SemaDecl.cpp revision aa4bc18240c03b5ed7952aa5e013c081f8733ed3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "TypeLocBuilder.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/CXXInheritance.h"
19#include "clang/AST/CharUnits.h"
20#include "clang/AST/CommentDiagnostic.h"
21#include "clang/AST/DeclCXX.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/EvaluatedExprVisitor.h"
25#include "clang/AST/ExprCXX.h"
26#include "clang/AST/StmtCXX.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30#include "clang/Lex/HeaderSearch.h" // FIXME: Sema shouldn't depend on Lex
31#include "clang/Lex/ModuleLoader.h" // FIXME: Sema shouldn't depend on Lex
32#include "clang/Lex/Preprocessor.h" // FIXME: Sema shouldn't depend on Lex
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Sema/CXXFieldCollector.h"
35#include "clang/Sema/DeclSpec.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Sema/Initialization.h"
38#include "clang/Sema/Lookup.h"
39#include "clang/Sema/ParsedTemplate.h"
40#include "clang/Sema/Scope.h"
41#include "clang/Sema/ScopeInfo.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid, bool WantClass=false)
64      : AllowInvalidDecl(AllowInvalid), WantClassName(WantClass) {
65    WantExpressionKeywords = false;
66    WantCXXNamedCasts = false;
67    WantRemainingKeywords = false;
68  }
69
70  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
71    if (NamedDecl *ND = candidate.getCorrectionDecl())
72      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
73          (AllowInvalidDecl || !ND->isInvalidDecl());
74    else
75      return !WantClassName && candidate.isKeyword();
76  }
77
78 private:
79  bool AllowInvalidDecl;
80  bool WantClassName;
81};
82
83}
84
85/// \brief Determine whether the token kind starts a simple-type-specifier.
86bool Sema::isSimpleTypeSpecifier(tok::TokenKind Kind) const {
87  switch (Kind) {
88  // FIXME: Take into account the current language when deciding whether a
89  // token kind is a valid type specifier
90  case tok::kw_short:
91  case tok::kw_long:
92  case tok::kw___int64:
93  case tok::kw___int128:
94  case tok::kw_signed:
95  case tok::kw_unsigned:
96  case tok::kw_void:
97  case tok::kw_char:
98  case tok::kw_int:
99  case tok::kw_half:
100  case tok::kw_float:
101  case tok::kw_double:
102  case tok::kw_wchar_t:
103  case tok::kw_bool:
104  case tok::kw___underlying_type:
105    return true;
106
107  case tok::annot_typename:
108  case tok::kw_char16_t:
109  case tok::kw_char32_t:
110  case tok::kw_typeof:
111  case tok::kw_decltype:
112    return getLangOpts().CPlusPlus;
113
114  default:
115    break;
116  }
117
118  return false;
119}
120
121/// \brief If the identifier refers to a type name within this scope,
122/// return the declaration of that type.
123///
124/// This routine performs ordinary name lookup of the identifier II
125/// within the given scope, with optional C++ scope specifier SS, to
126/// determine whether the name refers to a type. If so, returns an
127/// opaque pointer (actually a QualType) corresponding to that
128/// type. Otherwise, returns NULL.
129///
130/// If name lookup results in an ambiguity, this routine will complain
131/// and then return NULL.
132ParsedType Sema::getTypeName(const IdentifierInfo &II, SourceLocation NameLoc,
133                             Scope *S, CXXScopeSpec *SS,
134                             bool isClassName, bool HasTrailingDot,
135                             ParsedType ObjectTypePtr,
136                             bool IsCtorOrDtorName,
137                             bool WantNontrivialTypeSourceInfo,
138                             IdentifierInfo **CorrectedII) {
139  // Determine where we will perform name lookup.
140  DeclContext *LookupCtx = 0;
141  if (ObjectTypePtr) {
142    QualType ObjectType = ObjectTypePtr.get();
143    if (ObjectType->isRecordType())
144      LookupCtx = computeDeclContext(ObjectType);
145  } else if (SS && SS->isNotEmpty()) {
146    LookupCtx = computeDeclContext(*SS, false);
147
148    if (!LookupCtx) {
149      if (isDependentScopeSpecifier(*SS)) {
150        // C++ [temp.res]p3:
151        //   A qualified-id that refers to a type and in which the
152        //   nested-name-specifier depends on a template-parameter (14.6.2)
153        //   shall be prefixed by the keyword typename to indicate that the
154        //   qualified-id denotes a type, forming an
155        //   elaborated-type-specifier (7.1.5.3).
156        //
157        // We therefore do not perform any name lookup if the result would
158        // refer to a member of an unknown specialization.
159        if (!isClassName && !IsCtorOrDtorName)
160          return ParsedType();
161
162        // We know from the grammar that this name refers to a type,
163        // so build a dependent node to describe the type.
164        if (WantNontrivialTypeSourceInfo)
165          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
166
167        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
168        QualType T =
169          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
170                            II, NameLoc);
171
172          return ParsedType::make(T);
173      }
174
175      return ParsedType();
176    }
177
178    if (!LookupCtx->isDependentContext() &&
179        RequireCompleteDeclContext(*SS, LookupCtx))
180      return ParsedType();
181  }
182
183  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
184  // lookup for class-names.
185  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
186                                      LookupOrdinaryName;
187  LookupResult Result(*this, &II, NameLoc, Kind);
188  if (LookupCtx) {
189    // Perform "qualified" name lookup into the declaration context we
190    // computed, which is either the type of the base of a member access
191    // expression or the declaration context associated with a prior
192    // nested-name-specifier.
193    LookupQualifiedName(Result, LookupCtx);
194
195    if (ObjectTypePtr && Result.empty()) {
196      // C++ [basic.lookup.classref]p3:
197      //   If the unqualified-id is ~type-name, the type-name is looked up
198      //   in the context of the entire postfix-expression. If the type T of
199      //   the object expression is of a class type C, the type-name is also
200      //   looked up in the scope of class C. At least one of the lookups shall
201      //   find a name that refers to (possibly cv-qualified) T.
202      LookupName(Result, S);
203    }
204  } else {
205    // Perform unqualified name lookup.
206    LookupName(Result, S);
207  }
208
209  NamedDecl *IIDecl = 0;
210  switch (Result.getResultKind()) {
211  case LookupResult::NotFound:
212  case LookupResult::NotFoundInCurrentInstantiation:
213    if (CorrectedII) {
214      TypeNameValidatorCCC Validator(true, isClassName);
215      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
216                                              Kind, S, SS, Validator);
217      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
218      TemplateTy Template;
219      bool MemberOfUnknownSpecialization;
220      UnqualifiedId TemplateName;
221      TemplateName.setIdentifier(NewII, NameLoc);
222      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
223      CXXScopeSpec NewSS, *NewSSPtr = SS;
224      if (SS && NNS) {
225        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
226        NewSSPtr = &NewSS;
227      }
228      if (Correction && (NNS || NewII != &II) &&
229          // Ignore a correction to a template type as the to-be-corrected
230          // identifier is not a template (typo correction for template names
231          // is handled elsewhere).
232          !(getLangOpts().CPlusPlus && NewSSPtr &&
233            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
234                           false, Template, MemberOfUnknownSpecialization))) {
235        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
236                                    isClassName, HasTrailingDot, ObjectTypePtr,
237                                    IsCtorOrDtorName,
238                                    WantNontrivialTypeSourceInfo);
239        if (Ty) {
240          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
241          std::string CorrectedQuotedStr(
242              Correction.getQuoted(getLangOpts()));
243          Diag(NameLoc, diag::err_unknown_type_or_class_name_suggest)
244              << Result.getLookupName() << CorrectedQuotedStr << isClassName
245              << FixItHint::CreateReplacement(SourceRange(NameLoc),
246                                              CorrectedStr);
247          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
248            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
249              << CorrectedQuotedStr;
250
251          if (SS && NNS)
252            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
253          *CorrectedII = NewII;
254          return Ty;
255        }
256      }
257    }
258    // If typo correction failed or was not performed, fall through
259  case LookupResult::FoundOverloaded:
260  case LookupResult::FoundUnresolvedValue:
261    Result.suppressDiagnostics();
262    return ParsedType();
263
264  case LookupResult::Ambiguous:
265    // Recover from type-hiding ambiguities by hiding the type.  We'll
266    // do the lookup again when looking for an object, and we can
267    // diagnose the error then.  If we don't do this, then the error
268    // about hiding the type will be immediately followed by an error
269    // that only makes sense if the identifier was treated like a type.
270    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
271      Result.suppressDiagnostics();
272      return ParsedType();
273    }
274
275    // Look to see if we have a type anywhere in the list of results.
276    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
277         Res != ResEnd; ++Res) {
278      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
279        if (!IIDecl ||
280            (*Res)->getLocation().getRawEncoding() <
281              IIDecl->getLocation().getRawEncoding())
282          IIDecl = *Res;
283      }
284    }
285
286    if (!IIDecl) {
287      // None of the entities we found is a type, so there is no way
288      // to even assume that the result is a type. In this case, don't
289      // complain about the ambiguity. The parser will either try to
290      // perform this lookup again (e.g., as an object name), which
291      // will produce the ambiguity, or will complain that it expected
292      // a type name.
293      Result.suppressDiagnostics();
294      return ParsedType();
295    }
296
297    // We found a type within the ambiguous lookup; diagnose the
298    // ambiguity and then return that type. This might be the right
299    // answer, or it might not be, but it suppresses any attempt to
300    // perform the name lookup again.
301    break;
302
303  case LookupResult::Found:
304    IIDecl = Result.getFoundDecl();
305    break;
306  }
307
308  assert(IIDecl && "Didn't find decl");
309
310  QualType T;
311  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
312    DiagnoseUseOfDecl(IIDecl, NameLoc);
313
314    if (T.isNull())
315      T = Context.getTypeDeclType(TD);
316
317    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
318    // constructor or destructor name (in such a case, the scope specifier
319    // will be attached to the enclosing Expr or Decl node).
320    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
321      if (WantNontrivialTypeSourceInfo) {
322        // Construct a type with type-source information.
323        TypeLocBuilder Builder;
324        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
325
326        T = getElaboratedType(ETK_None, *SS, T);
327        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
328        ElabTL.setElaboratedKeywordLoc(SourceLocation());
329        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
330        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
331      } else {
332        T = getElaboratedType(ETK_None, *SS, T);
333      }
334    }
335  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
336    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
337    if (!HasTrailingDot)
338      T = Context.getObjCInterfaceType(IDecl);
339  }
340
341  if (T.isNull()) {
342    // If it's not plausibly a type, suppress diagnostics.
343    Result.suppressDiagnostics();
344    return ParsedType();
345  }
346  return ParsedType::make(T);
347}
348
349/// isTagName() - This method is called *for error recovery purposes only*
350/// to determine if the specified name is a valid tag name ("struct foo").  If
351/// so, this returns the TST for the tag corresponding to it (TST_enum,
352/// TST_union, TST_struct, TST_interface, TST_class).  This is used to diagnose
353/// cases in C where the user forgot to specify the tag.
354DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
355  // Do a tag name lookup in this scope.
356  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
357  LookupName(R, S, false);
358  R.suppressDiagnostics();
359  if (R.getResultKind() == LookupResult::Found)
360    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
361      switch (TD->getTagKind()) {
362      case TTK_Struct: return DeclSpec::TST_struct;
363      case TTK_Interface: return DeclSpec::TST_interface;
364      case TTK_Union:  return DeclSpec::TST_union;
365      case TTK_Class:  return DeclSpec::TST_class;
366      case TTK_Enum:   return DeclSpec::TST_enum;
367      }
368    }
369
370  return DeclSpec::TST_unspecified;
371}
372
373/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
374/// if a CXXScopeSpec's type is equal to the type of one of the base classes
375/// then downgrade the missing typename error to a warning.
376/// This is needed for MSVC compatibility; Example:
377/// @code
378/// template<class T> class A {
379/// public:
380///   typedef int TYPE;
381/// };
382/// template<class T> class B : public A<T> {
383/// public:
384///   A<T>::TYPE a; // no typename required because A<T> is a base class.
385/// };
386/// @endcode
387bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
388  if (CurContext->isRecord()) {
389    const Type *Ty = SS->getScopeRep()->getAsType();
390
391    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
392    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
393          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
394      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
395        return true;
396    return S->isFunctionPrototypeScope();
397  }
398  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
399}
400
401bool Sema::DiagnoseUnknownTypeName(IdentifierInfo *&II,
402                                   SourceLocation IILoc,
403                                   Scope *S,
404                                   CXXScopeSpec *SS,
405                                   ParsedType &SuggestedType) {
406  // We don't have anything to suggest (yet).
407  SuggestedType = ParsedType();
408
409  // There may have been a typo in the name of the type. Look up typo
410  // results, in case we have something that we can suggest.
411  TypeNameValidatorCCC Validator(false);
412  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(II, IILoc),
413                                             LookupOrdinaryName, S, SS,
414                                             Validator)) {
415    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
416    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
417
418    if (Corrected.isKeyword()) {
419      // We corrected to a keyword.
420      IdentifierInfo *NewII = Corrected.getCorrectionAsIdentifierInfo();
421      if (!isSimpleTypeSpecifier(NewII->getTokenID()))
422        CorrectedQuotedStr = "the keyword " + CorrectedQuotedStr;
423      Diag(IILoc, diag::err_unknown_typename_suggest)
424        << II << CorrectedQuotedStr
425        << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
426      II = NewII;
427    } else {
428      NamedDecl *Result = Corrected.getCorrectionDecl();
429      // We found a similarly-named type or interface; suggest that.
430      if (!SS || !SS->isSet())
431        Diag(IILoc, diag::err_unknown_typename_suggest)
432          << II << CorrectedQuotedStr
433          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
434      else if (DeclContext *DC = computeDeclContext(*SS, false))
435        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
436          << II << DC << CorrectedQuotedStr << SS->getRange()
437          << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
438                                          CorrectedStr);
439      else
440        llvm_unreachable("could not have corrected a typo here");
441
442      Diag(Result->getLocation(), diag::note_previous_decl)
443        << CorrectedQuotedStr;
444
445      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
446                                  false, false, ParsedType(),
447                                  /*IsCtorOrDtorName=*/false,
448                                  /*NonTrivialTypeSourceInfo=*/true);
449    }
450    return true;
451  }
452
453  if (getLangOpts().CPlusPlus) {
454    // See if II is a class template that the user forgot to pass arguments to.
455    UnqualifiedId Name;
456    Name.setIdentifier(II, IILoc);
457    CXXScopeSpec EmptySS;
458    TemplateTy TemplateResult;
459    bool MemberOfUnknownSpecialization;
460    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
461                       Name, ParsedType(), true, TemplateResult,
462                       MemberOfUnknownSpecialization) == TNK_Type_template) {
463      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
464      Diag(IILoc, diag::err_template_missing_args) << TplName;
465      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
466        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
467          << TplDecl->getTemplateParameters()->getSourceRange();
468      }
469      return true;
470    }
471  }
472
473  // FIXME: Should we move the logic that tries to recover from a missing tag
474  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
475
476  if (!SS || (!SS->isSet() && !SS->isInvalid()))
477    Diag(IILoc, diag::err_unknown_typename) << II;
478  else if (DeclContext *DC = computeDeclContext(*SS, false))
479    Diag(IILoc, diag::err_typename_nested_not_found)
480      << II << DC << SS->getRange();
481  else if (isDependentScopeSpecifier(*SS)) {
482    unsigned DiagID = diag::err_typename_missing;
483    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
484      DiagID = diag::warn_typename_missing;
485
486    Diag(SS->getRange().getBegin(), DiagID)
487      << (NestedNameSpecifier *)SS->getScopeRep() << II->getName()
488      << SourceRange(SS->getRange().getBegin(), IILoc)
489      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
490    SuggestedType = ActOnTypenameType(S, SourceLocation(),
491                                      *SS, *II, IILoc).get();
492  } else {
493    assert(SS && SS->isInvalid() &&
494           "Invalid scope specifier has already been diagnosed");
495  }
496
497  return true;
498}
499
500/// \brief Determine whether the given result set contains either a type name
501/// or
502static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
503  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
504                       NextToken.is(tok::less);
505
506  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
507    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
508      return true;
509
510    if (CheckTemplate && isa<TemplateDecl>(*I))
511      return true;
512  }
513
514  return false;
515}
516
517static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
518                                    Scope *S, CXXScopeSpec &SS,
519                                    IdentifierInfo *&Name,
520                                    SourceLocation NameLoc) {
521  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupTagName);
522  SemaRef.LookupParsedName(R, S, &SS);
523  if (TagDecl *Tag = R.getAsSingle<TagDecl>()) {
524    const char *TagName = 0;
525    const char *FixItTagName = 0;
526    switch (Tag->getTagKind()) {
527      case TTK_Class:
528        TagName = "class";
529        FixItTagName = "class ";
530        break;
531
532      case TTK_Enum:
533        TagName = "enum";
534        FixItTagName = "enum ";
535        break;
536
537      case TTK_Struct:
538        TagName = "struct";
539        FixItTagName = "struct ";
540        break;
541
542      case TTK_Interface:
543        TagName = "__interface";
544        FixItTagName = "__interface ";
545        break;
546
547      case TTK_Union:
548        TagName = "union";
549        FixItTagName = "union ";
550        break;
551    }
552
553    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
554      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
555      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
556
557    for (LookupResult::iterator I = Result.begin(), IEnd = Result.end();
558         I != IEnd; ++I)
559      SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
560        << Name << TagName;
561
562    // Replace lookup results with just the tag decl.
563    Result.clear(Sema::LookupTagName);
564    SemaRef.LookupParsedName(Result, S, &SS);
565    return true;
566  }
567
568  return false;
569}
570
571/// Build a ParsedType for a simple-type-specifier with a nested-name-specifier.
572static ParsedType buildNestedType(Sema &S, CXXScopeSpec &SS,
573                                  QualType T, SourceLocation NameLoc) {
574  ASTContext &Context = S.Context;
575
576  TypeLocBuilder Builder;
577  Builder.pushTypeSpec(T).setNameLoc(NameLoc);
578
579  T = S.getElaboratedType(ETK_None, SS, T);
580  ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
581  ElabTL.setElaboratedKeywordLoc(SourceLocation());
582  ElabTL.setQualifierLoc(SS.getWithLocInContext(Context));
583  return S.CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
584}
585
586Sema::NameClassification Sema::ClassifyName(Scope *S,
587                                            CXXScopeSpec &SS,
588                                            IdentifierInfo *&Name,
589                                            SourceLocation NameLoc,
590                                            const Token &NextToken,
591                                            bool IsAddressOfOperand,
592                                            CorrectionCandidateCallback *CCC) {
593  DeclarationNameInfo NameInfo(Name, NameLoc);
594  ObjCMethodDecl *CurMethod = getCurMethodDecl();
595
596  if (NextToken.is(tok::coloncolon)) {
597    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
598                                QualType(), false, SS, 0, false);
599
600  }
601
602  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
603  LookupParsedName(Result, S, &SS, !CurMethod);
604
605  // Perform lookup for Objective-C instance variables (including automatically
606  // synthesized instance variables), if we're in an Objective-C method.
607  // FIXME: This lookup really, really needs to be folded in to the normal
608  // unqualified lookup mechanism.
609  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
610    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
611    if (E.get() || E.isInvalid())
612      return E;
613  }
614
615  bool SecondTry = false;
616  bool IsFilteredTemplateName = false;
617
618Corrected:
619  switch (Result.getResultKind()) {
620  case LookupResult::NotFound:
621    // If an unqualified-id is followed by a '(', then we have a function
622    // call.
623    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
624      // In C++, this is an ADL-only call.
625      // FIXME: Reference?
626      if (getLangOpts().CPlusPlus)
627        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
628
629      // C90 6.3.2.2:
630      //   If the expression that precedes the parenthesized argument list in a
631      //   function call consists solely of an identifier, and if no
632      //   declaration is visible for this identifier, the identifier is
633      //   implicitly declared exactly as if, in the innermost block containing
634      //   the function call, the declaration
635      //
636      //     extern int identifier ();
637      //
638      //   appeared.
639      //
640      // We also allow this in C99 as an extension.
641      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
642        Result.addDecl(D);
643        Result.resolveKind();
644        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
645      }
646    }
647
648    // In C, we first see whether there is a tag type by the same name, in
649    // which case it's likely that the user just forget to write "enum",
650    // "struct", or "union".
651    if (!getLangOpts().CPlusPlus && !SecondTry &&
652        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
653      break;
654    }
655
656    // Perform typo correction to determine if there is another name that is
657    // close to this name.
658    if (!SecondTry && CCC) {
659      SecondTry = true;
660      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
661                                                 Result.getLookupKind(), S,
662                                                 &SS, *CCC)) {
663        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
664        unsigned QualifiedDiag = diag::err_no_member_suggest;
665        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
666        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
667
668        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
669        NamedDecl *UnderlyingFirstDecl
670          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
671        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
673          UnqualifiedDiag = diag::err_no_template_suggest;
674          QualifiedDiag = diag::err_no_member_template_suggest;
675        } else if (UnderlyingFirstDecl &&
676                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
677                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
678                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
679          UnqualifiedDiag = diag::err_unknown_typename_suggest;
680          QualifiedDiag = diag::err_unknown_nested_typename_suggest;
681        }
682
683        if (SS.isEmpty())
684          Diag(NameLoc, UnqualifiedDiag)
685            << Name << CorrectedQuotedStr
686            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
687        else // FIXME: is this even reachable? Test it.
688          Diag(NameLoc, QualifiedDiag)
689            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
690            << SS.getRange()
691            << FixItHint::CreateReplacement(Corrected.getCorrectionRange(),
692                                            CorrectedStr);
693
694        // Update the name, so that the caller has the new name.
695        Name = Corrected.getCorrectionAsIdentifierInfo();
696
697        // Typo correction corrected to a keyword.
698        if (Corrected.isKeyword())
699          return Corrected.getCorrectionAsIdentifierInfo();
700
701        // Also update the LookupResult...
702        // FIXME: This should probably go away at some point
703        Result.clear();
704        Result.setLookupName(Corrected.getCorrection());
705        if (FirstDecl) {
706          Result.addDecl(FirstDecl);
707          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
708            << CorrectedQuotedStr;
709        }
710
711        // If we found an Objective-C instance variable, let
712        // LookupInObjCMethod build the appropriate expression to
713        // reference the ivar.
714        // FIXME: This is a gross hack.
715        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
716          Result.clear();
717          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
718          return E;
719        }
720
721        goto Corrected;
722      }
723    }
724
725    // We failed to correct; just fall through and let the parser deal with it.
726    Result.suppressDiagnostics();
727    return NameClassification::Unknown();
728
729  case LookupResult::NotFoundInCurrentInstantiation: {
730    // We performed name lookup into the current instantiation, and there were
731    // dependent bases, so we treat this result the same way as any other
732    // dependent nested-name-specifier.
733
734    // C++ [temp.res]p2:
735    //   A name used in a template declaration or definition and that is
736    //   dependent on a template-parameter is assumed not to name a type
737    //   unless the applicable name lookup finds a type name or the name is
738    //   qualified by the keyword typename.
739    //
740    // FIXME: If the next token is '<', we might want to ask the parser to
741    // perform some heroics to see if we actually have a
742    // template-argument-list, which would indicate a missing 'template'
743    // keyword here.
744    return ActOnDependentIdExpression(SS, /*TemplateKWLoc=*/SourceLocation(),
745                                      NameInfo, IsAddressOfOperand,
746                                      /*TemplateArgs=*/0);
747  }
748
749  case LookupResult::Found:
750  case LookupResult::FoundOverloaded:
751  case LookupResult::FoundUnresolvedValue:
752    break;
753
754  case LookupResult::Ambiguous:
755    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
756        hasAnyAcceptableTemplateNames(Result)) {
757      // C++ [temp.local]p3:
758      //   A lookup that finds an injected-class-name (10.2) can result in an
759      //   ambiguity in certain cases (for example, if it is found in more than
760      //   one base class). If all of the injected-class-names that are found
761      //   refer to specializations of the same class template, and if the name
762      //   is followed by a template-argument-list, the reference refers to the
763      //   class template itself and not a specialization thereof, and is not
764      //   ambiguous.
765      //
766      // This filtering can make an ambiguous result into an unambiguous one,
767      // so try again after filtering out template names.
768      FilterAcceptableTemplateNames(Result);
769      if (!Result.isAmbiguous()) {
770        IsFilteredTemplateName = true;
771        break;
772      }
773    }
774
775    // Diagnose the ambiguity and return an error.
776    return NameClassification::Error();
777  }
778
779  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
780      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
781    // C++ [temp.names]p3:
782    //   After name lookup (3.4) finds that a name is a template-name or that
783    //   an operator-function-id or a literal- operator-id refers to a set of
784    //   overloaded functions any member of which is a function template if
785    //   this is followed by a <, the < is always taken as the delimiter of a
786    //   template-argument-list and never as the less-than operator.
787    if (!IsFilteredTemplateName)
788      FilterAcceptableTemplateNames(Result);
789
790    if (!Result.empty()) {
791      bool IsFunctionTemplate;
792      TemplateName Template;
793      if (Result.end() - Result.begin() > 1) {
794        IsFunctionTemplate = true;
795        Template = Context.getOverloadedTemplateName(Result.begin(),
796                                                     Result.end());
797      } else {
798        TemplateDecl *TD
799          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
800        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
801
802        if (SS.isSet() && !SS.isInvalid())
803          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
804                                                    /*TemplateKeyword=*/false,
805                                                      TD);
806        else
807          Template = TemplateName(TD);
808      }
809
810      if (IsFunctionTemplate) {
811        // Function templates always go through overload resolution, at which
812        // point we'll perform the various checks (e.g., accessibility) we need
813        // to based on which function we selected.
814        Result.suppressDiagnostics();
815
816        return NameClassification::FunctionTemplate(Template);
817      }
818
819      return NameClassification::TypeTemplate(Template);
820    }
821  }
822
823  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
824  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
825    DiagnoseUseOfDecl(Type, NameLoc);
826    QualType T = Context.getTypeDeclType(Type);
827    if (SS.isNotEmpty())
828      return buildNestedType(*this, SS, T, NameLoc);
829    return ParsedType::make(T);
830  }
831
832  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
833  if (!Class) {
834    // FIXME: It's unfortunate that we don't have a Type node for handling this.
835    if (ObjCCompatibleAliasDecl *Alias
836                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
837      Class = Alias->getClassInterface();
838  }
839
840  if (Class) {
841    DiagnoseUseOfDecl(Class, NameLoc);
842
843    if (NextToken.is(tok::period)) {
844      // Interface. <something> is parsed as a property reference expression.
845      // Just return "unknown" as a fall-through for now.
846      Result.suppressDiagnostics();
847      return NameClassification::Unknown();
848    }
849
850    QualType T = Context.getObjCInterfaceType(Class);
851    return ParsedType::make(T);
852  }
853
854  // We can have a type template here if we're classifying a template argument.
855  if (isa<TemplateDecl>(FirstDecl) && !isa<FunctionTemplateDecl>(FirstDecl))
856    return NameClassification::TypeTemplate(
857        TemplateName(cast<TemplateDecl>(FirstDecl)));
858
859  // Check for a tag type hidden by a non-type decl in a few cases where it
860  // seems likely a type is wanted instead of the non-type that was found.
861  bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
862  if ((NextToken.is(tok::identifier) ||
863       (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
864      isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
865    TypeDecl *Type = Result.getAsSingle<TypeDecl>();
866    DiagnoseUseOfDecl(Type, NameLoc);
867    QualType T = Context.getTypeDeclType(Type);
868    if (SS.isNotEmpty())
869      return buildNestedType(*this, SS, T, NameLoc);
870    return ParsedType::make(T);
871  }
872
873  if (FirstDecl->isCXXClassMember())
874    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
875
876  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
877  return BuildDeclarationNameExpr(SS, Result, ADL);
878}
879
880// Determines the context to return to after temporarily entering a
881// context.  This depends in an unnecessarily complicated way on the
882// exact ordering of callbacks from the parser.
883DeclContext *Sema::getContainingDC(DeclContext *DC) {
884
885  // Functions defined inline within classes aren't parsed until we've
886  // finished parsing the top-level class, so the top-level class is
887  // the context we'll need to return to.
888  if (isa<FunctionDecl>(DC)) {
889    DC = DC->getLexicalParent();
890
891    // A function not defined within a class will always return to its
892    // lexical context.
893    if (!isa<CXXRecordDecl>(DC))
894      return DC;
895
896    // A C++ inline method/friend is parsed *after* the topmost class
897    // it was declared in is fully parsed ("complete");  the topmost
898    // class is the context we need to return to.
899    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
900      DC = RD;
901
902    // Return the declaration context of the topmost class the inline method is
903    // declared in.
904    return DC;
905  }
906
907  return DC->getLexicalParent();
908}
909
910void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
911  assert(getContainingDC(DC) == CurContext &&
912      "The next DeclContext should be lexically contained in the current one.");
913  CurContext = DC;
914  S->setEntity(DC);
915}
916
917void Sema::PopDeclContext() {
918  assert(CurContext && "DeclContext imbalance!");
919
920  CurContext = getContainingDC(CurContext);
921  assert(CurContext && "Popped translation unit!");
922}
923
924/// EnterDeclaratorContext - Used when we must lookup names in the context
925/// of a declarator's nested name specifier.
926///
927void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
928  // C++0x [basic.lookup.unqual]p13:
929  //   A name used in the definition of a static data member of class
930  //   X (after the qualified-id of the static member) is looked up as
931  //   if the name was used in a member function of X.
932  // C++0x [basic.lookup.unqual]p14:
933  //   If a variable member of a namespace is defined outside of the
934  //   scope of its namespace then any name used in the definition of
935  //   the variable member (after the declarator-id) is looked up as
936  //   if the definition of the variable member occurred in its
937  //   namespace.
938  // Both of these imply that we should push a scope whose context
939  // is the semantic context of the declaration.  We can't use
940  // PushDeclContext here because that context is not necessarily
941  // lexically contained in the current context.  Fortunately,
942  // the containing scope should have the appropriate information.
943
944  assert(!S->getEntity() && "scope already has entity");
945
946#ifndef NDEBUG
947  Scope *Ancestor = S->getParent();
948  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
949  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
950#endif
951
952  CurContext = DC;
953  S->setEntity(DC);
954}
955
956void Sema::ExitDeclaratorContext(Scope *S) {
957  assert(S->getEntity() == CurContext && "Context imbalance!");
958
959  // Switch back to the lexical context.  The safety of this is
960  // enforced by an assert in EnterDeclaratorContext.
961  Scope *Ancestor = S->getParent();
962  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
963  CurContext = (DeclContext*) Ancestor->getEntity();
964
965  // We don't need to do anything with the scope, which is going to
966  // disappear.
967}
968
969
970void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
971  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
972  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
973    // We assume that the caller has already called
974    // ActOnReenterTemplateScope
975    FD = TFD->getTemplatedDecl();
976  }
977  if (!FD)
978    return;
979
980  // Same implementation as PushDeclContext, but enters the context
981  // from the lexical parent, rather than the top-level class.
982  assert(CurContext == FD->getLexicalParent() &&
983    "The next DeclContext should be lexically contained in the current one.");
984  CurContext = FD;
985  S->setEntity(CurContext);
986
987  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
988    ParmVarDecl *Param = FD->getParamDecl(P);
989    // If the parameter has an identifier, then add it to the scope
990    if (Param->getIdentifier()) {
991      S->AddDecl(Param);
992      IdResolver.AddDecl(Param);
993    }
994  }
995}
996
997
998void Sema::ActOnExitFunctionContext() {
999  // Same implementation as PopDeclContext, but returns to the lexical parent,
1000  // rather than the top-level class.
1001  assert(CurContext && "DeclContext imbalance!");
1002  CurContext = CurContext->getLexicalParent();
1003  assert(CurContext && "Popped translation unit!");
1004}
1005
1006
1007/// \brief Determine whether we allow overloading of the function
1008/// PrevDecl with another declaration.
1009///
1010/// This routine determines whether overloading is possible, not
1011/// whether some new function is actually an overload. It will return
1012/// true in C++ (where we can always provide overloads) or, as an
1013/// extension, in C when the previous function is already an
1014/// overloaded function declaration or has the "overloadable"
1015/// attribute.
1016static bool AllowOverloadingOfFunction(LookupResult &Previous,
1017                                       ASTContext &Context) {
1018  if (Context.getLangOpts().CPlusPlus)
1019    return true;
1020
1021  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
1022    return true;
1023
1024  return (Previous.getResultKind() == LookupResult::Found
1025          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
1026}
1027
1028/// Add this decl to the scope shadowed decl chains.
1029void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
1030  // Move up the scope chain until we find the nearest enclosing
1031  // non-transparent context. The declaration will be introduced into this
1032  // scope.
1033  while (S->getEntity() &&
1034         ((DeclContext *)S->getEntity())->isTransparentContext())
1035    S = S->getParent();
1036
1037  // Add scoped declarations into their context, so that they can be
1038  // found later. Declarations without a context won't be inserted
1039  // into any context.
1040  if (AddToContext)
1041    CurContext->addDecl(D);
1042
1043  // Out-of-line definitions shouldn't be pushed into scope in C++.
1044  // Out-of-line variable and function definitions shouldn't even in C.
1045  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
1046      D->isOutOfLine() &&
1047      !D->getDeclContext()->getRedeclContext()->Equals(
1048        D->getLexicalDeclContext()->getRedeclContext()))
1049    return;
1050
1051  // Template instantiations should also not be pushed into scope.
1052  if (isa<FunctionDecl>(D) &&
1053      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
1054    return;
1055
1056  // If this replaces anything in the current scope,
1057  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
1058                               IEnd = IdResolver.end();
1059  for (; I != IEnd; ++I) {
1060    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
1061      S->RemoveDecl(*I);
1062      IdResolver.RemoveDecl(*I);
1063
1064      // Should only need to replace one decl.
1065      break;
1066    }
1067  }
1068
1069  S->AddDecl(D);
1070
1071  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1072    // Implicitly-generated labels may end up getting generated in an order that
1073    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1074    // the label at the appropriate place in the identifier chain.
1075    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1076      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1077      if (IDC == CurContext) {
1078        if (!S->isDeclScope(*I))
1079          continue;
1080      } else if (IDC->Encloses(CurContext))
1081        break;
1082    }
1083
1084    IdResolver.InsertDeclAfter(I, D);
1085  } else {
1086    IdResolver.AddDecl(D);
1087  }
1088}
1089
1090void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1091  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1092    TUScope->AddDecl(D);
1093}
1094
1095bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1096                         bool ExplicitInstantiationOrSpecialization) {
1097  return IdResolver.isDeclInScope(D, Ctx, S,
1098                                  ExplicitInstantiationOrSpecialization);
1099}
1100
1101Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1102  DeclContext *TargetDC = DC->getPrimaryContext();
1103  do {
1104    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1105      if (ScopeDC->getPrimaryContext() == TargetDC)
1106        return S;
1107  } while ((S = S->getParent()));
1108
1109  return 0;
1110}
1111
1112static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1113                                            DeclContext*,
1114                                            ASTContext&);
1115
1116/// Filters out lookup results that don't fall within the given scope
1117/// as determined by isDeclInScope.
1118void Sema::FilterLookupForScope(LookupResult &R,
1119                                DeclContext *Ctx, Scope *S,
1120                                bool ConsiderLinkage,
1121                                bool ExplicitInstantiationOrSpecialization) {
1122  LookupResult::Filter F = R.makeFilter();
1123  while (F.hasNext()) {
1124    NamedDecl *D = F.next();
1125
1126    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1127      continue;
1128
1129    if (ConsiderLinkage &&
1130        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1131      continue;
1132
1133    F.erase();
1134  }
1135
1136  F.done();
1137}
1138
1139static bool isUsingDecl(NamedDecl *D) {
1140  return isa<UsingShadowDecl>(D) ||
1141         isa<UnresolvedUsingTypenameDecl>(D) ||
1142         isa<UnresolvedUsingValueDecl>(D);
1143}
1144
1145/// Removes using shadow declarations from the lookup results.
1146static void RemoveUsingDecls(LookupResult &R) {
1147  LookupResult::Filter F = R.makeFilter();
1148  while (F.hasNext())
1149    if (isUsingDecl(F.next()))
1150      F.erase();
1151
1152  F.done();
1153}
1154
1155/// \brief Check for this common pattern:
1156/// @code
1157/// class S {
1158///   S(const S&); // DO NOT IMPLEMENT
1159///   void operator=(const S&); // DO NOT IMPLEMENT
1160/// };
1161/// @endcode
1162static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1163  // FIXME: Should check for private access too but access is set after we get
1164  // the decl here.
1165  if (D->doesThisDeclarationHaveABody())
1166    return false;
1167
1168  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1169    return CD->isCopyConstructor();
1170  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1171    return Method->isCopyAssignmentOperator();
1172  return false;
1173}
1174
1175// We need this to handle
1176//
1177// typedef struct {
1178//   void *foo() { return 0; }
1179// } A;
1180//
1181// When we see foo we don't know if after the typedef we will get 'A' or '*A'
1182// for example. If 'A', foo will have external linkage. If we have '*A',
1183// foo will have no linkage. Since we can't know untill we get to the end
1184// of the typedef, this function finds out if D might have non external linkage.
1185// Callers should verify at the end of the TU if it D has external linkage or
1186// not.
1187bool Sema::mightHaveNonExternalLinkage(const DeclaratorDecl *D) {
1188  const DeclContext *DC = D->getDeclContext();
1189  while (!DC->isTranslationUnit()) {
1190    if (const RecordDecl *RD = dyn_cast<RecordDecl>(DC)){
1191      if (!RD->hasNameForLinkage())
1192        return true;
1193    }
1194    DC = DC->getParent();
1195  }
1196
1197  return !D->isExternallyVisible();
1198}
1199
1200bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1201  assert(D);
1202
1203  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1204    return false;
1205
1206  // Ignore class templates.
1207  if (D->getDeclContext()->isDependentContext() ||
1208      D->getLexicalDeclContext()->isDependentContext())
1209    return false;
1210
1211  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1212    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1213      return false;
1214
1215    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1216      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1217        return false;
1218    } else {
1219      // 'static inline' functions are used in headers; don't warn.
1220      // Make sure we get the storage class from the canonical declaration,
1221      // since otherwise we will get spurious warnings on specialized
1222      // static template functions.
1223      if (FD->getCanonicalDecl()->getStorageClass() == SC_Static &&
1224          FD->isInlineSpecified())
1225        return false;
1226    }
1227
1228    if (FD->doesThisDeclarationHaveABody() &&
1229        Context.DeclMustBeEmitted(FD))
1230      return false;
1231  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1232    // Don't warn on variables of const-qualified or reference type, since their
1233    // values can be used even if though they're not odr-used, and because const
1234    // qualified variables can appear in headers in contexts where they're not
1235    // intended to be used.
1236    // FIXME: Use more principled rules for these exemptions.
1237    if (!VD->isFileVarDecl() ||
1238        VD->getType().isConstQualified() ||
1239        VD->getType()->isReferenceType() ||
1240        Context.DeclMustBeEmitted(VD))
1241      return false;
1242
1243    if (VD->isStaticDataMember() &&
1244        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1245      return false;
1246
1247  } else {
1248    return false;
1249  }
1250
1251  // Only warn for unused decls internal to the translation unit.
1252  return mightHaveNonExternalLinkage(D);
1253}
1254
1255void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1256  if (!D)
1257    return;
1258
1259  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1260    const FunctionDecl *First = FD->getFirstDeclaration();
1261    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1262      return; // First should already be in the vector.
1263  }
1264
1265  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1266    const VarDecl *First = VD->getFirstDeclaration();
1267    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1268      return; // First should already be in the vector.
1269  }
1270
1271  if (ShouldWarnIfUnusedFileScopedDecl(D))
1272    UnusedFileScopedDecls.push_back(D);
1273}
1274
1275static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1276  if (D->isInvalidDecl())
1277    return false;
1278
1279  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1280    return false;
1281
1282  if (isa<LabelDecl>(D))
1283    return true;
1284
1285  // White-list anything that isn't a local variable.
1286  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1287      !D->getDeclContext()->isFunctionOrMethod())
1288    return false;
1289
1290  // Types of valid local variables should be complete, so this should succeed.
1291  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1292
1293    // White-list anything with an __attribute__((unused)) type.
1294    QualType Ty = VD->getType();
1295
1296    // Only look at the outermost level of typedef.
