SemaDecl.cpp revision a4e0498fe99f1dae86c462912222cf40ed8377f0
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/TargetInfo.h"
22#include "clang/Basic/SourceManager.h"
23// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
24#include "clang/Lex/Preprocessor.h"
25#include "clang/Lex/HeaderSearch.h"
26#include "llvm/ADT/SmallSet.h"
27#include "llvm/ADT/STLExtras.h"
28#include <algorithm>
29#include <functional>
30
31using namespace clang;
32
33Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, Scope *S,
34                                const CXXScopeSpec *SS) {
35  DeclContext *DC = 0;
36
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  Decl *IIDecl = 0;
43
44  LookupResult Result =  DC ? LookupDeclInContext(&II, Decl::IDNS_Ordinary, DC) :
45                              LookupDeclInScope(&II, Decl::IDNS_Ordinary, S);
46
47  switch (Result.getKind()) {
48    case LookupResult::NotFound:
49    case LookupResult::FoundOverloaded:
50    case LookupResult::AmbiguousBaseSubobjectTypes:
51    case LookupResult::AmbiguousBaseSubobjects:
52      // FIXME: In the event of an ambiguous lookup, we could visit all of
53      // the entities found to determine whether they are all types. This
54      // might provide better diagnostics.
55      return 0;
56    case LookupResult::Found:
57      IIDecl = Result.getAsDecl();
58      break;
59  }
60
61  if (IIDecl) {
62    if (isa<TypedefDecl>(IIDecl) ||
63        isa<ObjCInterfaceDecl>(IIDecl) ||
64        isa<TagDecl>(IIDecl) ||
65        isa<TemplateTypeParmDecl>(IIDecl))
66      return IIDecl;
67  }
68  return 0;
69}
70
71DeclContext *Sema::getContainingDC(DeclContext *DC) {
72  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
73    // A C++ out-of-line method will return to the file declaration context.
74    if (MD->isOutOfLineDefinition())
75      return MD->getLexicalDeclContext();
76
77    // A C++ inline method is parsed *after* the topmost class it was declared in
78    // is fully parsed (it's "complete").
79    // The parsing of a C++ inline method happens at the declaration context of
80    // the topmost (non-nested) class it is lexically declared in.
81    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
82    DC = MD->getParent();
83    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
84      DC = RD;
85
86    // Return the declaration context of the topmost class the inline method is
87    // declared in.
88    return DC;
89  }
90
91  if (isa<ObjCMethodDecl>(DC))
92    return Context.getTranslationUnitDecl();
93
94  if (Decl *D = dyn_cast<Decl>(DC))
95    return D->getLexicalDeclContext();
96
97  return DC->getLexicalParent();
98}
99
100void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
101  assert(getContainingDC(DC) == CurContext &&
102      "The next DeclContext should be lexically contained in the current one.");
103  CurContext = DC;
104  S->setEntity(DC);
105}
106
107void Sema::PopDeclContext() {
108  assert(CurContext && "DeclContext imbalance!");
109
110  CurContext = getContainingDC(CurContext);
111}
112
113/// Add this decl to the scope shadowed decl chains.
114void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
115  // Move up the scope chain until we find the nearest enclosing
116  // non-transparent context. The declaration will be introduced into this
117  // scope.
118  while (S->getEntity() &&
119         ((DeclContext *)S->getEntity())->isTransparentContext())
120    S = S->getParent();
121
122  S->AddDecl(D);
123
124  // Add scoped declarations into their context, so that they can be
125  // found later. Declarations without a context won't be inserted
126  // into any context.
127  CurContext->addDecl(D);
128
129  // C++ [basic.scope]p4:
130  //   -- exactly one declaration shall declare a class name or
131  //   enumeration name that is not a typedef name and the other
132  //   declarations shall all refer to the same object or
133  //   enumerator, or all refer to functions and function templates;
134  //   in this case the class name or enumeration name is hidden.
135  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
136    // We are pushing the name of a tag (enum or class).
137    if (CurContext->getLookupContext()
138          == TD->getDeclContext()->getLookupContext()) {
139      // We're pushing the tag into the current context, which might
140      // require some reshuffling in the identifier resolver.
141      IdentifierResolver::iterator
142        I = IdResolver.begin(TD->getDeclName(), CurContext,
143                             false/*LookInParentCtx*/),
144        IEnd = IdResolver.end();
145      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
146        NamedDecl *PrevDecl = *I;
147        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
148             PrevDecl = *I, ++I) {
149          if (TD->declarationReplaces(*I)) {
150            // This is a redeclaration. Remove it from the chain and
151            // break out, so that we'll add in the shadowed
152            // declaration.
153            S->RemoveDecl(*I);
154            if (PrevDecl == *I) {
155              IdResolver.RemoveDecl(*I);
156              IdResolver.AddDecl(TD);
157              return;
158            } else {
159              IdResolver.RemoveDecl(*I);
160              break;
161            }
162          }
163        }
164
165        // There is already a declaration with the same name in the same
166        // scope, which is not a tag declaration. It must be found
167        // before we find the new declaration, so insert the new
168        // declaration at the end of the chain.
169        IdResolver.AddShadowedDecl(TD, PrevDecl);
170
171        return;
172      }
173    }
174  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
175    // We are pushing the name of a function, which might be an
176    // overloaded name.
177    FunctionDecl *FD = cast<FunctionDecl>(D);
178    DeclContext *DC = FD->getDeclContext()->getLookupContext();
179    IdentifierResolver::iterator Redecl
180      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
181                                      false/*LookInParentCtx*/),
182                     IdResolver.end(),
183                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
184                                  FD));
185    if (Redecl != IdResolver.end()) {
186      // There is already a declaration of a function on our
187      // IdResolver chain. Replace it with this declaration.
188      S->RemoveDecl(*Redecl);
189      IdResolver.RemoveDecl(*Redecl);
190    }
191  }
192
193  IdResolver.AddDecl(D);
194}
195
196void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
197  if (S->decl_empty()) return;
198  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
199	 "Scope shouldn't contain decls!");
200
201  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
202       I != E; ++I) {
203    Decl *TmpD = static_cast<Decl*>(*I);
204    assert(TmpD && "This decl didn't get pushed??");
205
206    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
207    NamedDecl *D = cast<NamedDecl>(TmpD);
208
209    if (!D->getDeclName()) continue;
210
211    // Remove this name from our lexical scope.
212    IdResolver.RemoveDecl(D);
213  }
214}
215
216/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
217/// return 0 if one not found.
218ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
219  // The third "scope" argument is 0 since we aren't enabling lazy built-in
220  // creation from this context.
221  Decl *IDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, 0);
222
223  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
224}
225
226/// getNonFieldDeclScope - Retrieves the innermost scope, starting
227/// from S, where a non-field would be declared. This routine copes
228/// with the difference between C and C++ scoping rules in structs and
229/// unions. For example, the following code is well-formed in C but
230/// ill-formed in C++:
231/// @code
232/// struct S6 {
233///   enum { BAR } e;
234/// };
235///
236/// void test_S6() {
237///   struct S6 a;
238///   a.e = BAR;
239/// }
240/// @endcode
241/// For the declaration of BAR, this routine will return a different
242/// scope. The scope S will be the scope of the unnamed enumeration
243/// within S6. In C++, this routine will return the scope associated
244/// with S6, because the enumeration's scope is a transparent
245/// context but structures can contain non-field names. In C, this
246/// routine will return the translation unit scope, since the
247/// enumeration's scope is a transparent context and structures cannot
248/// contain non-field names.
249Scope *Sema::getNonFieldDeclScope(Scope *S) {
250  while (((S->getFlags() & Scope::DeclScope) == 0) ||
251         (S->getEntity() &&
252          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
253         (S->isClassScope() && !getLangOptions().CPlusPlus))
254    S = S->getParent();
255  return S;
256}
257
258/// LookupDeclInScope - Look up the inner-most declaration in the specified
259/// namespace. NamespaceNameOnly - during lookup only namespace names
260/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
261/// 'When looking up a namespace-name in a using-directive or
262/// namespace-alias-definition, only namespace names are considered.'
263///
264/// Note: The use of this routine is deprecated. Please use
265/// LookupName, LookupQualifiedName, or LookupParsedName instead.
266Sema::LookupResult
267Sema::LookupDeclInScope(DeclarationName Name, unsigned NSI, Scope *S,
268                        bool LookInParent) {
269  if (getLangOptions().CPlusPlus) {
270    LookupCriteria::NameKind Kind;
271    if (NSI == Decl::IDNS_Ordinary) {
272      Kind = LookupCriteria::Ordinary;
273    } else if (NSI == Decl::IDNS_Tag)
274      Kind = LookupCriteria::Tag;
275    else {
276      assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
277      Kind = LookupCriteria::Member;
278    }
279    // Unqualified lookup
280    return LookupName(S, Name,
281                      LookupCriteria(Kind, !LookInParent,
282                                     getLangOptions().CPlusPlus));
283  }
284  // Fast path for C/ObjC.
285
286  // Unqualified name lookup in C/Objective-C is purely lexical, so
287  // search in the declarations attached to the name.
288
289  // For the purposes of unqualified name lookup, structs and unions
290  // don't have scopes at all. For example:
291  //
292  //   struct X {
293  //     struct T { int i; } x;
294  //   };
295  //
296  //   void f() {
297  //     struct T t; // okay: T is defined lexically within X, but
298  //                 // semantically at global scope
299  //   };
300  //
301  // FIXME: Is there a better way to deal with this?
302  DeclContext *SearchCtx = CurContext;
303  while (isa<RecordDecl>(SearchCtx) || isa<EnumDecl>(SearchCtx))
304    SearchCtx = SearchCtx->getParent();
305  IdentifierResolver::iterator I
306    = IdResolver.begin(Name, SearchCtx, LookInParent);
307
308  // Scan up the scope chain looking for a decl that matches this
309  // identifier that is in the appropriate namespace.  This search
310  // should not take long, as shadowing of names is uncommon, and
311  // deep shadowing is extremely uncommon.
312  for (; I != IdResolver.end(); ++I) {
313    switch (NSI) {
314      case Decl::IDNS_Ordinary:
315      case Decl::IDNS_Tag:
316      case Decl::IDNS_Member:
317        if ((*I)->isInIdentifierNamespace(NSI))
318          return LookupResult::CreateLookupResult(Context, *I);
319        break;
320      default:
321        assert(0 && "Unable to grok LookupDecl NSI argument");
322    }
323  }
324  if (NSI == Decl::IDNS_Ordinary) {
325    IdentifierInfo *II = Name.getAsIdentifierInfo();
326    if (II) {
327      // If this is a builtin on this (or all) targets, create the decl.
328      if (unsigned BuiltinID = II->getBuiltinID())
329        return LookupResult::CreateLookupResult(Context,
330                            LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID,
331                                                S));
332    }
333    if (getLangOptions().ObjC1 && II) {
334      // @interface and @compatibility_alias introduce typedef-like names.
335      // Unlike typedef's, they can only be introduced at file-scope (and are
336      // therefore not scoped decls). They can, however, be shadowed by
337      // other names in IDNS_Ordinary.
338      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
339      if (IDI != ObjCInterfaceDecls.end())
340        return LookupResult::CreateLookupResult(Context, IDI->second);
341      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
342      if (I != ObjCAliasDecls.end())
343        return LookupResult::CreateLookupResult(Context,
344                                                I->second->getClassInterface());
345    }
346  }
347  return LookupResult::CreateLookupResult(Context, 0);
348}
349
350Sema::LookupResult
351Sema::LookupDeclInContext(DeclarationName Name, unsigned NSI,
352                          const DeclContext *LookupCtx,
353                          bool LookInParent) {
354  assert(LookupCtx && "LookupDeclInContext(): Missing DeclContext");
355  LookupCriteria::NameKind Kind;
356  if (NSI == Decl::IDNS_Ordinary) {
357    Kind = LookupCriteria::Ordinary;
358  } else if (NSI == Decl::IDNS_Tag)
359    Kind = LookupCriteria::Tag;
360  else {
361    assert(NSI == Decl::IDNS_Member &&"Unable to grok LookupDecl NSI argument");
362    Kind = LookupCriteria::Member;
363  }
364  return LookupQualifiedName(const_cast<DeclContext *>(LookupCtx), Name,
365                             LookupCriteria(Kind, !LookInParent,
366                                            getLangOptions().CPlusPlus));
367}
368
369void Sema::InitBuiltinVaListType() {
370  if (!Context.getBuiltinVaListType().isNull())
371    return;
372
373  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
374  Decl *VaDecl = LookupDeclInScope(VaIdent, Decl::IDNS_Ordinary, TUScope);
375  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
376  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
377}
378
379/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
380/// lazily create a decl for it.
381NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
382                                     Scope *S) {
383  Builtin::ID BID = (Builtin::ID)bid;
384
385  if (Context.BuiltinInfo.hasVAListUse(BID))
386    InitBuiltinVaListType();
387
388  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
389  FunctionDecl *New = FunctionDecl::Create(Context,
390                                           Context.getTranslationUnitDecl(),
391                                           SourceLocation(), II, R,
392                                           FunctionDecl::Extern, false);
393
394  // Create Decl objects for each parameter, adding them to the
395  // FunctionDecl.
396  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
397    llvm::SmallVector<ParmVarDecl*, 16> Params;
398    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
399      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
400                                           FT->getArgType(i), VarDecl::None, 0));
401    New->setParams(Context, &Params[0], Params.size());
402  }
403
404
405
406  // TUScope is the translation-unit scope to insert this function into.
407  // FIXME: This is hideous. We need to teach PushOnScopeChains to
408  // relate Scopes to DeclContexts, and probably eliminate CurContext
409  // entirely, but we're not there yet.
410  DeclContext *SavedContext = CurContext;
411  CurContext = Context.getTranslationUnitDecl();
412  PushOnScopeChains(New, TUScope);
413  CurContext = SavedContext;
414  return New;
415}
416
417/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
418/// everything from the standard library is defined.
419NamespaceDecl *Sema::GetStdNamespace() {
420  if (!StdNamespace) {
421    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
422    DeclContext *Global = Context.getTranslationUnitDecl();
423    Decl *Std = LookupDeclInContext(StdIdent, Decl::IDNS_Ordinary, Global);
424    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
425  }
426  return StdNamespace;
427}
428
429/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
430/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
431/// situation, merging decls or emitting diagnostics as appropriate.
432///
433TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
434  bool objc_types = false;
435  // Allow multiple definitions for ObjC built-in typedefs.
436  // FIXME: Verify the underlying types are equivalent!
437  if (getLangOptions().ObjC1) {
438    const IdentifierInfo *TypeID = New->getIdentifier();
439    switch (TypeID->getLength()) {
440    default: break;
441    case 2:
442      if (!TypeID->isStr("id"))
443        break;
444      Context.setObjCIdType(New);
445      objc_types = true;
446      break;
447    case 5:
448      if (!TypeID->isStr("Class"))
449        break;
450      Context.setObjCClassType(New);
451      objc_types = true;
452      return New;
453    case 3:
454      if (!TypeID->isStr("SEL"))
455        break;
456      Context.setObjCSelType(New);
457      objc_types = true;
458      return New;
459    case 8:
460      if (!TypeID->isStr("Protocol"))
461        break;
462      Context.setObjCProtoType(New->getUnderlyingType());
463      objc_types = true;
464      return New;
465    }
466    // Fall through - the typedef name was not a builtin type.
467  }
468  // Verify the old decl was also a type.
469  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
470  if (!Old) {
471    Diag(New->getLocation(), diag::err_redefinition_different_kind)
472      << New->getDeclName();
473    if (!objc_types)
474      Diag(OldD->getLocation(), diag::note_previous_definition);
475    return New;
476  }
477
478  // Determine the "old" type we'll use for checking and diagnostics.
479  QualType OldType;
480  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
481    OldType = OldTypedef->getUnderlyingType();
482  else
483    OldType = Context.getTypeDeclType(Old);
484
485  // If the typedef types are not identical, reject them in all languages and
486  // with any extensions enabled.
487
488  if (OldType != New->getUnderlyingType() &&
489      Context.getCanonicalType(OldType) !=
490      Context.getCanonicalType(New->getUnderlyingType())) {
491    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
492      << New->getUnderlyingType() << OldType;
493    if (!objc_types)
494      Diag(Old->getLocation(), diag::note_previous_definition);
495    return New;
496  }
497  if (objc_types) return New;
498  if (getLangOptions().Microsoft) return New;
499
500  // C++ [dcl.typedef]p2:
501  //   In a given non-class scope, a typedef specifier can be used to
502  //   redefine the name of any type declared in that scope to refer
503  //   to the type to which it already refers.
