SemaDecl.cpp revision a5c14b2e73e1674e639478142adf0ab71d00c367
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/ASTConsumer.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/Attr.h"
18#include "clang/AST/Builtins.h"
19#include "clang/AST/Decl.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/Expr.h"
22#include "clang/AST/Type.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Parse/Scope.h"
25#include "clang/Basic/LangOptions.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/AST/ExprCXX.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/SmallString.h"
33#include "llvm/ADT/SmallSet.h"
34#include "llvm/ADT/DenseSet.h"
35using namespace clang;
36
37Sema::DeclTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
38  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
39
40  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
41                 isa<ObjCInterfaceDecl>(IIDecl) ||
42                 isa<TagDecl>(IIDecl)))
43    return IIDecl;
44  return 0;
45}
46
47void Sema::PushDeclContext(DeclContext *DC) {
48  assert( ( (isa<ObjCMethodDecl>(DC) && isa<TranslationUnitDecl>(CurContext))
49            || DC->getParent() == CurContext ) &&
50      "The next DeclContext should be directly contained in the current one.");
51  CurContext = DC;
52}
53
54void Sema::PopDeclContext() {
55  assert(CurContext && "DeclContext imbalance!");
56  // If CurContext is a ObjC method, getParent() will return NULL.
57  CurContext = isa<ObjCMethodDecl>(CurContext)
58               ? Context.getTranslationUnitDecl()
59                 :  CurContext->getParent();
60}
61
62/// Add this decl to the scope shadowed decl chains.
63void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
64  S->AddDecl(D);
65
66  // C++ [basic.scope]p4:
67  //   -- exactly one declaration shall declare a class name or
68  //   enumeration name that is not a typedef name and the other
69  //   declarations shall all refer to the same object or
70  //   enumerator, or all refer to functions and function templates;
71  //   in this case the class name or enumeration name is hidden.
72  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
73    // We are pushing the name of a tag (enum or class).
74    IdentifierResolver::ctx_iterator
75      CIT = IdResolver.ctx_begin(TD->getIdentifier(), TD->getDeclContext());
76    if (CIT != IdResolver.ctx_end(TD->getIdentifier()) &&
77        IdResolver.isDeclInScope(*CIT, TD->getDeclContext(), S)) {
78      // There is already a declaration with the same name in the same
79      // scope. It must be found before we find the new declaration,
80      // so swap the order on the shadowed declaration chain.
81
82      IdResolver.AddShadowedDecl(TD, *CIT);
83      return;
84    }
85  }
86
87  IdResolver.AddDecl(D);
88}
89
90void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
91  if (S->decl_empty()) return;
92  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
93
94  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
95       I != E; ++I) {
96    Decl *TmpD = static_cast<Decl*>(*I);
97    assert(TmpD && "This decl didn't get pushed??");
98
99    if (isa<CXXFieldDecl>(TmpD)) continue;
100
101    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
102    ScopedDecl *D = cast<ScopedDecl>(TmpD);
103
104    IdentifierInfo *II = D->getIdentifier();
105    if (!II) continue;
106
107    // We only want to remove the decls from the identifier decl chains for local
108    // scopes, when inside a function/method.
109    if (S->getFnParent() != 0)
110      IdResolver.RemoveDecl(D);
111
112    // Chain this decl to the containing DeclContext.
113    D->setNext(CurContext->getDeclChain());
114    CurContext->setDeclChain(D);
115  }
116}
117
118/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
119/// return 0 if one not found.
120ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
121  // The third "scope" argument is 0 since we aren't enabling lazy built-in
122  // creation from this context.
123  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
124
125  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
126}
127
128/// LookupDecl - Look up the inner-most declaration in the specified
129/// namespace.
130Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
131                       Scope *S, bool enableLazyBuiltinCreation) {
132  if (II == 0) return 0;
133  unsigned NS = NSI;
134  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
135    NS |= Decl::IDNS_Tag;
136
137  // Scan up the scope chain looking for a decl that matches this identifier
138  // that is in the appropriate namespace.  This search should not take long, as
139  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
140  for (IdentifierResolver::iterator
141       I = IdResolver.begin(II, CurContext), E = IdResolver.end(II); I != E; ++I)
142    if ((*I)->getIdentifierNamespace() & NS)
143      return *I;
144
145  // If we didn't find a use of this identifier, and if the identifier
146  // corresponds to a compiler builtin, create the decl object for the builtin
147  // now, injecting it into translation unit scope, and return it.
148  if (NS & Decl::IDNS_Ordinary) {
149    if (enableLazyBuiltinCreation) {
150      // If this is a builtin on this (or all) targets, create the decl.
151      if (unsigned BuiltinID = II->getBuiltinID())
152        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
153    }
154    if (getLangOptions().ObjC1) {
155      // @interface and @compatibility_alias introduce typedef-like names.
156      // Unlike typedef's, they can only be introduced at file-scope (and are
157      // therefore not scoped decls). They can, however, be shadowed by
158      // other names in IDNS_Ordinary.
159      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
160      if (IDI != ObjCInterfaceDecls.end())
161        return IDI->second;
162      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
163      if (I != ObjCAliasDecls.end())
164        return I->second->getClassInterface();
165    }
166  }
167  return 0;
168}
169
170void Sema::InitBuiltinVaListType() {
171  if (!Context.getBuiltinVaListType().isNull())
172    return;
173
174  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
175  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
176  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
177  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
178}
179
180/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
181/// lazily create a decl for it.
182ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
183                                      Scope *S) {
184  Builtin::ID BID = (Builtin::ID)bid;
185
186  if (BID == Builtin::BI__builtin_va_start ||
187      BID == Builtin::BI__builtin_va_copy ||
188      BID == Builtin::BI__builtin_va_end)
189    InitBuiltinVaListType();
190
191  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
192  FunctionDecl *New = FunctionDecl::Create(Context,
193                                           Context.getTranslationUnitDecl(),
194                                           SourceLocation(), II, R,
195                                           FunctionDecl::Extern, false, 0);
196
197  // Create Decl objects for each parameter, adding them to the
198  // FunctionDecl.
199  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
200    llvm::SmallVector<ParmVarDecl*, 16> Params;
201    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
202      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
203                                           FT->getArgType(i), VarDecl::None, 0,
204                                           0));
205    New->setParams(&Params[0], Params.size());
206  }
207
208
209
210  // TUScope is the translation-unit scope to insert this function into.
211  PushOnScopeChains(New, TUScope);
212  return New;
213}
214
215/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
216/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
217/// situation, merging decls or emitting diagnostics as appropriate.
218///
219TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
220  // Verify the old decl was also a typedef.
221  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
222  if (!Old) {
223    Diag(New->getLocation(), diag::err_redefinition_different_kind,
224         New->getName());
225    Diag(OldD->getLocation(), diag::err_previous_definition);
226    return New;
227  }
228
229  // Allow multiple definitions for ObjC built-in typedefs.
230  // FIXME: Verify the underlying types are equivalent!
231  if (getLangOptions().ObjC1 && isBuiltinObjCType(New))
232    return Old;
233
234  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
235  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
236  // *either* declaration is in a system header. The code below implements
237  // this adhoc compatibility rule. FIXME: The following code will not
238  // work properly when compiling ".i" files (containing preprocessed output).
239  SourceManager &SrcMgr = Context.getSourceManager();
240  const FileEntry *OldDeclFile = SrcMgr.getFileEntryForLoc(Old->getLocation());
241  const FileEntry *NewDeclFile = SrcMgr.getFileEntryForLoc(New->getLocation());
242  HeaderSearch &HdrInfo = PP.getHeaderSearchInfo();
243  DirectoryLookup::DirType OldDirType = HdrInfo.getFileDirFlavor(OldDeclFile);
244  DirectoryLookup::DirType NewDirType = HdrInfo.getFileDirFlavor(NewDeclFile);
245
246  // Allow reclarations in both SystemHeaderDir and ExternCSystemHeaderDir.
247  if ((OldDirType != DirectoryLookup::NormalHeaderDir ||
248       NewDirType != DirectoryLookup::NormalHeaderDir) ||
249      getLangOptions().Microsoft)
250    return New;
251
252  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
253  // TODO: This is totally simplistic.  It should handle merging functions
254  // together etc, merging extern int X; int X; ...
255  Diag(New->getLocation(), diag::err_redefinition, New->getName());
256  Diag(Old->getLocation(), diag::err_previous_definition);
257  return New;
258}
259
260/// DeclhasAttr - returns true if decl Declaration already has the target attribute.
261static bool DeclHasAttr(const Decl *decl, const Attr *target) {
262  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
263    if (attr->getKind() == target->getKind())
264      return true;
265
266  return false;
267}
268
269/// MergeAttributes - append attributes from the Old decl to the New one.
270static void MergeAttributes(Decl *New, Decl *Old) {
271  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
272
273  while (attr) {
274     tmp = attr;
275     attr = attr->getNext();
276
277    if (!DeclHasAttr(New, tmp)) {
278       New->addAttr(tmp);
279    } else {
280       tmp->setNext(0);
281       delete(tmp);
282    }
283  }
284
285  Old->invalidateAttrs();
286}
287
288/// MergeFunctionDecl - We just parsed a function 'New' from
289/// declarator D which has the same name and scope as a previous
290/// declaration 'Old'.  Figure out how to resolve this situation,
291/// merging decls or emitting diagnostics as appropriate.
292/// Redeclaration will be set true if thisNew is a redeclaration OldD.
293FunctionDecl *
294Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
295  Redeclaration = false;
296  // Verify the old decl was also a function.
297  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
298  if (!Old) {
299    Diag(New->getLocation(), diag::err_redefinition_different_kind,
300         New->getName());
301    Diag(OldD->getLocation(), diag::err_previous_definition);
302    return New;
303  }
304
305  QualType OldQType = Context.getCanonicalType(Old->getType());
306  QualType NewQType = Context.getCanonicalType(New->getType());
307
308  // C++ [dcl.fct]p3:
309  //   All declarations for a function shall agree exactly in both the
310  //   return type and the parameter-type-list.
311  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
312    MergeAttributes(New, Old);
313    Redeclaration = true;
314    return MergeCXXFunctionDecl(New, Old);
315  }
316
317  // C: Function types need to be compatible, not identical. This handles
318  // duplicate function decls like "void f(int); void f(enum X);" properly.
319  if (!getLangOptions().CPlusPlus &&
320      Context.functionTypesAreCompatible(OldQType, NewQType)) {
321    MergeAttributes(New, Old);
322    Redeclaration = true;
323    return New;
324  }
325
326  // A function that has already been declared has been redeclared or defined
327  // with a different type- show appropriate diagnostic
328  diag::kind PrevDiag;
329  if (Old->isThisDeclarationADefinition())
330    PrevDiag = diag::err_previous_definition;
331  else if (Old->isImplicit())
332    PrevDiag = diag::err_previous_implicit_declaration;
333  else
334    PrevDiag = diag::err_previous_declaration;
335
336  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
337  // TODO: This is totally simplistic.  It should handle merging functions
338  // together etc, merging extern int X; int X; ...
339  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
340  Diag(Old->getLocation(), PrevDiag);
341  return New;
342}
343
344/// equivalentArrayTypes - Used to determine whether two array types are
345/// equivalent.
346/// We need to check this explicitly as an incomplete array definition is
347/// considered a VariableArrayType, so will not match a complete array
348/// definition that would be otherwise equivalent.
349static bool areEquivalentArrayTypes(QualType NewQType, QualType OldQType) {
350  const ArrayType *NewAT = NewQType->getAsArrayType();
351  const ArrayType *OldAT = OldQType->getAsArrayType();
352
353  if (!NewAT || !OldAT)
354    return false;
355
356  // If either (or both) array types in incomplete we need to strip off the
357  // outer VariableArrayType.  Once the outer VAT is removed the remaining
358  // types must be identical if the array types are to be considered
359  // equivalent.
360  // eg. int[][1] and int[1][1] become
361  //     VAT(null, CAT(1, int)) and CAT(1, CAT(1, int))
362  // removing the outermost VAT gives
363  //     CAT(1, int) and CAT(1, int)
364  // which are equal, therefore the array types are equivalent.
365  if (NewAT->isIncompleteArrayType() || OldAT->isIncompleteArrayType()) {
366    if (NewAT->getIndexTypeQualifier() != OldAT->getIndexTypeQualifier())
367      return false;
368    NewQType = NewAT->getElementType().getCanonicalType();
369    OldQType = OldAT->getElementType().getCanonicalType();
370  }
371
372  return NewQType == OldQType;
373}
374
375/// MergeVarDecl - We just parsed a variable 'New' which has the same name
376/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
377/// situation, merging decls or emitting diagnostics as appropriate.
378///
379/// FIXME: Need to carefully consider tentative definition rules (C99 6.9.2p2).
380/// For example, we incorrectly complain about i1, i4 from C99 6.9.2p4.