1297    if (const TypedefType *TT = Ty->getAs<TypedefType>()) {
1298      if (TT->getDecl()->hasAttr<UnusedAttr>())
1299        return false;
1300    }
1301
1302    // If we failed to complete the type for some reason, or if the type is
1303    // dependent, don't diagnose the variable.
1304    if (Ty->isIncompleteType() || Ty->isDependentType())
1305      return false;
1306
1307    if (const TagType *TT = Ty->getAs<TagType>()) {
1308      const TagDecl *Tag = TT->getDecl();
1309      if (Tag->hasAttr<UnusedAttr>())
1310        return false;
1311
1312      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1313        if (!RD->hasTrivialDestructor())
1314          return false;
1315
1316        if (const Expr *Init = VD->getInit()) {
1317          if (const ExprWithCleanups *Cleanups = dyn_cast<ExprWithCleanups>(Init))
1318            Init = Cleanups->getSubExpr();
1319          const CXXConstructExpr *Construct =
1320            dyn_cast<CXXConstructExpr>(Init);
1321          if (Construct && !Construct->isElidable()) {
1322            CXXConstructorDecl *CD = Construct->getConstructor();
1323            if (!CD->isTrivial())
1324              return false;
1325          }
1326        }
1327      }
1328    }
1329
1330    // TODO: __attribute__((unused)) templates?
1331  }
1332
1333  return true;
1334}
1335
1336static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1337                                     FixItHint &Hint) {
1338  if (isa<LabelDecl>(D)) {
1339    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1340                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1341    if (AfterColon.isInvalid())
1342      return;
1343    Hint = FixItHint::CreateRemoval(CharSourceRange::
1344                                    getCharRange(D->getLocStart(), AfterColon));
1345  }
1346  return;
1347}
1348
1349/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1350/// unless they are marked attr(unused).
1351void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1352  FixItHint Hint;
1353  if (!ShouldDiagnoseUnusedDecl(D))
1354    return;
1355
1356  GenerateFixForUnusedDecl(D, Context, Hint);
1357
1358  unsigned DiagID;
1359  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1360    DiagID = diag::warn_unused_exception_param;
1361  else if (isa<LabelDecl>(D))
1362    DiagID = diag::warn_unused_label;
1363  else
1364    DiagID = diag::warn_unused_variable;
1365
1366  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1367}
1368
1369static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1370  // Verify that we have no forward references left.  If so, there was a goto
1371  // or address of a label taken, but no definition of it.  Label fwd
1372  // definitions are indicated with a null substmt.
1373  if (L->getStmt() == 0)
1374    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1375}
1376
1377void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1378  if (S->decl_empty()) return;
1379  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1380         "Scope shouldn't contain decls!");
1381
1382  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1383       I != E; ++I) {
1384    Decl *TmpD = (*I);
1385    assert(TmpD && "This decl didn't get pushed??");
1386
1387    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1388    NamedDecl *D = cast<NamedDecl>(TmpD);
1389
1390    if (!D->getDeclName()) continue;
1391
1392    // Diagnose unused variables in this scope.
1393    if (!S->hasUnrecoverableErrorOccurred())
1394      DiagnoseUnusedDecl(D);
1395
1396    // If this was a forward reference to a label, verify it was defined.
1397    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1398      CheckPoppedLabel(LD, *this);
1399
1400    // Remove this name from our lexical scope.
1401    IdResolver.RemoveDecl(D);
1402  }
1403}
1404
1405void Sema::ActOnStartFunctionDeclarator() {
1406  ++InFunctionDeclarator;
1407}
1408
1409void Sema::ActOnEndFunctionDeclarator() {
1410  assert(InFunctionDeclarator);
1411  --InFunctionDeclarator;
1412}
1413
1414/// \brief Look for an Objective-C class in the translation unit.
1415///
1416/// \param Id The name of the Objective-C class we're looking for. If
1417/// typo-correction fixes this name, the Id will be updated
1418/// to the fixed name.
1419///
1420/// \param IdLoc The location of the name in the translation unit.
1421///
1422/// \param DoTypoCorrection If true, this routine will attempt typo correction
1423/// if there is no class with the given name.
1424///
1425/// \returns The declaration of the named Objective-C class, or NULL if the
1426/// class could not be found.
1427ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1428                                              SourceLocation IdLoc,
1429                                              bool DoTypoCorrection) {
1430  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1431  // creation from this context.
1432  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1433
1434  if (!IDecl && DoTypoCorrection) {
1435    // Perform typo correction at the given location, but only if we
1436    // find an Objective-C class name.
1437    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1438    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1439                                       LookupOrdinaryName, TUScope, NULL,
1440                                       Validator)) {
1441      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1442      Diag(IdLoc, diag::err_undef_interface_suggest)
1443        << Id << IDecl->getDeclName()
1444        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1445      Diag(IDecl->getLocation(), diag::note_previous_decl)
1446        << IDecl->getDeclName();
1447
1448      Id = IDecl->getIdentifier();
1449    }
1450  }
1451  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1452  // This routine must always return a class definition, if any.
1453  if (Def && Def->getDefinition())
1454      Def = Def->getDefinition();
1455  return Def;
1456}
1457
1458/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1459/// from S, where a non-field would be declared. This routine copes
1460/// with the difference between C and C++ scoping rules in structs and
1461/// unions. For example, the following code is well-formed in C but
1462/// ill-formed in C++:
1463/// @code
1464/// struct S6 {
1465///   enum { BAR } e;
1466/// };
1467///
1468/// void test_S6() {
1469///   struct S6 a;
1470///   a.e = BAR;
1471/// }
1472/// @endcode
1473/// For the declaration of BAR, this routine will return a different
1474/// scope. The scope S will be the scope of the unnamed enumeration
1475/// within S6. In C++, this routine will return the scope associated
1476/// with S6, because the enumeration's scope is a transparent
1477/// context but structures can contain non-field names. In C, this
1478/// routine will return the translation unit scope, since the
1479/// enumeration's scope is a transparent context and structures cannot
1480/// contain non-field names.
1481Scope *Sema::getNonFieldDeclScope(Scope *S) {
1482  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1483         (S->getEntity() &&
1484          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1485         (S->isClassScope() && !getLangOpts().CPlusPlus))
1486    S = S->getParent();
1487  return S;
1488}
1489
1490/// \brief Looks up the declaration of "struct objc_super" and
1491/// saves it for later use in building builtin declaration of
1492/// objc_msgSendSuper and objc_msgSendSuper_stret. If no such
1493/// pre-existing declaration exists no action takes place.
1494static void LookupPredefedObjCSuperType(Sema &ThisSema, Scope *S,
1495                                        IdentifierInfo *II) {
1496  if (!II->isStr("objc_msgSendSuper"))
1497    return;
1498  ASTContext &Context = ThisSema.Context;
1499
1500  LookupResult Result(ThisSema, &Context.Idents.get("objc_super"),
1501                      SourceLocation(), Sema::LookupTagName);
1502  ThisSema.LookupName(Result, S);
1503  if (Result.getResultKind() == LookupResult::Found)
1504    if (const TagDecl *TD = Result.getAsSingle<TagDecl>())
1505      Context.setObjCSuperType(Context.getTagDeclType(TD));
1506}
1507
1508/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1509/// file scope.  lazily create a decl for it. ForRedeclaration is true
1510/// if we're creating this built-in in anticipation of redeclaring the
1511/// built-in.
1512NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1513                                     Scope *S, bool ForRedeclaration,
1514                                     SourceLocation Loc) {
1515  LookupPredefedObjCSuperType(*this, S, II);
1516
1517  Builtin::ID BID = (Builtin::ID)bid;
1518
1519  ASTContext::GetBuiltinTypeError Error;
1520  QualType R = Context.GetBuiltinType(BID, Error);
1521  switch (Error) {
1522  case ASTContext::GE_None:
1523    // Okay
1524    break;
1525
1526  case ASTContext::GE_Missing_stdio:
1527    if (ForRedeclaration)
1528      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1529        << Context.BuiltinInfo.GetName(BID);
1530    return 0;
1531
1532  case ASTContext::GE_Missing_setjmp:
1533    if (ForRedeclaration)
1534      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1535        << Context.BuiltinInfo.GetName(BID);
1536    return 0;
1537
1538  case ASTContext::GE_Missing_ucontext:
1539    if (ForRedeclaration)
1540      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1541        << Context.BuiltinInfo.GetName(BID);
1542    return 0;
1543  }
1544
1545  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1546    Diag(Loc, diag::ext_implicit_lib_function_decl)
1547      << Context.BuiltinInfo.GetName(BID)
1548      << R;
1549    if (Context.BuiltinInfo.getHeaderName(BID) &&
1550        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1551          != DiagnosticsEngine::Ignored)
1552      Diag(Loc, diag::note_please_include_header)
1553        << Context.BuiltinInfo.getHeaderName(BID)
1554        << Context.BuiltinInfo.GetName(BID);
1555  }
1556
1557  FunctionDecl *New = FunctionDecl::Create(Context,
1558                                           Context.getTranslationUnitDecl(),
1559                                           Loc, Loc, II, R, /*TInfo=*/0,
1560                                           SC_Extern,
1561                                           false,
1562                                           /*hasPrototype=*/true);
1563  New->setImplicit();
1564
1565  // Create Decl objects for each parameter, adding them to the
1566  // FunctionDecl.
1567  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1568    SmallVector<ParmVarDecl*, 16> Params;
1569    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1570      ParmVarDecl *parm =
1571        ParmVarDecl::Create(Context, New, SourceLocation(),
1572                            SourceLocation(), 0,
1573                            FT->getArgType(i), /*TInfo=*/0,
1574                            SC_None, 0);
1575      parm->setScopeInfo(0, i);
1576      Params.push_back(parm);
1577    }
1578    New->setParams(Params);
1579  }
1580
1581  AddKnownFunctionAttributes(New);
1582
1583  // TUScope is the translation-unit scope to insert this function into.
1584  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1585  // relate Scopes to DeclContexts, and probably eliminate CurContext
1586  // entirely, but we're not there yet.
1587  DeclContext *SavedContext = CurContext;
1588  CurContext = Context.getTranslationUnitDecl();
1589  PushOnScopeChains(New, TUScope);
1590  CurContext = SavedContext;
1591  return New;
1592}
1593
1594/// \brief Filter out any previous declarations that the given declaration
1595/// should not consider because they are not permitted to conflict, e.g.,
1596/// because they come from hidden sub-modules and do not refer to the same
1597/// entity.
1598static void filterNonConflictingPreviousDecls(ASTContext &context,
1599                                              NamedDecl *decl,
1600                                              LookupResult &previous){
1601  // This is only interesting when modules are enabled.
1602  if (!context.getLangOpts().Modules)
1603    return;
1604
1605  // Empty sets are uninteresting.
1606  if (previous.empty())
1607    return;
1608
1609  LookupResult::Filter filter = previous.makeFilter();
1610  while (filter.hasNext()) {
1611    NamedDecl *old = filter.next();
1612
1613    // Non-hidden declarations are never ignored.
1614    if (!old->isHidden())
1615      continue;
1616
1617    if (!old->isExternallyVisible())
1618      filter.erase();
1619  }
1620
1621  filter.done();
1622}
1623
1624bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1625  QualType OldType;
1626  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1627    OldType = OldTypedef->getUnderlyingType();
1628  else
1629    OldType = Context.getTypeDeclType(Old);
1630  QualType NewType = New->getUnderlyingType();
1631
1632  if (NewType->isVariablyModifiedType()) {
1633    // Must not redefine a typedef with a variably-modified type.
1634    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1635    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1636      << Kind << NewType;
1637    if (Old->getLocation().isValid())
1638      Diag(Old->getLocation(), diag::note_previous_definition);
1639    New->setInvalidDecl();
1640    return true;
1641  }
1642
1643  if (OldType != NewType &&
1644      !OldType->isDependentType() &&
1645      !NewType->isDependentType() &&
1646      !Context.hasSameType(OldType, NewType)) {
1647    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1648    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1649      << Kind << NewType << OldType;
1650    if (Old->getLocation().isValid())
1651      Diag(Old->getLocation(), diag::note_previous_definition);
1652    New->setInvalidDecl();
1653    return true;
1654  }
1655  return false;
1656}
1657
1658/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1659/// same name and scope as a previous declaration 'Old'.  Figure out
1660/// how to resolve this situation, merging decls or emitting
1661/// diagnostics as appropriate. If there was an error, set New to be invalid.
1662///
1663void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1664  // If the new decl is known invalid already, don't bother doing any
1665  // merging checks.
1666  if (New->isInvalidDecl()) return;
1667
1668  // Allow multiple definitions for ObjC built-in typedefs.
1669  // FIXME: Verify the underlying types are equivalent!
1670  if (getLangOpts().ObjC1) {
1671    const IdentifierInfo *TypeID = New->getIdentifier();
1672    switch (TypeID->getLength()) {
1673    default: break;
1674    case 2:
1675      {
1676        if (!TypeID->isStr("id"))
1677          break;
1678        QualType T = New->getUnderlyingType();
1679        if (!T->isPointerType())
1680          break;
1681        if (!T->isVoidPointerType()) {
1682          QualType PT = T->getAs<PointerType>()->getPointeeType();
1683          if (!PT->isStructureType())
1684            break;
1685        }
1686        Context.setObjCIdRedefinitionType(T);
1687        // Install the built-in type for 'id', ignoring the current definition.
1688        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1689        return;
1690      }
1691    case 5:
1692      if (!TypeID->isStr("Class"))
1693        break;
1694      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1695      // Install the built-in type for 'Class', ignoring the current definition.
1696      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1697      return;
1698    case 3:
1699      if (!TypeID->isStr("SEL"))
1700        break;
1701      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1702      // Install the built-in type for 'SEL', ignoring the current definition.
1703      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1704      return;
1705    }
1706    // Fall through - the typedef name was not a builtin type.
1707  }
1708
1709  // Verify the old decl was also a type.
1710  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1711  if (!Old) {
1712    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1713      << New->getDeclName();
1714
1715    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1716    if (OldD->getLocation().isValid())
1717      Diag(OldD->getLocation(), diag::note_previous_definition);
1718
1719    return New->setInvalidDecl();
1720  }
1721
1722  // If the old declaration is invalid, just give up here.
1723  if (Old->isInvalidDecl())
1724    return New->setInvalidDecl();
1725
1726  // If the typedef types are not identical, reject them in all languages and
1727  // with any extensions enabled.
1728  if (isIncompatibleTypedef(Old, New))
1729    return;
1730
1731  // The types match.  Link up the redeclaration chain if the old
1732  // declaration was a typedef.
1733  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1734    New->setPreviousDeclaration(Typedef);
1735
1736  if (getLangOpts().MicrosoftExt)
1737    return;
1738
1739  if (getLangOpts().CPlusPlus) {
1740    // C++ [dcl.typedef]p2:
1741    //   In a given non-class scope, a typedef specifier can be used to
1742    //   redefine the name of any type declared in that scope to refer
1743    //   to the type to which it already refers.
1744    if (!isa<CXXRecordDecl>(CurContext))
1745      return;
1746
1747    // C++0x [dcl.typedef]p4:
1748    //   In a given class scope, a typedef specifier can be used to redefine
1749    //   any class-name declared in that scope that is not also a typedef-name
1750    //   to refer to the type to which it already refers.
1751    //
1752    // This wording came in via DR424, which was a correction to the
1753    // wording in DR56, which accidentally banned code like:
1754    //
1755    //   struct S {
1756    //     typedef struct A { } A;
1757    //   };
1758    //
1759    // in the C++03 standard. We implement the C++0x semantics, which
1760    // allow the above but disallow
1761    //
1762    //   struct S {
1763    //     typedef int I;
1764    //     typedef int I;
1765    //   };
1766    //
1767    // since that was the intent of DR56.
1768    if (!isa<TypedefNameDecl>(Old))
1769      return;
1770
1771    Diag(New->getLocation(), diag::err_redefinition)
1772      << New->getDeclName();
1773    Diag(Old->getLocation(), diag::note_previous_definition);
1774    return New->setInvalidDecl();
1775  }
1776
1777  // Modules always permit redefinition of typedefs, as does C11.
1778  if (getLangOpts().Modules || getLangOpts().C11)
1779    return;
1780
1781  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1782  // is normally mapped to an error, but can be controlled with
1783  // -Wtypedef-redefinition.  If either the original or the redefinition is
1784  // in a system header, don't emit this for compatibility with GCC.
1785  if (getDiagnostics().getSuppressSystemWarnings() &&
1786      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1787       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1788    return;
1789
1790  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1791    << New->getDeclName();
1792  Diag(Old->getLocation(), diag::note_previous_definition);
1793  return;
1794}
1795
1796/// DeclhasAttr - returns true if decl Declaration already has the target
1797/// attribute.
1798static bool
1799DeclHasAttr(const Decl *D, const Attr *A) {
1800  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1801  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1802  // responsible for making sure they are consistent.
1803  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1804  if (AA)
1805    return false;
1806
1807  // The following thread safety attributes can also be duplicated.
1808  switch (A->getKind()) {
1809    case attr::ExclusiveLocksRequired:
1810    case attr::SharedLocksRequired:
1811    case attr::LocksExcluded:
1812    case attr::ExclusiveLockFunction:
1813    case attr::SharedLockFunction:
1814    case attr::UnlockFunction:
1815    case attr::ExclusiveTrylockFunction:
1816    case attr::SharedTrylockFunction:
1817    case attr::GuardedBy:
1818    case attr::PtGuardedBy:
1819    case attr::AcquiredBefore:
1820    case attr::AcquiredAfter:
1821      return false;
1822    default:
1823      ;
1824  }
1825
1826  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1827  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1828  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1829    if ((*i)->getKind() == A->getKind()) {
1830      if (Ann) {
1831        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1832          return true;
1833        continue;
1834      }
1835      // FIXME: Don't hardcode this check
1836      if (OA && isa<OwnershipAttr>(*i))
1837        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1838      return true;
1839    }
1840
1841  return false;
1842}
1843
1844static bool isAttributeTargetADefinition(Decl *D) {
1845  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1846    return VD->isThisDeclarationADefinition();
1847  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1848    return TD->isCompleteDefinition() || TD->isBeingDefined();
1849  return true;
1850}
1851
1852/// Merge alignment attributes from \p Old to \p New, taking into account the
1853/// special semantics of C11's _Alignas specifier and C++11's alignas attribute.
1854///
1855/// \return \c true if any attributes were added to \p New.
1856static bool mergeAlignedAttrs(Sema &S, NamedDecl *New, Decl *Old) {
1857  // Look for alignas attributes on Old, and pick out whichever attribute
1858  // specifies the strictest alignment requirement.
1859  AlignedAttr *OldAlignasAttr = 0;
1860  AlignedAttr *OldStrictestAlignAttr = 0;
1861  unsigned OldAlign = 0;
1862  for (specific_attr_iterator<AlignedAttr>
1863         I = Old->specific_attr_begin<AlignedAttr>(),
1864         E = Old->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1865    // FIXME: We have no way of representing inherited dependent alignments
1866    // in a case like:
1867    //   template<int A, int B> struct alignas(A) X;
1868    //   template<int A, int B> struct alignas(B) X {};
1869    // For now, we just ignore any alignas attributes which are not on the
1870    // definition in such a case.
1871    if (I->isAlignmentDependent())
1872      return false;
1873
1874    if (I->isAlignas())
1875      OldAlignasAttr = *I;
1876
1877    unsigned Align = I->getAlignment(S.Context);
1878    if (Align > OldAlign) {
1879      OldAlign = Align;
1880      OldStrictestAlignAttr = *I;
1881    }
1882  }
1883
1884  // Look for alignas attributes on New.
1885  AlignedAttr *NewAlignasAttr = 0;
1886  unsigned NewAlign = 0;
1887  for (specific_attr_iterator<AlignedAttr>
1888         I = New->specific_attr_begin<AlignedAttr>(),
1889         E = New->specific_attr_end<AlignedAttr>(); I != E; ++I) {
1890    if (I->isAlignmentDependent())
1891      return false;
1892
1893    if (I->isAlignas())
1894      NewAlignasAttr = *I;
1895
1896    unsigned Align = I->getAlignment(S.Context);
1897    if (Align > NewAlign)
1898      NewAlign = Align;
1899  }
1900
1901  if (OldAlignasAttr && NewAlignasAttr && OldAlign != NewAlign) {
1902    // Both declarations have 'alignas' attributes. We require them to match.
1903    // C++11 [dcl.align]p6 and C11 6.7.5/7 both come close to saying this, but
1904    // fall short. (If two declarations both have alignas, they must both match
1905    // every definition, and so must match each other if there is a definition.)
1906
1907    // If either declaration only contains 'alignas(0)' specifiers, then it
1908    // specifies the natural alignment for the type.
1909    if (OldAlign == 0 || NewAlign == 0) {
1910      QualType Ty;
1911      if (ValueDecl *VD = dyn_cast<ValueDecl>(New))
1912        Ty = VD->getType();
1913      else
1914        Ty = S.Context.getTagDeclType(cast<TagDecl>(New));
1915
1916      if (OldAlign == 0)
1917        OldAlign = S.Context.getTypeAlign(Ty);
1918      if (NewAlign == 0)
1919        NewAlign = S.Context.getTypeAlign(Ty);
1920    }
1921
1922    if (OldAlign != NewAlign) {
1923      S.Diag(NewAlignasAttr->getLocation(), diag::err_alignas_mismatch)
1924        << (unsigned)S.Context.toCharUnitsFromBits(OldAlign).getQuantity()
1925        << (unsigned)S.Context.toCharUnitsFromBits(NewAlign).getQuantity();
1926      S.Diag(OldAlignasAttr->getLocation(), diag::note_previous_declaration);
1927    }
1928  }
1929
1930  if (OldAlignasAttr && !NewAlignasAttr && isAttributeTargetADefinition(New)) {
1931    // C++11 [dcl.align]p6:
1932    //   if any declaration of an entity has an alignment-specifier,
1933    //   every defining declaration of that entity shall specify an
1934    //   equivalent alignment.
1935    // C11 6.7.5/7:
1936    //   If the definition of an object does not have an alignment
1937    //   specifier, any other declaration of that object shall also
1938    //   have no alignment specifier.
1939    S.Diag(New->getLocation(), diag::err_alignas_missing_on_definition)
1940      << OldAlignasAttr->isC11();
1941    S.Diag(OldAlignasAttr->getLocation(), diag::note_alignas_on_declaration)
1942      << OldAlignasAttr->isC11();
1943  }
1944
1945  bool AnyAdded = false;
1946
1947  // Ensure we have an attribute representing the strictest alignment.
1948  if (OldAlign > NewAlign) {
1949    AlignedAttr *Clone = OldStrictestAlignAttr->clone(S.Context);
1950    Clone->setInherited(true);
1951    New->addAttr(Clone);
1952    AnyAdded = true;
1953  }
1954
1955  // Ensure we have an alignas attribute if the old declaration had one.
1956  if (OldAlignasAttr && !NewAlignasAttr &&
1957      !(AnyAdded && OldStrictestAlignAttr->isAlignas())) {
1958    AlignedAttr *Clone = OldAlignasAttr->clone(S.Context);
1959    Clone->setInherited(true);
1960    New->addAttr(Clone);
1961    AnyAdded = true;
1962  }
1963
1964  return AnyAdded;
1965}
1966
1967static bool mergeDeclAttribute(Sema &S, NamedDecl *D, InheritableAttr *Attr,
1968                               bool Override) {
1969  InheritableAttr *NewAttr = NULL;
1970  unsigned AttrSpellingListIndex = Attr->getSpellingListIndex();
1971  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1972    NewAttr = S.mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1973                                      AA->getIntroduced(), AA->getDeprecated(),
1974                                      AA->getObsoleted(), AA->getUnavailable(),
1975                                      AA->getMessage(), Override,
1976                                      AttrSpellingListIndex);
1977  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1978    NewAttr = S.mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1979                                    AttrSpellingListIndex);
1980  else if (TypeVisibilityAttr *VA = dyn_cast<TypeVisibilityAttr>(Attr))
1981    NewAttr = S.mergeTypeVisibilityAttr(D, VA->getRange(), VA->getVisibility(),
1982                                        AttrSpellingListIndex);
1983  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1984    NewAttr = S.mergeDLLImportAttr(D, ImportA->getRange(),
1985                                   AttrSpellingListIndex);
1986  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1987    NewAttr = S.mergeDLLExportAttr(D, ExportA->getRange(),
1988                                   AttrSpellingListIndex);
1989  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1990    NewAttr = S.mergeFormatAttr(D, FA->getRange(), FA->getType(),
1991                                FA->getFormatIdx(), FA->getFirstArg(),
1992                                AttrSpellingListIndex);
1993  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1994    NewAttr = S.mergeSectionAttr(D, SA->getRange(), SA->getName(),
1995                                 AttrSpellingListIndex);
1996  else if (isa<AlignedAttr>(Attr))
1997    // AlignedAttrs are handled separately, because we need to handle all
1998    // such attributes on a declaration at the same time.
1999    NewAttr = 0;
2000  else if (!DeclHasAttr(D, Attr))
2001    NewAttr = cast<InheritableAttr>(Attr->clone(S.Context));
2002
2003  if (NewAttr) {
2004    NewAttr->setInherited(true);
2005    D->addAttr(NewAttr);
2006    return true;
2007  }
2008
2009  return false;
2010}
2011
2012static const Decl *getDefinition(const Decl *D) {
2013  if (const TagDecl *TD = dyn_cast<TagDecl>(D))
2014    return TD->getDefinition();
2015  if (const VarDecl *VD = dyn_cast<VarDecl>(D))
2016    return VD->getDefinition();
2017  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2018    const FunctionDecl* Def;
2019    if (FD->hasBody(Def))
2020      return Def;
2021  }
2022  return NULL;
2023}
2024
2025static bool hasAttribute(const Decl *D, attr::Kind Kind) {
2026  for (Decl::attr_iterator I = D->attr_begin(), E = D->attr_end();
2027       I != E; ++I) {
2028    Attr *Attribute = *I;
2029    if (Attribute->getKind() == Kind)
2030      return true;
2031  }
2032  return false;
2033}
2034
2035/// checkNewAttributesAfterDef - If we already have a definition, check that
2036/// there are no new attributes in this declaration.
2037static void checkNewAttributesAfterDef(Sema &S, Decl *New, const Decl *Old) {
2038  if (!New->hasAttrs())
2039    return;
2040
2041  const Decl *Def = getDefinition(Old);
2042  if (!Def || Def == New)
2043    return;
2044
2045  AttrVec &NewAttributes = New->getAttrs();
2046  for (unsigned I = 0, E = NewAttributes.size(); I != E;) {
2047    const Attr *NewAttribute = NewAttributes[I];
2048    if (hasAttribute(Def, NewAttribute->getKind())) {
2049      ++I;
2050      continue; // regular attr merging will take care of validating this.
2051    }
2052
2053    if (isa<C11NoReturnAttr>(NewAttribute)) {
2054      // C's _Noreturn is allowed to be added to a function after it is defined.
2055      ++I;
2056      continue;
2057    } else if (const AlignedAttr *AA = dyn_cast<AlignedAttr>(NewAttribute)) {
2058      if (AA->isAlignas()) {
2059        // C++11 [dcl.align]p6:
2060        //   if any declaration of an entity has an alignment-specifier,
2061        //   every defining declaration of that entity shall specify an
2062        //   equivalent alignment.
2063        // C11 6.7.5/7:
2064        //   If the definition of an object does not have an alignment
2065        //   specifier, any other declaration of that object shall also
2066        //   have no alignment specifier.
2067        S.Diag(Def->getLocation(), diag::err_alignas_missing_on_definition)
2068          << AA->isC11();
2069        S.Diag(NewAttribute->getLocation(), diag::note_alignas_on_declaration)
2070          << AA->isC11();
2071        NewAttributes.erase(NewAttributes.begin() + I);
2072        --E;
2073        continue;
2074      }
2075    }
2076
2077    S.Diag(NewAttribute->getLocation(),
2078           diag::warn_attribute_precede_definition);
2079    S.Diag(Def->getLocation(), diag::note_previous_definition);
2080    NewAttributes.erase(NewAttributes.begin() + I);
2081    --E;
2082  }
2083}
2084
2085/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
2086void Sema::mergeDeclAttributes(NamedDecl *New, Decl *Old,
2087                               AvailabilityMergeKind AMK) {
2088  if (!Old->hasAttrs() && !New->hasAttrs())
2089    return;
2090
2091  // attributes declared post-definition are currently ignored
2092  checkNewAttributesAfterDef(*this, New, Old);
2093
2094  if (!Old->hasAttrs())
2095    return;
2096
2097  bool foundAny = New->hasAttrs();
2098
2099  // Ensure that any moving of objects within the allocated map is done before
2100  // we process them.
2101  if (!foundAny) New->setAttrs(AttrVec());
2102
2103  for (specific_attr_iterator<InheritableAttr>
2104         i = Old->specific_attr_begin<InheritableAttr>(),
2105         e = Old->specific_attr_end<InheritableAttr>();
2106       i != e; ++i) {
2107    bool Override = false;
2108    // Ignore deprecated/unavailable/availability attributes if requested.
2109    if (isa<DeprecatedAttr>(*i) ||
2110        isa<UnavailableAttr>(*i) ||
2111        isa<AvailabilityAttr>(*i)) {
2112      switch (AMK) {
2113      case AMK_None:
2114        continue;
2115
2116      case AMK_Redeclaration:
2117        break;
2118
2119      case AMK_Override:
2120        Override = true;
2121        break;
2122      }
2123    }
2124
2125    if (mergeDeclAttribute(*this, New, *i, Override))
2126      foundAny = true;
2127  }
2128
2129  if (mergeAlignedAttrs(*this, New, Old))
2130    foundAny = true;
2131
2132  if (!foundAny) New->dropAttrs();
2133}
2134
2135/// mergeParamDeclAttributes - Copy attributes from the old parameter
2136/// to the new one.
2137static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
2138                                     const ParmVarDecl *oldDecl,
2139                                     Sema &S) {
2140  // C++11 [dcl.attr.depend]p2:
2141  //   The first declaration of a function shall specify the
2142  //   carries_dependency attribute for its declarator-id if any declaration
2143  //   of the function specifies the carries_dependency attribute.
2144  if (newDecl->hasAttr<CarriesDependencyAttr>() &&
2145      !oldDecl->hasAttr<CarriesDependencyAttr>()) {
2146    S.Diag(newDecl->getAttr<CarriesDependencyAttr>()->getLocation(),
2147           diag::err_carries_dependency_missing_on_first_decl) << 1/*Param*/;
2148    // Find the first declaration of the parameter.
2149    // FIXME: Should we build redeclaration chains for function parameters?
2150    const FunctionDecl *FirstFD =
2151      cast<FunctionDecl>(oldDecl->getDeclContext())->getFirstDeclaration();
2152    const ParmVarDecl *FirstVD =
2153      FirstFD->getParamDecl(oldDecl->getFunctionScopeIndex());
2154    S.Diag(FirstVD->getLocation(),
2155           diag::note_carries_dependency_missing_first_decl) << 1/*Param*/;
2156  }
2157
2158  if (!oldDecl->hasAttrs())
2159    return;
2160
2161  bool foundAny = newDecl->hasAttrs();
2162
2163  // Ensure that any moving of objects within the allocated map is
2164  // done before we process them.
2165  if (!foundAny) newDecl->setAttrs(AttrVec());
2166
2167  for (specific_attr_iterator<InheritableParamAttr>
2168       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
2169       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
2170    if (!DeclHasAttr(newDecl, *i)) {
2171      InheritableAttr *newAttr =
2172        cast<InheritableParamAttr>((*i)->clone(S.Context));
2173      newAttr->setInherited(true);
2174      newDecl->addAttr(newAttr);
2175      foundAny = true;
2176    }
2177  }
2178
2179  if (!foundAny) newDecl->dropAttrs();
2180}
2181
2182namespace {
2183
2184/// Used in MergeFunctionDecl to keep track of function parameters in
2185/// C.
2186struct GNUCompatibleParamWarning {
2187  ParmVarDecl *OldParm;
2188  ParmVarDecl *NewParm;
2189  QualType PromotedType;
2190};
2191
2192}
2193
2194/// getSpecialMember - get the special member enum for a method.
2195Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
2196  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
2197    if (Ctor->isDefaultConstructor())
2198      return Sema::CXXDefaultConstructor;
2199
2200    if (Ctor->isCopyConstructor())
2201      return Sema::CXXCopyConstructor;
2202
2203    if (Ctor->isMoveConstructor())
2204      return Sema::CXXMoveConstructor;
2205  } else if (isa<CXXDestructorDecl>(MD)) {
2206    return Sema::CXXDestructor;
2207  } else if (MD->isCopyAssignmentOperator()) {
2208    return Sema::CXXCopyAssignment;
2209  } else if (MD->isMoveAssignmentOperator()) {
2210    return Sema::CXXMoveAssignment;
2211  }
2212
2213  return Sema::CXXInvalid;
2214}
2215
2216/// canRedefineFunction - checks if a function can be redefined. Currently,
2217/// only extern inline functions can be redefined, and even then only in
2218/// GNU89 mode.
2219static bool canRedefineFunction(const FunctionDecl *FD,
2220                                const LangOptions& LangOpts) {
2221  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
2222          !LangOpts.CPlusPlus &&
2223          FD->isInlineSpecified() &&
2224          FD->getStorageClass() == SC_Extern);
2225}
2226
2227/// Is the given calling convention the ABI default for the given
2228/// declaration?
2229static bool isABIDefaultCC(Sema &S, CallingConv CC, FunctionDecl *D) {
2230  CallingConv ABIDefaultCC;
2231  if (isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) {
2232    ABIDefaultCC = S.Context.getDefaultCXXMethodCallConv(D->isVariadic());
2233  } else {
2234    // Free C function or a static method.
2235    ABIDefaultCC = (S.Context.getLangOpts().MRTD ? CC_X86StdCall : CC_C);
2236  }
2237  return ABIDefaultCC == CC;
2238}
2239
2240template <typename T>
2241static bool haveIncompatibleLanguageLinkages(const T *Old, const T *New) {
2242  const DeclContext *DC = Old->getDeclContext();
2243  if (DC->isRecord())
2244    return false;
2245
2246  LanguageLinkage OldLinkage = Old->getLanguageLinkage();
2247  if (OldLinkage == CXXLanguageLinkage && New->isInExternCContext())
2248    return true;
2249  if (OldLinkage == CLanguageLinkage && New->isInExternCXXContext())
2250    return true;
2251  return false;
2252}
2253
2254/// MergeFunctionDecl - We just parsed a function 'New' from
2255/// declarator D which has the same name and scope as a previous
2256/// declaration 'Old'.  Figure out how to resolve this situation,
2257/// merging decls or emitting diagnostics as appropriate.
2258///
2259/// In C++, New and Old must be declarations that are not
2260/// overloaded. Use IsOverload to determine whether New and Old are
2261/// overloaded, and to select the Old declaration that New should be
2262/// merged with.
2263///
2264/// Returns true if there was an error, false otherwise.
2265bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
2266  // Verify the old decl was also a function.
2267  FunctionDecl *Old = 0;
2268  if (FunctionTemplateDecl *OldFunctionTemplate
2269        = dyn_cast<FunctionTemplateDecl>(OldD))
2270    Old = OldFunctionTemplate->getTemplatedDecl();
2271  else
2272    Old = dyn_cast<FunctionDecl>(OldD);
2273  if (!Old) {
2274    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
2275      if (New->getFriendObjectKind()) {
2276        Diag(New->getLocation(), diag::err_using_decl_friend);
2277        Diag(Shadow->getTargetDecl()->getLocation(),
2278             diag::note_using_decl_target);
2279        Diag(Shadow->getUsingDecl()->getLocation(),
2280             diag::note_using_decl) << 0;
2281        return true;
2282      }
2283
2284      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
2285      Diag(Shadow->getTargetDecl()->getLocation(),
2286           diag::note_using_decl_target);
2287      Diag(Shadow->getUsingDecl()->getLocation(),
2288           diag::note_using_decl) << 0;
2289      return true;
2290    }
2291
2292    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2293      << New->getDeclName();
2294    Diag(OldD->getLocation(), diag::note_previous_definition);
2295    return true;
2296  }
2297
2298  // Determine whether the previous declaration was a definition,
2299  // implicit declaration, or a declaration.
2300  diag::kind PrevDiag;
2301  if (Old->isThisDeclarationADefinition())
2302    PrevDiag = diag::note_previous_definition;
2303  else if (Old->isImplicit())
2304    PrevDiag = diag::note_previous_implicit_declaration;
2305  else
2306    PrevDiag = diag::note_previous_declaration;
2307
2308  QualType OldQType = Context.getCanonicalType(Old->getType());
2309  QualType NewQType = Context.getCanonicalType(New->getType());
2310
2311  // Don't complain about this if we're in GNU89 mode and the old function
2312  // is an extern inline function.
2313  // Don't complain about specializations. They are not supposed to have
2314  // storage classes.
2315  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
2316      New->getStorageClass() == SC_Static &&
2317      Old->hasExternalFormalLinkage() &&
2318      !New->getTemplateSpecializationInfo() &&
2319      !canRedefineFunction(Old, getLangOpts())) {
2320    if (getLangOpts().MicrosoftExt) {
2321      Diag(New->getLocation(), diag::warn_static_non_static) << New;
2322      Diag(Old->getLocation(), PrevDiag);
2323    } else {
2324      Diag(New->getLocation(), diag::err_static_non_static) << New;
2325      Diag(Old->getLocation(), PrevDiag);
2326      return true;
2327    }
2328  }
2329
2330  // If a function is first declared with a calling convention, but is
2331  // later declared or defined without one, the second decl assumes the
2332  // calling convention of the first.
2333  //
2334  // It's OK if a function is first declared without a calling convention,
2335  // but is later declared or defined with the default calling convention.
2336  //
2337  // For the new decl, we have to look at the NON-canonical type to tell the
2338  // difference between a function that really doesn't have a calling
2339  // convention and one that is declared cdecl. That's because in
2340  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
2341  // because it is the default calling convention.
2342  //
2343  // Note also that we DO NOT return at this point, because we still have
2344  // other tests to run.
2345  const FunctionType *OldType = cast<FunctionType>(OldQType);
2346  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
2347  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
2348  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
2349  bool RequiresAdjustment = false;
2350  if (OldTypeInfo.getCC() == NewTypeInfo.getCC()) {
2351    // Fast path: nothing to do.
2352
2353  // Inherit the CC from the previous declaration if it was specified
2354  // there but not here.
2355  } else if (NewTypeInfo.getCC() == CC_Default) {
2356    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2357    RequiresAdjustment = true;
2358
2359  // Don't complain about mismatches when the default CC is
2360  // effectively the same as the explict one. Only Old decl contains correct
2361  // information about storage class of CXXMethod.
2362  } else if (OldTypeInfo.getCC() == CC_Default &&
2363             isABIDefaultCC(*this, NewTypeInfo.getCC(), Old)) {
2364    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
2365    RequiresAdjustment = true;
2366
2367  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
2368                                     NewTypeInfo.getCC())) {
2369    // Calling conventions really aren't compatible, so complain.
2370    Diag(New->getLocation(), diag::err_cconv_change)
2371      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
2372      << (OldTypeInfo.getCC() == CC_Default)
2373      << (OldTypeInfo.getCC() == CC_Default ? "" :
2374          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
2375    Diag(Old->getLocation(), diag::note_previous_declaration);
2376    return true;
2377  }
2378
2379  // FIXME: diagnose the other way around?
2380  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
2381    NewTypeInfo = NewTypeInfo.withNoReturn(true);
2382    RequiresAdjustment = true;
2383  }
2384
2385  // Merge regparm attribute.
2386  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
2387      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
2388    if (NewTypeInfo.getHasRegParm()) {
2389      Diag(New->getLocation(), diag::err_regparm_mismatch)
2390        << NewType->getRegParmType()
2391        << OldType->getRegParmType();
2392      Diag(Old->getLocation(), diag::note_previous_declaration);
2393      return true;
2394    }
2395
2396    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
2397    RequiresAdjustment = true;
2398  }
2399
2400  // Merge ns_returns_retained attribute.
2401  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
2402    if (NewTypeInfo.getProducesResult()) {
2403      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
2404      Diag(Old->getLocation(), diag::note_previous_declaration);
2405      return true;
2406    }
2407
2408    NewTypeInfo = NewTypeInfo.withProducesResult(true);
2409    RequiresAdjustment = true;
2410  }
2411
2412  if (RequiresAdjustment) {
2413    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
2414    New->setType(QualType(NewType, 0));
2415    NewQType = Context.getCanonicalType(New->getType());
2416  }
2417
2418  // If this redeclaration makes the function inline, we may need to add it to
2419  // UndefinedButUsed.
