SemaDecl.cpp revision a28948f34817476d02412fa204cae038e228c827
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
49  if (OwnedType) {
50    Decl *Group[2] = { OwnedType, Ptr };
51    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
52  }
53
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                             Scope *S, CXXScopeSpec *SS,
70                             bool isClassName, bool HasTrailingDot,
71                             ParsedType ObjectTypePtr,
72                             bool WantNontrivialTypeSourceInfo) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = ObjectTypePtr.get();
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isNotEmpty()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return ParsedType();
95
96        // We know from the grammar that this name refers to a type,
97        // so build a dependent node to describe the type.
98        if (WantNontrivialTypeSourceInfo)
99          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
100
101        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
102        QualType T =
103          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
104                            II, NameLoc);
105
106          return ParsedType::make(T);
107      }
108
109      return ParsedType();
110    }
111
112    if (!LookupCtx->isDependentContext() &&
113        RequireCompleteDeclContext(*SS, LookupCtx))
114      return ParsedType();
115  }
116
117  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
118  // lookup for class-names.
119  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
120                                      LookupOrdinaryName;
121  LookupResult Result(*this, &II, NameLoc, Kind);
122  if (LookupCtx) {
123    // Perform "qualified" name lookup into the declaration context we
124    // computed, which is either the type of the base of a member access
125    // expression or the declaration context associated with a prior
126    // nested-name-specifier.
127    LookupQualifiedName(Result, LookupCtx);
128
129    if (ObjectTypePtr && Result.empty()) {
130      // C++ [basic.lookup.classref]p3:
131      //   If the unqualified-id is ~type-name, the type-name is looked up
132      //   in the context of the entire postfix-expression. If the type T of
133      //   the object expression is of a class type C, the type-name is also
134      //   looked up in the scope of class C. At least one of the lookups shall
135      //   find a name that refers to (possibly cv-qualified) T.
136      LookupName(Result, S);
137    }
138  } else {
139    // Perform unqualified name lookup.
140    LookupName(Result, S);
141  }
142
143  NamedDecl *IIDecl = 0;
144  switch (Result.getResultKind()) {
145  case LookupResult::NotFound:
146  case LookupResult::NotFoundInCurrentInstantiation:
147  case LookupResult::FoundOverloaded:
148  case LookupResult::FoundUnresolvedValue:
149    Result.suppressDiagnostics();
150    return ParsedType();
151
152  case LookupResult::Ambiguous:
153    // Recover from type-hiding ambiguities by hiding the type.  We'll
154    // do the lookup again when looking for an object, and we can
155    // diagnose the error then.  If we don't do this, then the error
156    // about hiding the type will be immediately followed by an error
157    // that only makes sense if the identifier was treated like a type.
158    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
159      Result.suppressDiagnostics();
160      return ParsedType();
161    }
162
163    // Look to see if we have a type anywhere in the list of results.
164    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
165         Res != ResEnd; ++Res) {
166      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
167        if (!IIDecl ||
168            (*Res)->getLocation().getRawEncoding() <
169              IIDecl->getLocation().getRawEncoding())
170          IIDecl = *Res;
171      }
172    }
173
174    if (!IIDecl) {
175      // None of the entities we found is a type, so there is no way
176      // to even assume that the result is a type. In this case, don't
177      // complain about the ambiguity. The parser will either try to
178      // perform this lookup again (e.g., as an object name), which
179      // will produce the ambiguity, or will complain that it expected
180      // a type name.
181      Result.suppressDiagnostics();
182      return ParsedType();
183    }
184
185    // We found a type within the ambiguous lookup; diagnose the
186    // ambiguity and then return that type. This might be the right
187    // answer, or it might not be, but it suppresses any attempt to
188    // perform the name lookup again.
189    break;
190
191  case LookupResult::Found:
192    IIDecl = Result.getFoundDecl();
193    break;
194  }
195
196  assert(IIDecl && "Didn't find decl");
197
198  QualType T;
199  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
200    DiagnoseUseOfDecl(IIDecl, NameLoc);
201
202    if (T.isNull())
203      T = Context.getTypeDeclType(TD);
204
205    if (SS && SS->isNotEmpty()) {
206      if (WantNontrivialTypeSourceInfo) {
207        // Construct a type with type-source information.
208        TypeLocBuilder Builder;
209        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
210
211        T = getElaboratedType(ETK_None, *SS, T);
212        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
213        ElabTL.setKeywordLoc(SourceLocation());
214        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
215        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
216      } else {
217        T = getElaboratedType(ETK_None, *SS, T);
218      }
219    }
220  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
221    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
222    if (!HasTrailingDot)
223      T = Context.getObjCInterfaceType(IDecl);
224  }
225
226  if (T.isNull()) {
227    // If it's not plausibly a type, suppress diagnostics.
228    Result.suppressDiagnostics();
229    return ParsedType();
230  }
231  return ParsedType::make(T);
232}
233
234/// isTagName() - This method is called *for error recovery purposes only*
235/// to determine if the specified name is a valid tag name ("struct foo").  If
236/// so, this returns the TST for the tag corresponding to it (TST_enum,
237/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
238/// where the user forgot to specify the tag.
239DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
240  // Do a tag name lookup in this scope.
241  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
242  LookupName(R, S, false);
243  R.suppressDiagnostics();
244  if (R.getResultKind() == LookupResult::Found)
245    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
246      switch (TD->getTagKind()) {
247      default:         return DeclSpec::TST_unspecified;
248      case TTK_Struct: return DeclSpec::TST_struct;
249      case TTK_Union:  return DeclSpec::TST_union;
250      case TTK_Class:  return DeclSpec::TST_class;
251      case TTK_Enum:   return DeclSpec::TST_enum;
252      }
253    }
254
255  return DeclSpec::TST_unspecified;
256}
257
258/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
259/// if a CXXScopeSpec's type is equal to the type of one of the base classes
260/// then downgrade the missing typename error to a warning.
261/// This is needed for MSVC compatibility; Example:
262/// @code
263/// template<class T> class A {
264/// public:
265///   typedef int TYPE;
266/// };
267/// template<class T> class B : public A<T> {
268/// public:
269///   A<T>::TYPE a; // no typename required because A<T> is a base class.
270/// };
271/// @endcode
272bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
273  if (CurContext->isRecord()) {
274    const Type *Ty = SS->getScopeRep()->getAsType();
275
276    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
277    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
278          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
279      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
280        return true;
281  }
282  return false;
283}
284
285bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
286                                   SourceLocation IILoc,
287                                   Scope *S,
288                                   CXXScopeSpec *SS,
289                                   ParsedType &SuggestedType) {
290  // We don't have anything to suggest (yet).
291  SuggestedType = ParsedType();
292
293  // There may have been a typo in the name of the type. Look up typo
294  // results, in case we have something that we can suggest.
295  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
296                                             LookupOrdinaryName, S, SS, NULL,
297                                             false, CTC_Type)) {
298    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
299    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
300
301    if (Corrected.isKeyword()) {
302      // We corrected to a keyword.
303      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
304      Diag(IILoc, diag::err_unknown_typename_suggest)
305        << &II << CorrectedQuotedStr;
306      return true;
307    } else {
308      NamedDecl *Result = Corrected.getCorrectionDecl();
309      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
310          !Result->isInvalidDecl()) {
311        // We found a similarly-named type or interface; suggest that.
312        if (!SS || !SS->isSet())
313          Diag(IILoc, diag::err_unknown_typename_suggest)
314            << &II << CorrectedQuotedStr
315            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
316        else if (DeclContext *DC = computeDeclContext(*SS, false))
317          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
318            << &II << DC << CorrectedQuotedStr << SS->getRange()
319            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
320        else
321          llvm_unreachable("could not have corrected a typo here");
322
323        Diag(Result->getLocation(), diag::note_previous_decl)
324          << CorrectedQuotedStr;
325
326        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
327                                    false, false, ParsedType(),
328                                    /*NonTrivialTypeSourceInfo=*/true);
329        return true;
330      }
331    }
332  }
333
334  if (getLangOptions().CPlusPlus) {
335    // See if II is a class template that the user forgot to pass arguments to.
336    UnqualifiedId Name;
337    Name.setIdentifier(&II, IILoc);
338    CXXScopeSpec EmptySS;
339    TemplateTy TemplateResult;
340    bool MemberOfUnknownSpecialization;
341    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
342                       Name, ParsedType(), true, TemplateResult,
343                       MemberOfUnknownSpecialization) == TNK_Type_template) {
344      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
345      Diag(IILoc, diag::err_template_missing_args) << TplName;
346      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
347        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
348          << TplDecl->getTemplateParameters()->getSourceRange();
349      }
350      return true;
351    }
352  }
353
354  // FIXME: Should we move the logic that tries to recover from a missing tag
355  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
356
357  if (!SS || (!SS->isSet() && !SS->isInvalid()))
358    Diag(IILoc, diag::err_unknown_typename) << &II;
359  else if (DeclContext *DC = computeDeclContext(*SS, false))
360    Diag(IILoc, diag::err_typename_nested_not_found)
361      << &II << DC << SS->getRange();
362  else if (isDependentScopeSpecifier(*SS)) {
363    unsigned DiagID = diag::err_typename_missing;
364    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
365      DiagID = diag::warn_typename_missing;
366
367    Diag(SS->getRange().getBegin(), DiagID)
368      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
369      << SourceRange(SS->getRange().getBegin(), IILoc)
370      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
371    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
372  } else {
373    assert(SS && SS->isInvalid() &&
374           "Invalid scope specifier has already been diagnosed");
375  }
376
377  return true;
378}
379
380/// \brief Determine whether the given result set contains either a type name
381/// or
382static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
383  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
384                       NextToken.is(tok::less);
385
386  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
387    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
388      return true;
389
390    if (CheckTemplate && isa<TemplateDecl>(*I))
391      return true;
392  }
393
394  return false;
395}
396
397Sema::NameClassification Sema::ClassifyName(Scope *S,
398                                            CXXScopeSpec &SS,
399                                            IdentifierInfo *&Name,
400                                            SourceLocation NameLoc,
401                                            const Token &NextToken) {
402  DeclarationNameInfo NameInfo(Name, NameLoc);
403  ObjCMethodDecl *CurMethod = getCurMethodDecl();
404
405  if (NextToken.is(tok::coloncolon)) {
406    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
407                                QualType(), false, SS, 0, false);
408
409  }
410
411  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
412  LookupParsedName(Result, S, &SS, !CurMethod);
413
414  // Perform lookup for Objective-C instance variables (including automatically
415  // synthesized instance variables), if we're in an Objective-C method.
416  // FIXME: This lookup really, really needs to be folded in to the normal
417  // unqualified lookup mechanism.
418  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
419    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
420    if (E.get() || E.isInvalid())
421      return E;
422
423    // Synthesize ivars lazily.
424    if (getLangOptions().ObjCDefaultSynthProperties &&
425        getLangOptions().ObjCNonFragileABI2) {
426      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
427        if (const ObjCPropertyDecl *Property =
428                                          canSynthesizeProvisionalIvar(Name)) {
429          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
430          Diag(Property->getLocation(), diag::note_property_declare);
431        }
432
433        // FIXME: This is strange. Shouldn't we just take the ivar returned
434        // from SynthesizeProvisionalIvar and continue with that?
435        E = LookupInObjCMethod(Result, S, Name, true);
436        if (E.get() || E.isInvalid())
437          return E;
438      }
439    }
440  }
441
442  bool SecondTry = false;
443  bool IsFilteredTemplateName = false;
444
445Corrected:
446  switch (Result.getResultKind()) {
447  case LookupResult::NotFound:
448    // If an unqualified-id is followed by a '(', then we have a function
449    // call.
450    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
451      // In C++, this is an ADL-only call.
452      // FIXME: Reference?
453      if (getLangOptions().CPlusPlus)
454        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
455
456      // C90 6.3.2.2:
457      //   If the expression that precedes the parenthesized argument list in a
458      //   function call consists solely of an identifier, and if no
459      //   declaration is visible for this identifier, the identifier is
460      //   implicitly declared exactly as if, in the innermost block containing
461      //   the function call, the declaration
462      //
463      //     extern int identifier ();
464      //
465      //   appeared.
466      //
467      // We also allow this in C99 as an extension.
468      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
469        Result.addDecl(D);
470        Result.resolveKind();
471        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
472      }
473    }
474
475    // In C, we first see whether there is a tag type by the same name, in
476    // which case it's likely that the user just forget to write "enum",
477    // "struct", or "union".
478    if (!getLangOptions().CPlusPlus && !SecondTry) {
479      Result.clear(LookupTagName);
480      LookupParsedName(Result, S, &SS);
481      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
482        const char *TagName = 0;
483        const char *FixItTagName = 0;
484        switch (Tag->getTagKind()) {
485          case TTK_Class:
486            TagName = "class";
487            FixItTagName = "class ";
488            break;
489
490          case TTK_Enum:
491            TagName = "enum";
492            FixItTagName = "enum ";
493            break;
494
495          case TTK_Struct:
496            TagName = "struct";
497            FixItTagName = "struct ";
498            break;
499
500          case TTK_Union:
501            TagName = "union";
502            FixItTagName = "union ";
503            break;
504        }
505
506        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
507          << Name << TagName << getLangOptions().CPlusPlus
508          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
509        break;
510      }
511
512      Result.clear(LookupOrdinaryName);
513    }
514
515    // Perform typo correction to determine if there is another name that is
516    // close to this name.
517    if (!SecondTry) {
518      SecondTry = true;
519      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
520                                                 Result.getLookupKind(), S, &SS)) {
521        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
522        unsigned QualifiedDiag = diag::err_no_member_suggest;
523        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
524        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
525
526        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
527        NamedDecl *UnderlyingFirstDecl
528          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
529        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
530            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
531          UnqualifiedDiag = diag::err_no_template_suggest;
532          QualifiedDiag = diag::err_no_member_template_suggest;
533        } else if (UnderlyingFirstDecl &&
534                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
535                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
536                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
537           UnqualifiedDiag = diag::err_unknown_typename_suggest;
538           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
539         }
540
541        if (SS.isEmpty())
542          Diag(NameLoc, UnqualifiedDiag)
543            << Name << CorrectedQuotedStr
544            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
545        else
546          Diag(NameLoc, QualifiedDiag)
547            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
548            << SS.getRange()
549            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
550
551        // Update the name, so that the caller has the new name.
552        Name = Corrected.getCorrectionAsIdentifierInfo();
553
554        // Also update the LookupResult...
555        // FIXME: This should probably go away at some point
556        Result.clear();
557        Result.setLookupName(Corrected.getCorrection());
558        if (FirstDecl) Result.addDecl(FirstDecl);
559
560        // Typo correction corrected to a keyword.
561        if (Corrected.isKeyword())
562          return Corrected.getCorrectionAsIdentifierInfo();
563
564        if (FirstDecl)
565          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
566            << CorrectedQuotedStr;
567
568        // If we found an Objective-C instance variable, let
569        // LookupInObjCMethod build the appropriate expression to
570        // reference the ivar.
571        // FIXME: This is a gross hack.
572        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
573          Result.clear();
574          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
575          return move(E);
576        }
577
578        goto Corrected;
579      }
580    }
581
582    // We failed to correct; just fall through and let the parser deal with it.
583    Result.suppressDiagnostics();
584    return NameClassification::Unknown();
585
586  case LookupResult::NotFoundInCurrentInstantiation:
587    // We performed name lookup into the current instantiation, and there were
588    // dependent bases, so we treat this result the same way as any other
589    // dependent nested-name-specifier.
590
591    // C++ [temp.res]p2:
592    //   A name used in a template declaration or definition and that is
593    //   dependent on a template-parameter is assumed not to name a type
594    //   unless the applicable name lookup finds a type name or the name is
595    //   qualified by the keyword typename.
596    //
597    // FIXME: If the next token is '<', we might want to ask the parser to
598    // perform some heroics to see if we actually have a
599    // template-argument-list, which would indicate a missing 'template'
600    // keyword here.
601    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
602
603  case LookupResult::Found:
604  case LookupResult::FoundOverloaded:
605  case LookupResult::FoundUnresolvedValue:
606    break;
607
608  case LookupResult::Ambiguous:
609    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
610        hasAnyAcceptableTemplateNames(Result)) {
611      // C++ [temp.local]p3:
612      //   A lookup that finds an injected-class-name (10.2) can result in an
613      //   ambiguity in certain cases (for example, if it is found in more than
614      //   one base class). If all of the injected-class-names that are found
615      //   refer to specializations of the same class template, and if the name
616      //   is followed by a template-argument-list, the reference refers to the
617      //   class template itself and not a specialization thereof, and is not
618      //   ambiguous.
619      //
620      // This filtering can make an ambiguous result into an unambiguous one,
621      // so try again after filtering out template names.
622      FilterAcceptableTemplateNames(Result);
623      if (!Result.isAmbiguous()) {
624        IsFilteredTemplateName = true;
625        break;
626      }
627    }
628
629    // Diagnose the ambiguity and return an error.
630    return NameClassification::Error();
631  }
632
633  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
634      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
635    // C++ [temp.names]p3:
636    //   After name lookup (3.4) finds that a name is a template-name or that
637    //   an operator-function-id or a literal- operator-id refers to a set of
638    //   overloaded functions any member of which is a function template if
639    //   this is followed by a <, the < is always taken as the delimiter of a
640    //   template-argument-list and never as the less-than operator.
641    if (!IsFilteredTemplateName)
642      FilterAcceptableTemplateNames(Result);
643
644    if (!Result.empty()) {
645      bool IsFunctionTemplate;
646      TemplateName Template;
647      if (Result.end() - Result.begin() > 1) {
648        IsFunctionTemplate = true;
649        Template = Context.getOverloadedTemplateName(Result.begin(),
650                                                     Result.end());
651      } else {
652        TemplateDecl *TD
653          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
654        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
655
656        if (SS.isSet() && !SS.isInvalid())
657          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
658                                                    /*TemplateKeyword=*/false,
659                                                      TD);
660        else
661          Template = TemplateName(TD);
662      }
663
664      if (IsFunctionTemplate) {
665        // Function templates always go through overload resolution, at which
666        // point we'll perform the various checks (e.g., accessibility) we need
667        // to based on which function we selected.
668        Result.suppressDiagnostics();
669
670        return NameClassification::FunctionTemplate(Template);
671      }
672
673      return NameClassification::TypeTemplate(Template);
674    }
675  }
676
677  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
678  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
679    DiagnoseUseOfDecl(Type, NameLoc);
680    QualType T = Context.getTypeDeclType(Type);
681    return ParsedType::make(T);
682  }
683
684  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
685  if (!Class) {
686    // FIXME: It's unfortunate that we don't have a Type node for handling this.
687    if (ObjCCompatibleAliasDecl *Alias
688                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
689      Class = Alias->getClassInterface();
690  }
691
692  if (Class) {
693    DiagnoseUseOfDecl(Class, NameLoc);
694
695    if (NextToken.is(tok::period)) {
696      // Interface. <something> is parsed as a property reference expression.
697      // Just return "unknown" as a fall-through for now.
698      Result.suppressDiagnostics();
699      return NameClassification::Unknown();
700    }
701
702    QualType T = Context.getObjCInterfaceType(Class);
703    return ParsedType::make(T);
704  }
705
706  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
707    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
708
709  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
710  return BuildDeclarationNameExpr(SS, Result, ADL);
711}
712
713// Determines the context to return to after temporarily entering a
714// context.  This depends in an unnecessarily complicated way on the
715// exact ordering of callbacks from the parser.
716DeclContext *Sema::getContainingDC(DeclContext *DC) {
717
718  // Functions defined inline within classes aren't parsed until we've
719  // finished parsing the top-level class, so the top-level class is
720  // the context we'll need to return to.
721  if (isa<FunctionDecl>(DC)) {
722    DC = DC->getLexicalParent();
723
724    // A function not defined within a class will always return to its
725    // lexical context.
726    if (!isa<CXXRecordDecl>(DC))
727      return DC;
728
729    // A C++ inline method/friend is parsed *after* the topmost class
730    // it was declared in is fully parsed ("complete");  the topmost
731    // class is the context we need to return to.
732    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
733      DC = RD;
734
735    // Return the declaration context of the topmost class the inline method is
736    // declared in.
737    return DC;
738  }
739
740  return DC->getLexicalParent();
741}
742
743void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
744  assert(getContainingDC(DC) == CurContext &&
745      "The next DeclContext should be lexically contained in the current one.");
746  CurContext = DC;
747  S->setEntity(DC);
748}
749
750void Sema::PopDeclContext() {
751  assert(CurContext && "DeclContext imbalance!");
752
753  CurContext = getContainingDC(CurContext);
754  assert(CurContext && "Popped translation unit!");
755}
756
757/// EnterDeclaratorContext - Used when we must lookup names in the context
758/// of a declarator's nested name specifier.
759///
760void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
761  // C++0x [basic.lookup.unqual]p13:
762  //   A name used in the definition of a static data member of class
763  //   X (after the qualified-id of the static member) is looked up as
764  //   if the name was used in a member function of X.
765  // C++0x [basic.lookup.unqual]p14:
766  //   If a variable member of a namespace is defined outside of the
767  //   scope of its namespace then any name used in the definition of
768  //   the variable member (after the declarator-id) is looked up as
769  //   if the definition of the variable member occurred in its
770  //   namespace.
771  // Both of these imply that we should push a scope whose context
772  // is the semantic context of the declaration.  We can't use
773  // PushDeclContext here because that context is not necessarily
774  // lexically contained in the current context.  Fortunately,
775  // the containing scope should have the appropriate information.
776
777  assert(!S->getEntity() && "scope already has entity");
778
779#ifndef NDEBUG
780  Scope *Ancestor = S->getParent();
781  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
782  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
783#endif
784
785  CurContext = DC;
786  S->setEntity(DC);
787}
788
789void Sema::ExitDeclaratorContext(Scope *S) {
790  assert(S->getEntity() == CurContext && "Context imbalance!");
791
792  // Switch back to the lexical context.  The safety of this is
793  // enforced by an assert in EnterDeclaratorContext.
794  Scope *Ancestor = S->getParent();
795  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
796  CurContext = (DeclContext*) Ancestor->getEntity();
797
798  // We don't need to do anything with the scope, which is going to
799  // disappear.
800}
801
802/// \brief Determine whether we allow overloading of the function
803/// PrevDecl with another declaration.
804///
805/// This routine determines whether overloading is possible, not
806/// whether some new function is actually an overload. It will return
807/// true in C++ (where we can always provide overloads) or, as an
808/// extension, in C when the previous function is already an
809/// overloaded function declaration or has the "overloadable"
810/// attribute.
811static bool AllowOverloadingOfFunction(LookupResult &Previous,
812                                       ASTContext &Context) {
813  if (Context.getLangOptions().CPlusPlus)
814    return true;
815
816  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
817    return true;
818
819  return (Previous.getResultKind() == LookupResult::Found
820          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
821}
822
823/// Add this decl to the scope shadowed decl chains.
824void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
825  // Move up the scope chain until we find the nearest enclosing
826  // non-transparent context. The declaration will be introduced into this
827  // scope.
828  while (S->getEntity() &&
829         ((DeclContext *)S->getEntity())->isTransparentContext())
830    S = S->getParent();
831
832  // Add scoped declarations into their context, so that they can be
833  // found later. Declarations without a context won't be inserted
834  // into any context.
835  if (AddToContext)
836    CurContext->addDecl(D);
837
838  // Out-of-line definitions shouldn't be pushed into scope in C++.
839  // Out-of-line variable and function definitions shouldn't even in C.
840  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
841      D->isOutOfLine())
842    return;
843
844  // Template instantiations should also not be pushed into scope.
845  if (isa<FunctionDecl>(D) &&
846      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
847    return;
848
849  // If this replaces anything in the current scope,
850  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
851                               IEnd = IdResolver.end();
852  for (; I != IEnd; ++I) {
853    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
854      S->RemoveDecl(*I);
855      IdResolver.RemoveDecl(*I);
856
857      // Should only need to replace one decl.
858      break;
859    }
860  }
861
862  S->AddDecl(D);
863
864  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
865    // Implicitly-generated labels may end up getting generated in an order that
866    // isn't strictly lexical, which breaks name lookup. Be careful to insert
867    // the label at the appropriate place in the identifier chain.
868    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
869      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
870      if (IDC == CurContext) {
871        if (!S->isDeclScope(*I))
872          continue;
873      } else if (IDC->Encloses(CurContext))
874        break;
875    }
876
877    IdResolver.InsertDeclAfter(I, D);
878  } else {
879    IdResolver.AddDecl(D);
880  }
881}
882
883bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
884                         bool ExplicitInstantiationOrSpecialization) {
885  return IdResolver.isDeclInScope(D, Ctx, Context, S,
886                                  ExplicitInstantiationOrSpecialization);
887}
888
889Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
890  DeclContext *TargetDC = DC->getPrimaryContext();
891  do {
892    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
893      if (ScopeDC->getPrimaryContext() == TargetDC)
894        return S;
895  } while ((S = S->getParent()));
896
897  return 0;
898}
899
900static bool isOutOfScopePreviousDeclaration(NamedDecl *,
901                                            DeclContext*,
902                                            ASTContext&);
903
904/// Filters out lookup results that don't fall within the given scope
905/// as determined by isDeclInScope.
906void Sema::FilterLookupForScope(LookupResult &R,
907                                DeclContext *Ctx, Scope *S,
908                                bool ConsiderLinkage,
909                                bool ExplicitInstantiationOrSpecialization) {
910  LookupResult::Filter F = R.makeFilter();
911  while (F.hasNext()) {
912    NamedDecl *D = F.next();
913
914    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
915      continue;
916
917    if (ConsiderLinkage &&
918        isOutOfScopePreviousDeclaration(D, Ctx, Context))
919      continue;
920
921    F.erase();
922  }
923
924  F.done();
925}
926
927static bool isUsingDecl(NamedDecl *D) {
928  return isa<UsingShadowDecl>(D) ||
929         isa<UnresolvedUsingTypenameDecl>(D) ||
930         isa<UnresolvedUsingValueDecl>(D);
931}
932
933/// Removes using shadow declarations from the lookup results.
934static void RemoveUsingDecls(LookupResult &R) {
935  LookupResult::Filter F = R.makeFilter();
936  while (F.hasNext())
937    if (isUsingDecl(F.next()))
938      F.erase();
939
940  F.done();
941}
942
943/// \brief Check for this common pattern:
944/// @code
945/// class S {
946///   S(const S&); // DO NOT IMPLEMENT
947///   void operator=(const S&); // DO NOT IMPLEMENT
948/// };
949/// @endcode
950static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
951  // FIXME: Should check for private access too but access is set after we get
952  // the decl here.
953  if (D->doesThisDeclarationHaveABody())
954    return false;
955
956  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
957    return CD->isCopyConstructor();
958  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
959    return Method->isCopyAssignmentOperator();
960  return false;
961}
962
963bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
964  assert(D);
965
966  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
967    return false;
968
969  // Ignore class templates.
970  if (D->getDeclContext()->isDependentContext() ||
971      D->getLexicalDeclContext()->isDependentContext())
972    return false;
973
974  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
975    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
976      return false;
977
978    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
979      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
980        return false;
981    } else {
982      // 'static inline' functions are used in headers; don't warn.
983      if (FD->getStorageClass() == SC_Static &&
984          FD->isInlineSpecified())
985        return false;
986    }
987
988    if (FD->doesThisDeclarationHaveABody() &&
989        Context.DeclMustBeEmitted(FD))
990      return false;
991  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
992    if (!VD->isFileVarDecl() ||
993        VD->getType().isConstant(Context) ||
994        Context.DeclMustBeEmitted(VD))
995      return false;
996
997    if (VD->isStaticDataMember() &&
998        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
999      return false;
1000
1001  } else {
1002    return false;
1003  }
1004
1005  // Only warn for unused decls internal to the translation unit.
1006  if (D->getLinkage() == ExternalLinkage)
1007    return false;
1008
1009  return true;
1010}
1011
1012void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1013  if (!D)
1014    return;
1015
1016  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1017    const FunctionDecl *First = FD->getFirstDeclaration();
1018    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1019      return; // First should already be in the vector.
1020  }
1021
1022  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1023    const VarDecl *First = VD->getFirstDeclaration();
1024    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1025      return; // First should already be in the vector.
1026  }
1027
1028   if (ShouldWarnIfUnusedFileScopedDecl(D))
1029     UnusedFileScopedDecls.push_back(D);
1030 }
1031
1032static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1033  if (D->isInvalidDecl())
1034    return false;
1035
1036  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1037    return false;
1038
1039  if (isa<LabelDecl>(D))
1040    return true;
1041
1042  // White-list anything that isn't a local variable.
1043  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1044      !D->getDeclContext()->isFunctionOrMethod())
1045    return false;
1046
1047  // Types of valid local variables should be complete, so this should succeed.
1048  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1049
1050    // White-list anything with an __attribute__((unused)) type.
1051    QualType Ty = VD->getType();
1052
1053    // Only look at the outermost level of typedef.
1054    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1055      if (TT->getDecl()->hasAttr<UnusedAttr>())
1056        return false;
1057    }
1058
1059    // If we failed to complete the type for some reason, or if the type is
1060    // dependent, don't diagnose the variable.
1061    if (Ty->isIncompleteType() || Ty->isDependentType())
1062      return false;
1063
1064    if (const TagType *TT = Ty->getAs<TagType>()) {
1065      const TagDecl *Tag = TT->getDecl();
1066      if (Tag->hasAttr<UnusedAttr>())
1067        return false;
1068
1069      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1070        // FIXME: Checking for the presence of a user-declared constructor
1071        // isn't completely accurate; we'd prefer to check that the initializer
1072        // has no side effects.
1073        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1074          return false;
1075      }
1076    }
1077
1078    // TODO: __attribute__((unused)) templates?
1079  }
1080
1081  return true;
1082}
1083
1084static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1085                                     FixItHint &Hint) {
1086  if (isa<LabelDecl>(D)) {
1087    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1088                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1089    if (AfterColon.isInvalid())
1090      return;
1091    Hint = FixItHint::CreateRemoval(CharSourceRange::
1092                                    getCharRange(D->getLocStart(), AfterColon));
1093  }
1094  return;
1095}
1096
1097/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1098/// unless they are marked attr(unused).
1099void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1100  FixItHint Hint;
1101  if (!ShouldDiagnoseUnusedDecl(D))
1102    return;
1103
1104  GenerateFixForUnusedDecl(D, Context, Hint);
1105
1106  unsigned DiagID;
1107  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1108    DiagID = diag::warn_unused_exception_param;
1109  else if (isa<LabelDecl>(D))
1110    DiagID = diag::warn_unused_label;
1111  else
1112    DiagID = diag::warn_unused_variable;
1113
1114  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1115}
1116
1117static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1118  // Verify that we have no forward references left.  If so, there was a goto
1119  // or address of a label taken, but no definition of it.  Label fwd
1120  // definitions are indicated with a null substmt.
1121  if (L->getStmt() == 0)
1122    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1123}
1124
1125void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1126  if (S->decl_empty()) return;
1127  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1128         "Scope shouldn't contain decls!");
1129
1130  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1131       I != E; ++I) {
1132    Decl *TmpD = (*I);
1133    assert(TmpD && "This decl didn't get pushed??");
1134
1135    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1136    NamedDecl *D = cast<NamedDecl>(TmpD);
1137
1138    if (!D->getDeclName()) continue;
1139
1140    // Diagnose unused variables in this scope.
1141    if (!S->hasErrorOccurred())
1142      DiagnoseUnusedDecl(D);
1143
1144    // If this was a forward reference to a label, verify it was defined.
1145    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1146      CheckPoppedLabel(LD, *this);
1147
1148    // Remove this name from our lexical scope.
1149    IdResolver.RemoveDecl(D);
1150  }
1151}
1152
1153/// \brief Look for an Objective-C class in the translation unit.
1154///
1155/// \param Id The name of the Objective-C class we're looking for. If
1156/// typo-correction fixes this name, the Id will be updated
1157/// to the fixed name.
1158///
1159/// \param IdLoc The location of the name in the translation unit.
1160///
1161/// \param TypoCorrection If true, this routine will attempt typo correction
1162/// if there is no class with the given name.
1163///
1164/// \returns The declaration of the named Objective-C class, or NULL if the
1165/// class could not be found.
1166ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1167                                              SourceLocation IdLoc,
1168                                              bool DoTypoCorrection) {
1169  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1170  // creation from this context.
1171  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1172
1173  if (!IDecl && DoTypoCorrection) {
1174    // Perform typo correction at the given location, but only if we
1175    // find an Objective-C class name.
1176    TypoCorrection C;
1177    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1178                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1179        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1180      Diag(IdLoc, diag::err_undef_interface_suggest)
1181        << Id << IDecl->getDeclName()
1182        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1183      Diag(IDecl->getLocation(), diag::note_previous_decl)
1184        << IDecl->getDeclName();
1185
1186      Id = IDecl->getIdentifier();
1187    }
1188  }
1189
1190  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1191}
1192
1193/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1194/// from S, where a non-field would be declared. This routine copes
1195/// with the difference between C and C++ scoping rules in structs and
1196/// unions. For example, the following code is well-formed in C but
1197/// ill-formed in C++:
1198/// @code
1199/// struct S6 {
1200///   enum { BAR } e;
1201/// };
1202///
1203/// void test_S6() {
1204///   struct S6 a;
1205///   a.e = BAR;
1206/// }
1207/// @endcode
1208/// For the declaration of BAR, this routine will return a different
1209/// scope. The scope S will be the scope of the unnamed enumeration
1210/// within S6. In C++, this routine will return the scope associated
1211/// with S6, because the enumeration's scope is a transparent
1212/// context but structures can contain non-field names. In C, this
1213/// routine will return the translation unit scope, since the
1214/// enumeration's scope is a transparent context and structures cannot
1215/// contain non-field names.
1216Scope *Sema::getNonFieldDeclScope(Scope *S) {
1217  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1218         (S->getEntity() &&
1219          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1220         (S->isClassScope() && !getLangOptions().CPlusPlus))
1221    S = S->getParent();
1222  return S;
1223}
1224
1225/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1226/// file scope.  lazily create a decl for it. ForRedeclaration is true
1227/// if we're creating this built-in in anticipation of redeclaring the
1228/// built-in.
1229NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1230                                     Scope *S, bool ForRedeclaration,
1231                                     SourceLocation Loc) {
1232  Builtin::ID BID = (Builtin::ID)bid;
1233
1234  ASTContext::GetBuiltinTypeError Error;
1235  QualType R = Context.GetBuiltinType(BID, Error);
1236  switch (Error) {
1237  case ASTContext::GE_None:
1238    // Okay
1239    break;
1240
1241  case ASTContext::GE_Missing_stdio:
1242    if (ForRedeclaration)
1243      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1244        << Context.BuiltinInfo.GetName(BID);
1245    return 0;
1246
1247  case ASTContext::GE_Missing_setjmp:
1248    if (ForRedeclaration)
1249      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1250        << Context.BuiltinInfo.GetName(BID);
1251    return 0;
1252  }
1253
1254  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1255    Diag(Loc, diag::ext_implicit_lib_function_decl)
1256      << Context.BuiltinInfo.GetName(BID)
1257      << R;
1258    if (Context.BuiltinInfo.getHeaderName(BID) &&
1259        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1260          != Diagnostic::Ignored)
1261      Diag(Loc, diag::note_please_include_header)
1262        << Context.BuiltinInfo.getHeaderName(BID)
1263        << Context.BuiltinInfo.GetName(BID);
1264  }
1265
1266  FunctionDecl *New = FunctionDecl::Create(Context,
1267                                           Context.getTranslationUnitDecl(),
1268                                           Loc, Loc, II, R, /*TInfo=*/0,
1269                                           SC_Extern,
1270                                           SC_None, false,
1271                                           /*hasPrototype=*/true);
1272  New->setImplicit();
1273
1274  // Create Decl objects for each parameter, adding them to the
1275  // FunctionDecl.
1276  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1277    SmallVector<ParmVarDecl*, 16> Params;
1278    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1279      ParmVarDecl *parm =
1280        ParmVarDecl::Create(Context, New, SourceLocation(),
1281                            SourceLocation(), 0,
1282                            FT->getArgType(i), /*TInfo=*/0,
1283                            SC_None, SC_None, 0);
1284      parm->setScopeInfo(0, i);
1285      Params.push_back(parm);
1286    }
1287    New->setParams(Params.data(), Params.size());
1288  }
1289
1290  AddKnownFunctionAttributes(New);
1291
1292  // TUScope is the translation-unit scope to insert this function into.
1293  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1294  // relate Scopes to DeclContexts, and probably eliminate CurContext
1295  // entirely, but we're not there yet.
1296  DeclContext *SavedContext = CurContext;
1297  CurContext = Context.getTranslationUnitDecl();
1298  PushOnScopeChains(New, TUScope);
1299  CurContext = SavedContext;
1300  return New;
1301}
1302
1303/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1304/// same name and scope as a previous declaration 'Old'.  Figure out
1305/// how to resolve this situation, merging decls or emitting
1306/// diagnostics as appropriate. If there was an error, set New to be invalid.
1307///
1308void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1309  // If the new decl is known invalid already, don't bother doing any
1310  // merging checks.
1311  if (New->isInvalidDecl()) return;
1312
1313  // Allow multiple definitions for ObjC built-in typedefs.
1314  // FIXME: Verify the underlying types are equivalent!
1315  if (getLangOptions().ObjC1) {
1316    const IdentifierInfo *TypeID = New->getIdentifier();
1317    switch (TypeID->getLength()) {
1318    default: break;
1319    case 2:
1320      if (!TypeID->isStr("id"))
1321        break;
1322      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1323      // Install the built-in type for 'id', ignoring the current definition.