381///
382VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
383  // Verify the old decl was also a variable.
384  VarDecl *Old = dyn_cast<VarDecl>(OldD);
385  if (!Old) {
386    Diag(New->getLocation(), diag::err_redefinition_different_kind,
387         New->getName());
388    Diag(OldD->getLocation(), diag::err_previous_definition);
389    return New;
390  }
391
392  MergeAttributes(New, Old);
393
394  // Verify the types match.
395  QualType OldCType = Context.getCanonicalType(Old->getType());
396  QualType NewCType = Context.getCanonicalType(New->getType());
397  if (OldCType != NewCType && !areEquivalentArrayTypes(NewCType, OldCType)) {
398    Diag(New->getLocation(), diag::err_redefinition, New->getName());
399    Diag(Old->getLocation(), diag::err_previous_definition);
400    return New;
401  }
402  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
403  if (New->getStorageClass() == VarDecl::Static &&
404      (Old->getStorageClass() == VarDecl::None ||
405       Old->getStorageClass() == VarDecl::Extern)) {
406    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
407    Diag(Old->getLocation(), diag::err_previous_definition);
408    return New;
409  }
410  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
411  if (New->getStorageClass() != VarDecl::Static &&
412      Old->getStorageClass() == VarDecl::Static) {
413    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
414    Diag(Old->getLocation(), diag::err_previous_definition);
415    return New;
416  }
417  // We've verified the types match, now handle "tentative" definitions.
418  if (Old->isFileVarDecl() && New->isFileVarDecl()) {
419    // Handle C "tentative" external object definitions (C99 6.9.2).
420    bool OldIsTentative = false;
421    bool NewIsTentative = false;
422
423    if (!Old->getInit() &&
424        (Old->getStorageClass() == VarDecl::None ||
425         Old->getStorageClass() == VarDecl::Static))
426      OldIsTentative = true;
427
428    // FIXME: this check doesn't work (since the initializer hasn't been
429    // attached yet). This check should be moved to FinalizeDeclaratorGroup.
430    // Unfortunately, by the time we get to FinializeDeclaratorGroup, we've
431    // thrown out the old decl.
432    if (!New->getInit() &&
433        (New->getStorageClass() == VarDecl::None ||
434         New->getStorageClass() == VarDecl::Static))
435      ; // change to NewIsTentative = true; once the code is moved.
436
437    if (NewIsTentative || OldIsTentative)
438      return New;
439  }
440  // Handle __private_extern__ just like extern.
441  if (Old->getStorageClass() != VarDecl::Extern &&
442      Old->getStorageClass() != VarDecl::PrivateExtern &&
443      New->getStorageClass() != VarDecl::Extern &&
444      New->getStorageClass() != VarDecl::PrivateExtern) {
445    Diag(New->getLocation(), diag::err_redefinition, New->getName());
446    Diag(Old->getLocation(), diag::err_previous_definition);
447  }
448  return New;
449}
450
451/// CheckParmsForFunctionDef - Check that the parameters of the given
452/// function are appropriate for the definition of a function. This
453/// takes care of any checks that cannot be performed on the
454/// declaration itself, e.g., that the types of each of the function
455/// parameters are complete.
456bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
457  bool HasInvalidParm = false;
458  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
459    ParmVarDecl *Param = FD->getParamDecl(p);
460
461    // C99 6.7.5.3p4: the parameters in a parameter type list in a
462    // function declarator that is part of a function definition of
463    // that function shall not have incomplete type.
464    if (Param->getType()->isIncompleteType() &&
465        !Param->isInvalidDecl()) {
466      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
467           Param->getType().getAsString());
468      Param->setInvalidDecl();
469      HasInvalidParm = true;
470    }
471  }
472
473  return HasInvalidParm;
474}
475
476/// CreateImplicitParameter - Creates an implicit function parameter
477/// in the scope S and with the given type. This routine is used, for
478/// example, to create the implicit "self" parameter in an Objective-C
479/// method.
480ParmVarDecl *
481Sema::CreateImplicitParameter(Scope *S, IdentifierInfo *Id,
482                              SourceLocation IdLoc, QualType Type) {
483  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext, IdLoc, Id, Type,
484                                         VarDecl::None, 0, 0);
485  if (Id)
486    PushOnScopeChains(New, S);
487
488  return New;
489}
490
491/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
492/// no declarator (e.g. "struct foo;") is parsed.
493Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
494  // TODO: emit error on 'int;' or 'const enum foo;'.
495  // TODO: emit error on 'typedef int;'
496  // if (!DS.isMissingDeclaratorOk()) Diag(...);
497
498  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
499}
500
501bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
502  // Get the type before calling CheckSingleAssignmentConstraints(), since
503  // it can promote the expression.
504  QualType InitType = Init->getType();
505
506  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
507  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
508                                  InitType, Init, "initializing");
509}
510
511bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
512  if (const IncompleteArrayType *IAT = DeclT->getAsIncompleteArrayType()) {
513    // C99 6.7.8p14. We have an array of character type with unknown size
514    // being initialized to a string literal.
515    llvm::APSInt ConstVal(32);
516    ConstVal = strLiteral->getByteLength() + 1;
517    // Return a new array type (C99 6.7.8p22).
518    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
519                                         ArrayType::Normal, 0);
520  } else if (const ConstantArrayType *CAT = DeclT->getAsConstantArrayType()) {
521    // C99 6.7.8p14. We have an array of character type with known size.
522    if (strLiteral->getByteLength() > (unsigned)CAT->getMaximumElements())
523      Diag(strLiteral->getSourceRange().getBegin(),
524           diag::warn_initializer_string_for_char_array_too_long,
525           strLiteral->getSourceRange());
526  } else {
527    assert(0 && "HandleStringLiteralInit(): Invalid array type");
528  }
529  // Set type from "char *" to "constant array of char".
530  strLiteral->setType(DeclT);
531  // For now, we always return false (meaning success).
532  return false;
533}
534
535StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
536  const ArrayType *AT = DeclType->getAsArrayType();
537  if (AT && AT->getElementType()->isCharType()) {
538    return dyn_cast<StringLiteral>(Init);
539  }
540  return 0;
541}
542
543bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
544  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
545  // of unknown size ("[]") or an object type that is not a variable array type.
546  if (const VariableArrayType *VAT = DeclType->getAsVariableArrayType())
547    return Diag(VAT->getSizeExpr()->getLocStart(),
548                diag::err_variable_object_no_init,
549                VAT->getSizeExpr()->getSourceRange());
550
551  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
552  if (!InitList) {
553    // FIXME: Handle wide strings
554    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
555      return CheckStringLiteralInit(strLiteral, DeclType);
556
557    if (DeclType->isArrayType())
558      return Diag(Init->getLocStart(),
559                  diag::err_array_init_list_required,
560                  Init->getSourceRange());
561
562    return CheckSingleInitializer(Init, DeclType);
563  }
564
565  InitListChecker CheckInitList(this, InitList, DeclType);
566  return CheckInitList.HadError();
567}
568
569Sema::DeclTy *
570Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
571  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
572  IdentifierInfo *II = D.getIdentifier();
573
574  // All of these full declarators require an identifier.  If it doesn't have
575  // one, the ParsedFreeStandingDeclSpec action should be used.
576  if (II == 0) {
577    Diag(D.getDeclSpec().getSourceRange().getBegin(),
578         diag::err_declarator_need_ident,
579         D.getDeclSpec().getSourceRange(), D.getSourceRange());
580    return 0;
581  }
582
583  // The scope passed in may not be a decl scope.  Zip up the scope tree until
584  // we find one that is.
585  while ((S->getFlags() & Scope::DeclScope) == 0)
586    S = S->getParent();
587
588  // See if this is a redefinition of a variable in the same scope.
589  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
590  ScopedDecl *New;
591  bool InvalidDecl = false;
592
593  // In C++, the previous declaration we find might be a tag type
594  // (class or enum). In this case, the new declaration will hide the
595  // tag type.
596  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
597    PrevDecl = 0;
598
599  QualType R = GetTypeForDeclarator(D, S);
600  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
601
602  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
603    // Check that there are no default arguments (C++ only).
604    if (getLangOptions().CPlusPlus)
605      CheckExtraCXXDefaultArguments(D);
606
607    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
608    if (!NewTD) return 0;
609
610    // Handle attributes prior to checking for duplicates in MergeVarDecl
611    HandleDeclAttributes(NewTD, D.getDeclSpec().getAttributes(),
612                         D.getAttributes());
613    // Merge the decl with the existing one if appropriate. If the decl is
614    // in an outer scope, it isn't the same thing.
615    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
616      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
617      if (NewTD == 0) return 0;
618    }
619    New = NewTD;
620    if (S->getFnParent() == 0) {
621      // C99 6.7.7p2: If a typedef name specifies a variably modified type
622      // then it shall have block scope.
623      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
624        // FIXME: Diagnostic needs to be fixed.
625        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
626        InvalidDecl = true;
627      }
628    }
629  } else if (R.getTypePtr()->isFunctionType()) {
630    FunctionDecl::StorageClass SC = FunctionDecl::None;
631    switch (D.getDeclSpec().getStorageClassSpec()) {
632      default: assert(0 && "Unknown storage class!");
633      case DeclSpec::SCS_auto:
634      case DeclSpec::SCS_register:
635        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
636             R.getAsString());
637        InvalidDecl = true;
638        break;
639      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
640      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
641      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
642      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
643    }
644
645    bool isInline = D.getDeclSpec().isInlineSpecified();
646    FunctionDecl *NewFD = FunctionDecl::Create(Context, CurContext,
647                                               D.getIdentifierLoc(),
648                                               II, R, SC, isInline,
649                                               LastDeclarator);
650    // Handle attributes.
651    HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
652                         D.getAttributes());
653
654    // Copy the parameter declarations from the declarator D to
655    // the function declaration NewFD, if they are available.
656    if (D.getNumTypeObjects() > 0 &&
657        D.getTypeObject(0).Fun.hasPrototype) {
658      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
659
660      // Create Decl objects for each parameter, adding them to the
661      // FunctionDecl.
662      llvm::SmallVector<ParmVarDecl*, 16> Params;
663
664      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
665      // function that takes no arguments, not a function that takes a
666      // single void argument.
667      // We let through "const void" here because Sema::GetTypeForDeclarator
668      // already checks for that case.
669      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
670          FTI.ArgInfo[0].Param &&
671          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
672        // empty arg list, don't push any params.
673        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
674
675        // In C++, the empty parameter-type-list must be spelled "void"; a
676        // typedef of void is not permitted.
677        if (getLangOptions().CPlusPlus &&
678            Param->getType().getUnqualifiedType() != Context.VoidTy) {
679          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
680        }
681
682      } else {
683        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
684          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
685      }
686
687      NewFD->setParams(&Params[0], Params.size());
688    }
689
690    // Merge the decl with the existing one if appropriate. Since C functions
691    // are in a flat namespace, make sure we consider decls in outer scopes.
692    if (PrevDecl &&
693        (!getLangOptions().CPlusPlus ||
694         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
695      bool Redeclaration = false;
696      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
697      if (NewFD == 0) return 0;
698      if (Redeclaration) {
699        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
700      }
701    }
702    New = NewFD;
703
704    // In C++, check default arguments now that we have merged decls.
705    if (getLangOptions().CPlusPlus)
706      CheckCXXDefaultArguments(NewFD);
707  } else {
708    // Check that there are no default arguments (C++ only).
709    if (getLangOptions().CPlusPlus)
710      CheckExtraCXXDefaultArguments(D);
711
712    if (R.getTypePtr()->isObjCInterfaceType()) {
713      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
714           D.getIdentifier()->getName());
715      InvalidDecl = true;
716    }
717
718    VarDecl *NewVD;
719    VarDecl::StorageClass SC;
720    switch (D.getDeclSpec().getStorageClassSpec()) {
721    default: assert(0 && "Unknown storage class!");
722    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
723    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
724    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
725    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
726    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
727    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
728    }
729    if (S->getFnParent() == 0) {
730      // C99 6.9p2: The storage-class specifiers auto and register shall not
731      // appear in the declaration specifiers in an external declaration.
732      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
733        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
734             R.getAsString());
735        InvalidDecl = true;
736      }
737      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
738                              II, R, SC, LastDeclarator);
739    } else {
740      NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
741                              II, R, SC, LastDeclarator);
742    }
743    // Handle attributes prior to checking for duplicates in MergeVarDecl
744    HandleDeclAttributes(NewVD, D.getDeclSpec().getAttributes(),
745                         D.getAttributes());
746
747    // Emit an error if an address space was applied to decl with local storage.
748    // This includes arrays of objects with address space qualifiers, but not
749    // automatic variables that point to other address spaces.
750    // ISO/IEC TR 18037 S5.1.2
751    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
752      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
753      InvalidDecl = true;
754    }
755    // Merge the decl with the existing one if appropriate. If the decl is
756    // in an outer scope, it isn't the same thing.