2420  if (!Old->isInlined() && New->isInlined() &&
2421      !New->hasAttr<GNUInlineAttr>() &&
2422      (getLangOpts().CPlusPlus || !getLangOpts().GNUInline) &&
2423      Old->isUsed(false) &&
2424      !Old->isDefined() && !New->isThisDeclarationADefinition())
2425    UndefinedButUsed.insert(std::make_pair(Old->getCanonicalDecl(),
2426                                           SourceLocation()));
2427
2428  // If this redeclaration makes it newly gnu_inline, we don't want to warn
2429  // about it.
2430  if (New->hasAttr<GNUInlineAttr>() &&
2431      Old->isInlined() && !Old->hasAttr<GNUInlineAttr>()) {
2432    UndefinedButUsed.erase(Old->getCanonicalDecl());
2433  }
2434
2435  if (getLangOpts().CPlusPlus) {
2436    // (C++98 13.1p2):
2437    //   Certain function declarations cannot be overloaded:
2438    //     -- Function declarations that differ only in the return type
2439    //        cannot be overloaded.
2440
2441    // Go back to the type source info to compare the declared return types,
2442    // per C++1y [dcl.type.auto]p??:
2443    //   Redeclarations or specializations of a function or function template
2444    //   with a declared return type that uses a placeholder type shall also
2445    //   use that placeholder, not a deduced type.
2446    QualType OldDeclaredReturnType = (Old->getTypeSourceInfo()
2447      ? Old->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2448      : OldType)->getResultType();
2449    QualType NewDeclaredReturnType = (New->getTypeSourceInfo()
2450      ? New->getTypeSourceInfo()->getType()->castAs<FunctionType>()
2451      : NewType)->getResultType();
2452    QualType ResQT;
2453    if (!Context.hasSameType(OldDeclaredReturnType, NewDeclaredReturnType)) {
2454      if (NewDeclaredReturnType->isObjCObjectPointerType() &&
2455          OldDeclaredReturnType->isObjCObjectPointerType())
2456        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
2457      if (ResQT.isNull()) {
2458        if (New->isCXXClassMember() && New->isOutOfLine())
2459          Diag(New->getLocation(),
2460               diag::err_member_def_does_not_match_ret_type) << New;
2461        else
2462          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
2463        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2464        return true;
2465      }
2466      else
2467        NewQType = ResQT;
2468    }
2469
2470    QualType OldReturnType = OldType->getResultType();
2471    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
2472    if (OldReturnType != NewReturnType) {
2473      // If this function has a deduced return type and has already been
2474      // defined, copy the deduced value from the old declaration.
2475      AutoType *OldAT = Old->getResultType()->getContainedAutoType();
2476      if (OldAT && OldAT->isDeduced()) {
2477        New->setType(SubstAutoType(New->getType(), OldAT->getDeducedType()));
2478        NewQType = Context.getCanonicalType(
2479            SubstAutoType(NewQType, OldAT->getDeducedType()));
2480      }
2481    }
2482
2483    const CXXMethodDecl *OldMethod = dyn_cast<CXXMethodDecl>(Old);
2484    CXXMethodDecl *NewMethod = dyn_cast<CXXMethodDecl>(New);
2485    if (OldMethod && NewMethod) {
2486      // Preserve triviality.
2487      NewMethod->setTrivial(OldMethod->isTrivial());
2488
2489      // MSVC allows explicit template specialization at class scope:
2490      // 2 CXMethodDecls referring to the same function will be injected.
2491      // We don't want a redeclartion error.
2492      bool IsClassScopeExplicitSpecialization =
2493                              OldMethod->isFunctionTemplateSpecialization() &&
2494                              NewMethod->isFunctionTemplateSpecialization();
2495      bool isFriend = NewMethod->getFriendObjectKind();
2496
2497      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2498          !IsClassScopeExplicitSpecialization) {
2499        //    -- Member function declarations with the same name and the
2500        //       same parameter types cannot be overloaded if any of them
2501        //       is a static member function declaration.
2502        if (OldMethod->isStatic() != NewMethod->isStatic()) {
2503          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2504          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2505          return true;
2506        }
2507
2508        // C++ [class.mem]p1:
2509        //   [...] A member shall not be declared twice in the
2510        //   member-specification, except that a nested class or member
2511        //   class template can be declared and then later defined.
2512        if (ActiveTemplateInstantiations.empty()) {
2513          unsigned NewDiag;
2514          if (isa<CXXConstructorDecl>(OldMethod))
2515            NewDiag = diag::err_constructor_redeclared;
2516          else if (isa<CXXDestructorDecl>(NewMethod))
2517            NewDiag = diag::err_destructor_redeclared;
2518          else if (isa<CXXConversionDecl>(NewMethod))
2519            NewDiag = diag::err_conv_function_redeclared;
2520          else
2521            NewDiag = diag::err_member_redeclared;
2522
2523          Diag(New->getLocation(), NewDiag);
2524        } else {
2525          Diag(New->getLocation(), diag::err_member_redeclared_in_instantiation)
2526            << New << New->getType();
2527        }
2528        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2529
2530      // Complain if this is an explicit declaration of a special
2531      // member that was initially declared implicitly.
2532      //
2533      // As an exception, it's okay to befriend such methods in order
2534      // to permit the implicit constructor/destructor/operator calls.
2535      } else if (OldMethod->isImplicit()) {
2536        if (isFriend) {
2537          NewMethod->setImplicit();
2538        } else {
2539          Diag(NewMethod->getLocation(),
2540               diag::err_definition_of_implicitly_declared_member)
2541            << New << getSpecialMember(OldMethod);
2542          return true;
2543        }
2544      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2545        Diag(NewMethod->getLocation(),
2546             diag::err_definition_of_explicitly_defaulted_member)
2547          << getSpecialMember(OldMethod);
2548        return true;
2549      }
2550    }
2551
2552    // C++11 [dcl.attr.noreturn]p1:
2553    //   The first declaration of a function shall specify the noreturn
2554    //   attribute if any declaration of that function specifies the noreturn
2555    //   attribute.
2556    if (New->hasAttr<CXX11NoReturnAttr>() &&
2557        !Old->hasAttr<CXX11NoReturnAttr>()) {
2558      Diag(New->getAttr<CXX11NoReturnAttr>()->getLocation(),
2559           diag::err_noreturn_missing_on_first_decl);
2560      Diag(Old->getFirstDeclaration()->getLocation(),
2561           diag::note_noreturn_missing_first_decl);
2562    }
2563
2564    // C++11 [dcl.attr.depend]p2:
2565    //   The first declaration of a function shall specify the
2566    //   carries_dependency attribute for its declarator-id if any declaration
2567    //   of the function specifies the carries_dependency attribute.
2568    if (New->hasAttr<CarriesDependencyAttr>() &&
2569        !Old->hasAttr<CarriesDependencyAttr>()) {
2570      Diag(New->getAttr<CarriesDependencyAttr>()->getLocation(),
2571           diag::err_carries_dependency_missing_on_first_decl) << 0/*Function*/;
2572      Diag(Old->getFirstDeclaration()->getLocation(),
2573           diag::note_carries_dependency_missing_first_decl) << 0/*Function*/;
2574    }
2575
2576    // (C++98 8.3.5p3):
2577    //   All declarations for a function shall agree exactly in both the
2578    //   return type and the parameter-type-list.
2579    // We also want to respect all the extended bits except noreturn.
2580
2581    // noreturn should now match unless the old type info didn't have it.
2582    QualType OldQTypeForComparison = OldQType;
2583    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2584      assert(OldQType == QualType(OldType, 0));
2585      const FunctionType *OldTypeForComparison
2586        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2587      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2588      assert(OldQTypeForComparison.isCanonical());
2589    }
2590
2591    if (haveIncompatibleLanguageLinkages(Old, New)) {
2592      Diag(New->getLocation(), diag::err_different_language_linkage) << New;
2593      Diag(Old->getLocation(), PrevDiag);
2594      return true;
2595    }
2596
2597    if (OldQTypeForComparison == NewQType)
2598      return MergeCompatibleFunctionDecls(New, Old, S);
2599
2600    // Fall through for conflicting redeclarations and redefinitions.
2601  }
2602
2603  // C: Function types need to be compatible, not identical. This handles
2604  // duplicate function decls like "void f(int); void f(enum X);" properly.
2605  if (!getLangOpts().CPlusPlus &&
2606      Context.typesAreCompatible(OldQType, NewQType)) {
2607    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2608    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2609    const FunctionProtoType *OldProto = 0;
2610    if (isa<FunctionNoProtoType>(NewFuncType) &&
2611        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2612      // The old declaration provided a function prototype, but the
2613      // new declaration does not. Merge in the prototype.
2614      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2615      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2616                                                 OldProto->arg_type_end());
2617      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2618                                         ParamTypes,
2619                                         OldProto->getExtProtoInfo());
2620      New->setType(NewQType);
2621      New->setHasInheritedPrototype();
2622
2623      // Synthesize a parameter for each argument type.
2624      SmallVector<ParmVarDecl*, 16> Params;
2625      for (FunctionProtoType::arg_type_iterator
2626             ParamType = OldProto->arg_type_begin(),
2627             ParamEnd = OldProto->arg_type_end();
2628           ParamType != ParamEnd; ++ParamType) {
2629        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2630                                                 SourceLocation(),
2631                                                 SourceLocation(), 0,
2632                                                 *ParamType, /*TInfo=*/0,
2633                                                 SC_None,
2634                                                 0);
2635        Param->setScopeInfo(0, Params.size());
2636        Param->setImplicit();
2637        Params.push_back(Param);
2638      }
2639
2640      New->setParams(Params);
2641    }
2642
2643    return MergeCompatibleFunctionDecls(New, Old, S);
2644  }
2645
2646  // GNU C permits a K&R definition to follow a prototype declaration
2647  // if the declared types of the parameters in the K&R definition
2648  // match the types in the prototype declaration, even when the
2649  // promoted types of the parameters from the K&R definition differ
2650  // from the types in the prototype. GCC then keeps the types from
2651  // the prototype.
2652  //
2653  // If a variadic prototype is followed by a non-variadic K&R definition,
2654  // the K&R definition becomes variadic.  This is sort of an edge case, but
2655  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2656  // C99 6.9.1p8.
2657  if (!getLangOpts().CPlusPlus &&
2658      Old->hasPrototype() && !New->hasPrototype() &&
2659      New->getType()->getAs<FunctionProtoType>() &&
2660      Old->getNumParams() == New->getNumParams()) {
2661    SmallVector<QualType, 16> ArgTypes;
2662    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2663    const FunctionProtoType *OldProto
2664      = Old->getType()->getAs<FunctionProtoType>();
2665    const FunctionProtoType *NewProto
2666      = New->getType()->getAs<FunctionProtoType>();
2667
2668    // Determine whether this is the GNU C extension.
2669    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2670                                               NewProto->getResultType());
2671    bool LooseCompatible = !MergedReturn.isNull();
2672    for (unsigned Idx = 0, End = Old->getNumParams();
2673         LooseCompatible && Idx != End; ++Idx) {
2674      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2675      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2676      if (Context.typesAreCompatible(OldParm->getType(),
2677                                     NewProto->getArgType(Idx))) {
2678        ArgTypes.push_back(NewParm->getType());
2679      } else if (Context.typesAreCompatible(OldParm->getType(),
2680                                            NewParm->getType(),
2681                                            /*CompareUnqualified=*/true)) {
2682        GNUCompatibleParamWarning Warn
2683          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2684        Warnings.push_back(Warn);
2685        ArgTypes.push_back(NewParm->getType());
2686      } else
2687        LooseCompatible = false;
2688    }
2689
2690    if (LooseCompatible) {
2691      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2692        Diag(Warnings[Warn].NewParm->getLocation(),
2693             diag::ext_param_promoted_not_compatible_with_prototype)
2694          << Warnings[Warn].PromotedType
2695          << Warnings[Warn].OldParm->getType();
2696        if (Warnings[Warn].OldParm->getLocation().isValid())
2697          Diag(Warnings[Warn].OldParm->getLocation(),
2698               diag::note_previous_declaration);
2699      }
2700
2701      New->setType(Context.getFunctionType(MergedReturn, ArgTypes,
2702                                           OldProto->getExtProtoInfo()));
2703      return MergeCompatibleFunctionDecls(New, Old, S);
2704    }
2705
2706    // Fall through to diagnose conflicting types.
2707  }
2708
2709  // A function that has already been declared has been redeclared or
2710  // defined with a different type; show an appropriate diagnostic.
2711
2712  // If the previous declaration was an implicitly-generated builtin
2713  // declaration, then at the very least we should use a specialized note.
2714  unsigned BuiltinID;
2715  if (Old->isImplicit() && (BuiltinID = Old->getBuiltinID())) {
2716    // If it's actually a library-defined builtin function like 'malloc'
2717    // or 'printf', just warn about the incompatible redeclaration.
2718    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2719      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2720      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2721        << Old << Old->getType();
2722
2723      // If this is a global redeclaration, just forget hereafter
2724      // about the "builtin-ness" of the function.
2725      //
2726      // Doing this for local extern declarations is problematic.  If
2727      // the builtin declaration remains visible, a second invalid
2728      // local declaration will produce a hard error; if it doesn't
2729      // remain visible, a single bogus local redeclaration (which is
2730      // actually only a warning) could break all the downstream code.
2731      if (!New->getDeclContext()->isFunctionOrMethod())
2732        New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2733
2734      return false;
2735    }
2736
2737    PrevDiag = diag::note_previous_builtin_declaration;
2738  }
2739
2740  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2741  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2742  return true;
2743}
2744
2745/// \brief Completes the merge of two function declarations that are
2746/// known to be compatible.
2747///
2748/// This routine handles the merging of attributes and other
2749/// properties of function declarations form the old declaration to
2750/// the new declaration, once we know that New is in fact a
2751/// redeclaration of Old.
2752///
2753/// \returns false
2754bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2755                                        Scope *S) {
2756  // Merge the attributes
2757  mergeDeclAttributes(New, Old);
2758
2759  // Merge "pure" flag.
2760  if (Old->isPure())
2761    New->setPure();
2762
2763  // Merge "used" flag.
2764  if (Old->isUsed(false))
2765    New->setUsed();
2766
2767  // Merge attributes from the parameters.  These can mismatch with K&R
2768  // declarations.
2769  if (New->getNumParams() == Old->getNumParams())
2770    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2771      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2772                               *this);
2773
2774  if (getLangOpts().CPlusPlus)
2775    return MergeCXXFunctionDecl(New, Old, S);
2776
2777  // Merge the function types so the we get the composite types for the return
2778  // and argument types.
2779  QualType Merged = Context.mergeTypes(Old->getType(), New->getType());
2780  if (!Merged.isNull())
2781    New->setType(Merged);
2782
2783  return false;
2784}
2785
2786
2787void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2788                                ObjCMethodDecl *oldMethod) {
2789
2790  // Merge the attributes, including deprecated/unavailable
2791  AvailabilityMergeKind MergeKind =
2792    isa<ObjCImplDecl>(newMethod->getDeclContext()) ? AMK_Redeclaration
2793                                                   : AMK_Override;
2794  mergeDeclAttributes(newMethod, oldMethod, MergeKind);
2795
2796  // Merge attributes from the parameters.
2797  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2798                                       oe = oldMethod->param_end();
2799  for (ObjCMethodDecl::param_iterator
2800         ni = newMethod->param_begin(), ne = newMethod->param_end();
2801       ni != ne && oi != oe; ++ni, ++oi)
2802    mergeParamDeclAttributes(*ni, *oi, *this);
2803
2804  CheckObjCMethodOverride(newMethod, oldMethod);
2805}
2806
2807/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2808/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2809/// emitting diagnostics as appropriate.
2810///
2811/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2812/// to here in AddInitializerToDecl. We can't check them before the initializer
2813/// is attached.
2814void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old, bool OldWasHidden) {
2815  if (New->isInvalidDecl() || Old->isInvalidDecl())
2816    return;
2817
2818  QualType MergedT;
2819  if (getLangOpts().CPlusPlus) {
2820    if (New->getType()->isUndeducedType()) {
2821      // We don't know what the new type is until the initializer is attached.
2822      return;
2823    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2824      // These could still be something that needs exception specs checked.
2825      return MergeVarDeclExceptionSpecs(New, Old);
2826    }
2827    // C++ [basic.link]p10:
2828    //   [...] the types specified by all declarations referring to a given
2829    //   object or function shall be identical, except that declarations for an
2830    //   array object can specify array types that differ by the presence or
2831    //   absence of a major array bound (8.3.4).
2832    else if (Old->getType()->isIncompleteArrayType() &&
2833             New->getType()->isArrayType()) {
2834      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2835      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2836      if (Context.hasSameType(OldArray->getElementType(),
2837                              NewArray->getElementType()))
2838        MergedT = New->getType();
2839    } else if (Old->getType()->isArrayType() &&
2840             New->getType()->isIncompleteArrayType()) {
2841      const ArrayType *OldArray = Context.getAsArrayType(Old->getType());
2842      const ArrayType *NewArray = Context.getAsArrayType(New->getType());
2843      if (Context.hasSameType(OldArray->getElementType(),
2844                              NewArray->getElementType()))
2845        MergedT = Old->getType();
2846    } else if (New->getType()->isObjCObjectPointerType()
2847               && Old->getType()->isObjCObjectPointerType()) {
2848        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2849                                                        Old->getType());
2850    }
2851  } else {
2852    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2853  }
2854  if (MergedT.isNull()) {
2855    Diag(New->getLocation(), diag::err_redefinition_different_type)
2856      << New->getDeclName() << New->getType() << Old->getType();
2857    Diag(Old->getLocation(), diag::note_previous_definition);
2858    return New->setInvalidDecl();
2859  }
2860
2861  // Don't actually update the type on the new declaration if the old
2862  // declaration was a extern declaration in a different scope.
2863  if (!OldWasHidden)
2864    New->setType(MergedT);
2865}
2866
2867/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2868/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2869/// situation, merging decls or emitting diagnostics as appropriate.
2870///
2871/// Tentative definition rules (C99 6.9.2p2) are checked by
2872/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2873/// definitions here, since the initializer hasn't been attached.
2874///
2875void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous,
2876                        bool PreviousWasHidden) {
2877  // If the new decl is already invalid, don't do any other checking.
2878  if (New->isInvalidDecl())
2879    return;
2880
2881  // Verify the old decl was also a variable.
2882  VarDecl *Old = 0;
2883  if (!Previous.isSingleResult() ||
2884      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2885    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2886      << New->getDeclName();
2887    Diag(Previous.getRepresentativeDecl()->getLocation(),
2888         diag::note_previous_definition);
2889    return New->setInvalidDecl();
2890  }
2891
2892  if (!shouldLinkPossiblyHiddenDecl(Old, New))
2893    return;
2894
2895  // C++ [class.mem]p1:
2896  //   A member shall not be declared twice in the member-specification [...]
2897  //
2898  // Here, we need only consider static data members.
2899  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2900    Diag(New->getLocation(), diag::err_duplicate_member)
2901      << New->getIdentifier();
2902    Diag(Old->getLocation(), diag::note_previous_declaration);
2903    New->setInvalidDecl();
2904  }
2905
2906  mergeDeclAttributes(New, Old);
2907  // Warn if an already-declared variable is made a weak_import in a subsequent
2908  // declaration
2909  if (New->getAttr<WeakImportAttr>() &&
2910      Old->getStorageClass() == SC_None &&
2911      !Old->getAttr<WeakImportAttr>()) {
2912    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2913    Diag(Old->getLocation(), diag::note_previous_definition);
2914    // Remove weak_import attribute on new declaration.
2915    New->dropAttr<WeakImportAttr>();
2916  }
2917
2918  // Merge the types.
2919  MergeVarDeclTypes(New, Old, PreviousWasHidden);
2920  if (New->isInvalidDecl())
2921    return;
2922
2923  // [dcl.stc]p8: Check if we have a non-static decl followed by a static.
2924  if (New->getStorageClass() == SC_Static &&
2925      !New->isStaticDataMember() &&
2926      Old->hasExternalFormalLinkage()) {
2927    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2928    Diag(Old->getLocation(), diag::note_previous_definition);
2929    return New->setInvalidDecl();
2930  }
2931  // C99 6.2.2p4:
2932  //   For an identifier declared with the storage-class specifier
2933  //   extern in a scope in which a prior declaration of that
2934  //   identifier is visible,23) if the prior declaration specifies
2935  //   internal or external linkage, the linkage of the identifier at
2936  //   the later declaration is the same as the linkage specified at
2937  //   the prior declaration. If no prior declaration is visible, or
2938  //   if the prior declaration specifies no linkage, then the
2939  //   identifier has external linkage.
2940  if (New->hasExternalStorage() && Old->hasLinkage())
2941    /* Okay */;
2942  else if (New->getCanonicalDecl()->getStorageClass() != SC_Static &&
2943           !New->isStaticDataMember() &&
2944           Old->getCanonicalDecl()->getStorageClass() == SC_Static) {
2945    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2946    Diag(Old->getLocation(), diag::note_previous_definition);
2947    return New->setInvalidDecl();
2948  }
2949
2950  // Check if extern is followed by non-extern and vice-versa.
2951  if (New->hasExternalStorage() &&
2952      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2953    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2954    Diag(Old->getLocation(), diag::note_previous_definition);
2955    return New->setInvalidDecl();
2956  }
2957  if (Old->hasLinkage() && New->isLocalVarDecl() &&
2958      !New->hasExternalStorage()) {
2959    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2960    Diag(Old->getLocation(), diag::note_previous_definition);
2961    return New->setInvalidDecl();
2962  }
2963
2964  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2965
2966  // FIXME: The test for external storage here seems wrong? We still
2967  // need to check for mismatches.
2968  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2969      // Don't complain about out-of-line definitions of static members.
2970      !(Old->getLexicalDeclContext()->isRecord() &&
2971        !New->getLexicalDeclContext()->isRecord())) {
2972    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2973    Diag(Old->getLocation(), diag::note_previous_definition);
2974    return New->setInvalidDecl();
2975  }
2976
2977  if (New->getTLSKind() != Old->getTLSKind()) {
2978    if (!Old->getTLSKind()) {
2979      Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2980      Diag(Old->getLocation(), diag::note_previous_declaration);
2981    } else if (!New->getTLSKind()) {
2982      Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2983      Diag(Old->getLocation(), diag::note_previous_declaration);
2984    } else {
2985      // Do not allow redeclaration to change the variable between requiring
2986      // static and dynamic initialization.
2987      // FIXME: GCC allows this, but uses the TLS keyword on the first
2988      // declaration to determine the kind. Do we need to be compatible here?
2989      Diag(New->getLocation(), diag::err_thread_thread_different_kind)
2990        << New->getDeclName() << (New->getTLSKind() == VarDecl::TLS_Dynamic);
2991      Diag(Old->getLocation(), diag::note_previous_declaration);
2992    }
2993  }
2994
2995  // C++ doesn't have tentative definitions, so go right ahead and check here.
2996  const VarDecl *Def;
2997  if (getLangOpts().CPlusPlus &&
2998      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2999      (Def = Old->getDefinition())) {
3000    Diag(New->getLocation(), diag::err_redefinition)
3001      << New->getDeclName();
3002    Diag(Def->getLocation(), diag::note_previous_definition);
3003    New->setInvalidDecl();
3004    return;
3005  }
3006
3007  if (haveIncompatibleLanguageLinkages(Old, New)) {
3008    Diag(New->getLocation(), diag::err_different_language_linkage) << New;
3009    Diag(Old->getLocation(), diag::note_previous_definition);
3010    New->setInvalidDecl();
3011    return;
3012  }
3013
3014  // Merge "used" flag.
3015  if (Old->isUsed(false))
3016    New->setUsed();
3017
3018  // Keep a chain of previous declarations.
3019  New->setPreviousDeclaration(Old);
3020
3021  // Inherit access appropriately.
3022  New->setAccess(Old->getAccess());
3023}
3024
3025/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3026/// no declarator (e.g. "struct foo;") is parsed.
3027Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3028                                       DeclSpec &DS) {
3029  return ParsedFreeStandingDeclSpec(S, AS, DS, MultiTemplateParamsArg());
3030}
3031
3032/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
3033/// no declarator (e.g. "struct foo;") is parsed. It also accepts template
3034/// parameters to cope with template friend declarations.
3035Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
3036                                       DeclSpec &DS,
3037                                       MultiTemplateParamsArg TemplateParams,
3038                                       bool IsExplicitInstantiation) {
3039  Decl *TagD = 0;
3040  TagDecl *Tag = 0;
3041  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
3042      DS.getTypeSpecType() == DeclSpec::TST_struct ||
3043      DS.getTypeSpecType() == DeclSpec::TST_interface ||
3044      DS.getTypeSpecType() == DeclSpec::TST_union ||
3045      DS.getTypeSpecType() == DeclSpec::TST_enum) {
3046    TagD = DS.getRepAsDecl();
3047
3048    if (!TagD) // We probably had an error
3049      return 0;
3050
3051    // Note that the above type specs guarantee that the
3052    // type rep is a Decl, whereas in many of the others
3053    // it's a Type.
3054    if (isa<TagDecl>(TagD))
3055      Tag = cast<TagDecl>(TagD);
3056    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
3057      Tag = CTD->getTemplatedDecl();
3058  }
3059
3060  if (Tag) {
3061    getASTContext().addUnnamedTag(Tag);
3062    Tag->setFreeStanding();
3063    if (Tag->isInvalidDecl())
3064      return Tag;
3065  }
3066
3067  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
3068    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
3069    // or incomplete types shall not be restrict-qualified."
3070    if (TypeQuals & DeclSpec::TQ_restrict)
3071      Diag(DS.getRestrictSpecLoc(),
3072           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
3073           << DS.getSourceRange();
3074  }
3075
3076  if (DS.isConstexprSpecified()) {
3077    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
3078    // and definitions of functions and variables.
3079    if (Tag)
3080      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
3081        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3082            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3083            DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3084            DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4);
3085    else
3086      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
3087    // Don't emit warnings after this error.
3088    return TagD;
3089  }
3090
3091  DiagnoseFunctionSpecifiers(DS);
3092
3093  if (DS.isFriendSpecified()) {
3094    // If we're dealing with a decl but not a TagDecl, assume that
3095    // whatever routines created it handled the friendship aspect.
3096    if (TagD && !Tag)
3097      return 0;
3098    return ActOnFriendTypeDecl(S, DS, TemplateParams);
3099  }
3100
3101  CXXScopeSpec &SS = DS.getTypeSpecScope();
3102  bool IsExplicitSpecialization =
3103    !TemplateParams.empty() && TemplateParams.back()->size() == 0;
3104  if (Tag && SS.isNotEmpty() && !Tag->isCompleteDefinition() &&
3105      !IsExplicitInstantiation && !IsExplicitSpecialization) {
3106    // Per C++ [dcl.type.elab]p1, a class declaration cannot have a
3107    // nested-name-specifier unless it is an explicit instantiation
3108    // or an explicit specialization.
3109    // Per C++ [dcl.enum]p1, an opaque-enum-declaration can't either.
3110    Diag(SS.getBeginLoc(), diag::err_standalone_class_nested_name_specifier)
3111      << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
3112          DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
3113          DS.getTypeSpecType() == DeclSpec::TST_interface ? 2 :
3114          DS.getTypeSpecType() == DeclSpec::TST_union ? 3 : 4)
3115      << SS.getRange();
3116    return 0;
3117  }
3118
3119  // Track whether this decl-specifier declares anything.
3120  bool DeclaresAnything = true;
3121
3122  // Handle anonymous struct definitions.
3123  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
3124    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
3125        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
3126      if (getLangOpts().CPlusPlus ||
3127          Record->getDeclContext()->isRecord())
3128        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
3129
3130      DeclaresAnything = false;
3131    }
3132  }
3133
3134  // Check for Microsoft C extension: anonymous struct member.
3135  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
3136      CurContext->isRecord() &&
3137      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
3138    // Handle 2 kinds of anonymous struct:
3139    //   struct STRUCT;
3140    // and
3141    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
3142    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
3143    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
3144        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
3145         DS.getRepAsType().get()->isStructureType())) {
3146      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
3147        << DS.getSourceRange();
3148      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
3149    }
3150  }
3151
3152  // Skip all the checks below if we have a type error.
3153  if (DS.getTypeSpecType() == DeclSpec::TST_error ||
3154      (TagD && TagD->isInvalidDecl()))
3155    return TagD;
3156
3157  if (getLangOpts().CPlusPlus &&
3158      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
3159    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
3160      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
3161          !Enum->getIdentifier() && !Enum->isInvalidDecl())
3162        DeclaresAnything = false;
3163
3164  if (!DS.isMissingDeclaratorOk()) {
3165    // Customize diagnostic for a typedef missing a name.
3166    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef)
3167      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
3168        << DS.getSourceRange();
3169    else
3170      DeclaresAnything = false;
3171  }
3172
3173  if (DS.isModulePrivateSpecified() &&
3174      Tag && Tag->getDeclContext()->isFunctionOrMethod())
3175    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
3176      << Tag->getTagKind()
3177      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
3178
3179  ActOnDocumentableDecl(TagD);
3180
3181  // C 6.7/2:
3182  //   A declaration [...] shall declare at least a declarator [...], a tag,
3183  //   or the members of an enumeration.
3184  // C++ [dcl.dcl]p3:
3185  //   [If there are no declarators], and except for the declaration of an
3186  //   unnamed bit-field, the decl-specifier-seq shall introduce one or more
3187  //   names into the program, or shall redeclare a name introduced by a
3188  //   previous declaration.
3189  if (!DeclaresAnything) {
3190    // In C, we allow this as a (popular) extension / bug. Don't bother
3191    // producing further diagnostics for redundant qualifiers after this.
3192    Diag(DS.getLocStart(), diag::ext_no_declarators) << DS.getSourceRange();
3193    return TagD;
3194  }
3195
3196  // C++ [dcl.stc]p1:
3197  //   If a storage-class-specifier appears in a decl-specifier-seq, [...] the
3198  //   init-declarator-list of the declaration shall not be empty.
3199  // C++ [dcl.fct.spec]p1:
3200  //   If a cv-qualifier appears in a decl-specifier-seq, the
3201  //   init-declarator-list of the declaration shall not be empty.
3202  //
3203  // Spurious qualifiers here appear to be valid in C.
3204  unsigned DiagID = diag::warn_standalone_specifier;
3205  if (getLangOpts().CPlusPlus)
3206    DiagID = diag::ext_standalone_specifier;
3207
3208  // Note that a linkage-specification sets a storage class, but
3209  // 'extern "C" struct foo;' is actually valid and not theoretically
3210  // useless.
3211  if (DeclSpec::SCS SCS = DS.getStorageClassSpec())
3212    if (!DS.isExternInLinkageSpec() && SCS != DeclSpec::SCS_typedef)
3213      Diag(DS.getStorageClassSpecLoc(), DiagID)
3214        << DeclSpec::getSpecifierName(SCS);
3215
3216  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
3217    Diag(DS.getThreadStorageClassSpecLoc(), DiagID)
3218      << DeclSpec::getSpecifierName(TSCS);
3219  if (DS.getTypeQualifiers()) {
3220    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3221      Diag(DS.getConstSpecLoc(), DiagID) << "const";
3222    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3223      Diag(DS.getConstSpecLoc(), DiagID) << "volatile";
3224    // Restrict is covered above.
3225    if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3226      Diag(DS.getAtomicSpecLoc(), DiagID) << "_Atomic";
3227  }
3228
3229  // Warn about ignored type attributes, for example:
3230  // __attribute__((aligned)) struct A;
3231  // Attributes should be placed after tag to apply to type declaration.
3232  if (!DS.getAttributes().empty()) {
3233    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
3234    if (TypeSpecType == DeclSpec::TST_class ||
3235        TypeSpecType == DeclSpec::TST_struct ||
3236        TypeSpecType == DeclSpec::TST_interface ||
3237        TypeSpecType == DeclSpec::TST_union ||
3238        TypeSpecType == DeclSpec::TST_enum) {
3239      AttributeList* attrs = DS.getAttributes().getList();
3240      while (attrs) {
3241        Diag(attrs->getLoc(), diag::warn_declspec_attribute_ignored)
3242        << attrs->getName()
3243        << (TypeSpecType == DeclSpec::TST_class ? 0 :
3244            TypeSpecType == DeclSpec::TST_struct ? 1 :
3245            TypeSpecType == DeclSpec::TST_union ? 2 :
3246            TypeSpecType == DeclSpec::TST_interface ? 3 : 4);
3247        attrs = attrs->getNext();
3248      }
3249    }
3250  }
3251
3252  return TagD;
3253}
3254
3255/// We are trying to inject an anonymous member into the given scope;
3256/// check if there's an existing declaration that can't be overloaded.
3257///
3258/// \return true if this is a forbidden redeclaration
3259static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
3260                                         Scope *S,
3261                                         DeclContext *Owner,
3262                                         DeclarationName Name,
3263                                         SourceLocation NameLoc,
3264                                         unsigned diagnostic) {
3265  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
3266                 Sema::ForRedeclaration);
3267  if (!SemaRef.LookupName(R, S)) return false;
3268
3269  if (R.getAsSingle<TagDecl>())
3270    return false;
3271
3272  // Pick a representative declaration.
3273  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
3274  assert(PrevDecl && "Expected a non-null Decl");
3275
3276  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
3277    return false;
3278
3279  SemaRef.Diag(NameLoc, diagnostic) << Name;
3280  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3281
3282  return true;
3283}
3284
3285/// InjectAnonymousStructOrUnionMembers - Inject the members of the
3286/// anonymous struct or union AnonRecord into the owning context Owner
3287/// and scope S. This routine will be invoked just after we realize
3288/// that an unnamed union or struct is actually an anonymous union or
3289/// struct, e.g.,
3290///
3291/// @code
3292/// union {
3293///   int i;
3294///   float f;
3295/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
3296///    // f into the surrounding scope.x
3297/// @endcode
3298///
3299/// This routine is recursive, injecting the names of nested anonymous
3300/// structs/unions into the owning context and scope as well.
3301static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
3302                                                DeclContext *Owner,
3303                                                RecordDecl *AnonRecord,
3304                                                AccessSpecifier AS,
3305                              SmallVector<NamedDecl*, 2> &Chaining,
3306                                                      bool MSAnonStruct) {
3307  unsigned diagKind
3308    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
3309                            : diag::err_anonymous_struct_member_redecl;
3310
3311  bool Invalid = false;
3312
3313  // Look every FieldDecl and IndirectFieldDecl with a name.
3314  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
3315                               DEnd = AnonRecord->decls_end();
3316       D != DEnd; ++D) {
3317    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
3318        cast<NamedDecl>(*D)->getDeclName()) {
3319      ValueDecl *VD = cast<ValueDecl>(*D);
3320      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
3321                                       VD->getLocation(), diagKind)) {
3322        // C++ [class.union]p2:
3323        //   The names of the members of an anonymous union shall be
3324        //   distinct from the names of any other entity in the
3325        //   scope in which the anonymous union is declared.
3326        Invalid = true;
3327      } else {
3328        // C++ [class.union]p2:
3329        //   For the purpose of name lookup, after the anonymous union
3330        //   definition, the members of the anonymous union are
3331        //   considered to have been defined in the scope in which the
3332        //   anonymous union is declared.
3333        unsigned OldChainingSize = Chaining.size();
3334        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
3335          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
3336               PE = IF->chain_end(); PI != PE; ++PI)
3337            Chaining.push_back(*PI);
3338        else
3339          Chaining.push_back(VD);
3340
3341        assert(Chaining.size() >= 2);
3342        NamedDecl **NamedChain =
3343          new (SemaRef.Context)NamedDecl*[Chaining.size()];
3344        for (unsigned i = 0; i < Chaining.size(); i++)
3345          NamedChain[i] = Chaining[i];
3346
3347        IndirectFieldDecl* IndirectField =
3348          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
3349                                    VD->getIdentifier(), VD->getType(),
3350                                    NamedChain, Chaining.size());
3351
3352        IndirectField->setAccess(AS);
3353        IndirectField->setImplicit();
3354        SemaRef.PushOnScopeChains(IndirectField, S);
3355
3356        // That includes picking up the appropriate access specifier.
3357        if (AS != AS_none) IndirectField->setAccess(AS);
3358
3359        Chaining.resize(OldChainingSize);
3360      }
3361    }
3362  }
3363
3364  return Invalid;
3365}
3366
3367/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
3368/// a VarDecl::StorageClass. Any error reporting is up to the caller:
3369/// illegal input values are mapped to SC_None.
3370static StorageClass
3371StorageClassSpecToVarDeclStorageClass(const DeclSpec &DS) {
3372  DeclSpec::SCS StorageClassSpec = DS.getStorageClassSpec();
3373  assert(StorageClassSpec != DeclSpec::SCS_typedef &&
3374         "Parser allowed 'typedef' as storage class VarDecl.");
3375  switch (StorageClassSpec) {
3376  case DeclSpec::SCS_unspecified:    return SC_None;
3377  case DeclSpec::SCS_extern:
3378    if (DS.isExternInLinkageSpec())
3379      return SC_None;
3380    return SC_Extern;
3381  case DeclSpec::SCS_static:         return SC_Static;
3382  case DeclSpec::SCS_auto:           return SC_Auto;
3383  case DeclSpec::SCS_register:       return SC_Register;
3384  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
3385    // Illegal SCSs map to None: error reporting is up to the caller.
3386  case DeclSpec::SCS_mutable:        // Fall through.
3387  case DeclSpec::SCS_typedef:        return SC_None;
3388  }
3389  llvm_unreachable("unknown storage class specifier");
3390}
3391
3392/// BuildAnonymousStructOrUnion - Handle the declaration of an
3393/// anonymous structure or union. Anonymous unions are a C++ feature
3394/// (C++ [class.union]) and a C11 feature; anonymous structures
3395/// are a C11 feature and GNU C++ extension.
3396Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
3397                                             AccessSpecifier AS,
3398                                             RecordDecl *Record) {
3399  DeclContext *Owner = Record->getDeclContext();
3400
3401  // Diagnose whether this anonymous struct/union is an extension.
3402  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
3403    Diag(Record->getLocation(), diag::ext_anonymous_union);
3404  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
3405    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
3406  else if (!Record->isUnion() && !getLangOpts().C11)
3407    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
3408
3409  // C and C++ require different kinds of checks for anonymous
3410  // structs/unions.
3411  bool Invalid = false;
3412  if (getLangOpts().CPlusPlus) {
3413    const char* PrevSpec = 0;
3414    unsigned DiagID;
3415    if (Record->isUnion()) {
3416      // C++ [class.union]p6:
3417      //   Anonymous unions declared in a named namespace or in the
3418      //   global namespace shall be declared static.
3419      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
3420          (isa<TranslationUnitDecl>(Owner) ||
3421           (isa<NamespaceDecl>(Owner) &&
3422            cast<NamespaceDecl>(Owner)->getDeclName()))) {
3423        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
3424          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
3425
3426        // Recover by adding 'static'.
3427        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
3428                               PrevSpec, DiagID);
3429      }
3430      // C++ [class.union]p6:
3431      //   A storage class is not allowed in a declaration of an
3432      //   anonymous union in a class scope.
3433      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
3434               isa<RecordDecl>(Owner)) {
3435        Diag(DS.getStorageClassSpecLoc(),
3436             diag::err_anonymous_union_with_storage_spec)
3437          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
3438
3439        // Recover by removing the storage specifier.
3440        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
3441                               SourceLocation(),
3442                               PrevSpec, DiagID);
3443      }
3444    }
3445
3446    // Ignore const/volatile/restrict qualifiers.
3447    if (DS.getTypeQualifiers()) {
3448      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
3449        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
3450          << Record->isUnion() << "const"
3451          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
3452      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
3453        Diag(DS.getVolatileSpecLoc(),
3454             diag::ext_anonymous_struct_union_qualified)
3455          << Record->isUnion() << "volatile"
3456          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
3457      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
3458        Diag(DS.getRestrictSpecLoc(),
3459             diag::ext_anonymous_struct_union_qualified)
3460          << Record->isUnion() << "restrict"
3461          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
3462      if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
3463        Diag(DS.getAtomicSpecLoc(),
3464             diag::ext_anonymous_struct_union_qualified)
3465          << Record->isUnion() << "_Atomic"
3466          << FixItHint::CreateRemoval(DS.getAtomicSpecLoc());
3467
3468      DS.ClearTypeQualifiers();
3469    }
3470
3471    // C++ [class.union]p2:
3472    //   The member-specification of an anonymous union shall only
3473    //   define non-static data members. [Note: nested types and
3474    //   functions cannot be declared within an anonymous union. ]
3475    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
3476                                 MemEnd = Record->decls_end();
3477         Mem != MemEnd; ++Mem) {
3478      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
3479        // C++ [class.union]p3:
3480        //   An anonymous union shall not have private or protected
3481        //   members (clause 11).