1324      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1325      return;
1326    case 5:
1327      if (!TypeID->isStr("Class"))
1328        break;
1329      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1330      // Install the built-in type for 'Class', ignoring the current definition.
1331      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1332      return;
1333    case 3:
1334      if (!TypeID->isStr("SEL"))
1335        break;
1336      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1337      // Install the built-in type for 'SEL', ignoring the current definition.
1338      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1339      return;
1340    }
1341    // Fall through - the typedef name was not a builtin type.
1342  }
1343
1344  // Verify the old decl was also a type.
1345  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1346  if (!Old) {
1347    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1348      << New->getDeclName();
1349
1350    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1351    if (OldD->getLocation().isValid())
1352      Diag(OldD->getLocation(), diag::note_previous_definition);
1353
1354    return New->setInvalidDecl();
1355  }
1356
1357  // If the old declaration is invalid, just give up here.
1358  if (Old->isInvalidDecl())
1359    return New->setInvalidDecl();
1360
1361  // Determine the "old" type we'll use for checking and diagnostics.
1362  QualType OldType;
1363  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1364    OldType = OldTypedef->getUnderlyingType();
1365  else
1366    OldType = Context.getTypeDeclType(Old);
1367
1368  // If the typedef types are not identical, reject them in all languages and
1369  // with any extensions enabled.
1370
1371  if (OldType != New->getUnderlyingType() &&
1372      Context.getCanonicalType(OldType) !=
1373      Context.getCanonicalType(New->getUnderlyingType())) {
1374    int Kind = 0;
1375    if (isa<TypeAliasDecl>(Old))
1376      Kind = 1;
1377    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1378      << Kind << New->getUnderlyingType() << OldType;
1379    if (Old->getLocation().isValid())
1380      Diag(Old->getLocation(), diag::note_previous_definition);
1381    return New->setInvalidDecl();
1382  }
1383
1384  // The types match.  Link up the redeclaration chain if the old
1385  // declaration was a typedef.
1386  // FIXME: this is a potential source of weirdness if the type
1387  // spellings don't match exactly.
1388  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1389    New->setPreviousDeclaration(Typedef);
1390
1391  if (getLangOptions().Microsoft)
1392    return;
1393
1394  if (getLangOptions().CPlusPlus) {
1395    // C++ [dcl.typedef]p2:
1396    //   In a given non-class scope, a typedef specifier can be used to
1397    //   redefine the name of any type declared in that scope to refer
1398    //   to the type to which it already refers.
1399    if (!isa<CXXRecordDecl>(CurContext))
1400      return;
1401
1402    // C++0x [dcl.typedef]p4:
1403    //   In a given class scope, a typedef specifier can be used to redefine
1404    //   any class-name declared in that scope that is not also a typedef-name
1405    //   to refer to the type to which it already refers.
1406    //
1407    // This wording came in via DR424, which was a correction to the
1408    // wording in DR56, which accidentally banned code like:
1409    //
1410    //   struct S {
1411    //     typedef struct A { } A;
1412    //   };
1413    //
1414    // in the C++03 standard. We implement the C++0x semantics, which
1415    // allow the above but disallow
1416    //
1417    //   struct S {
1418    //     typedef int I;
1419    //     typedef int I;
1420    //   };
1421    //
1422    // since that was the intent of DR56.
1423    if (!isa<TypedefNameDecl>(Old))
1424      return;
1425
1426    Diag(New->getLocation(), diag::err_redefinition)
1427      << New->getDeclName();
1428    Diag(Old->getLocation(), diag::note_previous_definition);
1429    return New->setInvalidDecl();
1430  }
1431
1432  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1433  // is normally mapped to an error, but can be controlled with
1434  // -Wtypedef-redefinition.  If either the original or the redefinition is
1435  // in a system header, don't emit this for compatibility with GCC.
1436  if (getDiagnostics().getSuppressSystemWarnings() &&
1437      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1438       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1439    return;
1440
1441  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1442    << New->getDeclName();
1443  Diag(Old->getLocation(), diag::note_previous_definition);
1444  return;
1445}
1446
1447/// DeclhasAttr - returns true if decl Declaration already has the target
1448/// attribute.
1449static bool
1450DeclHasAttr(const Decl *D, const Attr *A) {
1451  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1452  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1453    if ((*i)->getKind() == A->getKind()) {
1454      // FIXME: Don't hardcode this check
1455      if (OA && isa<OwnershipAttr>(*i))
1456        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1457      return true;
1458    }
1459
1460  return false;
1461}
1462
1463/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1464static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1465                                ASTContext &C, bool mergeDeprecation = true) {
1466  if (!oldDecl->hasAttrs())
1467    return;
1468
1469  bool foundAny = newDecl->hasAttrs();
1470
1471  // Ensure that any moving of objects within the allocated map is done before
1472  // we process them.
1473  if (!foundAny) newDecl->setAttrs(AttrVec());
1474
1475  for (specific_attr_iterator<InheritableAttr>
1476       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1477       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1478    // Ignore deprecated and unavailable attributes if requested.
1479    if (!mergeDeprecation &&
1480        (isa<DeprecatedAttr>(*i) || isa<UnavailableAttr>(*i)))
1481      continue;
1482
1483    if (!DeclHasAttr(newDecl, *i)) {
1484      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1485      newAttr->setInherited(true);
1486      newDecl->addAttr(newAttr);
1487      foundAny = true;
1488    }
1489  }
1490
1491  if (!foundAny) newDecl->dropAttrs();
1492}
1493
1494/// mergeParamDeclAttributes - Copy attributes from the old parameter
1495/// to the new one.
1496static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1497                                     const ParmVarDecl *oldDecl,
1498                                     ASTContext &C) {
1499  if (!oldDecl->hasAttrs())
1500    return;
1501
1502  bool foundAny = newDecl->hasAttrs();
1503
1504  // Ensure that any moving of objects within the allocated map is
1505  // done before we process them.
1506  if (!foundAny) newDecl->setAttrs(AttrVec());
1507
1508  for (specific_attr_iterator<InheritableParamAttr>
1509       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1510       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1511    if (!DeclHasAttr(newDecl, *i)) {
1512      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1513      newAttr->setInherited(true);
1514      newDecl->addAttr(newAttr);
1515      foundAny = true;
1516    }
1517  }
1518
1519  if (!foundAny) newDecl->dropAttrs();
1520}
1521
1522namespace {
1523
1524/// Used in MergeFunctionDecl to keep track of function parameters in
1525/// C.
1526struct GNUCompatibleParamWarning {
1527  ParmVarDecl *OldParm;
1528  ParmVarDecl *NewParm;
1529  QualType PromotedType;
1530};
1531
1532}
1533
1534/// getSpecialMember - get the special member enum for a method.
1535Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1536  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1537    if (Ctor->isDefaultConstructor())
1538      return Sema::CXXDefaultConstructor;
1539
1540    if (Ctor->isCopyConstructor())
1541      return Sema::CXXCopyConstructor;
1542
1543    if (Ctor->isMoveConstructor())
1544      return Sema::CXXMoveConstructor;
1545  } else if (isa<CXXDestructorDecl>(MD)) {
1546    return Sema::CXXDestructor;
1547  } else if (MD->isCopyAssignmentOperator()) {
1548    return Sema::CXXCopyAssignment;
1549  }
1550
1551  return Sema::CXXInvalid;
1552}
1553
1554/// canRedefineFunction - checks if a function can be redefined. Currently,
1555/// only extern inline functions can be redefined, and even then only in
1556/// GNU89 mode.
1557static bool canRedefineFunction(const FunctionDecl *FD,
1558                                const LangOptions& LangOpts) {
1559  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1560          !LangOpts.CPlusPlus &&
1561          FD->isInlineSpecified() &&
1562          FD->getStorageClass() == SC_Extern);
1563}
1564
1565/// MergeFunctionDecl - We just parsed a function 'New' from
1566/// declarator D which has the same name and scope as a previous
1567/// declaration 'Old'.  Figure out how to resolve this situation,
1568/// merging decls or emitting diagnostics as appropriate.
1569///
1570/// In C++, New and Old must be declarations that are not
1571/// overloaded. Use IsOverload to determine whether New and Old are
1572/// overloaded, and to select the Old declaration that New should be
1573/// merged with.
1574///
1575/// Returns true if there was an error, false otherwise.
1576bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1577  // Verify the old decl was also a function.
1578  FunctionDecl *Old = 0;
1579  if (FunctionTemplateDecl *OldFunctionTemplate
1580        = dyn_cast<FunctionTemplateDecl>(OldD))
1581    Old = OldFunctionTemplate->getTemplatedDecl();
1582  else
1583    Old = dyn_cast<FunctionDecl>(OldD);
1584  if (!Old) {
1585    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1586      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1587      Diag(Shadow->getTargetDecl()->getLocation(),
1588           diag::note_using_decl_target);
1589      Diag(Shadow->getUsingDecl()->getLocation(),
1590           diag::note_using_decl) << 0;
1591      return true;
1592    }
1593
1594    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1595      << New->getDeclName();
1596    Diag(OldD->getLocation(), diag::note_previous_definition);
1597    return true;
1598  }
1599
1600  // Determine whether the previous declaration was a definition,
1601  // implicit declaration, or a declaration.
1602  diag::kind PrevDiag;
1603  if (Old->isThisDeclarationADefinition())
1604    PrevDiag = diag::note_previous_definition;
1605  else if (Old->isImplicit())
1606    PrevDiag = diag::note_previous_implicit_declaration;
1607  else
1608    PrevDiag = diag::note_previous_declaration;
1609
1610  QualType OldQType = Context.getCanonicalType(Old->getType());
1611  QualType NewQType = Context.getCanonicalType(New->getType());
1612
1613  // Don't complain about this if we're in GNU89 mode and the old function
1614  // is an extern inline function.
1615  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1616      New->getStorageClass() == SC_Static &&
1617      Old->getStorageClass() != SC_Static &&
1618      !canRedefineFunction(Old, getLangOptions())) {
1619    if (getLangOptions().Microsoft) {
1620      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1621      Diag(Old->getLocation(), PrevDiag);
1622    } else {
1623      Diag(New->getLocation(), diag::err_static_non_static) << New;
1624      Diag(Old->getLocation(), PrevDiag);
1625      return true;
1626    }
1627  }
1628
1629  // If a function is first declared with a calling convention, but is
1630  // later declared or defined without one, the second decl assumes the
1631  // calling convention of the first.
1632  //
1633  // For the new decl, we have to look at the NON-canonical type to tell the
1634  // difference between a function that really doesn't have a calling
1635  // convention and one that is declared cdecl. That's because in
1636  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1637  // because it is the default calling convention.
1638  //
1639  // Note also that we DO NOT return at this point, because we still have
1640  // other tests to run.
1641  const FunctionType *OldType = cast<FunctionType>(OldQType);
1642  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1643  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1644  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1645  bool RequiresAdjustment = false;
1646  if (OldTypeInfo.getCC() != CC_Default &&
1647      NewTypeInfo.getCC() == CC_Default) {
1648    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1649    RequiresAdjustment = true;
1650  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1651                                     NewTypeInfo.getCC())) {
1652    // Calling conventions really aren't compatible, so complain.
1653    Diag(New->getLocation(), diag::err_cconv_change)
1654      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1655      << (OldTypeInfo.getCC() == CC_Default)
1656      << (OldTypeInfo.getCC() == CC_Default ? "" :
1657          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1658    Diag(Old->getLocation(), diag::note_previous_declaration);
1659    return true;
1660  }
1661
1662  // FIXME: diagnose the other way around?
1663  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1664    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1665    RequiresAdjustment = true;
1666  }
1667
1668  // Merge regparm attribute.
1669  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1670      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1671    if (NewTypeInfo.getHasRegParm()) {
1672      Diag(New->getLocation(), diag::err_regparm_mismatch)
1673        << NewType->getRegParmType()
1674        << OldType->getRegParmType();
1675      Diag(Old->getLocation(), diag::note_previous_declaration);
1676      return true;
1677    }
1678
1679    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1680    RequiresAdjustment = true;
1681  }
1682
1683  if (RequiresAdjustment) {
1684    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1685    New->setType(QualType(NewType, 0));
1686    NewQType = Context.getCanonicalType(New->getType());
1687  }
1688
1689  if (getLangOptions().CPlusPlus) {
1690    // (C++98 13.1p2):
1691    //   Certain function declarations cannot be overloaded:
1692    //     -- Function declarations that differ only in the return type
1693    //        cannot be overloaded.
1694    QualType OldReturnType = OldType->getResultType();
1695    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1696    QualType ResQT;
1697    if (OldReturnType != NewReturnType) {
1698      if (NewReturnType->isObjCObjectPointerType()
1699          && OldReturnType->isObjCObjectPointerType())
1700        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1701      if (ResQT.isNull()) {
1702        if (New->isCXXClassMember() && New->isOutOfLine())
1703          Diag(New->getLocation(),
1704               diag::err_member_def_does_not_match_ret_type) << New;
1705        else
1706          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1707        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1708        return true;
1709      }
1710      else
1711        NewQType = ResQT;
1712    }
1713
1714    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1715    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1716    if (OldMethod && NewMethod) {
1717      // Preserve triviality.
1718      NewMethod->setTrivial(OldMethod->isTrivial());
1719
1720      // MSVC allows explicit template specialization at class scope:
1721      // 2 CXMethodDecls referring to the same function will be injected.
1722      // We don't want a redeclartion error.
1723      bool IsClassScopeExplicitSpecialization =
1724                              OldMethod->isFunctionTemplateSpecialization() &&
1725                              NewMethod->isFunctionTemplateSpecialization();
1726      bool isFriend = NewMethod->getFriendObjectKind();
1727
1728      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1729          !IsClassScopeExplicitSpecialization) {
1730        //    -- Member function declarations with the same name and the
1731        //       same parameter types cannot be overloaded if any of them
1732        //       is a static member function declaration.
1733        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1734          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1735          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1736          return true;
1737        }
1738
1739        // C++ [class.mem]p1:
1740        //   [...] A member shall not be declared twice in the
1741        //   member-specification, except that a nested class or member
1742        //   class template can be declared and then later defined.
1743        unsigned NewDiag;
1744        if (isa<CXXConstructorDecl>(OldMethod))
1745          NewDiag = diag::err_constructor_redeclared;
1746        else if (isa<CXXDestructorDecl>(NewMethod))
1747          NewDiag = diag::err_destructor_redeclared;
1748        else if (isa<CXXConversionDecl>(NewMethod))
1749          NewDiag = diag::err_conv_function_redeclared;
1750        else
1751          NewDiag = diag::err_member_redeclared;
1752
1753        Diag(New->getLocation(), NewDiag);
1754        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1755
1756      // Complain if this is an explicit declaration of a special
1757      // member that was initially declared implicitly.
1758      //
1759      // As an exception, it's okay to befriend such methods in order
1760      // to permit the implicit constructor/destructor/operator calls.
1761      } else if (OldMethod->isImplicit()) {
1762        if (isFriend) {
1763          NewMethod->setImplicit();
1764        } else {
1765          Diag(NewMethod->getLocation(),
1766               diag::err_definition_of_implicitly_declared_member)
1767            << New << getSpecialMember(OldMethod);
1768          return true;
1769        }
1770      } else if (OldMethod->isExplicitlyDefaulted()) {
1771        Diag(NewMethod->getLocation(),
1772             diag::err_definition_of_explicitly_defaulted_member)
1773          << getSpecialMember(OldMethod);
1774        return true;
1775      }
1776    }
1777
1778    // (C++98 8.3.5p3):
1779    //   All declarations for a function shall agree exactly in both the
1780    //   return type and the parameter-type-list.
1781    // We also want to respect all the extended bits except noreturn.
1782
1783    // noreturn should now match unless the old type info didn't have it.
1784    QualType OldQTypeForComparison = OldQType;
1785    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1786      assert(OldQType == QualType(OldType, 0));
1787      const FunctionType *OldTypeForComparison
1788        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1789      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1790      assert(OldQTypeForComparison.isCanonical());
1791    }
1792
1793    if (OldQTypeForComparison == NewQType)
1794      return MergeCompatibleFunctionDecls(New, Old);
1795
1796    // Fall through for conflicting redeclarations and redefinitions.
1797  }
1798
1799  // C: Function types need to be compatible, not identical. This handles
1800  // duplicate function decls like "void f(int); void f(enum X);" properly.
1801  if (!getLangOptions().CPlusPlus &&
1802      Context.typesAreCompatible(OldQType, NewQType)) {
1803    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1804    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1805    const FunctionProtoType *OldProto = 0;
1806    if (isa<FunctionNoProtoType>(NewFuncType) &&
1807        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1808      // The old declaration provided a function prototype, but the
1809      // new declaration does not. Merge in the prototype.
1810      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1811      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1812                                                 OldProto->arg_type_end());
1813      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1814                                         ParamTypes.data(), ParamTypes.size(),
1815                                         OldProto->getExtProtoInfo());
1816      New->setType(NewQType);
1817      New->setHasInheritedPrototype();
1818
1819      // Synthesize a parameter for each argument type.
1820      SmallVector<ParmVarDecl*, 16> Params;
1821      for (FunctionProtoType::arg_type_iterator
1822             ParamType = OldProto->arg_type_begin(),
1823             ParamEnd = OldProto->arg_type_end();
1824           ParamType != ParamEnd; ++ParamType) {
1825        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1826                                                 SourceLocation(),
1827                                                 SourceLocation(), 0,
1828                                                 *ParamType, /*TInfo=*/0,
1829                                                 SC_None, SC_None,
1830                                                 0);
1831        Param->setScopeInfo(0, Params.size());
1832        Param->setImplicit();
1833        Params.push_back(Param);
1834      }
1835
1836      New->setParams(Params.data(), Params.size());
1837    }
1838
1839    return MergeCompatibleFunctionDecls(New, Old);
1840  }
1841
1842  // GNU C permits a K&R definition to follow a prototype declaration
1843  // if the declared types of the parameters in the K&R definition
1844  // match the types in the prototype declaration, even when the
1845  // promoted types of the parameters from the K&R definition differ
1846  // from the types in the prototype. GCC then keeps the types from
1847  // the prototype.
1848  //
1849  // If a variadic prototype is followed by a non-variadic K&R definition,
1850  // the K&R definition becomes variadic.  This is sort of an edge case, but
1851  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1852  // C99 6.9.1p8.
1853  if (!getLangOptions().CPlusPlus &&
1854      Old->hasPrototype() && !New->hasPrototype() &&
1855      New->getType()->getAs<FunctionProtoType>() &&
1856      Old->getNumParams() == New->getNumParams()) {
1857    SmallVector<QualType, 16> ArgTypes;
1858    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1859    const FunctionProtoType *OldProto
1860      = Old->getType()->getAs<FunctionProtoType>();
1861    const FunctionProtoType *NewProto
1862      = New->getType()->getAs<FunctionProtoType>();
1863
1864    // Determine whether this is the GNU C extension.
1865    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1866                                               NewProto->getResultType());
1867    bool LooseCompatible = !MergedReturn.isNull();
1868    for (unsigned Idx = 0, End = Old->getNumParams();
1869         LooseCompatible && Idx != End; ++Idx) {
1870      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1871      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1872      if (Context.typesAreCompatible(OldParm->getType(),
1873                                     NewProto->getArgType(Idx))) {
1874        ArgTypes.push_back(NewParm->getType());
1875      } else if (Context.typesAreCompatible(OldParm->getType(),
1876                                            NewParm->getType(),
1877                                            /*CompareUnqualified=*/true)) {
1878        GNUCompatibleParamWarning Warn
1879          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1880        Warnings.push_back(Warn);
1881        ArgTypes.push_back(NewParm->getType());
1882      } else
1883        LooseCompatible = false;
1884    }
1885
1886    if (LooseCompatible) {
1887      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1888        Diag(Warnings[Warn].NewParm->getLocation(),
1889             diag::ext_param_promoted_not_compatible_with_prototype)
1890          << Warnings[Warn].PromotedType
1891          << Warnings[Warn].OldParm->getType();
1892        if (Warnings[Warn].OldParm->getLocation().isValid())
1893          Diag(Warnings[Warn].OldParm->getLocation(),
1894               diag::note_previous_declaration);
1895      }
1896
1897      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1898                                           ArgTypes.size(),
1899                                           OldProto->getExtProtoInfo()));
1900      return MergeCompatibleFunctionDecls(New, Old);
1901    }
1902
1903    // Fall through to diagnose conflicting types.
1904  }
1905
1906  // A function that has already been declared has been redeclared or defined
1907  // with a different type- show appropriate diagnostic
1908  if (unsigned BuiltinID = Old->getBuiltinID()) {
1909    // The user has declared a builtin function with an incompatible
1910    // signature.
1911    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1912      // The function the user is redeclaring is a library-defined
1913      // function like 'malloc' or 'printf'. Warn about the
1914      // redeclaration, then pretend that we don't know about this
1915      // library built-in.
1916      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1917      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1918        << Old << Old->getType();
1919      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1920      Old->setInvalidDecl();
1921      return false;
1922    }
1923
1924    PrevDiag = diag::note_previous_builtin_declaration;
1925  }
1926
1927  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1928  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1929  return true;
1930}
1931
1932/// \brief Completes the merge of two function declarations that are
1933/// known to be compatible.
1934///
1935/// This routine handles the merging of attributes and other
1936/// properties of function declarations form the old declaration to
1937/// the new declaration, once we know that New is in fact a
1938/// redeclaration of Old.
1939///
1940/// \returns false
1941bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1942  // Merge the attributes
1943  mergeDeclAttributes(New, Old, Context);
1944
1945  // Merge the storage class.
1946  if (Old->getStorageClass() != SC_Extern &&
1947      Old->getStorageClass() != SC_None)
1948    New->setStorageClass(Old->getStorageClass());
1949
1950  // Merge "pure" flag.
1951  if (Old->isPure())
1952    New->setPure();
1953
1954  // Merge attributes from the parameters.  These can mismatch with K&R
1955  // declarations.
1956  if (New->getNumParams() == Old->getNumParams())
1957    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1958      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1959                               Context);
1960
1961  if (getLangOptions().CPlusPlus)
1962    return MergeCXXFunctionDecl(New, Old);
1963
1964  return false;
1965}
1966
1967
1968void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1969                                const ObjCMethodDecl *oldMethod) {
1970  // We don't want to merge unavailable and deprecated attributes
1971  // except from interface to implementation.
1972  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
1973
1974  // Merge the attributes.
1975  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
1976
1977  // Merge attributes from the parameters.
1978  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1979         ni = newMethod->param_begin(), ne = newMethod->param_end();
1980       ni != ne; ++ni, ++oi)
1981    mergeParamDeclAttributes(*ni, *oi, Context);
1982
1983  CheckObjCMethodOverride(newMethod, oldMethod, true);
1984}
1985
1986/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1987/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1988/// emitting diagnostics as appropriate.
1989///
1990/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1991/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1992/// check them before the initializer is attached.
1993///
1994void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1995  if (New->isInvalidDecl() || Old->isInvalidDecl())
1996    return;
1997
1998  QualType MergedT;
1999  if (getLangOptions().CPlusPlus) {
2000    AutoType *AT = New->getType()->getContainedAutoType();
2001    if (AT && !AT->isDeduced()) {
2002      // We don't know what the new type is until the initializer is attached.
2003      return;
2004    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2005      // These could still be something that needs exception specs checked.
2006      return MergeVarDeclExceptionSpecs(New, Old);
2007    }
2008    // C++ [basic.link]p10:
2009    //   [...] the types specified by all declarations referring to a given
2010    //   object or function shall be identical, except that declarations for an
2011    //   array object can specify array types that differ by the presence or
2012    //   absence of a major array bound (8.3.4).
2013    else if (Old->getType()->isIncompleteArrayType() &&
2014             New->getType()->isArrayType()) {
2015      CanQual<ArrayType> OldArray
2016        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2017      CanQual<ArrayType> NewArray
2018        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2019      if (OldArray->getElementType() == NewArray->getElementType())
2020        MergedT = New->getType();
2021    } else if (Old->getType()->isArrayType() &&
2022             New->getType()->isIncompleteArrayType()) {
2023      CanQual<ArrayType> OldArray
2024        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2025      CanQual<ArrayType> NewArray
2026        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2027      if (OldArray->getElementType() == NewArray->getElementType())
2028        MergedT = Old->getType();
2029    } else if (New->getType()->isObjCObjectPointerType()
2030               && Old->getType()->isObjCObjectPointerType()) {
2031        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2032                                                        Old->getType());
2033    }
2034  } else {
2035    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2036  }
2037  if (MergedT.isNull()) {
2038    Diag(New->getLocation(), diag::err_redefinition_different_type)
2039      << New->getDeclName();
2040    Diag(Old->getLocation(), diag::note_previous_definition);
2041    return New->setInvalidDecl();
2042  }
2043  New->setType(MergedT);
2044}
2045
2046/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2047/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2048/// situation, merging decls or emitting diagnostics as appropriate.
2049///
2050/// Tentative definition rules (C99 6.9.2p2) are checked by
2051/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2052/// definitions here, since the initializer hasn't been attached.
2053///
2054void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2055  // If the new decl is already invalid, don't do any other checking.
2056  if (New->isInvalidDecl())
2057    return;
2058
2059  // Verify the old decl was also a variable.
2060  VarDecl *Old = 0;
2061  if (!Previous.isSingleResult() ||
2062      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2063    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2064      << New->getDeclName();
2065    Diag(Previous.getRepresentativeDecl()->getLocation(),
2066         diag::note_previous_definition);
2067    return New->setInvalidDecl();
2068  }
2069
2070  // C++ [class.mem]p1:
2071  //   A member shall not be declared twice in the member-specification [...]
2072  //
2073  // Here, we need only consider static data members.
2074  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2075    Diag(New->getLocation(), diag::err_duplicate_member)
2076      << New->getIdentifier();
2077    Diag(Old->getLocation(), diag::note_previous_declaration);
2078    New->setInvalidDecl();
2079  }
2080
2081  mergeDeclAttributes(New, Old, Context);
2082  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2083  if (New->getAttr<WeakImportAttr>() &&
2084      Old->getStorageClass() == SC_None &&
2085      !Old->getAttr<WeakImportAttr>()) {
2086    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2087    Diag(Old->getLocation(), diag::note_previous_definition);
2088    // Remove weak_import attribute on new declaration.
2089    New->dropAttr<WeakImportAttr>();
2090  }
2091
2092  // Merge the types.
2093  MergeVarDeclTypes(New, Old);
2094  if (New->isInvalidDecl())
2095    return;
2096
2097  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2098  if (New->getStorageClass() == SC_Static &&
2099      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2100    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2101    Diag(Old->getLocation(), diag::note_previous_definition);
2102    return New->setInvalidDecl();
2103  }
2104  // C99 6.2.2p4:
2105  //   For an identifier declared with the storage-class specifier
2106  //   extern in a scope in which a prior declaration of that
2107  //   identifier is visible,23) if the prior declaration specifies
2108  //   internal or external linkage, the linkage of the identifier at
2109  //   the later declaration is the same as the linkage specified at
2110  //   the prior declaration. If no prior declaration is visible, or
2111  //   if the prior declaration specifies no linkage, then the
2112  //   identifier has external linkage.
2113  if (New->hasExternalStorage() && Old->hasLinkage())
2114    /* Okay */;
2115  else if (New->getStorageClass() != SC_Static &&
2116           Old->getStorageClass() == SC_Static) {
2117    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2118    Diag(Old->getLocation(), diag::note_previous_definition);
2119    return New->setInvalidDecl();
2120  }
2121
2122  // Check if extern is followed by non-extern and vice-versa.
2123  if (New->hasExternalStorage() &&
2124      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2125    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2126    Diag(Old->getLocation(), diag::note_previous_definition);
2127    return New->setInvalidDecl();
2128  }
2129  if (Old->hasExternalStorage() &&
2130      !New->hasLinkage() && New->isLocalVarDecl()) {
2131    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2132    Diag(Old->getLocation(), diag::note_previous_definition);
2133    return New->setInvalidDecl();
2134  }
2135
2136  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2137
2138  // FIXME: The test for external storage here seems wrong? We still
2139  // need to check for mismatches.
2140  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2141      // Don't complain about out-of-line definitions of static members.
2142      !(Old->getLexicalDeclContext()->isRecord() &&
2143        !New->getLexicalDeclContext()->isRecord())) {
2144    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2145    Diag(Old->getLocation(), diag::note_previous_definition);
2146    return New->setInvalidDecl();
2147  }
2148
2149  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2150    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2151    Diag(Old->getLocation(), diag::note_previous_definition);
2152  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2153    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2154    Diag(Old->getLocation(), diag::note_previous_definition);
2155  }
2156
2157  // C++ doesn't have tentative definitions, so go right ahead and check here.
2158  const VarDecl *Def;
2159  if (getLangOptions().CPlusPlus &&
2160      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2161      (Def = Old->getDefinition())) {
2162    Diag(New->getLocation(), diag::err_redefinition)
2163      << New->getDeclName();
2164    Diag(Def->getLocation(), diag::note_previous_definition);
2165    New->setInvalidDecl();
2166    return;
2167  }
2168  // c99 6.2.2 P4.
2169  // For an identifier declared with the storage-class specifier extern in a
2170  // scope in which a prior declaration of that identifier is visible, if
2171  // the prior declaration specifies internal or external linkage, the linkage
2172  // of the identifier at the later declaration is the same as the linkage
2173  // specified at the prior declaration.
2174  // FIXME. revisit this code.
2175  if (New->hasExternalStorage() &&
2176      Old->getLinkage() == InternalLinkage &&
2177      New->getDeclContext() == Old->getDeclContext())
2178    New->setStorageClass(Old->getStorageClass());
2179
2180  // Keep a chain of previous declarations.
2181  New->setPreviousDeclaration(Old);
2182
2183  // Inherit access appropriately.
2184  New->setAccess(Old->getAccess());
2185}
2186
2187/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2188/// no declarator (e.g. "struct foo;") is parsed.
2189Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2190                                       DeclSpec &DS) {
2191  return ParsedFreeStandingDeclSpec(S, AS, DS,
2192                                    MultiTemplateParamsArg(*this, 0, 0));
2193}
2194
2195/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2196/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2197/// parameters to cope with template friend declarations.
2198Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2199                                       DeclSpec &DS,
2200                                       MultiTemplateParamsArg TemplateParams) {
2201  Decl *TagD = 0;
2202  TagDecl *Tag = 0;
2203  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2204      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2205      DS.getTypeSpecType() == DeclSpec::TST_union ||
2206      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2207    TagD = DS.getRepAsDecl();
2208
2209    if (!TagD) // We probably had an error
2210      return 0;
2211
2212    // Note that the above type specs guarantee that the
2213    // type rep is a Decl, whereas in many of the others
2214    // it's a Type.
2215    Tag = dyn_cast<TagDecl>(TagD);
2216  }
2217
2218  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2219    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2220    // or incomplete types shall not be restrict-qualified."
2221    if (TypeQuals & DeclSpec::TQ_restrict)
2222      Diag(DS.getRestrictSpecLoc(),
2223           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2224           << DS.getSourceRange();
2225  }
2226
2227  if (DS.isConstexprSpecified()) {
2228    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2229    // and definitions of functions and variables.
2230    if (Tag)
2231      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2232        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2233            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2234            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2235    else
2236      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2237    // Don't emit warnings after this error.
2238    return TagD;
2239  }
2240
2241  if (DS.isFriendSpecified()) {
2242    // If we're dealing with a decl but not a TagDecl, assume that
2243    // whatever routines created it handled the friendship aspect.
2244    if (TagD && !Tag)
2245      return 0;
2246    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2247  }
2248
2249  // Track whether we warned about the fact that there aren't any
2250  // declarators.
2251  bool emittedWarning = false;
2252
2253  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2254    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2255
2256    if (!Record->getDeclName() && Record->isDefinition() &&
2257        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2258      if (getLangOptions().CPlusPlus ||
2259          Record->getDeclContext()->isRecord())
2260        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2261
2262      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2263        << DS.getSourceRange();
2264      emittedWarning = true;
2265    }
2266  }
2267
2268  // Check for Microsoft C extension: anonymous struct.
2269  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2270      CurContext->isRecord() &&
2271      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2272    // Handle 2 kinds of anonymous struct:
2273    //   struct STRUCT;
2274    // and
2275    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2276    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2277    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2278        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2279         DS.getRepAsType().get()->isStructureType())) {
2280      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2281        << DS.getSourceRange();
2282      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2283    }
2284  }
2285
2286  if (getLangOptions().CPlusPlus &&
2287      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2288    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2289      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2290          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2291        Diag(Enum->getLocation(), diag::ext_no_declarators)
2292          << DS.getSourceRange();
2293        emittedWarning = true;
2294      }
2295
2296  // Skip all the checks below if we have a type error.
2297  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2298
2299  if (!DS.isMissingDeclaratorOk()) {
2300    // Warn about typedefs of enums without names, since this is an
2301    // extension in both Microsoft and GNU.
2302    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2303        Tag && isa<EnumDecl>(Tag)) {
2304      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2305        << DS.getSourceRange();
2306      return Tag;
2307    }
2308
2309    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2310      << DS.getSourceRange();
2311    emittedWarning = true;
2312  }
2313
2314  // We're going to complain about a bunch of spurious specifiers;
2315  // only do this if we're declaring a tag, because otherwise we
2316  // should be getting diag::ext_no_declarators.
2317  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2318    return TagD;
2319
2320  // Note that a linkage-specification sets a storage class, but
2321  // 'extern "C" struct foo;' is actually valid and not theoretically
2322  // useless.
2323  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2324    if (!DS.isExternInLinkageSpec())
2325      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2326        << DeclSpec::getSpecifierName(scs);
2327
2328  if (DS.isThreadSpecified())
2329    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2330  if (DS.getTypeQualifiers()) {
2331    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2332      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2333    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2334      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2335    // Restrict is covered above.
2336  }
2337  if (DS.isInlineSpecified())
2338    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2339  if (DS.isVirtualSpecified())
2340    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2341  if (DS.isExplicitSpecified())
2342    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2343
2344  // FIXME: Warn on useless attributes
2345
2346  return TagD;
2347}
2348
2349/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2350/// builds a statement for it and returns it so it is evaluated.
2351StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2352  StmtResult R;
2353  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2354    Expr *Exp = DS.getRepAsExpr();
2355    QualType Ty = Exp->getType();
2356    if (Ty->isPointerType()) {
2357      do
2358        Ty = Ty->getAs<PointerType>()->getPointeeType();
2359      while (Ty->isPointerType());
2360    }
2361    if (Ty->isVariableArrayType()) {
2362      R = ActOnExprStmt(MakeFullExpr(Exp));
2363    }
2364  }
2365  return R;
2366}
2367
2368/// We are trying to inject an anonymous member into the given scope;
2369/// check if there's an existing declaration that can't be overloaded.
2370///
2371/// \return true if this is a forbidden redeclaration
2372static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2373                                         Scope *S,
2374                                         DeclContext *Owner,
2375                                         DeclarationName Name,
2376                                         SourceLocation NameLoc,
2377                                         unsigned diagnostic) {
2378  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2379                 Sema::ForRedeclaration);
2380  if (!SemaRef.LookupName(R, S)) return false;
2381
2382  if (R.getAsSingle<TagDecl>())
2383    return false;
2384
2385  // Pick a representative declaration.
2386  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2387  assert(PrevDecl && "Expected a non-null Decl");
2388
2389  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2390    return false;
2391
2392  SemaRef.Diag(NameLoc, diagnostic) << Name;
2393  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2394
2395  return true;
2396}
2397
2398/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2399/// anonymous struct or union AnonRecord into the owning context Owner
2400/// and scope S. This routine will be invoked just after we realize
2401/// that an unnamed union or struct is actually an anonymous union or
2402/// struct, e.g.,
2403///
2404/// @code
2405/// union {
2406///   int i;
2407///   float f;
2408/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2409///    // f into the surrounding scope.x
2410/// @endcode
2411///
2412/// This routine is recursive, injecting the names of nested anonymous
2413/// structs/unions into the owning context and scope as well.
2414static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2415                                                DeclContext *Owner,
2416                                                RecordDecl *AnonRecord,
2417                                                AccessSpecifier AS,
2418                              SmallVector<NamedDecl*, 2> &Chaining,
2419                                                      bool MSAnonStruct) {
2420  unsigned diagKind
2421    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2422                            : diag::err_anonymous_struct_member_redecl;
2423
2424  bool Invalid = false;
2425
2426  // Look every FieldDecl and IndirectFieldDecl with a name.
2427  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2428                               DEnd = AnonRecord->decls_end();
2429       D != DEnd; ++D) {
2430    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2431        cast<NamedDecl>(*D)->getDeclName()) {
2432      ValueDecl *VD = cast<ValueDecl>(*D);
2433      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2434                                       VD->getLocation(), diagKind)) {
2435        // C++ [class.union]p2:
2436        //   The names of the members of an anonymous union shall be
2437        //   distinct from the names of any other entity in the
2438        //   scope in which the anonymous union is declared.
2439        Invalid = true;
2440      } else {
2441        // C++ [class.union]p2:
2442        //   For the purpose of name lookup, after the anonymous union
2443        //   definition, the members of the anonymous union are
2444        //   considered to have been defined in the scope in which the
2445        //   anonymous union is declared.