757    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
758      NewVD = MergeVarDecl(NewVD, PrevDecl);
759      if (NewVD == 0) return 0;
760    }
761    New = NewVD;
762  }
763
764  // If this has an identifier, add it to the scope stack.
765  if (II)
766    PushOnScopeChains(New, S);
767  // If any semantic error occurred, mark the decl as invalid.
768  if (D.getInvalidType() || InvalidDecl)
769    New->setInvalidDecl();
770
771  return New;
772}
773
774bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
775  switch (Init->getStmtClass()) {
776  default:
777    Diag(Init->getExprLoc(),
778         diag::err_init_element_not_constant, Init->getSourceRange());
779    return true;
780  case Expr::ParenExprClass: {
781    const ParenExpr* PE = cast<ParenExpr>(Init);
782    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
783  }
784  case Expr::CompoundLiteralExprClass:
785    return cast<CompoundLiteralExpr>(Init)->isFileScope();
786  case Expr::DeclRefExprClass: {
787    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
788    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
789      if (VD->hasGlobalStorage())
790        return false;
791      Diag(Init->getExprLoc(),
792           diag::err_init_element_not_constant, Init->getSourceRange());
793      return true;
794    }
795    if (isa<FunctionDecl>(D))
796      return false;
797    Diag(Init->getExprLoc(),
798         diag::err_init_element_not_constant, Init->getSourceRange());
799    return true;
800  }
801  case Expr::MemberExprClass: {
802    const MemberExpr *M = cast<MemberExpr>(Init);
803    if (M->isArrow())
804      return CheckAddressConstantExpression(M->getBase());
805    return CheckAddressConstantExpressionLValue(M->getBase());
806  }
807  case Expr::ArraySubscriptExprClass: {
808    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
809    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
810    return CheckAddressConstantExpression(ASE->getBase()) ||
811           CheckArithmeticConstantExpression(ASE->getIdx());
812  }
813  case Expr::StringLiteralClass:
814  case Expr::PreDefinedExprClass:
815    return false;
816  case Expr::UnaryOperatorClass: {
817    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
818
819    // C99 6.6p9
820    if (Exp->getOpcode() == UnaryOperator::Deref)
821      return CheckAddressConstantExpression(Exp->getSubExpr());
822
823    Diag(Init->getExprLoc(),
824         diag::err_init_element_not_constant, Init->getSourceRange());
825    return true;
826  }
827  }
828}
829
830bool Sema::CheckAddressConstantExpression(const Expr* Init) {
831  switch (Init->getStmtClass()) {
832  default:
833    Diag(Init->getExprLoc(),
834         diag::err_init_element_not_constant, Init->getSourceRange());
835    return true;
836  case Expr::ParenExprClass: {
837    const ParenExpr* PE = cast<ParenExpr>(Init);
838    return CheckAddressConstantExpression(PE->getSubExpr());
839  }
840  case Expr::StringLiteralClass:
841  case Expr::ObjCStringLiteralClass:
842    return false;
843  case Expr::CallExprClass: {
844    const CallExpr *CE = cast<CallExpr>(Init);
845    if (CE->isBuiltinConstantExpr())
846      return false;
847    Diag(Init->getExprLoc(),
848         diag::err_init_element_not_constant, Init->getSourceRange());
849    return true;
850  }
851  case Expr::UnaryOperatorClass: {
852    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
853
854    // C99 6.6p9
855    if (Exp->getOpcode() == UnaryOperator::AddrOf)
856      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
857
858    if (Exp->getOpcode() == UnaryOperator::Extension)
859      return CheckAddressConstantExpression(Exp->getSubExpr());
860
861    Diag(Init->getExprLoc(),
862         diag::err_init_element_not_constant, Init->getSourceRange());
863    return true;
864  }
865  case Expr::BinaryOperatorClass: {
866    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
867    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
868
869    Expr *PExp = Exp->getLHS();
870    Expr *IExp = Exp->getRHS();
871    if (IExp->getType()->isPointerType())
872      std::swap(PExp, IExp);
873
874    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
875    return CheckAddressConstantExpression(PExp) ||
876           CheckArithmeticConstantExpression(IExp);
877  }
878  case Expr::ImplicitCastExprClass: {
879    const Expr* SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
880
881    // Check for implicit promotion
882    if (SubExpr->getType()->isFunctionType() ||
883        SubExpr->getType()->isArrayType())
884      return CheckAddressConstantExpressionLValue(SubExpr);
885
886    // Check for pointer->pointer cast
887    if (SubExpr->getType()->isPointerType())
888      return CheckAddressConstantExpression(SubExpr);
889
890    if (SubExpr->getType()->isArithmeticType())
891      return CheckArithmeticConstantExpression(SubExpr);
892
893    Diag(Init->getExprLoc(),
894         diag::err_init_element_not_constant, Init->getSourceRange());
895    return true;
896  }
897  case Expr::CastExprClass: {
898    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
899
900    // Check for pointer->pointer cast
901    if (SubExpr->getType()->isPointerType())
902      return CheckAddressConstantExpression(SubExpr);
903
904    // FIXME: Should we pedwarn for (int*)(0+0)?
905    if (SubExpr->getType()->isArithmeticType())
906      return CheckArithmeticConstantExpression(SubExpr);
907
908    Diag(Init->getExprLoc(),
909         diag::err_init_element_not_constant, Init->getSourceRange());
910    return true;
911  }
912  case Expr::ConditionalOperatorClass: {
913    // FIXME: Should we pedwarn here?
914    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
915    if (!Exp->getCond()->getType()->isArithmeticType()) {
916      Diag(Init->getExprLoc(),
917           diag::err_init_element_not_constant, Init->getSourceRange());
918      return true;
919    }
920    if (CheckArithmeticConstantExpression(Exp->getCond()))
921      return true;
922    if (Exp->getLHS() &&
923        CheckAddressConstantExpression(Exp->getLHS()))
924      return true;
925    return CheckAddressConstantExpression(Exp->getRHS());
926  }
927  case Expr::AddrLabelExprClass:
928    return false;
929  }
930}
931
932static const Expr* FindExpressionBaseAddress(const Expr* E);
933
934static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
935  switch (E->getStmtClass()) {
936  default:
937    return E;
938  case Expr::ParenExprClass: {
939    const ParenExpr* PE = cast<ParenExpr>(E);
940    return FindExpressionBaseAddressLValue(PE->getSubExpr());
941  }
942  case Expr::MemberExprClass: {
943    const MemberExpr *M = cast<MemberExpr>(E);
944    if (M->isArrow())
945      return FindExpressionBaseAddress(M->getBase());
946    return FindExpressionBaseAddressLValue(M->getBase());
947  }
948  case Expr::ArraySubscriptExprClass: {
949    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
950    return FindExpressionBaseAddress(ASE->getBase());
951  }
952  case Expr::UnaryOperatorClass: {
953    const UnaryOperator *Exp = cast<UnaryOperator>(E);
954
955    if (Exp->getOpcode() == UnaryOperator::Deref)
956      return FindExpressionBaseAddress(Exp->getSubExpr());
957
958    return E;
959  }
960  }
961}
962
963static const Expr* FindExpressionBaseAddress(const Expr* E) {
964  switch (E->getStmtClass()) {
965  default:
966    return E;
967  case Expr::ParenExprClass: {
968    const ParenExpr* PE = cast<ParenExpr>(E);
969    return FindExpressionBaseAddress(PE->getSubExpr());
970  }
971  case Expr::UnaryOperatorClass: {
972    const UnaryOperator *Exp = cast<UnaryOperator>(E);
973
974    // C99 6.6p9
975    if (Exp->getOpcode() == UnaryOperator::AddrOf)
976      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
977
978    if (Exp->getOpcode() == UnaryOperator::Extension)
979      return FindExpressionBaseAddress(Exp->getSubExpr());
980
981    return E;
982  }
983  case Expr::BinaryOperatorClass: {
984    const BinaryOperator *Exp = cast<BinaryOperator>(E);
985
986    Expr *PExp = Exp->getLHS();
987    Expr *IExp = Exp->getRHS();
988    if (IExp->getType()->isPointerType())
989      std::swap(PExp, IExp);
990
991    return FindExpressionBaseAddress(PExp);
992  }
993  case Expr::ImplicitCastExprClass: {
994    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
995
996    // Check for implicit promotion
997    if (SubExpr->getType()->isFunctionType() ||
998        SubExpr->getType()->isArrayType())
999      return FindExpressionBaseAddressLValue(SubExpr);
1000
1001    // Check for pointer->pointer cast
1002    if (SubExpr->getType()->isPointerType())
1003      return FindExpressionBaseAddress(SubExpr);
1004
1005    // We assume that we have an arithmetic expression here;
1006    // if we don't, we'll figure it out later
1007    return 0;
1008  }
1009  case Expr::CastExprClass: {
1010    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1011
1012    // Check for pointer->pointer cast
1013    if (SubExpr->getType()->isPointerType())
1014      return FindExpressionBaseAddress(SubExpr);
1015
1016    // We assume that we have an arithmetic expression here;
1017    // if we don't, we'll figure it out later
1018    return 0;
1019  }
1020  }
1021}
1022
1023bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1024  switch (Init->getStmtClass()) {
1025  default:
1026    Diag(Init->getExprLoc(),
1027         diag::err_init_element_not_constant, Init->getSourceRange());
1028    return true;
1029  case Expr::ParenExprClass: {
1030    const ParenExpr* PE = cast<ParenExpr>(Init);
1031    return CheckArithmeticConstantExpression(PE->getSubExpr());
1032  }
1033  case Expr::FloatingLiteralClass:
1034  case Expr::IntegerLiteralClass:
1035  case Expr::CharacterLiteralClass:
1036  case Expr::ImaginaryLiteralClass:
1037  case Expr::TypesCompatibleExprClass:
1038  case Expr::CXXBoolLiteralExprClass:
1039    return false;
1040  case Expr::CallExprClass: {
1041    const CallExpr *CE = cast<CallExpr>(Init);
1042    if (CE->isBuiltinConstantExpr())
1043      return false;
1044    Diag(Init->getExprLoc(),
1045         diag::err_init_element_not_constant, Init->getSourceRange());
1046    return true;
1047  }
1048  case Expr::DeclRefExprClass: {
1049    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1050    if (isa<EnumConstantDecl>(D))
1051      return false;
1052    Diag(Init->getExprLoc(),
1053         diag::err_init_element_not_constant, Init->getSourceRange());
1054    return true;
1055  }
1056  case Expr::CompoundLiteralExprClass:
1057    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1058    // but vectors are allowed to be magic.
1059    if (Init->getType()->isVectorType())
1060      return false;
1061    Diag(Init->getExprLoc(),
1062         diag::err_init_element_not_constant, Init->getSourceRange());
1063    return true;
1064  case Expr::UnaryOperatorClass: {
1065    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1066
1067    switch (Exp->getOpcode()) {
1068    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1069    // See C99 6.6p3.
1070    default:
1071      Diag(Init->getExprLoc(),
1072           diag::err_init_element_not_constant, Init->getSourceRange());
1073      return true;
1074    case UnaryOperator::SizeOf:
1075    case UnaryOperator::AlignOf:
1076    case UnaryOperator::OffsetOf:
1077      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1078      // See C99 6.5.3.4p2 and 6.6p3.
1079      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1080        return false;
1081      Diag(Init->getExprLoc(),
1082           diag::err_init_element_not_constant, Init->getSourceRange());
1083      return true;
1084    case UnaryOperator::Extension:
1085    case UnaryOperator::LNot:
1086    case UnaryOperator::Plus:
1087    case UnaryOperator::Minus:
1088    case UnaryOperator::Not:
1089      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1090    }
1091  }
1092  case Expr::SizeOfAlignOfTypeExprClass: {
1093    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1094    // Special check for void types, which are allowed as an extension
1095    if (Exp->getArgumentType()->isVoidType())
1096      return false;
1097    // alignof always evaluates to a constant.
1098    // FIXME: is sizeof(int[3.0]) a constant expression?
1099    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1100      Diag(Init->getExprLoc(),
1101           diag::err_init_element_not_constant, Init->getSourceRange());
1102      return true;
1103    }
1104    return false;
1105  }
1106  case Expr::BinaryOperatorClass: {
1107    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1108
1109    if (Exp->getLHS()->getType()->isArithmeticType() &&
1110        Exp->getRHS()->getType()->isArithmeticType()) {
1111      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1112             CheckArithmeticConstantExpression(Exp->getRHS());
1113    }
1114
1115    if (Exp->getLHS()->getType()->isPointerType() &&
1116        Exp->getRHS()->getType()->isPointerType()) {
1117      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1118      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1119
1120      // Only allow a null (constant integer) base; we could
1121      // allow some additional cases if necessary, but this
1122      // is sufficient to cover offsetof-like constructs.