3482        assert(FD->getAccess() != AS_none);
3483        if (FD->getAccess() != AS_public) {
3484          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
3485            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
3486          Invalid = true;
3487        }
3488
3489        // C++ [class.union]p1
3490        //   An object of a class with a non-trivial constructor, a non-trivial
3491        //   copy constructor, a non-trivial destructor, or a non-trivial copy
3492        //   assignment operator cannot be a member of a union, nor can an
3493        //   array of such objects.
3494        if (CheckNontrivialField(FD))
3495          Invalid = true;
3496      } else if ((*Mem)->isImplicit()) {
3497        // Any implicit members are fine.
3498      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
3499        // This is a type that showed up in an
3500        // elaborated-type-specifier inside the anonymous struct or
3501        // union, but which actually declares a type outside of the
3502        // anonymous struct or union. It's okay.
3503      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
3504        if (!MemRecord->isAnonymousStructOrUnion() &&
3505            MemRecord->getDeclName()) {
3506          // Visual C++ allows type definition in anonymous struct or union.
3507          if (getLangOpts().MicrosoftExt)
3508            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
3509              << (int)Record->isUnion();
3510          else {
3511            // This is a nested type declaration.
3512            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
3513              << (int)Record->isUnion();
3514            Invalid = true;
3515          }
3516        } else {
3517          // This is an anonymous type definition within another anonymous type.
3518          // This is a popular extension, provided by Plan9, MSVC and GCC, but
3519          // not part of standard C++.
3520          Diag(MemRecord->getLocation(),
3521               diag::ext_anonymous_record_with_anonymous_type)
3522            << (int)Record->isUnion();
3523        }
3524      } else if (isa<AccessSpecDecl>(*Mem)) {
3525        // Any access specifier is fine.
3526      } else {
3527        // We have something that isn't a non-static data
3528        // member. Complain about it.
3529        unsigned DK = diag::err_anonymous_record_bad_member;
3530        if (isa<TypeDecl>(*Mem))
3531          DK = diag::err_anonymous_record_with_type;
3532        else if (isa<FunctionDecl>(*Mem))
3533          DK = diag::err_anonymous_record_with_function;
3534        else if (isa<VarDecl>(*Mem))
3535          DK = diag::err_anonymous_record_with_static;
3536
3537        // Visual C++ allows type definition in anonymous struct or union.
3538        if (getLangOpts().MicrosoftExt &&
3539            DK == diag::err_anonymous_record_with_type)
3540          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
3541            << (int)Record->isUnion();
3542        else {
3543          Diag((*Mem)->getLocation(), DK)
3544              << (int)Record->isUnion();
3545          Invalid = true;
3546        }
3547      }
3548    }
3549  }
3550
3551  if (!Record->isUnion() && !Owner->isRecord()) {
3552    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
3553      << (int)getLangOpts().CPlusPlus;
3554    Invalid = true;
3555  }
3556
3557  // Mock up a declarator.
3558  Declarator Dc(DS, Declarator::MemberContext);
3559  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3560  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
3561
3562  // Create a declaration for this anonymous struct/union.
3563  NamedDecl *Anon = 0;
3564  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
3565    Anon = FieldDecl::Create(Context, OwningClass,
3566                             DS.getLocStart(),
3567                             Record->getLocation(),
3568                             /*IdentifierInfo=*/0,
3569                             Context.getTypeDeclType(Record),
3570                             TInfo,
3571                             /*BitWidth=*/0, /*Mutable=*/false,
3572                             /*InitStyle=*/ICIS_NoInit);
3573    Anon->setAccess(AS);
3574    if (getLangOpts().CPlusPlus)
3575      FieldCollector->Add(cast<FieldDecl>(Anon));
3576  } else {
3577    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
3578    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(DS);
3579    if (SCSpec == DeclSpec::SCS_mutable) {
3580      // mutable can only appear on non-static class members, so it's always
3581      // an error here
3582      Diag(Record->getLocation(), diag::err_mutable_nonmember);
3583      Invalid = true;
3584      SC = SC_None;
3585    }
3586
3587    Anon = VarDecl::Create(Context, Owner,
3588                           DS.getLocStart(),
3589                           Record->getLocation(), /*IdentifierInfo=*/0,
3590                           Context.getTypeDeclType(Record),
3591                           TInfo, SC);
3592
3593    // Default-initialize the implicit variable. This initialization will be
3594    // trivial in almost all cases, except if a union member has an in-class
3595    // initializer:
3596    //   union { int n = 0; };
3597    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3598  }
3599  Anon->setImplicit();
3600
3601  // Add the anonymous struct/union object to the current
3602  // context. We'll be referencing this object when we refer to one of
3603  // its members.
3604  Owner->addDecl(Anon);
3605
3606  // Inject the members of the anonymous struct/union into the owning
3607  // context and into the identifier resolver chain for name lookup
3608  // purposes.
3609  SmallVector<NamedDecl*, 2> Chain;
3610  Chain.push_back(Anon);
3611
3612  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3613                                          Chain, false))
3614    Invalid = true;
3615
3616  // Mark this as an anonymous struct/union type. Note that we do not
3617  // do this until after we have already checked and injected the
3618  // members of this anonymous struct/union type, because otherwise
3619  // the members could be injected twice: once by DeclContext when it
3620  // builds its lookup table, and once by
3621  // InjectAnonymousStructOrUnionMembers.
3622  Record->setAnonymousStructOrUnion(true);
3623
3624  if (Invalid)
3625    Anon->setInvalidDecl();
3626
3627  return Anon;
3628}
3629
3630/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3631/// Microsoft C anonymous structure.
3632/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3633/// Example:
3634///
3635/// struct A { int a; };
3636/// struct B { struct A; int b; };
3637///
3638/// void foo() {
3639///   B var;
3640///   var.a = 3;
3641/// }
3642///
3643Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3644                                           RecordDecl *Record) {
3645
3646  // If there is no Record, get the record via the typedef.
3647  if (!Record)
3648    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3649
3650  // Mock up a declarator.
3651  Declarator Dc(DS, Declarator::TypeNameContext);
3652  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3653  assert(TInfo && "couldn't build declarator info for anonymous struct");
3654
3655  // Create a declaration for this anonymous struct.
3656  NamedDecl* Anon = FieldDecl::Create(Context,
3657                             cast<RecordDecl>(CurContext),
3658                             DS.getLocStart(),
3659                             DS.getLocStart(),
3660                             /*IdentifierInfo=*/0,
3661                             Context.getTypeDeclType(Record),
3662                             TInfo,
3663                             /*BitWidth=*/0, /*Mutable=*/false,
3664                             /*InitStyle=*/ICIS_NoInit);
3665  Anon->setImplicit();
3666
3667  // Add the anonymous struct object to the current context.
3668  CurContext->addDecl(Anon);
3669
3670  // Inject the members of the anonymous struct into the current
3671  // context and into the identifier resolver chain for name lookup
3672  // purposes.
3673  SmallVector<NamedDecl*, 2> Chain;
3674  Chain.push_back(Anon);
3675
3676  RecordDecl *RecordDef = Record->getDefinition();
3677  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3678                                                        RecordDef, AS_none,
3679                                                        Chain, true))
3680    Anon->setInvalidDecl();
3681
3682  return Anon;
3683}
3684
3685/// GetNameForDeclarator - Determine the full declaration name for the
3686/// given Declarator.
3687DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3688  return GetNameFromUnqualifiedId(D.getName());
3689}
3690
3691/// \brief Retrieves the declaration name from a parsed unqualified-id.
3692DeclarationNameInfo
3693Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3694  DeclarationNameInfo NameInfo;
3695  NameInfo.setLoc(Name.StartLocation);
3696
3697  switch (Name.getKind()) {
3698
3699  case UnqualifiedId::IK_ImplicitSelfParam:
3700  case UnqualifiedId::IK_Identifier:
3701    NameInfo.setName(Name.Identifier);
3702    NameInfo.setLoc(Name.StartLocation);
3703    return NameInfo;
3704
3705  case UnqualifiedId::IK_OperatorFunctionId:
3706    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3707                                           Name.OperatorFunctionId.Operator));
3708    NameInfo.setLoc(Name.StartLocation);
3709    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3710      = Name.OperatorFunctionId.SymbolLocations[0];
3711    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3712      = Name.EndLocation.getRawEncoding();
3713    return NameInfo;
3714
3715  case UnqualifiedId::IK_LiteralOperatorId:
3716    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3717                                                           Name.Identifier));
3718    NameInfo.setLoc(Name.StartLocation);
3719    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3720    return NameInfo;
3721
3722  case UnqualifiedId::IK_ConversionFunctionId: {
3723    TypeSourceInfo *TInfo;
3724    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3725    if (Ty.isNull())
3726      return DeclarationNameInfo();
3727    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3728                                               Context.getCanonicalType(Ty)));
3729    NameInfo.setLoc(Name.StartLocation);
3730    NameInfo.setNamedTypeInfo(TInfo);
3731    return NameInfo;
3732  }
3733
3734  case UnqualifiedId::IK_ConstructorName: {
3735    TypeSourceInfo *TInfo;
3736    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3737    if (Ty.isNull())
3738      return DeclarationNameInfo();
3739    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3740                                              Context.getCanonicalType(Ty)));
3741    NameInfo.setLoc(Name.StartLocation);
3742    NameInfo.setNamedTypeInfo(TInfo);
3743    return NameInfo;
3744  }
3745
3746  case UnqualifiedId::IK_ConstructorTemplateId: {
3747    // In well-formed code, we can only have a constructor
3748    // template-id that refers to the current context, so go there
3749    // to find the actual type being constructed.
3750    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3751    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3752      return DeclarationNameInfo();
3753
3754    // Determine the type of the class being constructed.
3755    QualType CurClassType = Context.getTypeDeclType(CurClass);
3756
3757    // FIXME: Check two things: that the template-id names the same type as
3758    // CurClassType, and that the template-id does not occur when the name
3759    // was qualified.
3760
3761    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3762                                    Context.getCanonicalType(CurClassType)));
3763    NameInfo.setLoc(Name.StartLocation);
3764    // FIXME: should we retrieve TypeSourceInfo?
3765    NameInfo.setNamedTypeInfo(0);
3766    return NameInfo;
3767  }
3768
3769  case UnqualifiedId::IK_DestructorName: {
3770    TypeSourceInfo *TInfo;
3771    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3772    if (Ty.isNull())
3773      return DeclarationNameInfo();
3774    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3775                                              Context.getCanonicalType(Ty)));
3776    NameInfo.setLoc(Name.StartLocation);
3777    NameInfo.setNamedTypeInfo(TInfo);
3778    return NameInfo;
3779  }
3780
3781  case UnqualifiedId::IK_TemplateId: {
3782    TemplateName TName = Name.TemplateId->Template.get();
3783    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3784    return Context.getNameForTemplate(TName, TNameLoc);
3785  }
3786
3787  } // switch (Name.getKind())
3788
3789  llvm_unreachable("Unknown name kind");
3790}
3791
3792static QualType getCoreType(QualType Ty) {
3793  do {
3794    if (Ty->isPointerType() || Ty->isReferenceType())
3795      Ty = Ty->getPointeeType();
3796    else if (Ty->isArrayType())
3797      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3798    else
3799      return Ty.withoutLocalFastQualifiers();
3800  } while (true);
3801}
3802
3803/// hasSimilarParameters - Determine whether the C++ functions Declaration
3804/// and Definition have "nearly" matching parameters. This heuristic is
3805/// used to improve diagnostics in the case where an out-of-line function
3806/// definition doesn't match any declaration within the class or namespace.
3807/// Also sets Params to the list of indices to the parameters that differ
3808/// between the declaration and the definition. If hasSimilarParameters
3809/// returns true and Params is empty, then all of the parameters match.
3810static bool hasSimilarParameters(ASTContext &Context,
3811                                     FunctionDecl *Declaration,
3812                                     FunctionDecl *Definition,
3813                                     SmallVectorImpl<unsigned> &Params) {
3814  Params.clear();
3815  if (Declaration->param_size() != Definition->param_size())
3816    return false;
3817  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3818    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3819    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3820
3821    // The parameter types are identical
3822    if (Context.hasSameType(DefParamTy, DeclParamTy))
3823      continue;
3824
3825    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3826    QualType DefParamBaseTy = getCoreType(DefParamTy);
3827    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3828    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3829
3830    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3831        (DeclTyName && DeclTyName == DefTyName))
3832      Params.push_back(Idx);
3833    else  // The two parameters aren't even close
3834      return false;
3835  }
3836
3837  return true;
3838}
3839
3840/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3841/// declarator needs to be rebuilt in the current instantiation.
3842/// Any bits of declarator which appear before the name are valid for
3843/// consideration here.  That's specifically the type in the decl spec
3844/// and the base type in any member-pointer chunks.
3845static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3846                                                    DeclarationName Name) {
3847  // The types we specifically need to rebuild are:
3848  //   - typenames, typeofs, and decltypes
3849  //   - types which will become injected class names
3850  // Of course, we also need to rebuild any type referencing such a
3851  // type.  It's safest to just say "dependent", but we call out a
3852  // few cases here.
3853
3854  DeclSpec &DS = D.getMutableDeclSpec();
3855  switch (DS.getTypeSpecType()) {
3856  case DeclSpec::TST_typename:
3857  case DeclSpec::TST_typeofType:
3858  case DeclSpec::TST_underlyingType:
3859  case DeclSpec::TST_atomic: {
3860    // Grab the type from the parser.
3861    TypeSourceInfo *TSI = 0;
3862    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3863    if (T.isNull() || !T->isDependentType()) break;
3864
3865    // Make sure there's a type source info.  This isn't really much
3866    // of a waste; most dependent types should have type source info
3867    // attached already.
3868    if (!TSI)
3869      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3870
3871    // Rebuild the type in the current instantiation.
3872    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3873    if (!TSI) return true;
3874
3875    // Store the new type back in the decl spec.
3876    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3877    DS.UpdateTypeRep(LocType);
3878    break;
3879  }
3880
3881  case DeclSpec::TST_decltype:
3882  case DeclSpec::TST_typeofExpr: {
3883    Expr *E = DS.getRepAsExpr();
3884    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3885    if (Result.isInvalid()) return true;
3886    DS.UpdateExprRep(Result.get());
3887    break;
3888  }
3889
3890  default:
3891    // Nothing to do for these decl specs.
3892    break;
3893  }
3894
3895  // It doesn't matter what order we do this in.
3896  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3897    DeclaratorChunk &Chunk = D.getTypeObject(I);
3898
3899    // The only type information in the declarator which can come
3900    // before the declaration name is the base type of a member
3901    // pointer.
3902    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3903      continue;
3904
3905    // Rebuild the scope specifier in-place.
3906    CXXScopeSpec &SS = Chunk.Mem.Scope();
3907    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3908      return true;
3909  }
3910
3911  return false;
3912}
3913
3914Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3915  D.setFunctionDefinitionKind(FDK_Declaration);
3916  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg());
3917
3918  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3919      Dcl && Dcl->getDeclContext()->isFileContext())
3920    Dcl->setTopLevelDeclInObjCContainer();
3921
3922  return Dcl;
3923}
3924
3925/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3926///   If T is the name of a class, then each of the following shall have a
3927///   name different from T:
3928///     - every static data member of class T;
3929///     - every member function of class T
3930///     - every member of class T that is itself a type;
3931/// \returns true if the declaration name violates these rules.
3932bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3933                                   DeclarationNameInfo NameInfo) {
3934  DeclarationName Name = NameInfo.getName();
3935
3936  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3937    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3938      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3939      return true;
3940    }
3941
3942  return false;
3943}
3944
3945/// \brief Diagnose a declaration whose declarator-id has the given
3946/// nested-name-specifier.
3947///
3948/// \param SS The nested-name-specifier of the declarator-id.
3949///
3950/// \param DC The declaration context to which the nested-name-specifier
3951/// resolves.
3952///
3953/// \param Name The name of the entity being declared.
3954///
3955/// \param Loc The location of the name of the entity being declared.
3956///
3957/// \returns true if we cannot safely recover from this error, false otherwise.
3958bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3959                                        DeclarationName Name,
3960                                      SourceLocation Loc) {
3961  DeclContext *Cur = CurContext;
3962  while (isa<LinkageSpecDecl>(Cur))
3963    Cur = Cur->getParent();
3964
3965  // C++ [dcl.meaning]p1:
3966  //   A declarator-id shall not be qualified except for the definition
3967  //   of a member function (9.3) or static data member (9.4) outside of
3968  //   its class, the definition or explicit instantiation of a function
3969  //   or variable member of a namespace outside of its namespace, or the
3970  //   definition of an explicit specialization outside of its namespace,
3971  //   or the declaration of a friend function that is a member of
3972  //   another class or namespace (11.3). [...]
3973
3974  // The user provided a superfluous scope specifier that refers back to the
3975  // class or namespaces in which the entity is already declared.
3976  //
3977  // class X {
3978  //   void X::f();
3979  // };
3980  if (Cur->Equals(DC)) {
3981    Diag(Loc, LangOpts.MicrosoftExt? diag::warn_member_extra_qualification
3982                                   : diag::err_member_extra_qualification)
3983      << Name << FixItHint::CreateRemoval(SS.getRange());
3984    SS.clear();
3985    return false;
3986  }
3987
3988  // Check whether the qualifying scope encloses the scope of the original
3989  // declaration.
3990  if (!Cur->Encloses(DC)) {
3991    if (Cur->isRecord())
3992      Diag(Loc, diag::err_member_qualification)
3993        << Name << SS.getRange();
3994    else if (isa<TranslationUnitDecl>(DC))
3995      Diag(Loc, diag::err_invalid_declarator_global_scope)
3996        << Name << SS.getRange();
3997    else if (isa<FunctionDecl>(Cur))
3998      Diag(Loc, diag::err_invalid_declarator_in_function)
3999        << Name << SS.getRange();
4000    else
4001      Diag(Loc, diag::err_invalid_declarator_scope)
4002      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
4003
4004    return true;
4005  }
4006
4007  if (Cur->isRecord()) {
4008    // Cannot qualify members within a class.
4009    Diag(Loc, diag::err_member_qualification)
4010      << Name << SS.getRange();
4011    SS.clear();
4012
4013    // C++ constructors and destructors with incorrect scopes can break
4014    // our AST invariants by having the wrong underlying types. If
4015    // that's the case, then drop this declaration entirely.
4016    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
4017         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
4018        !Context.hasSameType(Name.getCXXNameType(),
4019                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
4020      return true;
4021
4022    return false;
4023  }
4024
4025  // C++11 [dcl.meaning]p1:
4026  //   [...] "The nested-name-specifier of the qualified declarator-id shall
4027  //   not begin with a decltype-specifer"
4028  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
4029  while (SpecLoc.getPrefix())
4030    SpecLoc = SpecLoc.getPrefix();
4031  if (dyn_cast_or_null<DecltypeType>(
4032        SpecLoc.getNestedNameSpecifier()->getAsType()))
4033    Diag(Loc, diag::err_decltype_in_declarator)
4034      << SpecLoc.getTypeLoc().getSourceRange();
4035
4036  return false;
4037}
4038
4039NamedDecl *Sema::HandleDeclarator(Scope *S, Declarator &D,
4040                                  MultiTemplateParamsArg TemplateParamLists) {
4041  // TODO: consider using NameInfo for diagnostic.
4042  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4043  DeclarationName Name = NameInfo.getName();
4044
4045  // All of these full declarators require an identifier.  If it doesn't have
4046  // one, the ParsedFreeStandingDeclSpec action should be used.
4047  if (!Name) {
4048    if (!D.isInvalidType())  // Reject this if we think it is valid.
4049      Diag(D.getDeclSpec().getLocStart(),
4050           diag::err_declarator_need_ident)
4051        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
4052    return 0;
4053  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
4054    return 0;
4055
4056  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4057  // we find one that is.
4058  while ((S->getFlags() & Scope::DeclScope) == 0 ||
4059         (S->getFlags() & Scope::TemplateParamScope) != 0)
4060    S = S->getParent();
4061
4062  DeclContext *DC = CurContext;
4063  if (D.getCXXScopeSpec().isInvalid())
4064    D.setInvalidType();
4065  else if (D.getCXXScopeSpec().isSet()) {
4066    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
4067                                        UPPC_DeclarationQualifier))
4068      return 0;
4069
4070    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
4071    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
4072    if (!DC) {
4073      // If we could not compute the declaration context, it's because the
4074      // declaration context is dependent but does not refer to a class,
4075      // class template, or class template partial specialization. Complain
4076      // and return early, to avoid the coming semantic disaster.
4077      Diag(D.getIdentifierLoc(),
4078           diag::err_template_qualified_declarator_no_match)
4079        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
4080        << D.getCXXScopeSpec().getRange();
4081      return 0;
4082    }
4083    bool IsDependentContext = DC->isDependentContext();
4084
4085    if (!IsDependentContext &&
4086        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
4087      return 0;
4088
4089    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
4090      Diag(D.getIdentifierLoc(),
4091           diag::err_member_def_undefined_record)
4092        << Name << DC << D.getCXXScopeSpec().getRange();
4093      D.setInvalidType();
4094    } else if (!D.getDeclSpec().isFriendSpecified()) {
4095      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
4096                                      Name, D.getIdentifierLoc())) {
4097        if (DC->isRecord())
4098          return 0;
4099
4100        D.setInvalidType();
4101      }
4102    }
4103
4104    // Check whether we need to rebuild the type of the given
4105    // declaration in the current instantiation.
4106    if (EnteringContext && IsDependentContext &&
4107        TemplateParamLists.size() != 0) {
4108      ContextRAII SavedContext(*this, DC);
4109      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
4110        D.setInvalidType();
4111    }
4112  }
4113
4114  if (DiagnoseClassNameShadow(DC, NameInfo))
4115    // If this is a typedef, we'll end up spewing multiple diagnostics.
4116    // Just return early; it's safer.
4117    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4118      return 0;
4119
4120  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
4121  QualType R = TInfo->getType();
4122
4123  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
4124                                      UPPC_DeclarationType))
4125    D.setInvalidType();
4126
4127  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
4128                        ForRedeclaration);
4129
4130  // See if this is a redefinition of a variable in the same scope.
4131  if (!D.getCXXScopeSpec().isSet()) {
4132    bool IsLinkageLookup = false;
4133
4134    // If the declaration we're planning to build will be a function
4135    // or object with linkage, then look for another declaration with
4136    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
4137    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
4138      /* Do nothing*/;
4139    else if (R->isFunctionType()) {
4140      if (CurContext->isFunctionOrMethod() ||
4141          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4142        IsLinkageLookup = true;
4143    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
4144      IsLinkageLookup = true;
4145    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
4146             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
4147      IsLinkageLookup = true;
4148
4149    if (IsLinkageLookup)
4150      Previous.clear(LookupRedeclarationWithLinkage);
4151
4152    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
4153  } else { // Something like "int foo::x;"
4154    LookupQualifiedName(Previous, DC);
4155
4156    // C++ [dcl.meaning]p1:
4157    //   When the declarator-id is qualified, the declaration shall refer to a
4158    //  previously declared member of the class or namespace to which the
4159    //  qualifier refers (or, in the case of a namespace, of an element of the
4160    //  inline namespace set of that namespace (7.3.1)) or to a specialization
4161    //  thereof; [...]
4162    //
4163    // Note that we already checked the context above, and that we do not have
4164    // enough information to make sure that Previous contains the declaration
4165    // we want to match. For example, given:
4166    //
4167    //   class X {
4168    //     void f();
4169    //     void f(float);
4170    //   };
4171    //
4172    //   void X::f(int) { } // ill-formed
4173    //
4174    // In this case, Previous will point to the overload set
4175    // containing the two f's declared in X, but neither of them
4176    // matches.
4177
4178    // C++ [dcl.meaning]p1:
4179    //   [...] the member shall not merely have been introduced by a
4180    //   using-declaration in the scope of the class or namespace nominated by
4181    //   the nested-name-specifier of the declarator-id.
4182    RemoveUsingDecls(Previous);
4183  }
4184
4185  if (Previous.isSingleResult() &&
4186      Previous.getFoundDecl()->isTemplateParameter()) {
4187    // Maybe we will complain about the shadowed template parameter.
4188    if (!D.isInvalidType())
4189      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
4190                                      Previous.getFoundDecl());
4191
4192    // Just pretend that we didn't see the previous declaration.
4193    Previous.clear();
4194  }
4195
4196  // In C++, the previous declaration we find might be a tag type
4197  // (class or enum). In this case, the new declaration will hide the
4198  // tag type. Note that this does does not apply if we're declaring a
4199  // typedef (C++ [dcl.typedef]p4).
4200  if (Previous.isSingleTagDecl() &&
4201      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
4202    Previous.clear();
4203
4204  // Check that there are no default arguments other than in the parameters
4205  // of a function declaration (C++ only).
4206  if (getLangOpts().CPlusPlus)
4207    CheckExtraCXXDefaultArguments(D);
4208
4209  NamedDecl *New;
4210
4211  bool AddToScope = true;
4212  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
4213    if (TemplateParamLists.size()) {
4214      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
4215      return 0;
4216    }
4217
4218    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
4219  } else if (R->isFunctionType()) {
4220    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
4221                                  TemplateParamLists,
4222                                  AddToScope);
4223  } else {
4224    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
4225                                  TemplateParamLists);
4226  }
4227
4228  if (New == 0)
4229    return 0;
4230
4231  // If this has an identifier and is not an invalid redeclaration or
4232  // function template specialization, add it to the scope stack.
4233  if (New->getDeclName() && AddToScope &&
4234       !(D.isRedeclaration() && New->isInvalidDecl()))
4235    PushOnScopeChains(New, S);
4236
4237  return New;
4238}
4239
4240/// Helper method to turn variable array types into constant array
4241/// types in certain situations which would otherwise be errors (for
4242/// GCC compatibility).
4243static QualType TryToFixInvalidVariablyModifiedType(QualType T,
4244                                                    ASTContext &Context,
4245                                                    bool &SizeIsNegative,
4246                                                    llvm::APSInt &Oversized) {
4247  // This method tries to turn a variable array into a constant
4248  // array even when the size isn't an ICE.  This is necessary
4249  // for compatibility with code that depends on gcc's buggy
4250  // constant expression folding, like struct {char x[(int)(char*)2];}
4251  SizeIsNegative = false;
4252  Oversized = 0;
4253
4254  if (T->isDependentType())
4255    return QualType();
4256
4257  QualifierCollector Qs;
4258  const Type *Ty = Qs.strip(T);
4259
4260  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
4261    QualType Pointee = PTy->getPointeeType();
4262    QualType FixedType =
4263        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
4264                                            Oversized);
4265    if (FixedType.isNull()) return FixedType;
4266    FixedType = Context.getPointerType(FixedType);
4267    return Qs.apply(Context, FixedType);
4268  }
4269  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
4270    QualType Inner = PTy->getInnerType();
4271    QualType FixedType =
4272        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
4273                                            Oversized);
4274    if (FixedType.isNull()) return FixedType;
4275    FixedType = Context.getParenType(FixedType);
4276    return Qs.apply(Context, FixedType);
4277  }
4278
4279  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
4280  if (!VLATy)
4281    return QualType();
4282  // FIXME: We should probably handle this case
4283  if (VLATy->getElementType()->isVariablyModifiedType())
4284    return QualType();
4285
4286  llvm::APSInt Res;
4287  if (!VLATy->getSizeExpr() ||
4288      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
4289    return QualType();
4290
4291  // Check whether the array size is negative.
4292  if (Res.isSigned() && Res.isNegative()) {
4293    SizeIsNegative = true;
4294    return QualType();
4295  }
4296
4297  // Check whether the array is too large to be addressed.
4298  unsigned ActiveSizeBits
4299    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
4300                                              Res);
4301  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
4302    Oversized = Res;
4303    return QualType();
4304  }
4305
4306  return Context.getConstantArrayType(VLATy->getElementType(),
4307                                      Res, ArrayType::Normal, 0);
4308}
4309
4310static void
4311FixInvalidVariablyModifiedTypeLoc(TypeLoc SrcTL, TypeLoc DstTL) {
4312  if (PointerTypeLoc SrcPTL = SrcTL.getAs<PointerTypeLoc>()) {
4313    PointerTypeLoc DstPTL = DstTL.castAs<PointerTypeLoc>();
4314    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getPointeeLoc(),
4315                                      DstPTL.getPointeeLoc());
4316    DstPTL.setStarLoc(SrcPTL.getStarLoc());
4317    return;
4318  }
4319  if (ParenTypeLoc SrcPTL = SrcTL.getAs<ParenTypeLoc>()) {
4320    ParenTypeLoc DstPTL = DstTL.castAs<ParenTypeLoc>();
4321    FixInvalidVariablyModifiedTypeLoc(SrcPTL.getInnerLoc(),
4322                                      DstPTL.getInnerLoc());
4323    DstPTL.setLParenLoc(SrcPTL.getLParenLoc());
4324    DstPTL.setRParenLoc(SrcPTL.getRParenLoc());
4325    return;
4326  }
4327  ArrayTypeLoc SrcATL = SrcTL.castAs<ArrayTypeLoc>();
4328  ArrayTypeLoc DstATL = DstTL.castAs<ArrayTypeLoc>();
4329  TypeLoc SrcElemTL = SrcATL.getElementLoc();
4330  TypeLoc DstElemTL = DstATL.getElementLoc();
4331  DstElemTL.initializeFullCopy(SrcElemTL);
4332  DstATL.setLBracketLoc(SrcATL.getLBracketLoc());
4333  DstATL.setSizeExpr(SrcATL.getSizeExpr());
4334  DstATL.setRBracketLoc(SrcATL.getRBracketLoc());
4335}
4336
4337/// Helper method to turn variable array types into constant array
4338/// types in certain situations which would otherwise be errors (for
4339/// GCC compatibility).
4340static TypeSourceInfo*
4341TryToFixInvalidVariablyModifiedTypeSourceInfo(TypeSourceInfo *TInfo,
4342                                              ASTContext &Context,
4343                                              bool &SizeIsNegative,
4344                                              llvm::APSInt &Oversized) {
4345  QualType FixedTy
4346    = TryToFixInvalidVariablyModifiedType(TInfo->getType(), Context,
4347                                          SizeIsNegative, Oversized);
4348  if (FixedTy.isNull())
4349    return 0;
4350  TypeSourceInfo *FixedTInfo = Context.getTrivialTypeSourceInfo(FixedTy);
4351  FixInvalidVariablyModifiedTypeLoc(TInfo->getTypeLoc(),
4352                                    FixedTInfo->getTypeLoc());
4353  return FixedTInfo;
4354}
4355
4356/// \brief Register the given locally-scoped extern "C" declaration so
4357/// that it can be found later for redeclarations. We include any extern "C"
4358/// declaration that is not visible in the translation unit here, not just
4359/// function-scope declarations.
4360void
4361Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, Scope *S) {
4362  if (!getLangOpts().CPlusPlus &&
4363      ND->getLexicalDeclContext()->getRedeclContext()->isTranslationUnit())
4364    // Don't need to track declarations in the TU in C.
4365    return;
4366
4367  // Note that we have a locally-scoped external with this name.
4368  // FIXME: There can be multiple such declarations if they are functions marked
4369  // __attribute__((overloadable)) declared in function scope in C.
4370  LocallyScopedExternCDecls[ND->getDeclName()] = ND;
4371}
4372
4373NamedDecl *Sema::findLocallyScopedExternCDecl(DeclarationName Name) {
4374  if (ExternalSource) {
4375    // Load locally-scoped external decls from the external source.
4376    // FIXME: This is inefficient. Maybe add a DeclContext for extern "C" decls?
4377    SmallVector<NamedDecl *, 4> Decls;
4378    ExternalSource->ReadLocallyScopedExternCDecls(Decls);
4379    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
4380      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4381        = LocallyScopedExternCDecls.find(Decls[I]->getDeclName());
4382      if (Pos == LocallyScopedExternCDecls.end())
4383        LocallyScopedExternCDecls[Decls[I]->getDeclName()] = Decls[I];
4384    }
4385  }
4386
4387  NamedDecl *D = LocallyScopedExternCDecls.lookup(Name);
4388  return D ? cast<NamedDecl>(D->getMostRecentDecl()) : 0;
4389}
4390
4391/// \brief Diagnose function specifiers on a declaration of an identifier that
4392/// does not identify a function.
4393void Sema::DiagnoseFunctionSpecifiers(const DeclSpec &DS) {
4394  // FIXME: We should probably indicate the identifier in question to avoid
4395  // confusion for constructs like "inline int a(), b;"
4396  if (DS.isInlineSpecified())
4397    Diag(DS.getInlineSpecLoc(),
4398         diag::err_inline_non_function);
4399
4400  if (DS.isVirtualSpecified())
4401    Diag(DS.getVirtualSpecLoc(),
4402         diag::err_virtual_non_function);
4403
4404  if (DS.isExplicitSpecified())
4405    Diag(DS.getExplicitSpecLoc(),
4406         diag::err_explicit_non_function);
4407
4408  if (DS.isNoreturnSpecified())
4409    Diag(DS.getNoreturnSpecLoc(),
4410         diag::err_noreturn_non_function);
4411}
4412
4413NamedDecl*
4414Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4415                             TypeSourceInfo *TInfo, LookupResult &Previous) {
4416  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
4417  if (D.getCXXScopeSpec().isSet()) {
4418    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
4419      << D.getCXXScopeSpec().getRange();
4420    D.setInvalidType();
4421    // Pretend we didn't see the scope specifier.
4422    DC = CurContext;
4423    Previous.clear();
4424  }
4425
4426  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4427
4428  if (D.getDeclSpec().isConstexprSpecified())
4429    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
4430      << 1;
4431
4432  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
4433    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
4434      << D.getName().getSourceRange();
4435    return 0;
4436  }
4437
4438  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
4439  if (!NewTD) return 0;
4440
4441  // Handle attributes prior to checking for duplicates in MergeVarDecl
4442  ProcessDeclAttributes(S, NewTD, D);
4443
4444  CheckTypedefForVariablyModifiedType(S, NewTD);
4445
4446  bool Redeclaration = D.isRedeclaration();
4447  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
4448  D.setRedeclaration(Redeclaration);
4449  return ND;
4450}
4451
4452void
4453Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
4454  // C99 6.7.7p2: If a typedef name specifies a variably modified type
4455  // then it shall have block scope.
4456  // Note that variably modified types must be fixed before merging the decl so
4457  // that redeclarations will match.
4458  TypeSourceInfo *TInfo = NewTD->getTypeSourceInfo();
4459  QualType T = TInfo->getType();
4460  if (T->isVariablyModifiedType()) {
4461    getCurFunction()->setHasBranchProtectedScope();
4462
4463    if (S->getFnParent() == 0) {
4464      bool SizeIsNegative;
4465      llvm::APSInt Oversized;
4466      TypeSourceInfo *FixedTInfo =
4467        TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
4468                                                      SizeIsNegative,
4469                                                      Oversized);
4470      if (FixedTInfo) {
4471        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
4472        NewTD->setTypeSourceInfo(FixedTInfo);
4473      } else {
4474        if (SizeIsNegative)
4475          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
4476        else if (T->isVariableArrayType())
4477          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
4478        else if (Oversized.getBoolValue())
4479          Diag(NewTD->getLocation(), diag::err_array_too_large)
4480            << Oversized.toString(10);
4481        else
4482          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
4483        NewTD->setInvalidDecl();
4484      }
4485    }
4486  }
4487}
4488
4489
4490/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
4491/// declares a typedef-name, either using the 'typedef' type specifier or via
4492/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
4493NamedDecl*
4494Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
4495                           LookupResult &Previous, bool &Redeclaration) {
4496  // Merge the decl with the existing one if appropriate. If the decl is
4497  // in an outer scope, it isn't the same thing.
4498  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
4499                       /*ExplicitInstantiationOrSpecialization=*/false);
4500  filterNonConflictingPreviousDecls(Context, NewTD, Previous);
4501  if (!Previous.empty()) {
4502    Redeclaration = true;
4503    MergeTypedefNameDecl(NewTD, Previous);
4504  }
4505
4506  // If this is the C FILE type, notify the AST context.
4507  if (IdentifierInfo *II = NewTD->getIdentifier())
4508    if (!NewTD->isInvalidDecl() &&
4509        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4510      if (II->isStr("FILE"))
4511        Context.setFILEDecl(NewTD);
4512      else if (II->isStr("jmp_buf"))
4513        Context.setjmp_bufDecl(NewTD);
4514      else if (II->isStr("sigjmp_buf"))
4515        Context.setsigjmp_bufDecl(NewTD);
4516      else if (II->isStr("ucontext_t"))
4517        Context.setucontext_tDecl(NewTD);
4518    }
4519
4520  return NewTD;
4521}
4522
4523/// \brief Determines whether the given declaration is an out-of-scope
4524/// previous declaration.
4525///
4526/// This routine should be invoked when name lookup has found a
4527/// previous declaration (PrevDecl) that is not in the scope where a
4528/// new declaration by the same name is being introduced. If the new
4529/// declaration occurs in a local scope, previous declarations with
4530/// linkage may still be considered previous declarations (C99
4531/// 6.2.2p4-5, C++ [basic.link]p6).
4532///
4533/// \param PrevDecl the previous declaration found by name
4534/// lookup
4535///
4536/// \param DC the context in which the new declaration is being
4537/// declared.
4538///
4539/// \returns true if PrevDecl is an out-of-scope previous declaration
4540/// for a new delcaration with the same name.
4541static bool
4542isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
4543                                ASTContext &Context) {
4544  if (!PrevDecl)
4545    return false;
4546
4547  if (!PrevDecl->hasLinkage())
4548    return false;
4549
4550  if (Context.getLangOpts().CPlusPlus) {
4551    // C++ [basic.link]p6:
4552    //   If there is a visible declaration of an entity with linkage
4553    //   having the same name and type, ignoring entities declared
4554    //   outside the innermost enclosing namespace scope, the block
4555    //   scope declaration declares that same entity and receives the
4556    //   linkage of the previous declaration.
4557    DeclContext *OuterContext = DC->getRedeclContext();
4558    if (!OuterContext->isFunctionOrMethod())
4559      // This rule only applies to block-scope declarations.
4560      return false;
4561
4562    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
4563    if (PrevOuterContext->isRecord())
4564      // We found a member function: ignore it.
4565      return false;
4566
4567    // Find the innermost enclosing namespace for the new and
4568    // previous declarations.
4569    OuterContext = OuterContext->getEnclosingNamespaceContext();
4570    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
4571
4572    // The previous declaration is in a different namespace, so it
4573    // isn't the same function.
4574    if (!OuterContext->Equals(PrevOuterContext))
4575      return false;
4576  }
4577
4578  return true;
4579}
4580
4581static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
4582  CXXScopeSpec &SS = D.getCXXScopeSpec();
4583  if (!SS.isSet()) return;
4584  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
4585}
4586
4587bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
4588  QualType type = decl->getType();
4589  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4590  if (lifetime == Qualifiers::OCL_Autoreleasing) {
4591    // Various kinds of declaration aren't allowed to be __autoreleasing.
4592    unsigned kind = -1U;
4593    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4594      if (var->hasAttr<BlocksAttr>())
4595        kind = 0; // __block
4596      else if (!var->hasLocalStorage())
4597        kind = 1; // global
4598    } else if (isa<ObjCIvarDecl>(decl)) {
4599      kind = 3; // ivar
4600    } else if (isa<FieldDecl>(decl)) {
4601      kind = 2; // field
4602    }
4603
4604    if (kind != -1U) {
4605      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
4606        << kind;
4607    }
4608  } else if (lifetime == Qualifiers::OCL_None) {
4609    // Try to infer lifetime.
4610    if (!type->isObjCLifetimeType())
4611      return false;
4612
4613    lifetime = type->getObjCARCImplicitLifetime();
4614    type = Context.getLifetimeQualifiedType(type, lifetime);
4615    decl->setType(type);
4616  }
4617
4618  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
4619    // Thread-local variables cannot have lifetime.
4620    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
4621        var->getTLSKind()) {
4622      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4623        << var->getType();
4624      return true;
4625    }
4626  }
4627
4628  return false;
4629}
4630
4631static void checkAttributesAfterMerging(Sema &S, NamedDecl &ND) {
4632  // 'weak' only applies to declarations with external linkage.
