      return Types[I];
12083
12084  return QualType();
12085}
12086
12087EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
12088                                          EnumConstantDecl *LastEnumConst,
12089                                          SourceLocation IdLoc,
12090                                          IdentifierInfo *Id,
12091                                          Expr *Val) {
12092  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12093  llvm::APSInt EnumVal(IntWidth);
12094  QualType EltTy;
12095
12096  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
12097    Val = 0;
12098
12099  if (Val)
12100    Val = DefaultLvalueConversion(Val).take();
12101
12102  if (Val) {
12103    if (Enum->isDependentType() || Val->isTypeDependent())
12104      EltTy = Context.DependentTy;
12105    else {
12106      SourceLocation ExpLoc;
12107      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
12108          !getLangOpts().MicrosoftMode) {
12109        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
12110        // constant-expression in the enumerator-definition shall be a converted
12111        // constant expression of the underlying type.
12112        EltTy = Enum->getIntegerType();
12113        ExprResult Converted =
12114          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
12115                                           CCEK_Enumerator);
12116        if (Converted.isInvalid())
12117          Val = 0;
12118        else
12119          Val = Converted.take();
12120      } else if (!Val->isValueDependent() &&
12121                 !(Val = VerifyIntegerConstantExpression(Val,
12122                                                         &EnumVal).take())) {
12123        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
12124      } else {
12125        if (Enum->isFixed()) {
12126          EltTy = Enum->getIntegerType();
12127
12128          // In Obj-C and Microsoft mode, require the enumeration value to be
12129          // representable in the underlying type of the enumeration. In C++11,
12130          // we perform a non-narrowing conversion as part of converted constant
12131          // expression checking.
12132          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12133            if (getLangOpts().MicrosoftMode) {
12134              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
12135              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12136            } else
12137              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
12138          } else
12139            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
12140        } else if (getLangOpts().CPlusPlus) {
12141          // C++11 [dcl.enum]p5:
12142          //   If the underlying type is not fixed, the type of each enumerator
12143          //   is the type of its initializing value:
12144          //     - If an initializer is specified for an enumerator, the
12145          //       initializing value has the same type as the expression.
12146          EltTy = Val->getType();
12147        } else {
12148          // C99 6.7.2.2p2:
12149          //   The expression that defines the value of an enumeration constant
12150          //   shall be an integer constant expression that has a value
12151          //   representable as an int.
12152
12153          // Complain if the value is not representable in an int.
12154          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
12155            Diag(IdLoc, diag::ext_enum_value_not_int)
12156              << EnumVal.toString(10) << Val->getSourceRange()
12157              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
12158          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
12159            // Force the type of the expression to 'int'.
12160            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
12161          }
12162          EltTy = Val->getType();
12163        }
12164      }
12165    }
12166  }
12167
12168  if (!Val) {
12169    if (Enum->isDependentType())
12170      EltTy = Context.DependentTy;
12171    else if (!LastEnumConst) {
12172      // C++0x [dcl.enum]p5:
12173      //   If the underlying type is not fixed, the type of each enumerator
12174      //   is the type of its initializing value:
12175      //     - If no initializer is specified for the first enumerator, the
12176      //       initializing value has an unspecified integral type.
12177      //
12178      // GCC uses 'int' for its unspecified integral type, as does
12179      // C99 6.7.2.2p3.
12180      if (Enum->isFixed()) {
12181        EltTy = Enum->getIntegerType();
12182      }
12183      else {
12184        EltTy = Context.IntTy;
12185      }
12186    } else {
12187      // Assign the last value + 1.
12188      EnumVal = LastEnumConst->getInitVal();
12189      ++EnumVal;
12190      EltTy = LastEnumConst->getType();
12191
12192      // Check for overflow on increment.
12193      if (EnumVal < LastEnumConst->getInitVal()) {
12194        // C++0x [dcl.enum]p5:
12195        //   If the underlying type is not fixed, the type of each enumerator
12196        //   is the type of its initializing value:
12197        //
12198        //     - Otherwise the type of the initializing value is the same as
12199        //       the type of the initializing value of the preceding enumerator
12200        //       unless the incremented value is not representable in that type,
12201        //       in which case the type is an unspecified integral type
12202        //       sufficient to contain the incremented value. If no such type
12203        //       exists, the program is ill-formed.