1123      if (!LHSBase && !RHSBase) {
1124        return CheckAddressConstantExpression(Exp->getLHS()) ||
1125               CheckAddressConstantExpression(Exp->getRHS());
1126      }
1127    }
1128
1129    Diag(Init->getExprLoc(),
1130         diag::err_init_element_not_constant, Init->getSourceRange());
1131    return true;
1132  }
1133  case Expr::ImplicitCastExprClass:
1134  case Expr::CastExprClass: {
1135    const Expr *SubExpr;
1136    if (const CastExpr *C = dyn_cast<CastExpr>(Init)) {
1137      SubExpr = C->getSubExpr();
1138    } else {
1139      SubExpr = cast<ImplicitCastExpr>(Init)->getSubExpr();
1140    }
1141
1142    if (SubExpr->getType()->isArithmeticType())
1143      return CheckArithmeticConstantExpression(SubExpr);
1144
1145    Diag(Init->getExprLoc(),
1146         diag::err_init_element_not_constant, Init->getSourceRange());
1147    return true;
1148  }
1149  case Expr::ConditionalOperatorClass: {
1150    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1151    if (CheckArithmeticConstantExpression(Exp->getCond()))
1152      return true;
1153    if (Exp->getLHS() &&
1154        CheckArithmeticConstantExpression(Exp->getLHS()))
1155      return true;
1156    return CheckArithmeticConstantExpression(Exp->getRHS());
1157  }
1158  }
1159}
1160
1161bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1162  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1163  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1164    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1165
1166  if (Init->getType()->isReferenceType()) {
1167    // FIXME: Work out how the heck reference types work
1168    return false;
1169#if 0
1170    // A reference is constant if the address of the expression
1171    // is constant
1172    // We look through initlists here to simplify
1173    // CheckAddressConstantExpressionLValue.
1174    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1175      assert(Exp->getNumInits() > 0 &&
1176             "Refernce initializer cannot be empty");
1177      Init = Exp->getInit(0);
1178    }
1179    return CheckAddressConstantExpressionLValue(Init);
1180#endif
1181  }
1182
1183  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1184    unsigned numInits = Exp->getNumInits();
1185    for (unsigned i = 0; i < numInits; i++) {
1186      // FIXME: Need to get the type of the declaration for C++,
1187      // because it could be a reference?
1188      if (CheckForConstantInitializer(Exp->getInit(i),
1189                                      Exp->getInit(i)->getType()))
1190        return true;
1191    }
1192    return false;
1193  }
1194
1195  if (Init->isNullPointerConstant(Context))
1196    return false;
1197  if (Init->getType()->isArithmeticType()) {
1198    QualType InitTy = Init->getType().getCanonicalType().getUnqualifiedType();
1199    if (InitTy == Context.BoolTy) {
1200      // Special handling for pointers implicitly cast to bool;
1201      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1202      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1203        Expr* SubE = ICE->getSubExpr();
1204        if (SubE->getType()->isPointerType() ||
1205            SubE->getType()->isArrayType() ||
1206            SubE->getType()->isFunctionType()) {
1207          return CheckAddressConstantExpression(Init);
1208        }
1209      }
1210    } else if (InitTy->isIntegralType()) {
1211      Expr* SubE = 0;
1212      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init))
1213        SubE = ICE->getSubExpr();
1214      else if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1215        SubE = CE->getSubExpr();
1216      // Special check for pointer cast to int; we allow as an extension
1217      // an address constant cast to an integer if the integer
1218      // is of an appropriate width (this sort of code is apparently used
1219      // in some places).
1220      // FIXME: Add pedwarn?
1221      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1222      if (SubE && (SubE->getType()->isPointerType() ||
1223                   SubE->getType()->isArrayType() ||
1224                   SubE->getType()->isFunctionType())) {
1225        unsigned IntWidth = Context.getTypeSize(Init->getType());
1226        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1227        if (IntWidth >= PointerWidth)
1228          return CheckAddressConstantExpression(Init);
1229      }
1230    }
1231
1232    return CheckArithmeticConstantExpression(Init);
1233  }
1234
1235  if (Init->getType()->isPointerType())
1236    return CheckAddressConstantExpression(Init);
1237
1238  // An array type at the top level that isn't an init-list must
1239  // be a string literal
1240  if (Init->getType()->isArrayType())
1241    return false;
1242
1243  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1244       Init->getSourceRange());
1245  return true;
1246}
1247
1248void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1249  Decl *RealDecl = static_cast<Decl *>(dcl);
1250  Expr *Init = static_cast<Expr *>(init);
1251  assert(Init && "missing initializer");
1252
1253  // If there is no declaration, there was an error parsing it.  Just ignore
1254  // the initializer.
1255  if (RealDecl == 0) {
1256    delete Init;
1257    return;
1258  }
1259
1260  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1261  if (!VDecl) {
1262    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1263         diag::err_illegal_initializer);
1264    RealDecl->setInvalidDecl();
1265    return;
1266  }
1267  // Get the decls type and save a reference for later, since
1268  // CheckInitializerTypes may change it.
1269  QualType DclT = VDecl->getType(), SavT = DclT;
1270  if (VDecl->isBlockVarDecl()) {
1271    VarDecl::StorageClass SC = VDecl->getStorageClass();
1272    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1273      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1274      VDecl->setInvalidDecl();
1275    } else if (!VDecl->isInvalidDecl()) {
1276      if (CheckInitializerTypes(Init, DclT))
1277        VDecl->setInvalidDecl();
1278      if (SC == VarDecl::Static) // C99 6.7.8p4.
1279        CheckForConstantInitializer(Init, DclT);
1280    }
1281  } else if (VDecl->isFileVarDecl()) {
1282    if (VDecl->getStorageClass() == VarDecl::Extern)
1283      Diag(VDecl->getLocation(), diag::warn_extern_init);
1284    if (!VDecl->isInvalidDecl())
1285      if (CheckInitializerTypes(Init, DclT))
1286        VDecl->setInvalidDecl();
1287
1288    // C99 6.7.8p4. All file scoped initializers need to be constant.
1289    CheckForConstantInitializer(Init, DclT);
1290  }
1291  // If the type changed, it means we had an incomplete type that was
1292  // completed by the initializer. For example:
1293  //   int ary[] = { 1, 3, 5 };
1294  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1295  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1296    VDecl->setType(DclT);
1297    Init->setType(DclT);
1298  }
1299
1300  // Attach the initializer to the decl.
1301  VDecl->setInit(Init);
1302  return;
1303}
1304
1305/// The declarators are chained together backwards, reverse the list.
1306Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1307  // Often we have single declarators, handle them quickly.
1308  Decl *GroupDecl = static_cast<Decl*>(group);
1309  if (GroupDecl == 0)
1310    return 0;
1311
1312  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1313  ScopedDecl *NewGroup = 0;
1314  if (Group->getNextDeclarator() == 0)
1315    NewGroup = Group;
1316  else { // reverse the list.
1317    while (Group) {
1318      ScopedDecl *Next = Group->getNextDeclarator();
1319      Group->setNextDeclarator(NewGroup);
1320      NewGroup = Group;
1321      Group = Next;
1322    }
1323  }
1324  // Perform semantic analysis that depends on having fully processed both
1325  // the declarator and initializer.
1326  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1327    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1328    if (!IDecl)
1329      continue;
1330    QualType T = IDecl->getType();
1331
1332    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1333    // static storage duration, it shall not have a variable length array.
1334    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1335        IDecl->getStorageClass() == VarDecl::Static) {
1336      if (T->getAsVariableArrayType()) {
1337        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1338        IDecl->setInvalidDecl();
1339      }
1340    }
1341    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1342    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1343    if (IDecl->isBlockVarDecl() &&
1344        IDecl->getStorageClass() != VarDecl::Extern) {
1345      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1346        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1347             T.getAsString());
1348        IDecl->setInvalidDecl();
1349      }
1350    }
1351    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1352    // object that has file scope without an initializer, and without a
1353    // storage-class specifier or with the storage-class specifier "static",
1354    // constitutes a tentative definition. Note: A tentative definition with
1355    // external linkage is valid (C99 6.2.2p5).
1356    if (IDecl && !IDecl->getInit() &&
1357        (IDecl->getStorageClass() == VarDecl::Static ||
1358         IDecl->getStorageClass() == VarDecl::None)) {
1359      if (T->isIncompleteArrayType()) {
1360        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1361        // array to be completed. Don't issue a diagnostic.
1362      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1363        // C99 6.9.2p3: If the declaration of an identifier for an object is
1364        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1365        // declared type shall not be an incomplete type.
1366        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1367             T.getAsString());
1368        IDecl->setInvalidDecl();
1369      }
1370    }
1371  }
1372  return NewGroup;
1373}
1374
1375/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1376/// to introduce parameters into function prototype scope.
1377Sema::DeclTy *
1378Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1379  DeclSpec &DS = D.getDeclSpec();
1380
1381  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1382  if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1383      DS.getStorageClassSpec() != DeclSpec::SCS_register) {
1384    Diag(DS.getStorageClassSpecLoc(),
1385         diag::err_invalid_storage_class_in_func_decl);
1386    DS.ClearStorageClassSpecs();
1387  }
1388  if (DS.isThreadSpecified()) {
1389    Diag(DS.getThreadSpecLoc(),
1390         diag::err_invalid_storage_class_in_func_decl);
1391    DS.ClearStorageClassSpecs();
1392  }
1393
1394  // Check that there are no default arguments inside the type of this
1395  // parameter (C++ only).
1396  if (getLangOptions().CPlusPlus)
1397    CheckExtraCXXDefaultArguments(D);
1398
1399  // In this context, we *do not* check D.getInvalidType(). If the declarator
1400  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1401  // though it will not reflect the user specified type.
1402  QualType parmDeclType = GetTypeForDeclarator(D, S);
1403
1404  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1405
1406  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1407  // Can this happen for params?  We already checked that they don't conflict
1408  // among each other.  Here they can only shadow globals, which is ok.
1409  IdentifierInfo *II = D.getIdentifier();
1410  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1411    if (S->isDeclScope(PrevDecl)) {
1412      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1413           dyn_cast<NamedDecl>(PrevDecl)->getName());
1414
1415      // Recover by removing the name
1416      II = 0;
1417      D.SetIdentifier(0, D.getIdentifierLoc());
1418    }
1419  }
1420
1421  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1422  // Doing the promotion here has a win and a loss. The win is the type for
1423  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1424  // code generator). The loss is the orginal type isn't preserved. For example:
1425  //
1426  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1427  //    int blockvardecl[5];
1428  //    sizeof(parmvardecl);  // size == 4
1429  //    sizeof(blockvardecl); // size == 20
1430  // }
1431  //
1432  // For expressions, all implicit conversions are captured using the
1433  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1434  //
1435  // FIXME: If a source translation tool needs to see the original type, then
1436  // we need to consider storing both types (in ParmVarDecl)...
1437  //
1438  if (parmDeclType->isArrayType()) {
1439    // int x[restrict 4] ->  int *restrict
1440    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1441  } else if (parmDeclType->isFunctionType())
1442    parmDeclType = Context.getPointerType(parmDeclType);
1443
1444  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1445                                         D.getIdentifierLoc(), II,
1446                                         parmDeclType, VarDecl::None,
1447                                         0, 0);
1448
1449  if (D.getInvalidType())
1450    New->setInvalidDecl();
1451
1452  if (II)
1453    PushOnScopeChains(New, S);
1454
1455  HandleDeclAttributes(New, D.getDeclSpec().getAttributes(),
1456                       D.getAttributes());
1457  return New;
1458
1459}
1460
1461Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1462  assert(CurFunctionDecl == 0 && "Function parsing confused");
1463  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1464         "Not a function declarator!");
1465  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1466
1467  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1468  // for a K&R function.
1469  if (!FTI.hasPrototype) {
1470    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1471      if (FTI.ArgInfo[i].Param == 0) {
1472        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1473             FTI.ArgInfo[i].Ident->getName());
1474        // Implicitly declare the argument as type 'int' for lack of a better
1475        // type.
1476        DeclSpec DS;
1477        const char* PrevSpec; // unused
1478        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1479                           PrevSpec);
1480        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1481        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1482        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1483      }
1484    }
1485
1486    // Since this is a function definition, act as though we have information
1487    // about the arguments.
1488    if (FTI.NumArgs)
1489      FTI.hasPrototype = true;
1490  } else {
1491    // FIXME: Diagnose arguments without names in C.
1492  }
1493
1494  Scope *GlobalScope = FnBodyScope->getParent();
1495
1496  // See if this is a redefinition.