4633  if (WeakAttr *Attr = ND.getAttr<WeakAttr>()) {
4634    if (!ND.isExternallyVisible()) {
4635      S.Diag(Attr->getLocation(), diag::err_attribute_weak_static);
4636      ND.dropAttr<WeakAttr>();
4637    }
4638  }
4639  if (WeakRefAttr *Attr = ND.getAttr<WeakRefAttr>()) {
4640    if (ND.isExternallyVisible()) {
4641      S.Diag(Attr->getLocation(), diag::err_attribute_weakref_not_static);
4642      ND.dropAttr<WeakRefAttr>();
4643    }
4644  }
4645
4646  // 'selectany' only applies to externally visible varable declarations.
4647  // It does not apply to functions.
4648  if (SelectAnyAttr *Attr = ND.getAttr<SelectAnyAttr>()) {
4649    if (isa<FunctionDecl>(ND) || !ND.isExternallyVisible()) {
4650      S.Diag(Attr->getLocation(), diag::err_attribute_selectany_non_extern_data);
4651      ND.dropAttr<SelectAnyAttr>();
4652    }
4653  }
4654}
4655
4656/// Given that we are within the definition of the given function,
4657/// will that definition behave like C99's 'inline', where the
4658/// definition is discarded except for optimization purposes?
4659static bool isFunctionDefinitionDiscarded(Sema &S, FunctionDecl *FD) {
4660  // Try to avoid calling GetGVALinkageForFunction.
4661
4662  // All cases of this require the 'inline' keyword.
4663  if (!FD->isInlined()) return false;
4664
4665  // This is only possible in C++ with the gnu_inline attribute.
4666  if (S.getLangOpts().CPlusPlus && !FD->hasAttr<GNUInlineAttr>())
4667    return false;
4668
4669  // Okay, go ahead and call the relatively-more-expensive function.
4670
4671#ifndef NDEBUG
4672  // AST quite reasonably asserts that it's working on a function
4673  // definition.  We don't really have a way to tell it that we're
4674  // currently defining the function, so just lie to it in +Asserts
4675  // builds.  This is an awful hack.
4676  FD->setLazyBody(1);
4677#endif
4678
4679  bool isC99Inline = (S.Context.GetGVALinkageForFunction(FD) == GVA_C99Inline);
4680
4681#ifndef NDEBUG
4682  FD->setLazyBody(0);
4683#endif
4684
4685  return isC99Inline;
4686}
4687
4688/// Determine whether a variable is extern "C" prior to attaching
4689/// an initializer. We can't just call isExternC() here, because that
4690/// will also compute and cache whether the declaration is externally
4691/// visible, which might change when we attach the initializer.
4692///
4693/// This can only be used if the declaration is known to not be a
4694/// redeclaration of an internal linkage declaration.
4695///
4696/// For instance:
4697///
4698///   auto x = []{};
4699///
4700/// Attaching the initializer here makes this declaration not externally
4701/// visible, because its type has internal linkage.
4702///
4703/// FIXME: This is a hack.
4704template<typename T>
4705static bool isIncompleteDeclExternC(Sema &S, const T *D) {
4706  if (S.getLangOpts().CPlusPlus) {
4707    // In C++, the overloadable attribute negates the effects of extern "C".
4708    if (!D->isInExternCContext() || D->template hasAttr<OverloadableAttr>())
4709      return false;
4710  }
4711  return D->isExternC();
4712}
4713
4714static bool shouldConsiderLinkage(const VarDecl *VD) {
4715  const DeclContext *DC = VD->getDeclContext()->getRedeclContext();
4716  if (DC->isFunctionOrMethod())
4717    return VD->hasExternalStorage();
4718  if (DC->isFileContext())
4719    return true;
4720  if (DC->isRecord())
4721    return false;
4722  llvm_unreachable("Unexpected context");
4723}
4724
4725static bool shouldConsiderLinkage(const FunctionDecl *FD) {
4726  const DeclContext *DC = FD->getDeclContext()->getRedeclContext();
4727  if (DC->isFileContext() || DC->isFunctionOrMethod())
4728    return true;
4729  if (DC->isRecord())
4730    return false;
4731  llvm_unreachable("Unexpected context");
4732}
4733
4734NamedDecl*
4735Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4736                              TypeSourceInfo *TInfo, LookupResult &Previous,
4737                              MultiTemplateParamsArg TemplateParamLists) {
4738  QualType R = TInfo->getType();
4739  DeclarationName Name = GetNameForDeclarator(D).getName();
4740
4741  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4742  VarDecl::StorageClass SC =
4743    StorageClassSpecToVarDeclStorageClass(D.getDeclSpec());
4744
4745  if (getLangOpts().OpenCL && !getOpenCLOptions().cl_khr_fp16) {
4746    // OpenCL v1.2 s6.1.1.1: reject declaring variables of the half and
4747    // half array type (unless the cl_khr_fp16 extension is enabled).
4748    if (Context.getBaseElementType(R)->isHalfType()) {
4749      Diag(D.getIdentifierLoc(), diag::err_opencl_half_declaration) << R;
4750      D.setInvalidType();
4751    }
4752  }
4753
4754  if (SCSpec == DeclSpec::SCS_mutable) {
4755    // mutable can only appear on non-static class members, so it's always
4756    // an error here
4757    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4758    D.setInvalidType();
4759    SC = SC_None;
4760  }
4761
4762  if (getLangOpts().CPlusPlus11 && SCSpec == DeclSpec::SCS_register &&
4763      !D.getAsmLabel() && !getSourceManager().isInSystemMacro(
4764                              D.getDeclSpec().getStorageClassSpecLoc())) {
4765    // In C++11, the 'register' storage class specifier is deprecated.
4766    // Suppress the warning in system macros, it's used in macros in some
4767    // popular C system headers, such as in glibc's htonl() macro.
4768    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4769         diag::warn_deprecated_register)
4770      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4771  }
4772
4773  IdentifierInfo *II = Name.getAsIdentifierInfo();
4774  if (!II) {
4775    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4776      << Name;
4777    return 0;
4778  }
4779
4780  DiagnoseFunctionSpecifiers(D.getDeclSpec());
4781
4782  if (!DC->isRecord() && S->getFnParent() == 0) {
4783    // C99 6.9p2: The storage-class specifiers auto and register shall not
4784    // appear in the declaration specifiers in an external declaration.
4785    if (SC == SC_Auto || SC == SC_Register) {
4786      // If this is a register variable with an asm label specified, then this
4787      // is a GNU extension.
4788      if (SC == SC_Register && D.getAsmLabel())
4789        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4790      else
4791        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4792      D.setInvalidType();
4793    }
4794  }
4795
4796  if (getLangOpts().OpenCL) {
4797    // Set up the special work-group-local storage class for variables in the
4798    // OpenCL __local address space.
4799    if (R.getAddressSpace() == LangAS::opencl_local) {
4800      SC = SC_OpenCLWorkGroupLocal;
4801    }
4802
4803    // OpenCL v1.2 s6.9.b p4:
4804    // The sampler type cannot be used with the __local and __global address
4805    // space qualifiers.
4806    if (R->isSamplerT() && (R.getAddressSpace() == LangAS::opencl_local ||
4807      R.getAddressSpace() == LangAS::opencl_global)) {
4808      Diag(D.getIdentifierLoc(), diag::err_wrong_sampler_addressspace);
4809    }
4810
4811    // OpenCL 1.2 spec, p6.9 r:
4812    // The event type cannot be used to declare a program scope variable.
4813    // The event type cannot be used with the __local, __constant and __global
4814    // address space qualifiers.
4815    if (R->isEventT()) {
4816      if (S->getParent() == 0) {
4817        Diag(D.getLocStart(), diag::err_event_t_global_var);
4818        D.setInvalidType();
4819      }
4820
4821      if (R.getAddressSpace()) {
4822        Diag(D.getLocStart(), diag::err_event_t_addr_space_qual);
4823        D.setInvalidType();
4824      }
4825    }
4826  }
4827
4828  bool isExplicitSpecialization = false;
4829  VarDecl *NewVD;
4830  if (!getLangOpts().CPlusPlus) {
4831    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4832                            D.getIdentifierLoc(), II,
4833                            R, TInfo, SC);
4834
4835    if (D.isInvalidType())
4836      NewVD->setInvalidDecl();
4837  } else {
4838    if (DC->isRecord() && !CurContext->isRecord()) {
4839      // This is an out-of-line definition of a static data member.
4840      switch (SC) {
4841      case SC_None:
4842        break;
4843      case SC_Static:
4844        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4845             diag::err_static_out_of_line)
4846          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4847        break;
4848      case SC_Auto:
4849      case SC_Register:
4850      case SC_Extern:
4851        // [dcl.stc] p2: The auto or register specifiers shall be applied only
4852        // to names of variables declared in a block or to function parameters.
4853        // [dcl.stc] p6: The extern specifier cannot be used in the declaration
4854        // of class members
4855
4856        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4857             diag::err_storage_class_for_static_member)
4858          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4859        break;
4860      case SC_PrivateExtern:
4861        llvm_unreachable("C storage class in c++!");
4862      case SC_OpenCLWorkGroupLocal:
4863        llvm_unreachable("OpenCL storage class in c++!");
4864      }
4865    }
4866    if (SC == SC_Static && CurContext->isRecord()) {
4867      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4868        if (RD->isLocalClass())
4869          Diag(D.getIdentifierLoc(),
4870               diag::err_static_data_member_not_allowed_in_local_class)
4871            << Name << RD->getDeclName();
4872
4873        // C++98 [class.union]p1: If a union contains a static data member,
4874        // the program is ill-formed. C++11 drops this restriction.
4875        if (RD->isUnion())
4876          Diag(D.getIdentifierLoc(),
4877               getLangOpts().CPlusPlus11
4878                 ? diag::warn_cxx98_compat_static_data_member_in_union
4879                 : diag::ext_static_data_member_in_union) << Name;
4880        // We conservatively disallow static data members in anonymous structs.
4881        else if (!RD->getDeclName())
4882          Diag(D.getIdentifierLoc(),
4883               diag::err_static_data_member_not_allowed_in_anon_struct)
4884            << Name << RD->isUnion();
4885      }
4886    }
4887
4888    // Match up the template parameter lists with the scope specifier, then
4889    // determine whether we have a template or a template specialization.
4890    isExplicitSpecialization = false;
4891    bool Invalid = false;
4892    if (TemplateParameterList *TemplateParams
4893        = MatchTemplateParametersToScopeSpecifier(
4894                                  D.getDeclSpec().getLocStart(),
4895                                                  D.getIdentifierLoc(),
4896                                                  D.getCXXScopeSpec(),
4897                                                  TemplateParamLists.data(),
4898                                                  TemplateParamLists.size(),
4899                                                  /*never a friend*/ false,
4900                                                  isExplicitSpecialization,
4901                                                  Invalid)) {
4902      if (TemplateParams->size() > 0) {
4903        // There is no such thing as a variable template.
4904        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4905          << II
4906          << SourceRange(TemplateParams->getTemplateLoc(),
4907                         TemplateParams->getRAngleLoc());
4908        return 0;
4909      } else {
4910        // There is an extraneous 'template<>' for this variable. Complain
4911        // about it, but allow the declaration of the variable.
4912        Diag(TemplateParams->getTemplateLoc(),
4913             diag::err_template_variable_noparams)
4914          << II
4915          << SourceRange(TemplateParams->getTemplateLoc(),
4916                         TemplateParams->getRAngleLoc());
4917      }
4918    }
4919
4920    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4921                            D.getIdentifierLoc(), II,
4922                            R, TInfo, SC);
4923
4924    // If this decl has an auto type in need of deduction, make a note of the
4925    // Decl so we can diagnose uses of it in its own initializer.
4926    if (D.getDeclSpec().containsPlaceholderType() && R->getContainedAutoType())
4927      ParsingInitForAutoVars.insert(NewVD);
4928
4929    if (D.isInvalidType() || Invalid)
4930      NewVD->setInvalidDecl();
4931
4932    SetNestedNameSpecifier(NewVD, D);
4933
4934    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4935      NewVD->setTemplateParameterListsInfo(Context,
4936                                           TemplateParamLists.size(),
4937                                           TemplateParamLists.data());
4938    }
4939
4940    if (D.getDeclSpec().isConstexprSpecified())
4941      NewVD->setConstexpr(true);
4942  }
4943
4944  // Set the lexical context. If the declarator has a C++ scope specifier, the
4945  // lexical context will be different from the semantic context.
4946  NewVD->setLexicalDeclContext(CurContext);
4947
4948  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec()) {
4949    if (NewVD->hasLocalStorage()) {
4950      // C++11 [dcl.stc]p4:
4951      //   When thread_local is applied to a variable of block scope the
4952      //   storage-class-specifier static is implied if it does not appear
4953      //   explicitly.
4954      // Core issue: 'static' is not implied if the variable is declared
4955      //   'extern'.
4956      if (SCSpec == DeclSpec::SCS_unspecified &&
4957          TSCS == DeclSpec::TSCS_thread_local &&
4958          DC->isFunctionOrMethod())
4959        NewVD->setTSCSpec(TSCS);
4960      else
4961        Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4962             diag::err_thread_non_global)
4963          << DeclSpec::getSpecifierName(TSCS);
4964    } else if (!Context.getTargetInfo().isTLSSupported())
4965      Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
4966           diag::err_thread_unsupported);
4967    else
4968      NewVD->setTSCSpec(TSCS);
4969  }
4970
4971  // C99 6.7.4p3
4972  //   An inline definition of a function with external linkage shall
4973  //   not contain a definition of a modifiable object with static or
4974  //   thread storage duration...
4975  // We only apply this when the function is required to be defined
4976  // elsewhere, i.e. when the function is not 'extern inline'.  Note
4977  // that a local variable with thread storage duration still has to
4978  // be marked 'static'.  Also note that it's possible to get these
4979  // semantics in C++ using __attribute__((gnu_inline)).
4980  if (SC == SC_Static && S->getFnParent() != 0 &&
4981      !NewVD->getType().isConstQualified()) {
4982    FunctionDecl *CurFD = getCurFunctionDecl();
4983    if (CurFD && isFunctionDefinitionDiscarded(*this, CurFD)) {
4984      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4985           diag::warn_static_local_in_extern_inline);
4986      MaybeSuggestAddingStaticToDecl(CurFD);
4987    }
4988  }
4989
4990  if (D.getDeclSpec().isModulePrivateSpecified()) {
4991    if (isExplicitSpecialization)
4992      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4993        << 2
4994        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4995    else if (NewVD->hasLocalStorage())
4996      Diag(NewVD->getLocation(), diag::err_module_private_local)
4997        << 0 << NewVD->getDeclName()
4998        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4999        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
5000    else
5001      NewVD->setModulePrivate();
5002  }
5003
5004  // Handle attributes prior to checking for duplicates in MergeVarDecl
5005  ProcessDeclAttributes(S, NewVD, D);
5006
5007  if (NewVD->hasAttrs())
5008    CheckAlignasUnderalignment(NewVD);
5009
5010  if (getLangOpts().CUDA) {
5011    // CUDA B.2.5: "__shared__ and __constant__ variables have implied static
5012    // storage [duration]."
5013    if (SC == SC_None && S->getFnParent() != 0 &&
5014        (NewVD->hasAttr<CUDASharedAttr>() ||
5015         NewVD->hasAttr<CUDAConstantAttr>())) {
5016      NewVD->setStorageClass(SC_Static);
5017    }
5018  }
5019
5020  // In auto-retain/release, infer strong retension for variables of
5021  // retainable type.
5022  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
5023    NewVD->setInvalidDecl();
5024
5025  // Handle GNU asm-label extension (encoded as an attribute).
5026  if (Expr *E = (Expr*)D.getAsmLabel()) {
5027    // The parser guarantees this is a string.
5028    StringLiteral *SE = cast<StringLiteral>(E);
5029    StringRef Label = SE->getString();
5030    if (S->getFnParent() != 0) {
5031      switch (SC) {
5032      case SC_None:
5033      case SC_Auto:
5034        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
5035        break;
5036      case SC_Register:
5037        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
5038          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
5039        break;
5040      case SC_Static:
5041      case SC_Extern:
5042      case SC_PrivateExtern:
5043      case SC_OpenCLWorkGroupLocal:
5044        break;
5045      }
5046    }
5047
5048    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
5049                                                Context, Label));
5050  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5051    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5052      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
5053    if (I != ExtnameUndeclaredIdentifiers.end()) {
5054      NewVD->addAttr(I->second);
5055      ExtnameUndeclaredIdentifiers.erase(I);
5056    }
5057  }
5058
5059  // Diagnose shadowed variables before filtering for scope.
5060  if (!D.getCXXScopeSpec().isSet())
5061    CheckShadow(S, NewVD, Previous);
5062
5063  // Don't consider existing declarations that are in a different
5064  // scope and are out-of-semantic-context declarations (if the new
5065  // declaration has linkage).
5066  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewVD),
5067                       isExplicitSpecialization);
5068
5069  if (!getLangOpts().CPlusPlus) {
5070    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5071  } else {
5072    // Merge the decl with the existing one if appropriate.
5073    if (!Previous.empty()) {
5074      if (Previous.isSingleResult() &&
5075          isa<FieldDecl>(Previous.getFoundDecl()) &&
5076          D.getCXXScopeSpec().isSet()) {
5077        // The user tried to define a non-static data member
5078        // out-of-line (C++ [dcl.meaning]p1).
5079        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
5080          << D.getCXXScopeSpec().getRange();
5081        Previous.clear();
5082        NewVD->setInvalidDecl();
5083      }
5084    } else if (D.getCXXScopeSpec().isSet()) {
5085      // No previous declaration in the qualifying scope.
5086      Diag(D.getIdentifierLoc(), diag::err_no_member)
5087        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
5088        << D.getCXXScopeSpec().getRange();
5089      NewVD->setInvalidDecl();
5090    }
5091
5092    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
5093
5094    // This is an explicit specialization of a static data member. Check it.
5095    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
5096        CheckMemberSpecialization(NewVD, Previous))
5097      NewVD->setInvalidDecl();
5098  }
5099
5100  ProcessPragmaWeak(S, NewVD);
5101  checkAttributesAfterMerging(*this, *NewVD);
5102
5103  // If this is the first declaration of an extern C variable, update
5104  // the map of such variables.
5105  if (!NewVD->getPreviousDecl() && !NewVD->isInvalidDecl() &&
5106      isIncompleteDeclExternC(*this, NewVD))
5107    RegisterLocallyScopedExternCDecl(NewVD, S);
5108
5109  return NewVD;
5110}
5111
5112/// \brief Diagnose variable or built-in function shadowing.  Implements
5113/// -Wshadow.
5114///
5115/// This method is called whenever a VarDecl is added to a "useful"
5116/// scope.
5117///
5118/// \param S the scope in which the shadowing name is being declared
5119/// \param R the lookup of the name
5120///
5121void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
5122  // Return if warning is ignored.
5123  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
5124        DiagnosticsEngine::Ignored)
5125    return;
5126
5127  // Don't diagnose declarations at file scope.
5128  if (D->hasGlobalStorage())
5129    return;
5130
5131  DeclContext *NewDC = D->getDeclContext();
5132
5133  // Only diagnose if we're shadowing an unambiguous field or variable.
5134  if (R.getResultKind() != LookupResult::Found)
5135    return;
5136
5137  NamedDecl* ShadowedDecl = R.getFoundDecl();
5138  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
5139    return;
5140
5141  // Fields are not shadowed by variables in C++ static methods.
5142  if (isa<FieldDecl>(ShadowedDecl))
5143    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
5144      if (MD->isStatic())
5145        return;
5146
5147  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
5148    if (shadowedVar->isExternC()) {
5149      // For shadowing external vars, make sure that we point to the global
5150      // declaration, not a locally scoped extern declaration.
5151      for (VarDecl::redecl_iterator
5152             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
5153           I != E; ++I)
5154        if (I->isFileVarDecl()) {
5155          ShadowedDecl = *I;
5156          break;
5157        }
5158    }
5159
5160  DeclContext *OldDC = ShadowedDecl->getDeclContext();
5161
5162  // Only warn about certain kinds of shadowing for class members.
5163  if (NewDC && NewDC->isRecord()) {
5164    // In particular, don't warn about shadowing non-class members.
5165    if (!OldDC->isRecord())
5166      return;
5167
5168    // TODO: should we warn about static data members shadowing
5169    // static data members from base classes?
5170
5171    // TODO: don't diagnose for inaccessible shadowed members.
5172    // This is hard to do perfectly because we might friend the
5173    // shadowing context, but that's just a false negative.
5174  }
5175
5176  // Determine what kind of declaration we're shadowing.
5177  unsigned Kind;
5178  if (isa<RecordDecl>(OldDC)) {
5179    if (isa<FieldDecl>(ShadowedDecl))
5180      Kind = 3; // field
5181    else
5182      Kind = 2; // static data member
5183  } else if (OldDC->isFileContext())
5184    Kind = 1; // global
5185  else
5186    Kind = 0; // local
5187
5188  DeclarationName Name = R.getLookupName();
5189
5190  // Emit warning and note.
5191  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
5192  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
5193}
5194
5195/// \brief Check -Wshadow without the advantage of a previous lookup.
5196void Sema::CheckShadow(Scope *S, VarDecl *D) {
5197  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
5198        DiagnosticsEngine::Ignored)
5199    return;
5200
5201  LookupResult R(*this, D->getDeclName(), D->getLocation(),
5202                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5203  LookupName(R, S);
5204  CheckShadow(S, D, R);
5205}
5206
5207/// Check for conflict between this global or extern "C" declaration and
5208/// previous global or extern "C" declarations. This is only used in C++.
5209template<typename T>
5210static bool checkGlobalOrExternCConflict(
5211    Sema &S, const T *ND, bool IsGlobal, LookupResult &Previous) {
5212  assert(S.getLangOpts().CPlusPlus && "only C++ has extern \"C\"");
5213  NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName());
5214
5215  if (!Prev && IsGlobal && !isIncompleteDeclExternC(S, ND)) {
5216    // The common case: this global doesn't conflict with any extern "C"
5217    // declaration.
5218    return false;
5219  }
5220
5221  if (Prev) {
5222    if (!IsGlobal || isIncompleteDeclExternC(S, ND)) {
5223      // Both the old and new declarations have C language linkage. This is a
5224      // redeclaration.
5225      Previous.clear();
5226      Previous.addDecl(Prev);
5227      return true;
5228    }
5229
5230    // This is a global, non-extern "C" declaration, and there is a previous
5231    // non-global extern "C" declaration. Diagnose if this is a variable
5232    // declaration.
5233    if (!isa<VarDecl>(ND))
5234      return false;
5235  } else {
5236    // The declaration is extern "C". Check for any declaration in the
5237    // translation unit which might conflict.
5238    if (IsGlobal) {
5239      // We have already performed the lookup into the translation unit.
5240      IsGlobal = false;
5241      for (LookupResult::iterator I = Previous.begin(), E = Previous.end();
5242           I != E; ++I) {
5243        if (isa<VarDecl>(*I)) {
5244          Prev = *I;
5245          break;
5246        }
5247      }
5248    } else {
5249      DeclContext::lookup_result R =
5250          S.Context.getTranslationUnitDecl()->lookup(ND->getDeclName());
5251      for (DeclContext::lookup_result::iterator I = R.begin(), E = R.end();
5252           I != E; ++I) {
5253        if (isa<VarDecl>(*I)) {
5254          Prev = *I;
5255          break;
5256        }
5257        // FIXME: If we have any other entity with this name in global scope,
5258        // the declaration is ill-formed, but that is a defect: it breaks the
5259        // 'stat' hack, for instance. Only variables can have mangled name
5260        // clashes with extern "C" declarations, so only they deserve a
5261        // diagnostic.
5262      }
5263    }
5264
5265    if (!Prev)
5266      return false;
5267  }
5268
5269  // Use the first declaration's location to ensure we point at something which
5270  // is lexically inside an extern "C" linkage-spec.
5271  assert(Prev && "should have found a previous declaration to diagnose");
5272  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(Prev))
5273    Prev = FD->getFirstDeclaration();
5274  else
5275    Prev = cast<VarDecl>(Prev)->getFirstDeclaration();
5276
5277  S.Diag(ND->getLocation(), diag::err_extern_c_global_conflict)
5278    << IsGlobal << ND;
5279  S.Diag(Prev->getLocation(), diag::note_extern_c_global_conflict)
5280    << IsGlobal;
5281  return false;
5282}
5283
5284/// Apply special rules for handling extern "C" declarations. Returns \c true
5285/// if we have found that this is a redeclaration of some prior entity.
5286///
5287/// Per C++ [dcl.link]p6:
5288///   Two declarations [for a function or variable] with C language linkage
5289///   with the same name that appear in different scopes refer to the same
5290///   [entity]. An entity with C language linkage shall not be declared with
5291///   the same name as an entity in global scope.
5292template<typename T>
5293static bool checkForConflictWithNonVisibleExternC(Sema &S, const T *ND,
5294                                                  LookupResult &Previous) {
5295  if (!S.getLangOpts().CPlusPlus) {
5296    // In C, when declaring a global variable, look for a corresponding 'extern'
5297    // variable declared in function scope.
5298    //
5299    // FIXME: The corresponding case in C++ does not work.  We should instead
5300    // set the semantic DC for an extern local variable to be the innermost
5301    // enclosing namespace, and ensure they are only found by redeclaration
5302    // lookup.
5303    if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5304      if (NamedDecl *Prev = S.findLocallyScopedExternCDecl(ND->getDeclName())) {
5305        Previous.clear();
5306        Previous.addDecl(Prev);
5307        return true;
5308      }
5309    }
5310    return false;
5311  }
5312
5313  // A declaration in the translation unit can conflict with an extern "C"
5314  // declaration.
5315  if (ND->getDeclContext()->getRedeclContext()->isTranslationUnit())
5316    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/true, Previous);
5317
5318  // An extern "C" declaration can conflict with a declaration in the
5319  // translation unit or can be a redeclaration of an extern "C" declaration
5320  // in another scope.
5321  if (isIncompleteDeclExternC(S,ND))
5322    return checkGlobalOrExternCConflict(S, ND, /*IsGlobal*/false, Previous);
5323
5324  // Neither global nor extern "C": nothing to do.
5325  return false;
5326}
5327
5328void Sema::CheckVariableDeclarationType(VarDecl *NewVD) {
5329  // If the decl is already known invalid, don't check it.
5330  if (NewVD->isInvalidDecl())
5331    return;
5332
5333  TypeSourceInfo *TInfo = NewVD->getTypeSourceInfo();
5334  QualType T = TInfo->getType();
5335
5336  // Defer checking an 'auto' type until its initializer is attached.
5337  if (T->isUndeducedType())
5338    return;
5339
5340  if (T->isObjCObjectType()) {
5341    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
5342      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
5343    T = Context.getObjCObjectPointerType(T);
5344    NewVD->setType(T);
5345  }
5346
5347  // Emit an error if an address space was applied to decl with local storage.
5348  // This includes arrays of objects with address space qualifiers, but not
5349  // automatic variables that point to other address spaces.
5350  // ISO/IEC TR 18037 S5.1.2
5351  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
5352    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
5353    NewVD->setInvalidDecl();
5354    return;
5355  }
5356
5357  // OpenCL v1.2 s6.5 - All program scope variables must be declared in the
5358  // __constant address space.
5359  if (getLangOpts().OpenCL && NewVD->isFileVarDecl()
5360      && T.getAddressSpace() != LangAS::opencl_constant
5361      && !T->isSamplerT()){
5362    Diag(NewVD->getLocation(), diag::err_opencl_global_invalid_addr_space);
5363    NewVD->setInvalidDecl();
5364    return;
5365  }
5366
5367  // OpenCL v1.2 s6.8 -- The static qualifier is valid only in program
5368  // scope.
5369  if ((getLangOpts().OpenCLVersion >= 120)
5370      && NewVD->isStaticLocal()) {
5371    Diag(NewVD->getLocation(), diag::err_static_function_scope);
5372    NewVD->setInvalidDecl();
5373    return;
5374  }
5375
5376  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
5377      && !NewVD->hasAttr<BlocksAttr>()) {
5378    if (getLangOpts().getGC() != LangOptions::NonGC)
5379      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
5380    else {
5381      assert(!getLangOpts().ObjCAutoRefCount);
5382      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
5383    }
5384  }
5385
5386  bool isVM = T->isVariablyModifiedType();
5387  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
5388      NewVD->hasAttr<BlocksAttr>())
5389    getCurFunction()->setHasBranchProtectedScope();
5390
5391  if ((isVM && NewVD->hasLinkage()) ||
5392      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
5393    bool SizeIsNegative;
5394    llvm::APSInt Oversized;
5395    TypeSourceInfo *FixedTInfo =
5396      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
5397                                                    SizeIsNegative, Oversized);
5398    if (FixedTInfo == 0 && T->isVariableArrayType()) {
5399      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
5400      // FIXME: This won't give the correct result for
5401      // int a[10][n];
5402      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
5403
5404      if (NewVD->isFileVarDecl())
5405        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
5406        << SizeRange;
5407      else if (NewVD->isStaticLocal())
5408        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
5409        << SizeRange;
5410      else
5411        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
5412        << SizeRange;
5413      NewVD->setInvalidDecl();
5414      return;
5415    }
5416
5417    if (FixedTInfo == 0) {
5418      if (NewVD->isFileVarDecl())
5419        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
5420      else
5421        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
5422      NewVD->setInvalidDecl();
5423      return;
5424    }
5425
5426    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
5427    NewVD->setType(FixedTInfo->getType());
5428    NewVD->setTypeSourceInfo(FixedTInfo);
5429  }
5430
5431  if (T->isVoidType()) {
5432    // C++98 [dcl.stc]p5: The extern specifier can be applied only to the names
5433    //                    of objects and functions.
5434    if (NewVD->isThisDeclarationADefinition() || getLangOpts().CPlusPlus) {
5435      Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
5436        << T;
5437      NewVD->setInvalidDecl();
5438      return;
5439    }
5440  }
5441
5442  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
5443    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
5444    NewVD->setInvalidDecl();
5445    return;
5446  }
5447
5448  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
5449    Diag(NewVD->getLocation(), diag::err_block_on_vm);
5450    NewVD->setInvalidDecl();
5451    return;
5452  }
5453
5454  if (NewVD->isConstexpr() && !T->isDependentType() &&
5455      RequireLiteralType(NewVD->getLocation(), T,
5456                         diag::err_constexpr_var_non_literal)) {
5457    // Can't perform this check until the type is deduced.
5458    NewVD->setInvalidDecl();
5459    return;
5460  }
5461}
5462
5463/// \brief Perform semantic checking on a newly-created variable
5464/// declaration.
5465///
5466/// This routine performs all of the type-checking required for a
5467/// variable declaration once it has been built. It is used both to
5468/// check variables after they have been parsed and their declarators
5469/// have been translated into a declaration, and to check variables
5470/// that have been instantiated from a template.
5471///
5472/// Sets NewVD->isInvalidDecl() if an error was encountered.
5473///
5474/// Returns true if the variable declaration is a redeclaration.
5475bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
5476                                    LookupResult &Previous) {
5477  CheckVariableDeclarationType(NewVD);
5478
5479  // If the decl is already known invalid, don't check it.
5480  if (NewVD->isInvalidDecl())
5481    return false;
5482
5483  // If we did not find anything by this name, look for a non-visible
5484  // extern "C" declaration with the same name.
5485  //
5486  // Clang has a lot of problems with extern local declarations.
5487  // The actual standards text here is:
5488  //
5489  // C++11 [basic.link]p6:
5490  //   The name of a function declared in block scope and the name
5491  //   of a variable declared by a block scope extern declaration
5492  //   have linkage. If there is a visible declaration of an entity
5493  //   with linkage having the same name and type, ignoring entities
5494  //   declared outside the innermost enclosing namespace scope, the
5495  //   block scope declaration declares that same entity and
5496  //   receives the linkage of the previous declaration.
5497  //
5498  // C11 6.2.7p4:
5499  //   For an identifier with internal or external linkage declared
5500  //   in a scope in which a prior declaration of that identifier is
5501  //   visible, if the prior declaration specifies internal or
5502  //   external linkage, the type of the identifier at the later
5503  //   declaration becomes the composite type.
5504  //
5505  // The most important point here is that we're not allowed to
5506  // update our understanding of the type according to declarations
5507  // not in scope.
5508  bool PreviousWasHidden =
5509      Previous.empty() &&
5510      checkForConflictWithNonVisibleExternC(*this, NewVD, Previous);
5511
5512  // Filter out any non-conflicting previous declarations.
5513  filterNonConflictingPreviousDecls(Context, NewVD, Previous);
5514
5515  if (!Previous.empty()) {
5516    MergeVarDecl(NewVD, Previous, PreviousWasHidden);
5517    return true;
5518  }
5519  return false;
5520}
5521
5522/// \brief Data used with FindOverriddenMethod
5523struct FindOverriddenMethodData {
5524  Sema *S;
5525  CXXMethodDecl *Method;
5526};
5527
5528/// \brief Member lookup function that determines whether a given C++
5529/// method overrides a method in a base class, to be used with
5530/// CXXRecordDecl::lookupInBases().
5531static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
5532                                 CXXBasePath &Path,
5533                                 void *UserData) {
5534  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
5535
5536  FindOverriddenMethodData *Data
5537    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
5538
5539  DeclarationName Name = Data->Method->getDeclName();
5540
5541  // FIXME: Do we care about other names here too?
5542  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5543    // We really want to find the base class destructor here.
5544    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
5545    CanQualType CT = Data->S->Context.getCanonicalType(T);
5546
5547    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
5548  }
5549
5550  for (Path.Decls = BaseRecord->lookup(Name);
5551       !Path.Decls.empty();
5552       Path.Decls = Path.Decls.slice(1)) {
5553    NamedDecl *D = Path.Decls.front();
5554    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
5555      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
5556        return true;
5557    }
5558  }
5559
5560  return false;
5561}
5562
5563namespace {
5564  enum OverrideErrorKind { OEK_All, OEK_NonDeleted, OEK_Deleted };
5565}
5566/// \brief Report an error regarding overriding, along with any relevant
5567/// overriden methods.
5568///
5569/// \param DiagID the primary error to report.
5570/// \param MD the overriding method.
5571/// \param OEK which overrides to include as notes.
5572static void ReportOverrides(Sema& S, unsigned DiagID, const CXXMethodDecl *MD,
5573                            OverrideErrorKind OEK = OEK_All) {
5574  S.Diag(MD->getLocation(), DiagID) << MD->getDeclName();
5575  for (CXXMethodDecl::method_iterator I = MD->begin_overridden_methods(),
5576                                      E = MD->end_overridden_methods();
5577       I != E; ++I) {
5578    // This check (& the OEK parameter) could be replaced by a predicate, but
5579    // without lambdas that would be overkill. This is still nicer than writing
5580    // out the diag loop 3 times.
5581    if ((OEK == OEK_All) ||
5582        (OEK == OEK_NonDeleted && !(*I)->isDeleted()) ||
5583        (OEK == OEK_Deleted && (*I)->isDeleted()))
5584      S.Diag((*I)->getLocation(), diag::note_overridden_virtual_function);
5585  }
5586}
5587
5588/// AddOverriddenMethods - See if a method overrides any in the base classes,
5589/// and if so, check that it's a valid override and remember it.
5590bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
5591  // Look for virtual methods in base classes that this method might override.
5592  CXXBasePaths Paths;
5593  FindOverriddenMethodData Data;
5594  Data.Method = MD;
5595  Data.S = this;
5596  bool hasDeletedOverridenMethods = false;
5597  bool hasNonDeletedOverridenMethods = false;
5598  bool AddedAny = false;
5599  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
5600    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
5601         E = Paths.found_decls_end(); I != E; ++I) {
5602      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
5603        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
5604        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
5605            !CheckOverridingFunctionAttributes(MD, OldMD) &&
5606            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
5607            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
5608          hasDeletedOverridenMethods |= OldMD->isDeleted();
5609          hasNonDeletedOverridenMethods |= !OldMD->isDeleted();
5610          AddedAny = true;
5611        }
5612      }
5613    }
5614  }
5615
5616  if (hasDeletedOverridenMethods && !MD->isDeleted()) {
5617    ReportOverrides(*this, diag::err_non_deleted_override, MD, OEK_Deleted);
5618  }
5619  if (hasNonDeletedOverridenMethods && MD->isDeleted()) {
5620    ReportOverrides(*this, diag::err_deleted_override, MD, OEK_NonDeleted);
5621  }
5622
5623  return AddedAny;
5624}
5625
5626namespace {
5627  // Struct for holding all of the extra arguments needed by
5628  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
5629  struct ActOnFDArgs {
5630    Scope *S;
5631    Declarator &D;
5632    MultiTemplateParamsArg TemplateParamLists;
5633    bool AddToScope;
5634  };
5635}
5636
5637namespace {
5638
5639// Callback to only accept typo corrections that have a non-zero edit distance.
5640// Also only accept corrections that have the same parent decl.
5641class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
5642 public:
5643  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
5644                            CXXRecordDecl *Parent)
5645      : Context(Context), OriginalFD(TypoFD),
5646        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
5647
5648  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
5649    if (candidate.getEditDistance() == 0)
5650      return false;
5651
5652    SmallVector<unsigned, 1> MismatchedParams;
5653    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
5654                                          CDeclEnd = candidate.end();
5655         CDecl != CDeclEnd; ++CDecl) {
5656      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5657
5658      if (FD && !FD->hasBody() &&
5659          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
5660        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
5661          CXXRecordDecl *Parent = MD->getParent();
5662          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
5663            return true;
5664        } else if (!ExpectedParent) {
5665          return true;
5666        }
5667      }
5668    }
5669
5670    return false;
5671  }
5672
5673 private:
5674  ASTContext &Context;
5675  FunctionDecl *OriginalFD;
5676  CXXRecordDecl *ExpectedParent;
5677};
5678
5679}
5680
5681/// \brief Generate diagnostics for an invalid function redeclaration.
5682///
5683/// This routine handles generating the diagnostic messages for an invalid
5684/// function redeclaration, including finding possible similar declarations
5685/// or performing typo correction if there are no previous declarations with
5686/// the same name.
5687///
5688/// Returns a NamedDecl iff typo correction was performed and substituting in
5689/// the new declaration name does not cause new errors.
5690static NamedDecl* DiagnoseInvalidRedeclaration(
5691    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
5692    ActOnFDArgs &ExtraArgs) {
5693  NamedDecl *Result = NULL;
5694  DeclarationName Name = NewFD->getDeclName();
5695  DeclContext *NewDC = NewFD->getDeclContext();
5696  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
5697                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
5698  SmallVector<unsigned, 1> MismatchedParams;
5699  SmallVector<std::pair<FunctionDecl *, unsigned>, 1> NearMatches;
5700  TypoCorrection Correction;
5701  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
5702                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
5703  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
5704                                  : diag::err_member_def_does_not_match;
5705
5706  NewFD->setInvalidDecl();
5707  SemaRef.LookupQualifiedName(Prev, NewDC);
5708  assert(!Prev.isAmbiguous() &&
5709         "Cannot have an ambiguity in previous-declaration lookup");
5710  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
5711  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
5712                                      MD ? MD->getParent() : 0);
5713  if (!Prev.empty()) {
5714    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
5715         Func != FuncEnd; ++Func) {
5716      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
5717      if (FD &&
5718          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5719        // Add 1 to the index so that 0 can mean the mismatch didn't
5720        // involve a parameter
5721        unsigned ParamNum =
5722            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
5723        NearMatches.push_back(std::make_pair(FD, ParamNum));
5724      }
5725    }
5726  // If the qualified name lookup yielded nothing, try typo correction
5727  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
5728                                         Prev.getLookupKind(), 0, 0,
5729                                         Validator, NewDC))) {
5730    // Trap errors.
5731    Sema::SFINAETrap Trap(SemaRef);
5732
5733    // Set up everything for the call to ActOnFunctionDeclarator
5734    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
5735                              ExtraArgs.D.getIdentifierLoc());
5736    Previous.clear();
5737    Previous.setLookupName(Correction.getCorrection());
5738    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
5739                                    CDeclEnd = Correction.end();
5740         CDecl != CDeclEnd; ++CDecl) {
5741      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
5742      if (FD && !FD->hasBody() &&
5743          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
5744        Previous.addDecl(FD);
5745      }
5746    }
5747    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
5748    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
5749    // pieces need to verify the typo-corrected C++ declaraction and hopefully
5750    // eliminate the need for the parameter pack ExtraArgs.