12204        QualType T = getNextLargerIntegralType(Context, EltTy);
12205        if (T.isNull() || Enum->isFixed()) {
12206          // There is no integral type larger enough to represent this
12207          // value. Complain, then allow the value to wrap around.
12208          EnumVal = LastEnumConst->getInitVal();
12209          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
12210          ++EnumVal;
12211          if (Enum->isFixed())
12212            // When the underlying type is fixed, this is ill-formed.
12213            Diag(IdLoc, diag::err_enumerator_wrapped)
12214              << EnumVal.toString(10)
12215              << EltTy;
12216          else
12217            Diag(IdLoc, diag::warn_enumerator_too_large)
12218              << EnumVal.toString(10);
12219        } else {
12220          EltTy = T;
12221        }
12222
12223        // Retrieve the last enumerator's value, extent that type to the
12224        // type that is supposed to be large enough to represent the incremented
12225        // value, then increment.
12226        EnumVal = LastEnumConst->getInitVal();
12227        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12228        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
12229        ++EnumVal;
12230
12231        // If we're not in C++, diagnose the overflow of enumerator values,
12232        // which in C99 means that the enumerator value is not representable in
12233        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
12234        // permits enumerator values that are representable in some larger
12235        // integral type.
12236        if (!getLangOpts().CPlusPlus && !T.isNull())
12237          Diag(IdLoc, diag::warn_enum_value_overflow);
12238      } else if (!getLangOpts().CPlusPlus &&
12239                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
12240        // Enforce C99 6.7.2.2p2 even when we compute the next value.
12241        Diag(IdLoc, diag::ext_enum_value_not_int)
12242          << EnumVal.toString(10) << 1;
12243      }
12244    }
12245  }
12246
12247  if (!EltTy->isDependentType()) {
12248    // Make the enumerator value match the signedness and size of the
12249    // enumerator's type.
12250    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
12251    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
12252  }
12253
12254  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
12255                                  Val, EnumVal);
12256}
12257
12258
12259Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
12260                              SourceLocation IdLoc, IdentifierInfo *Id,
12261                              AttributeList *Attr,
12262                              SourceLocation EqualLoc, Expr *Val) {
12263  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
12264  EnumConstantDecl *LastEnumConst =
12265    cast_or_null<EnumConstantDecl>(lastEnumConst);
12266
12267  // The scope passed in may not be a decl scope.  Zip up the scope tree until
12268  // we find one that is.
12269  S = getNonFieldDeclScope(S);
12270
12271  // Verify that there isn't already something declared with this name in this
12272  // scope.
12273  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
12274                                         ForRedeclaration);
12275  if (PrevDecl && PrevDecl->isTemplateParameter()) {
12276    // Maybe we will complain about the shadowed template parameter.
12277    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
12278    // Just pretend that we didn't see the previous declaration.
12279    PrevDecl = 0;
12280  }
12281
12282  if (PrevDecl) {
12283    // When in C++, we may get a TagDecl with the same name; in this case the
12284    // enum constant will 'hide' the tag.
12285    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
12286           "Received TagDecl when not in C++!");
12287    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
12288      if (isa<EnumConstantDecl>(PrevDecl))
12289        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
12290      else
12291        Diag(IdLoc, diag::err_redefinition) << Id;
12292      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
12293      return 0;
12294    }
12295  }
12296
12297  // C++ [class.mem]p15:
12298  // If T is the name of a class, then each of the following shall have a name
12299  // different from T:
12300  // - every enumerator of every member of class T that is an unscoped
12301  // enumerated type
12302  if (CXXRecordDecl *Record
12303                      = dyn_cast<CXXRecordDecl>(
12304                             TheEnumDecl->getDeclContext()->getRedeclContext()))
12305    if (!TheEnumDecl->isScoped() &&
12306        Record->getIdentifier() && Record->getIdentifier() == Id)
12307      Diag(IdLoc, diag::err_member_name_of_class) << Id;
12308
12309  EnumConstantDecl *New =
12310    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
12311
12312  if (New) {
12313    // Process attributes.
12314    if (Attr) ProcessDeclAttributeList(S, New, Attr);
12315
12316    // Register this decl in the current scope stack.