1497  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1498                             GlobalScope);
1499  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1500    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1501      const FunctionDecl *Definition;
1502      if (FD->getBody(Definition)) {
1503        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1504             D.getIdentifier()->getName());
1505        Diag(Definition->getLocation(), diag::err_previous_definition);
1506      }
1507    }
1508  }
1509  Decl *decl = static_cast<Decl*>(ActOnDeclarator(GlobalScope, D, 0));
1510  FunctionDecl *FD = cast<FunctionDecl>(decl);
1511  CurFunctionDecl = FD;
1512  PushDeclContext(FD);
1513
1514  // Check the validity of our function parameters
1515  CheckParmsForFunctionDef(FD);
1516
1517  // Introduce our parameters into the function scope
1518  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1519    ParmVarDecl *Param = FD->getParamDecl(p);
1520    // If this has an identifier, add it to the scope stack.
1521    if (Param->getIdentifier())
1522      PushOnScopeChains(Param, FnBodyScope);
1523  }
1524
1525  return FD;
1526}
1527
1528Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1529  Decl *dcl = static_cast<Decl *>(D);
1530  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
1531    FD->setBody((Stmt*)Body);
1532    assert(FD == CurFunctionDecl && "Function parsing confused");
1533    CurFunctionDecl = 0;
1534  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(dcl)) {
1535    MD->setBody((Stmt*)Body);
1536    CurMethodDecl = 0;
1537  }
1538  PopDeclContext();
1539  // Verify and clean out per-function state.
1540
1541  // Check goto/label use.
1542  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1543       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1544    // Verify that we have no forward references left.  If so, there was a goto
1545    // or address of a label taken, but no definition of it.  Label fwd
1546    // definitions are indicated with a null substmt.
1547    if (I->second->getSubStmt() == 0) {
1548      LabelStmt *L = I->second;
1549      // Emit error.
1550      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1551
1552      // At this point, we have gotos that use the bogus label.  Stitch it into
1553      // the function body so that they aren't leaked and that the AST is well
1554      // formed.
1555      if (Body) {
1556        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1557        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1558      } else {
1559        // The whole function wasn't parsed correctly, just delete this.
1560        delete L;
1561      }
1562    }
1563  }
1564  LabelMap.clear();
1565
1566  return D;
1567}
1568
1569/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1570/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1571ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1572                                           IdentifierInfo &II, Scope *S) {
1573  // Extension in C99.  Legal in C90, but warn about it.
1574  if (getLangOptions().C99)
1575    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1576  else
1577    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1578
1579  // FIXME: handle stuff like:
1580  // void foo() { extern float X(); }
1581  // void bar() { X(); }  <-- implicit decl for X in another scope.
1582
1583  // Set a Declarator for the implicit definition: int foo();
1584  const char *Dummy;
1585  DeclSpec DS;
1586  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1587  Error = Error; // Silence warning.
1588  assert(!Error && "Error setting up implicit decl!");
1589  Declarator D(DS, Declarator::BlockContext);
1590  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1591  D.SetIdentifier(&II, Loc);
1592
1593  // Insert this function into translation-unit scope.
1594
1595  DeclContext *PrevDC = CurContext;
1596  CurContext = Context.getTranslationUnitDecl();
1597
1598  FunctionDecl *FD =
1599    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1600  FD->setImplicit();
1601
1602  CurContext = PrevDC;
1603
1604  return FD;
1605}
1606
1607
1608TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1609                                    ScopedDecl *LastDeclarator) {
1610  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1611  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1612
1613  // Scope manipulation handled by caller.
1614  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1615                                           D.getIdentifierLoc(),
1616                                           D.getIdentifier(),
1617                                           T, LastDeclarator);
1618  if (D.getInvalidType())
1619    NewTD->setInvalidDecl();
1620  return NewTD;
1621}
1622
1623/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1624/// former case, Name will be non-null.  In the later case, Name will be null.
1625/// TagType indicates what kind of tag this is. TK indicates whether this is a
1626/// reference/declaration/definition of a tag.
1627Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1628                             SourceLocation KWLoc, IdentifierInfo *Name,
1629                             SourceLocation NameLoc, AttributeList *Attr) {
1630  // If this is a use of an existing tag, it must have a name.
1631  assert((Name != 0 || TK == TK_Definition) &&
1632         "Nameless record must be a definition!");
1633
1634  TagDecl::TagKind Kind;
1635  switch (TagType) {
1636  default: assert(0 && "Unknown tag type!");
1637  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1638  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1639  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1640  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1641  }
1642
1643  // If this is a named struct, check to see if there was a previous forward
1644  // declaration or definition.
1645  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1646  if (ScopedDecl *PrevDecl =
1647          dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S))) {
1648
1649    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1650            "unexpected Decl type");
1651    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1652      // If this is a use of a previous tag, or if the tag is already declared in
1653      // the same scope (so that the definition/declaration completes or
1654      // rementions the tag), reuse the decl.
1655      if (TK == TK_Reference ||
1656          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1657        // Make sure that this wasn't declared as an enum and now used as a struct
1658        // or something similar.
1659        if (PrevTagDecl->getTagKind() != Kind) {
1660          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1661          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1662        }
1663
1664        // If this is a use or a forward declaration, we're good.
1665        if (TK != TK_Definition)
1666          return PrevDecl;
1667
1668        // Diagnose attempts to redefine a tag.
1669        if (PrevTagDecl->isDefinition()) {
1670          Diag(NameLoc, diag::err_redefinition, Name->getName());
1671          Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1672          // If this is a redefinition, recover by making this struct be
1673          // anonymous, which will make any later references get the previous
1674          // definition.
1675          Name = 0;
1676        } else {
1677          // Okay, this is definition of a previously declared or referenced tag.
1678          // Move the location of the decl to be the definition site.
1679          PrevDecl->setLocation(NameLoc);
1680          return PrevDecl;
1681        }
1682      }
1683      // If we get here, this is a definition of a new struct type in a nested
1684      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1685      // type.
1686    } else {
1687      // The tag name clashes with a namespace name, issue an error and recover
1688      // by making this tag be anonymous.
1689      Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1690      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1691      Name = 0;
1692    }
1693  }
1694
1695  // If there is an identifier, use the location of the identifier as the
1696  // location of the decl, otherwise use the location of the struct/union
1697  // keyword.
1698  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1699
1700  // Otherwise, if this is the first time we've seen this tag, create the decl.
1701  TagDecl *New;
1702  if (Kind == TagDecl::TK_enum) {
1703    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1704    // enum X { A, B, C } D;    D should chain to X.
1705    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1706    // If this is an undefined enum, warn.
1707    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1708  } else {
1709    // struct/union/class
1710
1711    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1712    // struct X { int A; } D;    D should chain to X.
1713    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name, 0);
1714  }
1715
1716  // If this has an identifier, add it to the scope stack.
1717  if (Name) {
1718    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1719    // we find one that is.
1720    while ((S->getFlags() & Scope::DeclScope) == 0)
1721      S = S->getParent();
1722
1723    // Add it to the decl chain.
1724    PushOnScopeChains(New, S);
1725  }
1726
1727  HandleDeclAttributes(New, Attr, 0);
1728  return New;
1729}
1730
1731static bool CalcFakeICEVal(const Expr* Expr,
1732                           llvm::APSInt& Result,
1733                           ASTContext& Context) {
1734  // Calculate the value of an expression that has a calculatable
1735  // value, but isn't an ICE. Currently, this only supports
1736  // a very narrow set of extensions, but it can be expanded if needed.
1737  if (const ParenExpr *PE = dyn_cast<ParenExpr>(Expr))
1738    return CalcFakeICEVal(PE->getSubExpr(), Result, Context);
1739
1740  if (const CastExpr *CE = dyn_cast<CastExpr>(Expr)) {
1741    QualType CETy = CE->getType();
1742    if ((CETy->isIntegralType() && !CETy->isBooleanType()) ||
1743        CETy->isPointerType()) {
1744      if (CalcFakeICEVal(CE->getSubExpr(), Result, Context)) {
1745        Result.extOrTrunc(Context.getTypeSize(CETy));
1746        // FIXME: This assumes pointers are signed.
1747        Result.setIsSigned(CETy->isSignedIntegerType() ||
1748                           CETy->isPointerType());
1749        return true;
1750      }
1751    }
1752  }
1753
1754  if (Expr->getType()->isIntegralType())
1755    return Expr->isIntegerConstantExpr(Result, Context);
1756
1757  return false;
1758}
1759
1760QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1761  // This method tries to turn a variable array into a constant
1762  // array even when the size isn't an ICE.  This is necessary
1763  // for compatibility with code that depends on gcc's buggy
1764  // constant expression folding, like struct {char x[(int)(char*)2];}
1765  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1766    llvm::APSInt Result(32);
1767    if (VLATy->getSizeExpr() &&
1768        CalcFakeICEVal(VLATy->getSizeExpr(), Result, Context) &&
1769        Result > llvm::APSInt(Result.getBitWidth(), Result.isUnsigned())) {
1770      return Context.getConstantArrayType(VLATy->getElementType(),
1771                                          Result, ArrayType::Normal, 0);
1772    }
1773  }
1774  return QualType();
1775}
1776
1777/// ActOnField - Each field of a struct/union/class is passed into this in order
1778/// to create a FieldDecl object for it.
1779Sema::DeclTy *Sema::ActOnField(Scope *S,
1780                               SourceLocation DeclStart,
1781                               Declarator &D, ExprTy *BitfieldWidth) {
1782  IdentifierInfo *II = D.getIdentifier();
1783  Expr *BitWidth = (Expr*)BitfieldWidth;
1784  SourceLocation Loc = DeclStart;
1785  if (II) Loc = D.getIdentifierLoc();
1786
1787  // FIXME: Unnamed fields can be handled in various different ways, for
1788  // example, unnamed unions inject all members into the struct namespace!
1789
1790
1791  if (BitWidth) {
1792    // TODO: Validate.
1793    //printf("WARNING: BITFIELDS IGNORED!\n");
1794
1795    // 6.7.2.1p3
1796    // 6.7.2.1p4
1797
1798  } else {
1799    // Not a bitfield.
1800
1801    // validate II.
1802
1803  }
1804
1805  QualType T = GetTypeForDeclarator(D, S);
1806  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1807  bool InvalidDecl = false;
1808
1809  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1810  // than a variably modified type.
1811  if (T->isVariablyModifiedType()) {
1812    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
1813    if (!FixedTy.isNull()) {
1814      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
1815      T = FixedTy;
1816    } else {
1817      // FIXME: This diagnostic needs work
1818      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1819      InvalidDecl = true;
1820    }
1821  }
1822  // FIXME: Chain fielddecls together.
1823  FieldDecl *NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
1824
1825  HandleDeclAttributes(NewFD, D.getDeclSpec().getAttributes(),
1826                       D.getAttributes());
1827
1828  if (D.getInvalidType() || InvalidDecl)
1829    NewFD->setInvalidDecl();
1830  return NewFD;
1831}
1832
1833/// TranslateIvarVisibility - Translate visibility from a token ID to an
1834///  AST enum value.
1835static ObjCIvarDecl::AccessControl
1836TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
1837  switch (ivarVisibility) {
1838    case tok::objc_private: return ObjCIvarDecl::Private;
1839    case tok::objc_public: return ObjCIvarDecl::Public;
1840    case tok::objc_protected: return ObjCIvarDecl::Protected;
1841    case tok::objc_package: return ObjCIvarDecl::Package;
1842    default: assert(false && "Unknown visitibility kind");
1843  }
1844}
1845
1846/// ActOnIvar - Each ivar field of an objective-c class is passed into this
1847/// in order to create an IvarDecl object for it.
1848Sema::DeclTy *Sema::ActOnIvar(Scope *S,
1849                              SourceLocation DeclStart,
1850                              Declarator &D, ExprTy *BitfieldWidth,
1851                              tok::ObjCKeywordKind Visibility) {
1852  IdentifierInfo *II = D.getIdentifier();
1853  Expr *BitWidth = (Expr*)BitfieldWidth;
1854  SourceLocation Loc = DeclStart;
1855  if (II) Loc = D.getIdentifierLoc();
1856
1857  // FIXME: Unnamed fields can be handled in various different ways, for
1858  // example, unnamed unions inject all members into the struct namespace!
1859
1860
1861  if (BitWidth) {
1862    // TODO: Validate.
1863    //printf("WARNING: BITFIELDS IGNORED!\n");
1864
1865    // 6.7.2.1p3
1866    // 6.7.2.1p4
1867
1868  } else {
1869    // Not a bitfield.
1870
1871    // validate II.
1872
1873  }
1874
1875  QualType T = GetTypeForDeclarator(D, S);
1876  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1877  bool InvalidDecl = false;
1878
1879  // C99 6.7.2.1p8: A member of a structure or union may have any type other
1880  // than a variably modified type.
1881  if (T->isVariablyModifiedType()) {
1882    // FIXME: This diagnostic needs work
1883    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
1884    InvalidDecl = true;
1885  }
1886
1887  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T);
1888
1889  HandleDeclAttributes(NewID, D.getDeclSpec().getAttributes(),
1890                       D.getAttributes());
1891
1892  if (D.getInvalidType() || InvalidDecl)
1893    NewID->setInvalidDecl();
1894  // If we have visibility info, make sure the AST is set accordingly.