504  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
505    return New;
506
507  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
508  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
509  // *either* declaration is in a system header. The code below implements
510  // this adhoc compatibility rule. FIXME: The following code will not
511  // work properly when compiling ".i" files (containing preprocessed output).
512  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
513    SourceManager &SrcMgr = Context.getSourceManager();
514    if (SrcMgr.isInSystemHeader(Old->getLocation()))
515      return New;
516    if (SrcMgr.isInSystemHeader(New->getLocation()))
517      return New;
518  }
519
520  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
521  Diag(Old->getLocation(), diag::note_previous_definition);
522  return New;
523}
524
525/// DeclhasAttr - returns true if decl Declaration already has the target
526/// attribute.
527static bool DeclHasAttr(const Decl *decl, const Attr *target) {
528  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
529    if (attr->getKind() == target->getKind())
530      return true;
531
532  return false;
533}
534
535/// MergeAttributes - append attributes from the Old decl to the New one.
536static void MergeAttributes(Decl *New, Decl *Old) {
537  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
538
539  while (attr) {
540     tmp = attr;
541     attr = attr->getNext();
542
543    if (!DeclHasAttr(New, tmp)) {
544       tmp->setInherited(true);
545       New->addAttr(tmp);
546    } else {
547       tmp->setNext(0);
548       delete(tmp);
549    }
550  }
551
552  Old->invalidateAttrs();
553}
554
555/// MergeFunctionDecl - We just parsed a function 'New' from
556/// declarator D which has the same name and scope as a previous
557/// declaration 'Old'.  Figure out how to resolve this situation,
558/// merging decls or emitting diagnostics as appropriate.
559/// Redeclaration will be set true if this New is a redeclaration OldD.
560///
561/// In C++, New and Old must be declarations that are not
562/// overloaded. Use IsOverload to determine whether New and Old are
563/// overloaded, and to select the Old declaration that New should be
564/// merged with.
565FunctionDecl *
566Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
567  assert(!isa<OverloadedFunctionDecl>(OldD) &&
568         "Cannot merge with an overloaded function declaration");
569
570  Redeclaration = false;
571  // Verify the old decl was also a function.
572  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
573  if (!Old) {
574    Diag(New->getLocation(), diag::err_redefinition_different_kind)
575      << New->getDeclName();
576    Diag(OldD->getLocation(), diag::note_previous_definition);
577    return New;
578  }
579
580  // Determine whether the previous declaration was a definition,
581  // implicit declaration, or a declaration.
582  diag::kind PrevDiag;
583  if (Old->isThisDeclarationADefinition())
584    PrevDiag = diag::note_previous_definition;
585  else if (Old->isImplicit())
586    PrevDiag = diag::note_previous_implicit_declaration;
587  else
588    PrevDiag = diag::note_previous_declaration;
589
590  QualType OldQType = Context.getCanonicalType(Old->getType());
591  QualType NewQType = Context.getCanonicalType(New->getType());
592
593  if (getLangOptions().CPlusPlus) {
594    // (C++98 13.1p2):
595    //   Certain function declarations cannot be overloaded:
596    //     -- Function declarations that differ only in the return type
597    //        cannot be overloaded.
598    QualType OldReturnType
599      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
600    QualType NewReturnType
601      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
602    if (OldReturnType != NewReturnType) {
603      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
604      Diag(Old->getLocation(), PrevDiag);
605      Redeclaration = true;
606      return New;
607    }
608
609    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
610    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
611    if (OldMethod && NewMethod) {
612      //    -- Member function declarations with the same name and the
613      //       same parameter types cannot be overloaded if any of them
614      //       is a static member function declaration.
615      if (OldMethod->isStatic() || NewMethod->isStatic()) {
616        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
617        Diag(Old->getLocation(), PrevDiag);
618        return New;
619      }
620
621      // C++ [class.mem]p1:
622      //   [...] A member shall not be declared twice in the
623      //   member-specification, except that a nested class or member
624      //   class template can be declared and then later defined.
625      if (OldMethod->getLexicalDeclContext() ==
626            NewMethod->getLexicalDeclContext()) {
627        unsigned NewDiag;
628        if (isa<CXXConstructorDecl>(OldMethod))
629          NewDiag = diag::err_constructor_redeclared;
630        else if (isa<CXXDestructorDecl>(NewMethod))
631          NewDiag = diag::err_destructor_redeclared;
632        else if (isa<CXXConversionDecl>(NewMethod))
633          NewDiag = diag::err_conv_function_redeclared;
634        else
635          NewDiag = diag::err_member_redeclared;
636
637        Diag(New->getLocation(), NewDiag);
638        Diag(Old->getLocation(), PrevDiag);
639      }
640    }
641
642    // (C++98 8.3.5p3):
643    //   All declarations for a function shall agree exactly in both the
644    //   return type and the parameter-type-list.
645    if (OldQType == NewQType) {
646      // We have a redeclaration.
647      MergeAttributes(New, Old);
648      Redeclaration = true;
649      return MergeCXXFunctionDecl(New, Old);
650    }
651
652    // Fall through for conflicting redeclarations and redefinitions.
653  }
654
655  // C: Function types need to be compatible, not identical. This handles
656  // duplicate function decls like "void f(int); void f(enum X);" properly.
657  if (!getLangOptions().CPlusPlus &&
658      Context.typesAreCompatible(OldQType, NewQType)) {
659    MergeAttributes(New, Old);
660    Redeclaration = true;
661    return New;
662  }
663
664  // A function that has already been declared has been redeclared or defined
665  // with a different type- show appropriate diagnostic
666
667  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
668  // TODO: This is totally simplistic.  It should handle merging functions
669  // together etc, merging extern int X; int X; ...
670  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
671  Diag(Old->getLocation(), PrevDiag);
672  return New;
673}
674
675/// Predicate for C "tentative" external object definitions (C99 6.9.2).
676static bool isTentativeDefinition(VarDecl *VD) {
677  if (VD->isFileVarDecl())
678    return (!VD->getInit() &&
679            (VD->getStorageClass() == VarDecl::None ||
680             VD->getStorageClass() == VarDecl::Static));
681  return false;
682}
683
684/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
685/// when dealing with C "tentative" external object definitions (C99 6.9.2).
686void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
687  bool VDIsTentative = isTentativeDefinition(VD);
688  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
689
690  // FIXME: I don't think this will actually see all of the
691  // redefinitions. Can't we check this property on-the-fly?
692  for (IdentifierResolver::iterator
693       I = IdResolver.begin(VD->getIdentifier(),
694                            VD->getDeclContext(), false/*LookInParentCtx*/),
695       E = IdResolver.end(); I != E; ++I) {
696    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
697      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
698
699      // Handle the following case:
700      //   int a[10];
701      //   int a[];   - the code below makes sure we set the correct type.
702      //   int a[11]; - this is an error, size isn't 10.
703      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
704          OldDecl->getType()->isConstantArrayType())
705        VD->setType(OldDecl->getType());
706
707      // Check for "tentative" definitions. We can't accomplish this in
708      // MergeVarDecl since the initializer hasn't been attached.
709      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
710        continue;
711
712      // Handle __private_extern__ just like extern.
713      if (OldDecl->getStorageClass() != VarDecl::Extern &&
714          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
715          VD->getStorageClass() != VarDecl::Extern &&
716          VD->getStorageClass() != VarDecl::PrivateExtern) {
717        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
718        Diag(OldDecl->getLocation(), diag::note_previous_definition);
719      }
720    }
721  }
722}
723
724/// MergeVarDecl - We just parsed a variable 'New' which has the same name
725/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
726/// situation, merging decls or emitting diagnostics as appropriate.
727///
728/// Tentative definition rules (C99 6.9.2p2) are checked by
729/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
730/// definitions here, since the initializer hasn't been attached.
731///
732VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
733  // Verify the old decl was also a variable.
734  VarDecl *Old = dyn_cast<VarDecl>(OldD);
735  if (!Old) {
736    Diag(New->getLocation(), diag::err_redefinition_different_kind)
737      << New->getDeclName();
738    Diag(OldD->getLocation(), diag::note_previous_definition);
739    return New;
740  }
741
742  MergeAttributes(New, Old);
743
744  // Merge the types
745  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
746  if (MergedT.isNull()) {
747    Diag(New->getLocation(), diag::err_redefinition_different_type)
748      << New->getDeclName();
749    Diag(Old->getLocation(), diag::note_previous_definition);
750    return New;
751  }
752  New->setType(MergedT);
753  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
754  if (New->getStorageClass() == VarDecl::Static &&
755      (Old->getStorageClass() == VarDecl::None ||
756       Old->getStorageClass() == VarDecl::Extern)) {
757    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
758    Diag(Old->getLocation(), diag::note_previous_definition);
759    return New;
760  }
761  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
762  if (New->getStorageClass() != VarDecl::Static &&
763      Old->getStorageClass() == VarDecl::Static) {
764    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
765    Diag(Old->getLocation(), diag::note_previous_definition);
766    return New;
767  }
768  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
769  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
770    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
771    Diag(Old->getLocation(), diag::note_previous_definition);
772  }
773  return New;
774}
775
776/// CheckParmsForFunctionDef - Check that the parameters of the given
777/// function are appropriate for the definition of a function. This
778/// takes care of any checks that cannot be performed on the
779/// declaration itself, e.g., that the types of each of the function
780/// parameters are complete.
781bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
782  bool HasInvalidParm = false;
783  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
784    ParmVarDecl *Param = FD->getParamDecl(p);
785
786    // C99 6.7.5.3p4: the parameters in a parameter type list in a
787    // function declarator that is part of a function definition of
788    // that function shall not have incomplete type.
789    if (!Param->isInvalidDecl() &&
790        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
791                               diag::err_typecheck_decl_incomplete_type)) {
792      Param->setInvalidDecl();
793      HasInvalidParm = true;
794    }
795
796    // C99 6.9.1p5: If the declarator includes a parameter type list, the
797    // declaration of each parameter shall include an identifier.
798    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
799      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
800  }
801
802  return HasInvalidParm;
803}
804
805/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
806/// no declarator (e.g. "struct foo;") is parsed.
807Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
808  TagDecl *Tag
809    = dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
810  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
811    if (!Record->getDeclName() && Record->isDefinition() &&
812        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
813      return BuildAnonymousStructOrUnion(S, DS, Record);
814
815    // Microsoft allows unnamed struct/union fields. Don't complain
816    // about them.
817    // FIXME: Should we support Microsoft's extensions in this area?
818    if (Record->getDeclName() && getLangOptions().Microsoft)
819      return Tag;
820  }
821
822  if (!DS.isMissingDeclaratorOk()) {
823    // Warn about typedefs of enums without names, since this is an
824    // extension in both Microsoft an GNU.
825    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
826        Tag && isa<EnumDecl>(Tag)) {
827      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
828        << DS.getSourceRange();
829      return Tag;
830    }
831
832    // FIXME: This diagnostic is emitted even when various previous
833    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
834    // DeclSpec has no means of communicating this information, and the
835    // responsible parser functions are quite far apart.
836    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
837      << DS.getSourceRange();
838    return 0;
839  }
840
841  return Tag;
842}
843
844/// InjectAnonymousStructOrUnionMembers - Inject the members of the
845/// anonymous struct or union AnonRecord into the owning context Owner
846/// and scope S. This routine will be invoked just after we realize
847/// that an unnamed union or struct is actually an anonymous union or
848/// struct, e.g.,
849///
850/// @code
851/// union {
852///   int i;
853///   float f;
854/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
855///    // f into the surrounding scope.x
856/// @endcode
857///
858/// This routine is recursive, injecting the names of nested anonymous
859/// structs/unions into the owning context and scope as well.
860bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
861                                               RecordDecl *AnonRecord) {
862  bool Invalid = false;
863  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
864                               FEnd = AnonRecord->field_end();
865       F != FEnd; ++F) {
866    if ((*F)->getDeclName()) {
867      Decl *PrevDecl = LookupDeclInContext((*F)->getDeclName(),
868                         Decl::IDNS_Ordinary, Owner, false);
869      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
870        // C++ [class.union]p2:
871        //   The names of the members of an anonymous union shall be
872        //   distinct from the names of any other entity in the
873        //   scope in which the anonymous union is declared.
874        unsigned diagKind
875          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
876                                 : diag::err_anonymous_struct_member_redecl;
877        Diag((*F)->getLocation(), diagKind)
878          << (*F)->getDeclName();
879        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
880        Invalid = true;
881      } else {
882        // C++ [class.union]p2:
883        //   For the purpose of name lookup, after the anonymous union
884        //   definition, the members of the anonymous union are
885        //   considered to have been defined in the scope in which the
886        //   anonymous union is declared.
887        Owner->makeDeclVisibleInContext(*F);
888        S->AddDecl(*F);
889        IdResolver.AddDecl(*F);
890      }
891    } else if (const RecordType *InnerRecordType
892                 = (*F)->getType()->getAsRecordType()) {
893      RecordDecl *InnerRecord = InnerRecordType->getDecl();
894      if (InnerRecord->isAnonymousStructOrUnion())
895        Invalid = Invalid ||
896          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
897    }
898  }
899
900  return Invalid;
901}
902
903/// ActOnAnonymousStructOrUnion - Handle the declaration of an
904/// anonymous structure or union. Anonymous unions are a C++ feature
905/// (C++ [class.union]) and a GNU C extension; anonymous structures
906/// are a GNU C and GNU C++ extension.
907Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
908                                                RecordDecl *Record) {
909  DeclContext *Owner = Record->getDeclContext();
910
911  // Diagnose whether this anonymous struct/union is an extension.
912  if (Record->isUnion() && !getLangOptions().CPlusPlus)
913    Diag(Record->getLocation(), diag::ext_anonymous_union);
914  else if (!Record->isUnion())
915    Diag(Record->getLocation(), diag::ext_anonymous_struct);
916
917  // C and C++ require different kinds of checks for anonymous
918  // structs/unions.
919  bool Invalid = false;
920  if (getLangOptions().CPlusPlus) {
921    const char* PrevSpec = 0;
922    // C++ [class.union]p3:
923    //   Anonymous unions declared in a named namespace or in the
924    //   global namespace shall be declared static.
925    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
926        (isa<TranslationUnitDecl>(Owner) ||
927         (isa<NamespaceDecl>(Owner) &&
928          cast<NamespaceDecl>(Owner)->getDeclName()))) {
929      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
930      Invalid = true;
931
932      // Recover by adding 'static'.
933      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
934    }
935    // C++ [class.union]p3:
936    //   A storage class is not allowed in a declaration of an
937    //   anonymous union in a class scope.
938    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
939             isa<RecordDecl>(Owner)) {
940      Diag(DS.getStorageClassSpecLoc(),
941           diag::err_anonymous_union_with_storage_spec);
942      Invalid = true;
943
944      // Recover by removing the storage specifier.
945      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
946                             PrevSpec);
947    }
948
949    // C++ [class.union]p2:
950    //   The member-specification of an anonymous union shall only
951    //   define non-static data members. [Note: nested types and
952    //   functions cannot be declared within an anonymous union. ]
953    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
954                                 MemEnd = Record->decls_end();
955         Mem != MemEnd; ++Mem) {
956      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
957        // C++ [class.union]p3:
958        //   An anonymous union shall not have private or protected
959        //   members (clause 11).
960        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
961          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
962            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
963          Invalid = true;
964        }
965      } else if ((*Mem)->isImplicit()) {
966        // Any implicit members are fine.
967      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
968        if (!MemRecord->isAnonymousStructOrUnion() &&
969            MemRecord->getDeclName()) {
970          // This is a nested type declaration.
971          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
972            << (int)Record->isUnion();
973          Invalid = true;
974        }
975      } else {
976        // We have something that isn't a non-static data
977        // member. Complain about it.