2446        unsigned OldChainingSize = Chaining.size();
2447        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2448          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2449               PE = IF->chain_end(); PI != PE; ++PI)
2450            Chaining.push_back(*PI);
2451        else
2452          Chaining.push_back(VD);
2453
2454        assert(Chaining.size() >= 2);
2455        NamedDecl **NamedChain =
2456          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2457        for (unsigned i = 0; i < Chaining.size(); i++)
2458          NamedChain[i] = Chaining[i];
2459
2460        IndirectFieldDecl* IndirectField =
2461          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2462                                    VD->getIdentifier(), VD->getType(),
2463                                    NamedChain, Chaining.size());
2464
2465        IndirectField->setAccess(AS);
2466        IndirectField->setImplicit();
2467        SemaRef.PushOnScopeChains(IndirectField, S);
2468
2469        // That includes picking up the appropriate access specifier.
2470        if (AS != AS_none) IndirectField->setAccess(AS);
2471
2472        Chaining.resize(OldChainingSize);
2473      }
2474    }
2475  }
2476
2477  return Invalid;
2478}
2479
2480/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2481/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2482/// illegal input values are mapped to SC_None.
2483static StorageClass
2484StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2485  switch (StorageClassSpec) {
2486  case DeclSpec::SCS_unspecified:    return SC_None;
2487  case DeclSpec::SCS_extern:         return SC_Extern;
2488  case DeclSpec::SCS_static:         return SC_Static;
2489  case DeclSpec::SCS_auto:           return SC_Auto;
2490  case DeclSpec::SCS_register:       return SC_Register;
2491  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2492    // Illegal SCSs map to None: error reporting is up to the caller.
2493  case DeclSpec::SCS_mutable:        // Fall through.
2494  case DeclSpec::SCS_typedef:        return SC_None;
2495  }
2496  llvm_unreachable("unknown storage class specifier");
2497}
2498
2499/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2500/// a StorageClass. Any error reporting is up to the caller:
2501/// illegal input values are mapped to SC_None.
2502static StorageClass
2503StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2504  switch (StorageClassSpec) {
2505  case DeclSpec::SCS_unspecified:    return SC_None;
2506  case DeclSpec::SCS_extern:         return SC_Extern;
2507  case DeclSpec::SCS_static:         return SC_Static;
2508  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2509    // Illegal SCSs map to None: error reporting is up to the caller.
2510  case DeclSpec::SCS_auto:           // Fall through.
2511  case DeclSpec::SCS_mutable:        // Fall through.
2512  case DeclSpec::SCS_register:       // Fall through.
2513  case DeclSpec::SCS_typedef:        return SC_None;
2514  }
2515  llvm_unreachable("unknown storage class specifier");
2516}
2517
2518/// BuildAnonymousStructOrUnion - Handle the declaration of an
2519/// anonymous structure or union. Anonymous unions are a C++ feature
2520/// (C++ [class.union]) and a GNU C extension; anonymous structures
2521/// are a GNU C and GNU C++ extension.
2522Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2523                                             AccessSpecifier AS,
2524                                             RecordDecl *Record) {
2525  DeclContext *Owner = Record->getDeclContext();
2526
2527  // Diagnose whether this anonymous struct/union is an extension.
2528  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2529    Diag(Record->getLocation(), diag::ext_anonymous_union);
2530  else if (!Record->isUnion())
2531    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2532
2533  // C and C++ require different kinds of checks for anonymous
2534  // structs/unions.
2535  bool Invalid = false;
2536  if (getLangOptions().CPlusPlus) {
2537    const char* PrevSpec = 0;
2538    unsigned DiagID;
2539    // C++ [class.union]p3:
2540    //   Anonymous unions declared in a named namespace or in the
2541    //   global namespace shall be declared static.
2542    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2543        (isa<TranslationUnitDecl>(Owner) ||
2544         (isa<NamespaceDecl>(Owner) &&
2545          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2546      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2547      Invalid = true;
2548
2549      // Recover by adding 'static'.
2550      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2551                             PrevSpec, DiagID, getLangOptions());
2552    }
2553    // C++ [class.union]p3:
2554    //   A storage class is not allowed in a declaration of an
2555    //   anonymous union in a class scope.
2556    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2557             isa<RecordDecl>(Owner)) {
2558      Diag(DS.getStorageClassSpecLoc(),
2559           diag::err_anonymous_union_with_storage_spec);
2560      Invalid = true;
2561
2562      // Recover by removing the storage specifier.
2563      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2564                             PrevSpec, DiagID, getLangOptions());
2565    }
2566
2567    // Ignore const/volatile/restrict qualifiers.
2568    if (DS.getTypeQualifiers()) {
2569      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2570        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2571          << Record->isUnion() << 0
2572          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2573      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2574        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2575          << Record->isUnion() << 1
2576          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2577      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2578        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2579          << Record->isUnion() << 2
2580          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2581
2582      DS.ClearTypeQualifiers();
2583    }
2584
2585    // C++ [class.union]p2:
2586    //   The member-specification of an anonymous union shall only
2587    //   define non-static data members. [Note: nested types and
2588    //   functions cannot be declared within an anonymous union. ]
2589    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2590                                 MemEnd = Record->decls_end();
2591         Mem != MemEnd; ++Mem) {
2592      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2593        // C++ [class.union]p3:
2594        //   An anonymous union shall not have private or protected
2595        //   members (clause 11).
2596        assert(FD->getAccess() != AS_none);
2597        if (FD->getAccess() != AS_public) {
2598          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2599            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2600          Invalid = true;
2601        }
2602
2603        // C++ [class.union]p1
2604        //   An object of a class with a non-trivial constructor, a non-trivial
2605        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2606        //   assignment operator cannot be a member of a union, nor can an
2607        //   array of such objects.
2608        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2609          Invalid = true;
2610      } else if ((*Mem)->isImplicit()) {
2611        // Any implicit members are fine.
2612      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2613        // This is a type that showed up in an
2614        // elaborated-type-specifier inside the anonymous struct or
2615        // union, but which actually declares a type outside of the
2616        // anonymous struct or union. It's okay.
2617      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2618        if (!MemRecord->isAnonymousStructOrUnion() &&
2619            MemRecord->getDeclName()) {
2620          // Visual C++ allows type definition in anonymous struct or union.
2621          if (getLangOptions().Microsoft)
2622            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2623              << (int)Record->isUnion();
2624          else {
2625            // This is a nested type declaration.
2626            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2627              << (int)Record->isUnion();
2628            Invalid = true;
2629          }
2630        }
2631      } else if (isa<AccessSpecDecl>(*Mem)) {
2632        // Any access specifier is fine.
2633      } else {
2634        // We have something that isn't a non-static data
2635        // member. Complain about it.
2636        unsigned DK = diag::err_anonymous_record_bad_member;
2637        if (isa<TypeDecl>(*Mem))
2638          DK = diag::err_anonymous_record_with_type;
2639        else if (isa<FunctionDecl>(*Mem))
2640          DK = diag::err_anonymous_record_with_function;
2641        else if (isa<VarDecl>(*Mem))
2642          DK = diag::err_anonymous_record_with_static;
2643
2644        // Visual C++ allows type definition in anonymous struct or union.
2645        if (getLangOptions().Microsoft &&
2646            DK == diag::err_anonymous_record_with_type)
2647          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2648            << (int)Record->isUnion();
2649        else {
2650          Diag((*Mem)->getLocation(), DK)
2651              << (int)Record->isUnion();
2652          Invalid = true;
2653        }
2654      }
2655    }
2656  }
2657
2658  if (!Record->isUnion() && !Owner->isRecord()) {
2659    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2660      << (int)getLangOptions().CPlusPlus;
2661    Invalid = true;
2662  }
2663
2664  // Mock up a declarator.
2665  Declarator Dc(DS, Declarator::MemberContext);
2666  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2667  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2668
2669  // Create a declaration for this anonymous struct/union.
2670  NamedDecl *Anon = 0;
2671  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2672    Anon = FieldDecl::Create(Context, OwningClass,
2673                             DS.getSourceRange().getBegin(),
2674                             Record->getLocation(),
2675                             /*IdentifierInfo=*/0,
2676                             Context.getTypeDeclType(Record),
2677                             TInfo,
2678                             /*BitWidth=*/0, /*Mutable=*/false,
2679                             /*HasInit=*/false);
2680    Anon->setAccess(AS);
2681    if (getLangOptions().CPlusPlus)
2682      FieldCollector->Add(cast<FieldDecl>(Anon));
2683  } else {
2684    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2685    assert(SCSpec != DeclSpec::SCS_typedef &&
2686           "Parser allowed 'typedef' as storage class VarDecl.");
2687    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2688    if (SCSpec == DeclSpec::SCS_mutable) {
2689      // mutable can only appear on non-static class members, so it's always
2690      // an error here
2691      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2692      Invalid = true;
2693      SC = SC_None;
2694    }
2695    SCSpec = DS.getStorageClassSpecAsWritten();
2696    VarDecl::StorageClass SCAsWritten
2697      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2698
2699    Anon = VarDecl::Create(Context, Owner,
2700                           DS.getSourceRange().getBegin(),
2701                           Record->getLocation(), /*IdentifierInfo=*/0,
2702                           Context.getTypeDeclType(Record),
2703                           TInfo, SC, SCAsWritten);
2704  }
2705  Anon->setImplicit();
2706
2707  // Add the anonymous struct/union object to the current
2708  // context. We'll be referencing this object when we refer to one of
2709  // its members.
2710  Owner->addDecl(Anon);
2711
2712  // Inject the members of the anonymous struct/union into the owning
2713  // context and into the identifier resolver chain for name lookup
2714  // purposes.
2715  SmallVector<NamedDecl*, 2> Chain;
2716  Chain.push_back(Anon);
2717
2718  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2719                                          Chain, false))
2720    Invalid = true;
2721
2722  // Mark this as an anonymous struct/union type. Note that we do not
2723  // do this until after we have already checked and injected the
2724  // members of this anonymous struct/union type, because otherwise
2725  // the members could be injected twice: once by DeclContext when it
2726  // builds its lookup table, and once by
2727  // InjectAnonymousStructOrUnionMembers.
2728  Record->setAnonymousStructOrUnion(true);
2729
2730  if (Invalid)
2731    Anon->setInvalidDecl();
2732
2733  return Anon;
2734}
2735
2736/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2737/// Microsoft C anonymous structure.
2738/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2739/// Example:
2740///
2741/// struct A { int a; };
2742/// struct B { struct A; int b; };
2743///
2744/// void foo() {
2745///   B var;
2746///   var.a = 3;
2747/// }
2748///
2749Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2750                                           RecordDecl *Record) {
2751
2752  // If there is no Record, get the record via the typedef.
2753  if (!Record)
2754    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2755
2756  // Mock up a declarator.
2757  Declarator Dc(DS, Declarator::TypeNameContext);
2758  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2759  assert(TInfo && "couldn't build declarator info for anonymous struct");
2760
2761  // Create a declaration for this anonymous struct.
2762  NamedDecl* Anon = FieldDecl::Create(Context,
2763                             cast<RecordDecl>(CurContext),
2764                             DS.getSourceRange().getBegin(),
2765                             DS.getSourceRange().getBegin(),
2766                             /*IdentifierInfo=*/0,
2767                             Context.getTypeDeclType(Record),
2768                             TInfo,
2769                             /*BitWidth=*/0, /*Mutable=*/false,
2770                             /*HasInit=*/false);
2771  Anon->setImplicit();
2772
2773  // Add the anonymous struct object to the current context.
2774  CurContext->addDecl(Anon);
2775
2776  // Inject the members of the anonymous struct into the current
2777  // context and into the identifier resolver chain for name lookup
2778  // purposes.
2779  SmallVector<NamedDecl*, 2> Chain;
2780  Chain.push_back(Anon);
2781
2782  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2783                                          Record->getDefinition(),
2784                                          AS_none, Chain, true))
2785    Anon->setInvalidDecl();
2786
2787  return Anon;
2788}
2789
2790/// GetNameForDeclarator - Determine the full declaration name for the
2791/// given Declarator.
2792DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2793  return GetNameFromUnqualifiedId(D.getName());
2794}
2795
2796/// \brief Retrieves the declaration name from a parsed unqualified-id.
2797DeclarationNameInfo
2798Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2799  DeclarationNameInfo NameInfo;
2800  NameInfo.setLoc(Name.StartLocation);
2801
2802  switch (Name.getKind()) {
2803
2804  case UnqualifiedId::IK_ImplicitSelfParam:
2805  case UnqualifiedId::IK_Identifier:
2806    NameInfo.setName(Name.Identifier);
2807    NameInfo.setLoc(Name.StartLocation);
2808    return NameInfo;
2809
2810  case UnqualifiedId::IK_OperatorFunctionId:
2811    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2812                                           Name.OperatorFunctionId.Operator));
2813    NameInfo.setLoc(Name.StartLocation);
2814    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2815      = Name.OperatorFunctionId.SymbolLocations[0];
2816    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2817      = Name.EndLocation.getRawEncoding();
2818    return NameInfo;
2819
2820  case UnqualifiedId::IK_LiteralOperatorId:
2821    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2822                                                           Name.Identifier));
2823    NameInfo.setLoc(Name.StartLocation);
2824    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2825    return NameInfo;
2826
2827  case UnqualifiedId::IK_ConversionFunctionId: {
2828    TypeSourceInfo *TInfo;
2829    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2830    if (Ty.isNull())
2831      return DeclarationNameInfo();
2832    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2833                                               Context.getCanonicalType(Ty)));
2834    NameInfo.setLoc(Name.StartLocation);
2835    NameInfo.setNamedTypeInfo(TInfo);
2836    return NameInfo;
2837  }
2838
2839  case UnqualifiedId::IK_ConstructorName: {
2840    TypeSourceInfo *TInfo;
2841    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2842    if (Ty.isNull())
2843      return DeclarationNameInfo();
2844    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2845                                              Context.getCanonicalType(Ty)));
2846    NameInfo.setLoc(Name.StartLocation);
2847    NameInfo.setNamedTypeInfo(TInfo);
2848    return NameInfo;
2849  }
2850
2851  case UnqualifiedId::IK_ConstructorTemplateId: {
2852    // In well-formed code, we can only have a constructor
2853    // template-id that refers to the current context, so go there
2854    // to find the actual type being constructed.
2855    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2856    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2857      return DeclarationNameInfo();
2858
2859    // Determine the type of the class being constructed.
2860    QualType CurClassType = Context.getTypeDeclType(CurClass);
2861
2862    // FIXME: Check two things: that the template-id names the same type as
2863    // CurClassType, and that the template-id does not occur when the name
2864    // was qualified.
2865
2866    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2867                                    Context.getCanonicalType(CurClassType)));
2868    NameInfo.setLoc(Name.StartLocation);
2869    // FIXME: should we retrieve TypeSourceInfo?
2870    NameInfo.setNamedTypeInfo(0);
2871    return NameInfo;
2872  }
2873
2874  case UnqualifiedId::IK_DestructorName: {
2875    TypeSourceInfo *TInfo;
2876    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2877    if (Ty.isNull())
2878      return DeclarationNameInfo();
2879    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2880                                              Context.getCanonicalType(Ty)));
2881    NameInfo.setLoc(Name.StartLocation);
2882    NameInfo.setNamedTypeInfo(TInfo);
2883    return NameInfo;
2884  }
2885
2886  case UnqualifiedId::IK_TemplateId: {
2887    TemplateName TName = Name.TemplateId->Template.get();
2888    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2889    return Context.getNameForTemplate(TName, TNameLoc);
2890  }
2891
2892  } // switch (Name.getKind())
2893
2894  assert(false && "Unknown name kind");
2895  return DeclarationNameInfo();
2896}
2897
2898static QualType getCoreType(QualType Ty) {
2899  do {
2900    if (Ty->isPointerType() || Ty->isReferenceType())
2901      Ty = Ty->getPointeeType();
2902    else if (Ty->isArrayType())
2903      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2904    else
2905      return Ty.withoutLocalFastQualifiers();
2906  } while (true);
2907}
2908
2909/// isNearlyMatchingFunction - Determine whether the C++ functions
2910/// Declaration and Definition are "nearly" matching. This heuristic
2911/// is used to improve diagnostics in the case where an out-of-line
2912/// function definition doesn't match any declaration within the class
2913/// or namespace. Also sets Params to the list of indices to the
2914/// parameters that differ between the declaration and the definition.
2915static bool isNearlyMatchingFunction(ASTContext &Context,
2916                                     FunctionDecl *Declaration,
2917                                     FunctionDecl *Definition,
2918                                     llvm::SmallVectorImpl<unsigned> &Params) {
2919  Params.clear();
2920  if (Declaration->param_size() != Definition->param_size())
2921    return false;
2922  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2923    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2924    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2925
2926    // The parameter types are identical
2927    if (DefParamTy == DeclParamTy)
2928      continue;
2929
2930    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2931    QualType DefParamBaseTy = getCoreType(DefParamTy);
2932    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2933    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2934
2935    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2936        (DeclTyName && DeclTyName == DefTyName))
2937      Params.push_back(Idx);
2938    else  // The two parameters aren't even close
2939      return false;
2940  }
2941
2942  return true;
2943}
2944
2945/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2946/// declarator needs to be rebuilt in the current instantiation.
2947/// Any bits of declarator which appear before the name are valid for
2948/// consideration here.  That's specifically the type in the decl spec
2949/// and the base type in any member-pointer chunks.
2950static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2951                                                    DeclarationName Name) {
2952  // The types we specifically need to rebuild are:
2953  //   - typenames, typeofs, and decltypes
2954  //   - types which will become injected class names
2955  // Of course, we also need to rebuild any type referencing such a
2956  // type.  It's safest to just say "dependent", but we call out a
2957  // few cases here.
2958
2959  DeclSpec &DS = D.getMutableDeclSpec();
2960  switch (DS.getTypeSpecType()) {
2961  case DeclSpec::TST_typename:
2962  case DeclSpec::TST_typeofType:
2963  case DeclSpec::TST_decltype:
2964  case DeclSpec::TST_underlyingType: {
2965    // Grab the type from the parser.
2966    TypeSourceInfo *TSI = 0;
2967    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2968    if (T.isNull() || !T->isDependentType()) break;
2969
2970    // Make sure there's a type source info.  This isn't really much
2971    // of a waste; most dependent types should have type source info
2972    // attached already.
2973    if (!TSI)
2974      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2975
2976    // Rebuild the type in the current instantiation.
2977    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2978    if (!TSI) return true;
2979
2980    // Store the new type back in the decl spec.
2981    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2982    DS.UpdateTypeRep(LocType);
2983    break;
2984  }
2985
2986  case DeclSpec::TST_typeofExpr: {
2987    Expr *E = DS.getRepAsExpr();
2988    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2989    if (Result.isInvalid()) return true;
2990    DS.UpdateExprRep(Result.get());
2991    break;
2992  }
2993
2994  default:
2995    // Nothing to do for these decl specs.
2996    break;
2997  }
2998
2999  // It doesn't matter what order we do this in.
3000  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3001    DeclaratorChunk &Chunk = D.getTypeObject(I);
3002
3003    // The only type information in the declarator which can come
3004    // before the declaration name is the base type of a member
3005    // pointer.
3006    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3007      continue;
3008
3009    // Rebuild the scope specifier in-place.
3010    CXXScopeSpec &SS = Chunk.Mem.Scope();
3011    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3012      return true;
3013  }
3014
3015  return false;
3016}
3017
3018Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3019  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3020                          /*IsFunctionDefinition=*/false);
3021}
3022
3023/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3024///   If T is the name of a class, then each of the following shall have a
3025///   name different from T:
3026///     - every static data member of class T;
3027///     - every member function of class T
3028///     - every member of class T that is itself a type;
3029/// \returns true if the declaration name violates these rules.
3030bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3031                                   DeclarationNameInfo NameInfo) {
3032  DeclarationName Name = NameInfo.getName();
3033
3034  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3035    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3036      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3037      return true;
3038    }
3039
3040  return false;
3041}
3042
3043Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3044                             MultiTemplateParamsArg TemplateParamLists,
3045                             bool IsFunctionDefinition) {
3046  // TODO: consider using NameInfo for diagnostic.
3047  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3048  DeclarationName Name = NameInfo.getName();
3049
3050  // All of these full declarators require an identifier.  If it doesn't have
3051  // one, the ParsedFreeStandingDeclSpec action should be used.
3052  if (!Name) {
3053    if (!D.isInvalidType())  // Reject this if we think it is valid.
3054      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3055           diag::err_declarator_need_ident)
3056        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3057    return 0;
3058  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3059    return 0;
3060
3061  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3062  // we find one that is.
3063  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3064         (S->getFlags() & Scope::TemplateParamScope) != 0)
3065    S = S->getParent();
3066
3067  DeclContext *DC = CurContext;
3068  if (D.getCXXScopeSpec().isInvalid())
3069    D.setInvalidType();
3070  else if (D.getCXXScopeSpec().isSet()) {
3071    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3072                                        UPPC_DeclarationQualifier))
3073      return 0;
3074
3075    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3076    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3077    if (!DC) {
3078      // If we could not compute the declaration context, it's because the
3079      // declaration context is dependent but does not refer to a class,
3080      // class template, or class template partial specialization. Complain
3081      // and return early, to avoid the coming semantic disaster.
3082      Diag(D.getIdentifierLoc(),
3083           diag::err_template_qualified_declarator_no_match)
3084        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3085        << D.getCXXScopeSpec().getRange();
3086      return 0;
3087    }
3088    bool IsDependentContext = DC->isDependentContext();
3089
3090    if (!IsDependentContext &&
3091        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3092      return 0;
3093
3094    if (isa<CXXRecordDecl>(DC)) {
3095      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3096        Diag(D.getIdentifierLoc(),
3097             diag::err_member_def_undefined_record)
3098          << Name << DC << D.getCXXScopeSpec().getRange();
3099        D.setInvalidType();
3100      } else if (isa<CXXRecordDecl>(CurContext) &&
3101                 !D.getDeclSpec().isFriendSpecified()) {
3102        // The user provided a superfluous scope specifier inside a class
3103        // definition:
3104        //
3105        // class X {
3106        //   void X::f();
3107        // };
3108        if (CurContext->Equals(DC))
3109          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3110            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3111        else
3112          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3113            << Name << D.getCXXScopeSpec().getRange();
3114
3115        // Pretend that this qualifier was not here.
3116        D.getCXXScopeSpec().clear();
3117      }
3118    }
3119
3120    // Check whether we need to rebuild the type of the given
3121    // declaration in the current instantiation.
3122    if (EnteringContext && IsDependentContext &&
3123        TemplateParamLists.size() != 0) {
3124      ContextRAII SavedContext(*this, DC);
3125      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3126        D.setInvalidType();
3127    }
3128  }
3129
3130  if (DiagnoseClassNameShadow(DC, NameInfo))
3131    // If this is a typedef, we'll end up spewing multiple diagnostics.
3132    // Just return early; it's safer.
3133    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3134      return 0;
3135
3136  NamedDecl *New;
3137
3138  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3139  QualType R = TInfo->getType();
3140
3141  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3142                                      UPPC_DeclarationType))
3143    D.setInvalidType();
3144
3145  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3146                        ForRedeclaration);
3147
3148  // See if this is a redefinition of a variable in the same scope.
3149  if (!D.getCXXScopeSpec().isSet()) {
3150    bool IsLinkageLookup = false;
3151
3152    // If the declaration we're planning to build will be a function
3153    // or object with linkage, then look for another declaration with
3154    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3155    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3156      /* Do nothing*/;
3157    else if (R->isFunctionType()) {
3158      if (CurContext->isFunctionOrMethod() ||
3159          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3160        IsLinkageLookup = true;
3161    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3162      IsLinkageLookup = true;
3163    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3164             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3165      IsLinkageLookup = true;
3166
3167    if (IsLinkageLookup)
3168      Previous.clear(LookupRedeclarationWithLinkage);
3169
3170    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3171  } else { // Something like "int foo::x;"
3172    LookupQualifiedName(Previous, DC);
3173
3174    // Don't consider using declarations as previous declarations for
3175    // out-of-line members.
3176    RemoveUsingDecls(Previous);
3177
3178    // C++ 7.3.1.2p2:
3179    // Members (including explicit specializations of templates) of a named
3180    // namespace can also be defined outside that namespace by explicit
3181    // qualification of the name being defined, provided that the entity being
3182    // defined was already declared in the namespace and the definition appears
3183    // after the point of declaration in a namespace that encloses the
3184    // declarations namespace.
3185    //
3186    // Note that we only check the context at this point. We don't yet
3187    // have enough information to make sure that PrevDecl is actually
3188    // the declaration we want to match. For example, given:
3189    //
3190    //   class X {
3191    //     void f();
3192    //     void f(float);
3193    //   };
3194    //
3195    //   void X::f(int) { } // ill-formed
3196    //
3197    // In this case, PrevDecl will point to the overload set
3198    // containing the two f's declared in X, but neither of them
3199    // matches.
3200
3201    // First check whether we named the global scope.
3202    if (isa<TranslationUnitDecl>(DC)) {
3203      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3204        << Name << D.getCXXScopeSpec().getRange();
3205    } else {
3206      DeclContext *Cur = CurContext;
3207      while (isa<LinkageSpecDecl>(Cur))
3208        Cur = Cur->getParent();
3209      if (!Cur->Encloses(DC)) {
3210        // The qualifying scope doesn't enclose the original declaration.
3211        // Emit diagnostic based on current scope.
3212        SourceLocation L = D.getIdentifierLoc();
3213        SourceRange R = D.getCXXScopeSpec().getRange();
3214        if (isa<FunctionDecl>(Cur))
3215          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3216        else
3217          Diag(L, diag::err_invalid_declarator_scope)
3218            << Name << cast<NamedDecl>(DC) << R;
3219        D.setInvalidType();
3220      }
3221    }
3222  }
3223
3224  if (Previous.isSingleResult() &&
3225      Previous.getFoundDecl()->isTemplateParameter()) {
3226    // Maybe we will complain about the shadowed template parameter.
3227    if (!D.isInvalidType())
3228      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3229                                          Previous.getFoundDecl()))
3230        D.setInvalidType();
3231
3232    // Just pretend that we didn't see the previous declaration.
3233    Previous.clear();
3234  }
3235
3236  // In C++, the previous declaration we find might be a tag type
3237  // (class or enum). In this case, the new declaration will hide the
3238  // tag type. Note that this does does not apply if we're declaring a
3239  // typedef (C++ [dcl.typedef]p4).
3240  if (Previous.isSingleTagDecl() &&
3241      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3242    Previous.clear();
3243
3244  bool Redeclaration = false;
3245  bool AddToScope = true;
3246  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3247    if (TemplateParamLists.size()) {
3248      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3249      return 0;
3250    }
3251
3252    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3253  } else if (R->isFunctionType()) {
3254    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3255                                  move(TemplateParamLists),
3256                                  IsFunctionDefinition, Redeclaration,
3257                                  AddToScope);
3258  } else {
3259    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3260                                  move(TemplateParamLists),
3261                                  Redeclaration);
3262  }
3263
3264  if (New == 0)
3265    return 0;
3266
3267  // If this has an identifier and is not an invalid redeclaration or
3268  // function template specialization, add it to the scope stack.
3269  if (New->getDeclName() && AddToScope &&
3270       !(Redeclaration && New->isInvalidDecl()))
3271    PushOnScopeChains(New, S);
3272
3273  return New;
3274}
3275
3276/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3277/// types into constant array types in certain situations which would otherwise
3278/// be errors (for GCC compatibility).
3279static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3280                                                    ASTContext &Context,
3281                                                    bool &SizeIsNegative,
3282                                                    llvm::APSInt &Oversized) {
3283  // This method tries to turn a variable array into a constant
3284  // array even when the size isn't an ICE.  This is necessary
3285  // for compatibility with code that depends on gcc's buggy
3286  // constant expression folding, like struct {char x[(int)(char*)2];}
3287  SizeIsNegative = false;
3288  Oversized = 0;
3289
3290  if (T->isDependentType())
3291    return QualType();
3292
3293  QualifierCollector Qs;
3294  const Type *Ty = Qs.strip(T);
3295
3296  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3297    QualType Pointee = PTy->getPointeeType();
3298    QualType FixedType =
3299        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3300                                            Oversized);
3301    if (FixedType.isNull()) return FixedType;
3302    FixedType = Context.getPointerType(FixedType);
3303    return Qs.apply(Context, FixedType);
3304  }
3305  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3306    QualType Inner = PTy->getInnerType();
3307    QualType FixedType =
3308        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3309                                            Oversized);
3310    if (FixedType.isNull()) return FixedType;
3311    FixedType = Context.getParenType(FixedType);
3312    return Qs.apply(Context, FixedType);
3313  }
3314
3315  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3316  if (!VLATy)
3317    return QualType();
3318  // FIXME: We should probably handle this case
3319  if (VLATy->getElementType()->isVariablyModifiedType())
3320    return QualType();
3321
3322  Expr::EvalResult EvalResult;
3323  if (!VLATy->getSizeExpr() ||
3324      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3325      !EvalResult.Val.isInt())
3326    return QualType();
3327
3328  // Check whether the array size is negative.
3329  llvm::APSInt &Res = EvalResult.Val.getInt();
3330  if (Res.isSigned() && Res.isNegative()) {
3331    SizeIsNegative = true;
3332    return QualType();
3333  }
3334
3335  // Check whether the array is too large to be addressed.
3336  unsigned ActiveSizeBits
3337    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3338                                              Res);
3339  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3340    Oversized = Res;
3341    return QualType();
3342  }
3343
3344  return Context.getConstantArrayType(VLATy->getElementType(),
3345                                      Res, ArrayType::Normal, 0);
3346}
3347
3348/// \brief Register the given locally-scoped external C declaration so
3349/// that it can be found later for redeclarations
3350void
3351Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3352                                       const LookupResult &Previous,
3353                                       Scope *S) {
3354  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3355         "Decl is not a locally-scoped decl!");
3356  // Note that we have a locally-scoped external with this name.
3357  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3358
3359  if (!Previous.isSingleResult())
3360    return;
3361
3362  NamedDecl *PrevDecl = Previous.getFoundDecl();
3363
3364  // If there was a previous declaration of this variable, it may be
3365  // in our identifier chain. Update the identifier chain with the new
3366  // declaration.
3367  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3368    // The previous declaration was found on the identifer resolver
3369    // chain, so remove it from its scope.
3370
3371    if (S->isDeclScope(PrevDecl)) {
3372      // Special case for redeclarations in the SAME scope.
3373      // Because this declaration is going to be added to the identifier chain
3374      // later, we should temporarily take it OFF the chain.
3375      IdResolver.RemoveDecl(ND);
3376
3377    } else {
3378      // Find the scope for the original declaration.
3379      while (S && !S->isDeclScope(PrevDecl))
3380        S = S->getParent();
3381    }
3382
3383    if (S)
3384      S->RemoveDecl(PrevDecl);
3385  }
3386}
3387
3388llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3389Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3390  if (ExternalSource) {
3391    // Load locally-scoped external decls from the external source.
3392    SmallVector<NamedDecl *, 4> Decls;
3393    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3394    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3395      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3396        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3397      if (Pos == LocallyScopedExternalDecls.end())
3398        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3399    }
3400  }
3401
3402  return LocallyScopedExternalDecls.find(Name);
3403}
3404
3405/// \brief Diagnose function specifiers on a declaration of an identifier that
3406/// does not identify a function.
3407void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3408  // FIXME: We should probably indicate the identifier in question to avoid
3409  // confusion for constructs like "inline int a(), b;"
3410  if (D.getDeclSpec().isInlineSpecified())
3411    Diag(D.getDeclSpec().getInlineSpecLoc(),
3412         diag::err_inline_non_function);
3413
3414  if (D.getDeclSpec().isVirtualSpecified())
3415    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3416         diag::err_virtual_non_function);
3417
3418  if (D.getDeclSpec().isExplicitSpecified())
3419    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3420         diag::err_explicit_non_function);
3421}
3422
3423NamedDecl*
3424Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3425                             QualType R,  TypeSourceInfo *TInfo,
3426                             LookupResult &Previous, bool &Redeclaration) {
3427  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3428  if (D.getCXXScopeSpec().isSet()) {
3429    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3430      << D.getCXXScopeSpec().getRange();
3431    D.setInvalidType();
3432    // Pretend we didn't see the scope specifier.
3433    DC = CurContext;
3434    Previous.clear();
3435  }
3436
3437  if (getLangOptions().CPlusPlus) {
3438    // Check that there are no default arguments (C++ only).
3439    CheckExtraCXXDefaultArguments(D);
3440  }
3441
3442  DiagnoseFunctionSpecifiers(D);
3443
3444  if (D.getDeclSpec().isThreadSpecified())
3445    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3446  if (D.getDeclSpec().isConstexprSpecified())
3447    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3448      << 1;
3449
3450  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3451    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3452      << D.getName().getSourceRange();
3453    return 0;
3454  }
3455
3456  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3457  if (!NewTD) return 0;
3458
3459  // Handle attributes prior to checking for duplicates in MergeVarDecl
3460  ProcessDeclAttributes(S, NewTD, D);
3461
3462  CheckTypedefForVariablyModifiedType(S, NewTD);
3463
3464  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3465}
3466
3467void
3468Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3469  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3470  // then it shall have block scope.
3471  // Note that variably modified types must be fixed before merging the decl so
3472  // that redeclarations will match.
3473  QualType T = NewTD->getUnderlyingType();
3474  if (T->isVariablyModifiedType()) {
3475    getCurFunction()->setHasBranchProtectedScope();
3476
3477    if (S->getFnParent() == 0) {
3478      bool SizeIsNegative;
3479      llvm::APSInt Oversized;
3480      QualType FixedTy =
3481          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3482                                              Oversized);
3483      if (!FixedTy.isNull()) {
3484        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3485        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3486      } else {
3487        if (SizeIsNegative)
3488          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3489        else if (T->isVariableArrayType())
3490          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3491        else if (Oversized.getBoolValue())
3492          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3493        else
3494          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3495        NewTD->setInvalidDecl();
3496      }
3497    }
3498  }
3499}
3500
3501
3502/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3503/// declares a typedef-name, either using the 'typedef' type specifier or via
3504/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3505NamedDecl*
3506Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3507                           LookupResult &Previous, bool &Redeclaration) {
3508  // Merge the decl with the existing one if appropriate. If the decl is
3509  // in an outer scope, it isn't the same thing.
3510  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3511                       /*ExplicitInstantiationOrSpecialization=*/false);
3512  if (!Previous.empty()) {
3513    Redeclaration = true;
3514    MergeTypedefNameDecl(NewTD, Previous);
3515  }
3516
3517  // If this is the C FILE type, notify the AST context.
3518  if (IdentifierInfo *II = NewTD->getIdentifier())
3519    if (!NewTD->isInvalidDecl() &&
3520        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3521      if (II->isStr("FILE"))
3522        Context.setFILEDecl(NewTD);
3523      else if (II->isStr("jmp_buf"))
3524        Context.setjmp_bufDecl(NewTD);
3525      else if (II->isStr("sigjmp_buf"))
3526        Context.setsigjmp_bufDecl(NewTD);
3527      else if (II->isStr("__builtin_va_list"))
3528        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3529    }
3530
3531  return NewTD;
3532}
3533
3534/// \brief Determines whether the given declaration is an out-of-scope
3535/// previous declaration.
3536///
3537/// This routine should be invoked when name lookup has found a
3538/// previous declaration (PrevDecl) that is not in the scope where a
3539/// new declaration by the same name is being introduced. If the new
3540/// declaration occurs in a local scope, previous declarations with
3541/// linkage may still be considered previous declarations (C99
3542/// 6.2.2p4-5, C++ [basic.link]p6).
3543///
3544/// \param PrevDecl the previous declaration found by name
3545/// lookup
3546///
3547/// \param DC the context in which the new declaration is being
3548/// declared.
3549///
3550/// \returns true if PrevDecl is an out-of-scope previous declaration
3551/// for a new delcaration with the same name.
3552static bool
3553isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3554                                ASTContext &Context) {
3555  if (!PrevDecl)
3556    return false;
3557
3558  if (!PrevDecl->hasLinkage())
3559    return false;
3560
3561  if (Context.getLangOptions().CPlusPlus) {
3562    // C++ [basic.link]p6:
3563    //   If there is a visible declaration of an entity with linkage
3564    //   having the same name and type, ignoring entities declared
3565    //   outside the innermost enclosing namespace scope, the block
3566    //   scope declaration declares that same entity and receives the
3567    //   linkage of the previous declaration.
3568    DeclContext *OuterContext = DC->getRedeclContext();
3569    if (!OuterContext->isFunctionOrMethod())
3570      // This rule only applies to block-scope declarations.
3571      return false;
3572
3573    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3574    if (PrevOuterContext->isRecord())
3575      // We found a member function: ignore it.
3576      return false;
3577
3578    // Find the innermost enclosing namespace for the new and
3579    // previous declarations.
3580    OuterContext = OuterContext->getEnclosingNamespaceContext();
3581    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3582
3583    // The previous declaration is in a different namespace, so it
3584    // isn't the same function.
3585    if (!OuterContext->Equals(PrevOuterContext))
3586      return false;
3587  }
3588
3589  return true;
3590}
3591
3592static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3593  CXXScopeSpec &SS = D.getCXXScopeSpec();
3594  if (!SS.isSet()) return;
3595  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3596}
3597
3598bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3599  QualType type = decl->getType();
3600  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3601  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3602    // Various kinds of declaration aren't allowed to be __autoreleasing.
3603    unsigned kind = -1U;
3604    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3605      if (var->hasAttr<BlocksAttr>())
3606        kind = 0; // __block
3607      else if (!var->hasLocalStorage())
3608        kind = 1; // global
3609    } else if (isa<ObjCIvarDecl>(decl)) {
3610      kind = 3; // ivar
3611    } else if (isa<FieldDecl>(decl)) {
3612      kind = 2; // field
3613    }
3614
3615    if (kind != -1U) {
3616      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3617        << kind;
3618    }
3619  } else if (lifetime == Qualifiers::OCL_None) {
3620    // Try to infer lifetime.