1895  if (Visibility != tok::objc_not_keyword)
1896    NewID->setAccessControl(TranslateIvarVisibility(Visibility));
1897  return NewID;
1898}
1899
1900void Sema::ActOnFields(Scope* S,
1901                       SourceLocation RecLoc, DeclTy *RecDecl,
1902                       DeclTy **Fields, unsigned NumFields,
1903                       SourceLocation LBrac, SourceLocation RBrac) {
1904  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
1905  assert(EnclosingDecl && "missing record or interface decl");
1906  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
1907
1908  if (Record && Record->isDefinition()) {
1909    // Diagnose code like:
1910    //     struct S { struct S {} X; };
1911    // We discover this when we complete the outer S.  Reject and ignore the
1912    // outer S.
1913    Diag(Record->getLocation(), diag::err_nested_redefinition,
1914         Record->getKindName());
1915    Diag(RecLoc, diag::err_previous_definition);
1916    Record->setInvalidDecl();
1917    return;
1918  }
1919  // Verify that all the fields are okay.
1920  unsigned NumNamedMembers = 0;
1921  llvm::SmallVector<FieldDecl*, 32> RecFields;
1922  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
1923
1924  for (unsigned i = 0; i != NumFields; ++i) {
1925
1926    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
1927    assert(FD && "missing field decl");
1928
1929    // Remember all fields.
1930    RecFields.push_back(FD);
1931
1932    // Get the type for the field.
1933    Type *FDTy = FD->getType().getTypePtr();
1934
1935    // C99 6.7.2.1p2 - A field may not be a function type.
1936    if (FDTy->isFunctionType()) {
1937      Diag(FD->getLocation(), diag::err_field_declared_as_function,
1938           FD->getName());
1939      FD->setInvalidDecl();
1940      EnclosingDecl->setInvalidDecl();
1941      continue;
1942    }
1943    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
1944    if (FDTy->isIncompleteType()) {
1945      if (!Record) {  // Incomplete ivar type is always an error.
1946        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1947        FD->setInvalidDecl();
1948        EnclosingDecl->setInvalidDecl();
1949        continue;
1950      }
1951      if (i != NumFields-1 ||                   // ... that the last member ...
1952          !Record->isStruct() ||  // ... of a structure ...
1953          !FDTy->isArrayType()) {         //... may have incomplete array type.
1954        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
1955        FD->setInvalidDecl();
1956        EnclosingDecl->setInvalidDecl();
1957        continue;
1958      }
1959      if (NumNamedMembers < 1) {  //... must have more than named member ...
1960        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
1961             FD->getName());
1962        FD->setInvalidDecl();
1963        EnclosingDecl->setInvalidDecl();
1964        continue;
1965      }
1966      // Okay, we have a legal flexible array member at the end of the struct.
1967      if (Record)
1968        Record->setHasFlexibleArrayMember(true);
1969    }
1970    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
1971    /// field of another structure or the element of an array.
1972    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
1973      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
1974        // If this is a member of a union, then entire union becomes "flexible".
1975        if (Record && Record->isUnion()) {
1976          Record->setHasFlexibleArrayMember(true);
1977        } else {
1978          // If this is a struct/class and this is not the last element, reject
1979          // it.  Note that GCC supports variable sized arrays in the middle of
1980          // structures.
1981          if (i != NumFields-1) {
1982            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
1983                 FD->getName());
1984            FD->setInvalidDecl();
1985            EnclosingDecl->setInvalidDecl();
1986            continue;
1987          }
1988          // We support flexible arrays at the end of structs in other structs
1989          // as an extension.
1990          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
1991               FD->getName());
1992          if (Record)
1993            Record->setHasFlexibleArrayMember(true);
1994        }
1995      }
1996    }
1997    /// A field cannot be an Objective-c object
1998    if (FDTy->isObjCInterfaceType()) {
1999      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2000           FD->getName());
2001      FD->setInvalidDecl();
2002      EnclosingDecl->setInvalidDecl();
2003      continue;
2004    }
2005    // Keep track of the number of named members.
2006    if (IdentifierInfo *II = FD->getIdentifier()) {
2007      // Detect duplicate member names.
2008      if (!FieldIDs.insert(II)) {
2009        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2010        // Find the previous decl.
2011        SourceLocation PrevLoc;
2012        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2013          assert(i != e && "Didn't find previous def!");
2014          if (RecFields[i]->getIdentifier() == II) {
2015            PrevLoc = RecFields[i]->getLocation();
2016            break;
2017          }
2018        }
2019        Diag(PrevLoc, diag::err_previous_definition);
2020        FD->setInvalidDecl();
2021        EnclosingDecl->setInvalidDecl();
2022        continue;
2023      }
2024      ++NumNamedMembers;
2025    }
2026  }
2027
2028  // Okay, we successfully defined 'Record'.
2029  if (Record) {
2030    Record->defineBody(&RecFields[0], RecFields.size());
2031    Consumer.HandleTagDeclDefinition(Record);
2032  } else {
2033    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2034    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2035      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2036    else if (ObjCImplementationDecl *IMPDecl =
2037               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2038      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2039      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2040      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2041    }
2042  }
2043}
2044
2045Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2046                                      DeclTy *lastEnumConst,
2047                                      SourceLocation IdLoc, IdentifierInfo *Id,
2048                                      SourceLocation EqualLoc, ExprTy *val) {
2049  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2050  EnumConstantDecl *LastEnumConst =
2051    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2052  Expr *Val = static_cast<Expr*>(val);
2053
2054  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2055  // we find one that is.
2056  while ((S->getFlags() & Scope::DeclScope) == 0)
2057    S = S->getParent();
2058
2059  // Verify that there isn't already something declared with this name in this
2060  // scope.
2061  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2062    if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2063      if (isa<EnumConstantDecl>(PrevDecl))
2064        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2065      else
2066        Diag(IdLoc, diag::err_redefinition, Id->getName());
2067      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2068      delete Val;
2069      return 0;
2070    }
2071  }
2072
2073  llvm::APSInt EnumVal(32);
2074  QualType EltTy;
2075  if (Val) {
2076    // Make sure to promote the operand type to int.
2077    UsualUnaryConversions(Val);
2078
2079    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2080    SourceLocation ExpLoc;
2081    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2082      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2083           Id->getName());
2084      delete Val;
2085      Val = 0;  // Just forget about it.
2086    } else {
2087      EltTy = Val->getType();
2088    }
2089  }
2090
2091  if (!Val) {
2092    if (LastEnumConst) {
2093      // Assign the last value + 1.
2094      EnumVal = LastEnumConst->getInitVal();
2095      ++EnumVal;
2096
2097      // Check for overflow on increment.
2098      if (EnumVal < LastEnumConst->getInitVal())
2099        Diag(IdLoc, diag::warn_enum_value_overflow);
2100
2101      EltTy = LastEnumConst->getType();
2102    } else {
2103      // First value, set to zero.
2104      EltTy = Context.IntTy;
2105      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2106    }
2107  }
2108
2109  EnumConstantDecl *New =
2110    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2111                             Val, EnumVal,
2112                             LastEnumConst);
2113
2114  // Register this decl in the current scope stack.
2115  PushOnScopeChains(New, S);
2116  return New;
2117}
2118
2119void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2120                         DeclTy **Elements, unsigned NumElements) {
2121  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2122  assert(!Enum->isDefinition() && "Enum redefinitions can't reach here");
2123
2124  // TODO: If the result value doesn't fit in an int, it must be a long or long
2125  // long value.  ISO C does not support this, but GCC does as an extension,
2126  // emit a warning.
2127  unsigned IntWidth = Context.Target.getIntWidth();
2128
2129  // Verify that all the values are okay, compute the size of the values, and
2130  // reverse the list.
2131  unsigned NumNegativeBits = 0;
2132  unsigned NumPositiveBits = 0;
2133
2134  // Keep track of whether all elements have type int.
2135  bool AllElementsInt = true;
2136
2137  EnumConstantDecl *EltList = 0;
2138  for (unsigned i = 0; i != NumElements; ++i) {
2139    EnumConstantDecl *ECD =
2140      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2141    if (!ECD) continue;  // Already issued a diagnostic.
2142
2143    // If the enum value doesn't fit in an int, emit an extension warning.
2144    const llvm::APSInt &InitVal = ECD->getInitVal();
2145    assert(InitVal.getBitWidth() >= IntWidth &&
2146           "Should have promoted value to int");
2147    if (InitVal.getBitWidth() > IntWidth) {
2148      llvm::APSInt V(InitVal);
2149      V.trunc(IntWidth);
2150      V.extend(InitVal.getBitWidth());
2151      if (V != InitVal)
2152        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2153             InitVal.toString());
2154    }
2155
2156    // Keep track of the size of positive and negative values.
2157    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2158      NumPositiveBits = std::max(NumPositiveBits,
2159                                 (unsigned)InitVal.getActiveBits());
2160    else
2161      NumNegativeBits = std::max(NumNegativeBits,
2162                                 (unsigned)InitVal.getMinSignedBits());
2163
2164    // Keep track of whether every enum element has type int (very commmon).
2165    if (AllElementsInt)
2166      AllElementsInt = ECD->getType() == Context.IntTy;
2167
2168    ECD->setNextDeclarator(EltList);
2169    EltList = ECD;
2170  }
2171
2172  // Figure out the type that should be used for this enum.
2173  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2174  QualType BestType;
2175  unsigned BestWidth;
2176
2177  if (NumNegativeBits) {
2178    // If there is a negative value, figure out the smallest integer type (of
2179    // int/long/longlong) that fits.
2180    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2181      BestType = Context.IntTy;
2182      BestWidth = IntWidth;
2183    } else {
2184      BestWidth = Context.Target.getLongWidth();
2185
2186      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2187        BestType = Context.LongTy;
2188      else {
2189        BestWidth = Context.Target.getLongLongWidth();
2190
2191        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2192          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2193        BestType = Context.LongLongTy;
2194      }
2195    }
2196  } else {
2197    // If there is no negative value, figure out which of uint, ulong, ulonglong
2198    // fits.
2199    if (NumPositiveBits <= IntWidth) {
2200      BestType = Context.UnsignedIntTy;
2201      BestWidth = IntWidth;
2202    } else if (NumPositiveBits <=
2203               (BestWidth = Context.Target.getLongWidth())) {
2204      BestType = Context.UnsignedLongTy;
2205    } else {
2206      BestWidth = Context.Target.getLongLongWidth();
2207      assert(NumPositiveBits <= BestWidth &&
2208             "How could an initializer get larger than ULL?");
2209      BestType = Context.UnsignedLongLongTy;
2210    }
2211  }
2212
2213  // Loop over all of the enumerator constants, changing their types to match
2214  // the type of the enum if needed.
2215  for (unsigned i = 0; i != NumElements; ++i) {
2216    EnumConstantDecl *ECD =
2217      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2218    if (!ECD) continue;  // Already issued a diagnostic.
2219
2220    // Standard C says the enumerators have int type, but we allow, as an
2221    // extension, the enumerators to be larger than int size.  If each
2222    // enumerator value fits in an int, type it as an int, otherwise type it the
2223    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2224    // that X has type 'int', not 'unsigned'.
2225    if (ECD->getType() == Context.IntTy) {
2226      // Make sure the init value is signed.
2227      llvm::APSInt IV = ECD->getInitVal();
2228      IV.setIsSigned(true);
2229      ECD->setInitVal(IV);
2230      continue;  // Already int type.
2231    }
2232
2233    // Determine whether the value fits into an int.
2234    llvm::APSInt InitVal = ECD->getInitVal();
2235    bool FitsInInt;
2236    if (InitVal.isUnsigned() || !InitVal.isNegative())
2237      FitsInInt = InitVal.getActiveBits() < IntWidth;
2238    else
2239      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2240
2241    // If it fits into an integer type, force it.  Otherwise force it to match
2242    // the enum decl type.
2243    QualType NewTy;
2244    unsigned NewWidth;
2245    bool NewSign;
2246    if (FitsInInt) {
2247      NewTy = Context.IntTy;
2248      NewWidth = IntWidth;
2249      NewSign = true;
2250    } else if (ECD->getType() == BestType) {
2251      // Already the right type!
2252      continue;
2253    } else {
2254      NewTy = BestType;
2255      NewWidth = BestWidth;
2256      NewSign = BestType->isSignedIntegerType();
2257    }
2258
2259    // Adjust the APSInt value.
2260    InitVal.extOrTrunc(NewWidth);
2261    InitVal.setIsSigned(NewSign);
2262    ECD->setInitVal(InitVal);
2263
2264    // Adjust the Expr initializer and type.