12317    New->setAccess(TheEnumDecl->getAccess());
12318    PushOnScopeChains(New, S);
12319  }
12320
12321  ActOnDocumentableDecl(New);
12322
12323  return New;
12324}
12325
12326// Returns true when the enum initial expression does not trigger the
12327// duplicate enum warning.  A few common cases are exempted as follows:
12328// Element2 = Element1
12329// Element2 = Element1 + 1
12330// Element2 = Element1 - 1
12331// Where Element2 and Element1 are from the same enum.
12332static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
12333  Expr *InitExpr = ECD->getInitExpr();
12334  if (!InitExpr)
12335    return true;
12336  InitExpr = InitExpr->IgnoreImpCasts();
12337
12338  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
12339    if (!BO->isAdditiveOp())
12340      return true;
12341    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
12342    if (!IL)
12343      return true;
12344    if (IL->getValue() != 1)
12345      return true;
12346
12347    InitExpr = BO->getLHS();
12348  }
12349
12350  // This checks if the elements are from the same enum.
12351  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
12352  if (!DRE)
12353    return true;
12354
12355  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
12356  if (!EnumConstant)
12357    return true;
12358
12359  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
12360      Enum)
12361    return true;
12362
12363  return false;
12364}
12365
12366struct DupKey {
12367  int64_t val;
12368  bool isTombstoneOrEmptyKey;
12369  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
12370    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
12371};
12372
12373static DupKey GetDupKey(const llvm::APSInt& Val) {
12374  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
12375                false);
12376}
12377
12378struct DenseMapInfoDupKey {
12379  static DupKey getEmptyKey() { return DupKey(0, true); }
12380  static DupKey getTombstoneKey() { return DupKey(1, true); }
12381  static unsigned getHashValue(const DupKey Key) {
12382    return (unsigned)(Key.val * 37);
12383  }
12384  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
12385    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
12386           LHS.val == RHS.val;
12387  }
12388};
12389
12390// Emits a warning when an element is implicitly set a value that
12391// a previous element has already been set to.
12392static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
12393                                        EnumDecl *Enum,
12394                                        QualType EnumType) {
12395  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
12396                                 Enum->getLocation()) ==
12397      DiagnosticsEngine::Ignored)
12398    return;
12399  // Avoid anonymous enums
12400  if (!Enum->getIdentifier())
12401    return;
12402
12403  // Only check for small enums.
12404  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
12405    return;
12406
12407  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
12408  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
12409
12410  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
12411  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
12412          ValueToVectorMap;
12413
12414  DuplicatesVector DupVector;
12415  ValueToVectorMap EnumMap;
12416
12417  // Populate the EnumMap with all values represented by enum constants without
12418  // an initialier.
12419  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12420    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12421
12422    // Null EnumConstantDecl means a previous diagnostic has been emitted for
12423    // this constant.  Skip this enum since it may be ill-formed.
12424    if (!ECD) {
12425      return;
12426    }
12427
12428    if (ECD->getInitExpr())
12429      continue;
12430
12431    DupKey Key = GetDupKey(ECD->getInitVal());
12432    DeclOrVector &Entry = EnumMap[Key];
12433
12434    // First time encountering this value.
12435    if (Entry.isNull())
12436      Entry = ECD;
12437  }
12438
12439  // Create vectors for any values that has duplicates.
12440  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12441    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
12442    if (!ValidDuplicateEnum(ECD, Enum))
12443      continue;
12444
12445    DupKey Key = GetDupKey(ECD->getInitVal());
12446
12447    DeclOrVector& Entry = EnumMap[Key];
12448    if (Entry.isNull())
12449      continue;
12450
12451    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
12452      // Ensure constants are different.
12453      if (D == ECD)
12454        continue;
12455
12456      // Create new vector and push values onto it.
12457      ECDVector *Vec = new ECDVector();
12458      Vec->push_back(D);
12459      Vec->push_back(ECD);
12460
12461      // Update entry to point to the duplicates vector.
12462      Entry = Vec;
12463
12464      // Store the vector somewhere we can consult later for quick emission of
12465      // diagnostics.
12466      DupVector.push_back(Vec);
12467      continue;
12468    }
12469
12470    ECDVector *Vec = Entry.get<ECDVector*>();
12471    // Make sure constants are not added more than once.
12472    if (*Vec->begin() == ECD)
12473      continue;
12474
12475    Vec->push_back(ECD);
12476  }
12477
12478  // Emit diagnostics.