3621    if (!type->isObjCLifetimeType())
3622      return false;
3623
3624    lifetime = type->getObjCARCImplicitLifetime();
3625    type = Context.getLifetimeQualifiedType(type, lifetime);
3626    decl->setType(type);
3627  }
3628
3629  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3630    // Thread-local variables cannot have lifetime.
3631    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3632        var->isThreadSpecified()) {
3633      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3634        << var->getType();
3635      return true;
3636    }
3637  }
3638
3639  return false;
3640}
3641
3642NamedDecl*
3643Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3644                              QualType R, TypeSourceInfo *TInfo,
3645                              LookupResult &Previous,
3646                              MultiTemplateParamsArg TemplateParamLists,
3647                              bool &Redeclaration) {
3648  DeclarationName Name = GetNameForDeclarator(D).getName();
3649
3650  // Check that there are no default arguments (C++ only).
3651  if (getLangOptions().CPlusPlus)
3652    CheckExtraCXXDefaultArguments(D);
3653
3654  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3655  assert(SCSpec != DeclSpec::SCS_typedef &&
3656         "Parser allowed 'typedef' as storage class VarDecl.");
3657  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3658  if (SCSpec == DeclSpec::SCS_mutable) {
3659    // mutable can only appear on non-static class members, so it's always
3660    // an error here
3661    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3662    D.setInvalidType();
3663    SC = SC_None;
3664  }
3665  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3666  VarDecl::StorageClass SCAsWritten
3667    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3668
3669  IdentifierInfo *II = Name.getAsIdentifierInfo();
3670  if (!II) {
3671    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3672      << Name.getAsString();
3673    return 0;
3674  }
3675
3676  DiagnoseFunctionSpecifiers(D);
3677
3678  if (!DC->isRecord() && S->getFnParent() == 0) {
3679    // C99 6.9p2: The storage-class specifiers auto and register shall not
3680    // appear in the declaration specifiers in an external declaration.
3681    if (SC == SC_Auto || SC == SC_Register) {
3682
3683      // If this is a register variable with an asm label specified, then this
3684      // is a GNU extension.
3685      if (SC == SC_Register && D.getAsmLabel())
3686        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3687      else
3688        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3689      D.setInvalidType();
3690    }
3691  }
3692
3693  bool isExplicitSpecialization = false;
3694  VarDecl *NewVD;
3695  if (!getLangOptions().CPlusPlus) {
3696    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3697                            D.getIdentifierLoc(), II,
3698                            R, TInfo, SC, SCAsWritten);
3699
3700    if (D.isInvalidType())
3701      NewVD->setInvalidDecl();
3702  } else {
3703    if (DC->isRecord() && !CurContext->isRecord()) {
3704      // This is an out-of-line definition of a static data member.
3705      if (SC == SC_Static) {
3706        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3707             diag::err_static_out_of_line)
3708          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3709      } else if (SC == SC_None)
3710        SC = SC_Static;
3711    }
3712    if (SC == SC_Static) {
3713      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3714        if (RD->isLocalClass())
3715          Diag(D.getIdentifierLoc(),
3716               diag::err_static_data_member_not_allowed_in_local_class)
3717            << Name << RD->getDeclName();
3718
3719        // C++ [class.union]p1: If a union contains a static data member,
3720        // the program is ill-formed.
3721        //
3722        // We also disallow static data members in anonymous structs.
3723        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3724          Diag(D.getIdentifierLoc(),
3725               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3726            << Name << RD->isUnion();
3727      }
3728    }
3729
3730    // Match up the template parameter lists with the scope specifier, then
3731    // determine whether we have a template or a template specialization.
3732    isExplicitSpecialization = false;
3733    bool Invalid = false;
3734    if (TemplateParameterList *TemplateParams
3735        = MatchTemplateParametersToScopeSpecifier(
3736                                  D.getDeclSpec().getSourceRange().getBegin(),
3737                                                  D.getIdentifierLoc(),
3738                                                  D.getCXXScopeSpec(),
3739                                                  TemplateParamLists.get(),
3740                                                  TemplateParamLists.size(),
3741                                                  /*never a friend*/ false,
3742                                                  isExplicitSpecialization,
3743                                                  Invalid)) {
3744      if (TemplateParams->size() > 0) {
3745        // There is no such thing as a variable template.
3746        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3747          << II
3748          << SourceRange(TemplateParams->getTemplateLoc(),
3749                         TemplateParams->getRAngleLoc());
3750        return 0;
3751      } else {
3752        // There is an extraneous 'template<>' for this variable. Complain
3753        // about it, but allow the declaration of the variable.
3754        Diag(TemplateParams->getTemplateLoc(),
3755             diag::err_template_variable_noparams)
3756          << II
3757          << SourceRange(TemplateParams->getTemplateLoc(),
3758                         TemplateParams->getRAngleLoc());
3759      }
3760    }
3761
3762    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3763                            D.getIdentifierLoc(), II,
3764                            R, TInfo, SC, SCAsWritten);
3765
3766    // If this decl has an auto type in need of deduction, make a note of the
3767    // Decl so we can diagnose uses of it in its own initializer.
3768    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3769        R->getContainedAutoType())
3770      ParsingInitForAutoVars.insert(NewVD);
3771
3772    if (D.isInvalidType() || Invalid)
3773      NewVD->setInvalidDecl();
3774
3775    SetNestedNameSpecifier(NewVD, D);
3776
3777    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3778      NewVD->setTemplateParameterListsInfo(Context,
3779                                           TemplateParamLists.size(),
3780                                           TemplateParamLists.release());
3781    }
3782
3783    if (D.getDeclSpec().isConstexprSpecified()) {
3784      // FIXME: check this is a valid use of constexpr.
3785      NewVD->setConstexpr(true);
3786    }
3787  }
3788
3789  if (D.getDeclSpec().isThreadSpecified()) {
3790    if (NewVD->hasLocalStorage())
3791      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3792    else if (!Context.Target.isTLSSupported())
3793      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3794    else
3795      NewVD->setThreadSpecified(true);
3796  }
3797
3798  // Set the lexical context. If the declarator has a C++ scope specifier, the
3799  // lexical context will be different from the semantic context.
3800  NewVD->setLexicalDeclContext(CurContext);
3801
3802  // Handle attributes prior to checking for duplicates in MergeVarDecl
3803  ProcessDeclAttributes(S, NewVD, D);
3804
3805  // In auto-retain/release, infer strong retension for variables of
3806  // retainable type.
3807  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3808    NewVD->setInvalidDecl();
3809
3810  // Handle GNU asm-label extension (encoded as an attribute).
3811  if (Expr *E = (Expr*)D.getAsmLabel()) {
3812    // The parser guarantees this is a string.
3813    StringLiteral *SE = cast<StringLiteral>(E);
3814    StringRef Label = SE->getString();
3815    if (S->getFnParent() != 0) {
3816      switch (SC) {
3817      case SC_None:
3818      case SC_Auto:
3819        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3820        break;
3821      case SC_Register:
3822        if (!Context.Target.isValidGCCRegisterName(Label))
3823          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3824        break;
3825      case SC_Static:
3826      case SC_Extern:
3827      case SC_PrivateExtern:
3828        break;
3829      }
3830    }
3831
3832    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3833                                                Context, Label));
3834  }
3835
3836  // Diagnose shadowed variables before filtering for scope.
3837  if (!D.getCXXScopeSpec().isSet())
3838    CheckShadow(S, NewVD, Previous);
3839
3840  // Don't consider existing declarations that are in a different
3841  // scope and are out-of-semantic-context declarations (if the new
3842  // declaration has linkage).
3843  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3844                       isExplicitSpecialization);
3845
3846  if (!getLangOptions().CPlusPlus)
3847    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3848  else {
3849    // Merge the decl with the existing one if appropriate.
3850    if (!Previous.empty()) {
3851      if (Previous.isSingleResult() &&
3852          isa<FieldDecl>(Previous.getFoundDecl()) &&
3853          D.getCXXScopeSpec().isSet()) {
3854        // The user tried to define a non-static data member
3855        // out-of-line (C++ [dcl.meaning]p1).
3856        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3857          << D.getCXXScopeSpec().getRange();
3858        Previous.clear();
3859        NewVD->setInvalidDecl();
3860      }
3861    } else if (D.getCXXScopeSpec().isSet()) {
3862      // No previous declaration in the qualifying scope.
3863      Diag(D.getIdentifierLoc(), diag::err_no_member)
3864        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3865        << D.getCXXScopeSpec().getRange();
3866      NewVD->setInvalidDecl();
3867    }
3868
3869    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3870
3871    // This is an explicit specialization of a static data member. Check it.
3872    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3873        CheckMemberSpecialization(NewVD, Previous))
3874      NewVD->setInvalidDecl();
3875  }
3876
3877  // attributes declared post-definition are currently ignored
3878  // FIXME: This should be handled in attribute merging, not
3879  // here.
3880  if (Previous.isSingleResult()) {
3881    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3882    if (Def && (Def = Def->getDefinition()) &&
3883        Def != NewVD && D.hasAttributes()) {
3884      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3885      Diag(Def->getLocation(), diag::note_previous_definition);
3886    }
3887  }
3888
3889  // If this is a locally-scoped extern C variable, update the map of
3890  // such variables.
3891  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3892      !NewVD->isInvalidDecl())
3893    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3894
3895  // If there's a #pragma GCC visibility in scope, and this isn't a class
3896  // member, set the visibility of this variable.
3897  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3898    AddPushedVisibilityAttribute(NewVD);
3899
3900  MarkUnusedFileScopedDecl(NewVD);
3901
3902  return NewVD;
3903}
3904
3905/// \brief Diagnose variable or built-in function shadowing.  Implements
3906/// -Wshadow.
3907///
3908/// This method is called whenever a VarDecl is added to a "useful"
3909/// scope.
3910///
3911/// \param S the scope in which the shadowing name is being declared
3912/// \param R the lookup of the name
3913///
3914void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3915  // Return if warning is ignored.
3916  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3917        Diagnostic::Ignored)
3918    return;
3919
3920  // Don't diagnose declarations at file scope.
3921  if (D->hasGlobalStorage())
3922    return;
3923
3924  DeclContext *NewDC = D->getDeclContext();
3925
3926  // Only diagnose if we're shadowing an unambiguous field or variable.
3927  if (R.getResultKind() != LookupResult::Found)
3928    return;
3929
3930  NamedDecl* ShadowedDecl = R.getFoundDecl();
3931  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3932    return;
3933
3934  // Fields are not shadowed by variables in C++ static methods.
3935  if (isa<FieldDecl>(ShadowedDecl))
3936    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3937      if (MD->isStatic())
3938        return;
3939
3940  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3941    if (shadowedVar->isExternC()) {
3942      // For shadowing external vars, make sure that we point to the global
3943      // declaration, not a locally scoped extern declaration.
3944      for (VarDecl::redecl_iterator
3945             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3946           I != E; ++I)
3947        if (I->isFileVarDecl()) {
3948          ShadowedDecl = *I;
3949          break;
3950        }
3951    }
3952
3953  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3954
3955  // Only warn about certain kinds of shadowing for class members.
3956  if (NewDC && NewDC->isRecord()) {
3957    // In particular, don't warn about shadowing non-class members.
3958    if (!OldDC->isRecord())
3959      return;
3960
3961    // TODO: should we warn about static data members shadowing
3962    // static data members from base classes?
3963
3964    // TODO: don't diagnose for inaccessible shadowed members.
3965    // This is hard to do perfectly because we might friend the
3966    // shadowing context, but that's just a false negative.
3967  }
3968
3969  // Determine what kind of declaration we're shadowing.
3970  unsigned Kind;
3971  if (isa<RecordDecl>(OldDC)) {
3972    if (isa<FieldDecl>(ShadowedDecl))
3973      Kind = 3; // field
3974    else
3975      Kind = 2; // static data member
3976  } else if (OldDC->isFileContext())
3977    Kind = 1; // global
3978  else
3979    Kind = 0; // local
3980
3981  DeclarationName Name = R.getLookupName();
3982
3983  // Emit warning and note.
3984  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3985  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3986}
3987
3988/// \brief Check -Wshadow without the advantage of a previous lookup.
3989void Sema::CheckShadow(Scope *S, VarDecl *D) {
3990  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3991        Diagnostic::Ignored)
3992    return;
3993
3994  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3995                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3996  LookupName(R, S);
3997  CheckShadow(S, D, R);
3998}
3999
4000/// \brief Perform semantic checking on a newly-created variable
4001/// declaration.
4002///
4003/// This routine performs all of the type-checking required for a
4004/// variable declaration once it has been built. It is used both to
4005/// check variables after they have been parsed and their declarators
4006/// have been translated into a declaration, and to check variables
4007/// that have been instantiated from a template.
4008///
4009/// Sets NewVD->isInvalidDecl() if an error was encountered.
4010void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4011                                    LookupResult &Previous,
4012                                    bool &Redeclaration) {
4013  // If the decl is already known invalid, don't check it.
4014  if (NewVD->isInvalidDecl())
4015    return;
4016
4017  QualType T = NewVD->getType();
4018
4019  if (T->isObjCObjectType()) {
4020    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4021      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4022    T = Context.getObjCObjectPointerType(T);
4023    NewVD->setType(T);
4024  }
4025
4026  // Emit an error if an address space was applied to decl with local storage.
4027  // This includes arrays of objects with address space qualifiers, but not
4028  // automatic variables that point to other address spaces.
4029  // ISO/IEC TR 18037 S5.1.2
4030  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4031    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4032    return NewVD->setInvalidDecl();
4033  }
4034
4035  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4036      && !NewVD->hasAttr<BlocksAttr>()) {
4037    if (getLangOptions().getGCMode() != LangOptions::NonGC)
4038      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4039    else
4040      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4041  }
4042
4043  bool isVM = T->isVariablyModifiedType();
4044  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4045      NewVD->hasAttr<BlocksAttr>())
4046    getCurFunction()->setHasBranchProtectedScope();
4047
4048  if ((isVM && NewVD->hasLinkage()) ||
4049      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4050    bool SizeIsNegative;
4051    llvm::APSInt Oversized;
4052    QualType FixedTy =
4053        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4054                                            Oversized);
4055
4056    if (FixedTy.isNull() && T->isVariableArrayType()) {
4057      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4058      // FIXME: This won't give the correct result for
4059      // int a[10][n];
4060      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4061
4062      if (NewVD->isFileVarDecl())
4063        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4064        << SizeRange;
4065      else if (NewVD->getStorageClass() == SC_Static)
4066        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4067        << SizeRange;
4068      else
4069        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4070        << SizeRange;
4071      return NewVD->setInvalidDecl();
4072    }
4073
4074    if (FixedTy.isNull()) {
4075      if (NewVD->isFileVarDecl())
4076        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4077      else
4078        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4079      return NewVD->setInvalidDecl();
4080    }
4081
4082    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4083    NewVD->setType(FixedTy);
4084  }
4085
4086  if (Previous.empty() && NewVD->isExternC()) {
4087    // Since we did not find anything by this name and we're declaring
4088    // an extern "C" variable, look for a non-visible extern "C"
4089    // declaration with the same name.
4090    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4091      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4092    if (Pos != LocallyScopedExternalDecls.end())
4093      Previous.addDecl(Pos->second);
4094  }
4095
4096  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4097    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4098      << T;
4099    return NewVD->setInvalidDecl();
4100  }
4101
4102  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4103    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4104    return NewVD->setInvalidDecl();
4105  }
4106
4107  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4108    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4109    return NewVD->setInvalidDecl();
4110  }
4111
4112  // Function pointers and references cannot have qualified function type, only
4113  // function pointer-to-members can do that.
4114  QualType Pointee;
4115  unsigned PtrOrRef = 0;
4116  if (const PointerType *Ptr = T->getAs<PointerType>())
4117    Pointee = Ptr->getPointeeType();
4118  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4119    Pointee = Ref->getPointeeType();
4120    PtrOrRef = 1;
4121  }
4122  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4123      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4124    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4125        << PtrOrRef;
4126    return NewVD->setInvalidDecl();
4127  }
4128
4129  if (!Previous.empty()) {
4130    Redeclaration = true;
4131    MergeVarDecl(NewVD, Previous);
4132  }
4133}
4134
4135/// \brief Data used with FindOverriddenMethod
4136struct FindOverriddenMethodData {
4137  Sema *S;
4138  CXXMethodDecl *Method;
4139};
4140
4141/// \brief Member lookup function that determines whether a given C++
4142/// method overrides a method in a base class, to be used with
4143/// CXXRecordDecl::lookupInBases().
4144static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4145                                 CXXBasePath &Path,
4146                                 void *UserData) {
4147  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4148
4149  FindOverriddenMethodData *Data
4150    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4151
4152  DeclarationName Name = Data->Method->getDeclName();
4153
4154  // FIXME: Do we care about other names here too?
4155  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4156    // We really want to find the base class destructor here.
4157    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4158    CanQualType CT = Data->S->Context.getCanonicalType(T);
4159
4160    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4161  }
4162
4163  for (Path.Decls = BaseRecord->lookup(Name);
4164       Path.Decls.first != Path.Decls.second;
4165       ++Path.Decls.first) {
4166    NamedDecl *D = *Path.Decls.first;
4167    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4168      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4169        return true;
4170    }
4171  }
4172
4173  return false;
4174}
4175
4176/// AddOverriddenMethods - See if a method overrides any in the base classes,
4177/// and if so, check that it's a valid override and remember it.
4178bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4179  // Look for virtual methods in base classes that this method might override.
4180  CXXBasePaths Paths;
4181  FindOverriddenMethodData Data;
4182  Data.Method = MD;
4183  Data.S = this;
4184  bool AddedAny = false;
4185  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4186    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4187         E = Paths.found_decls_end(); I != E; ++I) {
4188      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4189        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4190        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4191            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4192            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4193          AddedAny = true;
4194        }
4195      }
4196    }
4197  }
4198
4199  return AddedAny;
4200}
4201
4202static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4203                                         bool isFriendDecl) {
4204  DeclarationName Name = NewFD->getDeclName();
4205  DeclContext *DC = NewFD->getDeclContext();
4206  LookupResult Prev(S, Name, NewFD->getLocation(),
4207                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4208  llvm::SmallVector<unsigned, 1> MismatchedParams;
4209  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4210  TypoCorrection Correction;
4211  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4212                                  : diag::err_member_def_does_not_match;
4213
4214  NewFD->setInvalidDecl();
4215  S.LookupQualifiedName(Prev, DC);
4216  assert(!Prev.isAmbiguous() &&
4217         "Cannot have an ambiguity in previous-declaration lookup");
4218  if (!Prev.empty()) {
4219    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4220         Func != FuncEnd; ++Func) {
4221      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4222      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4223                                         MismatchedParams)) {
4224        // Add 1 to the index so that 0 can mean the mismatch didn't
4225        // involve a parameter
4226        unsigned ParamNum =
4227            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4228        NearMatches.push_back(std::make_pair(FD, ParamNum));
4229      }
4230    }
4231  // If the qualified name lookup yielded nothing, try typo correction
4232  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4233                                         Prev.getLookupKind(), 0, 0, DC)) &&
4234             Correction.getCorrection() != Name) {
4235    DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4236                           : diag::err_member_def_does_not_match_suggest;
4237    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4238                                    CDeclEnd = Correction.end();
4239         CDecl != CDeclEnd; ++CDecl) {
4240      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4241      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4242                                         MismatchedParams)) {
4243        // Add 1 to the index so that 0 can mean the mismatch didn't
4244        // involve a parameter
4245        unsigned ParamNum =
4246            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4247        NearMatches.push_back(std::make_pair(FD, ParamNum));
4248      }
4249    }
4250  }
4251
4252  if (Correction)
4253    S.Diag(NewFD->getLocation(), DiagMsg)
4254        << Name << DC << Correction.getQuoted(S.getLangOptions())
4255        << FixItHint::CreateReplacement(
4256            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4257  else
4258    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4259
4260  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4261       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4262       NearMatch != NearMatchEnd; ++NearMatch) {
4263    FunctionDecl *FD = NearMatch->first;
4264
4265    if (unsigned Idx = NearMatch->second) {
4266      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4267      S.Diag(FDParam->getTypeSpecStartLoc(),
4268             diag::note_member_def_close_param_match)
4269          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4270    } else if (Correction) {
4271      S.Diag(FD->getLocation(), diag::note_previous_decl)
4272        << Correction.getQuoted(S.getLangOptions());
4273    } else
4274      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4275  }
4276}
4277
4278NamedDecl*
4279Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4280                              QualType R, TypeSourceInfo *TInfo,
4281                              LookupResult &Previous,
4282                              MultiTemplateParamsArg TemplateParamLists,
4283                              bool IsFunctionDefinition, bool &Redeclaration,
4284                              bool &AddToScope) {
4285  assert(R.getTypePtr()->isFunctionType());
4286
4287  // TODO: consider using NameInfo for diagnostic.
4288  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4289  DeclarationName Name = NameInfo.getName();
4290  FunctionDecl::StorageClass SC = SC_None;
4291  switch (D.getDeclSpec().getStorageClassSpec()) {
4292  default: assert(0 && "Unknown storage class!");
4293  case DeclSpec::SCS_auto:
4294  case DeclSpec::SCS_register:
4295  case DeclSpec::SCS_mutable:
4296    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4297         diag::err_typecheck_sclass_func);
4298    D.setInvalidType();
4299    break;
4300  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4301  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4302  case DeclSpec::SCS_static: {
4303    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4304      // C99 6.7.1p5:
4305      //   The declaration of an identifier for a function that has
4306      //   block scope shall have no explicit storage-class specifier
4307      //   other than extern
4308      // See also (C++ [dcl.stc]p4).
4309      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4310           diag::err_static_block_func);
4311      SC = SC_None;
4312    } else
4313      SC = SC_Static;
4314    break;
4315  }
4316  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4317  }
4318
4319  if (D.getDeclSpec().isThreadSpecified())
4320    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4321
4322  // Do not allow returning a objc interface by-value.
4323  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4324    Diag(D.getIdentifierLoc(),
4325         diag::err_object_cannot_be_passed_returned_by_value) << 0
4326    << R->getAs<FunctionType>()->getResultType()
4327    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4328
4329    QualType T = R->getAs<FunctionType>()->getResultType();
4330    T = Context.getObjCObjectPointerType(T);
4331    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4332      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4333      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4334                                  FPT->getNumArgs(), EPI);
4335    }
4336    else if (isa<FunctionNoProtoType>(R))
4337      R = Context.getFunctionNoProtoType(T);
4338  }
4339
4340  FunctionDecl *NewFD;
4341  bool isInline = D.getDeclSpec().isInlineSpecified();
4342  bool isFriend = false;
4343  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4344  FunctionDecl::StorageClass SCAsWritten
4345    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4346  FunctionTemplateDecl *FunctionTemplate = 0;
4347  bool isExplicitSpecialization = false;
4348  bool isFunctionTemplateSpecialization = false;
4349  bool isDependentClassScopeExplicitSpecialization = false;
4350
4351  if (!getLangOptions().CPlusPlus) {
4352    // Determine whether the function was written with a
4353    // prototype. This true when:
4354    //   - there is a prototype in the declarator, or
4355    //   - the type R of the function is some kind of typedef or other reference
4356    //     to a type name (which eventually refers to a function type).
4357    bool HasPrototype =
4358    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4359    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4360
4361    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4362                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4363                                 HasPrototype);
4364    if (D.isInvalidType())
4365      NewFD->setInvalidDecl();
4366
4367    // Set the lexical context.
4368    NewFD->setLexicalDeclContext(CurContext);
4369    // Filter out previous declarations that don't match the scope.
4370    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4371                         /*ExplicitInstantiationOrSpecialization=*/false);
4372  } else {
4373    isFriend = D.getDeclSpec().isFriendSpecified();
4374    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4375    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4376    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4377    bool isVirtualOkay = false;
4378
4379    // Check that the return type is not an abstract class type.
4380    // For record types, this is done by the AbstractClassUsageDiagnoser once
4381    // the class has been completely parsed.
4382    if (!DC->isRecord() &&
4383      RequireNonAbstractType(D.getIdentifierLoc(),
4384                             R->getAs<FunctionType>()->getResultType(),
4385                             diag::err_abstract_type_in_decl,
4386                             AbstractReturnType))
4387      D.setInvalidType();
4388
4389    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4390      // This is a C++ constructor declaration.
4391      assert(DC->isRecord() &&
4392             "Constructors can only be declared in a member context");
4393
4394      R = CheckConstructorDeclarator(D, R, SC);
4395
4396      // Create the new declaration
4397      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4398                                         Context,
4399                                         cast<CXXRecordDecl>(DC),
4400                                         D.getSourceRange().getBegin(),
4401                                         NameInfo, R, TInfo,
4402                                         isExplicit, isInline,
4403                                         /*isImplicitlyDeclared=*/false,
4404                                         isConstexpr);
4405
4406      NewFD = NewCD;
4407    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4408      // This is a C++ destructor declaration.
4409      if (DC->isRecord()) {
4410        R = CheckDestructorDeclarator(D, R, SC);
4411        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4412
4413        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4414                                          D.getSourceRange().getBegin(),
4415                                          NameInfo, R, TInfo,
4416                                          isInline,
4417                                          /*isImplicitlyDeclared=*/false);
4418        NewFD = NewDD;
4419        isVirtualOkay = true;
4420
4421        // If the class is complete, then we now create the implicit exception
4422        // specification. If the class is incomplete or dependent, we can't do
4423        // it yet.
4424        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4425            Record->getDefinition() && !Record->isBeingDefined() &&
4426            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4427          AdjustDestructorExceptionSpec(Record, NewDD);
4428        }
4429
4430      } else {
4431        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4432
4433        // Create a FunctionDecl to satisfy the function definition parsing
4434        // code path.
4435        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4436                                     D.getIdentifierLoc(), Name, R, TInfo,
4437                                     SC, SCAsWritten, isInline,
4438                                     /*hasPrototype=*/true, isConstexpr);
4439        D.setInvalidType();
4440      }
4441    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4442      if (!DC->isRecord()) {
4443        Diag(D.getIdentifierLoc(),
4444             diag::err_conv_function_not_member);
4445        return 0;
4446      }
4447
4448      CheckConversionDeclarator(D, R, SC);
4449      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4450                                        D.getSourceRange().getBegin(),
4451                                        NameInfo, R, TInfo,
4452                                        isInline, isExplicit, isConstexpr,
4453                                        SourceLocation());
4454
4455      isVirtualOkay = true;
4456    } else if (DC->isRecord()) {
4457      // If the name of the function is the same as the name of the record,
4458      // then this must be an invalid constructor that has a return type.
4459      // (The parser checks for a return type and makes the declarator a
4460      // constructor if it has no return type).
4461      if (Name.getAsIdentifierInfo() &&
4462          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4463        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4464          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4465          << SourceRange(D.getIdentifierLoc());
4466        return 0;
4467      }
4468
4469      bool isStatic = SC == SC_Static;
4470
4471      // [class.free]p1:
4472      // Any allocation function for a class T is a static member
4473      // (even if not explicitly declared static).
4474      if (Name.getCXXOverloadedOperator() == OO_New ||
4475          Name.getCXXOverloadedOperator() == OO_Array_New)
4476        isStatic = true;
4477
4478      // [class.free]p6 Any deallocation function for a class X is a static member
4479      // (even if not explicitly declared static).
4480      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4481          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4482        isStatic = true;
4483
4484      // This is a C++ method declaration.
4485      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4486                                               Context, cast<CXXRecordDecl>(DC),
4487                                               D.getSourceRange().getBegin(),
4488                                               NameInfo, R, TInfo,
4489                                               isStatic, SCAsWritten, isInline,
4490                                               isConstexpr,
4491                                               SourceLocation());
4492      NewFD = NewMD;
4493
4494      isVirtualOkay = !isStatic;
4495    } else {
4496      // Determine whether the function was written with a
4497      // prototype. This true when:
4498      //   - we're in C++ (where every function has a prototype),
4499      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4500                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4501                                   true/*HasPrototype*/, isConstexpr);
4502    }
4503
4504    if (isFriend && !isInline && IsFunctionDefinition) {
4505      // C++ [class.friend]p5
4506      //   A function can be defined in a friend declaration of a
4507      //   class . . . . Such a function is implicitly inline.
4508      NewFD->setImplicitlyInline();
4509    }
4510
4511    SetNestedNameSpecifier(NewFD, D);
4512    isExplicitSpecialization = false;
4513    isFunctionTemplateSpecialization = false;
4514    if (D.isInvalidType())
4515      NewFD->setInvalidDecl();
4516
4517    // Set the lexical context. If the declarator has a C++
4518    // scope specifier, or is the object of a friend declaration, the
4519    // lexical context will be different from the semantic context.
4520    NewFD->setLexicalDeclContext(CurContext);
4521
4522    // Match up the template parameter lists with the scope specifier, then
4523    // determine whether we have a template or a template specialization.
4524    bool Invalid = false;
4525    if (TemplateParameterList *TemplateParams
4526          = MatchTemplateParametersToScopeSpecifier(
4527                                  D.getDeclSpec().getSourceRange().getBegin(),
4528                                  D.getIdentifierLoc(),
4529                                  D.getCXXScopeSpec(),
4530                                  TemplateParamLists.get(),
4531                                  TemplateParamLists.size(),
4532                                  isFriend,
4533                                  isExplicitSpecialization,
4534                                  Invalid)) {
4535      if (TemplateParams->size() > 0) {
4536        // This is a function template
4537
4538        // Check that we can declare a template here.
4539        if (CheckTemplateDeclScope(S, TemplateParams))
4540          return 0;
4541
4542        // A destructor cannot be a template.
4543        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4544          Diag(NewFD->getLocation(), diag::err_destructor_template);
4545          return 0;
4546        }
4547
4548        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4549                                                        NewFD->getLocation(),
4550                                                        Name, TemplateParams,
4551                                                        NewFD);
4552        FunctionTemplate->setLexicalDeclContext(CurContext);
4553        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4554
4555        // For source fidelity, store the other template param lists.
4556        if (TemplateParamLists.size() > 1) {
4557          NewFD->setTemplateParameterListsInfo(Context,
4558                                               TemplateParamLists.size() - 1,
4559                                               TemplateParamLists.release());
4560        }
4561      } else {
4562        // This is a function template specialization.
4563        isFunctionTemplateSpecialization = true;
4564        // For source fidelity, store all the template param lists.
4565        NewFD->setTemplateParameterListsInfo(Context,
4566                                             TemplateParamLists.size(),
4567                                             TemplateParamLists.release());
4568
4569        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4570        if (isFriend) {
4571          // We want to remove the "template<>", found here.
4572          SourceRange RemoveRange = TemplateParams->getSourceRange();
4573
4574          // If we remove the template<> and the name is not a
4575          // template-id, we're actually silently creating a problem:
4576          // the friend declaration will refer to an untemplated decl,
4577          // and clearly the user wants a template specialization.  So
4578          // we need to insert '<>' after the name.
4579          SourceLocation InsertLoc;
4580          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4581            InsertLoc = D.getName().getSourceRange().getEnd();
4582            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4583          }
4584
4585          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4586            << Name << RemoveRange
4587            << FixItHint::CreateRemoval(RemoveRange)
4588            << FixItHint::CreateInsertion(InsertLoc, "<>");
4589        }
4590      }
4591    }
4592    else {
4593      // All template param lists were matched against the scope specifier:
4594      // this is NOT (an explicit specialization of) a template.
4595      if (TemplateParamLists.size() > 0)
4596        // For source fidelity, store all the template param lists.
4597        NewFD->setTemplateParameterListsInfo(Context,
4598                                             TemplateParamLists.size(),
4599                                             TemplateParamLists.release());
4600    }
4601
4602    if (Invalid) {
4603      NewFD->setInvalidDecl();
4604      if (FunctionTemplate)
4605        FunctionTemplate->setInvalidDecl();
4606    }
4607
4608    // C++ [dcl.fct.spec]p5:
4609    //   The virtual specifier shall only be used in declarations of
4610    //   nonstatic class member functions that appear within a
4611    //   member-specification of a class declaration; see 10.3.
4612    //
4613    if (isVirtual && !NewFD->isInvalidDecl()) {
4614      if (!isVirtualOkay) {
4615        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4616             diag::err_virtual_non_function);
4617      } else if (!CurContext->isRecord()) {
4618        // 'virtual' was specified outside of the class.
4619        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4620             diag::err_virtual_out_of_class)
4621          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4622      } else if (NewFD->getDescribedFunctionTemplate()) {
4623        // C++ [temp.mem]p3:
4624        //  A member function template shall not be virtual.
4625        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4626             diag::err_virtual_member_function_template)
4627          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4628      } else {
4629        // Okay: Add virtual to the method.
4630        NewFD->setVirtualAsWritten(true);
4631      }
4632    }
4633
4634    // C++ [dcl.fct.spec]p3:
4635    //  The inline specifier shall not appear on a block scope function declaration.
4636    if (isInline && !NewFD->isInvalidDecl()) {
4637      if (CurContext->isFunctionOrMethod()) {
4638        // 'inline' is not allowed on block scope function declaration.
4639        Diag(D.getDeclSpec().getInlineSpecLoc(),
4640             diag::err_inline_declaration_block_scope) << Name
4641          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4642      }
4643    }
4644
4645    // C++ [dcl.fct.spec]p6:
4646    //  The explicit specifier shall be used only in the declaration of a
4647    //  constructor or conversion function within its class definition; see 12.3.1
4648    //  and 12.3.2.
4649    if (isExplicit && !NewFD->isInvalidDecl()) {
4650      if (!CurContext->isRecord()) {
4651        // 'explicit' was specified outside of the class.
4652        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4653             diag::err_explicit_out_of_class)
4654          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4655      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4656                 !isa<CXXConversionDecl>(NewFD)) {
4657        // 'explicit' was specified on a function that wasn't a constructor
4658        // or conversion function.
4659        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4660             diag::err_explicit_non_ctor_or_conv_function)
4661          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4662      }
4663    }
4664
4665    if (isConstexpr) {
4666      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4667      // are implicitly inline.
4668      NewFD->setImplicitlyInline();
4669
4670      // FIXME: If this is a redeclaration, check the original declaration was
4671      // marked constepr.
4672
4673      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4674      // be either constructors or to return a literal type. Therefore,
4675      // destructors cannot be declared constexpr.
4676      if (isa<CXXDestructorDecl>(NewFD))
4677        Diag(D.getDeclSpec().getConstexprSpecLoc(),
4678             diag::err_constexpr_dtor);
4679    }
4680
4681
4682    // Filter out previous declarations that don't match the scope.
4683    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4684                         isExplicitSpecialization ||
4685                         isFunctionTemplateSpecialization);
4686
4687    if (isFriend) {
4688      // For now, claim that the objects have no previous declaration.
4689      if (FunctionTemplate) {
4690        FunctionTemplate->setObjectOfFriendDecl(false);
4691        FunctionTemplate->setAccess(AS_public);
4692      }
4693      NewFD->setObjectOfFriendDecl(false);
4694      NewFD->setAccess(AS_public);
4695    }
4696
4697    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4698      // A method is implicitly inline if it's defined in its class
4699      // definition.
4700      NewFD->setImplicitlyInline();
4701    }
4702
4703    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4704        !CurContext->isRecord()) {
4705      // C++ [class.static]p1:
4706      //   A data or function member of a class may be declared static
4707      //   in a class definition, in which case it is a static member of
4708      //   the class.
4709
4710      // Complain about the 'static' specifier if it's on an out-of-line
4711      // member function definition.
4712      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4713           diag::err_static_out_of_line)
4714        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4715    }
4716  }
4717
4718  // Handle GNU asm-label extension (encoded as an attribute).
4719  if (Expr *E = (Expr*) D.getAsmLabel()) {
4720    // The parser guarantees this is a string.
4721    StringLiteral *SE = cast<StringLiteral>(E);
4722    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4723                                                SE->getString()));
4724  }
4725
4726  // Copy the parameter declarations from the declarator D to the function
4727  // declaration NewFD, if they are available.  First scavenge them into Params.
4728  SmallVector<ParmVarDecl*, 16> Params;
4729  if (D.isFunctionDeclarator()) {
4730    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4731
4732    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4733    // function that takes no arguments, not a function that takes a
4734    // single void argument.
4735    // We let through "const void" here because Sema::GetTypeForDeclarator
4736    // already checks for that case.
4737    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4738        FTI.ArgInfo[0].Param &&
4739        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4740      // Empty arg list, don't push any params.
4741      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4742
4743      // In C++, the empty parameter-type-list must be spelled "void"; a
4744      // typedef of void is not permitted.
4745      if (getLangOptions().CPlusPlus &&
4746          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4747        bool IsTypeAlias = false;
4748        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4749          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4750        else if (const TemplateSpecializationType *TST =
4751                   Param->getType()->getAs<TemplateSpecializationType>())
4752          IsTypeAlias = TST->isTypeAlias();
4753        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4754          << IsTypeAlias;
4755      }
4756    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4757      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4758        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4759        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4760        Param->setDeclContext(NewFD);
4761        Params.push_back(Param);
4762
4763        if (Param->isInvalidDecl())
4764          NewFD->setInvalidDecl();
4765      }
4766    }
4767
4768  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4769    // When we're declaring a function with a typedef, typeof, etc as in the
4770    // following example, we'll need to synthesize (unnamed)
4771    // parameters for use in the declaration.
4772    //
4773    // @code
4774    // typedef void fn(int);
4775    // fn f;
4776    // @endcode
4777
4778    // Synthesize a parameter for each argument type.