978        unsigned DK = diag::err_anonymous_record_bad_member;
979        if (isa<TypeDecl>(*Mem))
980          DK = diag::err_anonymous_record_with_type;
981        else if (isa<FunctionDecl>(*Mem))
982          DK = diag::err_anonymous_record_with_function;
983        else if (isa<VarDecl>(*Mem))
984          DK = diag::err_anonymous_record_with_static;
985        Diag((*Mem)->getLocation(), DK)
986            << (int)Record->isUnion();
987          Invalid = true;
988      }
989    }
990  } else {
991    // FIXME: Check GNU C semantics
992    if (Record->isUnion() && !Owner->isRecord()) {
993      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
994        << (int)getLangOptions().CPlusPlus;
995      Invalid = true;
996    }
997  }
998
999  if (!Record->isUnion() && !Owner->isRecord()) {
1000    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1001      << (int)getLangOptions().CPlusPlus;
1002    Invalid = true;
1003  }
1004
1005  // Create a declaration for this anonymous struct/union.
1006  NamedDecl *Anon = 0;
1007  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1008    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1009                             /*IdentifierInfo=*/0,
1010                             Context.getTypeDeclType(Record),
1011                             /*BitWidth=*/0, /*Mutable=*/false);
1012    Anon->setAccess(AS_public);
1013    if (getLangOptions().CPlusPlus)
1014      FieldCollector->Add(cast<FieldDecl>(Anon));
1015  } else {
1016    VarDecl::StorageClass SC;
1017    switch (DS.getStorageClassSpec()) {
1018    default: assert(0 && "Unknown storage class!");
1019    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1020    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1021    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1022    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1023    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1024    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1025    case DeclSpec::SCS_mutable:
1026      // mutable can only appear on non-static class members, so it's always
1027      // an error here
1028      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1029      Invalid = true;
1030      SC = VarDecl::None;
1031      break;
1032    }
1033
1034    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1035                           /*IdentifierInfo=*/0,
1036                           Context.getTypeDeclType(Record),
1037                           SC, DS.getSourceRange().getBegin());
1038  }
1039  Anon->setImplicit();
1040
1041  // Add the anonymous struct/union object to the current
1042  // context. We'll be referencing this object when we refer to one of
1043  // its members.
1044  Owner->addDecl(Anon);
1045
1046  // Inject the members of the anonymous struct/union into the owning
1047  // context and into the identifier resolver chain for name lookup
1048  // purposes.
1049  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1050    Invalid = true;
1051
1052  // Mark this as an anonymous struct/union type. Note that we do not
1053  // do this until after we have already checked and injected the
1054  // members of this anonymous struct/union type, because otherwise
1055  // the members could be injected twice: once by DeclContext when it
1056  // builds its lookup table, and once by
1057  // InjectAnonymousStructOrUnionMembers.
1058  Record->setAnonymousStructOrUnion(true);
1059
1060  if (Invalid)
1061    Anon->setInvalidDecl();
1062
1063  return Anon;
1064}
1065
1066bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1067                                  bool DirectInit) {
1068  // Get the type before calling CheckSingleAssignmentConstraints(), since
1069  // it can promote the expression.
1070  QualType InitType = Init->getType();
1071
1072  if (getLangOptions().CPlusPlus) {
1073    // FIXME: I dislike this error message. A lot.
1074    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1075      return Diag(Init->getSourceRange().getBegin(),
1076                  diag::err_typecheck_convert_incompatible)
1077        << DeclType << Init->getType() << "initializing"
1078        << Init->getSourceRange();
1079
1080    return false;
1081  }
1082
1083  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1084  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1085                                  InitType, Init, "initializing");
1086}
1087
1088bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1089  const ArrayType *AT = Context.getAsArrayType(DeclT);
1090
1091  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1092    // C99 6.7.8p14. We have an array of character type with unknown size
1093    // being initialized to a string literal.
1094    llvm::APSInt ConstVal(32);
1095    ConstVal = strLiteral->getByteLength() + 1;
1096    // Return a new array type (C99 6.7.8p22).
1097    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1098                                         ArrayType::Normal, 0);
1099  } else {
1100    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1101    // C99 6.7.8p14. We have an array of character type with known size.
1102    // FIXME: Avoid truncation for 64-bit length strings.
1103    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1104      Diag(strLiteral->getSourceRange().getBegin(),
1105           diag::warn_initializer_string_for_char_array_too_long)
1106        << strLiteral->getSourceRange();
1107  }
1108  // Set type from "char *" to "constant array of char".
1109  strLiteral->setType(DeclT);
1110  // For now, we always return false (meaning success).
1111  return false;
1112}
1113
1114StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1115  const ArrayType *AT = Context.getAsArrayType(DeclType);
1116  if (AT && AT->getElementType()->isCharType()) {
1117    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1118  }
1119  return 0;
1120}
1121
1122bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1123                                 SourceLocation InitLoc,
1124                                 DeclarationName InitEntity,
1125                                 bool DirectInit) {
1126  if (DeclType->isDependentType() || Init->isTypeDependent())
1127    return false;
1128
1129  // C++ [dcl.init.ref]p1:
1130  //   A variable declared to be a T&, that is "reference to type T"
1131  //   (8.3.2), shall be initialized by an object, or function, of
1132  //   type T or by an object that can be converted into a T.
1133  if (DeclType->isReferenceType())
1134    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1135
1136  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1137  // of unknown size ("[]") or an object type that is not a variable array type.
1138  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1139    return Diag(InitLoc,  diag::err_variable_object_no_init)
1140      << VAT->getSizeExpr()->getSourceRange();
1141
1142  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1143  if (!InitList) {
1144    // FIXME: Handle wide strings
1145    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1146      return CheckStringLiteralInit(strLiteral, DeclType);
1147
1148    // C++ [dcl.init]p14:
1149    //   -- If the destination type is a (possibly cv-qualified) class
1150    //      type:
1151    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1152      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1153      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1154
1155      //   -- If the initialization is direct-initialization, or if it is
1156      //      copy-initialization where the cv-unqualified version of the
1157      //      source type is the same class as, or a derived class of, the
1158      //      class of the destination, constructors are considered.
1159      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1160          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1161        CXXConstructorDecl *Constructor
1162          = PerformInitializationByConstructor(DeclType, &Init, 1,
1163                                               InitLoc, Init->getSourceRange(),
1164                                               InitEntity,
1165                                               DirectInit? IK_Direct : IK_Copy);
1166        return Constructor == 0;
1167      }
1168
1169      //   -- Otherwise (i.e., for the remaining copy-initialization
1170      //      cases), user-defined conversion sequences that can
1171      //      convert from the source type to the destination type or
1172      //      (when a conversion function is used) to a derived class
1173      //      thereof are enumerated as described in 13.3.1.4, and the
1174      //      best one is chosen through overload resolution
1175      //      (13.3). If the conversion cannot be done or is
1176      //      ambiguous, the initialization is ill-formed. The
1177      //      function selected is called with the initializer
1178      //      expression as its argument; if the function is a
1179      //      constructor, the call initializes a temporary of the
1180      //      destination type.
1181      // FIXME: We're pretending to do copy elision here; return to
1182      // this when we have ASTs for such things.
1183      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1184        return false;
1185
1186      if (InitEntity)
1187        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1188          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1189          << Init->getType() << Init->getSourceRange();
1190      else
1191        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1192          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1193          << Init->getType() << Init->getSourceRange();
1194    }
1195
1196    // C99 6.7.8p16.
1197    if (DeclType->isArrayType())
1198      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1199        << Init->getSourceRange();
1200
1201    return CheckSingleInitializer(Init, DeclType, DirectInit);
1202  } else if (getLangOptions().CPlusPlus) {
1203    // C++ [dcl.init]p14:
1204    //   [...] If the class is an aggregate (8.5.1), and the initializer
1205    //   is a brace-enclosed list, see 8.5.1.
1206    //
1207    // Note: 8.5.1 is handled below; here, we diagnose the case where
1208    // we have an initializer list and a destination type that is not
1209    // an aggregate.
1210    // FIXME: In C++0x, this is yet another form of initialization.
1211    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
1212      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
1213      if (!ClassDecl->isAggregate())
1214        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
1215           << DeclType << Init->getSourceRange();
1216    }
1217  }
1218
1219  bool hadError = CheckInitList(InitList, DeclType);
1220  Init = InitList;
1221  return hadError;
1222}
1223
1224/// GetNameForDeclarator - Determine the full declaration name for the
1225/// given Declarator.
1226DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1227  switch (D.getKind()) {
1228  case Declarator::DK_Abstract:
1229    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1230    return DeclarationName();
1231
1232  case Declarator::DK_Normal:
1233    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1234    return DeclarationName(D.getIdentifier());
1235
1236  case Declarator::DK_Constructor: {
1237    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1238    Ty = Context.getCanonicalType(Ty);
1239    return Context.DeclarationNames.getCXXConstructorName(Ty);
1240  }
1241
1242  case Declarator::DK_Destructor: {
1243    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
1244    Ty = Context.getCanonicalType(Ty);
1245    return Context.DeclarationNames.getCXXDestructorName(Ty);
1246  }
1247
1248  case Declarator::DK_Conversion: {
1249    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1250    Ty = Context.getCanonicalType(Ty);
1251    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1252  }
1253
1254  case Declarator::DK_Operator:
1255    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1256    return Context.DeclarationNames.getCXXOperatorName(
1257                                                D.getOverloadedOperator());
1258  }
1259
1260  assert(false && "Unknown name kind");
1261  return DeclarationName();
1262}
1263
1264/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1265/// functions Declaration and Definition are "nearly" matching. This
1266/// heuristic is used to improve diagnostics in the case where an
1267/// out-of-line member function definition doesn't match any
1268/// declaration within the class.
1269static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1270                                           FunctionDecl *Declaration,
1271                                           FunctionDecl *Definition) {
1272  if (Declaration->param_size() != Definition->param_size())
1273    return false;
1274  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1275    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1276    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1277
1278    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1279    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1280    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1281      return false;
1282  }
1283
1284  return true;
1285}
1286
1287Sema::DeclTy *
1288Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1289                      bool IsFunctionDefinition) {
1290  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1291  DeclarationName Name = GetNameForDeclarator(D);
1292
1293  // All of these full declarators require an identifier.  If it doesn't have
1294  // one, the ParsedFreeStandingDeclSpec action should be used.
1295  if (!Name) {
1296    if (!D.getInvalidType())  // Reject this if we think it is valid.
1297      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1298           diag::err_declarator_need_ident)
1299        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1300    return 0;
1301  }
1302
1303  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1304  // we find one that is.
1305  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1306        (S->getFlags() & Scope::TemplateParamScope) != 0)
1307    S = S->getParent();
1308
1309  DeclContext *DC;
1310  Decl *PrevDecl;
1311  NamedDecl *New;
1312  bool InvalidDecl = false;
1313
1314  // See if this is a redefinition of a variable in the same scope.
1315  if (!D.getCXXScopeSpec().isSet()) {
1316    DC = CurContext;
1317    PrevDecl = LookupDeclInScope(Name, Decl::IDNS_Ordinary, S);
1318  } else { // Something like "int foo::x;"
1319    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1320    PrevDecl = DC ? LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC)
1321                  : LookupDeclInScope(Name, Decl::IDNS_Ordinary, S);
1322
1323    // C++ 7.3.1.2p2:
1324    // Members (including explicit specializations of templates) of a named
1325    // namespace can also be defined outside that namespace by explicit
1326    // qualification of the name being defined, provided that the entity being
1327    // defined was already declared in the namespace and the definition appears
1328    // after the point of declaration in a namespace that encloses the
1329    // declarations namespace.
1330    //
1331    // Note that we only check the context at this point. We don't yet
1332    // have enough information to make sure that PrevDecl is actually
1333    // the declaration we want to match. For example, given:
1334    //
1335    //   class X {
1336    //     void f();
1337    //     void f(float);
1338    //   };
1339    //
1340    //   void X::f(int) { } // ill-formed
1341    //
1342    // In this case, PrevDecl will point to the overload set
1343    // containing the two f's declared in X, but neither of them
1344    // matches.
1345    if (!CurContext->Encloses(DC)) {
1346      // The qualifying scope doesn't enclose the original declaration.
1347      // Emit diagnostic based on current scope.
1348      SourceLocation L = D.getIdentifierLoc();
1349      SourceRange R = D.getCXXScopeSpec().getRange();
1350      if (isa<FunctionDecl>(CurContext)) {
1351        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1352      } else {
1353        Diag(L, diag::err_invalid_declarator_scope)
1354          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1355      }
1356      InvalidDecl = true;
1357    }
1358  }
1359
1360  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1361    // Maybe we will complain about the shadowed template parameter.
1362    InvalidDecl = InvalidDecl
1363      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1364    // Just pretend that we didn't see the previous declaration.
1365    PrevDecl = 0;
1366  }
1367
1368  // In C++, the previous declaration we find might be a tag type
1369  // (class or enum). In this case, the new declaration will hide the
1370  // tag type. Note that this does does not apply if we're declaring a
1371  // typedef (C++ [dcl.typedef]p4).
1372  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1373      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1374    PrevDecl = 0;
1375
1376  QualType R = GetTypeForDeclarator(D, S);
1377  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1378
1379  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1380    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1381                                 InvalidDecl);
1382  } else if (R.getTypePtr()->isFunctionType()) {
1383    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1384                                  IsFunctionDefinition, InvalidDecl);
1385  } else {
1386    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1387                                  InvalidDecl);
1388  }
1389
1390  if (New == 0)
1391    return 0;
1392
1393  // Set the lexical context. If the declarator has a C++ scope specifier, the
1394  // lexical context will be different from the semantic context.
1395  New->setLexicalDeclContext(CurContext);
1396
1397  // If this has an identifier, add it to the scope stack.
1398  if (Name)
1399    PushOnScopeChains(New, S);
1400  // If any semantic error occurred, mark the decl as invalid.
1401  if (D.getInvalidType() || InvalidDecl)
1402    New->setInvalidDecl();
1403
1404  return New;
1405}
1406
1407NamedDecl*
1408Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1409                             QualType R, Decl* LastDeclarator,
1410                             Decl* PrevDecl, bool& InvalidDecl) {
1411  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1412  if (D.getCXXScopeSpec().isSet()) {
1413    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1414      << D.getCXXScopeSpec().getRange();
1415    InvalidDecl = true;
1416    // Pretend we didn't see the scope specifier.
1417    DC = 0;
1418  }
1419
1420  // Check that there are no default arguments (C++ only).
1421  if (getLangOptions().CPlusPlus)
1422    CheckExtraCXXDefaultArguments(D);
1423
1424  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1425  if (!NewTD) return 0;
1426
1427  // Handle attributes prior to checking for duplicates in MergeVarDecl
1428  ProcessDeclAttributes(NewTD, D);
1429  // Merge the decl with the existing one if appropriate. If the decl is
1430  // in an outer scope, it isn't the same thing.
1431  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1432    NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1433    if (NewTD == 0) return 0;
1434  }
1435
1436  if (S->getFnParent() == 0) {
1437    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1438    // then it shall have block scope.
1439    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1440      if (NewTD->getUnderlyingType()->isVariableArrayType())
1441        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1442      else
1443        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1444
1445      InvalidDecl = true;
1446    }
1447  }
1448  return NewTD;
1449}
1450
1451NamedDecl*
1452Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1453                              QualType R, Decl* LastDeclarator,
1454                              Decl* PrevDecl, bool& InvalidDecl) {
1455  DeclarationName Name = GetNameForDeclarator(D);
1456
1457  // Check that there are no default arguments (C++ only).
1458  if (getLangOptions().CPlusPlus)
1459    CheckExtraCXXDefaultArguments(D);
1460
1461  if (R.getTypePtr()->isObjCInterfaceType()) {
1462    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1463      << D.getIdentifier();
1464    InvalidDecl = true;
1465  }
1466
1467  VarDecl *NewVD;
1468  VarDecl::StorageClass SC;
1469  switch (D.getDeclSpec().getStorageClassSpec()) {
1470  default: assert(0 && "Unknown storage class!");
1471  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1472  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1473  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1474  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1475  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1476  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1477  case DeclSpec::SCS_mutable:
1478    // mutable can only appear on non-static class members, so it's always
1479    // an error here
1480    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1481    InvalidDecl = true;
1482    SC = VarDecl::None;
1483    break;
1484  }
1485
1486  IdentifierInfo *II = Name.getAsIdentifierInfo();
1487  if (!II) {
1488    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1489      << Name.getAsString();
1490    return 0;
1491  }
1492
1493  if (DC->isRecord()) {
1494    // This is a static data member for a C++ class.