12479  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
12480                                  DupVectorEnd = DupVector.end();
12481       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
12482    ECDVector *Vec = *DupVectorIter;
12483    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
12484
12485    // Emit warning for one enum constant.
12486    ECDVector::iterator I = Vec->begin();
12487    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
12488      << (*I)->getName() << (*I)->getInitVal().toString(10)
12489      << (*I)->getSourceRange();
12490    ++I;
12491
12492    // Emit one note for each of the remaining enum constants with
12493    // the same value.
12494    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
12495      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
12496        << (*I)->getName() << (*I)->getInitVal().toString(10)
12497        << (*I)->getSourceRange();
12498    delete Vec;
12499  }
12500}
12501
12502void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
12503                         SourceLocation RBraceLoc, Decl *EnumDeclX,
12504                         ArrayRef<Decl *> Elements,
12505                         Scope *S, AttributeList *Attr) {
12506  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
12507  QualType EnumType = Context.getTypeDeclType(Enum);
12508
12509  if (Attr)
12510    ProcessDeclAttributeList(S, Enum, Attr);
12511
12512  if (Enum->isDependentType()) {
12513    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12514      EnumConstantDecl *ECD =
12515        cast_or_null<EnumConstantDecl>(Elements[i]);
12516      if (!ECD) continue;
12517
12518      ECD->setType(EnumType);
12519    }
12520
12521    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
12522    return;
12523  }
12524
12525  // TODO: If the result value doesn't fit in an int, it must be a long or long
12526  // long value.  ISO C does not support this, but GCC does as an extension,
12527  // emit a warning.
12528  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
12529  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
12530  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
12531
12532  // Verify that all the values are okay, compute the size of the values, and
12533  // reverse the list.
12534  unsigned NumNegativeBits = 0;
12535  unsigned NumPositiveBits = 0;
12536
12537  // Keep track of whether all elements have type int.
12538  bool AllElementsInt = true;
12539
12540  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12541    EnumConstantDecl *ECD =
12542      cast_or_null<EnumConstantDecl>(Elements[i]);
12543    if (!ECD) continue;  // Already issued a diagnostic.
12544
12545    const llvm::APSInt &InitVal = ECD->getInitVal();
12546
12547    // Keep track of the size of positive and negative values.
12548    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12549      NumPositiveBits = std::max(NumPositiveBits,
12550                                 (unsigned)InitVal.getActiveBits());
12551    else
12552      NumNegativeBits = std::max(NumNegativeBits,
12553                                 (unsigned)InitVal.getMinSignedBits());
12554
12555    // Keep track of whether every enum element has type int (very commmon).
12556    if (AllElementsInt)
12557      AllElementsInt = ECD->getType() == Context.IntTy;
12558  }
12559
12560  // Figure out the type that should be used for this enum.
12561  QualType BestType;
12562  unsigned BestWidth;
12563
12564  // C++0x N3000 [conv.prom]p3:
12565  //   An rvalue of an unscoped enumeration type whose underlying
12566  //   type is not fixed can be converted to an rvalue of the first
12567  //   of the following types that can represent all the values of
12568  //   the enumeration: int, unsigned int, long int, unsigned long
12569  //   int, long long int, or unsigned long long int.
12570  // C99 6.4.4.3p2:
12571  //   An identifier declared as an enumeration constant has type int.
12572  // The C99 rule is modified by a gcc extension
12573  QualType BestPromotionType;
12574
12575  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12576  // -fshort-enums is the equivalent to specifying the packed attribute on all
12577  // enum definitions.
12578  if (LangOpts.ShortEnums)
12579    Packed = true;
12580
12581  if (Enum->isFixed()) {
12582    BestType = Enum->getIntegerType();
12583    if (BestType->isPromotableIntegerType())
12584      BestPromotionType = Context.getPromotedIntegerType(BestType);
12585    else
12586      BestPromotionType = BestType;
12587    // We don't need to set BestWidth, because BestType is going to be the type
12588    // of the enumerators, but we do anyway because otherwise some compilers
12589    // warn that it might be used uninitialized.
12590    BestWidth = CharWidth;
12591  }
12592  else if (NumNegativeBits) {
12593    // If there is a negative value, figure out the smallest integer type (of
12594    // int/long/longlong) that fits.