4779    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4780         AE = FT->arg_type_end(); AI != AE; ++AI) {
4781      ParmVarDecl *Param =
4782        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4783      Param->setScopeInfo(0, Params.size());
4784      Params.push_back(Param);
4785    }
4786  } else {
4787    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4788           "Should not need args for typedef of non-prototype fn");
4789  }
4790  // Finally, we know we have the right number of parameters, install them.
4791  NewFD->setParams(Params.data(), Params.size());
4792
4793  // Process the non-inheritable attributes on this declaration.
4794  ProcessDeclAttributes(S, NewFD, D,
4795                        /*NonInheritable=*/true, /*Inheritable=*/false);
4796
4797  if (!getLangOptions().CPlusPlus) {
4798    // Perform semantic checking on the function declaration.
4799    bool isExplicitSpecialization=false;
4800    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4801                             Redeclaration);
4802    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4803            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4804           "previous declaration set still overloaded");
4805  } else {
4806    // If the declarator is a template-id, translate the parser's template
4807    // argument list into our AST format.
4808    bool HasExplicitTemplateArgs = false;
4809    TemplateArgumentListInfo TemplateArgs;
4810    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4811      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4812      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4813      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4814      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4815                                         TemplateId->getTemplateArgs(),
4816                                         TemplateId->NumArgs);
4817      translateTemplateArguments(TemplateArgsPtr,
4818                                 TemplateArgs);
4819      TemplateArgsPtr.release();
4820
4821      HasExplicitTemplateArgs = true;
4822
4823      if (NewFD->isInvalidDecl()) {
4824        HasExplicitTemplateArgs = false;
4825      } else if (FunctionTemplate) {
4826        // Function template with explicit template arguments.
4827        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4828          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4829
4830        HasExplicitTemplateArgs = false;
4831      } else if (!isFunctionTemplateSpecialization &&
4832                 !D.getDeclSpec().isFriendSpecified()) {
4833        // We have encountered something that the user meant to be a
4834        // specialization (because it has explicitly-specified template
4835        // arguments) but that was not introduced with a "template<>" (or had
4836        // too few of them).
4837        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4838          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4839          << FixItHint::CreateInsertion(
4840                                        D.getDeclSpec().getSourceRange().getBegin(),
4841                                                  "template<> ");
4842        isFunctionTemplateSpecialization = true;
4843      } else {
4844        // "friend void foo<>(int);" is an implicit specialization decl.
4845        isFunctionTemplateSpecialization = true;
4846      }
4847    } else if (isFriend && isFunctionTemplateSpecialization) {
4848      // This combination is only possible in a recovery case;  the user
4849      // wrote something like:
4850      //   template <> friend void foo(int);
4851      // which we're recovering from as if the user had written:
4852      //   friend void foo<>(int);
4853      // Go ahead and fake up a template id.
4854      HasExplicitTemplateArgs = true;
4855        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4856      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4857    }
4858
4859    // If it's a friend (and only if it's a friend), it's possible
4860    // that either the specialized function type or the specialized
4861    // template is dependent, and therefore matching will fail.  In
4862    // this case, don't check the specialization yet.
4863    if (isFunctionTemplateSpecialization && isFriend &&
4864        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4865      assert(HasExplicitTemplateArgs &&
4866             "friend function specialization without template args");
4867      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4868                                                       Previous))
4869        NewFD->setInvalidDecl();
4870    } else if (isFunctionTemplateSpecialization) {
4871      if (CurContext->isDependentContext() && CurContext->isRecord()
4872          && !isFriend) {
4873        isDependentClassScopeExplicitSpecialization = true;
4874        Diag(NewFD->getLocation(), getLangOptions().Microsoft ?
4875          diag::ext_function_specialization_in_class :
4876          diag::err_function_specialization_in_class)
4877          << NewFD->getDeclName();
4878      } else if (CheckFunctionTemplateSpecialization(NewFD,
4879                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4880                                                     Previous))
4881        NewFD->setInvalidDecl();
4882
4883      // C++ [dcl.stc]p1:
4884      //   A storage-class-specifier shall not be specified in an explicit
4885      //   specialization (14.7.3)
4886      if (SC != SC_None) {
4887        if (SC != NewFD->getStorageClass())
4888          Diag(NewFD->getLocation(),
4889               diag::err_explicit_specialization_inconsistent_storage_class)
4890            << SC
4891            << FixItHint::CreateRemoval(
4892                                      D.getDeclSpec().getStorageClassSpecLoc());
4893
4894        else
4895          Diag(NewFD->getLocation(),
4896               diag::ext_explicit_specialization_storage_class)
4897            << FixItHint::CreateRemoval(
4898                                      D.getDeclSpec().getStorageClassSpecLoc());
4899      }
4900
4901    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4902      if (CheckMemberSpecialization(NewFD, Previous))
4903          NewFD->setInvalidDecl();
4904    }
4905
4906    // Perform semantic checking on the function declaration.
4907    if (!isDependentClassScopeExplicitSpecialization)
4908      CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4909                               Redeclaration);
4910
4911    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4912            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4913           "previous declaration set still overloaded");
4914
4915    NamedDecl *PrincipalDecl = (FunctionTemplate
4916                                ? cast<NamedDecl>(FunctionTemplate)
4917                                : NewFD);
4918
4919    if (isFriend && Redeclaration) {
4920      AccessSpecifier Access = AS_public;
4921      if (!NewFD->isInvalidDecl())
4922        Access = NewFD->getPreviousDeclaration()->getAccess();
4923
4924      NewFD->setAccess(Access);
4925      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4926
4927      PrincipalDecl->setObjectOfFriendDecl(true);
4928    }
4929
4930    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4931        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4932      PrincipalDecl->setNonMemberOperator();
4933
4934    // If we have a function template, check the template parameter
4935    // list. This will check and merge default template arguments.
4936    if (FunctionTemplate) {
4937      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4938      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4939                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4940                            D.getDeclSpec().isFriendSpecified()
4941                              ? (IsFunctionDefinition
4942                                   ? TPC_FriendFunctionTemplateDefinition
4943                                   : TPC_FriendFunctionTemplate)
4944                              : (D.getCXXScopeSpec().isSet() &&
4945                                 DC && DC->isRecord() &&
4946                                 DC->isDependentContext())
4947                                  ? TPC_ClassTemplateMember
4948                                  : TPC_FunctionTemplate);
4949    }
4950
4951    if (NewFD->isInvalidDecl()) {
4952      // Ignore all the rest of this.
4953    } else if (!Redeclaration) {
4954      // Fake up an access specifier if it's supposed to be a class member.
4955      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4956        NewFD->setAccess(AS_public);
4957
4958      // Qualified decls generally require a previous declaration.
4959      if (D.getCXXScopeSpec().isSet()) {
4960        // ...with the major exception of templated-scope or
4961        // dependent-scope friend declarations.
4962
4963        // TODO: we currently also suppress this check in dependent
4964        // contexts because (1) the parameter depth will be off when
4965        // matching friend templates and (2) we might actually be
4966        // selecting a friend based on a dependent factor.  But there
4967        // are situations where these conditions don't apply and we
4968        // can actually do this check immediately.
4969        if (isFriend &&
4970            (TemplateParamLists.size() ||
4971             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4972             CurContext->isDependentContext())) {
4973          // ignore these
4974        } else {
4975          // The user tried to provide an out-of-line definition for a
4976          // function that is a member of a class or namespace, but there
4977          // was no such member function declared (C++ [class.mfct]p2,
4978          // C++ [namespace.memdef]p2). For example:
4979          //
4980          // class X {
4981          //   void f() const;
4982          // };
4983          //
4984          // void X::f() { } // ill-formed
4985          //
4986          // Complain about this problem, and attempt to suggest close
4987          // matches (e.g., those that differ only in cv-qualifiers and
4988          // whether the parameter types are references).
4989
4990          DiagnoseInvalidRedeclaration(*this, NewFD, false);
4991        }
4992
4993        // Unqualified local friend declarations are required to resolve
4994        // to something.
4995      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4996        DiagnoseInvalidRedeclaration(*this, NewFD, true);
4997      }
4998
4999    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5000               !isFriend && !isFunctionTemplateSpecialization &&
5001               !isExplicitSpecialization) {
5002      // An out-of-line member function declaration must also be a
5003      // definition (C++ [dcl.meaning]p1).
5004      // Note that this is not the case for explicit specializations of
5005      // function templates or member functions of class templates, per
5006      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5007      // for compatibility with old SWIG code which likes to generate them.
5008      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5009        << D.getCXXScopeSpec().getRange();
5010    }
5011  }
5012
5013
5014  // Handle attributes. We need to have merged decls when handling attributes
5015  // (for example to check for conflicts, etc).
5016  // FIXME: This needs to happen before we merge declarations. Then,
5017  // let attribute merging cope with attribute conflicts.
5018  ProcessDeclAttributes(S, NewFD, D,
5019                        /*NonInheritable=*/false, /*Inheritable=*/true);
5020
5021  // attributes declared post-definition are currently ignored
5022  // FIXME: This should happen during attribute merging
5023  if (Redeclaration && Previous.isSingleResult()) {
5024    const FunctionDecl *Def;
5025    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5026    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5027      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5028      Diag(Def->getLocation(), diag::note_previous_definition);
5029    }
5030  }
5031
5032  AddKnownFunctionAttributes(NewFD);
5033
5034  if (NewFD->hasAttr<OverloadableAttr>() &&
5035      !NewFD->getType()->getAs<FunctionProtoType>()) {
5036    Diag(NewFD->getLocation(),
5037         diag::err_attribute_overloadable_no_prototype)
5038      << NewFD;
5039
5040    // Turn this into a variadic function with no parameters.
5041    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5042    FunctionProtoType::ExtProtoInfo EPI;
5043    EPI.Variadic = true;
5044    EPI.ExtInfo = FT->getExtInfo();
5045
5046    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5047    NewFD->setType(R);
5048  }
5049
5050  // If there's a #pragma GCC visibility in scope, and this isn't a class
5051  // member, set the visibility of this function.
5052  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5053    AddPushedVisibilityAttribute(NewFD);
5054
5055  // If this is a locally-scoped extern C function, update the
5056  // map of such names.
5057  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5058      && !NewFD->isInvalidDecl())
5059    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5060
5061  // Set this FunctionDecl's range up to the right paren.
5062  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5063
5064  if (getLangOptions().CPlusPlus) {
5065    if (FunctionTemplate) {
5066      if (NewFD->isInvalidDecl())
5067        FunctionTemplate->setInvalidDecl();
5068      return FunctionTemplate;
5069    }
5070  }
5071
5072  MarkUnusedFileScopedDecl(NewFD);
5073
5074  if (getLangOptions().CUDA)
5075    if (IdentifierInfo *II = NewFD->getIdentifier())
5076      if (!NewFD->isInvalidDecl() &&
5077          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5078        if (II->isStr("cudaConfigureCall")) {
5079          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5080            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5081
5082          Context.setcudaConfigureCallDecl(NewFD);
5083        }
5084      }
5085
5086  // Here we have an function template explicit specialization at class scope.
5087  // The actually specialization will be postponed to template instatiation
5088  // time via the ClassScopeFunctionSpecializationDecl node.
5089  if (isDependentClassScopeExplicitSpecialization) {
5090    ClassScopeFunctionSpecializationDecl *NewSpec =
5091                         ClassScopeFunctionSpecializationDecl::Create(
5092                                Context, CurContext,  SourceLocation(),
5093                                cast<CXXMethodDecl>(NewFD));
5094    CurContext->addDecl(NewSpec);
5095    AddToScope = false;
5096  }
5097
5098  return NewFD;
5099}
5100
5101/// \brief Perform semantic checking of a new function declaration.
5102///
5103/// Performs semantic analysis of the new function declaration
5104/// NewFD. This routine performs all semantic checking that does not
5105/// require the actual declarator involved in the declaration, and is
5106/// used both for the declaration of functions as they are parsed
5107/// (called via ActOnDeclarator) and for the declaration of functions
5108/// that have been instantiated via C++ template instantiation (called
5109/// via InstantiateDecl).
5110///
5111/// \param IsExplicitSpecialiation whether this new function declaration is
5112/// an explicit specialization of the previous declaration.
5113///
5114/// This sets NewFD->isInvalidDecl() to true if there was an error.
5115void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5116                                    LookupResult &Previous,
5117                                    bool IsExplicitSpecialization,
5118                                    bool &Redeclaration) {
5119  // If NewFD is already known erroneous, don't do any of this checking.
5120  if (NewFD->isInvalidDecl()) {
5121    // If this is a class member, mark the class invalid immediately.
5122    // This avoids some consistency errors later.
5123    if (isa<CXXMethodDecl>(NewFD))
5124      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
5125
5126    return;
5127  }
5128
5129  if (NewFD->getResultType()->isVariablyModifiedType()) {
5130    // Functions returning a variably modified type violate C99 6.7.5.2p2
5131    // because all functions have linkage.
5132    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5133    return NewFD->setInvalidDecl();
5134  }
5135
5136  if (NewFD->isMain())
5137    CheckMain(NewFD);
5138
5139  // Check for a previous declaration of this name.
5140  if (Previous.empty() && NewFD->isExternC()) {
5141    // Since we did not find anything by this name and we're declaring
5142    // an extern "C" function, look for a non-visible extern "C"
5143    // declaration with the same name.
5144    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5145      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5146    if (Pos != LocallyScopedExternalDecls.end())
5147      Previous.addDecl(Pos->second);
5148  }
5149
5150  // Merge or overload the declaration with an existing declaration of
5151  // the same name, if appropriate.
5152  if (!Previous.empty()) {
5153    // Determine whether NewFD is an overload of PrevDecl or
5154    // a declaration that requires merging. If it's an overload,
5155    // there's no more work to do here; we'll just add the new
5156    // function to the scope.
5157
5158    NamedDecl *OldDecl = 0;
5159    if (!AllowOverloadingOfFunction(Previous, Context)) {
5160      Redeclaration = true;
5161      OldDecl = Previous.getFoundDecl();
5162    } else {
5163      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5164                            /*NewIsUsingDecl*/ false)) {
5165      case Ovl_Match:
5166        Redeclaration = true;
5167        break;
5168
5169      case Ovl_NonFunction:
5170        Redeclaration = true;
5171        break;
5172
5173      case Ovl_Overload:
5174        Redeclaration = false;
5175        break;
5176      }
5177
5178      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5179        // If a function name is overloadable in C, then every function
5180        // with that name must be marked "overloadable".
5181        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5182          << Redeclaration << NewFD;
5183        NamedDecl *OverloadedDecl = 0;
5184        if (Redeclaration)
5185          OverloadedDecl = OldDecl;
5186        else if (!Previous.empty())
5187          OverloadedDecl = Previous.getRepresentativeDecl();
5188        if (OverloadedDecl)
5189          Diag(OverloadedDecl->getLocation(),
5190               diag::note_attribute_overloadable_prev_overload);
5191        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5192                                                        Context));
5193      }
5194    }
5195
5196    if (Redeclaration) {
5197      // NewFD and OldDecl represent declarations that need to be
5198      // merged.
5199      if (MergeFunctionDecl(NewFD, OldDecl))
5200        return NewFD->setInvalidDecl();
5201
5202      Previous.clear();
5203      Previous.addDecl(OldDecl);
5204
5205      if (FunctionTemplateDecl *OldTemplateDecl
5206                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5207        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5208        FunctionTemplateDecl *NewTemplateDecl
5209          = NewFD->getDescribedFunctionTemplate();
5210        assert(NewTemplateDecl && "Template/non-template mismatch");
5211        if (CXXMethodDecl *Method
5212              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5213          Method->setAccess(OldTemplateDecl->getAccess());
5214          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5215        }
5216
5217        // If this is an explicit specialization of a member that is a function
5218        // template, mark it as a member specialization.
5219        if (IsExplicitSpecialization &&
5220            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5221          NewTemplateDecl->setMemberSpecialization();
5222          assert(OldTemplateDecl->isMemberSpecialization());
5223        }
5224      } else {
5225        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5226          NewFD->setAccess(OldDecl->getAccess());
5227        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5228      }
5229    }
5230  }
5231
5232  // Semantic checking for this function declaration (in isolation).
5233  if (getLangOptions().CPlusPlus) {
5234    // C++-specific checks.
5235    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5236      CheckConstructor(Constructor);
5237    } else if (CXXDestructorDecl *Destructor =
5238                dyn_cast<CXXDestructorDecl>(NewFD)) {
5239      CXXRecordDecl *Record = Destructor->getParent();
5240      QualType ClassType = Context.getTypeDeclType(Record);
5241
5242      // FIXME: Shouldn't we be able to perform this check even when the class
5243      // type is dependent? Both gcc and edg can handle that.
5244      if (!ClassType->isDependentType()) {
5245        DeclarationName Name
5246          = Context.DeclarationNames.getCXXDestructorName(
5247                                        Context.getCanonicalType(ClassType));
5248        if (NewFD->getDeclName() != Name) {
5249          Diag(NewFD->getLocation(), diag::err_destructor_name);
5250          return NewFD->setInvalidDecl();
5251        }
5252      }
5253    } else if (CXXConversionDecl *Conversion
5254               = dyn_cast<CXXConversionDecl>(NewFD)) {
5255      ActOnConversionDeclarator(Conversion);
5256    }
5257
5258    // Find any virtual functions that this function overrides.
5259    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5260      if (!Method->isFunctionTemplateSpecialization() &&
5261          !Method->getDescribedFunctionTemplate()) {
5262        if (AddOverriddenMethods(Method->getParent(), Method)) {
5263          // If the function was marked as "static", we have a problem.
5264          if (NewFD->getStorageClass() == SC_Static) {
5265            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5266              << NewFD->getDeclName();
5267            for (CXXMethodDecl::method_iterator
5268                      Overridden = Method->begin_overridden_methods(),
5269                   OverriddenEnd = Method->end_overridden_methods();
5270                 Overridden != OverriddenEnd;
5271                 ++Overridden) {
5272              Diag((*Overridden)->getLocation(),
5273                   diag::note_overridden_virtual_function);
5274            }
5275          }
5276        }
5277      }
5278    }
5279
5280    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5281    if (NewFD->isOverloadedOperator() &&
5282        CheckOverloadedOperatorDeclaration(NewFD))
5283      return NewFD->setInvalidDecl();
5284
5285    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5286    if (NewFD->getLiteralIdentifier() &&
5287        CheckLiteralOperatorDeclaration(NewFD))
5288      return NewFD->setInvalidDecl();
5289
5290    // In C++, check default arguments now that we have merged decls. Unless
5291    // the lexical context is the class, because in this case this is done
5292    // during delayed parsing anyway.
5293    if (!CurContext->isRecord())
5294      CheckCXXDefaultArguments(NewFD);
5295
5296    // If this function declares a builtin function, check the type of this
5297    // declaration against the expected type for the builtin.
5298    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5299      ASTContext::GetBuiltinTypeError Error;
5300      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5301      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5302        // The type of this function differs from the type of the builtin,
5303        // so forget about the builtin entirely.
5304        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5305      }
5306    }
5307  }
5308}
5309
5310void Sema::CheckMain(FunctionDecl* FD) {
5311  // C++ [basic.start.main]p3:  A program that declares main to be inline
5312  //   or static is ill-formed.
5313  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5314  //   shall not appear in a declaration of main.
5315  // static main is not an error under C99, but we should warn about it.
5316  bool isInline = FD->isInlineSpecified();
5317  bool isStatic = FD->getStorageClass() == SC_Static;
5318  if (isInline || isStatic) {
5319    unsigned diagID = diag::warn_unusual_main_decl;
5320    if (isInline || getLangOptions().CPlusPlus)
5321      diagID = diag::err_unusual_main_decl;
5322
5323    int which = isStatic + (isInline << 1) - 1;
5324    Diag(FD->getLocation(), diagID) << which;
5325  }
5326
5327  QualType T = FD->getType();
5328  assert(T->isFunctionType() && "function decl is not of function type");
5329  const FunctionType* FT = T->getAs<FunctionType>();
5330
5331  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5332    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5333    FD->setInvalidDecl(true);
5334  }
5335
5336  // Treat protoless main() as nullary.
5337  if (isa<FunctionNoProtoType>(FT)) return;
5338
5339  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5340  unsigned nparams = FTP->getNumArgs();
5341  assert(FD->getNumParams() == nparams);
5342
5343  bool HasExtraParameters = (nparams > 3);
5344
5345  // Darwin passes an undocumented fourth argument of type char**.  If
5346  // other platforms start sprouting these, the logic below will start
5347  // getting shifty.
5348  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5349    HasExtraParameters = false;
5350
5351  if (HasExtraParameters) {
5352    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5353    FD->setInvalidDecl(true);
5354    nparams = 3;
5355  }
5356
5357  // FIXME: a lot of the following diagnostics would be improved
5358  // if we had some location information about types.
5359
5360  QualType CharPP =
5361    Context.getPointerType(Context.getPointerType(Context.CharTy));
5362  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5363
5364  for (unsigned i = 0; i < nparams; ++i) {
5365    QualType AT = FTP->getArgType(i);
5366
5367    bool mismatch = true;
5368
5369    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5370      mismatch = false;
5371    else if (Expected[i] == CharPP) {
5372      // As an extension, the following forms are okay:
5373      //   char const **
5374      //   char const * const *
5375      //   char * const *
5376
5377      QualifierCollector qs;
5378      const PointerType* PT;
5379      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5380          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5381          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5382        qs.removeConst();
5383        mismatch = !qs.empty();
5384      }
5385    }
5386
5387    if (mismatch) {
5388      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5389      // TODO: suggest replacing given type with expected type
5390      FD->setInvalidDecl(true);
5391    }
5392  }
5393
5394  if (nparams == 1 && !FD->isInvalidDecl()) {
5395    Diag(FD->getLocation(), diag::warn_main_one_arg);
5396  }
5397
5398  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5399    Diag(FD->getLocation(), diag::err_main_template_decl);
5400    FD->setInvalidDecl();
5401  }
5402}
5403
5404bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5405  // FIXME: Need strict checking.  In C89, we need to check for
5406  // any assignment, increment, decrement, function-calls, or
5407  // commas outside of a sizeof.  In C99, it's the same list,
5408  // except that the aforementioned are allowed in unevaluated
5409  // expressions.  Everything else falls under the
5410  // "may accept other forms of constant expressions" exception.
5411  // (We never end up here for C++, so the constant expression
5412  // rules there don't matter.)
5413  if (Init->isConstantInitializer(Context, false))
5414    return false;
5415  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5416    << Init->getSourceRange();
5417  return true;
5418}
5419
5420namespace {
5421  // Visits an initialization expression to see if OrigDecl is evaluated in
5422  // its own initialization and throws a warning if it does.
5423  class SelfReferenceChecker
5424      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5425    Sema &S;
5426    Decl *OrigDecl;
5427
5428  public:
5429    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5430
5431    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5432                                                    S(S), OrigDecl(OrigDecl) { }
5433
5434    void VisitExpr(Expr *E) {
5435      if (isa<ObjCMessageExpr>(*E)) return;
5436      Inherited::VisitExpr(E);
5437    }
5438
5439    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5440      CheckForSelfReference(E);
5441      Inherited::VisitImplicitCastExpr(E);
5442    }
5443
5444    void CheckForSelfReference(ImplicitCastExpr *E) {
5445      if (E->getCastKind() != CK_LValueToRValue) return;
5446      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5447      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5448      if (!DRE) return;
5449      Decl* ReferenceDecl = DRE->getDecl();
5450      if (OrigDecl != ReferenceDecl) return;
5451      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5452                          Sema::NotForRedeclaration);
5453      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5454                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5455                              << Result.getLookupName()
5456                              << OrigDecl->getLocation()
5457                              << SubExpr->getSourceRange());
5458    }
5459  };
5460}
5461
5462/// AddInitializerToDecl - Adds the initializer Init to the
5463/// declaration dcl. If DirectInit is true, this is C++ direct
5464/// initialization rather than copy initialization.
5465void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5466                                bool DirectInit, bool TypeMayContainAuto) {
5467  // If there is no declaration, there was an error parsing it.  Just ignore
5468  // the initializer.
5469  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5470    return;
5471
5472  // Check for self-references within variable initializers.
5473  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5474    // Variables declared within a function/method body are handled
5475    // by a dataflow analysis.
5476    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5477      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5478  }
5479  else {
5480    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5481  }
5482
5483  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5484    // With declarators parsed the way they are, the parser cannot
5485    // distinguish between a normal initializer and a pure-specifier.
5486    // Thus this grotesque test.
5487    IntegerLiteral *IL;
5488    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5489        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5490      CheckPureMethod(Method, Init->getSourceRange());
5491    else {
5492      Diag(Method->getLocation(), diag::err_member_function_initialization)
5493        << Method->getDeclName() << Init->getSourceRange();
5494      Method->setInvalidDecl();
5495    }
5496    return;
5497  }
5498
5499  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5500  if (!VDecl) {
5501    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5502    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5503    RealDecl->setInvalidDecl();
5504    return;
5505  }
5506
5507  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5508  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5509    TypeSourceInfo *DeducedType = 0;
5510    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5511      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5512        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5513        << Init->getSourceRange();
5514    if (!DeducedType) {
5515      RealDecl->setInvalidDecl();
5516      return;
5517    }
5518    VDecl->setTypeSourceInfo(DeducedType);
5519    VDecl->setType(DeducedType->getType());
5520
5521    // In ARC, infer lifetime.
5522    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5523      VDecl->setInvalidDecl();
5524
5525    // If this is a redeclaration, check that the type we just deduced matches
5526    // the previously declared type.
5527    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5528      MergeVarDeclTypes(VDecl, Old);
5529  }
5530
5531
5532  // A definition must end up with a complete type, which means it must be
5533  // complete with the restriction that an array type might be completed by the
5534  // initializer; note that later code assumes this restriction.
5535  QualType BaseDeclType = VDecl->getType();
5536  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5537    BaseDeclType = Array->getElementType();
5538  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5539                          diag::err_typecheck_decl_incomplete_type)) {
5540    RealDecl->setInvalidDecl();
5541    return;
5542  }
5543
5544  // The variable can not have an abstract class type.
5545  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5546                             diag::err_abstract_type_in_decl,
5547                             AbstractVariableType))
5548    VDecl->setInvalidDecl();
5549
5550  const VarDecl *Def;
5551  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5552    Diag(VDecl->getLocation(), diag::err_redefinition)
5553      << VDecl->getDeclName();
5554    Diag(Def->getLocation(), diag::note_previous_definition);
5555    VDecl->setInvalidDecl();
5556    return;
5557  }
5558
5559  const VarDecl* PrevInit = 0;
5560  if (getLangOptions().CPlusPlus) {
5561    // C++ [class.static.data]p4
5562    //   If a static data member is of const integral or const
5563    //   enumeration type, its declaration in the class definition can
5564    //   specify a constant-initializer which shall be an integral
5565    //   constant expression (5.19). In that case, the member can appear
5566    //   in integral constant expressions. The member shall still be
5567    //   defined in a namespace scope if it is used in the program and the
5568    //   namespace scope definition shall not contain an initializer.
5569    //
5570    // We already performed a redefinition check above, but for static
5571    // data members we also need to check whether there was an in-class
5572    // declaration with an initializer.
5573    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5574      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5575      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5576      return;
5577    }
5578
5579    if (VDecl->hasLocalStorage())
5580      getCurFunction()->setHasBranchProtectedScope();
5581
5582    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5583      VDecl->setInvalidDecl();
5584      return;
5585    }
5586  }
5587
5588  // Capture the variable that is being initialized and the style of
5589  // initialization.
5590  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5591
5592  // FIXME: Poor source location information.
5593  InitializationKind Kind
5594    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5595                                                   Init->getLocStart(),
5596                                                   Init->getLocEnd())
5597                : InitializationKind::CreateCopy(VDecl->getLocation(),
5598                                                 Init->getLocStart());
5599
5600  // Get the decls type and save a reference for later, since
5601  // CheckInitializerTypes may change it.
5602  QualType DclT = VDecl->getType(), SavT = DclT;
5603  if (VDecl->isLocalVarDecl()) {
5604    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5605      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5606      VDecl->setInvalidDecl();
5607    } else if (!VDecl->isInvalidDecl()) {
5608      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5609      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5610                                                MultiExprArg(*this, &Init, 1),
5611                                                &DclT);
5612      if (Result.isInvalid()) {
5613        VDecl->setInvalidDecl();
5614        return;
5615      }
5616
5617      Init = Result.takeAs<Expr>();
5618
5619      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5620      // Don't check invalid declarations to avoid emitting useless diagnostics.
5621      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5622        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5623          CheckForConstantInitializer(Init, DclT);
5624      }
5625    }
5626  } else if (VDecl->isStaticDataMember() &&
5627             VDecl->getLexicalDeclContext()->isRecord()) {
5628    // This is an in-class initialization for a static data member, e.g.,
5629    //
5630    // struct S {
5631    //   static const int value = 17;
5632    // };
5633
5634    // Try to perform the initialization regardless.
5635    if (!VDecl->isInvalidDecl()) {
5636      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5637      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5638                                          MultiExprArg(*this, &Init, 1),
5639                                          &DclT);
5640      if (Result.isInvalid()) {
5641        VDecl->setInvalidDecl();
5642        return;
5643      }
5644
5645      Init = Result.takeAs<Expr>();
5646    }
5647
5648    // C++ [class.mem]p4:
5649    //   A member-declarator can contain a constant-initializer only
5650    //   if it declares a static member (9.4) of const integral or
5651    //   const enumeration type, see 9.4.2.
5652    QualType T = VDecl->getType();
5653
5654    // Do nothing on dependent types.
5655    if (T->isDependentType()) {
5656
5657    // Require constness.
5658    } else if (!T.isConstQualified()) {
5659      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5660        << Init->getSourceRange();
5661      VDecl->setInvalidDecl();
5662
5663    // We allow integer constant expressions in all cases.
5664    } else if (T->isIntegralOrEnumerationType()) {
5665      // Check whether the expression is a constant expression.
5666      SourceLocation Loc;
5667      if (Init->isValueDependent())
5668        ; // Nothing to check.
5669      else if (Init->isIntegerConstantExpr(Context, &Loc))
5670        ; // Ok, it's an ICE!
5671      else if (Init->isEvaluatable(Context)) {
5672        // If we can constant fold the initializer through heroics, accept it,
5673        // but report this as a use of an extension for -pedantic.
5674        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5675          << Init->getSourceRange();
5676      } else {
5677        // Otherwise, this is some crazy unknown case.  Report the issue at the
5678        // location provided by the isIntegerConstantExpr failed check.
5679        Diag(Loc, diag::err_in_class_initializer_non_constant)
5680          << Init->getSourceRange();
5681        VDecl->setInvalidDecl();
5682      }
5683
5684    // We allow floating-point constants as an extension in C++03, and
5685    // C++0x has far more complicated rules that we don't really
5686    // implement fully.
5687    } else {
5688      bool Allowed = false;
5689      if (getLangOptions().CPlusPlus0x) {
5690        Allowed = T->isLiteralType();
5691      } else if (T->isFloatingType()) { // also permits complex, which is ok
5692        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5693          << T << Init->getSourceRange();
5694        Allowed = true;
5695      }
5696
5697      if (!Allowed) {
5698        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5699          << T << Init->getSourceRange();
5700        VDecl->setInvalidDecl();
5701
5702      // TODO: there are probably expressions that pass here that shouldn't.
5703      } else if (!Init->isValueDependent() &&
5704                 !Init->isConstantInitializer(Context, false)) {
5705        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5706          << Init->getSourceRange();
5707        VDecl->setInvalidDecl();
5708      }
5709    }
5710  } else if (VDecl->isFileVarDecl()) {
5711    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5712        (!getLangOptions().CPlusPlus ||
5713         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5714      Diag(VDecl->getLocation(), diag::warn_extern_init);
5715    if (!VDecl->isInvalidDecl()) {
5716      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5717      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5718                                                MultiExprArg(*this, &Init, 1),
5719                                                &DclT);
5720      if (Result.isInvalid()) {
5721        VDecl->setInvalidDecl();
5722        return;
5723      }
5724
5725      Init = Result.takeAs<Expr>();
5726    }
5727
5728    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5729    // Don't check invalid declarations to avoid emitting useless diagnostics.
5730    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5731      // C99 6.7.8p4. All file scoped initializers need to be constant.
5732      CheckForConstantInitializer(Init, DclT);
5733    }
5734  }
5735  // If the type changed, it means we had an incomplete type that was
5736  // completed by the initializer. For example:
5737  //   int ary[] = { 1, 3, 5 };
5738  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5739  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5740    VDecl->setType(DclT);
5741    Init->setType(DclT);
5742  }
5743
5744
5745  // If this variable is a local declaration with record type, make sure it
5746  // doesn't have a flexible member initialization.  We only support this as a
5747  // global/static definition.
5748  if (VDecl->hasLocalStorage())
5749    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5750      if (RT->getDecl()->hasFlexibleArrayMember()) {
5751        // Check whether the initializer tries to initialize the flexible
5752        // array member itself to anything other than an empty initializer list.
5753        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5754          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5755                                         RT->getDecl()->field_end()) - 1;
5756          if (Index < ILE->getNumInits() &&
5757              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5758                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5759            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5760            VDecl->setInvalidDecl();
5761          }
5762        }
5763      }
5764
5765  // Check any implicit conversions within the expression.
5766  CheckImplicitConversions(Init, VDecl->getLocation());
5767
5768  if (!VDecl->isInvalidDecl())
5769    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5770
5771  Init = MaybeCreateExprWithCleanups(Init);
5772  // Attach the initializer to the decl.
5773  VDecl->setInit(Init);
5774
5775  CheckCompleteVariableDeclaration(VDecl);
5776}
5777
5778/// ActOnInitializerError - Given that there was an error parsing an
5779/// initializer for the given declaration, try to return to some form
5780/// of sanity.
5781void Sema::ActOnInitializerError(Decl *D) {
5782  // Our main concern here is re-establishing invariants like "a
5783  // variable's type is either dependent or complete".
5784  if (!D || D->isInvalidDecl()) return;
5785
5786  VarDecl *VD = dyn_cast<VarDecl>(D);
5787  if (!VD) return;
5788
5789  // Auto types are meaningless if we can't make sense of the initializer.
5790  if (ParsingInitForAutoVars.count(D)) {
5791    D->setInvalidDecl();
5792    return;
5793  }
5794
5795  QualType Ty = VD->getType();
5796  if (Ty->isDependentType()) return;
5797
5798  // Require a complete type.
5799  if (RequireCompleteType(VD->getLocation(),
5800                          Context.getBaseElementType(Ty),
5801                          diag::err_typecheck_decl_incomplete_type)) {
5802    VD->setInvalidDecl();
5803    return;
5804  }
5805
5806  // Require an abstract type.
5807  if (RequireNonAbstractType(VD->getLocation(), Ty,
5808                             diag::err_abstract_type_in_decl,
5809                             AbstractVariableType)) {
5810    VD->setInvalidDecl();
5811    return;
5812  }
5813
5814  // Don't bother complaining about constructors or destructors,
5815  // though.
5816}
5817
5818void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5819                                  bool TypeMayContainAuto) {
5820  // If there is no declaration, there was an error parsing it. Just ignore it.
5821  if (RealDecl == 0)
5822    return;
5823
5824  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5825    QualType Type = Var->getType();
5826
5827    // C++0x [dcl.spec.auto]p3
5828    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5829      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5830        << Var->getDeclName() << Type;
5831      Var->setInvalidDecl();
5832      return;
5833    }
5834
5835    switch (Var->isThisDeclarationADefinition()) {
5836    case VarDecl::Definition:
5837      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5838        break;
5839
5840      // We have an out-of-line definition of a static data member
5841      // that has an in-class initializer, so we type-check this like
5842      // a declaration.
5843      //
5844      // Fall through
5845
5846    case VarDecl::DeclarationOnly:
5847      // It's only a declaration.
5848
5849      // Block scope. C99 6.7p7: If an identifier for an object is
5850      // declared with no linkage (C99 6.2.2p6), the type for the
5851      // object shall be complete.
5852      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5853          !Var->getLinkage() && !Var->isInvalidDecl() &&
5854          RequireCompleteType(Var->getLocation(), Type,
5855                              diag::err_typecheck_decl_incomplete_type))
5856        Var->setInvalidDecl();
5857
5858      // Make sure that the type is not abstract.
5859      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5860          RequireNonAbstractType(Var->getLocation(), Type,
5861                                 diag::err_abstract_type_in_decl,
5862                                 AbstractVariableType))
5863        Var->setInvalidDecl();
5864      return;
5865
5866    case VarDecl::TentativeDefinition:
5867      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5868      // object that has file scope without an initializer, and without a
5869      // storage-class specifier or with the storage-class specifier "static",
5870      // constitutes a tentative definition. Note: A tentative definition with
5871      // external linkage is valid (C99 6.2.2p5).
5872      if (!Var->isInvalidDecl()) {
5873        if (const IncompleteArrayType *ArrayT
5874                                    = Context.getAsIncompleteArrayType(Type)) {
5875          if (RequireCompleteType(Var->getLocation(),
5876                                  ArrayT->getElementType(),
5877                                  diag::err_illegal_decl_array_incomplete_type))
5878            Var->setInvalidDecl();
5879        } else if (Var->getStorageClass() == SC_Static) {
5880          // C99 6.9.2p3: If the declaration of an identifier for an object is
5881          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5882          // declared type shall not be an incomplete type.
5883          // NOTE: code such as the following
5884          //     static struct s;
5885          //     struct s { int a; };
5886          // is accepted by gcc. Hence here we issue a warning instead of
5887          // an error and we do not invalidate the static declaration.