1495    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1496                                    D.getIdentifierLoc(), II,
1497                                    R);
1498  } else {
1499    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1500    if (S->getFnParent() == 0) {
1501      // C99 6.9p2: The storage-class specifiers auto and register shall not
1502      // appear in the declaration specifiers in an external declaration.
1503      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1504        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1505        InvalidDecl = true;
1506      }
1507    }
1508    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1509                            II, R, SC,
1510                            // FIXME: Move to DeclGroup...
1511                            D.getDeclSpec().getSourceRange().getBegin());
1512    NewVD->setThreadSpecified(ThreadSpecified);
1513  }
1514  NewVD->setNextDeclarator(LastDeclarator);
1515
1516  // Handle attributes prior to checking for duplicates in MergeVarDecl
1517  ProcessDeclAttributes(NewVD, D);
1518
1519  // Handle GNU asm-label extension (encoded as an attribute).
1520  if (Expr *E = (Expr*) D.getAsmLabel()) {
1521    // The parser guarantees this is a string.
1522    StringLiteral *SE = cast<StringLiteral>(E);
1523    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1524                                                SE->getByteLength())));
1525  }
1526
1527  // Emit an error if an address space was applied to decl with local storage.
1528  // This includes arrays of objects with address space qualifiers, but not
1529  // automatic variables that point to other address spaces.
1530  // ISO/IEC TR 18037 S5.1.2
1531  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1532    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1533    InvalidDecl = true;
1534  }
1535  // Merge the decl with the existing one if appropriate. If the decl is
1536  // in an outer scope, it isn't the same thing.
1537  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1538    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1539      // The user tried to define a non-static data member
1540      // out-of-line (C++ [dcl.meaning]p1).
1541      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1542        << D.getCXXScopeSpec().getRange();
1543      NewVD->Destroy(Context);
1544      return 0;
1545    }
1546
1547    NewVD = MergeVarDecl(NewVD, PrevDecl);
1548    if (NewVD == 0) return 0;
1549
1550    if (D.getCXXScopeSpec().isSet()) {
1551      // No previous declaration in the qualifying scope.
1552      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1553        << Name << D.getCXXScopeSpec().getRange();
1554      InvalidDecl = true;
1555    }
1556  }
1557  return NewVD;
1558}
1559
1560NamedDecl*
1561Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1562                              QualType R, Decl *LastDeclarator,
1563                              Decl* PrevDecl, bool IsFunctionDefinition,
1564                              bool& InvalidDecl) {
1565  assert(R.getTypePtr()->isFunctionType());
1566
1567  DeclarationName Name = GetNameForDeclarator(D);
1568  FunctionDecl::StorageClass SC = FunctionDecl::None;
1569  switch (D.getDeclSpec().getStorageClassSpec()) {
1570  default: assert(0 && "Unknown storage class!");
1571  case DeclSpec::SCS_auto:
1572  case DeclSpec::SCS_register:
1573  case DeclSpec::SCS_mutable:
1574    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1575    InvalidDecl = true;
1576    break;
1577  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1578  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1579  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1580  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1581  }
1582
1583  bool isInline = D.getDeclSpec().isInlineSpecified();
1584  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1585  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1586
1587  FunctionDecl *NewFD;
1588  if (D.getKind() == Declarator::DK_Constructor) {
1589    // This is a C++ constructor declaration.
1590    assert(DC->isRecord() &&
1591           "Constructors can only be declared in a member context");
1592
1593    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1594
1595    // Create the new declaration
1596    NewFD = CXXConstructorDecl::Create(Context,
1597                                       cast<CXXRecordDecl>(DC),
1598                                       D.getIdentifierLoc(), Name, R,
1599                                       isExplicit, isInline,
1600                                       /*isImplicitlyDeclared=*/false);
1601
1602    if (InvalidDecl)
1603      NewFD->setInvalidDecl();
1604  } else if (D.getKind() == Declarator::DK_Destructor) {
1605    // This is a C++ destructor declaration.
1606    if (DC->isRecord()) {
1607      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1608
1609      NewFD = CXXDestructorDecl::Create(Context,
1610                                        cast<CXXRecordDecl>(DC),
1611                                        D.getIdentifierLoc(), Name, R,
1612                                        isInline,
1613                                        /*isImplicitlyDeclared=*/false);
1614
1615      if (InvalidDecl)
1616        NewFD->setInvalidDecl();
1617    } else {
1618      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1619
1620      // Create a FunctionDecl to satisfy the function definition parsing
1621      // code path.
1622      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1623                                   Name, R, SC, isInline,
1624                                   // FIXME: Move to DeclGroup...
1625                                   D.getDeclSpec().getSourceRange().getBegin());
1626      InvalidDecl = true;
1627      NewFD->setInvalidDecl();
1628    }
1629  } else if (D.getKind() == Declarator::DK_Conversion) {
1630    if (!DC->isRecord()) {
1631      Diag(D.getIdentifierLoc(),
1632           diag::err_conv_function_not_member);
1633      return 0;
1634    } else {
1635      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1636
1637      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1638                                        D.getIdentifierLoc(), Name, R,
1639                                        isInline, isExplicit);
1640
1641      if (InvalidDecl)
1642        NewFD->setInvalidDecl();
1643    }
1644  } else if (DC->isRecord()) {
1645    // This is a C++ method declaration.
1646    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1647                                  D.getIdentifierLoc(), Name, R,
1648                                  (SC == FunctionDecl::Static), isInline);
1649  } else {
1650    NewFD = FunctionDecl::Create(Context, DC,
1651                                 D.getIdentifierLoc(),
1652                                 Name, R, SC, isInline,
1653                                 // FIXME: Move to DeclGroup...
1654                                 D.getDeclSpec().getSourceRange().getBegin());
1655  }
1656  NewFD->setNextDeclarator(LastDeclarator);
1657
1658  // Set the lexical context. If the declarator has a C++
1659  // scope specifier, the lexical context will be different
1660  // from the semantic context.
1661  NewFD->setLexicalDeclContext(CurContext);
1662
1663  // Handle GNU asm-label extension (encoded as an attribute).
1664  if (Expr *E = (Expr*) D.getAsmLabel()) {
1665    // The parser guarantees this is a string.
1666    StringLiteral *SE = cast<StringLiteral>(E);
1667    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1668                                                SE->getByteLength())));
1669  }
1670
1671  // Copy the parameter declarations from the declarator D to
1672  // the function declaration NewFD, if they are available.
1673  if (D.getNumTypeObjects() > 0) {
1674    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1675
1676    // Create Decl objects for each parameter, adding them to the
1677    // FunctionDecl.
1678    llvm::SmallVector<ParmVarDecl*, 16> Params;
1679
1680    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1681    // function that takes no arguments, not a function that takes a
1682    // single void argument.
1683    // We let through "const void" here because Sema::GetTypeForDeclarator
1684    // already checks for that case.
1685    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1686        FTI.ArgInfo[0].Param &&
1687        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1688      // empty arg list, don't push any params.
1689      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1690
1691      // In C++, the empty parameter-type-list must be spelled "void"; a
1692      // typedef of void is not permitted.
1693      if (getLangOptions().CPlusPlus &&
1694          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1695        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1696      }
1697    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1698      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1699        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1700    }
1701
1702    NewFD->setParams(Context, &Params[0], Params.size());
1703  } else if (R->getAsTypedefType()) {
1704    // When we're declaring a function with a typedef, as in the
1705    // following example, we'll need to synthesize (unnamed)
1706    // parameters for use in the declaration.
1707    //
1708    // @code
1709    // typedef void fn(int);
1710    // fn f;
1711    // @endcode
1712    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1713    if (!FT) {
1714      // This is a typedef of a function with no prototype, so we
1715      // don't need to do anything.
1716    } else if ((FT->getNumArgs() == 0) ||
1717               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1718                FT->getArgType(0)->isVoidType())) {
1719      // This is a zero-argument function. We don't need to do anything.
1720    } else {
1721      // Synthesize a parameter for each argument type.
1722      llvm::SmallVector<ParmVarDecl*, 16> Params;
1723      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1724           ArgType != FT->arg_type_end(); ++ArgType) {
1725        Params.push_back(ParmVarDecl::Create(Context, DC,
1726                                             SourceLocation(), 0,
1727                                             *ArgType, VarDecl::None,
1728                                             0));
1729      }
1730
1731      NewFD->setParams(Context, &Params[0], Params.size());
1732    }
1733  }
1734
1735  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1736    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1737  else if (isa<CXXDestructorDecl>(NewFD)) {
1738    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1739    Record->setUserDeclaredDestructor(true);
1740    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1741    // user-defined destructor.
1742    Record->setPOD(false);
1743  } else if (CXXConversionDecl *Conversion =
1744             dyn_cast<CXXConversionDecl>(NewFD))
1745    ActOnConversionDeclarator(Conversion);
1746
1747  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1748  if (NewFD->isOverloadedOperator() &&
1749      CheckOverloadedOperatorDeclaration(NewFD))
1750    NewFD->setInvalidDecl();
1751
1752  // Merge the decl with the existing one if appropriate. Since C functions
1753  // are in a flat namespace, make sure we consider decls in outer scopes.
1754  if (PrevDecl &&
1755      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1756    bool Redeclaration = false;
1757
1758    // If C++, determine whether NewFD is an overload of PrevDecl or
1759    // a declaration that requires merging. If it's an overload,
1760    // there's no more work to do here; we'll just add the new
1761    // function to the scope.
1762    OverloadedFunctionDecl::function_iterator MatchedDecl;
1763    if (!getLangOptions().CPlusPlus ||
1764        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1765      Decl *OldDecl = PrevDecl;
1766
1767      // If PrevDecl was an overloaded function, extract the
1768      // FunctionDecl that matched.
1769      if (isa<OverloadedFunctionDecl>(PrevDecl))
1770        OldDecl = *MatchedDecl;
1771
1772      // NewFD and PrevDecl represent declarations that need to be
1773      // merged.
1774      NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1775
1776      if (NewFD == 0) return 0;
1777      if (Redeclaration) {
1778        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1779
1780        // An out-of-line member function declaration must also be a
1781        // definition (C++ [dcl.meaning]p1).
1782        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1783            !InvalidDecl) {
1784          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1785            << D.getCXXScopeSpec().getRange();
1786          NewFD->setInvalidDecl();
1787        }
1788      }
1789    }
1790
1791    if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1792      // The user tried to provide an out-of-line definition for a
1793      // member function, but there was no such member function
1794      // declared (C++ [class.mfct]p2). For example:
1795      //
1796      // class X {
1797      //   void f() const;
1798      // };
1799      //
1800      // void X::f() { } // ill-formed
1801      //
1802      // Complain about this problem, and attempt to suggest close
1803      // matches (e.g., those that differ only in cv-qualifiers and
1804      // whether the parameter types are references).
1805      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1806        << cast<CXXRecordDecl>(DC)->getDeclName()
1807        << D.getCXXScopeSpec().getRange();
1808      InvalidDecl = true;
1809
1810      PrevDecl = LookupDeclInContext(Name, Decl::IDNS_Ordinary, DC);
1811      if (!PrevDecl) {
1812        // Nothing to suggest.
1813      } else if (OverloadedFunctionDecl *Ovl
1814                 = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1815        for (OverloadedFunctionDecl::function_iterator
1816               Func = Ovl->function_begin(),
1817               FuncEnd = Ovl->function_end();
1818             Func != FuncEnd; ++Func) {
1819          if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1820            Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1821
1822        }
1823      } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1824        // Suggest this no matter how mismatched it is; it's the only
1825        // thing we have.
1826        unsigned diag;
1827        if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1828          diag = diag::note_member_def_close_match;
1829        else if (Method->getBody())
1830          diag = diag::note_previous_definition;
1831        else
1832          diag = diag::note_previous_declaration;
1833        Diag(Method->getLocation(), diag);
1834      }
1835
1836      PrevDecl = 0;
1837    }
1838  }
1839  // Handle attributes. We need to have merged decls when handling attributes
1840  // (for example to check for conflicts, etc).
1841  ProcessDeclAttributes(NewFD, D);
1842
1843  if (getLangOptions().CPlusPlus) {
1844    // In C++, check default arguments now that we have merged decls.
1845    CheckCXXDefaultArguments(NewFD);
1846
1847    // An out-of-line member function declaration must also be a
1848    // definition (C++ [dcl.meaning]p1).
1849    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1850      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1851        << D.getCXXScopeSpec().getRange();
1852      InvalidDecl = true;
1853    }
1854  }
1855  return NewFD;
1856}
1857
1858void Sema::InitializerElementNotConstant(const Expr *Init) {
1859  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1860    << Init->getSourceRange();
1861}
1862
1863bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1864  switch (Init->getStmtClass()) {
1865  default:
1866    InitializerElementNotConstant(Init);
1867    return true;
1868  case Expr::ParenExprClass: {
1869    const ParenExpr* PE = cast<ParenExpr>(Init);
1870    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1871  }
1872  case Expr::CompoundLiteralExprClass:
1873    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1874  case Expr::DeclRefExprClass:
1875  case Expr::QualifiedDeclRefExprClass: {
1876    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1877    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1878      if (VD->hasGlobalStorage())
1879        return false;
1880      InitializerElementNotConstant(Init);
1881      return true;
1882    }
1883    if (isa<FunctionDecl>(D))
1884      return false;
1885    InitializerElementNotConstant(Init);
1886    return true;
1887  }
1888  case Expr::MemberExprClass: {
1889    const MemberExpr *M = cast<MemberExpr>(Init);
1890    if (M->isArrow())
1891      return CheckAddressConstantExpression(M->getBase());
1892    return CheckAddressConstantExpressionLValue(M->getBase());
1893  }
1894  case Expr::ArraySubscriptExprClass: {
1895    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1896    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1897    return CheckAddressConstantExpression(ASE->getBase()) ||
1898           CheckArithmeticConstantExpression(ASE->getIdx());
1899  }
1900  case Expr::StringLiteralClass:
1901  case Expr::PredefinedExprClass:
1902    return false;
1903  case Expr::UnaryOperatorClass: {
1904    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1905
1906    // C99 6.6p9
1907    if (Exp->getOpcode() == UnaryOperator::Deref)
1908      return CheckAddressConstantExpression(Exp->getSubExpr());
1909
1910    InitializerElementNotConstant(Init);
1911    return true;
1912  }
1913  }
1914}
1915
1916bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1917  switch (Init->getStmtClass()) {
1918  default:
1919    InitializerElementNotConstant(Init);
1920    return true;
1921  case Expr::ParenExprClass:
1922    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1923  case Expr::StringLiteralClass:
1924  case Expr::ObjCStringLiteralClass:
1925    return false;
1926  case Expr::CallExprClass:
1927  case Expr::CXXOperatorCallExprClass:
1928    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1929    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1930           Builtin::BI__builtin___CFStringMakeConstantString)
1931      return false;
1932
1933    InitializerElementNotConstant(Init);
1934    return true;
1935
1936  case Expr::UnaryOperatorClass: {
1937    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1938
1939    // C99 6.6p9
1940    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1941      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1942
1943    if (Exp->getOpcode() == UnaryOperator::Extension)
1944      return CheckAddressConstantExpression(Exp->getSubExpr());
1945
1946    InitializerElementNotConstant(Init);
1947    return true;
1948  }
1949  case Expr::BinaryOperatorClass: {
1950    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1951    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1952
1953    Expr *PExp = Exp->getLHS();
1954    Expr *IExp = Exp->getRHS();
1955    if (IExp->getType()->isPointerType())
1956      std::swap(PExp, IExp);
1957
1958    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1959    return CheckAddressConstantExpression(PExp) ||
1960           CheckArithmeticConstantExpression(IExp);
1961  }
1962  case Expr::ImplicitCastExprClass:
1963  case Expr::CStyleCastExprClass: {
1964    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1965    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1966      // Check for implicit promotion
1967      if (SubExpr->getType()->isFunctionType() ||
1968          SubExpr->getType()->isArrayType())
1969        return CheckAddressConstantExpressionLValue(SubExpr);
1970    }
1971
1972    // Check for pointer->pointer cast
1973    if (SubExpr->getType()->isPointerType())
1974      return CheckAddressConstantExpression(SubExpr);
1975
1976    if (SubExpr->getType()->isIntegralType()) {
1977      // Check for the special-case of a pointer->int->pointer cast;
1978      // this isn't standard, but some code requires it. See
1979      // PR2720 for an example.