2265    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2266    ECD->setType(NewTy);
2267  }
2268
2269  Enum->defineElements(EltList, BestType);
2270  Consumer.HandleTagDeclDefinition(Enum);
2271}
2272
2273Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2274                                          ExprTy *expr) {
2275  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2276
2277  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2278}
2279
2280Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2281                                     SourceLocation LBrace,
2282                                     SourceLocation RBrace,
2283                                     const char *Lang,
2284                                     unsigned StrSize,
2285                                     DeclTy *D) {
2286  LinkageSpecDecl::LanguageIDs Language;
2287  Decl *dcl = static_cast<Decl *>(D);
2288  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2289    Language = LinkageSpecDecl::lang_c;
2290  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2291    Language = LinkageSpecDecl::lang_cxx;
2292  else {
2293    Diag(Loc, diag::err_bad_language);
2294    return 0;
2295  }
2296
2297  // FIXME: Add all the various semantics of linkage specifications
2298  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2299}
2300
2301void Sema::HandleDeclAttribute(Decl *New, AttributeList *Attr) {
2302
2303  switch (Attr->getKind()) {
2304  case AttributeList::AT_vector_size:
2305    if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2306      QualType newType = HandleVectorTypeAttribute(vDecl->getType(), Attr);
2307      if (!newType.isNull()) // install the new vector type into the decl
2308        vDecl->setType(newType);
2309    }
2310    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2311      QualType newType = HandleVectorTypeAttribute(tDecl->getUnderlyingType(),
2312                                                   Attr);
2313      if (!newType.isNull()) // install the new vector type into the decl
2314        tDecl->setUnderlyingType(newType);
2315    }
2316    break;
2317  case AttributeList::AT_ext_vector_type:
2318    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New))
2319      HandleExtVectorTypeAttribute(tDecl, Attr);
2320    else
2321      Diag(Attr->getLoc(),
2322           diag::err_typecheck_ext_vector_not_typedef);
2323    break;
2324  case AttributeList::AT_address_space:
2325    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2326      QualType newType = HandleAddressSpaceTypeAttribute(
2327                                                  tDecl->getUnderlyingType(),
2328                                                  Attr);
2329      tDecl->setUnderlyingType(newType);
2330    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2331      QualType newType = HandleAddressSpaceTypeAttribute(vDecl->getType(),
2332                                                         Attr);
2333      // install the new addr spaced type into the decl
2334      vDecl->setType(newType);
2335    }
2336    break;
2337  case AttributeList::AT_mode:
2338    if (TypedefDecl *tDecl = dyn_cast<TypedefDecl>(New)) {
2339      QualType newType = HandleModeTypeAttribute(tDecl->getUnderlyingType(),
2340                                                 Attr);
2341      tDecl->setUnderlyingType(newType);
2342    } else if (ValueDecl *vDecl = dyn_cast<ValueDecl>(New)) {
2343      QualType newType = HandleModeTypeAttribute(vDecl->getType(), Attr);
2344      vDecl->setType(newType);
2345    }
2346    // FIXME: Diagnostic?
2347    break;
2348  case AttributeList::AT_alias:
2349    HandleAliasAttribute(New, Attr);
2350    break;
2351  case AttributeList::AT_deprecated:
2352    HandleDeprecatedAttribute(New, Attr);
2353    break;
2354  case AttributeList::AT_visibility:
2355    HandleVisibilityAttribute(New, Attr);
2356    break;
2357  case AttributeList::AT_weak:
2358    HandleWeakAttribute(New, Attr);
2359    break;
2360  case AttributeList::AT_dllimport:
2361    HandleDLLImportAttribute(New, Attr);
2362    break;
2363  case AttributeList::AT_dllexport:
2364    HandleDLLExportAttribute(New, Attr);
2365    break;
2366  case AttributeList::AT_nothrow:
2367    HandleNothrowAttribute(New, Attr);
2368    break;
2369  case AttributeList::AT_stdcall:
2370    HandleStdCallAttribute(New, Attr);
2371    break;
2372  case AttributeList::AT_fastcall:
2373    HandleFastCallAttribute(New, Attr);
2374    break;
2375  case AttributeList::AT_aligned:
2376    HandleAlignedAttribute(New, Attr);
2377    break;
2378  case AttributeList::AT_packed:
2379    HandlePackedAttribute(New, Attr);
2380    break;
2381  case AttributeList::AT_annotate:
2382    HandleAnnotateAttribute(New, Attr);
2383    break;
2384  case AttributeList::AT_noreturn:
2385    HandleNoReturnAttribute(New, Attr);
2386    break;
2387  case AttributeList::AT_format:
2388    HandleFormatAttribute(New, Attr);
2389    break;
2390  case AttributeList::AT_transparent_union:
2391    HandleTransparentUnionAttribute(New, Attr);
2392    break;
2393  default:
2394#if 0
2395    // TODO: when we have the full set of attributes, warn about unknown ones.
2396    Diag(Attr->getLoc(), diag::warn_attribute_ignored,
2397         Attr->getName()->getName());
2398#endif
2399    break;
2400  }
2401}
2402
2403void Sema::HandleDeclAttributes(Decl *New, AttributeList *declspec_prefix,
2404                                AttributeList *declarator_postfix) {
2405  while (declspec_prefix) {
2406    HandleDeclAttribute(New, declspec_prefix);
2407    declspec_prefix = declspec_prefix->getNext();
2408  }
2409  while (declarator_postfix) {
2410    HandleDeclAttribute(New, declarator_postfix);
2411    declarator_postfix = declarator_postfix->getNext();
2412  }
2413}
2414
2415void Sema::HandleExtVectorTypeAttribute(TypedefDecl *tDecl,
2416                                        AttributeList *rawAttr) {
2417  QualType curType = tDecl->getUnderlyingType();
2418  // check the attribute arguments.
2419  if (rawAttr->getNumArgs() != 1) {
2420    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2421         std::string("1"));
2422    return;
2423  }
2424  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2425  llvm::APSInt vecSize(32);
2426  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2427    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2428         "ext_vector_type", sizeExpr->getSourceRange());
2429    return;
2430  }
2431  // unlike gcc's vector_size attribute, we do not allow vectors to be defined
2432  // in conjunction with complex types (pointers, arrays, functions, etc.).
2433  Type *canonType = curType.getCanonicalType().getTypePtr();
2434  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2435    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2436         curType.getCanonicalType().getAsString());
2437    return;
2438  }
2439  // unlike gcc's vector_size attribute, the size is specified as the
2440  // number of elements, not the number of bytes.
2441  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue());
2442
2443  if (vectorSize == 0) {
2444    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2445         sizeExpr->getSourceRange());
2446    return;
2447  }
2448  // Instantiate/Install the vector type, the number of elements is > 0.
2449  tDecl->setUnderlyingType(Context.getExtVectorType(curType, vectorSize));
2450  // Remember this typedef decl, we will need it later for diagnostics.
2451  ExtVectorDecls.push_back(tDecl);
2452}
2453
2454QualType Sema::HandleVectorTypeAttribute(QualType curType,
2455                                         AttributeList *rawAttr) {
2456  // check the attribute arugments.
2457  if (rawAttr->getNumArgs() != 1) {
2458    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2459         std::string("1"));
2460    return QualType();
2461  }
2462  Expr *sizeExpr = static_cast<Expr *>(rawAttr->getArg(0));
2463  llvm::APSInt vecSize(32);
2464  if (!sizeExpr->isIntegerConstantExpr(vecSize, Context)) {
2465    Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2466         "vector_size", sizeExpr->getSourceRange());
2467    return QualType();
2468  }
2469  // navigate to the base type - we need to provide for vector pointers,
2470  // vector arrays, and functions returning vectors.
2471  Type *canonType = curType.getCanonicalType().getTypePtr();
2472
2473  if (canonType->isPointerType() || canonType->isArrayType() ||
2474      canonType->isFunctionType()) {
2475    assert(0 && "HandleVector(): Complex type construction unimplemented");
2476    /* FIXME: rebuild the type from the inside out, vectorizing the inner type.
2477        do {
2478          if (PointerType *PT = dyn_cast<PointerType>(canonType))
2479            canonType = PT->getPointeeType().getTypePtr();
2480          else if (ArrayType *AT = dyn_cast<ArrayType>(canonType))
2481            canonType = AT->getElementType().getTypePtr();
2482          else if (FunctionType *FT = dyn_cast<FunctionType>(canonType))
2483            canonType = FT->getResultType().getTypePtr();
2484        } while (canonType->isPointerType() || canonType->isArrayType() ||
2485                 canonType->isFunctionType());
2486    */
2487  }
2488  // the base type must be integer or float.
2489  if (!(canonType->isIntegerType() || canonType->isRealFloatingType())) {
2490    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_vector_type,
2491         curType.getCanonicalType().getAsString());
2492    return QualType();
2493  }
2494  unsigned typeSize = static_cast<unsigned>(Context.getTypeSize(curType));
2495  // vecSize is specified in bytes - convert to bits.
2496  unsigned vectorSize = static_cast<unsigned>(vecSize.getZExtValue() * 8);
2497
2498  // the vector size needs to be an integral multiple of the type size.
2499  if (vectorSize % typeSize) {
2500    Diag(rawAttr->getLoc(), diag::err_attribute_invalid_size,
2501         sizeExpr->getSourceRange());
2502    return QualType();
2503  }
2504  if (vectorSize == 0) {
2505    Diag(rawAttr->getLoc(), diag::err_attribute_zero_size,
2506         sizeExpr->getSourceRange());
2507    return QualType();
2508  }
2509  // Instantiate the vector type, the number of elements is > 0, and not
2510  // required to be a power of 2, unlike GCC.
2511  return Context.getVectorType(curType, vectorSize/typeSize);
2512}
2513
2514void Sema::HandlePackedAttribute(Decl *d, AttributeList *rawAttr) {
2515  // check the attribute arguments.
2516  if (rawAttr->getNumArgs() > 0) {
2517    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2518         std::string("0"));
2519    return;
2520  }
2521
2522  if (TagDecl *TD = dyn_cast<TagDecl>(d))
2523    TD->addAttr(new PackedAttr);
2524  else if (FieldDecl *FD = dyn_cast<FieldDecl>(d)) {
2525    // If the alignment is less than or equal to 8 bits, the packed attribute
2526    // has no effect.
2527    if (!FD->getType()->isIncompleteType() &&
2528        Context.getTypeAlign(FD->getType()) <= 8)
2529      Diag(rawAttr->getLoc(),
2530           diag::warn_attribute_ignored_for_field_of_type,
2531           rawAttr->getName()->getName(), FD->getType().getAsString());
2532    else
2533      FD->addAttr(new PackedAttr);
2534  } else
2535    Diag(rawAttr->getLoc(), diag::warn_attribute_ignored,
2536         rawAttr->getName()->getName());
2537}
2538
2539void Sema::HandleAliasAttribute(Decl *d, AttributeList *rawAttr) {
2540  // check the attribute arguments.
2541  if (rawAttr->getNumArgs() != 1) {
2542    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2543         std::string("1"));
2544    return;
2545  }
2546
2547  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2548  Arg = Arg->IgnoreParenCasts();
2549  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2550
2551  if (Str == 0 || Str->isWide()) {
2552    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2553         "alias", std::string("1"));
2554    return;
2555  }
2556
2557  const char *Alias = Str->getStrData();
2558  unsigned AliasLen = Str->getByteLength();
2559
2560  // FIXME: check if target symbol exists in current file
2561
2562  d->addAttr(new AliasAttr(std::string(Alias, AliasLen)));
2563}
2564
2565void Sema::HandleNoReturnAttribute(Decl *d, AttributeList *rawAttr) {
2566  // check the attribute arguments.
2567  if (rawAttr->getNumArgs() != 0) {
2568    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2569         std::string("0"));
2570    return;
2571  }
2572
2573  FunctionDecl *Fn = dyn_cast<FunctionDecl>(d);
2574
2575  if (!Fn) {
2576    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2577         "noreturn", "function");
2578    return;
2579  }
2580
2581  d->addAttr(new NoReturnAttr());
2582}
2583
2584void Sema::HandleDeprecatedAttribute(Decl *d, AttributeList *rawAttr) {
2585  // check the attribute arguments.
2586  if (rawAttr->getNumArgs() != 0) {
2587    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2588         std::string("0"));
2589    return;
2590  }
2591
2592  d->addAttr(new DeprecatedAttr());
2593}
2594
2595void Sema::HandleVisibilityAttribute(Decl *d, AttributeList *rawAttr) {
2596  // check the attribute arguments.