5888          // NOTE: to avoid multiple warnings, only check the first declaration.
5889          if (Var->getPreviousDeclaration() == 0)
5890            RequireCompleteType(Var->getLocation(), Type,
5891                                diag::ext_typecheck_decl_incomplete_type);
5892        }
5893      }
5894
5895      // Record the tentative definition; we're done.
5896      if (!Var->isInvalidDecl())
5897        TentativeDefinitions.push_back(Var);
5898      return;
5899    }
5900
5901    // Provide a specific diagnostic for uninitialized variable
5902    // definitions with incomplete array type.
5903    if (Type->isIncompleteArrayType()) {
5904      Diag(Var->getLocation(),
5905           diag::err_typecheck_incomplete_array_needs_initializer);
5906      Var->setInvalidDecl();
5907      return;
5908    }
5909
5910    // Provide a specific diagnostic for uninitialized variable
5911    // definitions with reference type.
5912    if (Type->isReferenceType()) {
5913      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5914        << Var->getDeclName()
5915        << SourceRange(Var->getLocation(), Var->getLocation());
5916      Var->setInvalidDecl();
5917      return;
5918    }
5919
5920    // Do not attempt to type-check the default initializer for a
5921    // variable with dependent type.
5922    if (Type->isDependentType())
5923      return;
5924
5925    if (Var->isInvalidDecl())
5926      return;
5927
5928    if (RequireCompleteType(Var->getLocation(),
5929                            Context.getBaseElementType(Type),
5930                            diag::err_typecheck_decl_incomplete_type)) {
5931      Var->setInvalidDecl();
5932      return;
5933    }
5934
5935    // The variable can not have an abstract class type.
5936    if (RequireNonAbstractType(Var->getLocation(), Type,
5937                               diag::err_abstract_type_in_decl,
5938                               AbstractVariableType)) {
5939      Var->setInvalidDecl();
5940      return;
5941    }
5942
5943    // Check for jumps past the implicit initializer.  C++0x
5944    // clarifies that this applies to a "variable with automatic
5945    // storage duration", not a "local variable".
5946    // C++0x [stmt.dcl]p3
5947    //   A program that jumps from a point where a variable with automatic
5948    //   storage duration is not in scope to a point where it is in scope is
5949    //   ill-formed unless the variable has scalar type, class type with a
5950    //   trivial default constructor and a trivial destructor, a cv-qualified
5951    //   version of one of these types, or an array of one of the preceding
5952    //   types and is declared without an initializer.
5953    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5954      if (const RecordType *Record
5955            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5956        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5957        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5958            (getLangOptions().CPlusPlus0x &&
5959             (!CXXRecord->hasTrivialDefaultConstructor() ||
5960              !CXXRecord->hasTrivialDestructor())))
5961          getCurFunction()->setHasBranchProtectedScope();
5962      }
5963    }
5964
5965    // C++03 [dcl.init]p9:
5966    //   If no initializer is specified for an object, and the
5967    //   object is of (possibly cv-qualified) non-POD class type (or
5968    //   array thereof), the object shall be default-initialized; if
5969    //   the object is of const-qualified type, the underlying class
5970    //   type shall have a user-declared default
5971    //   constructor. Otherwise, if no initializer is specified for
5972    //   a non- static object, the object and its subobjects, if
5973    //   any, have an indeterminate initial value); if the object
5974    //   or any of its subobjects are of const-qualified type, the
5975    //   program is ill-formed.
5976    // C++0x [dcl.init]p11:
5977    //   If no initializer is specified for an object, the object is
5978    //   default-initialized; [...].
5979    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5980    InitializationKind Kind
5981      = InitializationKind::CreateDefault(Var->getLocation());
5982
5983    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5984    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5985                                      MultiExprArg(*this, 0, 0));
5986    if (Init.isInvalid())
5987      Var->setInvalidDecl();
5988    else if (Init.get())
5989      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5990
5991    CheckCompleteVariableDeclaration(Var);
5992  }
5993}
5994
5995void Sema::ActOnCXXForRangeDecl(Decl *D) {
5996  VarDecl *VD = dyn_cast<VarDecl>(D);
5997  if (!VD) {
5998    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5999    D->setInvalidDecl();
6000    return;
6001  }
6002
6003  VD->setCXXForRangeDecl(true);
6004
6005  // for-range-declaration cannot be given a storage class specifier.
6006  int Error = -1;
6007  switch (VD->getStorageClassAsWritten()) {
6008  case SC_None:
6009    break;
6010  case SC_Extern:
6011    Error = 0;
6012    break;
6013  case SC_Static:
6014    Error = 1;
6015    break;
6016  case SC_PrivateExtern:
6017    Error = 2;
6018    break;
6019  case SC_Auto:
6020    Error = 3;
6021    break;
6022  case SC_Register:
6023    Error = 4;
6024    break;
6025  }
6026  // FIXME: constexpr isn't allowed here.
6027  //if (DS.isConstexprSpecified())
6028  //  Error = 5;
6029  if (Error != -1) {
6030    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6031      << VD->getDeclName() << Error;
6032    D->setInvalidDecl();
6033  }
6034}
6035
6036void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6037  if (var->isInvalidDecl()) return;
6038
6039  // In ARC, don't allow jumps past the implicit initialization of a
6040  // local retaining variable.
6041  if (getLangOptions().ObjCAutoRefCount &&
6042      var->hasLocalStorage()) {
6043    switch (var->getType().getObjCLifetime()) {
6044    case Qualifiers::OCL_None:
6045    case Qualifiers::OCL_ExplicitNone:
6046    case Qualifiers::OCL_Autoreleasing:
6047      break;
6048
6049    case Qualifiers::OCL_Weak:
6050    case Qualifiers::OCL_Strong:
6051      getCurFunction()->setHasBranchProtectedScope();
6052      break;
6053    }
6054  }
6055
6056  // All the following checks are C++ only.
6057  if (!getLangOptions().CPlusPlus) return;
6058
6059  QualType baseType = Context.getBaseElementType(var->getType());
6060  if (baseType->isDependentType()) return;
6061
6062  // __block variables might require us to capture a copy-initializer.
6063  if (var->hasAttr<BlocksAttr>()) {
6064    // It's currently invalid to ever have a __block variable with an
6065    // array type; should we diagnose that here?
6066
6067    // Regardless, we don't want to ignore array nesting when
6068    // constructing this copy.
6069    QualType type = var->getType();
6070
6071    if (type->isStructureOrClassType()) {
6072      SourceLocation poi = var->getLocation();
6073      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6074      ExprResult result =
6075        PerformCopyInitialization(
6076                        InitializedEntity::InitializeBlock(poi, type, false),
6077                                  poi, Owned(varRef));
6078      if (!result.isInvalid()) {
6079        result = MaybeCreateExprWithCleanups(result);
6080        Expr *init = result.takeAs<Expr>();
6081        Context.setBlockVarCopyInits(var, init);
6082      }
6083    }
6084  }
6085
6086  // Check for global constructors.
6087  if (!var->getDeclContext()->isDependentContext() &&
6088      var->hasGlobalStorage() &&
6089      !var->isStaticLocal() &&
6090      var->getInit() &&
6091      !var->getInit()->isConstantInitializer(Context,
6092                                             baseType->isReferenceType()))
6093    Diag(var->getLocation(), diag::warn_global_constructor)
6094      << var->getInit()->getSourceRange();
6095
6096  // Require the destructor.
6097  if (const RecordType *recordType = baseType->getAs<RecordType>())
6098    FinalizeVarWithDestructor(var, recordType);
6099}
6100
6101/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6102/// any semantic actions necessary after any initializer has been attached.
6103void
6104Sema::FinalizeDeclaration(Decl *ThisDecl) {
6105  // Note that we are no longer parsing the initializer for this declaration.
6106  ParsingInitForAutoVars.erase(ThisDecl);
6107}
6108
6109Sema::DeclGroupPtrTy
6110Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6111                              Decl **Group, unsigned NumDecls) {
6112  SmallVector<Decl*, 8> Decls;
6113
6114  if (DS.isTypeSpecOwned())
6115    Decls.push_back(DS.getRepAsDecl());
6116
6117  for (unsigned i = 0; i != NumDecls; ++i)
6118    if (Decl *D = Group[i])
6119      Decls.push_back(D);
6120
6121  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6122                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6123}
6124
6125/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6126/// group, performing any necessary semantic checking.
6127Sema::DeclGroupPtrTy
6128Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6129                           bool TypeMayContainAuto) {
6130  // C++0x [dcl.spec.auto]p7:
6131  //   If the type deduced for the template parameter U is not the same in each
6132  //   deduction, the program is ill-formed.
6133  // FIXME: When initializer-list support is added, a distinction is needed
6134  // between the deduced type U and the deduced type which 'auto' stands for.
6135  //   auto a = 0, b = { 1, 2, 3 };
6136  // is legal because the deduced type U is 'int' in both cases.
6137  if (TypeMayContainAuto && NumDecls > 1) {
6138    QualType Deduced;
6139    CanQualType DeducedCanon;
6140    VarDecl *DeducedDecl = 0;
6141    for (unsigned i = 0; i != NumDecls; ++i) {
6142      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6143        AutoType *AT = D->getType()->getContainedAutoType();
6144        // Don't reissue diagnostics when instantiating a template.
6145        if (AT && D->isInvalidDecl())
6146          break;
6147        if (AT && AT->isDeduced()) {
6148          QualType U = AT->getDeducedType();
6149          CanQualType UCanon = Context.getCanonicalType(U);
6150          if (Deduced.isNull()) {
6151            Deduced = U;
6152            DeducedCanon = UCanon;
6153            DeducedDecl = D;
6154          } else if (DeducedCanon != UCanon) {
6155            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6156                 diag::err_auto_different_deductions)
6157              << Deduced << DeducedDecl->getDeclName()
6158              << U << D->getDeclName()
6159              << DeducedDecl->getInit()->getSourceRange()
6160              << D->getInit()->getSourceRange();
6161            D->setInvalidDecl();
6162            break;
6163          }
6164        }
6165      }
6166    }
6167  }
6168
6169  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6170}
6171
6172
6173/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6174/// to introduce parameters into function prototype scope.
6175Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6176  const DeclSpec &DS = D.getDeclSpec();
6177
6178  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6179  VarDecl::StorageClass StorageClass = SC_None;
6180  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6181  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6182    StorageClass = SC_Register;
6183    StorageClassAsWritten = SC_Register;
6184  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6185    Diag(DS.getStorageClassSpecLoc(),
6186         diag::err_invalid_storage_class_in_func_decl);
6187    D.getMutableDeclSpec().ClearStorageClassSpecs();
6188  }
6189
6190  if (D.getDeclSpec().isThreadSpecified())
6191    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6192  if (D.getDeclSpec().isConstexprSpecified())
6193    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6194      << 0;
6195
6196  DiagnoseFunctionSpecifiers(D);
6197
6198  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6199  QualType parmDeclType = TInfo->getType();
6200
6201  if (getLangOptions().CPlusPlus) {
6202    // Check that there are no default arguments inside the type of this
6203    // parameter.
6204    CheckExtraCXXDefaultArguments(D);
6205
6206    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6207    if (D.getCXXScopeSpec().isSet()) {
6208      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6209        << D.getCXXScopeSpec().getRange();
6210      D.getCXXScopeSpec().clear();
6211    }
6212  }
6213
6214  // Ensure we have a valid name
6215  IdentifierInfo *II = 0;
6216  if (D.hasName()) {
6217    II = D.getIdentifier();
6218    if (!II) {
6219      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6220        << GetNameForDeclarator(D).getName().getAsString();
6221      D.setInvalidType(true);
6222    }
6223  }
6224
6225  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6226  if (II) {
6227    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6228                   ForRedeclaration);
6229    LookupName(R, S);
6230    if (R.isSingleResult()) {
6231      NamedDecl *PrevDecl = R.getFoundDecl();
6232      if (PrevDecl->isTemplateParameter()) {
6233        // Maybe we will complain about the shadowed template parameter.
6234        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6235        // Just pretend that we didn't see the previous declaration.
6236        PrevDecl = 0;
6237      } else if (S->isDeclScope(PrevDecl)) {
6238        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6239        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6240
6241        // Recover by removing the name
6242        II = 0;
6243        D.SetIdentifier(0, D.getIdentifierLoc());
6244        D.setInvalidType(true);
6245      }
6246    }
6247  }
6248
6249  // Temporarily put parameter variables in the translation unit, not
6250  // the enclosing context.  This prevents them from accidentally
6251  // looking like class members in C++.
6252  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6253                                    D.getSourceRange().getBegin(),
6254                                    D.getIdentifierLoc(), II,
6255                                    parmDeclType, TInfo,
6256                                    StorageClass, StorageClassAsWritten);
6257
6258  if (D.isInvalidType())
6259    New->setInvalidDecl();
6260
6261  assert(S->isFunctionPrototypeScope());
6262  assert(S->getFunctionPrototypeDepth() >= 1);
6263  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6264                    S->getNextFunctionPrototypeIndex());
6265
6266  // Add the parameter declaration into this scope.
6267  S->AddDecl(New);
6268  if (II)
6269    IdResolver.AddDecl(New);
6270
6271  ProcessDeclAttributes(S, New, D);
6272
6273  if (New->hasAttr<BlocksAttr>()) {
6274    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6275  }
6276  return New;
6277}
6278
6279/// \brief Synthesizes a variable for a parameter arising from a
6280/// typedef.
6281ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6282                                              SourceLocation Loc,
6283                                              QualType T) {
6284  /* FIXME: setting StartLoc == Loc.
6285     Would it be worth to modify callers so as to provide proper source
6286     location for the unnamed parameters, embedding the parameter's type? */
6287  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6288                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6289                                           SC_None, SC_None, 0);
6290  Param->setImplicit();
6291  return Param;
6292}
6293
6294void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6295                                    ParmVarDecl * const *ParamEnd) {
6296  // Don't diagnose unused-parameter errors in template instantiations; we
6297  // will already have done so in the template itself.
6298  if (!ActiveTemplateInstantiations.empty())
6299    return;
6300
6301  for (; Param != ParamEnd; ++Param) {
6302    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6303        !(*Param)->hasAttr<UnusedAttr>()) {
6304      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6305        << (*Param)->getDeclName();
6306    }
6307  }
6308}
6309
6310void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6311                                                  ParmVarDecl * const *ParamEnd,
6312                                                  QualType ReturnTy,
6313                                                  NamedDecl *D) {
6314  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6315    return;
6316
6317  // Warn if the return value is pass-by-value and larger than the specified
6318  // threshold.
6319  if (ReturnTy.isPODType(Context)) {
6320    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6321    if (Size > LangOpts.NumLargeByValueCopy)
6322      Diag(D->getLocation(), diag::warn_return_value_size)
6323          << D->getDeclName() << Size;
6324  }
6325
6326  // Warn if any parameter is pass-by-value and larger than the specified
6327  // threshold.
6328  for (; Param != ParamEnd; ++Param) {
6329    QualType T = (*Param)->getType();
6330    if (!T.isPODType(Context))
6331      continue;
6332    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6333    if (Size > LangOpts.NumLargeByValueCopy)
6334      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6335          << (*Param)->getDeclName() << Size;
6336  }
6337}
6338
6339ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6340                                  SourceLocation NameLoc, IdentifierInfo *Name,
6341                                  QualType T, TypeSourceInfo *TSInfo,
6342                                  VarDecl::StorageClass StorageClass,
6343                                  VarDecl::StorageClass StorageClassAsWritten) {
6344  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6345  if (getLangOptions().ObjCAutoRefCount &&
6346      T.getObjCLifetime() == Qualifiers::OCL_None &&
6347      T->isObjCLifetimeType()) {
6348
6349    Qualifiers::ObjCLifetime lifetime;
6350
6351    // Special cases for arrays:
6352    //   - if it's const, use __unsafe_unretained
6353    //   - otherwise, it's an error
6354    if (T->isArrayType()) {
6355      if (!T.isConstQualified()) {
6356        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6357          << TSInfo->getTypeLoc().getSourceRange();
6358      }
6359      lifetime = Qualifiers::OCL_ExplicitNone;
6360    } else {
6361      lifetime = T->getObjCARCImplicitLifetime();
6362    }
6363    T = Context.getLifetimeQualifiedType(T, lifetime);
6364  }
6365
6366  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6367                                         Context.getAdjustedParameterType(T),
6368                                         TSInfo,
6369                                         StorageClass, StorageClassAsWritten,
6370                                         0);
6371
6372  // Parameters can not be abstract class types.
6373  // For record types, this is done by the AbstractClassUsageDiagnoser once
6374  // the class has been completely parsed.
6375  if (!CurContext->isRecord() &&
6376      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6377                             AbstractParamType))
6378    New->setInvalidDecl();
6379
6380  // Parameter declarators cannot be interface types. All ObjC objects are
6381  // passed by reference.
6382  if (T->isObjCObjectType()) {
6383    Diag(NameLoc,
6384         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6385      << FixItHint::CreateInsertion(NameLoc, "*");
6386    T = Context.getObjCObjectPointerType(T);
6387    New->setType(T);
6388  }
6389
6390  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6391  // duration shall not be qualified by an address-space qualifier."
6392  // Since all parameters have automatic store duration, they can not have
6393  // an address space.
6394  if (T.getAddressSpace() != 0) {
6395    Diag(NameLoc, diag::err_arg_with_address_space);
6396    New->setInvalidDecl();
6397  }
6398
6399  return New;
6400}
6401
6402void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6403                                           SourceLocation LocAfterDecls) {
6404  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6405
6406  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6407  // for a K&R function.
6408  if (!FTI.hasPrototype) {
6409    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6410      --i;
6411      if (FTI.ArgInfo[i].Param == 0) {
6412        llvm::SmallString<256> Code;
6413        llvm::raw_svector_ostream(Code) << "  int "
6414                                        << FTI.ArgInfo[i].Ident->getName()
6415                                        << ";\n";
6416        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6417          << FTI.ArgInfo[i].Ident
6418          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6419
6420        // Implicitly declare the argument as type 'int' for lack of a better
6421        // type.
6422        AttributeFactory attrs;
6423        DeclSpec DS(attrs);
6424        const char* PrevSpec; // unused
6425        unsigned DiagID; // unused
6426        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6427                           PrevSpec, DiagID);
6428        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6429        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6430        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6431      }
6432    }
6433  }
6434}
6435
6436Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6437                                         Declarator &D) {
6438  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6439  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6440  Scope *ParentScope = FnBodyScope->getParent();
6441
6442  Decl *DP = HandleDeclarator(ParentScope, D,
6443                              MultiTemplateParamsArg(*this),
6444                              /*IsFunctionDefinition=*/true);
6445  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6446}
6447
6448static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6449  // Don't warn about invalid declarations.
6450  if (FD->isInvalidDecl())
6451    return false;
6452
6453  // Or declarations that aren't global.
6454  if (!FD->isGlobal())
6455    return false;
6456
6457  // Don't warn about C++ member functions.
6458  if (isa<CXXMethodDecl>(FD))
6459    return false;
6460
6461  // Don't warn about 'main'.
6462  if (FD->isMain())
6463    return false;
6464
6465  // Don't warn about inline functions.
6466  if (FD->isInlined())
6467    return false;
6468
6469  // Don't warn about function templates.
6470  if (FD->getDescribedFunctionTemplate())
6471    return false;
6472
6473  // Don't warn about function template specializations.
6474  if (FD->isFunctionTemplateSpecialization())
6475    return false;
6476
6477  bool MissingPrototype = true;
6478  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6479       Prev; Prev = Prev->getPreviousDeclaration()) {
6480    // Ignore any declarations that occur in function or method
6481    // scope, because they aren't visible from the header.
6482    if (Prev->getDeclContext()->isFunctionOrMethod())
6483      continue;
6484
6485    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6486    break;
6487  }
6488
6489  return MissingPrototype;
6490}
6491
6492void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6493  // Don't complain if we're in GNU89 mode and the previous definition
6494  // was an extern inline function.
6495  const FunctionDecl *Definition;
6496  if (FD->isDefined(Definition) &&
6497      !canRedefineFunction(Definition, getLangOptions())) {
6498    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6499        Definition->getStorageClass() == SC_Extern)
6500      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6501        << FD->getDeclName() << getLangOptions().CPlusPlus;
6502    else
6503      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6504    Diag(Definition->getLocation(), diag::note_previous_definition);
6505  }
6506}
6507
6508Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6509  // Clear the last template instantiation error context.
6510  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6511
6512  if (!D)
6513    return D;
6514  FunctionDecl *FD = 0;
6515
6516  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6517    FD = FunTmpl->getTemplatedDecl();
6518  else
6519    FD = cast<FunctionDecl>(D);
6520
6521  // Enter a new function scope
6522  PushFunctionScope();
6523
6524  // See if this is a redefinition.
6525  if (!FD->isLateTemplateParsed())
6526    CheckForFunctionRedefinition(FD);
6527
6528  // Builtin functions cannot be defined.
6529  if (unsigned BuiltinID = FD->getBuiltinID()) {
6530    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6531      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6532      FD->setInvalidDecl();
6533    }
6534  }
6535
6536  // The return type of a function definition must be complete
6537  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6538  QualType ResultType = FD->getResultType();
6539  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6540      !FD->isInvalidDecl() &&
6541      RequireCompleteType(FD->getLocation(), ResultType,
6542                          diag::err_func_def_incomplete_result))
6543    FD->setInvalidDecl();
6544
6545  // GNU warning -Wmissing-prototypes:
6546  //   Warn if a global function is defined without a previous
6547  //   prototype declaration. This warning is issued even if the
6548  //   definition itself provides a prototype. The aim is to detect
6549  //   global functions that fail to be declared in header files.
6550  if (ShouldWarnAboutMissingPrototype(FD))
6551    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6552
6553  if (FnBodyScope)
6554    PushDeclContext(FnBodyScope, FD);
6555
6556  // Check the validity of our function parameters
6557  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6558                           /*CheckParameterNames=*/true);
6559
6560  // Introduce our parameters into the function scope
6561  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6562    ParmVarDecl *Param = FD->getParamDecl(p);
6563    Param->setOwningFunction(FD);
6564
6565    // If this has an identifier, add it to the scope stack.
6566    if (Param->getIdentifier() && FnBodyScope) {
6567      CheckShadow(FnBodyScope, Param);
6568
6569      PushOnScopeChains(Param, FnBodyScope);
6570    }
6571  }
6572
6573  // Checking attributes of current function definition
6574  // dllimport attribute.
6575  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6576  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6577    // dllimport attribute cannot be directly applied to definition.
6578    // Microsoft accepts dllimport for functions defined within class scope.
6579    if (!DA->isInherited() &&
6580        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6581      Diag(FD->getLocation(),
6582           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6583        << "dllimport";
6584      FD->setInvalidDecl();
6585      return FD;
6586    }
6587
6588    // Visual C++ appears to not think this is an issue, so only issue
6589    // a warning when Microsoft extensions are disabled.
6590    if (!LangOpts.Microsoft) {
6591      // If a symbol previously declared dllimport is later defined, the
6592      // attribute is ignored in subsequent references, and a warning is
6593      // emitted.
6594      Diag(FD->getLocation(),
6595           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6596        << FD->getName() << "dllimport";
6597    }
6598  }
6599  return FD;
6600}
6601
6602/// \brief Given the set of return statements within a function body,
6603/// compute the variables that are subject to the named return value
6604/// optimization.
6605///
6606/// Each of the variables that is subject to the named return value
6607/// optimization will be marked as NRVO variables in the AST, and any
6608/// return statement that has a marked NRVO variable as its NRVO candidate can
6609/// use the named return value optimization.
6610///
6611/// This function applies a very simplistic algorithm for NRVO: if every return
6612/// statement in the function has the same NRVO candidate, that candidate is
6613/// the NRVO variable.
6614///
6615/// FIXME: Employ a smarter algorithm that accounts for multiple return
6616/// statements and the lifetimes of the NRVO candidates. We should be able to
6617/// find a maximal set of NRVO variables.
6618static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6619  ReturnStmt **Returns = Scope->Returns.data();
6620
6621  const VarDecl *NRVOCandidate = 0;
6622  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6623    if (!Returns[I]->getNRVOCandidate())
6624      return;
6625
6626    if (!NRVOCandidate)
6627      NRVOCandidate = Returns[I]->getNRVOCandidate();
6628    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6629      return;
6630  }
6631
6632  if (NRVOCandidate)
6633    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6634}
6635
6636Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6637  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6638}
6639
6640Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6641                                    bool IsInstantiation) {
6642  FunctionDecl *FD = 0;
6643  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6644  if (FunTmpl)
6645    FD = FunTmpl->getTemplatedDecl();
6646  else
6647    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6648
6649  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6650  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6651
6652  if (FD) {
6653    FD->setBody(Body);
6654    if (FD->isMain()) {
6655      // C and C++ allow for main to automagically return 0.
6656      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6657      FD->setHasImplicitReturnZero(true);
6658      WP.disableCheckFallThrough();
6659    } else if (FD->hasAttr<NakedAttr>()) {
6660      // If the function is marked 'naked', don't complain about missing return
6661      // statements.
6662      WP.disableCheckFallThrough();
6663    }
6664
6665    // MSVC permits the use of pure specifier (=0) on function definition,
6666    // defined at class scope, warn about this non standard construct.
6667    if (getLangOptions().Microsoft && FD->isPure())
6668      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6669
6670    if (!FD->isInvalidDecl()) {
6671      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6672      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6673                                             FD->getResultType(), FD);
6674
6675      // If this is a constructor, we need a vtable.
6676      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6677        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6678
6679      ComputeNRVO(Body, getCurFunction());
6680    }
6681
6682    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6683  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6684    assert(MD == getCurMethodDecl() && "Method parsing confused");
6685    MD->setBody(Body);
6686    if (Body)
6687      MD->setEndLoc(Body->getLocEnd());
6688    if (!MD->isInvalidDecl()) {
6689      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6690      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6691                                             MD->getResultType(), MD);
6692    }
6693  } else {
6694    return 0;
6695  }
6696
6697  // Verify and clean out per-function state.
6698  if (Body) {
6699    // C++ constructors that have function-try-blocks can't have return
6700    // statements in the handlers of that block. (C++ [except.handle]p14)
6701    // Verify this.
6702    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6703      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6704
6705    // Verify that gotos and switch cases don't jump into scopes illegally.
6706    if (getCurFunction()->NeedsScopeChecking() &&
6707        !dcl->isInvalidDecl() &&
6708        !hasAnyUnrecoverableErrorsInThisFunction())
6709      DiagnoseInvalidJumps(Body);
6710
6711    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6712      if (!Destructor->getParent()->isDependentType())
6713        CheckDestructor(Destructor);
6714
6715      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6716                                             Destructor->getParent());
6717    }
6718
6719    // If any errors have occurred, clear out any temporaries that may have
6720    // been leftover. This ensures that these temporaries won't be picked up for
6721    // deletion in some later function.
6722    if (PP.getDiagnostics().hasErrorOccurred() ||
6723        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6724      ExprTemporaries.clear();
6725      ExprNeedsCleanups = false;
6726    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6727      // Since the body is valid, issue any analysis-based warnings that are
6728      // enabled.
6729      ActivePolicy = &WP;
6730    }
6731
6732    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6733    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6734  }
6735
6736  if (!IsInstantiation)
6737    PopDeclContext();
6738
6739  PopFunctionOrBlockScope(ActivePolicy, dcl);
6740
6741  // If any errors have occurred, clear out any temporaries that may have
6742  // been leftover. This ensures that these temporaries won't be picked up for
6743  // deletion in some later function.
6744  if (getDiagnostics().hasErrorOccurred()) {
6745    ExprTemporaries.clear();
6746    ExprNeedsCleanups = false;
6747  }
6748
6749  return dcl;
6750}
6751
6752/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6753/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6754NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6755                                          IdentifierInfo &II, Scope *S) {
6756  // Before we produce a declaration for an implicitly defined
6757  // function, see whether there was a locally-scoped declaration of
6758  // this name as a function or variable. If so, use that
6759  // (non-visible) declaration, and complain about it.
6760  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6761    = findLocallyScopedExternalDecl(&II);
6762  if (Pos != LocallyScopedExternalDecls.end()) {
6763    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6764    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6765    return Pos->second;
6766  }
6767
6768  // Extension in C99.  Legal in C90, but warn about it.
6769  if (II.getName().startswith("__builtin_"))
6770    Diag(Loc, diag::warn_builtin_unknown) << &II;
6771  else if (getLangOptions().C99)
6772    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6773  else
6774    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6775
6776  // Set a Declarator for the implicit definition: int foo();
6777  const char *Dummy;
6778  AttributeFactory attrFactory;
6779  DeclSpec DS(attrFactory);
6780  unsigned DiagID;
6781  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6782  (void)Error; // Silence warning.
6783  assert(!Error && "Error setting up implicit decl!");
6784  Declarator D(DS, Declarator::BlockContext);
6785  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6786                                             0, 0, true, SourceLocation(),
6787                                             SourceLocation(),
6788                                             EST_None, SourceLocation(),
6789                                             0, 0, 0, 0, Loc, Loc, D),
6790                DS.getAttributes(),
6791                SourceLocation());
6792  D.SetIdentifier(&II, Loc);
6793
6794  // Insert this function into translation-unit scope.
6795
6796  DeclContext *PrevDC = CurContext;
6797  CurContext = Context.getTranslationUnitDecl();
6798
6799  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6800  FD->setImplicit();
6801
6802  CurContext = PrevDC;
6803
6804  AddKnownFunctionAttributes(FD);
6805
6806  return FD;
6807}
6808
6809/// \brief Adds any function attributes that we know a priori based on
6810/// the declaration of this function.
6811///
6812/// These attributes can apply both to implicitly-declared builtins
6813/// (like __builtin___printf_chk) or to library-declared functions
6814/// like NSLog or printf.
6815///
6816/// We need to check for duplicate attributes both here and where user-written
6817/// attributes are applied to declarations.
6818void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6819  if (FD->isInvalidDecl())
6820    return;
6821
6822  // If this is a built-in function, map its builtin attributes to
6823  // actual attributes.
6824  if (unsigned BuiltinID = FD->getBuiltinID()) {
6825    // Handle printf-formatting attributes.
6826    unsigned FormatIdx;
6827    bool HasVAListArg;
6828    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6829      if (!FD->getAttr<FormatAttr>())
6830        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6831                                                "printf", FormatIdx+1,
6832                                               HasVAListArg ? 0 : FormatIdx+2));
6833    }
6834    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6835                                             HasVAListArg)) {
6836     if (!FD->getAttr<FormatAttr>())
6837       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6838                                              "scanf", FormatIdx+1,
6839                                              HasVAListArg ? 0 : FormatIdx+2));
6840    }
6841
6842    // Mark const if we don't care about errno and that is the only
6843    // thing preventing the function from being const. This allows
6844    // IRgen to use LLVM intrinsics for such functions.
6845    if (!getLangOptions().MathErrno &&
6846        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6847      if (!FD->getAttr<ConstAttr>())
6848        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6849    }
6850
6851    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6852      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6853    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6854      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6855  }
6856
6857  IdentifierInfo *Name = FD->getIdentifier();
6858  if (!Name)
6859    return;
6860  if ((!getLangOptions().CPlusPlus &&
6861       FD->getDeclContext()->isTranslationUnit()) ||
6862      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6863       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6864       LinkageSpecDecl::lang_c)) {
6865    // Okay: this could be a libc/libm/Objective-C function we know
6866    // about.
6867  } else
6868    return;
6869
6870  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6871    // FIXME: NSLog and NSLogv should be target specific
6872    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6873      // FIXME: We known better than our headers.
6874      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6875    } else
6876      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6877                                             "printf", 1,
6878                                             Name->isStr("NSLogv") ? 0 : 2));
6879  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6880    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6881    // target-specific builtins, perhaps?
6882    if (!FD->getAttr<FormatAttr>())
6883      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6884                                             "printf", 2,
6885                                             Name->isStr("vasprintf") ? 0 : 3));
6886  }
6887}
6888
6889TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6890                                    TypeSourceInfo *TInfo) {
6891  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6892  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6893
6894  if (!TInfo) {
6895    assert(D.isInvalidType() && "no declarator info for valid type");
6896    TInfo = Context.getTrivialTypeSourceInfo(T);
6897  }
6898
6899  // Scope manipulation handled by caller.
6900  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6901                                           D.getSourceRange().getBegin(),
6902                                           D.getIdentifierLoc(),
6903                                           D.getIdentifier(),
6904                                           TInfo);
6905
6906  // Bail out immediately if we have an invalid declaration.
6907  if (D.isInvalidType()) {
6908    NewTD->setInvalidDecl();
6909    return NewTD;
6910  }
6911
6912  // C++ [dcl.typedef]p8:
6913  //   If the typedef declaration defines an unnamed class (or
6914  //   enum), the first typedef-name declared by the declaration
6915  //   to be that class type (or enum type) is used to denote the
6916  //   class type (or enum type) for linkage purposes only.
6917  // We need to check whether the type was declared in the declaration.
6918  switch (D.getDeclSpec().getTypeSpecType()) {
6919  case TST_enum:
6920  case TST_struct:
6921  case TST_union:
6922  case TST_class: {
6923    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6924
6925    // Do nothing if the tag is not anonymous or already has an
6926    // associated typedef (from an earlier typedef in this decl group).
6927    if (tagFromDeclSpec->getIdentifier()) break;
6928    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6929
6930    // A well-formed anonymous tag must always be a TUK_Definition.
6931    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6932
6933    // The type must match the tag exactly;  no qualifiers allowed.
6934    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6935      break;
6936
6937    // Otherwise, set this is the anon-decl typedef for the tag.
6938    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6939    break;
6940  }
6941
6942  default:
6943    break;
6944  }
6945
6946  return NewTD;
6947}
6948
6949
6950/// \brief Determine whether a tag with a given kind is acceptable
6951/// as a redeclaration of the given tag declaration.
6952///
6953/// \returns true if the new tag kind is acceptable, false otherwise.
6954bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6955                                        TagTypeKind NewTag, bool isDefinition,
6956                                        SourceLocation NewTagLoc,
6957                                        const IdentifierInfo &Name) {
6958  // C++ [dcl.type.elab]p3:
6959  //   The class-key or enum keyword present in the
6960  //   elaborated-type-specifier shall agree in kind with the
6961  //   declaration to which the name in the elaborated-type-specifier
6962  //   refers. This rule also applies to the form of
6963  //   elaborated-type-specifier that declares a class-name or
6964  //   friend class since it can be construed as referring to the
6965  //   definition of the class. Thus, in any
6966  //   elaborated-type-specifier, the enum keyword shall be used to
6967  //   refer to an enumeration (7.2), the union class-key shall be
6968  //   used to refer to a union (clause 9), and either the class or
6969  //   struct class-key shall be used to refer to a class (clause 9)
6970  //   declared using the class or struct class-key.
6971  TagTypeKind OldTag = Previous->getTagKind();
6972  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6973    if (OldTag == NewTag)
6974      return true;
6975
6976  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6977      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6978    // Warn about the struct/class tag mismatch.
6979    bool isTemplate = false;
6980    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6981      isTemplate = Record->getDescribedClassTemplate();
6982
6983    if (!ActiveTemplateInstantiations.empty()) {
6984      // In a template instantiation, do not offer fix-its for tag mismatches
6985      // since they usually mess up the template instead of fixing the problem.
6986      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6987        << (NewTag == TTK_Class) << isTemplate << &Name;
6988      return true;
6989    }
6990
6991    if (isDefinition) {
6992      // On definitions, check previous tags and issue a fix-it for each
6993      // one that doesn't match the current tag.
6994      if (Previous->getDefinition()) {
6995        // Don't suggest fix-its for redefinitions.
6996        return true;
6997      }
6998
6999      bool previousMismatch = false;
7000      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7001           E(Previous->redecls_end()); I != E; ++I) {
7002        if (I->getTagKind() != NewTag) {
7003          if (!previousMismatch) {
7004            previousMismatch = true;
7005            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7006              << (NewTag == TTK_Class) << isTemplate << &Name;
7007          }
7008          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7009            << (NewTag == TTK_Class)
7010            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7011                                            NewTag == TTK_Class?
7012                                            "class" : "struct");
7013        }
7014      }
7015      return true;
7016    }
7017
7018    // Check for a previous definition.  If current tag and definition
7019    // are same type, do nothing.  If no definition, but disagree with
7020    // with previous tag type, give a warning, but no fix-it.
7021    const TagDecl *Redecl = Previous->getDefinition() ?
7022                            Previous->getDefinition() : Previous;
7023    if (Redecl->getTagKind() == NewTag) {
7024      return true;
7025    }
7026
7027    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7028      << (NewTag == TTK_Class)
7029      << isTemplate << &Name;
7030    Diag(Redecl->getLocation(), diag::note_previous_use);
7031
7032    // If there is a previous defintion, suggest a fix-it.
7033    if (Previous->getDefinition()) {
7034        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7035          << (Redecl->getTagKind() == TTK_Class)
7036          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7037                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7038    }
7039
7040    return true;
7041  }
7042  return false;
7043}
7044
7045/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7046/// former case, Name will be non-null.  In the later case, Name will be null.
7047/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7048/// reference/declaration/definition of a tag.
7049Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7050                     SourceLocation KWLoc, CXXScopeSpec &SS,
7051                     IdentifierInfo *Name, SourceLocation NameLoc,
7052                     AttributeList *Attr, AccessSpecifier AS,
7053                     MultiTemplateParamsArg TemplateParameterLists,
7054                     bool &OwnedDecl, bool &IsDependent,
7055                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7056                     TypeResult UnderlyingType) {
7057  // If this is not a definition, it must have a name.