1980      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1981        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1982          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1983          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1984          if (IntWidth >= PointerWidth) {
1985            return CheckAddressConstantExpression(SubCast->getSubExpr());
1986          }
1987        }
1988      }
1989    }
1990    if (SubExpr->getType()->isArithmeticType()) {
1991      return CheckArithmeticConstantExpression(SubExpr);
1992    }
1993
1994    InitializerElementNotConstant(Init);
1995    return true;
1996  }
1997  case Expr::ConditionalOperatorClass: {
1998    // FIXME: Should we pedwarn here?
1999    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2000    if (!Exp->getCond()->getType()->isArithmeticType()) {
2001      InitializerElementNotConstant(Init);
2002      return true;
2003    }
2004    if (CheckArithmeticConstantExpression(Exp->getCond()))
2005      return true;
2006    if (Exp->getLHS() &&
2007        CheckAddressConstantExpression(Exp->getLHS()))
2008      return true;
2009    return CheckAddressConstantExpression(Exp->getRHS());
2010  }
2011  case Expr::AddrLabelExprClass:
2012    return false;
2013  }
2014}
2015
2016static const Expr* FindExpressionBaseAddress(const Expr* E);
2017
2018static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2019  switch (E->getStmtClass()) {
2020  default:
2021    return E;
2022  case Expr::ParenExprClass: {
2023    const ParenExpr* PE = cast<ParenExpr>(E);
2024    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2025  }
2026  case Expr::MemberExprClass: {
2027    const MemberExpr *M = cast<MemberExpr>(E);
2028    if (M->isArrow())
2029      return FindExpressionBaseAddress(M->getBase());
2030    return FindExpressionBaseAddressLValue(M->getBase());
2031  }
2032  case Expr::ArraySubscriptExprClass: {
2033    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2034    return FindExpressionBaseAddress(ASE->getBase());
2035  }
2036  case Expr::UnaryOperatorClass: {
2037    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2038
2039    if (Exp->getOpcode() == UnaryOperator::Deref)
2040      return FindExpressionBaseAddress(Exp->getSubExpr());
2041
2042    return E;
2043  }
2044  }
2045}
2046
2047static const Expr* FindExpressionBaseAddress(const Expr* E) {
2048  switch (E->getStmtClass()) {
2049  default:
2050    return E;
2051  case Expr::ParenExprClass: {
2052    const ParenExpr* PE = cast<ParenExpr>(E);
2053    return FindExpressionBaseAddress(PE->getSubExpr());
2054  }
2055  case Expr::UnaryOperatorClass: {
2056    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2057
2058    // C99 6.6p9
2059    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2060      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2061
2062    if (Exp->getOpcode() == UnaryOperator::Extension)
2063      return FindExpressionBaseAddress(Exp->getSubExpr());
2064
2065    return E;
2066  }
2067  case Expr::BinaryOperatorClass: {
2068    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2069
2070    Expr *PExp = Exp->getLHS();
2071    Expr *IExp = Exp->getRHS();
2072    if (IExp->getType()->isPointerType())
2073      std::swap(PExp, IExp);
2074
2075    return FindExpressionBaseAddress(PExp);
2076  }
2077  case Expr::ImplicitCastExprClass: {
2078    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2079
2080    // Check for implicit promotion
2081    if (SubExpr->getType()->isFunctionType() ||
2082        SubExpr->getType()->isArrayType())
2083      return FindExpressionBaseAddressLValue(SubExpr);
2084
2085    // Check for pointer->pointer cast
2086    if (SubExpr->getType()->isPointerType())
2087      return FindExpressionBaseAddress(SubExpr);
2088
2089    // We assume that we have an arithmetic expression here;
2090    // if we don't, we'll figure it out later
2091    return 0;
2092  }
2093  case Expr::CStyleCastExprClass: {
2094    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2095
2096    // Check for pointer->pointer cast
2097    if (SubExpr->getType()->isPointerType())
2098      return FindExpressionBaseAddress(SubExpr);
2099
2100    // We assume that we have an arithmetic expression here;
2101    // if we don't, we'll figure it out later
2102    return 0;
2103  }
2104  }
2105}
2106
2107bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2108  switch (Init->getStmtClass()) {
2109  default:
2110    InitializerElementNotConstant(Init);
2111    return true;
2112  case Expr::ParenExprClass: {
2113    const ParenExpr* PE = cast<ParenExpr>(Init);
2114    return CheckArithmeticConstantExpression(PE->getSubExpr());
2115  }
2116  case Expr::FloatingLiteralClass:
2117  case Expr::IntegerLiteralClass:
2118  case Expr::CharacterLiteralClass:
2119  case Expr::ImaginaryLiteralClass:
2120  case Expr::TypesCompatibleExprClass:
2121  case Expr::CXXBoolLiteralExprClass:
2122    return false;
2123  case Expr::CallExprClass:
2124  case Expr::CXXOperatorCallExprClass: {
2125    const CallExpr *CE = cast<CallExpr>(Init);
2126
2127    // Allow any constant foldable calls to builtins.
2128    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
2129      return false;
2130
2131    InitializerElementNotConstant(Init);
2132    return true;
2133  }
2134  case Expr::DeclRefExprClass:
2135  case Expr::QualifiedDeclRefExprClass: {
2136    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2137    if (isa<EnumConstantDecl>(D))
2138      return false;
2139    InitializerElementNotConstant(Init);
2140    return true;
2141  }
2142  case Expr::CompoundLiteralExprClass:
2143    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2144    // but vectors are allowed to be magic.
2145    if (Init->getType()->isVectorType())
2146      return false;
2147    InitializerElementNotConstant(Init);
2148    return true;
2149  case Expr::UnaryOperatorClass: {
2150    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2151
2152    switch (Exp->getOpcode()) {
2153    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2154    // See C99 6.6p3.
2155    default:
2156      InitializerElementNotConstant(Init);
2157      return true;
2158    case UnaryOperator::OffsetOf:
2159      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2160        return false;
2161      InitializerElementNotConstant(Init);
2162      return true;
2163    case UnaryOperator::Extension:
2164    case UnaryOperator::LNot:
2165    case UnaryOperator::Plus:
2166    case UnaryOperator::Minus:
2167    case UnaryOperator::Not:
2168      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2169    }
2170  }
2171  case Expr::SizeOfAlignOfExprClass: {
2172    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2173    // Special check for void types, which are allowed as an extension
2174    if (Exp->getTypeOfArgument()->isVoidType())
2175      return false;
2176    // alignof always evaluates to a constant.
2177    // FIXME: is sizeof(int[3.0]) a constant expression?
2178    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2179      InitializerElementNotConstant(Init);
2180      return true;
2181    }
2182    return false;
2183  }
2184  case Expr::BinaryOperatorClass: {
2185    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2186
2187    if (Exp->getLHS()->getType()->isArithmeticType() &&
2188        Exp->getRHS()->getType()->isArithmeticType()) {
2189      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2190             CheckArithmeticConstantExpression(Exp->getRHS());
2191    }
2192
2193    if (Exp->getLHS()->getType()->isPointerType() &&
2194        Exp->getRHS()->getType()->isPointerType()) {
2195      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2196      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2197
2198      // Only allow a null (constant integer) base; we could
2199      // allow some additional cases if necessary, but this
2200      // is sufficient to cover offsetof-like constructs.
2201      if (!LHSBase && !RHSBase) {
2202        return CheckAddressConstantExpression(Exp->getLHS()) ||
2203               CheckAddressConstantExpression(Exp->getRHS());
2204      }
2205    }
2206
2207    InitializerElementNotConstant(Init);
2208    return true;
2209  }
2210  case Expr::ImplicitCastExprClass:
2211  case Expr::CStyleCastExprClass: {
2212    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
2213    if (SubExpr->getType()->isArithmeticType())
2214      return CheckArithmeticConstantExpression(SubExpr);
2215
2216    if (SubExpr->getType()->isPointerType()) {
2217      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2218      // If the pointer has a null base, this is an offsetof-like construct
2219      if (!Base)
2220        return CheckAddressConstantExpression(SubExpr);
2221    }
2222
2223    InitializerElementNotConstant(Init);
2224    return true;
2225  }
2226  case Expr::ConditionalOperatorClass: {
2227    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2228
2229    // If GNU extensions are disabled, we require all operands to be arithmetic
2230    // constant expressions.
2231    if (getLangOptions().NoExtensions) {
2232      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2233          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2234             CheckArithmeticConstantExpression(Exp->getRHS());
2235    }
2236
2237    // Otherwise, we have to emulate some of the behavior of fold here.
2238    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2239    // because it can constant fold things away.  To retain compatibility with
2240    // GCC code, we see if we can fold the condition to a constant (which we
2241    // should always be able to do in theory).  If so, we only require the
2242    // specified arm of the conditional to be a constant.  This is a horrible
2243    // hack, but is require by real world code that uses __builtin_constant_p.
2244    Expr::EvalResult EvalResult;
2245    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2246        EvalResult.HasSideEffects) {
2247      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2248      // won't be able to either.  Use it to emit the diagnostic though.
2249      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2250      assert(Res && "Evaluate couldn't evaluate this constant?");
2251      return Res;
2252    }
2253
2254    // Verify that the side following the condition is also a constant.
2255    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2256    if (EvalResult.Val.getInt() == 0)
2257      std::swap(TrueSide, FalseSide);
2258
2259    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2260      return true;
2261
2262    // Okay, the evaluated side evaluates to a constant, so we accept this.
2263    // Check to see if the other side is obviously not a constant.  If so,
2264    // emit a warning that this is a GNU extension.
2265    if (FalseSide && !FalseSide->isEvaluatable(Context))
2266      Diag(Init->getExprLoc(),
2267           diag::ext_typecheck_expression_not_constant_but_accepted)
2268        << FalseSide->getSourceRange();
2269    return false;
2270  }
2271  }
2272}
2273
2274bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2275  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2276    Init = DIE->getInit();
2277
2278  Init = Init->IgnoreParens();
2279
2280  if (Init->isEvaluatable(Context))
2281    return false;
2282
2283  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2284  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2285    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2286
2287  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2288    return CheckForConstantInitializer(e->getInitializer(), DclT);
2289
2290  if (isa<ImplicitValueInitExpr>(Init)) {
2291    // FIXME: In C++, check for non-POD types.
2292    return false;
2293  }
2294
2295  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2296    unsigned numInits = Exp->getNumInits();
2297    for (unsigned i = 0; i < numInits; i++) {
2298      // FIXME: Need to get the type of the declaration for C++,
2299      // because it could be a reference?
2300
2301      if (CheckForConstantInitializer(Exp->getInit(i),
2302                                      Exp->getInit(i)->getType()))
2303        return true;
2304    }
2305    return false;
2306  }
2307
2308  // FIXME: We can probably remove some of this code below, now that
2309  // Expr::Evaluate is doing the heavy lifting for scalars.
2310
2311  if (Init->isNullPointerConstant(Context))
2312    return false;
2313  if (Init->getType()->isArithmeticType()) {
2314    QualType InitTy = Context.getCanonicalType(Init->getType())
2315                             .getUnqualifiedType();
2316    if (InitTy == Context.BoolTy) {
2317      // Special handling for pointers implicitly cast to bool;
2318      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2319      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2320        Expr* SubE = ICE->getSubExpr();
2321        if (SubE->getType()->isPointerType() ||
2322            SubE->getType()->isArrayType() ||
2323            SubE->getType()->isFunctionType()) {
2324          return CheckAddressConstantExpression(Init);
2325        }
2326      }
2327    } else if (InitTy->isIntegralType()) {
2328      Expr* SubE = 0;
2329      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2330        SubE = CE->getSubExpr();
2331      // Special check for pointer cast to int; we allow as an extension
2332      // an address constant cast to an integer if the integer
2333      // is of an appropriate width (this sort of code is apparently used
2334      // in some places).
2335      // FIXME: Add pedwarn?
2336      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2337      if (SubE && (SubE->getType()->isPointerType() ||
2338                   SubE->getType()->isArrayType() ||
2339                   SubE->getType()->isFunctionType())) {
2340        unsigned IntWidth = Context.getTypeSize(Init->getType());
2341        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2342        if (IntWidth >= PointerWidth)
2343          return CheckAddressConstantExpression(Init);
2344      }
2345    }
2346
2347    return CheckArithmeticConstantExpression(Init);
2348  }
2349
2350  if (Init->getType()->isPointerType())
2351    return CheckAddressConstantExpression(Init);
2352
2353  // An array type at the top level that isn't an init-list must
2354  // be a string literal
2355  if (Init->getType()->isArrayType())
2356    return false;
2357
2358  if (Init->getType()->isFunctionType())
2359    return false;
2360
2361  // Allow block exprs at top level.
2362  if (Init->getType()->isBlockPointerType())
2363    return false;
2364
2365  // GCC cast to union extension
2366  // note: the validity of the cast expr is checked by CheckCastTypes()
2367  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2368    QualType T = C->getType();
2369    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2370  }
2371
2372  InitializerElementNotConstant(Init);
2373  return true;
2374}
2375
2376void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2377  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2378}
2379
2380/// AddInitializerToDecl - Adds the initializer Init to the
2381/// declaration dcl. If DirectInit is true, this is C++ direct
2382/// initialization rather than copy initialization.
2383void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2384  Decl *RealDecl = static_cast<Decl *>(dcl);
2385  Expr *Init = static_cast<Expr *>(init.release());
2386  assert(Init && "missing initializer");
2387
2388  // If there is no declaration, there was an error parsing it.  Just ignore
2389  // the initializer.
2390  if (RealDecl == 0) {
2391    delete Init;
2392    return;
2393  }
2394
2395  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2396  if (!VDecl) {
2397    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2398    RealDecl->setInvalidDecl();
2399    return;
2400  }
2401  // Get the decls type and save a reference for later, since
2402  // CheckInitializerTypes may change it.
2403  QualType DclT = VDecl->getType(), SavT = DclT;
2404  if (VDecl->isBlockVarDecl()) {
2405    VarDecl::StorageClass SC = VDecl->getStorageClass();
2406    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2407      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2408      VDecl->setInvalidDecl();
2409    } else if (!VDecl->isInvalidDecl()) {
2410      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2411                                VDecl->getDeclName(), DirectInit))
2412        VDecl->setInvalidDecl();
2413
2414      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2415      if (!getLangOptions().CPlusPlus) {
2416        if (SC == VarDecl::Static) // C99 6.7.8p4.
2417          CheckForConstantInitializer(Init, DclT);
2418      }
2419    }
2420  } else if (VDecl->isFileVarDecl()) {
2421    if (VDecl->getStorageClass() == VarDecl::Extern)
2422      Diag(VDecl->getLocation(), diag::warn_extern_init);
2423    if (!VDecl->isInvalidDecl())
2424      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2425                                VDecl->getDeclName(), DirectInit))
2426        VDecl->setInvalidDecl();
2427
2428    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2429    if (!getLangOptions().CPlusPlus) {
2430      // C99 6.7.8p4. All file scoped initializers need to be constant.
2431      CheckForConstantInitializer(Init, DclT);
2432    }
2433  }
2434  // If the type changed, it means we had an incomplete type that was
2435  // completed by the initializer. For example:
2436  //   int ary[] = { 1, 3, 5 };
2437  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2438  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2439    VDecl->setType(DclT);
2440    Init->setType(DclT);
2441  }
2442
2443  // Attach the initializer to the decl.
2444  VDecl->setInit(Init);
2445  return;
2446}
2447
2448void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2449  Decl *RealDecl = static_cast<Decl *>(dcl);
2450
2451  // If there is no declaration, there was an error parsing it. Just ignore it.
2452  if (RealDecl == 0)
2453    return;
2454
2455  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2456    QualType Type = Var->getType();
2457    // C++ [dcl.init.ref]p3:
2458    //   The initializer can be omitted for a reference only in a
2459    //   parameter declaration (8.3.5), in the declaration of a
2460    //   function return type, in the declaration of a class member
2461    //   within its class declaration (9.2), and where the extern
2462    //   specifier is explicitly used.
2463    if (Type->isReferenceType() &&
2464        Var->getStorageClass() != VarDecl::Extern &&
2465        Var->getStorageClass() != VarDecl::PrivateExtern) {
2466      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2467        << Var->getDeclName()
2468        << SourceRange(Var->getLocation(), Var->getLocation());
2469      Var->setInvalidDecl();
2470      return;
2471    }
2472
2473    // C++ [dcl.init]p9:
2474    //
2475    //   If no initializer is specified for an object, and the object
2476    //   is of (possibly cv-qualified) non-POD class type (or array
2477    //   thereof), the object shall be default-initialized; if the
2478    //   object is of const-qualified type, the underlying class type
2479    //   shall have a user-declared default constructor.