12595    // If it's packed, check also if it fits a char or a short.
12596    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12597      BestType = Context.SignedCharTy;
12598      BestWidth = CharWidth;
12599    } else if (Packed && NumNegativeBits <= ShortWidth &&
12600               NumPositiveBits < ShortWidth) {
12601      BestType = Context.ShortTy;
12602      BestWidth = ShortWidth;
12603    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12604      BestType = Context.IntTy;
12605      BestWidth = IntWidth;
12606    } else {
12607      BestWidth = Context.getTargetInfo().getLongWidth();
12608
12609      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12610        BestType = Context.LongTy;
12611      } else {
12612        BestWidth = Context.getTargetInfo().getLongLongWidth();
12613
12614        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12615          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12616        BestType = Context.LongLongTy;
12617      }
12618    }
12619    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12620  } else {
12621    // If there is no negative value, figure out the smallest type that fits
12622    // all of the enumerator values.
12623    // If it's packed, check also if it fits a char or a short.
12624    if (Packed && NumPositiveBits <= CharWidth) {
12625      BestType = Context.UnsignedCharTy;
12626      BestPromotionType = Context.IntTy;
12627      BestWidth = CharWidth;
12628    } else if (Packed && NumPositiveBits <= ShortWidth) {
12629      BestType = Context.UnsignedShortTy;
12630      BestPromotionType = Context.IntTy;
12631      BestWidth = ShortWidth;
12632    } else if (NumPositiveBits <= IntWidth) {
12633      BestType = Context.UnsignedIntTy;
12634      BestWidth = IntWidth;
12635      BestPromotionType
12636        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12637                           ? Context.UnsignedIntTy : Context.IntTy;
12638    } else if (NumPositiveBits <=
12639               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12640      BestType = Context.UnsignedLongTy;
12641      BestPromotionType
12642        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12643                           ? Context.UnsignedLongTy : Context.LongTy;
12644    } else {
12645      BestWidth = Context.getTargetInfo().getLongLongWidth();
12646      assert(NumPositiveBits <= BestWidth &&
12647             "How could an initializer get larger than ULL?");
12648      BestType = Context.UnsignedLongLongTy;
12649      BestPromotionType
12650        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12651                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12652    }
12653  }
12654
12655  // Loop over all of the enumerator constants, changing their types to match
12656  // the type of the enum if needed.
12657  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12658    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12659    if (!ECD) continue;  // Already issued a diagnostic.
12660
12661    // Standard C says the enumerators have int type, but we allow, as an
12662    // extension, the enumerators to be larger than int size.  If each
12663    // enumerator value fits in an int, type it as an int, otherwise type it the
12664    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12665    // that X has type 'int', not 'unsigned'.
12666
12667    // Determine whether the value fits into an int.
12668    llvm::APSInt InitVal = ECD->getInitVal();
12669
12670    // If it fits into an integer type, force it.  Otherwise force it to match
12671    // the enum decl type.
12672    QualType NewTy;
12673    unsigned NewWidth;
12674    bool NewSign;
12675    if (!getLangOpts().CPlusPlus &&
12676        !Enum->isFixed() &&
12677        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12678      NewTy = Context.IntTy;
12679      NewWidth = IntWidth;
12680      NewSign = true;
12681    } else if (ECD->getType() == BestType) {
12682      // Already the right type!
12683      if (getLangOpts().CPlusPlus)
12684        // C++ [dcl.enum]p4: Following the closing brace of an
12685        // enum-specifier, each enumerator has the type of its
12686        // enumeration.
12687        ECD->setType(EnumType);
12688      continue;
12689    } else {
12690      NewTy = BestType;
12691      NewWidth = BestWidth;
12692      NewSign = BestType->isSignedIntegerOrEnumerationType();
12693    }
12694
12695    // Adjust the APSInt value.
12696    InitVal = InitVal.extOrTrunc(NewWidth);
12697    InitVal.setIsSigned(NewSign);
12698    ECD->setInitVal(InitVal);
12699
12700    // Adjust the Expr initializer and type.
12701    if (ECD->getInitExpr() &&
12702        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12703      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12704                                                CK_IntegralCast,
12705                                                ECD->getInitExpr(),
12706                                                /*base paths*/ 0,
12707                                                VK_RValue));
12708    if (getLangOpts().CPlusPlus)
12709      // C++ [dcl.enum]p4: Following the closing brace of an
12710      // enum-specifier, each enumerator has the type of its
12711      // enumeration.