7058  assert((Name != 0 || TUK == TUK_Definition) &&
7059         "Nameless record must be a definition!");
7060  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7061
7062  OwnedDecl = false;
7063  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7064
7065  // FIXME: Check explicit specializations more carefully.
7066  bool isExplicitSpecialization = false;
7067  bool Invalid = false;
7068
7069  // We only need to do this matching if we have template parameters
7070  // or a scope specifier, which also conveniently avoids this work
7071  // for non-C++ cases.
7072  if (TemplateParameterLists.size() > 0 ||
7073      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7074    if (TemplateParameterList *TemplateParams
7075          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7076                                                TemplateParameterLists.get(),
7077                                                TemplateParameterLists.size(),
7078                                                    TUK == TUK_Friend,
7079                                                    isExplicitSpecialization,
7080                                                    Invalid)) {
7081      if (TemplateParams->size() > 0) {
7082        // This is a declaration or definition of a class template (which may
7083        // be a member of another template).
7084
7085        if (Invalid)
7086          return 0;
7087
7088        OwnedDecl = false;
7089        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7090                                               SS, Name, NameLoc, Attr,
7091                                               TemplateParams, AS,
7092                                           TemplateParameterLists.size() - 1,
7093                 (TemplateParameterList**) TemplateParameterLists.release());
7094        return Result.get();
7095      } else {
7096        // The "template<>" header is extraneous.
7097        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7098          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7099        isExplicitSpecialization = true;
7100      }
7101    }
7102  }
7103
7104  // Figure out the underlying type if this a enum declaration. We need to do
7105  // this early, because it's needed to detect if this is an incompatible
7106  // redeclaration.
7107  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7108
7109  if (Kind == TTK_Enum) {
7110    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7111      // No underlying type explicitly specified, or we failed to parse the
7112      // type, default to int.
7113      EnumUnderlying = Context.IntTy.getTypePtr();
7114    else if (UnderlyingType.get()) {
7115      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7116      // integral type; any cv-qualification is ignored.
7117      TypeSourceInfo *TI = 0;
7118      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7119      EnumUnderlying = TI;
7120
7121      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7122
7123      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7124        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7125          << T;
7126        // Recover by falling back to int.
7127        EnumUnderlying = Context.IntTy.getTypePtr();
7128      }
7129
7130      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7131                                          UPPC_FixedUnderlyingType))
7132        EnumUnderlying = Context.IntTy.getTypePtr();
7133
7134    } else if (getLangOptions().Microsoft)
7135      // Microsoft enums are always of int type.
7136      EnumUnderlying = Context.IntTy.getTypePtr();
7137  }
7138
7139  DeclContext *SearchDC = CurContext;
7140  DeclContext *DC = CurContext;
7141  bool isStdBadAlloc = false;
7142
7143  RedeclarationKind Redecl = ForRedeclaration;
7144  if (TUK == TUK_Friend || TUK == TUK_Reference)
7145    Redecl = NotForRedeclaration;
7146
7147  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7148
7149  if (Name && SS.isNotEmpty()) {
7150    // We have a nested-name tag ('struct foo::bar').
7151
7152    // Check for invalid 'foo::'.
7153    if (SS.isInvalid()) {
7154      Name = 0;
7155      goto CreateNewDecl;
7156    }
7157
7158    // If this is a friend or a reference to a class in a dependent
7159    // context, don't try to make a decl for it.
7160    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7161      DC = computeDeclContext(SS, false);
7162      if (!DC) {
7163        IsDependent = true;
7164        return 0;
7165      }
7166    } else {
7167      DC = computeDeclContext(SS, true);
7168      if (!DC) {
7169        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7170          << SS.getRange();
7171        return 0;
7172      }
7173    }
7174
7175    if (RequireCompleteDeclContext(SS, DC))
7176      return 0;
7177
7178    SearchDC = DC;
7179    // Look-up name inside 'foo::'.
7180    LookupQualifiedName(Previous, DC);
7181
7182    if (Previous.isAmbiguous())
7183      return 0;
7184
7185    if (Previous.empty()) {
7186      // Name lookup did not find anything. However, if the
7187      // nested-name-specifier refers to the current instantiation,
7188      // and that current instantiation has any dependent base
7189      // classes, we might find something at instantiation time: treat
7190      // this as a dependent elaborated-type-specifier.
7191      // But this only makes any sense for reference-like lookups.
7192      if (Previous.wasNotFoundInCurrentInstantiation() &&
7193          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7194        IsDependent = true;
7195        return 0;
7196      }
7197
7198      // A tag 'foo::bar' must already exist.
7199      Diag(NameLoc, diag::err_not_tag_in_scope)
7200        << Kind << Name << DC << SS.getRange();
7201      Name = 0;
7202      Invalid = true;
7203      goto CreateNewDecl;
7204    }
7205  } else if (Name) {
7206    // If this is a named struct, check to see if there was a previous forward
7207    // declaration or definition.
7208    // FIXME: We're looking into outer scopes here, even when we
7209    // shouldn't be. Doing so can result in ambiguities that we
7210    // shouldn't be diagnosing.
7211    LookupName(Previous, S);
7212
7213    if (Previous.isAmbiguous() &&
7214        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7215      LookupResult::Filter F = Previous.makeFilter();
7216      while (F.hasNext()) {
7217        NamedDecl *ND = F.next();
7218        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7219          F.erase();
7220      }
7221      F.done();
7222    }
7223
7224    // Note:  there used to be some attempt at recovery here.
7225    if (Previous.isAmbiguous())
7226      return 0;
7227
7228    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7229      // FIXME: This makes sure that we ignore the contexts associated
7230      // with C structs, unions, and enums when looking for a matching
7231      // tag declaration or definition. See the similar lookup tweak
7232      // in Sema::LookupName; is there a better way to deal with this?
7233      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7234        SearchDC = SearchDC->getParent();
7235    }
7236  } else if (S->isFunctionPrototypeScope()) {
7237    // If this is an enum declaration in function prototype scope, set its
7238    // initial context to the translation unit.
7239    SearchDC = Context.getTranslationUnitDecl();
7240  }
7241
7242  if (Previous.isSingleResult() &&
7243      Previous.getFoundDecl()->isTemplateParameter()) {
7244    // Maybe we will complain about the shadowed template parameter.
7245    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7246    // Just pretend that we didn't see the previous declaration.
7247    Previous.clear();
7248  }
7249
7250  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7251      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7252    // This is a declaration of or a reference to "std::bad_alloc".
7253    isStdBadAlloc = true;
7254
7255    if (Previous.empty() && StdBadAlloc) {
7256      // std::bad_alloc has been implicitly declared (but made invisible to
7257      // name lookup). Fill in this implicit declaration as the previous
7258      // declaration, so that the declarations get chained appropriately.
7259      Previous.addDecl(getStdBadAlloc());
7260    }
7261  }
7262
7263  // If we didn't find a previous declaration, and this is a reference
7264  // (or friend reference), move to the correct scope.  In C++, we
7265  // also need to do a redeclaration lookup there, just in case
7266  // there's a shadow friend decl.
7267  if (Name && Previous.empty() &&
7268      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7269    if (Invalid) goto CreateNewDecl;
7270    assert(SS.isEmpty());
7271
7272    if (TUK == TUK_Reference) {
7273      // C++ [basic.scope.pdecl]p5:
7274      //   -- for an elaborated-type-specifier of the form
7275      //
7276      //          class-key identifier
7277      //
7278      //      if the elaborated-type-specifier is used in the
7279      //      decl-specifier-seq or parameter-declaration-clause of a
7280      //      function defined in namespace scope, the identifier is
7281      //      declared as a class-name in the namespace that contains
7282      //      the declaration; otherwise, except as a friend
7283      //      declaration, the identifier is declared in the smallest
7284      //      non-class, non-function-prototype scope that contains the
7285      //      declaration.
7286      //
7287      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7288      // C structs and unions.
7289      //
7290      // It is an error in C++ to declare (rather than define) an enum
7291      // type, including via an elaborated type specifier.  We'll
7292      // diagnose that later; for now, declare the enum in the same
7293      // scope as we would have picked for any other tag type.
7294      //
7295      // GNU C also supports this behavior as part of its incomplete
7296      // enum types extension, while GNU C++ does not.
7297      //
7298      // Find the context where we'll be declaring the tag.
7299      // FIXME: We would like to maintain the current DeclContext as the
7300      // lexical context,
7301      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7302        SearchDC = SearchDC->getParent();
7303
7304      // Find the scope where we'll be declaring the tag.
7305      while (S->isClassScope() ||
7306             (getLangOptions().CPlusPlus &&
7307              S->isFunctionPrototypeScope()) ||
7308             ((S->getFlags() & Scope::DeclScope) == 0) ||
7309             (S->getEntity() &&
7310              ((DeclContext *)S->getEntity())->isTransparentContext()))
7311        S = S->getParent();
7312    } else {
7313      assert(TUK == TUK_Friend);
7314      // C++ [namespace.memdef]p3:
7315      //   If a friend declaration in a non-local class first declares a
7316      //   class or function, the friend class or function is a member of
7317      //   the innermost enclosing namespace.
7318      SearchDC = SearchDC->getEnclosingNamespaceContext();
7319    }
7320
7321    // In C++, we need to do a redeclaration lookup to properly
7322    // diagnose some problems.
7323    if (getLangOptions().CPlusPlus) {
7324      Previous.setRedeclarationKind(ForRedeclaration);
7325      LookupQualifiedName(Previous, SearchDC);
7326    }
7327  }
7328
7329  if (!Previous.empty()) {
7330    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7331
7332    // It's okay to have a tag decl in the same scope as a typedef
7333    // which hides a tag decl in the same scope.  Finding this
7334    // insanity with a redeclaration lookup can only actually happen
7335    // in C++.
7336    //
7337    // This is also okay for elaborated-type-specifiers, which is
7338    // technically forbidden by the current standard but which is
7339    // okay according to the likely resolution of an open issue;
7340    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7341    if (getLangOptions().CPlusPlus) {
7342      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7343        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7344          TagDecl *Tag = TT->getDecl();
7345          if (Tag->getDeclName() == Name &&
7346              Tag->getDeclContext()->getRedeclContext()
7347                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7348            PrevDecl = Tag;
7349            Previous.clear();
7350            Previous.addDecl(Tag);
7351            Previous.resolveKind();
7352          }
7353        }
7354      }
7355    }
7356
7357    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7358      // If this is a use of a previous tag, or if the tag is already declared
7359      // in the same scope (so that the definition/declaration completes or
7360      // rementions the tag), reuse the decl.
7361      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7362          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7363        // Make sure that this wasn't declared as an enum and now used as a
7364        // struct or something similar.
7365        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7366                                          TUK == TUK_Definition, KWLoc,
7367                                          *Name)) {
7368          bool SafeToContinue
7369            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7370               Kind != TTK_Enum);
7371          if (SafeToContinue)
7372            Diag(KWLoc, diag::err_use_with_wrong_tag)
7373              << Name
7374              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7375                                              PrevTagDecl->getKindName());
7376          else
7377            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7378          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7379
7380          if (SafeToContinue)
7381            Kind = PrevTagDecl->getTagKind();
7382          else {
7383            // Recover by making this an anonymous redefinition.
7384            Name = 0;
7385            Previous.clear();
7386            Invalid = true;
7387          }
7388        }
7389
7390        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7391          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7392
7393          // All conflicts with previous declarations are recovered by
7394          // returning the previous declaration.
7395          if (ScopedEnum != PrevEnum->isScoped()) {
7396            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7397              << PrevEnum->isScoped();
7398            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7399            return PrevTagDecl;
7400          }
7401          else if (EnumUnderlying && PrevEnum->isFixed()) {
7402            QualType T;
7403            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7404                T = TI->getType();
7405            else
7406                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7407
7408            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7409              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7410                   diag::err_enum_redeclare_type_mismatch)
7411                << T
7412                << PrevEnum->getIntegerType();
7413              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7414              return PrevTagDecl;
7415            }
7416          }
7417          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7418            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7419              << PrevEnum->isFixed();
7420            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7421            return PrevTagDecl;
7422          }
7423        }
7424
7425        if (!Invalid) {
7426          // If this is a use, just return the declaration we found.
7427
7428          // FIXME: In the future, return a variant or some other clue
7429          // for the consumer of this Decl to know it doesn't own it.
7430          // For our current ASTs this shouldn't be a problem, but will
7431          // need to be changed with DeclGroups.
7432          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7433               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7434            return PrevTagDecl;
7435
7436          // Diagnose attempts to redefine a tag.
7437          if (TUK == TUK_Definition) {
7438            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7439              // If we're defining a specialization and the previous definition
7440              // is from an implicit instantiation, don't emit an error
7441              // here; we'll catch this in the general case below.
7442              if (!isExplicitSpecialization ||
7443                  !isa<CXXRecordDecl>(Def) ||
7444                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7445                                               == TSK_ExplicitSpecialization) {
7446                Diag(NameLoc, diag::err_redefinition) << Name;
7447                Diag(Def->getLocation(), diag::note_previous_definition);
7448                // If this is a redefinition, recover by making this
7449                // struct be anonymous, which will make any later
7450                // references get the previous definition.
7451                Name = 0;
7452                Previous.clear();
7453                Invalid = true;
7454              }
7455            } else {
7456              // If the type is currently being defined, complain
7457              // about a nested redefinition.
7458              const TagType *Tag
7459                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7460              if (Tag->isBeingDefined()) {
7461                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7462                Diag(PrevTagDecl->getLocation(),
7463                     diag::note_previous_definition);
7464                Name = 0;
7465                Previous.clear();
7466                Invalid = true;
7467              }
7468            }
7469
7470            // Okay, this is definition of a previously declared or referenced
7471            // tag PrevDecl. We're going to create a new Decl for it.
7472          }
7473        }
7474        // If we get here we have (another) forward declaration or we
7475        // have a definition.  Just create a new decl.
7476
7477      } else {
7478        // If we get here, this is a definition of a new tag type in a nested
7479        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7480        // new decl/type.  We set PrevDecl to NULL so that the entities
7481        // have distinct types.
7482        Previous.clear();
7483      }
7484      // If we get here, we're going to create a new Decl. If PrevDecl
7485      // is non-NULL, it's a definition of the tag declared by
7486      // PrevDecl. If it's NULL, we have a new definition.
7487
7488
7489    // Otherwise, PrevDecl is not a tag, but was found with tag
7490    // lookup.  This is only actually possible in C++, where a few
7491    // things like templates still live in the tag namespace.
7492    } else {
7493      assert(getLangOptions().CPlusPlus);
7494
7495      // Use a better diagnostic if an elaborated-type-specifier
7496      // found the wrong kind of type on the first
7497      // (non-redeclaration) lookup.
7498      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7499          !Previous.isForRedeclaration()) {
7500        unsigned Kind = 0;
7501        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7502        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7503        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7504        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7505        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7506        Invalid = true;
7507
7508      // Otherwise, only diagnose if the declaration is in scope.
7509      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7510                                isExplicitSpecialization)) {
7511        // do nothing
7512
7513      // Diagnose implicit declarations introduced by elaborated types.
7514      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7515        unsigned Kind = 0;
7516        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7517        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7518        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7519        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7520        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7521        Invalid = true;
7522
7523      // Otherwise it's a declaration.  Call out a particularly common
7524      // case here.
7525      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7526        unsigned Kind = 0;
7527        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7528        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7529          << Name << Kind << TND->getUnderlyingType();
7530        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7531        Invalid = true;
7532
7533      // Otherwise, diagnose.
7534      } else {
7535        // The tag name clashes with something else in the target scope,
7536        // issue an error and recover by making this tag be anonymous.
7537        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7538        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7539        Name = 0;
7540        Invalid = true;
7541      }
7542
7543      // The existing declaration isn't relevant to us; we're in a
7544      // new scope, so clear out the previous declaration.
7545      Previous.clear();
7546    }
7547  }
7548
7549CreateNewDecl:
7550
7551  TagDecl *PrevDecl = 0;
7552  if (Previous.isSingleResult())
7553    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7554
7555  // If there is an identifier, use the location of the identifier as the
7556  // location of the decl, otherwise use the location of the struct/union
7557  // keyword.
7558  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7559
7560  // Otherwise, create a new declaration. If there is a previous
7561  // declaration of the same entity, the two will be linked via
7562  // PrevDecl.
7563  TagDecl *New;
7564
7565  bool IsForwardReference = false;
7566  if (Kind == TTK_Enum) {
7567    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7568    // enum X { A, B, C } D;    D should chain to X.
7569    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7570                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7571                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7572    // If this is an undefined enum, warn.
7573    if (TUK != TUK_Definition && !Invalid) {
7574      TagDecl *Def;
7575      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7576        // C++0x: 7.2p2: opaque-enum-declaration.
7577        // Conflicts are diagnosed above. Do nothing.
7578      }
7579      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7580        Diag(Loc, diag::ext_forward_ref_enum_def)
7581          << New;
7582        Diag(Def->getLocation(), diag::note_previous_definition);
7583      } else {
7584        unsigned DiagID = diag::ext_forward_ref_enum;
7585        if (getLangOptions().Microsoft)
7586          DiagID = diag::ext_ms_forward_ref_enum;
7587        else if (getLangOptions().CPlusPlus)
7588          DiagID = diag::err_forward_ref_enum;
7589        Diag(Loc, DiagID);
7590
7591        // If this is a forward-declared reference to an enumeration, make a
7592        // note of it; we won't actually be introducing the declaration into
7593        // the declaration context.
7594        if (TUK == TUK_Reference)
7595          IsForwardReference = true;
7596      }
7597    }
7598
7599    if (EnumUnderlying) {
7600      EnumDecl *ED = cast<EnumDecl>(New);
7601      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7602        ED->setIntegerTypeSourceInfo(TI);
7603      else
7604        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7605      ED->setPromotionType(ED->getIntegerType());
7606    }
7607
7608  } else {
7609    // struct/union/class
7610
7611    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7612    // struct X { int A; } D;    D should chain to X.
7613    if (getLangOptions().CPlusPlus) {
7614      // FIXME: Look for a way to use RecordDecl for simple structs.
7615      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7616                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7617
7618      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7619        StdBadAlloc = cast<CXXRecordDecl>(New);
7620    } else
7621      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7622                               cast_or_null<RecordDecl>(PrevDecl));
7623  }
7624
7625  // Maybe add qualifier info.
7626  if (SS.isNotEmpty()) {
7627    if (SS.isSet()) {
7628      New->setQualifierInfo(SS.getWithLocInContext(Context));
7629      if (TemplateParameterLists.size() > 0) {
7630        New->setTemplateParameterListsInfo(Context,
7631                                           TemplateParameterLists.size(),
7632                    (TemplateParameterList**) TemplateParameterLists.release());
7633      }
7634    }
7635    else
7636      Invalid = true;
7637  }
7638
7639  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7640    // Add alignment attributes if necessary; these attributes are checked when
7641    // the ASTContext lays out the structure.
7642    //
7643    // It is important for implementing the correct semantics that this
7644    // happen here (in act on tag decl). The #pragma pack stack is
7645    // maintained as a result of parser callbacks which can occur at
7646    // many points during the parsing of a struct declaration (because
7647    // the #pragma tokens are effectively skipped over during the
7648    // parsing of the struct).
7649    AddAlignmentAttributesForRecord(RD);
7650
7651    AddMsStructLayoutForRecord(RD);
7652  }
7653
7654  // If this is a specialization of a member class (of a class template),
7655  // check the specialization.
7656  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7657    Invalid = true;
7658
7659  if (Invalid)
7660    New->setInvalidDecl();
7661
7662  if (Attr)
7663    ProcessDeclAttributeList(S, New, Attr);
7664
7665  // If we're declaring or defining a tag in function prototype scope
7666  // in C, note that this type can only be used within the function.
7667  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7668    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7669
7670  // Set the lexical context. If the tag has a C++ scope specifier, the
7671  // lexical context will be different from the semantic context.
7672  New->setLexicalDeclContext(CurContext);
7673
7674  // Mark this as a friend decl if applicable.
7675  // In Microsoft mode, a friend declaration also acts as a forward
7676  // declaration so we always pass true to setObjectOfFriendDecl to make
7677  // the tag name visible.
7678  if (TUK == TUK_Friend)
7679    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7680                               getLangOptions().Microsoft);
7681
7682  // Set the access specifier.
7683  if (!Invalid && SearchDC->isRecord())
7684    SetMemberAccessSpecifier(New, PrevDecl, AS);
7685
7686  if (TUK == TUK_Definition)
7687    New->startDefinition();
7688
7689  // If this has an identifier, add it to the scope stack.
7690  if (TUK == TUK_Friend) {
7691    // We might be replacing an existing declaration in the lookup tables;
7692    // if so, borrow its access specifier.
7693    if (PrevDecl)
7694      New->setAccess(PrevDecl->getAccess());
7695
7696    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7697    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7698    if (Name) // can be null along some error paths
7699      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7700        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7701  } else if (Name) {
7702    S = getNonFieldDeclScope(S);
7703    PushOnScopeChains(New, S, !IsForwardReference);
7704    if (IsForwardReference)
7705      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7706
7707  } else {
7708    CurContext->addDecl(New);
7709  }
7710
7711  // If this is the C FILE type, notify the AST context.
7712  if (IdentifierInfo *II = New->getIdentifier())
7713    if (!New->isInvalidDecl() &&
7714        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7715        II->isStr("FILE"))
7716      Context.setFILEDecl(New);
7717
7718  OwnedDecl = true;
7719  return New;
7720}
7721
7722void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7723  AdjustDeclIfTemplate(TagD);
7724  TagDecl *Tag = cast<TagDecl>(TagD);
7725
7726  // Enter the tag context.
7727  PushDeclContext(S, Tag);
7728}
7729
7730void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
7731  assert(isa<ObjCContainerDecl>(IDecl) &&
7732         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
7733  DeclContext *OCD = cast<DeclContext>(IDecl);
7734  assert(getContainingDC(OCD) == CurContext &&
7735      "The next DeclContext should be lexically contained in the current one.");
7736  CurContext = OCD;
7737}
7738
7739void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7740                                           SourceLocation FinalLoc,
7741                                           SourceLocation LBraceLoc) {
7742  AdjustDeclIfTemplate(TagD);
7743  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7744
7745  FieldCollector->StartClass();
7746
7747  if (!Record->getIdentifier())
7748    return;
7749
7750  if (FinalLoc.isValid())
7751    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7752
7753  // C++ [class]p2:
7754  //   [...] The class-name is also inserted into the scope of the
7755  //   class itself; this is known as the injected-class-name. For
7756  //   purposes of access checking, the injected-class-name is treated
7757  //   as if it were a public member name.
7758  CXXRecordDecl *InjectedClassName
7759    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7760                            Record->getLocStart(), Record->getLocation(),
7761                            Record->getIdentifier(),
7762                            /*PrevDecl=*/0,
7763                            /*DelayTypeCreation=*/true);
7764  Context.getTypeDeclType(InjectedClassName, Record);
7765  InjectedClassName->setImplicit();
7766  InjectedClassName->setAccess(AS_public);
7767  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7768      InjectedClassName->setDescribedClassTemplate(Template);
7769  PushOnScopeChains(InjectedClassName, S);
7770  assert(InjectedClassName->isInjectedClassName() &&
7771         "Broken injected-class-name");
7772}
7773
7774void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7775                                    SourceLocation RBraceLoc) {
7776  AdjustDeclIfTemplate(TagD);
7777  TagDecl *Tag = cast<TagDecl>(TagD);
7778  Tag->setRBraceLoc(RBraceLoc);
7779
7780  if (isa<CXXRecordDecl>(Tag))
7781    FieldCollector->FinishClass();
7782
7783  // Exit this scope of this tag's definition.
7784  PopDeclContext();
7785
7786  // Notify the consumer that we've defined a tag.
7787  Consumer.HandleTagDeclDefinition(Tag);
7788}
7789
7790void Sema::ActOnObjCContainerFinishDefinition(Decl *IDecl) {
7791  // Exit this scope of this interface definition.
7792  PopDeclContext();
7793}
7794
7795void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7796  AdjustDeclIfTemplate(TagD);
7797  TagDecl *Tag = cast<TagDecl>(TagD);
7798  Tag->setInvalidDecl();
7799
7800  // We're undoing ActOnTagStartDefinition here, not
7801  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7802  // the FieldCollector.
7803
7804  PopDeclContext();
7805}
7806
7807// Note that FieldName may be null for anonymous bitfields.
7808bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7809                          QualType FieldTy, const Expr *BitWidth,
7810                          bool *ZeroWidth) {
7811  // Default to true; that shouldn't confuse checks for emptiness
7812  if (ZeroWidth)
7813    *ZeroWidth = true;
7814
7815  // C99 6.7.2.1p4 - verify the field type.
7816  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7817  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7818    // Handle incomplete types with specific error.
7819    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7820      return true;
7821    if (FieldName)
7822      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7823        << FieldName << FieldTy << BitWidth->getSourceRange();
7824    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7825      << FieldTy << BitWidth->getSourceRange();
7826  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7827                                             UPPC_BitFieldWidth))
7828    return true;
7829
7830  // If the bit-width is type- or value-dependent, don't try to check
7831  // it now.
7832  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7833    return false;
7834
7835  llvm::APSInt Value;
7836  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7837    return true;
7838
7839  if (Value != 0 && ZeroWidth)
7840    *ZeroWidth = false;
7841
7842  // Zero-width bitfield is ok for anonymous field.
7843  if (Value == 0 && FieldName)
7844    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7845
7846  if (Value.isSigned() && Value.isNegative()) {
7847    if (FieldName)
7848      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7849               << FieldName << Value.toString(10);
7850    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7851      << Value.toString(10);
7852  }
7853
7854  if (!FieldTy->isDependentType()) {
7855    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7856    if (Value.getZExtValue() > TypeSize) {
7857      if (!getLangOptions().CPlusPlus) {
7858        if (FieldName)
7859          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7860            << FieldName << (unsigned)Value.getZExtValue()
7861            << (unsigned)TypeSize;
7862
7863        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7864          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7865      }
7866
7867      if (FieldName)
7868        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7869          << FieldName << (unsigned)Value.getZExtValue()
7870          << (unsigned)TypeSize;
7871      else
7872        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7873          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7874    }
7875  }
7876
7877  return false;
7878}
7879
7880/// ActOnField - Each field of a C struct/union is passed into this in order
7881/// to create a FieldDecl object for it.
7882Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7883                       Declarator &D, ExprTy *BitfieldWidth) {
7884  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7885                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7886                               /*HasInit=*/false, AS_public);
7887  return Res;
7888}
7889
7890/// HandleField - Analyze a field of a C struct or a C++ data member.
7891///
7892FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7893                             SourceLocation DeclStart,
7894                             Declarator &D, Expr *BitWidth, bool HasInit,
7895                             AccessSpecifier AS) {
7896  IdentifierInfo *II = D.getIdentifier();
7897  SourceLocation Loc = DeclStart;
7898  if (II) Loc = D.getIdentifierLoc();
7899
7900  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7901  QualType T = TInfo->getType();
7902  if (getLangOptions().CPlusPlus) {
7903    CheckExtraCXXDefaultArguments(D);
7904
7905    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7906                                        UPPC_DataMemberType)) {
7907      D.setInvalidType();
7908      T = Context.IntTy;
7909      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7910    }
7911  }
7912
7913  DiagnoseFunctionSpecifiers(D);
7914
7915  if (D.getDeclSpec().isThreadSpecified())
7916    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7917  if (D.getDeclSpec().isConstexprSpecified())
7918    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7919      << 2;
7920
7921  // Check to see if this name was declared as a member previously
7922  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7923  LookupName(Previous, S);
7924  assert((Previous.empty() || Previous.isOverloadedResult() ||
7925          Previous.isSingleResult())
7926    && "Lookup of member name should be either overloaded, single or null");
7927
7928  // If the name is overloaded then get any declaration else get the single result
7929  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7930    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7931
7932  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7933    // Maybe we will complain about the shadowed template parameter.
7934    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7935    // Just pretend that we didn't see the previous declaration.
7936    PrevDecl = 0;
7937  }
7938
7939  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7940    PrevDecl = 0;
7941
7942  bool Mutable
7943    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7944  SourceLocation TSSL = D.getSourceRange().getBegin();
7945  FieldDecl *NewFD
7946    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7947                     TSSL, AS, PrevDecl, &D);
7948
7949  if (NewFD->isInvalidDecl())
7950    Record->setInvalidDecl();
7951
7952  if (NewFD->isInvalidDecl() && PrevDecl) {
7953    // Don't introduce NewFD into scope; there's already something
7954    // with the same name in the same scope.
7955  } else if (II) {
7956    PushOnScopeChains(NewFD, S);
7957  } else
7958    Record->addDecl(NewFD);
7959
7960  return NewFD;
7961}
7962
7963/// \brief Build a new FieldDecl and check its well-formedness.
7964///
7965/// This routine builds a new FieldDecl given the fields name, type,
7966/// record, etc. \p PrevDecl should refer to any previous declaration
7967/// with the same name and in the same scope as the field to be
7968/// created.
7969///
7970/// \returns a new FieldDecl.
7971///
7972/// \todo The Declarator argument is a hack. It will be removed once
7973FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7974                                TypeSourceInfo *TInfo,
7975                                RecordDecl *Record, SourceLocation Loc,
7976                                bool Mutable, Expr *BitWidth, bool HasInit,
7977                                SourceLocation TSSL,
7978                                AccessSpecifier AS, NamedDecl *PrevDecl,
7979                                Declarator *D) {
7980  IdentifierInfo *II = Name.getAsIdentifierInfo();
7981  bool InvalidDecl = false;
7982  if (D) InvalidDecl = D->isInvalidType();
7983
7984  // If we receive a broken type, recover by assuming 'int' and
7985  // marking this declaration as invalid.
7986  if (T.isNull()) {
7987    InvalidDecl = true;
7988    T = Context.IntTy;
7989  }
7990
7991  QualType EltTy = Context.getBaseElementType(T);
7992  if (!EltTy->isDependentType() &&
7993      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7994    // Fields of incomplete type force their record to be invalid.
7995    Record->setInvalidDecl();
7996    InvalidDecl = true;
7997  }
7998
7999  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8000  // than a variably modified type.
8001  if (!InvalidDecl && T->isVariablyModifiedType()) {
8002    bool SizeIsNegative;
8003    llvm::APSInt Oversized;
8004    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8005                                                           SizeIsNegative,
8006                                                           Oversized);
8007    if (!FixedTy.isNull()) {
8008      Diag(Loc, diag::warn_illegal_constant_array_size);
8009      T = FixedTy;
8010    } else {
8011      if (SizeIsNegative)
8012        Diag(Loc, diag::err_typecheck_negative_array_size);
8013      else if (Oversized.getBoolValue())
8014        Diag(Loc, diag::err_array_too_large)
8015          << Oversized.toString(10);
8016      else
8017        Diag(Loc, diag::err_typecheck_field_variable_size);
8018      InvalidDecl = true;
8019    }
8020  }
8021
8022  // Fields can not have abstract class types
8023  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8024                                             diag::err_abstract_type_in_decl,
8025                                             AbstractFieldType))
8026    InvalidDecl = true;
8027
8028  bool ZeroWidth = false;
8029  // If this is declared as a bit-field, check the bit-field.
8030  if (!InvalidDecl && BitWidth &&
8031      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8032    InvalidDecl = true;
8033    BitWidth = 0;
8034    ZeroWidth = false;
8035  }
8036
8037  // Check that 'mutable' is consistent with the type of the declaration.
8038  if (!InvalidDecl && Mutable) {
8039    unsigned DiagID = 0;
8040    if (T->isReferenceType())
8041      DiagID = diag::err_mutable_reference;
8042    else if (T.isConstQualified())
8043      DiagID = diag::err_mutable_const;
8044
8045    if (DiagID) {
8046      SourceLocation ErrLoc = Loc;
8047      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8048        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8049      Diag(ErrLoc, DiagID);
8050      Mutable = false;
8051      InvalidDecl = true;
8052    }
8053  }
8054
8055  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8056                                       BitWidth, Mutable, HasInit);
8057  if (InvalidDecl)
8058    NewFD->setInvalidDecl();
8059
8060  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8061    Diag(Loc, diag::err_duplicate_member) << II;
8062    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8063    NewFD->setInvalidDecl();
8064  }
8065
8066  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8067    if (Record->isUnion()) {
8068      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8069        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8070        if (RDecl->getDefinition()) {
8071          // C++ [class.union]p1: An object of a class with a non-trivial
8072          // constructor, a non-trivial copy constructor, a non-trivial
8073          // destructor, or a non-trivial copy assignment operator
8074          // cannot be a member of a union, nor can an array of such
8075          // objects.
8076          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8077            NewFD->setInvalidDecl();
8078        }
8079      }
8080
8081      // C++ [class.union]p1: If a union contains a member of reference type,
8082      // the program is ill-formed.
8083      if (EltTy->isReferenceType()) {
8084        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8085          << NewFD->getDeclName() << EltTy;
8086        NewFD->setInvalidDecl();
8087      }
8088    }
8089  }
8090
8091  // FIXME: We need to pass in the attributes given an AST
8092  // representation, not a parser representation.
8093  if (D)
8094    // FIXME: What to pass instead of TUScope?
8095    ProcessDeclAttributes(TUScope, NewFD, *D);
8096
8097  // In auto-retain/release, infer strong retension for fields of
8098  // retainable type.
8099  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8100    NewFD->setInvalidDecl();
8101
8102  if (T.isObjCGCWeak())
8103    Diag(Loc, diag::warn_attribute_weak_on_field);
8104
8105  NewFD->setAccess(AS);
8106  return NewFD;
8107}
8108
8109bool Sema::CheckNontrivialField(FieldDecl *FD) {
8110  assert(FD);
8111  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8112
8113  if (FD->isInvalidDecl())
8114    return true;
8115
8116  QualType EltTy = Context.getBaseElementType(FD->getType());
8117  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8118    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8119    if (RDecl->getDefinition()) {
8120      // We check for copy constructors before constructors
8121      // because otherwise we'll never get complaints about
8122      // copy constructors.
8123
8124      CXXSpecialMember member = CXXInvalid;
8125      if (!RDecl->hasTrivialCopyConstructor())
8126        member = CXXCopyConstructor;
8127      else if (!RDecl->hasTrivialDefaultConstructor())
8128        member = CXXDefaultConstructor;
8129      else if (!RDecl->hasTrivialCopyAssignment())
8130        member = CXXCopyAssignment;
8131      else if (!RDecl->hasTrivialDestructor())
8132        member = CXXDestructor;
8133
8134      if (member != CXXInvalid) {
8135        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8136          // Objective-C++ ARC: it is an error to have a non-trivial field of
8137          // a union. However, system headers in Objective-C programs
8138          // occasionally have Objective-C lifetime objects within unions,
8139          // and rather than cause the program to fail, we make those
8140          // members unavailable.
8141          SourceLocation Loc = FD->getLocation();
8142          if (getSourceManager().isInSystemHeader(Loc)) {
8143            if (!FD->hasAttr<UnavailableAttr>())
8144              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8145                                  "this system field has retaining ownership"));
8146            return false;
8147          }
8148        }
8149
8150        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8151              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8152        DiagnoseNontrivial(RT, member);
8153        return true;
8154      }
8155    }
8156  }
8157
8158  return false;
8159}
8160
8161/// DiagnoseNontrivial - Given that a class has a non-trivial
8162/// special member, figure out why.
8163void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8164  QualType QT(T, 0U);
8165  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8166
8167  // Check whether the member was user-declared.
8168  switch (member) {
8169  case CXXInvalid:
8170    break;
8171
8172  case CXXDefaultConstructor:
8173    if (RD->hasUserDeclaredConstructor()) {
8174      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8175      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8176        const FunctionDecl *body = 0;
8177        ci->hasBody(body);
8178        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8179          SourceLocation CtorLoc = ci->getLocation();
8180          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8181          return;
8182        }
8183      }
8184
8185      assert(0 && "found no user-declared constructors");
8186      return;
8187    }
8188    break;
8189
8190  case CXXCopyConstructor:
8191    if (RD->hasUserDeclaredCopyConstructor()) {
8192      SourceLocation CtorLoc =
8193        RD->getCopyConstructor(0)->getLocation();
8194      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8195      return;
8196    }
8197    break;
8198
8199  case CXXMoveConstructor:
8200    if (RD->hasUserDeclaredMoveConstructor()) {
8201      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8202      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8203      return;
8204    }
8205    break;
8206
8207  case CXXCopyAssignment:
8208    if (RD->hasUserDeclaredCopyAssignment()) {
8209      // FIXME: this should use the location of the copy
8210      // assignment, not the type.
8211      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8212      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8213      return;
8214    }
8215    break;
8216
8217  case CXXMoveAssignment:
8218    if (RD->hasUserDeclaredMoveAssignment()) {
8219      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8220      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8221      return;
8222    }
8223    break;
8224
8225  case CXXDestructor:
8226    if (RD->hasUserDeclaredDestructor()) {
8227      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8228      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8229      return;
8230    }
8231    break;
8232  }
8233
8234  typedef CXXRecordDecl::base_class_iterator base_iter;
8235
8236  // Virtual bases and members inhibit trivial copying/construction,
8237  // but not trivial destruction.
8238  if (member != CXXDestructor) {
8239    // Check for virtual bases.  vbases includes indirect virtual bases,
8240    // so we just iterate through the direct bases.
8241    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8242      if (bi->isVirtual()) {
8243        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8244        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8245        return;
8246      }
8247
8248    // Check for virtual methods.