2480    if (getLangOptions().CPlusPlus) {
2481      QualType InitType = Type;
2482      if (const ArrayType *Array = Context.getAsArrayType(Type))
2483        InitType = Array->getElementType();
2484      if (Var->getStorageClass() != VarDecl::Extern &&
2485          Var->getStorageClass() != VarDecl::PrivateExtern &&
2486          InitType->isRecordType()) {
2487        const CXXConstructorDecl *Constructor
2488          = PerformInitializationByConstructor(InitType, 0, 0,
2489                                               Var->getLocation(),
2490                                               SourceRange(Var->getLocation(),
2491                                                           Var->getLocation()),
2492                                               Var->getDeclName(),
2493                                               IK_Default);
2494        if (!Constructor)
2495          Var->setInvalidDecl();
2496      }
2497    }
2498
2499#if 0
2500    // FIXME: Temporarily disabled because we are not properly parsing
2501    // linkage specifications on declarations, e.g.,
2502    //
2503    //   extern "C" const CGPoint CGPointerZero;
2504    //
2505    // C++ [dcl.init]p9:
2506    //
2507    //     If no initializer is specified for an object, and the
2508    //     object is of (possibly cv-qualified) non-POD class type (or
2509    //     array thereof), the object shall be default-initialized; if
2510    //     the object is of const-qualified type, the underlying class
2511    //     type shall have a user-declared default
2512    //     constructor. Otherwise, if no initializer is specified for
2513    //     an object, the object and its subobjects, if any, have an
2514    //     indeterminate initial value; if the object or any of its
2515    //     subobjects are of const-qualified type, the program is
2516    //     ill-formed.
2517    //
2518    // This isn't technically an error in C, so we don't diagnose it.
2519    //
2520    // FIXME: Actually perform the POD/user-defined default
2521    // constructor check.
2522    if (getLangOptions().CPlusPlus &&
2523        Context.getCanonicalType(Type).isConstQualified() &&
2524        Var->getStorageClass() != VarDecl::Extern)
2525      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2526        << Var->getName()
2527        << SourceRange(Var->getLocation(), Var->getLocation());
2528#endif
2529  }
2530}
2531
2532/// The declarators are chained together backwards, reverse the list.
2533Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2534  // Often we have single declarators, handle them quickly.
2535  Decl *GroupDecl = static_cast<Decl*>(group);
2536  if (GroupDecl == 0)
2537    return 0;
2538
2539  Decl *Group = dyn_cast<Decl>(GroupDecl);
2540  Decl *NewGroup = 0;
2541  if (Group->getNextDeclarator() == 0)
2542    NewGroup = Group;
2543  else { // reverse the list.
2544    while (Group) {
2545      Decl *Next = Group->getNextDeclarator();
2546      Group->setNextDeclarator(NewGroup);
2547      NewGroup = Group;
2548      Group = Next;
2549    }
2550  }
2551  // Perform semantic analysis that depends on having fully processed both
2552  // the declarator and initializer.
2553  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2554    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2555    if (!IDecl)
2556      continue;
2557    QualType T = IDecl->getType();
2558
2559    if (T->isVariableArrayType()) {
2560      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2561
2562      // FIXME: This won't give the correct result for
2563      // int a[10][n];
2564      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2565      if (IDecl->isFileVarDecl()) {
2566        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2567          SizeRange;
2568
2569        IDecl->setInvalidDecl();
2570      } else {
2571        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2572        // static storage duration, it shall not have a variable length array.
2573        if (IDecl->getStorageClass() == VarDecl::Static) {
2574          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2575            << SizeRange;
2576          IDecl->setInvalidDecl();
2577        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2578          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2579            << SizeRange;
2580          IDecl->setInvalidDecl();
2581        }
2582      }
2583    } else if (T->isVariablyModifiedType()) {
2584      if (IDecl->isFileVarDecl()) {
2585        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2586        IDecl->setInvalidDecl();
2587      } else {
2588        if (IDecl->getStorageClass() == VarDecl::Extern) {
2589          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2590          IDecl->setInvalidDecl();
2591        }
2592      }
2593    }
2594
2595    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2596    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2597    if (IDecl->isBlockVarDecl() &&
2598        IDecl->getStorageClass() != VarDecl::Extern) {
2599      if (!IDecl->isInvalidDecl() &&
2600          DiagnoseIncompleteType(IDecl->getLocation(), T,
2601                                 diag::err_typecheck_decl_incomplete_type))
2602        IDecl->setInvalidDecl();
2603    }
2604    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2605    // object that has file scope without an initializer, and without a
2606    // storage-class specifier or with the storage-class specifier "static",
2607    // constitutes a tentative definition. Note: A tentative definition with
2608    // external linkage is valid (C99 6.2.2p5).
2609    if (isTentativeDefinition(IDecl)) {
2610      if (T->isIncompleteArrayType()) {
2611        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2612        // array to be completed. Don't issue a diagnostic.
2613      } else if (!IDecl->isInvalidDecl() &&
2614                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2615                                        diag::err_typecheck_decl_incomplete_type))
2616        // C99 6.9.2p3: If the declaration of an identifier for an object is
2617        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2618        // declared type shall not be an incomplete type.
2619        IDecl->setInvalidDecl();
2620    }
2621    if (IDecl->isFileVarDecl())
2622      CheckForFileScopedRedefinitions(S, IDecl);
2623  }
2624  return NewGroup;
2625}
2626
2627/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2628/// to introduce parameters into function prototype scope.
2629Sema::DeclTy *
2630Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2631  const DeclSpec &DS = D.getDeclSpec();
2632
2633  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2634  VarDecl::StorageClass StorageClass = VarDecl::None;
2635  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2636    StorageClass = VarDecl::Register;
2637  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2638    Diag(DS.getStorageClassSpecLoc(),
2639         diag::err_invalid_storage_class_in_func_decl);
2640    D.getMutableDeclSpec().ClearStorageClassSpecs();
2641  }
2642  if (DS.isThreadSpecified()) {
2643    Diag(DS.getThreadSpecLoc(),
2644         diag::err_invalid_storage_class_in_func_decl);
2645    D.getMutableDeclSpec().ClearStorageClassSpecs();
2646  }
2647
2648  // Check that there are no default arguments inside the type of this
2649  // parameter (C++ only).
2650  if (getLangOptions().CPlusPlus)
2651    CheckExtraCXXDefaultArguments(D);
2652
2653  // In this context, we *do not* check D.getInvalidType(). If the declarator
2654  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2655  // though it will not reflect the user specified type.
2656  QualType parmDeclType = GetTypeForDeclarator(D, S);
2657
2658  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2659
2660  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2661  // Can this happen for params?  We already checked that they don't conflict
2662  // among each other.  Here they can only shadow globals, which is ok.
2663  IdentifierInfo *II = D.getIdentifier();
2664  if (II) {
2665    if (Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Ordinary, S)) {
2666      if (PrevDecl->isTemplateParameter()) {
2667        // Maybe we will complain about the shadowed template parameter.
2668        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2669        // Just pretend that we didn't see the previous declaration.
2670        PrevDecl = 0;
2671      } else if (S->isDeclScope(PrevDecl)) {
2672        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2673
2674        // Recover by removing the name
2675        II = 0;
2676        D.SetIdentifier(0, D.getIdentifierLoc());
2677      }
2678    }
2679  }
2680
2681  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2682  // Doing the promotion here has a win and a loss. The win is the type for
2683  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2684  // code generator). The loss is the orginal type isn't preserved. For example:
2685  //
2686  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2687  //    int blockvardecl[5];
2688  //    sizeof(parmvardecl);  // size == 4
2689  //    sizeof(blockvardecl); // size == 20
2690  // }
2691  //
2692  // For expressions, all implicit conversions are captured using the
2693  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2694  //
2695  // FIXME: If a source translation tool needs to see the original type, then
2696  // we need to consider storing both types (in ParmVarDecl)...
2697  //
2698  if (parmDeclType->isArrayType()) {
2699    // int x[restrict 4] ->  int *restrict
2700    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2701  } else if (parmDeclType->isFunctionType())
2702    parmDeclType = Context.getPointerType(parmDeclType);
2703
2704  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2705                                         D.getIdentifierLoc(), II,
2706                                         parmDeclType, StorageClass,
2707                                         0);
2708
2709  if (D.getInvalidType())
2710    New->setInvalidDecl();
2711
2712  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2713  if (D.getCXXScopeSpec().isSet()) {
2714    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2715      << D.getCXXScopeSpec().getRange();
2716    New->setInvalidDecl();
2717  }
2718
2719  // Add the parameter declaration into this scope.
2720  S->AddDecl(New);
2721  if (II)
2722    IdResolver.AddDecl(New);
2723
2724  ProcessDeclAttributes(New, D);
2725  return New;
2726
2727}
2728
2729void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2730  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2731         "Not a function declarator!");
2732  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2733
2734  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2735  // for a K&R function.
2736  if (!FTI.hasPrototype) {
2737    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2738      if (FTI.ArgInfo[i].Param == 0) {
2739        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2740          << FTI.ArgInfo[i].Ident;
2741        // Implicitly declare the argument as type 'int' for lack of a better
2742        // type.
2743        DeclSpec DS;
2744        const char* PrevSpec; // unused
2745        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2746                           PrevSpec);
2747        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2748        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2749        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2750      }
2751    }
2752  }
2753}
2754
2755Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2756  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2757  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2758         "Not a function declarator!");
2759  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2760
2761  if (FTI.hasPrototype) {
2762    // FIXME: Diagnose arguments without names in C.
2763  }
2764
2765  Scope *ParentScope = FnBodyScope->getParent();
2766
2767  return ActOnStartOfFunctionDef(FnBodyScope,
2768                                 ActOnDeclarator(ParentScope, D, 0,
2769                                                 /*IsFunctionDefinition=*/true));
2770}
2771
2772Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2773  Decl *decl = static_cast<Decl*>(D);
2774  FunctionDecl *FD = cast<FunctionDecl>(decl);
2775
2776  // See if this is a redefinition.
2777  const FunctionDecl *Definition;
2778  if (FD->getBody(Definition)) {
2779    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2780    Diag(Definition->getLocation(), diag::note_previous_definition);
2781  }
2782
2783  PushDeclContext(FnBodyScope, FD);
2784
2785  // Check the validity of our function parameters
2786  CheckParmsForFunctionDef(FD);
2787
2788  // Introduce our parameters into the function scope
2789  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2790    ParmVarDecl *Param = FD->getParamDecl(p);
2791    Param->setOwningFunction(FD);
2792
2793    // If this has an identifier, add it to the scope stack.
2794    if (Param->getIdentifier())
2795      PushOnScopeChains(Param, FnBodyScope);
2796  }
2797
2798  // Checking attributes of current function definition
2799  // dllimport attribute.
2800  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2801    // dllimport attribute cannot be applied to definition.
2802    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2803      Diag(FD->getLocation(),
2804           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2805        << "dllimport";
2806      FD->setInvalidDecl();
2807      return FD;
2808    } else {
2809      // If a symbol previously declared dllimport is later defined, the
2810      // attribute is ignored in subsequent references, and a warning is
2811      // emitted.
2812      Diag(FD->getLocation(),
2813           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2814        << FD->getNameAsCString() << "dllimport";
2815    }
2816  }
2817  return FD;
2818}
2819
2820Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2821  Decl *dcl = static_cast<Decl *>(D);
2822  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2823  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2824    FD->setBody(Body);
2825    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2826  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2827    MD->setBody((Stmt*)Body);
2828  } else
2829    return 0;
2830  PopDeclContext();
2831  // Verify and clean out per-function state.
2832
2833  // Check goto/label use.
2834  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2835       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2836    // Verify that we have no forward references left.  If so, there was a goto
2837    // or address of a label taken, but no definition of it.  Label fwd
2838    // definitions are indicated with a null substmt.
2839    if (I->second->getSubStmt() == 0) {
2840      LabelStmt *L = I->second;
2841      // Emit error.
2842      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2843
2844      // At this point, we have gotos that use the bogus label.  Stitch it into
2845      // the function body so that they aren't leaked and that the AST is well
2846      // formed.
2847      if (Body) {
2848        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2849        cast<CompoundStmt>(Body)->push_back(L);
2850      } else {
2851        // The whole function wasn't parsed correctly, just delete this.
2852        delete L;
2853      }
2854    }
2855  }
2856  LabelMap.clear();
2857
2858  return D;
2859}
2860
2861/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2862/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2863NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2864                                          IdentifierInfo &II, Scope *S) {
2865  // Extension in C99.  Legal in C90, but warn about it.
2866  if (getLangOptions().C99)
2867    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2868  else
2869    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2870
2871  // FIXME: handle stuff like:
2872  // void foo() { extern float X(); }
2873  // void bar() { X(); }  <-- implicit decl for X in another scope.
2874
2875  // Set a Declarator for the implicit definition: int foo();
2876  const char *Dummy;
2877  DeclSpec DS;
2878  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2879  Error = Error; // Silence warning.
2880  assert(!Error && "Error setting up implicit decl!");
2881  Declarator D(DS, Declarator::BlockContext);
2882  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D));
2883  D.SetIdentifier(&II, Loc);
2884
2885  // Insert this function into translation-unit scope.
2886
2887  DeclContext *PrevDC = CurContext;
2888  CurContext = Context.getTranslationUnitDecl();
2889
2890  FunctionDecl *FD =
2891    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2892  FD->setImplicit();
2893
2894  CurContext = PrevDC;
2895
2896  return FD;
2897}
2898
2899
2900TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2901                                    Decl *LastDeclarator) {
2902  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2903  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2904
2905  // Scope manipulation handled by caller.
2906  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2907                                           D.getIdentifierLoc(),
2908                                           D.getIdentifier(),
2909                                           T);
2910  NewTD->setNextDeclarator(LastDeclarator);
2911  if (D.getInvalidType())
2912    NewTD->setInvalidDecl();
2913  return NewTD;
2914}
2915
2916/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2917/// former case, Name will be non-null.  In the later case, Name will be null.
2918/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
2919/// reference/declaration/definition of a tag.
2920Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
2921                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2922                             IdentifierInfo *Name, SourceLocation NameLoc,
2923                             AttributeList *Attr,
2924                             MultiTemplateParamsArg TemplateParameterLists) {
2925  // If this is not a definition, it must have a name.
2926  assert((Name != 0 || TK == TK_Definition) &&
2927         "Nameless record must be a definition!");
2928
2929  TagDecl::TagKind Kind;
2930  switch (TagSpec) {
2931  default: assert(0 && "Unknown tag type!");
2932  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2933  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2934  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2935  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2936  }
2937
2938  DeclContext *SearchDC = CurContext;
2939  DeclContext *DC = CurContext;
2940  DeclContext *LexicalContext = CurContext;
2941  Decl *PrevDecl = 0;
2942
2943  bool Invalid = false;
2944
2945  if (Name && SS.isNotEmpty()) {
2946    // We have a nested-name tag ('struct foo::bar').
2947
2948    // Check for invalid 'foo::'.
2949    if (SS.isInvalid()) {
2950      Name = 0;
2951      goto CreateNewDecl;
2952    }
2953
2954    DC = static_cast<DeclContext*>(SS.getScopeRep());
2955    // Look-up name inside 'foo::'.
2956    PrevDecl = dyn_cast_or_null<TagDecl>(
2957                 LookupDeclInContext(Name, Decl::IDNS_Tag, DC).getAsDecl());
2958
2959    // A tag 'foo::bar' must already exist.
2960    if (PrevDecl == 0) {
2961      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2962      Name = 0;
2963      goto CreateNewDecl;
2964    }
2965  } else if (Name) {
2966    // If this is a named struct, check to see if there was a previous forward
2967    // declaration or definition.
2968    Decl *D = LookupDeclInScope(Name, Decl::IDNS_Tag, S);
2969    PrevDecl = dyn_cast_or_null<NamedDecl>(D);
2970
2971    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
2972      // FIXME: This makes sure that we ignore the contexts associated
2973      // with C structs, unions, and enums when looking for a matching
2974      // tag declaration or definition. See the similar lookup tweak
2975      // in Sema::LookupDecl; is there a better way to deal with this?