5751    Result = SemaRef.ActOnFunctionDeclarator(
5752        ExtraArgs.S, ExtraArgs.D,
5753        Correction.getCorrectionDecl()->getDeclContext(),
5754        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
5755        ExtraArgs.AddToScope);
5756    if (Trap.hasErrorOccurred()) {
5757      // Pretend the typo correction never occurred
5758      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
5759                                ExtraArgs.D.getIdentifierLoc());
5760      ExtraArgs.D.setRedeclaration(wasRedeclaration);
5761      Previous.clear();
5762      Previous.setLookupName(Name);
5763      Result = NULL;
5764    } else {
5765      for (LookupResult::iterator Func = Previous.begin(),
5766                               FuncEnd = Previous.end();
5767           Func != FuncEnd; ++Func) {
5768        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
5769          NearMatches.push_back(std::make_pair(FD, 0));
5770      }
5771    }
5772    if (NearMatches.empty()) {
5773      // Ignore the correction if it didn't yield any close FunctionDecl matches
5774      Correction = TypoCorrection();
5775    } else {
5776      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
5777                             : diag::err_member_def_does_not_match_suggest;
5778    }
5779  }
5780
5781  if (Correction) {
5782    // FIXME: use Correction.getCorrectionRange() instead of computing the range
5783    // here. This requires passing in the CXXScopeSpec to CorrectTypo which in
5784    // turn causes the correction to fully qualify the name. If we fix
5785    // CorrectTypo to minimally qualify then this change should be good.
5786    SourceRange FixItLoc(NewFD->getLocation());
5787    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
5788    if (Correction.getCorrectionSpecifier() && SS.isValid())
5789      FixItLoc.setBegin(SS.getBeginLoc());
5790    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
5791        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
5792        << FixItHint::CreateReplacement(
5793            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
5794  } else {
5795    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
5796        << Name << NewDC << NewFD->getLocation();
5797  }
5798
5799  bool NewFDisConst = false;
5800  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
5801    NewFDisConst = NewMD->isConst();
5802
5803  for (SmallVector<std::pair<FunctionDecl *, unsigned>, 1>::iterator
5804       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
5805       NearMatch != NearMatchEnd; ++NearMatch) {
5806    FunctionDecl *FD = NearMatch->first;
5807    bool FDisConst = false;
5808    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
5809      FDisConst = MD->isConst();
5810
5811    if (unsigned Idx = NearMatch->second) {
5812      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
5813      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
5814      if (Loc.isInvalid()) Loc = FD->getLocation();
5815      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
5816          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
5817    } else if (Correction) {
5818      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
5819          << Correction.getQuoted(SemaRef.getLangOpts());
5820    } else if (FDisConst != NewFDisConst) {
5821      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
5822          << NewFDisConst << FD->getSourceRange().getEnd();
5823    } else
5824      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
5825  }
5826  return Result;
5827}
5828
5829static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
5830                                                          Declarator &D) {
5831  switch (D.getDeclSpec().getStorageClassSpec()) {
5832  default: llvm_unreachable("Unknown storage class!");
5833  case DeclSpec::SCS_auto:
5834  case DeclSpec::SCS_register:
5835  case DeclSpec::SCS_mutable:
5836    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5837                 diag::err_typecheck_sclass_func);
5838    D.setInvalidType();
5839    break;
5840  case DeclSpec::SCS_unspecified: break;
5841  case DeclSpec::SCS_extern:
5842    if (D.getDeclSpec().isExternInLinkageSpec())
5843      return SC_None;
5844    return SC_Extern;
5845  case DeclSpec::SCS_static: {
5846    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
5847      // C99 6.7.1p5:
5848      //   The declaration of an identifier for a function that has
5849      //   block scope shall have no explicit storage-class specifier
5850      //   other than extern
5851      // See also (C++ [dcl.stc]p4).
5852      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5853                   diag::err_static_block_func);
5854      break;
5855    } else
5856      return SC_Static;
5857  }
5858  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
5859  }
5860
5861  // No explicit storage class has already been returned
5862  return SC_None;
5863}
5864
5865static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
5866                                           DeclContext *DC, QualType &R,
5867                                           TypeSourceInfo *TInfo,
5868                                           FunctionDecl::StorageClass SC,
5869                                           bool &IsVirtualOkay) {
5870  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
5871  DeclarationName Name = NameInfo.getName();
5872
5873  FunctionDecl *NewFD = 0;
5874  bool isInline = D.getDeclSpec().isInlineSpecified();
5875
5876  if (!SemaRef.getLangOpts().CPlusPlus) {
5877    // Determine whether the function was written with a
5878    // prototype. This true when:
5879    //   - there is a prototype in the declarator, or
5880    //   - the type R of the function is some kind of typedef or other reference
5881    //     to a type name (which eventually refers to a function type).
5882    bool HasPrototype =
5883      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
5884      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
5885
5886    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
5887                                 D.getLocStart(), NameInfo, R,
5888                                 TInfo, SC, isInline,
5889                                 HasPrototype, false);
5890    if (D.isInvalidType())
5891      NewFD->setInvalidDecl();
5892
5893    // Set the lexical context.
5894    NewFD->setLexicalDeclContext(SemaRef.CurContext);
5895
5896    return NewFD;
5897  }
5898
5899  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5900  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5901
5902  // Check that the return type is not an abstract class type.
5903  // For record types, this is done by the AbstractClassUsageDiagnoser once
5904  // the class has been completely parsed.
5905  if (!DC->isRecord() &&
5906      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
5907                                     R->getAs<FunctionType>()->getResultType(),
5908                                     diag::err_abstract_type_in_decl,
5909                                     SemaRef.AbstractReturnType))
5910    D.setInvalidType();
5911
5912  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
5913    // This is a C++ constructor declaration.
5914    assert(DC->isRecord() &&
5915           "Constructors can only be declared in a member context");
5916
5917    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
5918    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5919                                      D.getLocStart(), NameInfo,
5920                                      R, TInfo, isExplicit, isInline,
5921                                      /*isImplicitlyDeclared=*/false,
5922                                      isConstexpr);
5923
5924  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5925    // This is a C++ destructor declaration.
5926    if (DC->isRecord()) {
5927      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
5928      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
5929      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
5930                                        SemaRef.Context, Record,
5931                                        D.getLocStart(),
5932                                        NameInfo, R, TInfo, isInline,
5933                                        /*isImplicitlyDeclared=*/false);
5934
5935      // If the class is complete, then we now create the implicit exception
5936      // specification. If the class is incomplete or dependent, we can't do
5937      // it yet.
5938      if (SemaRef.getLangOpts().CPlusPlus11 && !Record->isDependentType() &&
5939          Record->getDefinition() && !Record->isBeingDefined() &&
5940          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
5941        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
5942      }
5943
5944      // The Microsoft ABI requires that we perform the destructor body
5945      // checks (i.e. operator delete() lookup) at every declaration, as
5946      // any translation unit may need to emit a deleting destructor.
5947      if (SemaRef.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
5948          !Record->isDependentType() && Record->getDefinition() &&
5949          !Record->isBeingDefined()) {
5950        SemaRef.CheckDestructor(NewDD);
5951      }
5952
5953      IsVirtualOkay = true;
5954      return NewDD;
5955
5956    } else {
5957      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
5958      D.setInvalidType();
5959
5960      // Create a FunctionDecl to satisfy the function definition parsing
5961      // code path.
5962      return FunctionDecl::Create(SemaRef.Context, DC,
5963                                  D.getLocStart(),
5964                                  D.getIdentifierLoc(), Name, R, TInfo,
5965                                  SC, isInline,
5966                                  /*hasPrototype=*/true, isConstexpr);
5967    }
5968
5969  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
5970    if (!DC->isRecord()) {
5971      SemaRef.Diag(D.getIdentifierLoc(),
5972           diag::err_conv_function_not_member);
5973      return 0;
5974    }
5975
5976    SemaRef.CheckConversionDeclarator(D, R, SC);
5977    IsVirtualOkay = true;
5978    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
5979                                     D.getLocStart(), NameInfo,
5980                                     R, TInfo, isInline, isExplicit,
5981                                     isConstexpr, SourceLocation());
5982
5983  } else if (DC->isRecord()) {
5984    // If the name of the function is the same as the name of the record,
5985    // then this must be an invalid constructor that has a return type.
5986    // (The parser checks for a return type and makes the declarator a
5987    // constructor if it has no return type).
5988    if (Name.getAsIdentifierInfo() &&
5989        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
5990      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
5991        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
5992        << SourceRange(D.getIdentifierLoc());
5993      return 0;
5994    }
5995
5996    // This is a C++ method declaration.
5997    CXXMethodDecl *Ret = CXXMethodDecl::Create(SemaRef.Context,
5998                                               cast<CXXRecordDecl>(DC),
5999                                               D.getLocStart(), NameInfo, R,
6000                                               TInfo, SC, isInline,
6001                                               isConstexpr, SourceLocation());
6002    IsVirtualOkay = !Ret->isStatic();
6003    return Ret;
6004  } else {
6005    // Determine whether the function was written with a
6006    // prototype. This true when:
6007    //   - we're in C++ (where every function has a prototype),
6008    return FunctionDecl::Create(SemaRef.Context, DC,
6009                                D.getLocStart(),
6010                                NameInfo, R, TInfo, SC, isInline,
6011                                true/*HasPrototype*/, isConstexpr);
6012  }
6013}
6014
6015void Sema::checkVoidParamDecl(ParmVarDecl *Param) {
6016  // In C++, the empty parameter-type-list must be spelled "void"; a
6017  // typedef of void is not permitted.
6018  if (getLangOpts().CPlusPlus &&
6019      Param->getType().getUnqualifiedType() != Context.VoidTy) {
6020    bool IsTypeAlias = false;
6021    if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
6022      IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
6023    else if (const TemplateSpecializationType *TST =
6024               Param->getType()->getAs<TemplateSpecializationType>())
6025      IsTypeAlias = TST->isTypeAlias();
6026    Diag(Param->getLocation(), diag::err_param_typedef_of_void)
6027      << IsTypeAlias;
6028  }
6029}
6030
6031NamedDecl*
6032Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
6033                              TypeSourceInfo *TInfo, LookupResult &Previous,
6034                              MultiTemplateParamsArg TemplateParamLists,
6035                              bool &AddToScope) {
6036  QualType R = TInfo->getType();
6037
6038  assert(R.getTypePtr()->isFunctionType());
6039
6040  // TODO: consider using NameInfo for diagnostic.
6041  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
6042  DeclarationName Name = NameInfo.getName();
6043  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
6044
6045  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
6046    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
6047         diag::err_invalid_thread)
6048      << DeclSpec::getSpecifierName(TSCS);
6049
6050  bool isFriend = false;
6051  FunctionTemplateDecl *FunctionTemplate = 0;
6052  bool isExplicitSpecialization = false;
6053  bool isFunctionTemplateSpecialization = false;
6054
6055  bool isDependentClassScopeExplicitSpecialization = false;
6056  bool HasExplicitTemplateArgs = false;
6057  TemplateArgumentListInfo TemplateArgs;
6058
6059  bool isVirtualOkay = false;
6060
6061  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
6062                                              isVirtualOkay);
6063  if (!NewFD) return 0;
6064
6065  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
6066    NewFD->setTopLevelDeclInObjCContainer();
6067
6068  if (getLangOpts().CPlusPlus) {
6069    bool isInline = D.getDeclSpec().isInlineSpecified();
6070    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
6071    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
6072    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
6073    isFriend = D.getDeclSpec().isFriendSpecified();
6074    if (isFriend && !isInline && D.isFunctionDefinition()) {
6075      // C++ [class.friend]p5
6076      //   A function can be defined in a friend declaration of a
6077      //   class . . . . Such a function is implicitly inline.
6078      NewFD->setImplicitlyInline();
6079    }
6080
6081    // If this is a method defined in an __interface, and is not a constructor
6082    // or an overloaded operator, then set the pure flag (isVirtual will already
6083    // return true).
6084    if (const CXXRecordDecl *Parent =
6085          dyn_cast<CXXRecordDecl>(NewFD->getDeclContext())) {
6086      if (Parent->isInterface() && cast<CXXMethodDecl>(NewFD)->isUserProvided())
6087        NewFD->setPure(true);
6088    }
6089
6090    SetNestedNameSpecifier(NewFD, D);
6091    isExplicitSpecialization = false;
6092    isFunctionTemplateSpecialization = false;
6093    if (D.isInvalidType())
6094      NewFD->setInvalidDecl();
6095
6096    // Set the lexical context. If the declarator has a C++
6097    // scope specifier, or is the object of a friend declaration, the
6098    // lexical context will be different from the semantic context.
6099    NewFD->setLexicalDeclContext(CurContext);
6100
6101    // Match up the template parameter lists with the scope specifier, then
6102    // determine whether we have a template or a template specialization.
6103    bool Invalid = false;
6104    if (TemplateParameterList *TemplateParams
6105          = MatchTemplateParametersToScopeSpecifier(
6106                                  D.getDeclSpec().getLocStart(),
6107                                  D.getIdentifierLoc(),
6108                                  D.getCXXScopeSpec(),
6109                                  TemplateParamLists.data(),
6110                                  TemplateParamLists.size(),
6111                                  isFriend,
6112                                  isExplicitSpecialization,
6113                                  Invalid)) {
6114      if (TemplateParams->size() > 0) {
6115        // This is a function template
6116
6117        // Check that we can declare a template here.
6118        if (CheckTemplateDeclScope(S, TemplateParams))
6119          return 0;
6120
6121        // A destructor cannot be a template.
6122        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
6123          Diag(NewFD->getLocation(), diag::err_destructor_template);
6124          return 0;
6125        }
6126
6127        // If we're adding a template to a dependent context, we may need to
6128        // rebuilding some of the types used within the template parameter list,
6129        // now that we know what the current instantiation is.
6130        if (DC->isDependentContext()) {
6131          ContextRAII SavedContext(*this, DC);
6132          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
6133            Invalid = true;
6134        }
6135
6136
6137        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
6138                                                        NewFD->getLocation(),
6139                                                        Name, TemplateParams,
6140                                                        NewFD);
6141        FunctionTemplate->setLexicalDeclContext(CurContext);
6142        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
6143
6144        // For source fidelity, store the other template param lists.
6145        if (TemplateParamLists.size() > 1) {
6146          NewFD->setTemplateParameterListsInfo(Context,
6147                                               TemplateParamLists.size() - 1,
6148                                               TemplateParamLists.data());
6149        }
6150      } else {
6151        // This is a function template specialization.
6152        isFunctionTemplateSpecialization = true;
6153        // For source fidelity, store all the template param lists.
6154        NewFD->setTemplateParameterListsInfo(Context,
6155                                             TemplateParamLists.size(),
6156                                             TemplateParamLists.data());
6157
6158        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
6159        if (isFriend) {
6160          // We want to remove the "template<>", found here.
6161          SourceRange RemoveRange = TemplateParams->getSourceRange();
6162
6163          // If we remove the template<> and the name is not a
6164          // template-id, we're actually silently creating a problem:
6165          // the friend declaration will refer to an untemplated decl,
6166          // and clearly the user wants a template specialization.  So
6167          // we need to insert '<>' after the name.
6168          SourceLocation InsertLoc;
6169          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
6170            InsertLoc = D.getName().getSourceRange().getEnd();
6171            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
6172          }
6173
6174          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
6175            << Name << RemoveRange
6176            << FixItHint::CreateRemoval(RemoveRange)
6177            << FixItHint::CreateInsertion(InsertLoc, "<>");
6178        }
6179      }
6180    }
6181    else {
6182      // All template param lists were matched against the scope specifier:
6183      // this is NOT (an explicit specialization of) a template.
6184      if (TemplateParamLists.size() > 0)
6185        // For source fidelity, store all the template param lists.
6186        NewFD->setTemplateParameterListsInfo(Context,
6187                                             TemplateParamLists.size(),
6188                                             TemplateParamLists.data());
6189    }
6190
6191    if (Invalid) {
6192      NewFD->setInvalidDecl();
6193      if (FunctionTemplate)
6194        FunctionTemplate->setInvalidDecl();
6195    }
6196
6197    // C++ [dcl.fct.spec]p5:
6198    //   The virtual specifier shall only be used in declarations of
6199    //   nonstatic class member functions that appear within a
6200    //   member-specification of a class declaration; see 10.3.
6201    //
6202    if (isVirtual && !NewFD->isInvalidDecl()) {
6203      if (!isVirtualOkay) {
6204        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6205             diag::err_virtual_non_function);
6206      } else if (!CurContext->isRecord()) {
6207        // 'virtual' was specified outside of the class.
6208        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6209             diag::err_virtual_out_of_class)
6210          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6211      } else if (NewFD->getDescribedFunctionTemplate()) {
6212        // C++ [temp.mem]p3:
6213        //  A member function template shall not be virtual.
6214        Diag(D.getDeclSpec().getVirtualSpecLoc(),
6215             diag::err_virtual_member_function_template)
6216          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
6217      } else {
6218        // Okay: Add virtual to the method.
6219        NewFD->setVirtualAsWritten(true);
6220      }
6221
6222      if (getLangOpts().CPlusPlus1y &&
6223          NewFD->getResultType()->isUndeducedType())
6224        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_auto_fn_virtual);
6225    }
6226
6227    // C++ [dcl.fct.spec]p3:
6228    //  The inline specifier shall not appear on a block scope function
6229    //  declaration.
6230    if (isInline && !NewFD->isInvalidDecl()) {
6231      if (CurContext->isFunctionOrMethod()) {
6232        // 'inline' is not allowed on block scope function declaration.
6233        Diag(D.getDeclSpec().getInlineSpecLoc(),
6234             diag::err_inline_declaration_block_scope) << Name
6235          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
6236      }
6237    }
6238
6239    // C++ [dcl.fct.spec]p6:
6240    //  The explicit specifier shall be used only in the declaration of a
6241    //  constructor or conversion function within its class definition;
6242    //  see 12.3.1 and 12.3.2.
6243    if (isExplicit && !NewFD->isInvalidDecl()) {
6244      if (!CurContext->isRecord()) {
6245        // 'explicit' was specified outside of the class.
6246        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6247             diag::err_explicit_out_of_class)
6248          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6249      } else if (!isa<CXXConstructorDecl>(NewFD) &&
6250                 !isa<CXXConversionDecl>(NewFD)) {
6251        // 'explicit' was specified on a function that wasn't a constructor
6252        // or conversion function.
6253        Diag(D.getDeclSpec().getExplicitSpecLoc(),
6254             diag::err_explicit_non_ctor_or_conv_function)
6255          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
6256      }
6257    }
6258
6259    if (isConstexpr) {
6260      // C++11 [dcl.constexpr]p2: constexpr functions and constexpr constructors
6261      // are implicitly inline.
6262      NewFD->setImplicitlyInline();
6263
6264      // C++11 [dcl.constexpr]p3: functions declared constexpr are required to
6265      // be either constructors or to return a literal type. Therefore,
6266      // destructors cannot be declared constexpr.
6267      if (isa<CXXDestructorDecl>(NewFD))
6268        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
6269    }
6270
6271    // If __module_private__ was specified, mark the function accordingly.
6272    if (D.getDeclSpec().isModulePrivateSpecified()) {
6273      if (isFunctionTemplateSpecialization) {
6274        SourceLocation ModulePrivateLoc
6275          = D.getDeclSpec().getModulePrivateSpecLoc();
6276        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
6277          << 0
6278          << FixItHint::CreateRemoval(ModulePrivateLoc);
6279      } else {
6280        NewFD->setModulePrivate();
6281        if (FunctionTemplate)
6282          FunctionTemplate->setModulePrivate();
6283      }
6284    }
6285
6286    if (isFriend) {
6287      // For now, claim that the objects have no previous declaration.
6288      if (FunctionTemplate) {
6289        FunctionTemplate->setObjectOfFriendDecl(false);
6290        FunctionTemplate->setAccess(AS_public);
6291      }
6292      NewFD->setObjectOfFriendDecl(false);
6293      NewFD->setAccess(AS_public);
6294    }
6295
6296    // If a function is defined as defaulted or deleted, mark it as such now.
6297    switch (D.getFunctionDefinitionKind()) {
6298      case FDK_Declaration:
6299      case FDK_Definition:
6300        break;
6301
6302      case FDK_Defaulted:
6303        NewFD->setDefaulted();
6304        break;
6305
6306      case FDK_Deleted:
6307        NewFD->setDeletedAsWritten();
6308        break;
6309    }
6310
6311    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
6312        D.isFunctionDefinition()) {
6313      // C++ [class.mfct]p2:
6314      //   A member function may be defined (8.4) in its class definition, in
6315      //   which case it is an inline member function (7.1.2)
6316      NewFD->setImplicitlyInline();
6317    }
6318
6319    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
6320        !CurContext->isRecord()) {
6321      // C++ [class.static]p1:
6322      //   A data or function member of a class may be declared static
6323      //   in a class definition, in which case it is a static member of
6324      //   the class.
6325
6326      // Complain about the 'static' specifier if it's on an out-of-line
6327      // member function definition.
6328      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
6329           diag::err_static_out_of_line)
6330        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
6331    }
6332
6333    // C++11 [except.spec]p15:
6334    //   A deallocation function with no exception-specification is treated
6335    //   as if it were specified with noexcept(true).
6336    const FunctionProtoType *FPT = R->getAs<FunctionProtoType>();
6337    if ((Name.getCXXOverloadedOperator() == OO_Delete ||
6338         Name.getCXXOverloadedOperator() == OO_Array_Delete) &&
6339        getLangOpts().CPlusPlus11 && FPT && !FPT->hasExceptionSpec()) {
6340      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6341      EPI.ExceptionSpecType = EST_BasicNoexcept;
6342      NewFD->setType(Context.getFunctionType(FPT->getResultType(),
6343                                             FPT->getArgTypes(), EPI));
6344    }
6345  }
6346
6347  // Filter out previous declarations that don't match the scope.
6348  FilterLookupForScope(Previous, DC, S, shouldConsiderLinkage(NewFD),
6349                       isExplicitSpecialization ||
6350                       isFunctionTemplateSpecialization);
6351
6352  // Handle GNU asm-label extension (encoded as an attribute).
6353  if (Expr *E = (Expr*) D.getAsmLabel()) {
6354    // The parser guarantees this is a string.
6355    StringLiteral *SE = cast<StringLiteral>(E);
6356    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
6357                                                SE->getString()));
6358  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
6359    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
6360      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
6361    if (I != ExtnameUndeclaredIdentifiers.end()) {
6362      NewFD->addAttr(I->second);
6363      ExtnameUndeclaredIdentifiers.erase(I);
6364    }
6365  }
6366
6367  // Copy the parameter declarations from the declarator D to the function
6368  // declaration NewFD, if they are available.  First scavenge them into Params.
6369  SmallVector<ParmVarDecl*, 16> Params;
6370  if (D.isFunctionDeclarator()) {
6371    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6372
6373    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
6374    // function that takes no arguments, not a function that takes a
6375    // single void argument.
6376    // We let through "const void" here because Sema::GetTypeForDeclarator
6377    // already checks for that case.
6378    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
6379        FTI.ArgInfo[0].Param &&
6380        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
6381      // Empty arg list, don't push any params.
6382      checkVoidParamDecl(cast<ParmVarDecl>(FTI.ArgInfo[0].Param));
6383    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
6384      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
6385        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
6386        assert(Param->getDeclContext() != NewFD && "Was set before ?");
6387        Param->setDeclContext(NewFD);
6388        Params.push_back(Param);
6389
6390        if (Param->isInvalidDecl())
6391          NewFD->setInvalidDecl();
6392      }
6393    }
6394
6395  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
6396    // When we're declaring a function with a typedef, typeof, etc as in the
6397    // following example, we'll need to synthesize (unnamed)
6398    // parameters for use in the declaration.
6399    //
6400    // @code
6401    // typedef void fn(int);
6402    // fn f;
6403    // @endcode
6404
6405    // Synthesize a parameter for each argument type.
6406    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
6407         AE = FT->arg_type_end(); AI != AE; ++AI) {
6408      ParmVarDecl *Param =
6409        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
6410      Param->setScopeInfo(0, Params.size());
6411      Params.push_back(Param);
6412    }
6413  } else {
6414    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
6415           "Should not need args for typedef of non-prototype fn");
6416  }
6417
6418  // Finally, we know we have the right number of parameters, install them.
6419  NewFD->setParams(Params);
6420
6421  // Find all anonymous symbols defined during the declaration of this function
6422  // and add to NewFD. This lets us track decls such 'enum Y' in:
6423  //
6424  //   void f(enum Y {AA} x) {}
6425  //
6426  // which would otherwise incorrectly end up in the translation unit scope.
6427  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
6428  DeclsInPrototypeScope.clear();
6429
6430  if (D.getDeclSpec().isNoreturnSpecified())
6431    NewFD->addAttr(
6432        ::new(Context) C11NoReturnAttr(D.getDeclSpec().getNoreturnSpecLoc(),
6433                                       Context));
6434
6435  // Process the non-inheritable attributes on this declaration.
6436  ProcessDeclAttributes(S, NewFD, D,
6437                        /*NonInheritable=*/true, /*Inheritable=*/false);
6438
6439  // Functions returning a variably modified type violate C99 6.7.5.2p2
6440  // because all functions have linkage.
6441  if (!NewFD->isInvalidDecl() &&
6442      NewFD->getResultType()->isVariablyModifiedType()) {
6443    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
6444    NewFD->setInvalidDecl();
6445  }
6446
6447  // Handle attributes.
6448  ProcessDeclAttributes(S, NewFD, D,
6449                        /*NonInheritable=*/false, /*Inheritable=*/true);
6450
6451  QualType RetType = NewFD->getResultType();
6452  const CXXRecordDecl *Ret = RetType->isRecordType() ?
6453      RetType->getAsCXXRecordDecl() : RetType->getPointeeCXXRecordDecl();
6454  if (!NewFD->isInvalidDecl() && !NewFD->hasAttr<WarnUnusedResultAttr>() &&
6455      Ret && Ret->hasAttr<WarnUnusedResultAttr>()) {
6456    const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6457    if (!(MD && MD->getCorrespondingMethodInClass(Ret, true))) {
6458      NewFD->addAttr(new (Context) WarnUnusedResultAttr(SourceRange(),
6459                                                        Context));
6460    }
6461  }
6462
6463  if (!getLangOpts().CPlusPlus) {
6464    // Perform semantic checking on the function declaration.
6465    bool isExplicitSpecialization=false;
6466    if (!NewFD->isInvalidDecl()) {
6467      if (NewFD->isMain())
6468        CheckMain(NewFD, D.getDeclSpec());
6469      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6470                                                  isExplicitSpecialization));
6471    }
6472    // Make graceful recovery from an invalid redeclaration.
6473    else if (!Previous.empty())
6474           D.setRedeclaration(true);
6475    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6476            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6477           "previous declaration set still overloaded");
6478  } else {
6479    // If the declarator is a template-id, translate the parser's template
6480    // argument list into our AST format.
6481    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
6482      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
6483      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
6484      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
6485      ASTTemplateArgsPtr TemplateArgsPtr(TemplateId->getTemplateArgs(),
6486                                         TemplateId->NumArgs);
6487      translateTemplateArguments(TemplateArgsPtr,
6488                                 TemplateArgs);
6489
6490      HasExplicitTemplateArgs = true;
6491
6492      if (NewFD->isInvalidDecl()) {
6493        HasExplicitTemplateArgs = false;
6494      } else if (FunctionTemplate) {
6495        // Function template with explicit template arguments.
6496        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
6497          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
6498
6499        HasExplicitTemplateArgs = false;
6500      } else if (!isFunctionTemplateSpecialization &&
6501                 !D.getDeclSpec().isFriendSpecified()) {
6502        // We have encountered something that the user meant to be a
6503        // specialization (because it has explicitly-specified template
6504        // arguments) but that was not introduced with a "template<>" (or had
6505        // too few of them).
6506        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
6507          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
6508          << FixItHint::CreateInsertion(
6509                                    D.getDeclSpec().getLocStart(),
6510                                        "template<> ");
6511        isFunctionTemplateSpecialization = true;
6512      } else {
6513        // "friend void foo<>(int);" is an implicit specialization decl.
6514        isFunctionTemplateSpecialization = true;
6515      }
6516    } else if (isFriend && isFunctionTemplateSpecialization) {
6517      // This combination is only possible in a recovery case;  the user
6518      // wrote something like:
6519      //   template <> friend void foo(int);
6520      // which we're recovering from as if the user had written:
6521      //   friend void foo<>(int);
6522      // Go ahead and fake up a template id.
6523      HasExplicitTemplateArgs = true;
6524        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
6525      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
6526    }
6527
6528    // If it's a friend (and only if it's a friend), it's possible
6529    // that either the specialized function type or the specialized
6530    // template is dependent, and therefore matching will fail.  In
6531    // this case, don't check the specialization yet.
6532    bool InstantiationDependent = false;
6533    if (isFunctionTemplateSpecialization && isFriend &&
6534        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
6535         TemplateSpecializationType::anyDependentTemplateArguments(
6536            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
6537            InstantiationDependent))) {
6538      assert(HasExplicitTemplateArgs &&
6539             "friend function specialization without template args");
6540      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
6541                                                       Previous))
6542        NewFD->setInvalidDecl();
6543    } else if (isFunctionTemplateSpecialization) {
6544      if (CurContext->isDependentContext() && CurContext->isRecord()
6545          && !isFriend) {
6546        isDependentClassScopeExplicitSpecialization = true;
6547        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
6548          diag::ext_function_specialization_in_class :
6549          diag::err_function_specialization_in_class)
6550          << NewFD->getDeclName();
6551      } else if (CheckFunctionTemplateSpecialization(NewFD,
6552                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
6553                                                     Previous))
6554        NewFD->setInvalidDecl();
6555
6556      // C++ [dcl.stc]p1:
6557      //   A storage-class-specifier shall not be specified in an explicit
6558      //   specialization (14.7.3)
6559      FunctionTemplateSpecializationInfo *Info =
6560          NewFD->getTemplateSpecializationInfo();
6561      if (Info && SC != SC_None) {
6562        if (SC != Info->getTemplate()->getTemplatedDecl()->getStorageClass())
6563          Diag(NewFD->getLocation(),
6564               diag::err_explicit_specialization_inconsistent_storage_class)
6565            << SC
6566            << FixItHint::CreateRemoval(
6567                                      D.getDeclSpec().getStorageClassSpecLoc());
6568
6569        else
6570          Diag(NewFD->getLocation(),
6571               diag::ext_explicit_specialization_storage_class)
6572            << FixItHint::CreateRemoval(
6573                                      D.getDeclSpec().getStorageClassSpecLoc());
6574      }
6575
6576    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
6577      if (CheckMemberSpecialization(NewFD, Previous))
6578          NewFD->setInvalidDecl();
6579    }
6580
6581    // Perform semantic checking on the function declaration.
6582    if (!isDependentClassScopeExplicitSpecialization) {
6583      if (NewFD->isInvalidDecl()) {
6584        // If this is a class member, mark the class invalid immediately.
6585        // This avoids some consistency errors later.
6586        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
6587          methodDecl->getParent()->setInvalidDecl();
6588      } else {
6589        if (NewFD->isMain())
6590          CheckMain(NewFD, D.getDeclSpec());
6591        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
6592                                                    isExplicitSpecialization));
6593      }
6594    }
6595
6596    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
6597            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
6598           "previous declaration set still overloaded");
6599
6600    NamedDecl *PrincipalDecl = (FunctionTemplate
6601                                ? cast<NamedDecl>(FunctionTemplate)
6602                                : NewFD);
6603
6604    if (isFriend && D.isRedeclaration()) {
6605      AccessSpecifier Access = AS_public;
6606      if (!NewFD->isInvalidDecl())
6607        Access = NewFD->getPreviousDecl()->getAccess();
6608
6609      NewFD->setAccess(Access);
6610      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
6611
6612      PrincipalDecl->setObjectOfFriendDecl(true);
6613    }
6614
6615    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
6616        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
6617      PrincipalDecl->setNonMemberOperator();
6618
6619    // If we have a function template, check the template parameter
6620    // list. This will check and merge default template arguments.
6621    if (FunctionTemplate) {
6622      FunctionTemplateDecl *PrevTemplate =
6623                                     FunctionTemplate->getPreviousDecl();
6624      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
6625                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
6626                            D.getDeclSpec().isFriendSpecified()
6627                              ? (D.isFunctionDefinition()
6628                                   ? TPC_FriendFunctionTemplateDefinition
6629                                   : TPC_FriendFunctionTemplate)
6630                              : (D.getCXXScopeSpec().isSet() &&
6631                                 DC && DC->isRecord() &&
6632                                 DC->isDependentContext())
6633                                  ? TPC_ClassTemplateMember
6634                                  : TPC_FunctionTemplate);
6635    }
6636
6637    if (NewFD->isInvalidDecl()) {
6638      // Ignore all the rest of this.
6639    } else if (!D.isRedeclaration()) {
6640      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
6641                                       AddToScope };
6642      // Fake up an access specifier if it's supposed to be a class member.
6643      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
6644        NewFD->setAccess(AS_public);
6645
6646      // Qualified decls generally require a previous declaration.
6647      if (D.getCXXScopeSpec().isSet()) {
6648        // ...with the major exception of templated-scope or
6649        // dependent-scope friend declarations.
6650
6651        // TODO: we currently also suppress this check in dependent
6652        // contexts because (1) the parameter depth will be off when
6653        // matching friend templates and (2) we might actually be
6654        // selecting a friend based on a dependent factor.  But there
6655        // are situations where these conditions don't apply and we
6656        // can actually do this check immediately.
6657        if (isFriend &&
6658            (TemplateParamLists.size() ||
6659             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
6660             CurContext->isDependentContext())) {
6661          // ignore these
6662        } else {
6663          // The user tried to provide an out-of-line definition for a
6664          // function that is a member of a class or namespace, but there
6665          // was no such member function declared (C++ [class.mfct]p2,
6666          // C++ [namespace.memdef]p2). For example:
6667          //
6668          // class X {
6669          //   void f() const;
6670          // };
6671          //
6672          // void X::f() { } // ill-formed
6673          //
6674          // Complain about this problem, and attempt to suggest close
6675          // matches (e.g., those that differ only in cv-qualifiers and
6676          // whether the parameter types are references).
6677
6678          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6679                                                               NewFD,
6680                                                               ExtraArgs)) {
6681            AddToScope = ExtraArgs.AddToScope;
6682            return Result;
6683          }
6684        }
6685
6686        // Unqualified local friend declarations are required to resolve
6687        // to something.
6688      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
6689        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
6690                                                             NewFD,
6691                                                             ExtraArgs)) {
6692          AddToScope = ExtraArgs.AddToScope;
6693          return Result;
6694        }
6695      }
6696
6697    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
6698               !isFriend && !isFunctionTemplateSpecialization &&
6699               !isExplicitSpecialization) {
6700      // An out-of-line member function declaration must also be a
6701      // definition (C++ [dcl.meaning]p1).
6702      // Note that this is not the case for explicit specializations of
6703      // function templates or member functions of class templates, per
6704      // C++ [temp.expl.spec]p2. We also allow these declarations as an
6705      // extension for compatibility with old SWIG code which likes to
6706      // generate them.
6707      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
6708        << D.getCXXScopeSpec().getRange();
6709    }
6710  }
6711
6712  ProcessPragmaWeak(S, NewFD);
6713  checkAttributesAfterMerging(*this, *NewFD);
6714
6715  AddKnownFunctionAttributes(NewFD);
6716
6717  if (NewFD->hasAttr<OverloadableAttr>() &&
6718      !NewFD->getType()->getAs<FunctionProtoType>()) {
6719    Diag(NewFD->getLocation(),
6720         diag::err_attribute_overloadable_no_prototype)
6721      << NewFD;
6722
6723    // Turn this into a variadic function with no parameters.
6724    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
6725    FunctionProtoType::ExtProtoInfo EPI;
6726    EPI.Variadic = true;
6727    EPI.ExtInfo = FT->getExtInfo();
6728
6729    QualType R = Context.getFunctionType(FT->getResultType(), None, EPI);
6730    NewFD->setType(R);
6731  }
6732
6733  // If there's a #pragma GCC visibility in scope, and this isn't a class
6734  // member, set the visibility of this function.
6735  if (!DC->isRecord() && NewFD->isExternallyVisible())
6736    AddPushedVisibilityAttribute(NewFD);
6737
6738  // If there's a #pragma clang arc_cf_code_audited in scope, consider
6739  // marking the function.
6740  AddCFAuditedAttribute(NewFD);
6741
6742  // If this is the first declaration of an extern C variable, update
6743  // the map of such variables.
6744  if (!NewFD->getPreviousDecl() && !NewFD->isInvalidDecl() &&
6745      isIncompleteDeclExternC(*this, NewFD))
6746    RegisterLocallyScopedExternCDecl(NewFD, S);
6747
6748  // Set this FunctionDecl's range up to the right paren.
6749  NewFD->setRangeEnd(D.getSourceRange().getEnd());
6750
6751  if (getLangOpts().CPlusPlus) {
6752    if (FunctionTemplate) {
6753      if (NewFD->isInvalidDecl())
6754        FunctionTemplate->setInvalidDecl();
6755      return FunctionTemplate;
6756    }
6757  }
6758
6759  if (NewFD->hasAttr<OpenCLKernelAttr>()) {
6760    // OpenCL v1.2 s6.8 static is invalid for kernel functions.
6761    if ((getLangOpts().OpenCLVersion >= 120)
6762        && (SC == SC_Static)) {
6763      Diag(D.getIdentifierLoc(), diag::err_static_kernel);
6764      D.setInvalidType();
6765    }
6766
6767    // OpenCL v1.2, s6.9 -- Kernels can only have return type void.
6768    if (!NewFD->getResultType()->isVoidType()) {
6769      Diag(D.getIdentifierLoc(),
6770           diag::err_expected_kernel_void_return_type);
6771      D.setInvalidType();
6772    }
6773
6774    for (FunctionDecl::param_iterator PI = NewFD->param_begin(),
6775         PE = NewFD->param_end(); PI != PE; ++PI) {
6776      ParmVarDecl *Param = *PI;
6777      QualType PT = Param->getType();
6778
6779      // OpenCL v1.2 s6.9.a:
6780      // A kernel function argument cannot be declared as a
6781      // pointer to a pointer type.
6782      if (PT->isPointerType() && PT->getPointeeType()->isPointerType()) {
6783        Diag(Param->getLocation(), diag::err_opencl_ptrptr_kernel_arg);
6784        D.setInvalidType();
6785      }
6786
6787      // OpenCL v1.2 s6.8 n:
6788      // A kernel function argument cannot be declared
6789      // of event_t type.
6790      if (PT->isEventT()) {
6791        Diag(Param->getLocation(), diag::err_event_t_kernel_arg);
6792        D.setInvalidType();
6793      }
6794    }
6795  }
6796
6797  MarkUnusedFileScopedDecl(NewFD);
6798
6799  if (getLangOpts().CUDA)
6800    if (IdentifierInfo *II = NewFD->getIdentifier())
6801      if (!NewFD->isInvalidDecl() &&
6802          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
6803        if (II->isStr("cudaConfigureCall")) {
6804          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
6805            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
6806
6807          Context.setcudaConfigureCallDecl(NewFD);
6808        }
6809      }
6810
6811  // Here we have an function template explicit specialization at class scope.
6812  // The actually specialization will be postponed to template instatiation
6813  // time via the ClassScopeFunctionSpecializationDecl node.
6814  if (isDependentClassScopeExplicitSpecialization) {
6815    ClassScopeFunctionSpecializationDecl *NewSpec =
6816                         ClassScopeFunctionSpecializationDecl::Create(
6817                                Context, CurContext, SourceLocation(),
6818                                cast<CXXMethodDecl>(NewFD),
6819                                HasExplicitTemplateArgs, TemplateArgs);
6820    CurContext->addDecl(NewSpec);
6821    AddToScope = false;
6822  }
6823
6824  return NewFD;
6825}
6826
6827/// \brief Perform semantic checking of a new function declaration.
6828///
6829/// Performs semantic analysis of the new function declaration
6830/// NewFD. This routine performs all semantic checking that does not
6831/// require the actual declarator involved in the declaration, and is
6832/// used both for the declaration of functions as they are parsed
6833/// (called via ActOnDeclarator) and for the declaration of functions
6834/// that have been instantiated via C++ template instantiation (called
6835/// via InstantiateDecl).