8249    typedef CXXRecordDecl::method_iterator meth_iter;
8250    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8251         ++mi) {
8252      if (mi->isVirtual()) {
8253        SourceLocation MLoc = mi->getSourceRange().getBegin();
8254        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8255        return;
8256      }
8257    }
8258  }
8259
8260  bool (CXXRecordDecl::*hasTrivial)() const;
8261  switch (member) {
8262  case CXXDefaultConstructor:
8263    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8264  case CXXCopyConstructor:
8265    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8266  case CXXCopyAssignment:
8267    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8268  case CXXDestructor:
8269    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8270  default:
8271    assert(0 && "unexpected special member"); return;
8272  }
8273
8274  // Check for nontrivial bases (and recurse).
8275  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8276    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8277    assert(BaseRT && "Don't know how to handle dependent bases");
8278    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8279    if (!(BaseRecTy->*hasTrivial)()) {
8280      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8281      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8282      DiagnoseNontrivial(BaseRT, member);
8283      return;
8284    }
8285  }
8286
8287  // Check for nontrivial members (and recurse).
8288  typedef RecordDecl::field_iterator field_iter;
8289  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8290       ++fi) {
8291    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8292    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8293      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8294
8295      if (!(EltRD->*hasTrivial)()) {
8296        SourceLocation FLoc = (*fi)->getLocation();
8297        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8298        DiagnoseNontrivial(EltRT, member);
8299        return;
8300      }
8301    }
8302
8303    if (EltTy->isObjCLifetimeType()) {
8304      switch (EltTy.getObjCLifetime()) {
8305      case Qualifiers::OCL_None:
8306      case Qualifiers::OCL_ExplicitNone:
8307        break;
8308
8309      case Qualifiers::OCL_Autoreleasing:
8310      case Qualifiers::OCL_Weak:
8311      case Qualifiers::OCL_Strong:
8312        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8313          << QT << EltTy.getObjCLifetime();
8314        return;
8315      }
8316    }
8317  }
8318
8319  assert(0 && "found no explanation for non-trivial member");
8320}
8321
8322/// TranslateIvarVisibility - Translate visibility from a token ID to an
8323///  AST enum value.
8324static ObjCIvarDecl::AccessControl
8325TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8326  switch (ivarVisibility) {
8327  default: assert(0 && "Unknown visitibility kind");
8328  case tok::objc_private: return ObjCIvarDecl::Private;
8329  case tok::objc_public: return ObjCIvarDecl::Public;
8330  case tok::objc_protected: return ObjCIvarDecl::Protected;
8331  case tok::objc_package: return ObjCIvarDecl::Package;
8332  }
8333}
8334
8335/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8336/// in order to create an IvarDecl object for it.
8337Decl *Sema::ActOnIvar(Scope *S,
8338                                SourceLocation DeclStart,
8339                                Declarator &D, ExprTy *BitfieldWidth,
8340                                tok::ObjCKeywordKind Visibility) {
8341
8342  IdentifierInfo *II = D.getIdentifier();
8343  Expr *BitWidth = (Expr*)BitfieldWidth;
8344  SourceLocation Loc = DeclStart;
8345  if (II) Loc = D.getIdentifierLoc();
8346
8347  // FIXME: Unnamed fields can be handled in various different ways, for
8348  // example, unnamed unions inject all members into the struct namespace!
8349
8350  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8351  QualType T = TInfo->getType();
8352
8353  if (BitWidth) {
8354    // 6.7.2.1p3, 6.7.2.1p4
8355    if (VerifyBitField(Loc, II, T, BitWidth)) {
8356      D.setInvalidType();
8357      BitWidth = 0;
8358    }
8359  } else {
8360    // Not a bitfield.
8361
8362    // validate II.
8363
8364  }
8365  if (T->isReferenceType()) {
8366    Diag(Loc, diag::err_ivar_reference_type);
8367    D.setInvalidType();
8368  }
8369  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8370  // than a variably modified type.
8371  else if (T->isVariablyModifiedType()) {
8372    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8373    D.setInvalidType();
8374  }
8375
8376  // Get the visibility (access control) for this ivar.
8377  ObjCIvarDecl::AccessControl ac =
8378    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8379                                        : ObjCIvarDecl::None;
8380  // Must set ivar's DeclContext to its enclosing interface.
8381  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8382  ObjCContainerDecl *EnclosingContext;
8383  if (ObjCImplementationDecl *IMPDecl =
8384      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8385    if (!LangOpts.ObjCNonFragileABI2) {
8386    // Case of ivar declared in an implementation. Context is that of its class.
8387      EnclosingContext = IMPDecl->getClassInterface();
8388      assert(EnclosingContext && "Implementation has no class interface!");
8389    }
8390    else
8391      EnclosingContext = EnclosingDecl;
8392  } else {
8393    if (ObjCCategoryDecl *CDecl =
8394        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8395      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8396        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8397        return 0;
8398      }
8399    }
8400    EnclosingContext = EnclosingDecl;
8401  }
8402
8403  // Construct the decl.
8404  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8405                                             DeclStart, Loc, II, T,
8406                                             TInfo, ac, (Expr *)BitfieldWidth);
8407
8408  if (II) {
8409    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8410                                           ForRedeclaration);
8411    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8412        && !isa<TagDecl>(PrevDecl)) {
8413      Diag(Loc, diag::err_duplicate_member) << II;
8414      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8415      NewID->setInvalidDecl();
8416    }
8417  }
8418
8419  // Process attributes attached to the ivar.
8420  ProcessDeclAttributes(S, NewID, D);
8421
8422  if (D.isInvalidType())
8423    NewID->setInvalidDecl();
8424
8425  // In ARC, infer 'retaining' for ivars of retainable type.
8426  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8427    NewID->setInvalidDecl();
8428
8429  if (II) {
8430    // FIXME: When interfaces are DeclContexts, we'll need to add
8431    // these to the interface.
8432    S->AddDecl(NewID);
8433    IdResolver.AddDecl(NewID);
8434  }
8435
8436  return NewID;
8437}
8438
8439/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8440/// class and class extensions. For every class @interface and class
8441/// extension @interface, if the last ivar is a bitfield of any type,
8442/// then add an implicit `char :0` ivar to the end of that interface.
8443void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8444                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8445  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8446    return;
8447
8448  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8449  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8450
8451  if (!Ivar->isBitField())
8452    return;
8453  uint64_t BitFieldSize =
8454    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8455  if (BitFieldSize == 0)
8456    return;
8457  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8458  if (!ID) {
8459    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8460      if (!CD->IsClassExtension())
8461        return;
8462    }
8463    // No need to add this to end of @implementation.
8464    else
8465      return;
8466  }
8467  // All conditions are met. Add a new bitfield to the tail end of ivars.
8468  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8469  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8470
8471  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8472                              DeclLoc, DeclLoc, 0,
8473                              Context.CharTy,
8474                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8475                                                               DeclLoc),
8476                              ObjCIvarDecl::Private, BW,
8477                              true);
8478  AllIvarDecls.push_back(Ivar);
8479}
8480
8481void Sema::ActOnFields(Scope* S,
8482                       SourceLocation RecLoc, Decl *EnclosingDecl,
8483                       Decl **Fields, unsigned NumFields,
8484                       SourceLocation LBrac, SourceLocation RBrac,
8485                       AttributeList *Attr) {
8486  assert(EnclosingDecl && "missing record or interface decl");
8487
8488  // If the decl this is being inserted into is invalid, then it may be a
8489  // redeclaration or some other bogus case.  Don't try to add fields to it.
8490  if (EnclosingDecl->isInvalidDecl()) {
8491    // FIXME: Deallocate fields?
8492    return;
8493  }
8494
8495
8496  // Verify that all the fields are okay.
8497  unsigned NumNamedMembers = 0;
8498  SmallVector<FieldDecl*, 32> RecFields;
8499
8500  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8501  bool ARCErrReported = false;
8502  for (unsigned i = 0; i != NumFields; ++i) {
8503    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8504
8505    // Get the type for the field.
8506    const Type *FDTy = FD->getType().getTypePtr();
8507
8508    if (!FD->isAnonymousStructOrUnion()) {
8509      // Remember all fields written by the user.
8510      RecFields.push_back(FD);
8511    }
8512
8513    // If the field is already invalid for some reason, don't emit more
8514    // diagnostics about it.
8515    if (FD->isInvalidDecl()) {
8516      EnclosingDecl->setInvalidDecl();
8517      continue;
8518    }
8519
8520    // C99 6.7.2.1p2:
8521    //   A structure or union shall not contain a member with
8522    //   incomplete or function type (hence, a structure shall not
8523    //   contain an instance of itself, but may contain a pointer to
8524    //   an instance of itself), except that the last member of a
8525    //   structure with more than one named member may have incomplete
8526    //   array type; such a structure (and any union containing,
8527    //   possibly recursively, a member that is such a structure)
8528    //   shall not be a member of a structure or an element of an
8529    //   array.
8530    if (FDTy->isFunctionType()) {
8531      // Field declared as a function.
8532      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8533        << FD->getDeclName();
8534      FD->setInvalidDecl();
8535      EnclosingDecl->setInvalidDecl();
8536      continue;
8537    } else if (FDTy->isIncompleteArrayType() && Record &&
8538               ((i == NumFields - 1 && !Record->isUnion()) ||
8539                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8540                 (i == NumFields - 1 || Record->isUnion())))) {
8541      // Flexible array member.
8542      // Microsoft and g++ is more permissive regarding flexible array.
8543      // It will accept flexible array in union and also
8544      // as the sole element of a struct/class.
8545      if (getLangOptions().Microsoft) {
8546        if (Record->isUnion())
8547          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8548            << FD->getDeclName();
8549        else if (NumFields == 1)
8550          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8551            << FD->getDeclName() << Record->getTagKind();
8552      } else if (getLangOptions().CPlusPlus) {
8553        if (Record->isUnion())
8554          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8555            << FD->getDeclName();
8556        else if (NumFields == 1)
8557          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8558            << FD->getDeclName() << Record->getTagKind();
8559      } else if (NumNamedMembers < 1) {
8560        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8561          << FD->getDeclName();
8562        FD->setInvalidDecl();
8563        EnclosingDecl->setInvalidDecl();
8564        continue;
8565      }
8566      if (!FD->getType()->isDependentType() &&
8567          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8568        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8569          << FD->getDeclName() << FD->getType();
8570        FD->setInvalidDecl();
8571        EnclosingDecl->setInvalidDecl();
8572        continue;
8573      }
8574      // Okay, we have a legal flexible array member at the end of the struct.
8575      if (Record)
8576        Record->setHasFlexibleArrayMember(true);
8577    } else if (!FDTy->isDependentType() &&
8578               RequireCompleteType(FD->getLocation(), FD->getType(),
8579                                   diag::err_field_incomplete)) {
8580      // Incomplete type
8581      FD->setInvalidDecl();
8582      EnclosingDecl->setInvalidDecl();
8583      continue;
8584    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8585      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8586        // If this is a member of a union, then entire union becomes "flexible".
8587        if (Record && Record->isUnion()) {
8588          Record->setHasFlexibleArrayMember(true);
8589        } else {
8590          // If this is a struct/class and this is not the last element, reject
8591          // it.  Note that GCC supports variable sized arrays in the middle of
8592          // structures.
8593          if (i != NumFields-1)
8594            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8595              << FD->getDeclName() << FD->getType();
8596          else {
8597            // We support flexible arrays at the end of structs in
8598            // other structs as an extension.
8599            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8600              << FD->getDeclName();
8601            if (Record)
8602              Record->setHasFlexibleArrayMember(true);
8603          }
8604        }
8605      }
8606      if (Record && FDTTy->getDecl()->hasObjectMember())
8607        Record->setHasObjectMember(true);
8608    } else if (FDTy->isObjCObjectType()) {
8609      /// A field cannot be an Objective-c object
8610      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8611        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8612      QualType T = Context.getObjCObjectPointerType(FD->getType());
8613      FD->setType(T);
8614    }
8615    else if (!getLangOptions().CPlusPlus) {
8616      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8617        // It's an error in ARC if a field has lifetime.
8618        // We don't want to report this in a system header, though,
8619        // so we just make the field unavailable.
8620        // FIXME: that's really not sufficient; we need to make the type
8621        // itself invalid to, say, initialize or copy.
8622        QualType T = FD->getType();
8623        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8624        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8625          SourceLocation loc = FD->getLocation();
8626          if (getSourceManager().isInSystemHeader(loc)) {
8627            if (!FD->hasAttr<UnavailableAttr>()) {
8628              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8629                                "this system field has retaining ownership"));
8630            }
8631          } else {
8632            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8633          }
8634          ARCErrReported = true;
8635        }
8636      }
8637      else if (getLangOptions().ObjC1 &&
8638               getLangOptions().getGCMode() != LangOptions::NonGC &&
8639               Record && !Record->hasObjectMember()) {
8640        if (FD->getType()->isObjCObjectPointerType() ||
8641            FD->getType().isObjCGCStrong())
8642          Record->setHasObjectMember(true);
8643        else if (Context.getAsArrayType(FD->getType())) {
8644          QualType BaseType = Context.getBaseElementType(FD->getType());
8645          if (BaseType->isRecordType() &&
8646              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8647            Record->setHasObjectMember(true);
8648          else if (BaseType->isObjCObjectPointerType() ||
8649                   BaseType.isObjCGCStrong())
8650                 Record->setHasObjectMember(true);
8651        }
8652      }
8653    }
8654    // Keep track of the number of named members.
8655    if (FD->getIdentifier())
8656      ++NumNamedMembers;
8657  }
8658
8659  // Okay, we successfully defined 'Record'.
8660  if (Record) {
8661    bool Completed = false;
8662    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8663      if (!CXXRecord->isInvalidDecl()) {
8664        // Set access bits correctly on the directly-declared conversions.
8665        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8666        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8667             I != E; ++I)
8668          Convs->setAccess(I, (*I)->getAccess());
8669
8670        if (!CXXRecord->isDependentType()) {
8671          // Objective-C Automatic Reference Counting:
8672          //   If a class has a non-static data member of Objective-C pointer
8673          //   type (or array thereof), it is a non-POD type and its
8674          //   default constructor (if any), copy constructor, copy assignment
8675          //   operator, and destructor are non-trivial.
8676          //
8677          // This rule is also handled by CXXRecordDecl::completeDefinition().
8678          // However, here we check whether this particular class is only
8679          // non-POD because of the presence of an Objective-C pointer member.
8680          // If so, objects of this type cannot be shared between code compiled
8681          // with instant objects and code compiled with manual retain/release.
8682          if (getLangOptions().ObjCAutoRefCount &&
8683              CXXRecord->hasObjectMember() &&
8684              CXXRecord->getLinkage() == ExternalLinkage) {
8685            if (CXXRecord->isPOD()) {
8686              Diag(CXXRecord->getLocation(),
8687                   diag::warn_arc_non_pod_class_with_object_member)
8688               << CXXRecord;
8689            } else {
8690              // FIXME: Fix-Its would be nice here, but finding a good location
8691              // for them is going to be tricky.
8692              if (CXXRecord->hasTrivialCopyConstructor())
8693                Diag(CXXRecord->getLocation(),
8694                     diag::warn_arc_trivial_member_function_with_object_member)
8695                  << CXXRecord << 0;
8696              if (CXXRecord->hasTrivialCopyAssignment())
8697                Diag(CXXRecord->getLocation(),
8698                     diag::warn_arc_trivial_member_function_with_object_member)
8699                << CXXRecord << 1;
8700              if (CXXRecord->hasTrivialDestructor())
8701                Diag(CXXRecord->getLocation(),
8702                     diag::warn_arc_trivial_member_function_with_object_member)
8703                << CXXRecord << 2;
8704            }
8705          }
8706
8707          // Adjust user-defined destructor exception spec.
8708          if (getLangOptions().CPlusPlus0x &&
8709              CXXRecord->hasUserDeclaredDestructor())
8710            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8711
8712          // Add any implicitly-declared members to this class.
8713          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8714
8715          // If we have virtual base classes, we may end up finding multiple
8716          // final overriders for a given virtual function. Check for this
8717          // problem now.
8718          if (CXXRecord->getNumVBases()) {
8719            CXXFinalOverriderMap FinalOverriders;
8720            CXXRecord->getFinalOverriders(FinalOverriders);
8721
8722            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8723                                             MEnd = FinalOverriders.end();
8724                 M != MEnd; ++M) {
8725              for (OverridingMethods::iterator SO = M->second.begin(),
8726                                            SOEnd = M->second.end();
8727                   SO != SOEnd; ++SO) {
8728                assert(SO->second.size() > 0 &&
8729                       "Virtual function without overridding functions?");
8730                if (SO->second.size() == 1)
8731                  continue;
8732
8733                // C++ [class.virtual]p2:
8734                //   In a derived class, if a virtual member function of a base
8735                //   class subobject has more than one final overrider the
8736                //   program is ill-formed.
8737                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8738                  << (NamedDecl *)M->first << Record;
8739                Diag(M->first->getLocation(),
8740                     diag::note_overridden_virtual_function);
8741                for (OverridingMethods::overriding_iterator
8742                          OM = SO->second.begin(),
8743                       OMEnd = SO->second.end();
8744                     OM != OMEnd; ++OM)
8745                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8746                    << (NamedDecl *)M->first << OM->Method->getParent();
8747
8748                Record->setInvalidDecl();
8749              }
8750            }
8751            CXXRecord->completeDefinition(&FinalOverriders);
8752            Completed = true;
8753          }
8754        }
8755      }
8756    }
8757
8758    if (!Completed)
8759      Record->completeDefinition();
8760
8761    // Now that the record is complete, do any delayed exception spec checks
8762    // we were missing.
8763    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8764      const CXXDestructorDecl *Dtor =
8765              DelayedDestructorExceptionSpecChecks.back().first;
8766      if (Dtor->getParent() != Record)
8767        break;
8768
8769      assert(!Dtor->getParent()->isDependentType() &&
8770          "Should not ever add destructors of templates into the list.");
8771      CheckOverridingFunctionExceptionSpec(Dtor,
8772          DelayedDestructorExceptionSpecChecks.back().second);
8773      DelayedDestructorExceptionSpecChecks.pop_back();
8774    }
8775
8776  } else {
8777    ObjCIvarDecl **ClsFields =
8778      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8779    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8780      ID->setLocEnd(RBrac);
8781      // Add ivar's to class's DeclContext.
8782      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8783        ClsFields[i]->setLexicalDeclContext(ID);
8784        ID->addDecl(ClsFields[i]);
8785      }
8786      // Must enforce the rule that ivars in the base classes may not be
8787      // duplicates.
8788      if (ID->getSuperClass())
8789        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8790    } else if (ObjCImplementationDecl *IMPDecl =
8791                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8792      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8793      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8794        // Ivar declared in @implementation never belongs to the implementation.
8795        // Only it is in implementation's lexical context.
8796        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8797      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8798    } else if (ObjCCategoryDecl *CDecl =
8799                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8800      // case of ivars in class extension; all other cases have been
8801      // reported as errors elsewhere.
8802      // FIXME. Class extension does not have a LocEnd field.
8803      // CDecl->setLocEnd(RBrac);
8804      // Add ivar's to class extension's DeclContext.
8805      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8806        ClsFields[i]->setLexicalDeclContext(CDecl);
8807        CDecl->addDecl(ClsFields[i]);
8808      }
8809    }
8810  }
8811
8812  if (Attr)
8813    ProcessDeclAttributeList(S, Record, Attr);
8814
8815  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8816  // set the visibility of this record.
8817  if (Record && !Record->getDeclContext()->isRecord())
8818    AddPushedVisibilityAttribute(Record);
8819}
8820
8821/// \brief Determine whether the given integral value is representable within
8822/// the given type T.
8823static bool isRepresentableIntegerValue(ASTContext &Context,
8824                                        llvm::APSInt &Value,
8825                                        QualType T) {
8826  assert(T->isIntegralType(Context) && "Integral type required!");
8827  unsigned BitWidth = Context.getIntWidth(T);
8828
8829  if (Value.isUnsigned() || Value.isNonNegative()) {
8830    if (T->isSignedIntegerOrEnumerationType())
8831      --BitWidth;
8832    return Value.getActiveBits() <= BitWidth;
8833  }
8834  return Value.getMinSignedBits() <= BitWidth;
8835}
8836
8837// \brief Given an integral type, return the next larger integral type
8838// (or a NULL type of no such type exists).
8839static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8840  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8841  // enum checking below.
8842  assert(T->isIntegralType(Context) && "Integral type required!");
8843  const unsigned NumTypes = 4;
8844  QualType SignedIntegralTypes[NumTypes] = {
8845    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8846  };
8847  QualType UnsignedIntegralTypes[NumTypes] = {
8848    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8849    Context.UnsignedLongLongTy
8850  };
8851
8852  unsigned BitWidth = Context.getTypeSize(T);
8853  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8854                                                        : UnsignedIntegralTypes;
8855  for (unsigned I = 0; I != NumTypes; ++I)
8856    if (Context.getTypeSize(Types[I]) > BitWidth)
8857      return Types[I];
8858
8859  return QualType();
8860}
8861
8862EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8863                                          EnumConstantDecl *LastEnumConst,
8864                                          SourceLocation IdLoc,
8865                                          IdentifierInfo *Id,
8866                                          Expr *Val) {
8867  unsigned IntWidth = Context.Target.getIntWidth();
8868  llvm::APSInt EnumVal(IntWidth);
8869  QualType EltTy;
8870
8871  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8872    Val = 0;
8873
8874  if (Val) {
8875    if (Enum->isDependentType() || Val->isTypeDependent())
8876      EltTy = Context.DependentTy;
8877    else {
8878      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8879      SourceLocation ExpLoc;
8880      if (!Val->isValueDependent() &&
8881          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8882        Val = 0;
8883      } else {
8884        if (!getLangOptions().CPlusPlus) {
8885          // C99 6.7.2.2p2:
8886          //   The expression that defines the value of an enumeration constant
8887          //   shall be an integer constant expression that has a value
8888          //   representable as an int.
8889
8890          // Complain if the value is not representable in an int.
8891          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8892            Diag(IdLoc, diag::ext_enum_value_not_int)
8893              << EnumVal.toString(10) << Val->getSourceRange()
8894              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8895          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8896            // Force the type of the expression to 'int'.
8897            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8898          }
8899        }
8900
8901        if (Enum->isFixed()) {
8902          EltTy = Enum->getIntegerType();
8903
8904          // C++0x [dcl.enum]p5:
8905          //   ... if the initializing value of an enumerator cannot be
8906          //   represented by the underlying type, the program is ill-formed.
8907          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8908            if (getLangOptions().Microsoft) {
8909              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8910              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8911            } else
8912              Diag(IdLoc, diag::err_enumerator_too_large)
8913                << EltTy;
8914          } else
8915            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8916        }
8917        else {
8918          // C++0x [dcl.enum]p5:
8919          //   If the underlying type is not fixed, the type of each enumerator
8920          //   is the type of its initializing value:
8921          //     - If an initializer is specified for an enumerator, the
8922          //       initializing value has the same type as the expression.
8923          EltTy = Val->getType();
8924        }
8925      }
8926    }
8927  }
8928
8929  if (!Val) {
8930    if (Enum->isDependentType())
8931      EltTy = Context.DependentTy;
8932    else if (!LastEnumConst) {
8933      // C++0x [dcl.enum]p5:
8934      //   If the underlying type is not fixed, the type of each enumerator
8935      //   is the type of its initializing value:
8936      //     - If no initializer is specified for the first enumerator, the
8937      //       initializing value has an unspecified integral type.
8938      //
8939      // GCC uses 'int' for its unspecified integral type, as does
8940      // C99 6.7.2.2p3.
8941      if (Enum->isFixed()) {
8942        EltTy = Enum->getIntegerType();
8943      }
8944      else {
8945        EltTy = Context.IntTy;
8946      }
8947    } else {
8948      // Assign the last value + 1.
8949      EnumVal = LastEnumConst->getInitVal();
8950      ++EnumVal;
8951      EltTy = LastEnumConst->getType();
8952
8953      // Check for overflow on increment.
8954      if (EnumVal < LastEnumConst->getInitVal()) {
8955        // C++0x [dcl.enum]p5:
8956        //   If the underlying type is not fixed, the type of each enumerator
8957        //   is the type of its initializing value:
8958        //
8959        //     - Otherwise the type of the initializing value is the same as
8960        //       the type of the initializing value of the preceding enumerator
8961        //       unless the incremented value is not representable in that type,
8962        //       in which case the type is an unspecified integral type
8963        //       sufficient to contain the incremented value. If no such type
8964        //       exists, the program is ill-formed.
8965        QualType T = getNextLargerIntegralType(Context, EltTy);
8966        if (T.isNull() || Enum->isFixed()) {
8967          // There is no integral type larger enough to represent this
8968          // value. Complain, then allow the value to wrap around.
8969          EnumVal = LastEnumConst->getInitVal();
8970          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8971          ++EnumVal;
8972          if (Enum->isFixed())
8973            // When the underlying type is fixed, this is ill-formed.
8974            Diag(IdLoc, diag::err_enumerator_wrapped)
8975              << EnumVal.toString(10)
8976              << EltTy;
8977          else
8978            Diag(IdLoc, diag::warn_enumerator_too_large)
8979              << EnumVal.toString(10);
8980        } else {
8981          EltTy = T;
8982        }
8983
8984        // Retrieve the last enumerator's value, extent that type to the
8985        // type that is supposed to be large enough to represent the incremented
8986        // value, then increment.
8987        EnumVal = LastEnumConst->getInitVal();
8988        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8989        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8990        ++EnumVal;
8991
8992        // If we're not in C++, diagnose the overflow of enumerator values,
8993        // which in C99 means that the enumerator value is not representable in
8994        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8995        // permits enumerator values that are representable in some larger
8996        // integral type.
8997        if (!getLangOptions().CPlusPlus && !T.isNull())
8998          Diag(IdLoc, diag::warn_enum_value_overflow);
8999      } else if (!getLangOptions().CPlusPlus &&
9000                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9001        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9002        Diag(IdLoc, diag::ext_enum_value_not_int)
9003          << EnumVal.toString(10) << 1;
9004      }
9005    }
9006  }
9007
9008  if (!EltTy->isDependentType()) {
9009    // Make the enumerator value match the signedness and size of the
9010    // enumerator's type.
9011    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9012    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9013  }
9014
9015  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9016                                  Val, EnumVal);
9017}
9018
9019
9020Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9021                              SourceLocation IdLoc, IdentifierInfo *Id,
9022                              AttributeList *Attr,
9023                              SourceLocation EqualLoc, ExprTy *val) {
9024  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9025  EnumConstantDecl *LastEnumConst =
9026    cast_or_null<EnumConstantDecl>(lastEnumConst);
9027  Expr *Val = static_cast<Expr*>(val);
9028
9029  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9030  // we find one that is.
9031  S = getNonFieldDeclScope(S);
9032
9033  // Verify that there isn't already something declared with this name in this
9034  // scope.
9035  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9036                                         ForRedeclaration);
9037  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9038    // Maybe we will complain about the shadowed template parameter.
9039    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9040    // Just pretend that we didn't see the previous declaration.
9041    PrevDecl = 0;
9042  }
9043
9044  if (PrevDecl) {
9045    // When in C++, we may get a TagDecl with the same name; in this case the
9046    // enum constant will 'hide' the tag.
9047    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9048           "Received TagDecl when not in C++!");
9049    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9050      if (isa<EnumConstantDecl>(PrevDecl))
9051        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9052      else
9053        Diag(IdLoc, diag::err_redefinition) << Id;
9054      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9055      return 0;
9056    }
9057  }
9058
9059  // C++ [class.mem]p13:
9060  //   If T is the name of a class, then each of the following shall have a
9061  //   name different from T:
9062  //     - every enumerator of every member of class T that is an enumerated
9063  //       type
9064  if (CXXRecordDecl *Record
9065                      = dyn_cast<CXXRecordDecl>(
9066                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9067    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9068      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9069
9070  EnumConstantDecl *New =
9071    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9072
9073  if (New) {
9074    // Process attributes.
9075    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9076
9077    // Register this decl in the current scope stack.
9078    New->setAccess(TheEnumDecl->getAccess());
9079    PushOnScopeChains(New, S);
9080  }
9081
9082  return New;
9083}
9084
9085void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9086                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9087                         Decl **Elements, unsigned NumElements,
9088                         Scope *S, AttributeList *Attr) {
9089  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9090  QualType EnumType = Context.getTypeDeclType(Enum);
9091
9092  if (Attr)
9093    ProcessDeclAttributeList(S, Enum, Attr);
9094
9095  if (Enum->isDependentType()) {
9096    for (unsigned i = 0; i != NumElements; ++i) {
9097      EnumConstantDecl *ECD =
9098        cast_or_null<EnumConstantDecl>(Elements[i]);
9099      if (!ECD) continue;
9100
9101      ECD->setType(EnumType);
9102    }
9103
9104    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9105    return;
9106  }
9107
9108  // TODO: If the result value doesn't fit in an int, it must be a long or long
9109  // long value.  ISO C does not support this, but GCC does as an extension,
9110  // emit a warning.
9111  unsigned IntWidth = Context.Target.getIntWidth();
9112  unsigned CharWidth = Context.Target.getCharWidth();
9113  unsigned ShortWidth = Context.Target.getShortWidth();
9114
9115  // Verify that all the values are okay, compute the size of the values, and
9116  // reverse the list.
9117  unsigned NumNegativeBits = 0;
9118  unsigned NumPositiveBits = 0;
9119
9120  // Keep track of whether all elements have type int.
9121  bool AllElementsInt = true;
9122
9123  for (unsigned i = 0; i != NumElements; ++i) {
9124    EnumConstantDecl *ECD =
9125      cast_or_null<EnumConstantDecl>(Elements[i]);
9126    if (!ECD) continue;  // Already issued a diagnostic.
9127
9128    const llvm::APSInt &InitVal = ECD->getInitVal();
9129
9130    // Keep track of the size of positive and negative values.
9131    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9132      NumPositiveBits = std::max(NumPositiveBits,
9133                                 (unsigned)InitVal.getActiveBits());
9134    else
9135      NumNegativeBits = std::max(NumNegativeBits,
9136                                 (unsigned)InitVal.getMinSignedBits());
9137
9138    // Keep track of whether every enum element has type int (very commmon).
9139    if (AllElementsInt)
9140      AllElementsInt = ECD->getType() == Context.IntTy;
9141  }
9142
9143  // Figure out the type that should be used for this enum.
9144  QualType BestType;
9145  unsigned BestWidth;
9146
9147  // C++0x N3000 [conv.prom]p3:
9148  //   An rvalue of an unscoped enumeration type whose underlying
9149  //   type is not fixed can be converted to an rvalue of the first
9150  //   of the following types that can represent all the values of
9151  //   the enumeration: int, unsigned int, long int, unsigned long
9152  //   int, long long int, or unsigned long long int.
9153  // C99 6.4.4.3p2:
9154  //   An identifier declared as an enumeration constant has type int.
9155  // The C99 rule is modified by a gcc extension
9156  QualType BestPromotionType;
9157
9158  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9159  // -fshort-enums is the equivalent to specifying the packed attribute on all
9160  // enum definitions.
9161  if (LangOpts.ShortEnums)
9162    Packed = true;
9163
9164  if (Enum->isFixed()) {
9165    BestType = BestPromotionType = Enum->getIntegerType();
9166    // We don't need to set BestWidth, because BestType is going to be the type
9167    // of the enumerators, but we do anyway because otherwise some compilers
9168    // warn that it might be used uninitialized.
9169    BestWidth = CharWidth;
9170  }
9171  else if (NumNegativeBits) {
9172    // If there is a negative value, figure out the smallest integer type (of
9173    // int/long/longlong) that fits.
9174    // If it's packed, check also if it fits a char or a short.
9175    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9176      BestType = Context.SignedCharTy;
9177      BestWidth = CharWidth;
9178    } else if (Packed && NumNegativeBits <= ShortWidth &&
9179               NumPositiveBits < ShortWidth) {
9180      BestType = Context.ShortTy;
9181      BestWidth = ShortWidth;
9182    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9183      BestType = Context.IntTy;
9184      BestWidth = IntWidth;
9185    } else {
9186      BestWidth = Context.Target.getLongWidth();
9187
9188      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9189        BestType = Context.LongTy;
9190      } else {
9191        BestWidth = Context.Target.getLongLongWidth();
9192
9193        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9194          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9195        BestType = Context.LongLongTy;
9196      }
9197    }
9198    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9199  } else {
9200    // If there is no negative value, figure out the smallest type that fits
9201    // all of the enumerator values.
9202    // If it's packed, check also if it fits a char or a short.
9203    if (Packed && NumPositiveBits <= CharWidth) {
9204      BestType = Context.UnsignedCharTy;
9205      BestPromotionType = Context.IntTy;
9206      BestWidth = CharWidth;
9207    } else if (Packed && NumPositiveBits <= ShortWidth) {
9208      BestType = Context.UnsignedShortTy;
9209      BestPromotionType = Context.IntTy;
9210      BestWidth = ShortWidth;
9211    } else if (NumPositiveBits <= IntWidth) {
9212      BestType = Context.UnsignedIntTy;
9213      BestWidth = IntWidth;
9214      BestPromotionType
9215        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9216                           ? Context.UnsignedIntTy : Context.IntTy;
9217    } else if (NumPositiveBits <=
9218               (BestWidth = Context.Target.getLongWidth())) {
9219      BestType = Context.UnsignedLongTy;
9220      BestPromotionType
9221        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9222                           ? Context.UnsignedLongTy : Context.LongTy;
9223    } else {
9224      BestWidth = Context.Target.getLongLongWidth();
9225      assert(NumPositiveBits <= BestWidth &&
9226             "How could an initializer get larger than ULL?");
9227      BestType = Context.UnsignedLongLongTy;
9228      BestPromotionType
9229        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9230                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9231    }
9232  }
9233
9234  // Loop over all of the enumerator constants, changing their types to match
9235  // the type of the enum if needed.
9236  for (unsigned i = 0; i != NumElements; ++i) {
9237    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9238    if (!ECD) continue;  // Already issued a diagnostic.
9239
9240    // Standard C says the enumerators have int type, but we allow, as an
9241    // extension, the enumerators to be larger than int size.  If each
9242    // enumerator value fits in an int, type it as an int, otherwise type it the
9243    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9244    // that X has type 'int', not 'unsigned'.
9245
9246    // Determine whether the value fits into an int.
9247    llvm::APSInt InitVal = ECD->getInitVal();
9248
9249    // If it fits into an integer type, force it.  Otherwise force it to match
9250    // the enum decl type.
9251    QualType NewTy;
9252    unsigned NewWidth;
9253    bool NewSign;
9254    if (!getLangOptions().CPlusPlus &&
9255        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9256      NewTy = Context.IntTy;
9257      NewWidth = IntWidth;
9258      NewSign = true;
9259    } else if (ECD->getType() == BestType) {
9260      // Already the right type!
9261      if (getLangOptions().CPlusPlus)
9262        // C++ [dcl.enum]p4: Following the closing brace of an
9263        // enum-specifier, each enumerator has the type of its
9264        // enumeration.
9265        ECD->setType(EnumType);
9266      continue;
9267    } else {
9268      NewTy = BestType;
9269      NewWidth = BestWidth;
9270      NewSign = BestType->isSignedIntegerOrEnumerationType();
9271    }
9272
9273    // Adjust the APSInt value.
9274    InitVal = InitVal.extOrTrunc(NewWidth);
9275    InitVal.setIsSigned(NewSign);
9276    ECD->setInitVal(InitVal);
9277
9278    // Adjust the Expr initializer and type.
9279    if (ECD->getInitExpr() &&
9280        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9281      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9282                                                CK_IntegralCast,
9283                                                ECD->getInitExpr(),
9284                                                /*base paths*/ 0,
9285                                                VK_RValue));
9286    if (getLangOptions().CPlusPlus)
9287      // C++ [dcl.enum]p4: Following the closing brace of an
9288      // enum-specifier, each enumerator has the type of its
9289      // enumeration.
9290      ECD->setType(EnumType);
9291    else
9292      ECD->setType(NewTy);
9293  }
9294
9295  Enum->completeDefinition(BestType, BestPromotionType,
9296                           NumPositiveBits, NumNegativeBits);
9297}
9298
9299Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9300                                  SourceLocation StartLoc,
9301                                  SourceLocation EndLoc) {
9302  StringLiteral *AsmString = cast<StringLiteral>(expr);
9303
9304  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9305                                                   AsmString, StartLoc,
9306                                                   EndLoc);
9307  CurContext->addDecl(New);
9308  return New;
9309}
9310
9311void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9312                             SourceLocation PragmaLoc,
9313                             SourceLocation NameLoc) {
9314  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9315
9316  if (PrevDecl) {
9317    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9318  } else {
9319    (void)WeakUndeclaredIdentifiers.insert(
9320      std::pair<IdentifierInfo*,WeakInfo>
9321        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9322  }
9323}
9324
9325void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9326                                IdentifierInfo* AliasName,
9327                                SourceLocation PragmaLoc,
9328                                SourceLocation NameLoc,
9329                                SourceLocation AliasNameLoc) {
9330  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9331                                    LookupOrdinaryName);
9332  WeakInfo W = WeakInfo(Name, NameLoc);
9333
9334  if (PrevDecl) {
9335    if (!PrevDecl->hasAttr<AliasAttr>())
9336      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9337        DeclApplyPragmaWeak(TUScope, ND, W);
9338  } else {
9339    (void)WeakUndeclaredIdentifiers.insert(
9340      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9341  }
9342}
9343
9344Decl *Sema::getObjCDeclContext() const {
9345  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9346}
9347