2976      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
2977        SearchDC = SearchDC->getParent();
2978    }
2979  }
2980
2981  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2982    // Maybe we will complain about the shadowed template parameter.
2983    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2984    // Just pretend that we didn't see the previous declaration.
2985    PrevDecl = 0;
2986  }
2987
2988  if (PrevDecl) {
2989    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2990      // If this is a use of a previous tag, or if the tag is already declared
2991      // in the same scope (so that the definition/declaration completes or
2992      // rementions the tag), reuse the decl.
2993      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
2994        // Make sure that this wasn't declared as an enum and now used as a
2995        // struct or something similar.
2996        if (PrevTagDecl->getTagKind() != Kind) {
2997          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2998          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2999          // Recover by making this an anonymous redefinition.
3000          Name = 0;
3001          PrevDecl = 0;
3002          Invalid = true;
3003        } else {
3004          // If this is a use, just return the declaration we found.
3005
3006          // FIXME: In the future, return a variant or some other clue
3007          // for the consumer of this Decl to know it doesn't own it.
3008          // For our current ASTs this shouldn't be a problem, but will
3009          // need to be changed with DeclGroups.
3010          if (TK == TK_Reference)
3011            return PrevDecl;
3012
3013          // Diagnose attempts to redefine a tag.
3014          if (TK == TK_Definition) {
3015            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3016              Diag(NameLoc, diag::err_redefinition) << Name;
3017              Diag(Def->getLocation(), diag::note_previous_definition);
3018              // If this is a redefinition, recover by making this
3019              // struct be anonymous, which will make any later
3020              // references get the previous definition.
3021              Name = 0;
3022              PrevDecl = 0;
3023              Invalid = true;
3024            } else {
3025              // If the type is currently being defined, complain
3026              // about a nested redefinition.
3027              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3028              if (Tag->isBeingDefined()) {
3029                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3030                Diag(PrevTagDecl->getLocation(),
3031                     diag::note_previous_definition);
3032                Name = 0;
3033                PrevDecl = 0;
3034                Invalid = true;
3035              }
3036            }
3037
3038            // Okay, this is definition of a previously declared or referenced
3039            // tag PrevDecl. We're going to create a new Decl for it.
3040          }
3041        }
3042        // If we get here we have (another) forward declaration or we
3043        // have a definition.  Just create a new decl.
3044      } else {
3045        // If we get here, this is a definition of a new tag type in a nested
3046        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3047        // new decl/type.  We set PrevDecl to NULL so that the entities
3048        // have distinct types.
3049        PrevDecl = 0;
3050      }
3051      // If we get here, we're going to create a new Decl. If PrevDecl
3052      // is non-NULL, it's a definition of the tag declared by
3053      // PrevDecl. If it's NULL, we have a new definition.
3054    } else {
3055      // PrevDecl is a namespace, template, or anything else
3056      // that lives in the IDNS_Tag identifier namespace.
3057      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3058        // The tag name clashes with a namespace name, issue an error and
3059        // recover by making this tag be anonymous.
3060        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3061        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3062        Name = 0;
3063        PrevDecl = 0;
3064        Invalid = true;
3065      } else {
3066        // The existing declaration isn't relevant to us; we're in a
3067        // new scope, so clear out the previous declaration.
3068        PrevDecl = 0;
3069      }
3070    }
3071  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3072             (Kind != TagDecl::TK_enum))  {
3073    // C++ [basic.scope.pdecl]p5:
3074    //   -- for an elaborated-type-specifier of the form
3075    //
3076    //          class-key identifier
3077    //
3078    //      if the elaborated-type-specifier is used in the
3079    //      decl-specifier-seq or parameter-declaration-clause of a
3080    //      function defined in namespace scope, the identifier is
3081    //      declared as a class-name in the namespace that contains
3082    //      the declaration; otherwise, except as a friend
3083    //      declaration, the identifier is declared in the smallest
3084    //      non-class, non-function-prototype scope that contains the
3085    //      declaration.
3086    //
3087    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3088    // C structs and unions.
3089
3090    // Find the context where we'll be declaring the tag.
3091    // FIXME: We would like to maintain the current DeclContext as the
3092    // lexical context,
3093    while (DC->isRecord())
3094      DC = DC->getParent();
3095    LexicalContext = DC;
3096
3097    // Find the scope where we'll be declaring the tag.
3098    while (S->isClassScope() ||
3099           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3100           ((S->getFlags() & Scope::DeclScope) == 0) ||
3101           (S->getEntity() &&
3102            ((DeclContext *)S->getEntity())->isTransparentContext()))
3103      S = S->getParent();
3104  }
3105
3106CreateNewDecl:
3107
3108  // If there is an identifier, use the location of the identifier as the
3109  // location of the decl, otherwise use the location of the struct/union
3110  // keyword.
3111  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3112
3113  // Otherwise, create a new declaration. If there is a previous
3114  // declaration of the same entity, the two will be linked via
3115  // PrevDecl.
3116  TagDecl *New;
3117
3118  if (Kind == TagDecl::TK_enum) {
3119    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3120    // enum X { A, B, C } D;    D should chain to X.
3121    New = EnumDecl::Create(Context, DC, Loc, Name,
3122                           cast_or_null<EnumDecl>(PrevDecl));
3123    // If this is an undefined enum, warn.
3124    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3125  } else {
3126    // struct/union/class
3127
3128    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3129    // struct X { int A; } D;    D should chain to X.
3130    if (getLangOptions().CPlusPlus)
3131      // FIXME: Look for a way to use RecordDecl for simple structs.
3132      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
3133                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3134    else
3135      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
3136                               cast_or_null<RecordDecl>(PrevDecl));
3137  }
3138
3139  if (Kind != TagDecl::TK_enum) {
3140    // Handle #pragma pack: if the #pragma pack stack has non-default
3141    // alignment, make up a packed attribute for this decl. These
3142    // attributes are checked when the ASTContext lays out the
3143    // structure.
3144    //
3145    // It is important for implementing the correct semantics that this
3146    // happen here (in act on tag decl). The #pragma pack stack is
3147    // maintained as a result of parser callbacks which can occur at
3148    // many points during the parsing of a struct declaration (because
3149    // the #pragma tokens are effectively skipped over during the
3150    // parsing of the struct).
3151    if (unsigned Alignment = PackContext.getAlignment())
3152      New->addAttr(new PackedAttr(Alignment * 8));
3153  }
3154
3155  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3156    // C++ [dcl.typedef]p3:
3157    //   [...] Similarly, in a given scope, a class or enumeration
3158    //   shall not be declared with the same name as a typedef-name
3159    //   that is declared in that scope and refers to a type other
3160    //   than the class or enumeration itself.
3161    LookupResult Lookup = LookupName(S, Name,
3162                                     LookupCriteria(LookupCriteria::Ordinary,
3163                                                    true, true));
3164    TypedefDecl *PrevTypedef = 0;
3165    if (Lookup.getKind() == LookupResult::Found)
3166      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3167
3168    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3169        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3170          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3171      Diag(Loc, diag::err_tag_definition_of_typedef)
3172        << Context.getTypeDeclType(New)
3173        << PrevTypedef->getUnderlyingType();
3174      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3175      Invalid = true;
3176    }
3177  }
3178
3179  if (Invalid)
3180    New->setInvalidDecl();
3181
3182  if (Attr)
3183    ProcessDeclAttributeList(New, Attr);
3184
3185  // If we're declaring or defining a tag in function prototype scope
3186  // in C, note that this type can only be used within the function.
3187  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3188    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3189
3190  // Set the lexical context. If the tag has a C++ scope specifier, the
3191  // lexical context will be different from the semantic context.
3192  New->setLexicalDeclContext(LexicalContext);
3193
3194  if (TK == TK_Definition)
3195    New->startDefinition();
3196
3197  // If this has an identifier, add it to the scope stack.
3198  if (Name) {
3199    S = getNonFieldDeclScope(S);
3200
3201    // Add it to the decl chain.
3202    if (LexicalContext != CurContext) {
3203      // FIXME: PushOnScopeChains should not rely on CurContext!
3204      DeclContext *OldContext = CurContext;
3205      CurContext = LexicalContext;
3206      PushOnScopeChains(New, S);
3207      CurContext = OldContext;
3208    } else
3209      PushOnScopeChains(New, S);
3210  } else {
3211    LexicalContext->addDecl(New);
3212  }
3213
3214  return New;
3215}
3216
3217void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3218  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3219
3220  // Enter the tag context.
3221  PushDeclContext(S, Tag);
3222
3223  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3224    FieldCollector->StartClass();
3225
3226    if (Record->getIdentifier()) {
3227      // C++ [class]p2:
3228      //   [...] The class-name is also inserted into the scope of the
3229      //   class itself; this is known as the injected-class-name. For
3230      //   purposes of access checking, the injected-class-name is treated
3231      //   as if it were a public member name.
3232      RecordDecl *InjectedClassName
3233        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3234                                CurContext, Record->getLocation(),
3235                                Record->getIdentifier(), Record);
3236      InjectedClassName->setImplicit();
3237      PushOnScopeChains(InjectedClassName, S);
3238    }
3239  }
3240}
3241
3242void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3243  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3244
3245  if (isa<CXXRecordDecl>(Tag))
3246    FieldCollector->FinishClass();
3247
3248  // Exit this scope of this tag's definition.
3249  PopDeclContext();
3250
3251  // Notify the consumer that we've defined a tag.
3252  Consumer.HandleTagDeclDefinition(Tag);
3253}
3254
3255/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3256/// types into constant array types in certain situations which would otherwise
3257/// be errors (for GCC compatibility).
3258static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3259                                                    ASTContext &Context) {
3260  // This method tries to turn a variable array into a constant
3261  // array even when the size isn't an ICE.  This is necessary
3262  // for compatibility with code that depends on gcc's buggy
3263  // constant expression folding, like struct {char x[(int)(char*)2];}
3264  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3265  if (!VLATy) return QualType();
3266
3267  Expr::EvalResult EvalResult;
3268  if (!VLATy->getSizeExpr() ||
3269      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3270    return QualType();
3271
3272  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3273  llvm::APSInt &Res = EvalResult.Val.getInt();
3274  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3275    return Context.getConstantArrayType(VLATy->getElementType(),
3276                                        Res, ArrayType::Normal, 0);
3277  return QualType();
3278}
3279
3280bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3281                          QualType FieldTy, const Expr *BitWidth) {
3282  // FIXME: 6.7.2.1p4 - verify the field type.
3283
3284  llvm::APSInt Value;
3285  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3286    return true;
3287
3288  // Zero-width bitfield is ok for anonymous field.
3289  if (Value == 0 && FieldName)
3290    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3291
3292  if (Value.isNegative())
3293    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3294
3295  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3296  // FIXME: We won't need the 0 size once we check that the field type is valid.
3297  if (TypeSize && Value.getZExtValue() > TypeSize)
3298    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3299       << FieldName << (unsigned)TypeSize;
3300
3301  return false;
3302}
3303
3304/// ActOnField - Each field of a struct/union/class is passed into this in order
3305/// to create a FieldDecl object for it.
3306Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3307                               SourceLocation DeclStart,
3308                               Declarator &D, ExprTy *BitfieldWidth) {
3309  IdentifierInfo *II = D.getIdentifier();
3310  Expr *BitWidth = (Expr*)BitfieldWidth;
3311  SourceLocation Loc = DeclStart;
3312  RecordDecl *Record = (RecordDecl *)TagD;
3313  if (II) Loc = D.getIdentifierLoc();
3314
3315  // FIXME: Unnamed fields can be handled in various different ways, for
3316  // example, unnamed unions inject all members into the struct namespace!
3317
3318  QualType T = GetTypeForDeclarator(D, S);
3319  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3320  bool InvalidDecl = false;
3321
3322  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3323  // than a variably modified type.
3324  if (T->isVariablyModifiedType()) {
3325    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3326    if (!FixedTy.isNull()) {
3327      Diag(Loc, diag::warn_illegal_constant_array_size);
3328      T = FixedTy;
3329    } else {
3330      Diag(Loc, diag::err_typecheck_field_variable_size);
3331      T = Context.IntTy;
3332      InvalidDecl = true;
3333    }
3334  }
3335
3336  if (BitWidth) {
3337    if (VerifyBitField(Loc, II, T, BitWidth))
3338      InvalidDecl = true;
3339  } else {
3340    // Not a bitfield.
3341
3342    // validate II.
3343
3344  }
3345
3346  // FIXME: Chain fielddecls together.
3347  FieldDecl *NewFD;
3348
3349  NewFD = FieldDecl::Create(Context, Record,
3350                            Loc, II, T, BitWidth,
3351                            D.getDeclSpec().getStorageClassSpec() ==
3352                              DeclSpec::SCS_mutable);
3353
3354  if (II) {
3355    Decl *PrevDecl
3356      = LookupDeclInScope(II, Decl::IDNS_Member, S, false);
3357    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3358        && !isa<TagDecl>(PrevDecl)) {
3359      Diag(Loc, diag::err_duplicate_member) << II;
3360      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3361      NewFD->setInvalidDecl();
3362      Record->setInvalidDecl();
3363    }
3364  }
3365
3366  if (getLangOptions().CPlusPlus) {
3367    CheckExtraCXXDefaultArguments(D);
3368    if (!T->isPODType())
3369      cast<CXXRecordDecl>(Record)->setPOD(false);
3370  }
3371
3372  ProcessDeclAttributes(NewFD, D);
3373
3374  if (D.getInvalidType() || InvalidDecl)
3375    NewFD->setInvalidDecl();
3376
3377  if (II) {
3378    PushOnScopeChains(NewFD, S);
3379  } else
3380    Record->addDecl(NewFD);
3381
3382  return NewFD;
3383}
3384
3385/// TranslateIvarVisibility - Translate visibility from a token ID to an
3386///  AST enum value.
3387static ObjCIvarDecl::AccessControl
3388TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3389  switch (ivarVisibility) {
3390  default: assert(0 && "Unknown visitibility kind");
3391  case tok::objc_private: return ObjCIvarDecl::Private;
3392  case tok::objc_public: return ObjCIvarDecl::Public;
3393  case tok::objc_protected: return ObjCIvarDecl::Protected;
3394  case tok::objc_package: return ObjCIvarDecl::Package;
3395  }
3396}
3397
3398/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3399/// in order to create an IvarDecl object for it.
3400Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3401                              SourceLocation DeclStart,
3402                              Declarator &D, ExprTy *BitfieldWidth,
3403                              tok::ObjCKeywordKind Visibility) {
3404
3405  IdentifierInfo *II = D.getIdentifier();
3406  Expr *BitWidth = (Expr*)BitfieldWidth;
3407  SourceLocation Loc = DeclStart;
3408  if (II) Loc = D.getIdentifierLoc();
3409
3410  // FIXME: Unnamed fields can be handled in various different ways, for
3411  // example, unnamed unions inject all members into the struct namespace!
3412
3413  QualType T = GetTypeForDeclarator(D, S);
3414  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3415  bool InvalidDecl = false;
3416
3417  if (BitWidth) {
3418    // TODO: Validate.
3419    //printf("WARNING: BITFIELDS IGNORED!\n");
3420
3421    // 6.7.2.1p3
3422    // 6.7.2.1p4
3423
3424  } else {
3425    // Not a bitfield.
3426
3427    // validate II.
3428
3429  }
3430
3431  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3432  // than a variably modified type.
3433  if (T->isVariablyModifiedType()) {
3434    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3435    InvalidDecl = true;
3436  }
3437
3438  // Get the visibility (access control) for this ivar.
3439  ObjCIvarDecl::AccessControl ac =
3440    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3441                                        : ObjCIvarDecl::None;
3442
3443  // Construct the decl.
3444  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3445                                             (Expr *)BitfieldWidth);
3446
3447  if (II) {
3448    Decl *PrevDecl = LookupDeclInScope(II, Decl::IDNS_Member, S, false);
3449    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3450        && !isa<TagDecl>(PrevDecl)) {
3451      Diag(Loc, diag::err_duplicate_member) << II;
3452      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3453      NewID->setInvalidDecl();
3454    }
3455  }
3456
3457  // Process attributes attached to the ivar.