2597  if (rawAttr->getNumArgs() != 1) {
2598    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2599         std::string("1"));
2600    return;
2601  }
2602
2603  Expr *Arg = static_cast<Expr*>(rawAttr->getArg(0));
2604  Arg = Arg->IgnoreParenCasts();
2605  StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2606
2607  if (Str == 0 || Str->isWide()) {
2608    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2609         "visibility", std::string("1"));
2610    return;
2611  }
2612
2613  const char *TypeStr = Str->getStrData();
2614  unsigned TypeLen = Str->getByteLength();
2615  VisibilityAttr::VisibilityTypes type;
2616
2617  if (TypeLen == 7 && !memcmp(TypeStr, "default", 7))
2618    type = VisibilityAttr::DefaultVisibility;
2619  else if (TypeLen == 6 && !memcmp(TypeStr, "hidden", 6))
2620    type = VisibilityAttr::HiddenVisibility;
2621  else if (TypeLen == 8 && !memcmp(TypeStr, "internal", 8))
2622    type = VisibilityAttr::HiddenVisibility; // FIXME
2623  else if (TypeLen == 9 && !memcmp(TypeStr, "protected", 9))
2624    type = VisibilityAttr::ProtectedVisibility;
2625  else {
2626    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2627           "visibility", TypeStr);
2628    return;
2629  }
2630
2631  d->addAttr(new VisibilityAttr(type));
2632}
2633
2634void Sema::HandleWeakAttribute(Decl *d, AttributeList *rawAttr) {
2635  // check the attribute arguments.
2636  if (rawAttr->getNumArgs() != 0) {
2637    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2638         std::string("0"));
2639    return;
2640  }
2641
2642  d->addAttr(new WeakAttr());
2643}
2644
2645void Sema::HandleDLLImportAttribute(Decl *d, AttributeList *rawAttr) {
2646  // check the attribute arguments.
2647  if (rawAttr->getNumArgs() != 0) {
2648    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2649         std::string("0"));
2650    return;
2651  }
2652
2653  d->addAttr(new DLLImportAttr());
2654}
2655
2656void Sema::HandleDLLExportAttribute(Decl *d, AttributeList *rawAttr) {
2657  // check the attribute arguments.
2658  if (rawAttr->getNumArgs() != 0) {
2659    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2660         std::string("0"));
2661    return;
2662  }
2663
2664  d->addAttr(new DLLExportAttr());
2665}
2666
2667void Sema::HandleStdCallAttribute(Decl *d, AttributeList *rawAttr) {
2668  // check the attribute arguments.
2669  if (rawAttr->getNumArgs() != 0) {
2670    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2671         std::string("0"));
2672    return;
2673  }
2674
2675  d->addAttr(new StdCallAttr());
2676}
2677
2678void Sema::HandleFastCallAttribute(Decl *d, AttributeList *rawAttr) {
2679  // check the attribute arguments.
2680  if (rawAttr->getNumArgs() != 0) {
2681    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2682         std::string("0"));
2683    return;
2684  }
2685
2686  d->addAttr(new FastCallAttr());
2687}
2688
2689void Sema::HandleNothrowAttribute(Decl *d, AttributeList *rawAttr) {
2690  // check the attribute arguments.
2691  if (rawAttr->getNumArgs() != 0) {
2692    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2693         std::string("0"));
2694    return;
2695  }
2696
2697  d->addAttr(new NoThrowAttr());
2698}
2699
2700static const FunctionTypeProto *getFunctionProto(Decl *d) {
2701  QualType Ty;
2702
2703  if (ValueDecl *decl = dyn_cast<ValueDecl>(d))
2704    Ty = decl->getType();
2705  else if (FieldDecl *decl = dyn_cast<FieldDecl>(d))
2706    Ty = decl->getType();
2707  else if (TypedefDecl* decl = dyn_cast<TypedefDecl>(d))
2708    Ty = decl->getUnderlyingType();
2709  else
2710    return 0;
2711
2712  if (Ty->isFunctionPointerType()) {
2713    const PointerType *PtrTy = Ty->getAsPointerType();
2714    Ty = PtrTy->getPointeeType();
2715  }
2716
2717  if (const FunctionType *FnTy = Ty->getAsFunctionType())
2718    return dyn_cast<FunctionTypeProto>(FnTy->getAsFunctionType());
2719
2720  return 0;
2721}
2722
2723static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
2724  if (!T->isPointerType())
2725    return false;
2726
2727  T = T->getAsPointerType()->getPointeeType().getCanonicalType();
2728  ObjCInterfaceType* ClsT = dyn_cast<ObjCInterfaceType>(T.getTypePtr());
2729
2730  if (!ClsT)
2731    return false;
2732
2733  IdentifierInfo* ClsName = ClsT->getDecl()->getIdentifier();
2734
2735  // FIXME: Should we walk the chain of classes?
2736  return ClsName == &Ctx.Idents.get("NSString") ||
2737         ClsName == &Ctx.Idents.get("NSMutableString");
2738}
2739
2740/// Handle __attribute__((format(type,idx,firstarg))) attributes
2741/// based on http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
2742void Sema::HandleFormatAttribute(Decl *d, AttributeList *rawAttr) {
2743
2744  if (!rawAttr->getParameterName()) {
2745    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_string,
2746           "format", std::string("1"));
2747    return;
2748  }
2749
2750  if (rawAttr->getNumArgs() != 2) {
2751    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2752         std::string("3"));
2753    return;
2754  }
2755
2756  // GCC ignores the format attribute on K&R style function
2757  // prototypes, so we ignore it as well
2758  const FunctionTypeProto *proto = getFunctionProto(d);
2759
2760  if (!proto) {
2761    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2762           "format", "function");
2763    return;
2764  }
2765
2766  // FIXME: in C++ the implicit 'this' function parameter also counts.
2767  // this is needed in order to be compatible with GCC
2768  // the index must start in 1 and the limit is numargs+1
2769  unsigned NumArgs  = proto->getNumArgs();
2770  unsigned FirstIdx = 1;
2771
2772  const char *Format = rawAttr->getParameterName()->getName();
2773  unsigned FormatLen = rawAttr->getParameterName()->getLength();
2774
2775  // Normalize the argument, __foo__ becomes foo.
2776  if (FormatLen > 4 && Format[0] == '_' && Format[1] == '_' &&
2777      Format[FormatLen - 2] == '_' && Format[FormatLen - 1] == '_') {
2778    Format += 2;
2779    FormatLen -= 4;
2780  }
2781
2782  bool Supported = false;
2783  bool is_NSString = false;
2784  bool is_strftime = false;
2785
2786  switch (FormatLen) {
2787    default: break;
2788    case 5:
2789      Supported = !memcmp(Format, "scanf", 5);
2790      break;
2791    case 6:
2792      Supported = !memcmp(Format, "printf", 6);
2793      break;
2794    case 7:
2795      Supported = !memcmp(Format, "strfmon", 7);
2796      break;
2797    case 8:
2798      Supported = (is_strftime = !memcmp(Format, "strftime", 8)) ||
2799                  (is_NSString = !memcmp(Format, "NSString", 8));
2800      break;
2801  }
2802
2803  if (!Supported) {
2804    Diag(rawAttr->getLoc(), diag::warn_attribute_type_not_supported,
2805           "format", rawAttr->getParameterName()->getName());
2806    return;
2807  }
2808
2809  // checks for the 2nd argument
2810  Expr *IdxExpr = static_cast<Expr *>(rawAttr->getArg(0));
2811  llvm::APSInt Idx(Context.getTypeSize(IdxExpr->getType()));
2812  if (!IdxExpr->isIntegerConstantExpr(Idx, Context)) {
2813    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2814           "format", std::string("2"), IdxExpr->getSourceRange());
2815    return;
2816  }
2817
2818  if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
2819    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2820           "format", std::string("2"), IdxExpr->getSourceRange());
2821    return;
2822  }
2823
2824  // FIXME: Do we need to bounds check?
2825  unsigned ArgIdx = Idx.getZExtValue() - 1;
2826
2827  // make sure the format string is really a string
2828  QualType Ty = proto->getArgType(ArgIdx);
2829
2830  if (is_NSString) {
2831    // FIXME: do we need to check if the type is NSString*?  What are
2832    //  the semantics?
2833    if (!isNSStringType(Ty, Context)) {
2834      // FIXME: Should highlight the actual expression that has the
2835      // wrong type.
2836      Diag(rawAttr->getLoc(), diag::err_format_attribute_not_NSString,
2837           IdxExpr->getSourceRange());
2838      return;
2839    }
2840  }
2841  else if (!Ty->isPointerType() ||
2842      !Ty->getAsPointerType()->getPointeeType()->isCharType()) {
2843    // FIXME: Should highlight the actual expression that has the
2844    // wrong type.
2845    Diag(rawAttr->getLoc(), diag::err_format_attribute_not_string,
2846         IdxExpr->getSourceRange());
2847    return;
2848  }
2849
2850  // check the 3rd argument
2851  Expr *FirstArgExpr = static_cast<Expr *>(rawAttr->getArg(1));
2852  llvm::APSInt FirstArg(Context.getTypeSize(FirstArgExpr->getType()));
2853  if (!FirstArgExpr->isIntegerConstantExpr(FirstArg, Context)) {
2854    Diag(rawAttr->getLoc(), diag::err_attribute_argument_n_not_int,
2855           "format", std::string("3"), FirstArgExpr->getSourceRange());
2856    return;
2857  }
2858
2859  // check if the function is variadic if the 3rd argument non-zero
2860  if (FirstArg != 0) {
2861    if (proto->isVariadic()) {
2862      ++NumArgs; // +1 for ...
2863    } else {
2864      Diag(d->getLocation(), diag::err_format_attribute_requires_variadic);
2865      return;
2866    }
2867  }
2868
2869  // strftime requires FirstArg to be 0 because it doesn't read from any variable
2870  // the input is just the current time + the format string
2871  if (is_strftime) {
2872    if (FirstArg != 0) {
2873      Diag(rawAttr->getLoc(), diag::err_format_strftime_third_parameter,
2874             FirstArgExpr->getSourceRange());
2875      return;
2876    }
2877  // if 0 it disables parameter checking (to use with e.g. va_list)
2878  } else if (FirstArg != 0 && FirstArg != NumArgs) {
2879    Diag(rawAttr->getLoc(), diag::err_attribute_argument_out_of_bounds,
2880           "format", std::string("3"), FirstArgExpr->getSourceRange());
2881    return;
2882  }
2883
2884  d->addAttr(new FormatAttr(std::string(Format, FormatLen),
2885                            Idx.getZExtValue(), FirstArg.getZExtValue()));
2886}
2887
2888void Sema::HandleTransparentUnionAttribute(Decl *d, AttributeList *rawAttr) {
2889  // check the attribute arguments.
2890  if (rawAttr->getNumArgs() != 0) {
2891    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2892         std::string("0"));
2893    return;
2894  }
2895
2896  TypeDecl *decl = dyn_cast<TypeDecl>(d);
2897
2898  if (!decl || !Context.getTypeDeclType(decl)->isUnionType()) {
2899    Diag(rawAttr->getLoc(), diag::warn_attribute_wrong_decl_type,
2900         "transparent_union", "union");
2901    return;
2902  }
2903
2904  //QualType QTy = Context.getTypeDeclType(decl);
2905  //const RecordType *Ty = QTy->getAsUnionType();
2906
2907// FIXME
2908// Ty->addAttr(new TransparentUnionAttr());
2909}
2910
2911void Sema::HandleAnnotateAttribute(Decl *d, AttributeList *rawAttr) {
2912  // check the attribute arguments.
2913  if (rawAttr->getNumArgs() != 1) {
2914    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2915         std::string("1"));
2916    return;
2917  }
2918  Expr *argExpr = static_cast<Expr *>(rawAttr->getArg(0));
2919  StringLiteral *SE = dyn_cast<StringLiteral>(argExpr);
2920
2921  // Make sure that there is a string literal as the annotation's single
2922  // argument.
2923  if (!SE) {
2924    Diag(rawAttr->getLoc(), diag::err_attribute_annotate_no_string);
2925    return;
2926  }
2927  d->addAttr(new AnnotateAttr(std::string(SE->getStrData(),
2928                                          SE->getByteLength())));
2929}
2930
2931void Sema::HandleAlignedAttribute(Decl *d, AttributeList *rawAttr)
2932{
2933  // check the attribute arguments.
2934  if (rawAttr->getNumArgs() > 1) {
2935    Diag(rawAttr->getLoc(), diag::err_attribute_wrong_number_arguments,
2936         std::string("1"));
2937    return;
2938  }
2939
2940  unsigned Align = 0;
2941
2942  if (rawAttr->getNumArgs() == 0) {
2943    // FIXME: This should be the target specific maximum alignment.
2944    // (For now we just use 128 bits which is the maximum on X86.
2945    Align = 128;
2946    return;
2947  } else {
2948    Expr *alignmentExpr = static_cast<Expr *>(rawAttr->getArg(0));
2949    llvm::APSInt alignment(32);
2950    if (!alignmentExpr->isIntegerConstantExpr(alignment, Context)) {
2951      Diag(rawAttr->getLoc(), diag::err_attribute_argument_not_int,
2952           "aligned", alignmentExpr->getSourceRange());
2953      return;
2954    }
2955
2956    Align = alignment.getZExtValue() * 8;
2957  }
2958
2959  d->addAttr(new AlignedAttr(Align));
2960}
2961