6836///
6837/// \param IsExplicitSpecialization whether this new function declaration is
6838/// an explicit specialization of the previous declaration.
6839///
6840/// This sets NewFD->isInvalidDecl() to true if there was an error.
6841///
6842/// \returns true if the function declaration is a redeclaration.
6843bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
6844                                    LookupResult &Previous,
6845                                    bool IsExplicitSpecialization) {
6846  assert(!NewFD->getResultType()->isVariablyModifiedType()
6847         && "Variably modified return types are not handled here");
6848
6849  // Filter out any non-conflicting previous declarations.
6850  filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6851
6852  bool Redeclaration = false;
6853  NamedDecl *OldDecl = 0;
6854
6855  // Merge or overload the declaration with an existing declaration of
6856  // the same name, if appropriate.
6857  if (!Previous.empty()) {
6858    // Determine whether NewFD is an overload of PrevDecl or
6859    // a declaration that requires merging. If it's an overload,
6860    // there's no more work to do here; we'll just add the new
6861    // function to the scope.
6862    if (!AllowOverloadingOfFunction(Previous, Context)) {
6863      NamedDecl *Candidate = Previous.getFoundDecl();
6864      if (shouldLinkPossiblyHiddenDecl(Candidate, NewFD)) {
6865        Redeclaration = true;
6866        OldDecl = Candidate;
6867      }
6868    } else {
6869      switch (CheckOverload(S, NewFD, Previous, OldDecl,
6870                            /*NewIsUsingDecl*/ false)) {
6871      case Ovl_Match:
6872        Redeclaration = true;
6873        break;
6874
6875      case Ovl_NonFunction:
6876        Redeclaration = true;
6877        break;
6878
6879      case Ovl_Overload:
6880        Redeclaration = false;
6881        break;
6882      }
6883
6884      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6885        // If a function name is overloadable in C, then every function
6886        // with that name must be marked "overloadable".
6887        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6888          << Redeclaration << NewFD;
6889        NamedDecl *OverloadedDecl = 0;
6890        if (Redeclaration)
6891          OverloadedDecl = OldDecl;
6892        else if (!Previous.empty())
6893          OverloadedDecl = Previous.getRepresentativeDecl();
6894        if (OverloadedDecl)
6895          Diag(OverloadedDecl->getLocation(),
6896               diag::note_attribute_overloadable_prev_overload);
6897        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6898                                                        Context));
6899      }
6900    }
6901  }
6902
6903  // Check for a previous extern "C" declaration with this name.
6904  if (!Redeclaration &&
6905      checkForConflictWithNonVisibleExternC(*this, NewFD, Previous)) {
6906    filterNonConflictingPreviousDecls(Context, NewFD, Previous);
6907    if (!Previous.empty()) {
6908      // This is an extern "C" declaration with the same name as a previous
6909      // declaration, and thus redeclares that entity...
6910      Redeclaration = true;
6911      OldDecl = Previous.getFoundDecl();
6912
6913      // ... except in the presence of __attribute__((overloadable)).
6914      if (OldDecl->hasAttr<OverloadableAttr>()) {
6915        if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
6916          Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
6917            << Redeclaration << NewFD;
6918          Diag(Previous.getFoundDecl()->getLocation(),
6919               diag::note_attribute_overloadable_prev_overload);
6920          NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
6921                                                          Context));
6922        }
6923        if (IsOverload(NewFD, cast<FunctionDecl>(OldDecl), false)) {
6924          Redeclaration = false;
6925          OldDecl = 0;
6926        }
6927      }
6928    }
6929  }
6930
6931  // C++11 [dcl.constexpr]p8:
6932  //   A constexpr specifier for a non-static member function that is not
6933  //   a constructor declares that member function to be const.
6934  //
6935  // This needs to be delayed until we know whether this is an out-of-line
6936  // definition of a static member function.
6937  //
6938  // This rule is not present in C++1y, so we produce a backwards
6939  // compatibility warning whenever it happens in C++11.
6940  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
6941  if (!getLangOpts().CPlusPlus1y && MD && MD->isConstexpr() &&
6942      !MD->isStatic() && !isa<CXXConstructorDecl>(MD) &&
6943      (MD->getTypeQualifiers() & Qualifiers::Const) == 0) {
6944    CXXMethodDecl *OldMD = dyn_cast_or_null<CXXMethodDecl>(OldDecl);
6945    if (FunctionTemplateDecl *OldTD =
6946          dyn_cast_or_null<FunctionTemplateDecl>(OldDecl))
6947      OldMD = dyn_cast<CXXMethodDecl>(OldTD->getTemplatedDecl());
6948    if (!OldMD || !OldMD->isStatic()) {
6949      const FunctionProtoType *FPT =
6950        MD->getType()->castAs<FunctionProtoType>();
6951      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
6952      EPI.TypeQuals |= Qualifiers::Const;
6953      MD->setType(Context.getFunctionType(FPT->getResultType(),
6954                                          FPT->getArgTypes(), EPI));
6955
6956      // Warn that we did this, if we're not performing template instantiation.
6957      // In that case, we'll have warned already when the template was defined.
6958      if (ActiveTemplateInstantiations.empty()) {
6959        SourceLocation AddConstLoc;
6960        if (FunctionTypeLoc FTL = MD->getTypeSourceInfo()->getTypeLoc()
6961                .IgnoreParens().getAs<FunctionTypeLoc>())
6962          AddConstLoc = PP.getLocForEndOfToken(FTL.getRParenLoc());
6963
6964        Diag(MD->getLocation(), diag::warn_cxx1y_compat_constexpr_not_const)
6965          << FixItHint::CreateInsertion(AddConstLoc, " const");
6966      }
6967    }
6968  }
6969
6970  if (Redeclaration) {
6971    // NewFD and OldDecl represent declarations that need to be
6972    // merged.
6973    if (MergeFunctionDecl(NewFD, OldDecl, S)) {
6974      NewFD->setInvalidDecl();
6975      return Redeclaration;
6976    }
6977
6978    Previous.clear();
6979    Previous.addDecl(OldDecl);
6980
6981    if (FunctionTemplateDecl *OldTemplateDecl
6982                                  = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
6983      NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
6984      FunctionTemplateDecl *NewTemplateDecl
6985        = NewFD->getDescribedFunctionTemplate();
6986      assert(NewTemplateDecl && "Template/non-template mismatch");
6987      if (CXXMethodDecl *Method
6988            = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
6989        Method->setAccess(OldTemplateDecl->getAccess());
6990        NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
6991      }
6992
6993      // If this is an explicit specialization of a member that is a function
6994      // template, mark it as a member specialization.
6995      if (IsExplicitSpecialization &&
6996          NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
6997        NewTemplateDecl->setMemberSpecialization();
6998        assert(OldTemplateDecl->isMemberSpecialization());
6999      }
7000
7001    } else {
7002      // This needs to happen first so that 'inline' propagates.
7003      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
7004
7005      if (isa<CXXMethodDecl>(NewFD)) {
7006        // A valid redeclaration of a C++ method must be out-of-line,
7007        // but (unfortunately) it's not necessarily a definition
7008        // because of templates, which means that the previous
7009        // declaration is not necessarily from the class definition.
7010
7011        // For just setting the access, that doesn't matter.
7012        CXXMethodDecl *oldMethod = cast<CXXMethodDecl>(OldDecl);
7013        NewFD->setAccess(oldMethod->getAccess());
7014
7015        // Update the key-function state if necessary for this ABI.
7016        if (NewFD->isInlined() &&
7017            !Context.getTargetInfo().getCXXABI().canKeyFunctionBeInline()) {
7018          // setNonKeyFunction needs to work with the original
7019          // declaration from the class definition, and isVirtual() is
7020          // just faster in that case, so map back to that now.
7021          oldMethod = cast<CXXMethodDecl>(oldMethod->getFirstDeclaration());
7022          if (oldMethod->isVirtual()) {
7023            Context.setNonKeyFunction(oldMethod);
7024          }
7025        }
7026      }
7027    }
7028  }
7029
7030  // Semantic checking for this function declaration (in isolation).
7031  if (getLangOpts().CPlusPlus) {
7032    // C++-specific checks.
7033    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
7034      CheckConstructor(Constructor);
7035    } else if (CXXDestructorDecl *Destructor =
7036                dyn_cast<CXXDestructorDecl>(NewFD)) {
7037      CXXRecordDecl *Record = Destructor->getParent();
7038      QualType ClassType = Context.getTypeDeclType(Record);
7039
7040      // FIXME: Shouldn't we be able to perform this check even when the class
7041      // type is dependent? Both gcc and edg can handle that.
7042      if (!ClassType->isDependentType()) {
7043        DeclarationName Name
7044          = Context.DeclarationNames.getCXXDestructorName(
7045                                        Context.getCanonicalType(ClassType));
7046        if (NewFD->getDeclName() != Name) {
7047          Diag(NewFD->getLocation(), diag::err_destructor_name);
7048          NewFD->setInvalidDecl();
7049          return Redeclaration;
7050        }
7051      }
7052    } else if (CXXConversionDecl *Conversion
7053               = dyn_cast<CXXConversionDecl>(NewFD)) {
7054      ActOnConversionDeclarator(Conversion);
7055    }
7056
7057    // Find any virtual functions that this function overrides.
7058    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
7059      if (!Method->isFunctionTemplateSpecialization() &&
7060          !Method->getDescribedFunctionTemplate() &&
7061          Method->isCanonicalDecl()) {
7062        if (AddOverriddenMethods(Method->getParent(), Method)) {
7063          // If the function was marked as "static", we have a problem.
7064          if (NewFD->getStorageClass() == SC_Static) {
7065            ReportOverrides(*this, diag::err_static_overrides_virtual, Method);
7066          }
7067        }
7068      }
7069
7070      if (Method->isStatic())
7071        checkThisInStaticMemberFunctionType(Method);
7072    }
7073
7074    // Extra checking for C++ overloaded operators (C++ [over.oper]).
7075    if (NewFD->isOverloadedOperator() &&
7076        CheckOverloadedOperatorDeclaration(NewFD)) {
7077      NewFD->setInvalidDecl();
7078      return Redeclaration;
7079    }
7080
7081    // Extra checking for C++0x literal operators (C++0x [over.literal]).
7082    if (NewFD->getLiteralIdentifier() &&
7083        CheckLiteralOperatorDeclaration(NewFD)) {
7084      NewFD->setInvalidDecl();
7085      return Redeclaration;
7086    }
7087
7088    // In C++, check default arguments now that we have merged decls. Unless
7089    // the lexical context is the class, because in this case this is done
7090    // during delayed parsing anyway.
7091    if (!CurContext->isRecord())
7092      CheckCXXDefaultArguments(NewFD);
7093
7094    // If this function declares a builtin function, check the type of this
7095    // declaration against the expected type for the builtin.
7096    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
7097      ASTContext::GetBuiltinTypeError Error;
7098      LookupPredefedObjCSuperType(*this, S, NewFD->getIdentifier());
7099      QualType T = Context.GetBuiltinType(BuiltinID, Error);
7100      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
7101        // The type of this function differs from the type of the builtin,
7102        // so forget about the builtin entirely.
7103        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
7104      }
7105    }
7106
7107    // If this function is declared as being extern "C", then check to see if
7108    // the function returns a UDT (class, struct, or union type) that is not C
7109    // compatible, and if it does, warn the user.
7110    // But, issue any diagnostic on the first declaration only.
7111    if (NewFD->isExternC() && Previous.empty()) {
7112      QualType R = NewFD->getResultType();
7113      if (R->isIncompleteType() && !R->isVoidType())
7114        Diag(NewFD->getLocation(), diag::warn_return_value_udt_incomplete)
7115            << NewFD << R;
7116      else if (!R.isPODType(Context) && !R->isVoidType() &&
7117               !R->isObjCObjectPointerType())
7118        Diag(NewFD->getLocation(), diag::warn_return_value_udt) << NewFD << R;
7119    }
7120  }
7121  return Redeclaration;
7122}
7123
7124static SourceRange getResultSourceRange(const FunctionDecl *FD) {
7125  const TypeSourceInfo *TSI = FD->getTypeSourceInfo();
7126  if (!TSI)
7127    return SourceRange();
7128
7129  TypeLoc TL = TSI->getTypeLoc();
7130  FunctionTypeLoc FunctionTL = TL.getAs<FunctionTypeLoc>();
7131  if (!FunctionTL)
7132    return SourceRange();
7133
7134  TypeLoc ResultTL = FunctionTL.getResultLoc();
7135  if (ResultTL.getUnqualifiedLoc().getAs<BuiltinTypeLoc>())
7136    return ResultTL.getSourceRange();
7137
7138  return SourceRange();
7139}
7140
7141void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
7142  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
7143  //   static or constexpr is ill-formed.
7144  // C11 6.7.4p4:  In a hosted environment, no function specifier(s) shall
7145  //   appear in a declaration of main.
7146  // static main is not an error under C99, but we should warn about it.
7147  // We accept _Noreturn main as an extension.
7148  if (FD->getStorageClass() == SC_Static)
7149    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
7150         ? diag::err_static_main : diag::warn_static_main)
7151      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
7152  if (FD->isInlineSpecified())
7153    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
7154      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
7155  if (DS.isNoreturnSpecified()) {
7156    SourceLocation NoreturnLoc = DS.getNoreturnSpecLoc();
7157    SourceRange NoreturnRange(NoreturnLoc,
7158                              PP.getLocForEndOfToken(NoreturnLoc));
7159    Diag(NoreturnLoc, diag::ext_noreturn_main);
7160    Diag(NoreturnLoc, diag::note_main_remove_noreturn)
7161      << FixItHint::CreateRemoval(NoreturnRange);
7162  }
7163  if (FD->isConstexpr()) {
7164    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
7165      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
7166    FD->setConstexpr(false);
7167  }
7168
7169  QualType T = FD->getType();
7170  assert(T->isFunctionType() && "function decl is not of function type");
7171  const FunctionType* FT = T->castAs<FunctionType>();
7172
7173  // All the standards say that main() should should return 'int'.
7174  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
7175    // In C and C++, main magically returns 0 if you fall off the end;
7176    // set the flag which tells us that.
7177    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7178    FD->setHasImplicitReturnZero(true);
7179
7180  // In C with GNU extensions we allow main() to have non-integer return
7181  // type, but we should warn about the extension, and we disable the
7182  // implicit-return-zero rule.
7183  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
7184    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
7185
7186    SourceRange ResultRange = getResultSourceRange(FD);
7187    if (ResultRange.isValid())
7188      Diag(ResultRange.getBegin(), diag::note_main_change_return_type)
7189          << FixItHint::CreateReplacement(ResultRange, "int");
7190
7191  // Otherwise, this is just a flat-out error.
7192  } else {
7193    SourceRange ResultRange = getResultSourceRange(FD);
7194    if (ResultRange.isValid())
7195      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint)
7196          << FixItHint::CreateReplacement(ResultRange, "int");
7197    else
7198      Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
7199
7200    FD->setInvalidDecl(true);
7201  }
7202
7203  // Treat protoless main() as nullary.
7204  if (isa<FunctionNoProtoType>(FT)) return;
7205
7206  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
7207  unsigned nparams = FTP->getNumArgs();
7208  assert(FD->getNumParams() == nparams);
7209
7210  bool HasExtraParameters = (nparams > 3);
7211
7212  // Darwin passes an undocumented fourth argument of type char**.  If
7213  // other platforms start sprouting these, the logic below will start
7214  // getting shifty.
7215  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
7216    HasExtraParameters = false;
7217
7218  if (HasExtraParameters) {
7219    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
7220    FD->setInvalidDecl(true);
7221    nparams = 3;
7222  }
7223
7224  // FIXME: a lot of the following diagnostics would be improved
7225  // if we had some location information about types.
7226
7227  QualType CharPP =
7228    Context.getPointerType(Context.getPointerType(Context.CharTy));
7229  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
7230
7231  for (unsigned i = 0; i < nparams; ++i) {
7232    QualType AT = FTP->getArgType(i);
7233
7234    bool mismatch = true;
7235
7236    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
7237      mismatch = false;
7238    else if (Expected[i] == CharPP) {
7239      // As an extension, the following forms are okay:
7240      //   char const **
7241      //   char const * const *
7242      //   char * const *
7243
7244      QualifierCollector qs;
7245      const PointerType* PT;
7246      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
7247          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
7248          Context.hasSameType(QualType(qs.strip(PT->getPointeeType()), 0),
7249                              Context.CharTy)) {
7250        qs.removeConst();
7251        mismatch = !qs.empty();
7252      }
7253    }
7254
7255    if (mismatch) {
7256      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
7257      // TODO: suggest replacing given type with expected type
7258      FD->setInvalidDecl(true);
7259    }
7260  }
7261
7262  if (nparams == 1 && !FD->isInvalidDecl()) {
7263    Diag(FD->getLocation(), diag::warn_main_one_arg);
7264  }
7265
7266  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
7267    Diag(FD->getLocation(), diag::err_main_template_decl);
7268    FD->setInvalidDecl();
7269  }
7270}
7271
7272bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
7273  // FIXME: Need strict checking.  In C89, we need to check for
7274  // any assignment, increment, decrement, function-calls, or
7275  // commas outside of a sizeof.  In C99, it's the same list,
7276  // except that the aforementioned are allowed in unevaluated
7277  // expressions.  Everything else falls under the
7278  // "may accept other forms of constant expressions" exception.
7279  // (We never end up here for C++, so the constant expression
7280  // rules there don't matter.)
7281  if (Init->isConstantInitializer(Context, false))
7282    return false;
7283  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
7284    << Init->getSourceRange();
7285  return true;
7286}
7287
7288namespace {
7289  // Visits an initialization expression to see if OrigDecl is evaluated in
7290  // its own initialization and throws a warning if it does.
7291  class SelfReferenceChecker
7292      : public EvaluatedExprVisitor<SelfReferenceChecker> {
7293    Sema &S;
7294    Decl *OrigDecl;
7295    bool isRecordType;
7296    bool isPODType;
7297    bool isReferenceType;
7298
7299  public:
7300    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
7301
7302    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
7303                                                    S(S), OrigDecl(OrigDecl) {
7304      isPODType = false;
7305      isRecordType = false;
7306      isReferenceType = false;
7307      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
7308        isPODType = VD->getType().isPODType(S.Context);
7309        isRecordType = VD->getType()->isRecordType();
7310        isReferenceType = VD->getType()->isReferenceType();
7311      }
7312    }
7313
7314    // For most expressions, the cast is directly above the DeclRefExpr.
7315    // For conditional operators, the cast can be outside the conditional
7316    // operator if both expressions are DeclRefExpr's.
7317    void HandleValue(Expr *E) {
7318      if (isReferenceType)
7319        return;
7320      E = E->IgnoreParenImpCasts();
7321      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
7322        HandleDeclRefExpr(DRE);
7323        return;
7324      }
7325
7326      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
7327        HandleValue(CO->getTrueExpr());
7328        HandleValue(CO->getFalseExpr());
7329        return;
7330      }
7331
7332      if (isa<MemberExpr>(E)) {
7333        Expr *Base = E->IgnoreParenImpCasts();
7334        while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7335          // Check for static member variables and don't warn on them.
7336          if (!isa<FieldDecl>(ME->getMemberDecl()))
7337            return;
7338          Base = ME->getBase()->IgnoreParenImpCasts();
7339        }
7340        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base))
7341          HandleDeclRefExpr(DRE);
7342        return;
7343      }
7344    }
7345
7346    // Reference types are handled here since all uses of references are
7347    // bad, not just r-value uses.
7348    void VisitDeclRefExpr(DeclRefExpr *E) {
7349      if (isReferenceType)
7350        HandleDeclRefExpr(E);
7351    }
7352
7353    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
7354      if (E->getCastKind() == CK_LValueToRValue ||
7355          (isRecordType && E->getCastKind() == CK_NoOp))
7356        HandleValue(E->getSubExpr());
7357
7358      Inherited::VisitImplicitCastExpr(E);
7359    }
7360
7361    void VisitMemberExpr(MemberExpr *E) {
7362      // Don't warn on arrays since they can be treated as pointers.
7363      if (E->getType()->canDecayToPointerType()) return;
7364
7365      // Warn when a non-static method call is followed by non-static member
7366      // field accesses, which is followed by a DeclRefExpr.
7367      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(E->getMemberDecl());
7368      bool Warn = (MD && !MD->isStatic());
7369      Expr *Base = E->getBase()->IgnoreParenImpCasts();
7370      while (MemberExpr *ME = dyn_cast<MemberExpr>(Base)) {
7371        if (!isa<FieldDecl>(ME->getMemberDecl()))
7372          Warn = false;
7373        Base = ME->getBase()->IgnoreParenImpCasts();
7374      }
7375
7376      if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(Base)) {
7377        if (Warn)
7378          HandleDeclRefExpr(DRE);
7379        return;
7380      }
7381
7382      // The base of a MemberExpr is not a MemberExpr or a DeclRefExpr.
7383      // Visit that expression.
7384      Visit(Base);
7385    }
7386
7387    void VisitCXXOperatorCallExpr(CXXOperatorCallExpr *E) {
7388      if (E->getNumArgs() > 0)
7389        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E->getArg(0)))
7390          HandleDeclRefExpr(DRE);
7391
7392      Inherited::VisitCXXOperatorCallExpr(E);
7393    }
7394
7395    void VisitUnaryOperator(UnaryOperator *E) {
7396      // For POD record types, addresses of its own members are well-defined.
7397      if (E->getOpcode() == UO_AddrOf && isRecordType &&
7398          isa<MemberExpr>(E->getSubExpr()->IgnoreParens())) {
7399        if (!isPODType)
7400          HandleValue(E->getSubExpr());
7401        return;
7402      }
7403      Inherited::VisitUnaryOperator(E);
7404    }
7405
7406    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
7407
7408    void HandleDeclRefExpr(DeclRefExpr *DRE) {
7409      Decl* ReferenceDecl = DRE->getDecl();
7410      if (OrigDecl != ReferenceDecl) return;
7411      unsigned diag;
7412      if (isReferenceType) {
7413        diag = diag::warn_uninit_self_reference_in_reference_init;
7414      } else if (cast<VarDecl>(OrigDecl)->isStaticLocal()) {
7415        diag = diag::warn_static_self_reference_in_init;
7416      } else {
7417        diag = diag::warn_uninit_self_reference_in_init;
7418      }
7419
7420      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
7421                            S.PDiag(diag)
7422                              << DRE->getNameInfo().getName()
7423                              << OrigDecl->getLocation()
7424                              << DRE->getSourceRange());
7425    }
7426  };
7427
7428  /// CheckSelfReference - Warns if OrigDecl is used in expression E.
7429  static void CheckSelfReference(Sema &S, Decl* OrigDecl, Expr *E,
7430                                 bool DirectInit) {
7431    // Parameters arguments are occassionially constructed with itself,
7432    // for instance, in recursive functions.  Skip them.
7433    if (isa<ParmVarDecl>(OrigDecl))
7434      return;
7435
7436    E = E->IgnoreParens();
7437
7438    // Skip checking T a = a where T is not a record or reference type.
7439    // Doing so is a way to silence uninitialized warnings.
7440    if (!DirectInit && !cast<VarDecl>(OrigDecl)->getType()->isRecordType())
7441      if (ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(E))
7442        if (ICE->getCastKind() == CK_LValueToRValue)
7443          if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(ICE->getSubExpr()))
7444            if (DRE->getDecl() == OrigDecl)
7445              return;
7446
7447    SelfReferenceChecker(S, OrigDecl).Visit(E);
7448  }
7449}
7450
7451/// AddInitializerToDecl - Adds the initializer Init to the
7452/// declaration dcl. If DirectInit is true, this is C++ direct
7453/// initialization rather than copy initialization.
7454void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
7455                                bool DirectInit, bool TypeMayContainAuto) {
7456  // If there is no declaration, there was an error parsing it.  Just ignore
7457  // the initializer.
7458  if (RealDecl == 0 || RealDecl->isInvalidDecl())
7459    return;
7460
7461  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
7462    // With declarators parsed the way they are, the parser cannot
7463    // distinguish between a normal initializer and a pure-specifier.
7464    // Thus this grotesque test.
7465    IntegerLiteral *IL;
7466    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
7467        Context.getCanonicalType(IL->getType()) == Context.IntTy)
7468      CheckPureMethod(Method, Init->getSourceRange());
7469    else {
7470      Diag(Method->getLocation(), diag::err_member_function_initialization)
7471        << Method->getDeclName() << Init->getSourceRange();
7472      Method->setInvalidDecl();
7473    }
7474    return;
7475  }
7476
7477  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
7478  if (!VDecl) {
7479    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
7480    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
7481    RealDecl->setInvalidDecl();
7482    return;
7483  }
7484
7485  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
7486
7487  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
7488  if (TypeMayContainAuto && VDecl->getType()->isUndeducedType()) {
7489    Expr *DeduceInit = Init;
7490    // Initializer could be a C++ direct-initializer. Deduction only works if it
7491    // contains exactly one expression.
7492    if (CXXDirectInit) {
7493      if (CXXDirectInit->getNumExprs() == 0) {
7494        // It isn't possible to write this directly, but it is possible to
7495        // end up in this situation with "auto x(some_pack...);"
7496        Diag(CXXDirectInit->getLocStart(),
7497             diag::err_auto_var_init_no_expression)
7498          << VDecl->getDeclName() << VDecl->getType()
7499          << VDecl->getSourceRange();
7500        RealDecl->setInvalidDecl();
7501        return;
7502      } else if (CXXDirectInit->getNumExprs() > 1) {
7503        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
7504             diag::err_auto_var_init_multiple_expressions)
7505          << VDecl->getDeclName() << VDecl->getType()
7506          << VDecl->getSourceRange();
7507        RealDecl->setInvalidDecl();
7508        return;
7509      } else {
7510        DeduceInit = CXXDirectInit->getExpr(0);
7511      }
7512    }
7513
7514    // Expressions default to 'id' when we're in a debugger.
7515    bool DefaultedToAuto = false;
7516    if (getLangOpts().DebuggerCastResultToId &&
7517        Init->getType() == Context.UnknownAnyTy) {
7518      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7519      if (Result.isInvalid()) {
7520        VDecl->setInvalidDecl();
7521        return;
7522      }
7523      Init = Result.take();
7524      DefaultedToAuto = true;
7525    }
7526
7527    QualType DeducedType;
7528    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
7529            DAR_Failed)
7530      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
7531    if (DeducedType.isNull()) {
7532      RealDecl->setInvalidDecl();
7533      return;
7534    }
7535    VDecl->setType(DeducedType);
7536    assert(VDecl->isLinkageValid());
7537
7538    // In ARC, infer lifetime.
7539    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
7540      VDecl->setInvalidDecl();
7541
7542    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
7543    // 'id' instead of a specific object type prevents most of our usual checks.
7544    // We only want to warn outside of template instantiations, though:
7545    // inside a template, the 'id' could have come from a parameter.
7546    if (ActiveTemplateInstantiations.empty() && !DefaultedToAuto &&
7547        DeducedType->isObjCIdType()) {
7548      SourceLocation Loc =
7549          VDecl->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
7550      Diag(Loc, diag::warn_auto_var_is_id)
7551        << VDecl->getDeclName() << DeduceInit->getSourceRange();
7552    }
7553
7554    // If this is a redeclaration, check that the type we just deduced matches
7555    // the previously declared type.
7556    if (VarDecl *Old = VDecl->getPreviousDecl())
7557      MergeVarDeclTypes(VDecl, Old, /*OldWasHidden*/ false);
7558
7559    // Check the deduced type is valid for a variable declaration.
7560    CheckVariableDeclarationType(VDecl);
7561    if (VDecl->isInvalidDecl())
7562      return;
7563  }
7564
7565  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
7566    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
7567    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
7568    VDecl->setInvalidDecl();
7569    return;
7570  }
7571
7572  if (!VDecl->getType()->isDependentType()) {
7573    // A definition must end up with a complete type, which means it must be
7574    // complete with the restriction that an array type might be completed by
7575    // the initializer; note that later code assumes this restriction.
7576    QualType BaseDeclType = VDecl->getType();
7577    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
7578      BaseDeclType = Array->getElementType();
7579    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
7580                            diag::err_typecheck_decl_incomplete_type)) {
7581      RealDecl->setInvalidDecl();
7582      return;
7583    }
7584
7585    // The variable can not have an abstract class type.
7586    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
7587                               diag::err_abstract_type_in_decl,
7588                               AbstractVariableType))
7589      VDecl->setInvalidDecl();
7590  }
7591
7592  const VarDecl *Def;
7593  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
7594    Diag(VDecl->getLocation(), diag::err_redefinition)
7595      << VDecl->getDeclName();
7596    Diag(Def->getLocation(), diag::note_previous_definition);
7597    VDecl->setInvalidDecl();
7598    return;
7599  }
7600
7601  const VarDecl* PrevInit = 0;
7602  if (getLangOpts().CPlusPlus) {
7603    // C++ [class.static.data]p4
7604    //   If a static data member is of const integral or const
7605    //   enumeration type, its declaration in the class definition can
7606    //   specify a constant-initializer which shall be an integral
7607    //   constant expression (5.19). In that case, the member can appear
7608    //   in integral constant expressions. The member shall still be
7609    //   defined in a namespace scope if it is used in the program and the
7610    //   namespace scope definition shall not contain an initializer.
7611    //
7612    // We already performed a redefinition check above, but for static
7613    // data members we also need to check whether there was an in-class
7614    // declaration with an initializer.
7615    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
7616      Diag(VDecl->getLocation(), diag::err_redefinition)
7617        << VDecl->getDeclName();
7618      Diag(PrevInit->getLocation(), diag::note_previous_definition);
7619      return;
7620    }
7621
7622    if (VDecl->hasLocalStorage())
7623      getCurFunction()->setHasBranchProtectedScope();
7624
7625    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
7626      VDecl->setInvalidDecl();
7627      return;
7628    }
7629  }
7630
7631  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
7632  // a kernel function cannot be initialized."
7633  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
7634    Diag(VDecl->getLocation(), diag::err_local_cant_init);
7635    VDecl->setInvalidDecl();
7636    return;
7637  }
7638
7639  // Get the decls type and save a reference for later, since
7640  // CheckInitializerTypes may change it.
7641  QualType DclT = VDecl->getType(), SavT = DclT;
7642
7643  // Expressions default to 'id' when we're in a debugger
7644  // and we are assigning it to a variable of Objective-C pointer type.
7645  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCObjectPointerType() &&
7646      Init->getType() == Context.UnknownAnyTy) {
7647    ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
7648    if (Result.isInvalid()) {
7649      VDecl->setInvalidDecl();
7650      return;
7651    }
7652    Init = Result.take();
7653  }
7654
7655  // Perform the initialization.
7656  if (!VDecl->isInvalidDecl()) {
7657    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
7658    InitializationKind Kind
7659      = DirectInit ?
7660          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
7661                                                           Init->getLocStart(),
7662                                                           Init->getLocEnd())
7663                        : InitializationKind::CreateDirectList(
7664                                                          VDecl->getLocation())
7665                   : InitializationKind::CreateCopy(VDecl->getLocation(),
7666                                                    Init->getLocStart());
7667
7668    MultiExprArg Args = Init;
7669    if (CXXDirectInit)
7670      Args = MultiExprArg(CXXDirectInit->getExprs(),
7671                          CXXDirectInit->getNumExprs());
7672
7673    InitializationSequence InitSeq(*this, Entity, Kind, Args);
7674    ExprResult Result = InitSeq.Perform(*this, Entity, Kind, Args, &DclT);
7675    if (Result.isInvalid()) {
7676      VDecl->setInvalidDecl();
7677      return;
7678    }
7679
7680    Init = Result.takeAs<Expr>();
7681  }
7682
7683  // Check for self-references within variable initializers.
7684  // Variables declared within a function/method body (except for references)
7685  // are handled by a dataflow analysis.
7686  if (!VDecl->hasLocalStorage() || VDecl->getType()->isRecordType() ||
7687      VDecl->getType()->isReferenceType()) {
7688    CheckSelfReference(*this, RealDecl, Init, DirectInit);
7689  }
7690
7691  // If the type changed, it means we had an incomplete type that was
7692  // completed by the initializer. For example:
7693  //   int ary[] = { 1, 3, 5 };
7694  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
7695  if (!VDecl->isInvalidDecl() && (DclT != SavT))
7696    VDecl->setType(DclT);
7697
7698  if (!VDecl->isInvalidDecl()) {
7699    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
7700
7701    if (VDecl->hasAttr<BlocksAttr>())
7702      checkRetainCycles(VDecl, Init);
7703
7704    // It is safe to assign a weak reference into a strong variable.
7705    // Although this code can still have problems:
7706    //   id x = self.weakProp;
7707    //   id y = self.weakProp;
7708    // we do not warn to warn spuriously when 'x' and 'y' are on separate
7709    // paths through the function. This should be revisited if
7710    // -Wrepeated-use-of-weak is made flow-sensitive.
7711    if (VDecl->getType().getObjCLifetime() == Qualifiers::OCL_Strong) {
7712      DiagnosticsEngine::Level Level =
7713        Diags.getDiagnosticLevel(diag::warn_arc_repeated_use_of_weak,
7714                                 Init->getLocStart());
7715      if (Level != DiagnosticsEngine::Ignored)
7716        getCurFunction()->markSafeWeakUse(Init);
7717    }
7718  }
7719
7720  // The initialization is usually a full-expression.
7721  //
7722  // FIXME: If this is a braced initialization of an aggregate, it is not
7723  // an expression, and each individual field initializer is a separate
7724  // full-expression. For instance, in:
7725  //
7726  //   struct Temp { ~Temp(); };
7727  //   struct S { S(Temp); };
7728  //   struct T { S a, b; } t = { Temp(), Temp() }
7729  //
7730  // we should destroy the first Temp before constructing the second.
7731  ExprResult Result = ActOnFinishFullExpr(Init, VDecl->getLocation(),
7732                                          false,
7733                                          VDecl->isConstexpr());
7734  if (Result.isInvalid()) {
7735    VDecl->setInvalidDecl();
7736    return;
7737  }
7738  Init = Result.take();
7739
7740  // Attach the initializer to the decl.
7741  VDecl->setInit(Init);
7742
7743  if (VDecl->isLocalVarDecl()) {
7744    // C99 6.7.8p4: All the expressions in an initializer for an object that has
7745    // static storage duration shall be constant expressions or string literals.
7746    // C++ does not have this restriction.
7747    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
7748        VDecl->getStorageClass() == SC_Static)
7749      CheckForConstantInitializer(Init, DclT);
7750  } else if (VDecl->isStaticDataMember() &&
7751             VDecl->getLexicalDeclContext()->isRecord()) {
7752    // This is an in-class initialization for a static data member, e.g.,
7753    //
7754    // struct S {
7755    //   static const int value = 17;
7756    // };
7757
7758    // C++ [class.mem]p4:
7759    //   A member-declarator can contain a constant-initializer only
7760    //   if it declares a static member (9.4) of const integral or
7761    //   const enumeration type, see 9.4.2.
7762    //
7763    // C++11 [class.static.data]p3:
7764    //   If a non-volatile const static data member is of integral or
7765    //   enumeration type, its declaration in the class definition can
7766    //   specify a brace-or-equal-initializer in which every initalizer-clause
7767    //   that is an assignment-expression is a constant expression. A static
7768    //   data member of literal type can be declared in the class definition
7769    //   with the constexpr specifier; if so, its declaration shall specify a
7770    //   brace-or-equal-initializer in which every initializer-clause that is
7771    //   an assignment-expression is a constant expression.
7772
7773    // Do nothing on dependent types.
7774    if (DclT->isDependentType()) {
7775
7776    // Allow any 'static constexpr' members, whether or not they are of literal
7777    // type. We separately check that every constexpr variable is of literal
7778    // type.
7779    } else if (VDecl->isConstexpr()) {
7780
7781    // Require constness.
7782    } else if (!DclT.isConstQualified()) {
7783      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
7784        << Init->getSourceRange();
7785      VDecl->setInvalidDecl();
7786
7787    // We allow integer constant expressions in all cases.
7788    } else if (DclT->isIntegralOrEnumerationType()) {
7789      // Check whether the expression is a constant expression.
7790      SourceLocation Loc;
7791      if (getLangOpts().CPlusPlus11 && DclT.isVolatileQualified())
7792        // In C++11, a non-constexpr const static data member with an
7793        // in-class initializer cannot be volatile.
7794        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
7795      else if (Init->isValueDependent())
7796        ; // Nothing to check.
7797      else if (Init->isIntegerConstantExpr(Context, &Loc))
7798        ; // Ok, it's an ICE!
7799      else if (Init->isEvaluatable(Context)) {
7800        // If we can constant fold the initializer through heroics, accept it,
7801        // but report this as a use of an extension for -pedantic.
7802        Diag(Loc, diag::ext_in_class_initializer_non_constant)
7803          << Init->getSourceRange();
7804      } else {
7805        // Otherwise, this is some crazy unknown case.  Report the issue at the
7806        // location provided by the isIntegerConstantExpr failed check.
7807        Diag(Loc, diag::err_in_class_initializer_non_constant)
7808          << Init->getSourceRange();
7809        VDecl->setInvalidDecl();
7810      }
7811
7812    // We allow foldable floating-point constants as an extension.
7813    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
7814      // In C++98, this is a GNU extension. In C++11, it is not, but we support
7815      // it anyway and provide a fixit to add the 'constexpr'.
7816      if (getLangOpts().CPlusPlus11) {
7817        Diag(VDecl->getLocation(),
7818             diag::ext_in_class_initializer_float_type_cxx11)
7819            << DclT << Init->getSourceRange();
7820        Diag(VDecl->getLocStart(),
7821             diag::note_in_class_initializer_float_type_cxx11)
7822            << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7823      } else {
7824        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
7825          << DclT << Init->getSourceRange();
7826
7827        if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
7828          Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
7829            << Init->getSourceRange();
7830          VDecl->setInvalidDecl();
7831        }
7832      }
7833
7834    // Suggest adding 'constexpr' in C++11 for literal types.
7835    } else if (getLangOpts().CPlusPlus11 && DclT->isLiteralType(Context)) {
7836      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
7837        << DclT << Init->getSourceRange()
7838        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
7839      VDecl->setConstexpr(true);
7840
7841    } else {
7842      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
7843        << DclT << Init->getSourceRange();
7844      VDecl->setInvalidDecl();
7845    }
7846  } else if (VDecl->isFileVarDecl()) {
7847    if (VDecl->getStorageClass() == SC_Extern &&
7848        (!getLangOpts().CPlusPlus ||
7849         !(Context.getBaseElementType(VDecl->getType()).isConstQualified() ||
7850           VDecl->isExternC())))
7851      Diag(VDecl->getLocation(), diag::warn_extern_init);
7852
7853    // C99 6.7.8p4. All file scoped initializers need to be constant.
7854    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
7855      CheckForConstantInitializer(Init, DclT);
7856    else if (VDecl->getTLSKind() == VarDecl::TLS_Static &&
7857             !VDecl->isInvalidDecl() && !DclT->isDependentType() &&
7858             !Init->isValueDependent() && !VDecl->isConstexpr() &&
7859             !Init->isConstantInitializer(
7860                 Context, VDecl->getType()->isReferenceType())) {
7861      // GNU C++98 edits for __thread, [basic.start.init]p4:
7862      //   An object of thread storage duration shall not require dynamic
7863      //   initialization.
7864      // FIXME: Need strict checking here.
7865      Diag(VDecl->getLocation(), diag::err_thread_dynamic_init);
7866      if (getLangOpts().CPlusPlus11)
7867        Diag(VDecl->getLocation(), diag::note_use_thread_local);
7868    }
7869  }
7870
7871  // We will represent direct-initialization similarly to copy-initialization:
7872  //    int x(1);  -as-> int x = 1;
7873  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
7874  //
7875  // Clients that want to distinguish between the two forms, can check for
7876  // direct initializer using VarDecl::getInitStyle().
7877  // A major benefit is that clients that don't particularly care about which
7878  // exactly form was it (like the CodeGen) can handle both cases without
7879  // special case code.
7880
7881  // C++ 8.5p11:
7882  // The form of initialization (using parentheses or '=') is generally
7883  // insignificant, but does matter when the entity being initialized has a
7884  // class type.
7885  if (CXXDirectInit) {
7886    assert(DirectInit && "Call-style initializer must be direct init.");
7887    VDecl->setInitStyle(VarDecl::CallInit);
7888  } else if (DirectInit) {
7889    // This must be list-initialization. No other way is direct-initialization.