3458  ProcessDeclAttributes(NewID, D);
3459
3460  if (D.getInvalidType() || InvalidDecl)
3461    NewID->setInvalidDecl();
3462
3463  if (II) {
3464    // FIXME: When interfaces are DeclContexts, we'll need to add
3465    // these to the interface.
3466    S->AddDecl(NewID);
3467    IdResolver.AddDecl(NewID);
3468  }
3469
3470  return NewID;
3471}
3472
3473void Sema::ActOnFields(Scope* S,
3474                       SourceLocation RecLoc, DeclTy *RecDecl,
3475                       DeclTy **Fields, unsigned NumFields,
3476                       SourceLocation LBrac, SourceLocation RBrac,
3477                       AttributeList *Attr) {
3478  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3479  assert(EnclosingDecl && "missing record or interface decl");
3480  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3481
3482  // Verify that all the fields are okay.
3483  unsigned NumNamedMembers = 0;
3484  llvm::SmallVector<FieldDecl*, 32> RecFields;
3485
3486  for (unsigned i = 0; i != NumFields; ++i) {
3487    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3488    assert(FD && "missing field decl");
3489
3490    // Get the type for the field.
3491    Type *FDTy = FD->getType().getTypePtr();
3492
3493    if (!FD->isAnonymousStructOrUnion()) {
3494      // Remember all fields written by the user.
3495      RecFields.push_back(FD);
3496    }
3497
3498    // C99 6.7.2.1p2 - A field may not be a function type.
3499    if (FDTy->isFunctionType()) {
3500      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3501        << FD->getDeclName();
3502      FD->setInvalidDecl();
3503      EnclosingDecl->setInvalidDecl();
3504      continue;
3505    }
3506    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3507    if (FDTy->isIncompleteType()) {
3508      if (!Record) {  // Incomplete ivar type is always an error.
3509        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3510                               diag::err_field_incomplete);
3511        FD->setInvalidDecl();
3512        EnclosingDecl->setInvalidDecl();
3513        continue;
3514      }
3515      if (i != NumFields-1 ||                   // ... that the last member ...
3516          !Record->isStruct() ||  // ... of a structure ...
3517          !FDTy->isArrayType()) {         //... may have incomplete array type.
3518        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3519                               diag::err_field_incomplete);
3520        FD->setInvalidDecl();
3521        EnclosingDecl->setInvalidDecl();
3522        continue;
3523      }
3524      if (NumNamedMembers < 1) {  //... must have more than named member ...
3525        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3526          << FD->getDeclName();
3527        FD->setInvalidDecl();
3528        EnclosingDecl->setInvalidDecl();
3529        continue;
3530      }
3531      // Okay, we have a legal flexible array member at the end of the struct.
3532      if (Record)
3533        Record->setHasFlexibleArrayMember(true);
3534    }
3535    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3536    /// field of another structure or the element of an array.
3537    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3538      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3539        // If this is a member of a union, then entire union becomes "flexible".
3540        if (Record && Record->isUnion()) {
3541          Record->setHasFlexibleArrayMember(true);
3542        } else {
3543          // If this is a struct/class and this is not the last element, reject
3544          // it.  Note that GCC supports variable sized arrays in the middle of
3545          // structures.
3546          if (i != NumFields-1) {
3547            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3548              << FD->getDeclName();
3549            FD->setInvalidDecl();
3550            EnclosingDecl->setInvalidDecl();
3551            continue;
3552          }
3553          // We support flexible arrays at the end of structs in other structs
3554          // as an extension.
3555          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3556            << FD->getDeclName();
3557          if (Record)
3558            Record->setHasFlexibleArrayMember(true);
3559        }
3560      }
3561    }
3562    /// A field cannot be an Objective-c object
3563    if (FDTy->isObjCInterfaceType()) {
3564      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3565        << FD->getDeclName();
3566      FD->setInvalidDecl();
3567      EnclosingDecl->setInvalidDecl();
3568      continue;
3569    }
3570    // Keep track of the number of named members.
3571    if (FD->getIdentifier())
3572      ++NumNamedMembers;
3573  }
3574
3575  // Okay, we successfully defined 'Record'.
3576  if (Record) {
3577    Record->completeDefinition(Context);
3578  } else {
3579    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3580    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3581      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3582      // Must enforce the rule that ivars in the base classes may not be
3583      // duplicates.
3584      if (ID->getSuperClass()) {
3585        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3586             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3587          ObjCIvarDecl* Ivar = (*IVI);
3588          IdentifierInfo *II = Ivar->getIdentifier();
3589          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3590          if (prevIvar) {
3591            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3592            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3593          }
3594        }
3595      }
3596    }
3597    else if (ObjCImplementationDecl *IMPDecl =
3598               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3599      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3600      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3601      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3602    }
3603  }
3604
3605  if (Attr)
3606    ProcessDeclAttributeList(Record, Attr);
3607}
3608
3609Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3610                                      DeclTy *lastEnumConst,
3611                                      SourceLocation IdLoc, IdentifierInfo *Id,
3612                                      SourceLocation EqualLoc, ExprTy *val) {
3613  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3614  EnumConstantDecl *LastEnumConst =
3615    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3616  Expr *Val = static_cast<Expr*>(val);
3617
3618  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3619  // we find one that is.
3620  S = getNonFieldDeclScope(S);
3621
3622  // Verify that there isn't already something declared with this name in this
3623  // scope.
3624  Decl *PrevDecl = LookupDeclInScope(Id, Decl::IDNS_Ordinary, S);
3625  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3626    // Maybe we will complain about the shadowed template parameter.
3627    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3628    // Just pretend that we didn't see the previous declaration.
3629    PrevDecl = 0;
3630  }
3631
3632  if (PrevDecl) {
3633    // When in C++, we may get a TagDecl with the same name; in this case the
3634    // enum constant will 'hide' the tag.
3635    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3636           "Received TagDecl when not in C++!");
3637    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3638      if (isa<EnumConstantDecl>(PrevDecl))
3639        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3640      else
3641        Diag(IdLoc, diag::err_redefinition) << Id;
3642      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3643      delete Val;
3644      return 0;
3645    }
3646  }
3647
3648  llvm::APSInt EnumVal(32);
3649  QualType EltTy;
3650  if (Val) {
3651    // Make sure to promote the operand type to int.
3652    UsualUnaryConversions(Val);
3653
3654    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3655    SourceLocation ExpLoc;
3656    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3657      delete Val;
3658      Val = 0;  // Just forget about it.
3659    } else {
3660      EltTy = Val->getType();
3661    }
3662  }
3663
3664  if (!Val) {
3665    if (LastEnumConst) {
3666      // Assign the last value + 1.
3667      EnumVal = LastEnumConst->getInitVal();
3668      ++EnumVal;
3669
3670      // Check for overflow on increment.
3671      if (EnumVal < LastEnumConst->getInitVal())
3672        Diag(IdLoc, diag::warn_enum_value_overflow);
3673
3674      EltTy = LastEnumConst->getType();
3675    } else {
3676      // First value, set to zero.
3677      EltTy = Context.IntTy;
3678      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3679    }
3680  }
3681
3682  EnumConstantDecl *New =
3683    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3684                             Val, EnumVal);
3685
3686  // Register this decl in the current scope stack.
3687  PushOnScopeChains(New, S);
3688
3689  return New;
3690}
3691
3692// FIXME: For consistency with ActOnFields(), we should have the parser
3693// pass in the source location for the left/right braces.
3694void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3695                         DeclTy **Elements, unsigned NumElements) {
3696  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3697  QualType EnumType = Context.getTypeDeclType(Enum);
3698
3699  // TODO: If the result value doesn't fit in an int, it must be a long or long
3700  // long value.  ISO C does not support this, but GCC does as an extension,
3701  // emit a warning.
3702  unsigned IntWidth = Context.Target.getIntWidth();
3703
3704  // Verify that all the values are okay, compute the size of the values, and
3705  // reverse the list.
3706  unsigned NumNegativeBits = 0;
3707  unsigned NumPositiveBits = 0;
3708
3709  // Keep track of whether all elements have type int.
3710  bool AllElementsInt = true;
3711
3712  for (unsigned i = 0; i != NumElements; ++i) {
3713    EnumConstantDecl *ECD =
3714      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3715    if (!ECD) continue;  // Already issued a diagnostic.
3716
3717    // If the enum value doesn't fit in an int, emit an extension warning.
3718    const llvm::APSInt &InitVal = ECD->getInitVal();
3719    assert(InitVal.getBitWidth() >= IntWidth &&
3720           "Should have promoted value to int");
3721    if (InitVal.getBitWidth() > IntWidth) {
3722      llvm::APSInt V(InitVal);
3723      V.trunc(IntWidth);
3724      V.extend(InitVal.getBitWidth());
3725      if (V != InitVal)
3726        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3727          << InitVal.toString(10);
3728    }
3729
3730    // Keep track of the size of positive and negative values.
3731    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3732      NumPositiveBits = std::max(NumPositiveBits,
3733                                 (unsigned)InitVal.getActiveBits());
3734    else
3735      NumNegativeBits = std::max(NumNegativeBits,
3736                                 (unsigned)InitVal.getMinSignedBits());
3737
3738    // Keep track of whether every enum element has type int (very commmon).
3739    if (AllElementsInt)
3740      AllElementsInt = ECD->getType() == Context.IntTy;
3741  }
3742
3743  // Figure out the type that should be used for this enum.
3744  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3745  QualType BestType;
3746  unsigned BestWidth;
3747
3748  if (NumNegativeBits) {
3749    // If there is a negative value, figure out the smallest integer type (of
3750    // int/long/longlong) that fits.
3751    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3752      BestType = Context.IntTy;
3753      BestWidth = IntWidth;
3754    } else {
3755      BestWidth = Context.Target.getLongWidth();
3756
3757      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3758        BestType = Context.LongTy;
3759      else {
3760        BestWidth = Context.Target.getLongLongWidth();
3761
3762        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3763          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3764        BestType = Context.LongLongTy;
3765      }
3766    }
3767  } else {
3768    // If there is no negative value, figure out which of uint, ulong, ulonglong
3769    // fits.
3770    if (NumPositiveBits <= IntWidth) {
3771      BestType = Context.UnsignedIntTy;
3772      BestWidth = IntWidth;
3773    } else if (NumPositiveBits <=
3774               (BestWidth = Context.Target.getLongWidth())) {
3775      BestType = Context.UnsignedLongTy;
3776    } else {
3777      BestWidth = Context.Target.getLongLongWidth();
3778      assert(NumPositiveBits <= BestWidth &&
3779             "How could an initializer get larger than ULL?");
3780      BestType = Context.UnsignedLongLongTy;
3781    }
3782  }
3783
3784  // Loop over all of the enumerator constants, changing their types to match
3785  // the type of the enum if needed.
3786  for (unsigned i = 0; i != NumElements; ++i) {
3787    EnumConstantDecl *ECD =
3788      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3789    if (!ECD) continue;  // Already issued a diagnostic.
3790
3791    // Standard C says the enumerators have int type, but we allow, as an
3792    // extension, the enumerators to be larger than int size.  If each
3793    // enumerator value fits in an int, type it as an int, otherwise type it the
3794    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3795    // that X has type 'int', not 'unsigned'.
3796    if (ECD->getType() == Context.IntTy) {
3797      // Make sure the init value is signed.
3798      llvm::APSInt IV = ECD->getInitVal();
3799      IV.setIsSigned(true);
3800      ECD->setInitVal(IV);
3801
3802      if (getLangOptions().CPlusPlus)
3803        // C++ [dcl.enum]p4: Following the closing brace of an
3804        // enum-specifier, each enumerator has the type of its
3805        // enumeration.
3806        ECD->setType(EnumType);
3807      continue;  // Already int type.
3808    }
3809
3810    // Determine whether the value fits into an int.
3811    llvm::APSInt InitVal = ECD->getInitVal();
3812    bool FitsInInt;
3813    if (InitVal.isUnsigned() || !InitVal.isNegative())
3814      FitsInInt = InitVal.getActiveBits() < IntWidth;
3815    else
3816      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3817
3818    // If it fits into an integer type, force it.  Otherwise force it to match
3819    // the enum decl type.
3820    QualType NewTy;
3821    unsigned NewWidth;
3822    bool NewSign;
3823    if (FitsInInt) {
3824      NewTy = Context.IntTy;
3825      NewWidth = IntWidth;
3826      NewSign = true;
3827    } else if (ECD->getType() == BestType) {
3828      // Already the right type!
3829      if (getLangOptions().CPlusPlus)
3830        // C++ [dcl.enum]p4: Following the closing brace of an
3831        // enum-specifier, each enumerator has the type of its
3832        // enumeration.
3833        ECD->setType(EnumType);
3834      continue;
3835    } else {
3836      NewTy = BestType;
3837      NewWidth = BestWidth;
3838      NewSign = BestType->isSignedIntegerType();
3839    }
3840
3841    // Adjust the APSInt value.
3842    InitVal.extOrTrunc(NewWidth);
3843    InitVal.setIsSigned(NewSign);
3844    ECD->setInitVal(InitVal);
3845
3846    // Adjust the Expr initializer and type.
3847    if (ECD->getInitExpr())
3848      ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3849                                            /*isLvalue=*/false));
3850    if (getLangOptions().CPlusPlus)
3851      // C++ [dcl.enum]p4: Following the closing brace of an
3852      // enum-specifier, each enumerator has the type of its
3853      // enumeration.
3854      ECD->setType(EnumType);
3855    else
3856      ECD->setType(NewTy);
3857  }
3858
3859  Enum->completeDefinition(Context, BestType);
3860}
3861
3862Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3863                                          ExprArg expr) {
3864  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3865
3866  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3867}
3868
3869
3870void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3871                           ExprTy *alignment, SourceLocation PragmaLoc,
3872                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3873  Expr *Alignment = static_cast<Expr *>(alignment);
3874
3875  // If specified then alignment must be a "small" power of two.
3876  unsigned AlignmentVal = 0;
3877  if (Alignment) {
3878    llvm::APSInt Val;
3879    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3880        !Val.isPowerOf2() ||
3881        Val.getZExtValue() > 16) {
3882      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3883      delete Alignment;
3884      return; // Ignore
3885    }
3886
3887    AlignmentVal = (unsigned) Val.getZExtValue();
3888  }
3889
3890  switch (Kind) {
3891  case Action::PPK_Default: // pack([n])
3892    PackContext.setAlignment(AlignmentVal);
3893    break;
3894
3895  case Action::PPK_Show: // pack(show)
3896    // Show the current alignment, making sure to show the right value
3897    // for the default.
3898    AlignmentVal = PackContext.getAlignment();
3899    // FIXME: This should come from the target.
3900    if (AlignmentVal == 0)
3901      AlignmentVal = 8;
3902    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3903    break;
3904
3905  case Action::PPK_Push: // pack(push [, id] [, [n])
3906    PackContext.push(Name);
3907    // Set the new alignment if specified.
3908    if (Alignment)
3909      PackContext.setAlignment(AlignmentVal);
3910    break;
3911
3912  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3913    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3914    // "#pragma pack(pop, identifier, n) is undefined"
3915    if (Alignment && Name)
3916      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3917
3918    // Do the pop.
3919    if (!PackContext.pop(Name)) {
3920      // If a name was specified then failure indicates the name
3921      // wasn't found. Otherwise failure indicates the stack was
3922      // empty.
3923      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3924        << (Name ? "no record matching name" : "stack empty");
3925
3926      // FIXME: Warn about popping named records as MSVC does.
3927    } else {
3928      // Pop succeeded, set the new alignment if specified.
3929      if (Alignment)
3930        PackContext.setAlignment(AlignmentVal);
3931    }
3932    break;
3933
3934  default:
3935    assert(0 && "Invalid #pragma pack kind.");
3936  }
3937}
3938
3939bool PragmaPackStack::pop(IdentifierInfo *Name) {
3940  if (Stack.empty())
3941    return false;
3942
3943  // If name is empty just pop top.
3944  if (!Name) {
3945    Alignment = Stack.back().first;
3946    Stack.pop_back();
3947    return true;
3948  }
3949
3950  // Otherwise, find the named record.
3951  for (unsigned i = Stack.size(); i != 0; ) {
3952    --i;
3953    if (Stack[i].second == Name) {
3954      // Found it, pop up to and including this record.
3955      Alignment = Stack[i].first;
3956      Stack.erase(Stack.begin() + i, Stack.end());
3957      return true;
3958    }
3959  }
3960
3961  return false;
3962}
3963