12712      ECD->setType(EnumType);
12713    else
12714      ECD->setType(NewTy);
12715  }
12716
12717  Enum->completeDefinition(BestType, BestPromotionType,
12718                           NumPositiveBits, NumNegativeBits);
12719
12720  // If we're declaring a function, ensure this decl isn't forgotten about -
12721  // it needs to go into the function scope.
12722  if (InFunctionDeclarator)
12723    DeclsInPrototypeScope.push_back(Enum);
12724
12725  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12726
12727  // Now that the enum type is defined, ensure it's not been underaligned.
12728  if (Enum->hasAttrs())
12729    CheckAlignasUnderalignment(Enum);
12730}
12731
12732Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12733                                  SourceLocation StartLoc,
12734                                  SourceLocation EndLoc) {
12735  StringLiteral *AsmString = cast<StringLiteral>(expr);
12736
12737  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12738                                                   AsmString, StartLoc,
12739                                                   EndLoc);
12740  CurContext->addDecl(New);
12741  return New;
12742}
12743
12744DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12745                                   SourceLocation ImportLoc,
12746                                   ModuleIdPath Path) {
12747  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12748                                                Module::AllVisible,
12749                                                /*IsIncludeDirective=*/false);
12750  if (!Mod)
12751    return true;
12752
12753  SmallVector<SourceLocation, 2> IdentifierLocs;
12754  Module *ModCheck = Mod;
12755  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12756    // If we've run out of module parents, just drop the remaining identifiers.
12757    // We need the length to be consistent.
12758    if (!ModCheck)
12759      break;
12760    ModCheck = ModCheck->Parent;
12761
12762    IdentifierLocs.push_back(Path[I].second);
12763  }
12764
12765  ImportDecl *Import = ImportDecl::Create(Context,
12766                                          Context.getTranslationUnitDecl(),
12767                                          AtLoc.isValid()? AtLoc : ImportLoc,
12768                                          Mod, IdentifierLocs);
12769  Context.getTranslationUnitDecl()->addDecl(Import);
12770  return Import;
12771}
12772
12773void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12774  // Create the implicit import declaration.
12775  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12776  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12777                                                   Loc, Mod, Loc);
12778  TU->addDecl(ImportD);
12779  Consumer.HandleImplicitImportDecl(ImportD);
12780
12781  // Make the module visible.
12782  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12783                                         /*Complain=*/false);
12784}
12785
12786void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12787                                      IdentifierInfo* AliasName,
12788                                      SourceLocation PragmaLoc,
12789                                      SourceLocation NameLoc,
12790                                      SourceLocation AliasNameLoc) {
12791  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12792                                    LookupOrdinaryName);
12793  AsmLabelAttr *Attr =
12794     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12795
12796  if (PrevDecl)
12797    PrevDecl->addAttr(Attr);
12798  else
12799    (void)ExtnameUndeclaredIdentifiers.insert(
12800      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12801}
12802
12803void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12804                             SourceLocation PragmaLoc,
12805                             SourceLocation NameLoc) {
12806  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12807
12808  if (PrevDecl) {
12809    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12810  } else {
12811    (void)WeakUndeclaredIdentifiers.insert(
12812      std::pair<IdentifierInfo*,WeakInfo>
12813        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12814  }
12815}
12816
12817void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12818                                IdentifierInfo* AliasName,
12819                                SourceLocation PragmaLoc,
12820                                SourceLocation NameLoc,
12821                                SourceLocation AliasNameLoc) {
12822  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12823                                    LookupOrdinaryName);
12824  WeakInfo W = WeakInfo(Name, NameLoc);
12825
12826  if (PrevDecl) {
12827    if (!PrevDecl->hasAttr<AliasAttr>())
12828      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12829        DeclApplyPragmaWeak(TUScope, ND, W);
12830  } else {
12831    (void)WeakUndeclaredIdentifiers.insert(
12832      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12833  }
12834}
12835
12836Decl *Sema::getObjCDeclContext() const {
12837  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12838}
12839
12840AvailabilityResult Sema::getCurContextAvailability() const {
12841  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12842  return D->getAvailability();
12843}
12844