7890    VDecl->setInitStyle(VarDecl::ListInit);
7891  }
7892
7893  CheckCompleteVariableDeclaration(VDecl);
7894}
7895
7896/// ActOnInitializerError - Given that there was an error parsing an
7897/// initializer for the given declaration, try to return to some form
7898/// of sanity.
7899void Sema::ActOnInitializerError(Decl *D) {
7900  // Our main concern here is re-establishing invariants like "a
7901  // variable's type is either dependent or complete".
7902  if (!D || D->isInvalidDecl()) return;
7903
7904  VarDecl *VD = dyn_cast<VarDecl>(D);
7905  if (!VD) return;
7906
7907  // Auto types are meaningless if we can't make sense of the initializer.
7908  if (ParsingInitForAutoVars.count(D)) {
7909    D->setInvalidDecl();
7910    return;
7911  }
7912
7913  QualType Ty = VD->getType();
7914  if (Ty->isDependentType()) return;
7915
7916  // Require a complete type.
7917  if (RequireCompleteType(VD->getLocation(),
7918                          Context.getBaseElementType(Ty),
7919                          diag::err_typecheck_decl_incomplete_type)) {
7920    VD->setInvalidDecl();
7921    return;
7922  }
7923
7924  // Require an abstract type.
7925  if (RequireNonAbstractType(VD->getLocation(), Ty,
7926                             diag::err_abstract_type_in_decl,
7927                             AbstractVariableType)) {
7928    VD->setInvalidDecl();
7929    return;
7930  }
7931
7932  // Don't bother complaining about constructors or destructors,
7933  // though.
7934}
7935
7936void Sema::ActOnUninitializedDecl(Decl *RealDecl,
7937                                  bool TypeMayContainAuto) {
7938  // If there is no declaration, there was an error parsing it. Just ignore it.
7939  if (RealDecl == 0)
7940    return;
7941
7942  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
7943    QualType Type = Var->getType();
7944
7945    // C++11 [dcl.spec.auto]p3
7946    if (TypeMayContainAuto && Type->getContainedAutoType()) {
7947      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
7948        << Var->getDeclName() << Type;
7949      Var->setInvalidDecl();
7950      return;
7951    }
7952
7953    // C++11 [class.static.data]p3: A static data member can be declared with
7954    // the constexpr specifier; if so, its declaration shall specify
7955    // a brace-or-equal-initializer.
7956    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
7957    // the definition of a variable [...] or the declaration of a static data
7958    // member.
7959    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
7960      if (Var->isStaticDataMember())
7961        Diag(Var->getLocation(),
7962             diag::err_constexpr_static_mem_var_requires_init)
7963          << Var->getDeclName();
7964      else
7965        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
7966      Var->setInvalidDecl();
7967      return;
7968    }
7969
7970    switch (Var->isThisDeclarationADefinition()) {
7971    case VarDecl::Definition:
7972      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
7973        break;
7974
7975      // We have an out-of-line definition of a static data member
7976      // that has an in-class initializer, so we type-check this like
7977      // a declaration.
7978      //
7979      // Fall through
7980
7981    case VarDecl::DeclarationOnly:
7982      // It's only a declaration.
7983
7984      // Block scope. C99 6.7p7: If an identifier for an object is
7985      // declared with no linkage (C99 6.2.2p6), the type for the
7986      // object shall be complete.
7987      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
7988          !Var->hasLinkage() && !Var->isInvalidDecl() &&
7989          RequireCompleteType(Var->getLocation(), Type,
7990                              diag::err_typecheck_decl_incomplete_type))
7991        Var->setInvalidDecl();
7992
7993      // Make sure that the type is not abstract.
7994      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
7995          RequireNonAbstractType(Var->getLocation(), Type,
7996                                 diag::err_abstract_type_in_decl,
7997                                 AbstractVariableType))
7998        Var->setInvalidDecl();
7999      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
8000          Var->getStorageClass() == SC_PrivateExtern) {
8001        Diag(Var->getLocation(), diag::warn_private_extern);
8002        Diag(Var->getLocation(), diag::note_private_extern);
8003      }
8004
8005      return;
8006
8007    case VarDecl::TentativeDefinition:
8008      // File scope. C99 6.9.2p2: A declaration of an identifier for an
8009      // object that has file scope without an initializer, and without a
8010      // storage-class specifier or with the storage-class specifier "static",
8011      // constitutes a tentative definition. Note: A tentative definition with
8012      // external linkage is valid (C99 6.2.2p5).
8013      if (!Var->isInvalidDecl()) {
8014        if (const IncompleteArrayType *ArrayT
8015                                    = Context.getAsIncompleteArrayType(Type)) {
8016          if (RequireCompleteType(Var->getLocation(),
8017                                  ArrayT->getElementType(),
8018                                  diag::err_illegal_decl_array_incomplete_type))
8019            Var->setInvalidDecl();
8020        } else if (Var->getStorageClass() == SC_Static) {
8021          // C99 6.9.2p3: If the declaration of an identifier for an object is
8022          // a tentative definition and has internal linkage (C99 6.2.2p3), the
8023          // declared type shall not be an incomplete type.
8024          // NOTE: code such as the following
8025          //     static struct s;
8026          //     struct s { int a; };
8027          // is accepted by gcc. Hence here we issue a warning instead of
8028          // an error and we do not invalidate the static declaration.
8029          // NOTE: to avoid multiple warnings, only check the first declaration.
8030          if (Var->getPreviousDecl() == 0)
8031            RequireCompleteType(Var->getLocation(), Type,
8032                                diag::ext_typecheck_decl_incomplete_type);
8033        }
8034      }
8035
8036      // Record the tentative definition; we're done.
8037      if (!Var->isInvalidDecl())
8038        TentativeDefinitions.push_back(Var);
8039      return;
8040    }
8041
8042    // Provide a specific diagnostic for uninitialized variable
8043    // definitions with incomplete array type.
8044    if (Type->isIncompleteArrayType()) {
8045      Diag(Var->getLocation(),
8046           diag::err_typecheck_incomplete_array_needs_initializer);
8047      Var->setInvalidDecl();
8048      return;
8049    }
8050
8051    // Provide a specific diagnostic for uninitialized variable
8052    // definitions with reference type.
8053    if (Type->isReferenceType()) {
8054      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
8055        << Var->getDeclName()
8056        << SourceRange(Var->getLocation(), Var->getLocation());
8057      Var->setInvalidDecl();
8058      return;
8059    }
8060
8061    // Do not attempt to type-check the default initializer for a
8062    // variable with dependent type.
8063    if (Type->isDependentType())
8064      return;
8065
8066    if (Var->isInvalidDecl())
8067      return;
8068
8069    if (RequireCompleteType(Var->getLocation(),
8070                            Context.getBaseElementType(Type),
8071                            diag::err_typecheck_decl_incomplete_type)) {
8072      Var->setInvalidDecl();
8073      return;
8074    }
8075
8076    // The variable can not have an abstract class type.
8077    if (RequireNonAbstractType(Var->getLocation(), Type,
8078                               diag::err_abstract_type_in_decl,
8079                               AbstractVariableType)) {
8080      Var->setInvalidDecl();
8081      return;
8082    }
8083
8084    // Check for jumps past the implicit initializer.  C++0x
8085    // clarifies that this applies to a "variable with automatic
8086    // storage duration", not a "local variable".
8087    // C++11 [stmt.dcl]p3
8088    //   A program that jumps from a point where a variable with automatic
8089    //   storage duration is not in scope to a point where it is in scope is
8090    //   ill-formed unless the variable has scalar type, class type with a
8091    //   trivial default constructor and a trivial destructor, a cv-qualified
8092    //   version of one of these types, or an array of one of the preceding
8093    //   types and is declared without an initializer.
8094    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
8095      if (const RecordType *Record
8096            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
8097        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
8098        // Mark the function for further checking even if the looser rules of
8099        // C++11 do not require such checks, so that we can diagnose
8100        // incompatibilities with C++98.
8101        if (!CXXRecord->isPOD())
8102          getCurFunction()->setHasBranchProtectedScope();
8103      }
8104    }
8105
8106    // C++03 [dcl.init]p9:
8107    //   If no initializer is specified for an object, and the
8108    //   object is of (possibly cv-qualified) non-POD class type (or
8109    //   array thereof), the object shall be default-initialized; if
8110    //   the object is of const-qualified type, the underlying class
8111    //   type shall have a user-declared default
8112    //   constructor. Otherwise, if no initializer is specified for
8113    //   a non- static object, the object and its subobjects, if
8114    //   any, have an indeterminate initial value); if the object
8115    //   or any of its subobjects are of const-qualified type, the
8116    //   program is ill-formed.
8117    // C++0x [dcl.init]p11:
8118    //   If no initializer is specified for an object, the object is
8119    //   default-initialized; [...].
8120    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
8121    InitializationKind Kind
8122      = InitializationKind::CreateDefault(Var->getLocation());
8123
8124    InitializationSequence InitSeq(*this, Entity, Kind, None);
8125    ExprResult Init = InitSeq.Perform(*this, Entity, Kind, None);
8126    if (Init.isInvalid())
8127      Var->setInvalidDecl();
8128    else if (Init.get()) {
8129      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
8130      // This is important for template substitution.
8131      Var->setInitStyle(VarDecl::CallInit);
8132    }
8133
8134    CheckCompleteVariableDeclaration(Var);
8135  }
8136}
8137
8138void Sema::ActOnCXXForRangeDecl(Decl *D) {
8139  VarDecl *VD = dyn_cast<VarDecl>(D);
8140  if (!VD) {
8141    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
8142    D->setInvalidDecl();
8143    return;
8144  }
8145
8146  VD->setCXXForRangeDecl(true);
8147
8148  // for-range-declaration cannot be given a storage class specifier.
8149  int Error = -1;
8150  switch (VD->getStorageClass()) {
8151  case SC_None:
8152    break;
8153  case SC_Extern:
8154    Error = 0;
8155    break;
8156  case SC_Static:
8157    Error = 1;
8158    break;
8159  case SC_PrivateExtern:
8160    Error = 2;
8161    break;
8162  case SC_Auto:
8163    Error = 3;
8164    break;
8165  case SC_Register:
8166    Error = 4;
8167    break;
8168  case SC_OpenCLWorkGroupLocal:
8169    llvm_unreachable("Unexpected storage class");
8170  }
8171  if (VD->isConstexpr())
8172    Error = 5;
8173  if (Error != -1) {
8174    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
8175      << VD->getDeclName() << Error;
8176    D->setInvalidDecl();
8177  }
8178}
8179
8180void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
8181  if (var->isInvalidDecl()) return;
8182
8183  // In ARC, don't allow jumps past the implicit initialization of a
8184  // local retaining variable.
8185  if (getLangOpts().ObjCAutoRefCount &&
8186      var->hasLocalStorage()) {
8187    switch (var->getType().getObjCLifetime()) {
8188    case Qualifiers::OCL_None:
8189    case Qualifiers::OCL_ExplicitNone:
8190    case Qualifiers::OCL_Autoreleasing:
8191      break;
8192
8193    case Qualifiers::OCL_Weak:
8194    case Qualifiers::OCL_Strong:
8195      getCurFunction()->setHasBranchProtectedScope();
8196      break;
8197    }
8198  }
8199
8200  if (var->isThisDeclarationADefinition() &&
8201      var->isExternallyVisible() &&
8202      getDiagnostics().getDiagnosticLevel(
8203                       diag::warn_missing_variable_declarations,
8204                       var->getLocation())) {
8205    // Find a previous declaration that's not a definition.
8206    VarDecl *prev = var->getPreviousDecl();
8207    while (prev && prev->isThisDeclarationADefinition())
8208      prev = prev->getPreviousDecl();
8209
8210    if (!prev)
8211      Diag(var->getLocation(), diag::warn_missing_variable_declarations) << var;
8212  }
8213
8214  if (var->getTLSKind() == VarDecl::TLS_Static &&
8215      var->getType().isDestructedType()) {
8216    // GNU C++98 edits for __thread, [basic.start.term]p3:
8217    //   The type of an object with thread storage duration shall not
8218    //   have a non-trivial destructor.
8219    Diag(var->getLocation(), diag::err_thread_nontrivial_dtor);
8220    if (getLangOpts().CPlusPlus11)
8221      Diag(var->getLocation(), diag::note_use_thread_local);
8222  }
8223
8224  // All the following checks are C++ only.
8225  if (!getLangOpts().CPlusPlus) return;
8226
8227  QualType type = var->getType();
8228  if (type->isDependentType()) return;
8229
8230  // __block variables might require us to capture a copy-initializer.
8231  if (var->hasAttr<BlocksAttr>()) {
8232    // It's currently invalid to ever have a __block variable with an
8233    // array type; should we diagnose that here?
8234
8235    // Regardless, we don't want to ignore array nesting when
8236    // constructing this copy.
8237    if (type->isStructureOrClassType()) {
8238      EnterExpressionEvaluationContext scope(*this, PotentiallyEvaluated);
8239      SourceLocation poi = var->getLocation();
8240      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
8241      ExprResult result
8242        = PerformMoveOrCopyInitialization(
8243            InitializedEntity::InitializeBlock(poi, type, false),
8244            var, var->getType(), varRef, /*AllowNRVO=*/true);
8245      if (!result.isInvalid()) {
8246        result = MaybeCreateExprWithCleanups(result);
8247        Expr *init = result.takeAs<Expr>();
8248        Context.setBlockVarCopyInits(var, init);
8249      }
8250    }
8251  }
8252
8253  Expr *Init = var->getInit();
8254  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
8255  QualType baseType = Context.getBaseElementType(type);
8256
8257  if (!var->getDeclContext()->isDependentContext() &&
8258      Init && !Init->isValueDependent()) {
8259    if (IsGlobal && !var->isConstexpr() &&
8260        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
8261                                            var->getLocation())
8262          != DiagnosticsEngine::Ignored &&
8263        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
8264      Diag(var->getLocation(), diag::warn_global_constructor)
8265        << Init->getSourceRange();
8266
8267    if (var->isConstexpr()) {
8268      SmallVector<PartialDiagnosticAt, 8> Notes;
8269      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
8270        SourceLocation DiagLoc = var->getLocation();
8271        // If the note doesn't add any useful information other than a source
8272        // location, fold it into the primary diagnostic.
8273        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
8274              diag::note_invalid_subexpr_in_const_expr) {
8275          DiagLoc = Notes[0].first;
8276          Notes.clear();
8277        }
8278        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
8279          << var << Init->getSourceRange();
8280        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
8281          Diag(Notes[I].first, Notes[I].second);
8282      }
8283    } else if (var->isUsableInConstantExpressions(Context)) {
8284      // Check whether the initializer of a const variable of integral or
8285      // enumeration type is an ICE now, since we can't tell whether it was
8286      // initialized by a constant expression if we check later.
8287      var->checkInitIsICE();
8288    }
8289  }
8290
8291  // Require the destructor.
8292  if (const RecordType *recordType = baseType->getAs<RecordType>())
8293    FinalizeVarWithDestructor(var, recordType);
8294}
8295
8296/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
8297/// any semantic actions necessary after any initializer has been attached.
8298void
8299Sema::FinalizeDeclaration(Decl *ThisDecl) {
8300  // Note that we are no longer parsing the initializer for this declaration.
8301  ParsingInitForAutoVars.erase(ThisDecl);
8302
8303  VarDecl *VD = dyn_cast_or_null<VarDecl>(ThisDecl);
8304  if (!VD)
8305    return;
8306
8307  const DeclContext *DC = VD->getDeclContext();
8308  // If there's a #pragma GCC visibility in scope, and this isn't a class
8309  // member, set the visibility of this variable.
8310  if (!DC->isRecord() && VD->isExternallyVisible())
8311    AddPushedVisibilityAttribute(VD);
8312
8313  if (VD->isFileVarDecl())
8314    MarkUnusedFileScopedDecl(VD);
8315
8316  // Now we have parsed the initializer and can update the table of magic
8317  // tag values.
8318  if (!VD->hasAttr<TypeTagForDatatypeAttr>() ||
8319      !VD->getType()->isIntegralOrEnumerationType())
8320    return;
8321
8322  for (specific_attr_iterator<TypeTagForDatatypeAttr>
8323         I = ThisDecl->specific_attr_begin<TypeTagForDatatypeAttr>(),
8324         E = ThisDecl->specific_attr_end<TypeTagForDatatypeAttr>();
8325       I != E; ++I) {
8326    const Expr *MagicValueExpr = VD->getInit();
8327    if (!MagicValueExpr) {
8328      continue;
8329    }
8330    llvm::APSInt MagicValueInt;
8331    if (!MagicValueExpr->isIntegerConstantExpr(MagicValueInt, Context)) {
8332      Diag(I->getRange().getBegin(),
8333           diag::err_type_tag_for_datatype_not_ice)
8334        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8335      continue;
8336    }
8337    if (MagicValueInt.getActiveBits() > 64) {
8338      Diag(I->getRange().getBegin(),
8339           diag::err_type_tag_for_datatype_too_large)
8340        << LangOpts.CPlusPlus << MagicValueExpr->getSourceRange();
8341      continue;
8342    }
8343    uint64_t MagicValue = MagicValueInt.getZExtValue();
8344    RegisterTypeTagForDatatype(I->getArgumentKind(),
8345                               MagicValue,
8346                               I->getMatchingCType(),
8347                               I->getLayoutCompatible(),
8348                               I->getMustBeNull());
8349  }
8350}
8351
8352Sema::DeclGroupPtrTy
8353Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
8354                              Decl **Group, unsigned NumDecls) {
8355  SmallVector<Decl*, 8> Decls;
8356
8357  if (DS.isTypeSpecOwned())
8358    Decls.push_back(DS.getRepAsDecl());
8359
8360  for (unsigned i = 0; i != NumDecls; ++i)
8361    if (Decl *D = Group[i])
8362      Decls.push_back(D);
8363
8364  if (DeclSpec::isDeclRep(DS.getTypeSpecType()))
8365    if (const TagDecl *Tag = dyn_cast_or_null<TagDecl>(DS.getRepAsDecl()))
8366      getASTContext().addUnnamedTag(Tag);
8367
8368  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
8369                              DS.containsPlaceholderType());
8370}
8371
8372/// BuildDeclaratorGroup - convert a list of declarations into a declaration
8373/// group, performing any necessary semantic checking.
8374Sema::DeclGroupPtrTy
8375Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
8376                           bool TypeMayContainAuto) {
8377  // C++0x [dcl.spec.auto]p7:
8378  //   If the type deduced for the template parameter U is not the same in each
8379  //   deduction, the program is ill-formed.
8380  // FIXME: When initializer-list support is added, a distinction is needed
8381  // between the deduced type U and the deduced type which 'auto' stands for.
8382  //   auto a = 0, b = { 1, 2, 3 };
8383  // is legal because the deduced type U is 'int' in both cases.
8384  if (TypeMayContainAuto && NumDecls > 1) {
8385    QualType Deduced;
8386    CanQualType DeducedCanon;
8387    VarDecl *DeducedDecl = 0;
8388    for (unsigned i = 0; i != NumDecls; ++i) {
8389      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
8390        AutoType *AT = D->getType()->getContainedAutoType();
8391        // Don't reissue diagnostics when instantiating a template.
8392        if (AT && D->isInvalidDecl())
8393          break;
8394        QualType U = AT ? AT->getDeducedType() : QualType();
8395        if (!U.isNull()) {
8396          CanQualType UCanon = Context.getCanonicalType(U);
8397          if (Deduced.isNull()) {
8398            Deduced = U;
8399            DeducedCanon = UCanon;
8400            DeducedDecl = D;
8401          } else if (DeducedCanon != UCanon) {
8402            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
8403                 diag::err_auto_different_deductions)
8404              << (AT->isDecltypeAuto() ? 1 : 0)
8405              << Deduced << DeducedDecl->getDeclName()
8406              << U << D->getDeclName()
8407              << DeducedDecl->getInit()->getSourceRange()
8408              << D->getInit()->getSourceRange();
8409            D->setInvalidDecl();
8410            break;
8411          }
8412        }
8413      }
8414    }
8415  }
8416
8417  ActOnDocumentableDecls(Group, NumDecls);
8418
8419  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
8420}
8421
8422void Sema::ActOnDocumentableDecl(Decl *D) {
8423  ActOnDocumentableDecls(&D, 1);
8424}
8425
8426void Sema::ActOnDocumentableDecls(Decl **Group, unsigned NumDecls) {
8427  // Don't parse the comment if Doxygen diagnostics are ignored.
8428  if (NumDecls == 0 || !Group[0])
8429   return;
8430
8431  if (Diags.getDiagnosticLevel(diag::warn_doc_param_not_found,
8432                               Group[0]->getLocation())
8433        == DiagnosticsEngine::Ignored)
8434    return;
8435
8436  if (NumDecls >= 2) {
8437    // This is a decl group.  Normally it will contain only declarations
8438    // procuded from declarator list.  But in case we have any definitions or
8439    // additional declaration references:
8440    //   'typedef struct S {} S;'
8441    //   'typedef struct S *S;'
8442    //   'struct S *pS;'
8443    // FinalizeDeclaratorGroup adds these as separate declarations.
8444    Decl *MaybeTagDecl = Group[0];
8445    if (MaybeTagDecl && isa<TagDecl>(MaybeTagDecl)) {
8446      Group++;
8447      NumDecls--;
8448    }
8449  }
8450
8451  // See if there are any new comments that are not attached to a decl.
8452  ArrayRef<RawComment *> Comments = Context.getRawCommentList().getComments();
8453  if (!Comments.empty() &&
8454      !Comments.back()->isAttached()) {
8455    // There is at least one comment that not attached to a decl.
8456    // Maybe it should be attached to one of these decls?
8457    //
8458    // Note that this way we pick up not only comments that precede the
8459    // declaration, but also comments that *follow* the declaration -- thanks to
8460    // the lookahead in the lexer: we've consumed the semicolon and looked
8461    // ahead through comments.
8462    for (unsigned i = 0; i != NumDecls; ++i)
8463      Context.getCommentForDecl(Group[i], &PP);
8464  }
8465}
8466
8467/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
8468/// to introduce parameters into function prototype scope.
8469Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
8470  const DeclSpec &DS = D.getDeclSpec();
8471
8472  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
8473  // C++03 [dcl.stc]p2 also permits 'auto'.
8474  VarDecl::StorageClass StorageClass = SC_None;
8475  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
8476    StorageClass = SC_Register;
8477  } else if (getLangOpts().CPlusPlus &&
8478             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
8479    StorageClass = SC_Auto;
8480  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
8481    Diag(DS.getStorageClassSpecLoc(),
8482         diag::err_invalid_storage_class_in_func_decl);
8483    D.getMutableDeclSpec().ClearStorageClassSpecs();
8484  }
8485
8486  if (DeclSpec::TSCS TSCS = DS.getThreadStorageClassSpec())
8487    Diag(DS.getThreadStorageClassSpecLoc(), diag::err_invalid_thread)
8488      << DeclSpec::getSpecifierName(TSCS);
8489  if (DS.isConstexprSpecified())
8490    Diag(DS.getConstexprSpecLoc(), diag::err_invalid_constexpr)
8491      << 0;
8492
8493  DiagnoseFunctionSpecifiers(DS);
8494
8495  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8496  QualType parmDeclType = TInfo->getType();
8497
8498  if (getLangOpts().CPlusPlus) {
8499    // Check that there are no default arguments inside the type of this
8500    // parameter.
8501    CheckExtraCXXDefaultArguments(D);
8502
8503    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
8504    if (D.getCXXScopeSpec().isSet()) {
8505      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
8506        << D.getCXXScopeSpec().getRange();
8507      D.getCXXScopeSpec().clear();
8508    }
8509  }
8510
8511  // Ensure we have a valid name
8512  IdentifierInfo *II = 0;
8513  if (D.hasName()) {
8514    II = D.getIdentifier();
8515    if (!II) {
8516      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
8517        << GetNameForDeclarator(D).getName().getAsString();
8518      D.setInvalidType(true);
8519    }
8520  }
8521
8522  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
8523  if (II) {
8524    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
8525                   ForRedeclaration);
8526    LookupName(R, S);
8527    if (R.isSingleResult()) {
8528      NamedDecl *PrevDecl = R.getFoundDecl();
8529      if (PrevDecl->isTemplateParameter()) {
8530        // Maybe we will complain about the shadowed template parameter.
8531        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8532        // Just pretend that we didn't see the previous declaration.
8533        PrevDecl = 0;
8534      } else if (S->isDeclScope(PrevDecl)) {
8535        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
8536        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8537
8538        // Recover by removing the name
8539        II = 0;
8540        D.SetIdentifier(0, D.getIdentifierLoc());
8541        D.setInvalidType(true);
8542      }
8543    }
8544  }
8545
8546  // Temporarily put parameter variables in the translation unit, not
8547  // the enclosing context.  This prevents them from accidentally
8548  // looking like class members in C++.
8549  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
8550                                    D.getLocStart(),
8551                                    D.getIdentifierLoc(), II,
8552                                    parmDeclType, TInfo,
8553                                    StorageClass);
8554
8555  if (D.isInvalidType())
8556    New->setInvalidDecl();
8557
8558  assert(S->isFunctionPrototypeScope());
8559  assert(S->getFunctionPrototypeDepth() >= 1);
8560  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
8561                    S->getNextFunctionPrototypeIndex());
8562
8563  // Add the parameter declaration into this scope.
8564  S->AddDecl(New);
8565  if (II)
8566    IdResolver.AddDecl(New);
8567
8568  ProcessDeclAttributes(S, New, D);
8569
8570  if (D.getDeclSpec().isModulePrivateSpecified())
8571    Diag(New->getLocation(), diag::err_module_private_local)
8572      << 1 << New->getDeclName()
8573      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
8574      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
8575
8576  if (New->hasAttr<BlocksAttr>()) {
8577    Diag(New->getLocation(), diag::err_block_on_nonlocal);
8578  }
8579  return New;
8580}
8581
8582/// \brief Synthesizes a variable for a parameter arising from a
8583/// typedef.
8584ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
8585                                              SourceLocation Loc,
8586                                              QualType T) {
8587  /* FIXME: setting StartLoc == Loc.
8588     Would it be worth to modify callers so as to provide proper source
8589     location for the unnamed parameters, embedding the parameter's type? */
8590  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
8591                                T, Context.getTrivialTypeSourceInfo(T, Loc),
8592                                           SC_None, 0);
8593  Param->setImplicit();
8594  return Param;
8595}
8596
8597void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
8598                                    ParmVarDecl * const *ParamEnd) {
8599  // Don't diagnose unused-parameter errors in template instantiations; we
8600  // will already have done so in the template itself.
8601  if (!ActiveTemplateInstantiations.empty())
8602    return;
8603
8604  for (; Param != ParamEnd; ++Param) {
8605    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
8606        !(*Param)->hasAttr<UnusedAttr>()) {
8607      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
8608        << (*Param)->getDeclName();
8609    }
8610  }
8611}
8612
8613void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
8614                                                  ParmVarDecl * const *ParamEnd,
8615                                                  QualType ReturnTy,
8616                                                  NamedDecl *D) {
8617  if (LangOpts.NumLargeByValueCopy == 0) // No check.
8618    return;
8619
8620  // Warn if the return value is pass-by-value and larger than the specified
8621  // threshold.
8622  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
8623    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
8624    if (Size > LangOpts.NumLargeByValueCopy)
8625      Diag(D->getLocation(), diag::warn_return_value_size)
8626          << D->getDeclName() << Size;
8627  }
8628
8629  // Warn if any parameter is pass-by-value and larger than the specified
8630  // threshold.
8631  for (; Param != ParamEnd; ++Param) {
8632    QualType T = (*Param)->getType();
8633    if (T->isDependentType() || !T.isPODType(Context))
8634      continue;
8635    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
8636    if (Size > LangOpts.NumLargeByValueCopy)
8637      Diag((*Param)->getLocation(), diag::warn_parameter_size)
8638          << (*Param)->getDeclName() << Size;
8639  }
8640}
8641
8642ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
8643                                  SourceLocation NameLoc, IdentifierInfo *Name,
8644                                  QualType T, TypeSourceInfo *TSInfo,
8645                                  VarDecl::StorageClass StorageClass) {
8646  // In ARC, infer a lifetime qualifier for appropriate parameter types.
8647  if (getLangOpts().ObjCAutoRefCount &&
8648      T.getObjCLifetime() == Qualifiers::OCL_None &&
8649      T->isObjCLifetimeType()) {
8650
8651    Qualifiers::ObjCLifetime lifetime;
8652
8653    // Special cases for arrays:
8654    //   - if it's const, use __unsafe_unretained
8655    //   - otherwise, it's an error
8656    if (T->isArrayType()) {
8657      if (!T.isConstQualified()) {
8658        DelayedDiagnostics.add(
8659            sema::DelayedDiagnostic::makeForbiddenType(
8660            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
8661      }
8662      lifetime = Qualifiers::OCL_ExplicitNone;
8663    } else {
8664      lifetime = T->getObjCARCImplicitLifetime();
8665    }
8666    T = Context.getLifetimeQualifiedType(T, lifetime);
8667  }
8668
8669  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
8670                                         Context.getAdjustedParameterType(T),
8671                                         TSInfo,
8672                                         StorageClass, 0);
8673
8674  // Parameters can not be abstract class types.
8675  // For record types, this is done by the AbstractClassUsageDiagnoser once
8676  // the class has been completely parsed.
8677  if (!CurContext->isRecord() &&
8678      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
8679                             AbstractParamType))
8680    New->setInvalidDecl();
8681
8682  // Parameter declarators cannot be interface types. All ObjC objects are
8683  // passed by reference.
8684  if (T->isObjCObjectType()) {
8685    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
8686    Diag(NameLoc,
8687         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
8688      << FixItHint::CreateInsertion(TypeEndLoc, "*");
8689    T = Context.getObjCObjectPointerType(T);
8690    New->setType(T);
8691  }
8692
8693  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
8694  // duration shall not be qualified by an address-space qualifier."
8695  // Since all parameters have automatic store duration, they can not have
8696  // an address space.
8697  if (T.getAddressSpace() != 0) {
8698    Diag(NameLoc, diag::err_arg_with_address_space);
8699    New->setInvalidDecl();
8700  }
8701
8702  return New;
8703}
8704
8705void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
8706                                           SourceLocation LocAfterDecls) {
8707  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
8708
8709  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
8710  // for a K&R function.
8711  if (!FTI.hasPrototype) {
8712    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
8713      --i;
8714      if (FTI.ArgInfo[i].Param == 0) {
8715        SmallString<256> Code;
8716        llvm::raw_svector_ostream(Code) << "  int "
8717                                        << FTI.ArgInfo[i].Ident->getName()
8718                                        << ";\n";
8719        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
8720          << FTI.ArgInfo[i].Ident
8721          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
8722
8723        // Implicitly declare the argument as type 'int' for lack of a better
8724        // type.
8725        AttributeFactory attrs;
8726        DeclSpec DS(attrs);
8727        const char* PrevSpec; // unused
8728        unsigned DiagID; // unused
8729        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
8730                           PrevSpec, DiagID);
8731        // Use the identifier location for the type source range.
8732        DS.SetRangeStart(FTI.ArgInfo[i].IdentLoc);
8733        DS.SetRangeEnd(FTI.ArgInfo[i].IdentLoc);
8734        Declarator ParamD(DS, Declarator::KNRTypeListContext);
8735        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
8736        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
8737      }
8738    }
8739  }
8740}
8741
8742Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
8743  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
8744  assert(D.isFunctionDeclarator() && "Not a function declarator!");
8745  Scope *ParentScope = FnBodyScope->getParent();
8746
8747  D.setFunctionDefinitionKind(FDK_Definition);
8748  Decl *DP = HandleDeclarator(ParentScope, D, MultiTemplateParamsArg());
8749  return ActOnStartOfFunctionDef(FnBodyScope, DP);
8750}
8751
8752static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD,
8753                             const FunctionDecl*& PossibleZeroParamPrototype) {
8754  // Don't warn about invalid declarations.
8755  if (FD->isInvalidDecl())
8756    return false;
8757
8758  // Or declarations that aren't global.
8759  if (!FD->isGlobal())
8760    return false;
8761
8762  // Don't warn about C++ member functions.
8763  if (isa<CXXMethodDecl>(FD))
8764    return false;
8765
8766  // Don't warn about 'main'.
8767  if (FD->isMain())
8768    return false;
8769
8770  // Don't warn about inline functions.
8771  if (FD->isInlined())
8772    return false;
8773
8774  // Don't warn about function templates.
8775  if (FD->getDescribedFunctionTemplate())
8776    return false;
8777
8778  // Don't warn about function template specializations.
8779  if (FD->isFunctionTemplateSpecialization())
8780    return false;
8781
8782  // Don't warn for OpenCL kernels.
8783  if (FD->hasAttr<OpenCLKernelAttr>())
8784    return false;
8785
8786  bool MissingPrototype = true;
8787  for (const FunctionDecl *Prev = FD->getPreviousDecl();
8788       Prev; Prev = Prev->getPreviousDecl()) {
8789    // Ignore any declarations that occur in function or method
8790    // scope, because they aren't visible from the header.
8791    if (Prev->getDeclContext()->isFunctionOrMethod())
8792      continue;
8793
8794    MissingPrototype = !Prev->getType()->isFunctionProtoType();
8795    if (FD->getNumParams() == 0)
8796      PossibleZeroParamPrototype = Prev;
8797    break;
8798  }
8799
8800  return MissingPrototype;
8801}
8802
8803void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
8804  // Don't complain if we're in GNU89 mode and the previous definition
8805  // was an extern inline function.
8806  const FunctionDecl *Definition;
8807  if (FD->isDefined(Definition) &&
8808      !canRedefineFunction(Definition, getLangOpts())) {
8809    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
8810        Definition->getStorageClass() == SC_Extern)
8811      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
8812        << FD->getDeclName() << getLangOpts().CPlusPlus;
8813    else
8814      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
8815    Diag(Definition->getLocation(), diag::note_previous_definition);
8816    FD->setInvalidDecl();
8817  }
8818}
8819
8820Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
8821  // Clear the last template instantiation error context.
8822  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
8823
8824  if (!D)
8825    return D;
8826  FunctionDecl *FD = 0;
8827
8828  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
8829    FD = FunTmpl->getTemplatedDecl();
8830  else
8831    FD = cast<FunctionDecl>(D);
8832
8833  // Enter a new function scope
8834  PushFunctionScope();
8835
8836  // See if this is a redefinition.
8837  if (!FD->isLateTemplateParsed())
8838    CheckForFunctionRedefinition(FD);
8839
8840  // Builtin functions cannot be defined.
8841  if (unsigned BuiltinID = FD->getBuiltinID()) {
8842    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID) &&
8843        !Context.BuiltinInfo.isPredefinedRuntimeFunction(BuiltinID)) {
8844      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
8845      FD->setInvalidDecl();
8846    }
8847  }
8848
8849  // The return type of a function definition must be complete
8850  // (C99 6.9.1p3, C++ [dcl.fct]p6).
8851  QualType ResultType = FD->getResultType();
8852  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
8853      !FD->isInvalidDecl() &&
8854      RequireCompleteType(FD->getLocation(), ResultType,
8855                          diag::err_func_def_incomplete_result))
8856    FD->setInvalidDecl();
8857
8858  // GNU warning -Wmissing-prototypes:
8859  //   Warn if a global function is defined without a previous
8860  //   prototype declaration. This warning is issued even if the
8861  //   definition itself provides a prototype. The aim is to detect
8862  //   global functions that fail to be declared in header files.
8863  const FunctionDecl *PossibleZeroParamPrototype = 0;
8864  if (ShouldWarnAboutMissingPrototype(FD, PossibleZeroParamPrototype)) {
8865    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
8866
8867    if (PossibleZeroParamPrototype) {
8868      // We found a declaration that is not a prototype,
8869      // but that could be a zero-parameter prototype
8870      if (TypeSourceInfo *TI =
8871              PossibleZeroParamPrototype->getTypeSourceInfo()) {
8872        TypeLoc TL = TI->getTypeLoc();
8873        if (FunctionNoProtoTypeLoc FTL = TL.getAs<FunctionNoProtoTypeLoc>())
8874          Diag(PossibleZeroParamPrototype->getLocation(),
8875               diag::note_declaration_not_a_prototype)
8876            << PossibleZeroParamPrototype
8877            << FixItHint::CreateInsertion(FTL.getRParenLoc(), "void");
8878      }
8879    }
8880  }
8881
8882  if (FnBodyScope)
8883    PushDeclContext(FnBodyScope, FD);
8884
8885  // Check the validity of our function parameters
8886  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
8887                           /*CheckParameterNames=*/true);
8888
8889  // Introduce our parameters into the function scope
8890  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
8891    ParmVarDecl *Param = FD->getParamDecl(p);
8892    Param->setOwningFunction(FD);
8893
8894    // If this has an identifier, add it to the scope stack.
8895    if (Param->getIdentifier() && FnBodyScope) {
8896      CheckShadow(FnBodyScope, Param);
8897
8898      PushOnScopeChains(Param, FnBodyScope);
8899    }
8900  }
8901
8902  // If we had any tags defined in the function prototype,
8903  // introduce them into the function scope.
8904  if (FnBodyScope) {
8905    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
8906           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
8907      NamedDecl *D = *I;
8908
8909      // Some of these decls (like enums) may have been pinned to the translation unit
8910      // for lack of a real context earlier. If so, remove from the translation unit
8911      // and reattach to the current context.
8912      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
8913        // Is the decl actually in the context?
8914        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
8915               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
8916          if (*DI == D) {
8917            Context.getTranslationUnitDecl()->removeDecl(D);
8918            break;
8919          }
8920        }
8921        // Either way, reassign the lexical decl context to our FunctionDecl.
8922        D->setLexicalDeclContext(CurContext);
8923      }
8924
8925      // If the decl has a non-null name, make accessible in the current scope.
8926      if (!D->getName().empty())
8927        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
8928
8929      // Similarly, dive into enums and fish their constants out, making them
8930      // accessible in this scope.
8931      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
8932        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
8933               EE = ED->enumerator_end(); EI != EE; ++EI)
8934          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
8935      }
8936    }
8937  }
8938
8939  // Ensure that the function's exception specification is instantiated.
8940  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
8941    ResolveExceptionSpec(D->getLocation(), FPT);
8942
8943  // Checking attributes of current function definition
8944  // dllimport attribute.
8945  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
8946  if (DA && (!FD->getAttr<DLLExportAttr>())) {
8947    // dllimport attribute cannot be directly applied to definition.
8948    // Microsoft accepts dllimport for functions defined within class scope.
8949    if (!DA->isInherited() &&
8950        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
8951      Diag(FD->getLocation(),
8952           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
8953        << "dllimport";
8954      FD->setInvalidDecl();
8955      return D;
8956    }
8957
8958    // Visual C++ appears to not think this is an issue, so only issue
8959    // a warning when Microsoft extensions are disabled.
8960    if (!LangOpts.MicrosoftExt) {
8961      // If a symbol previously declared dllimport is later defined, the
8962      // attribute is ignored in subsequent references, and a warning is
8963      // emitted.
8964      Diag(FD->getLocation(),
8965           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
8966        << FD->getName() << "dllimport";
8967    }
8968  }
8969  // We want to attach documentation to original Decl (which might be
8970  // a function template).
8971  ActOnDocumentableDecl(D);
8972  return D;
8973}
8974
8975/// \brief Given the set of return statements within a function body,
8976/// compute the variables that are subject to the named return value
8977/// optimization.
8978///
8979/// Each of the variables that is subject to the named return value
8980/// optimization will be marked as NRVO variables in the AST, and any
8981/// return statement that has a marked NRVO variable as its NRVO candidate can
8982/// use the named return value optimization.
8983///
8984/// This function applies a very simplistic algorithm for NRVO: if every return
8985/// statement in the function has the same NRVO candidate, that candidate is
8986/// the NRVO variable.
8987///
8988/// FIXME: Employ a smarter algorithm that accounts for multiple return
8989/// statements and the lifetimes of the NRVO candidates. We should be able to
8990/// find a maximal set of NRVO variables.
8991void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
8992  ReturnStmt **Returns = Scope->Returns.data();
8993
8994  const VarDecl *NRVOCandidate = 0;
8995  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
8996    if (!Returns[I]->getNRVOCandidate())
8997      return;
8998
8999    if (!NRVOCandidate)
9000      NRVOCandidate = Returns[I]->getNRVOCandidate();
9001    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
9002      return;
9003  }
9004
9005  if (NRVOCandidate)
9006    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
9007}
9008
9009bool Sema::canSkipFunctionBody(Decl *D) {
9010  if (!Consumer.shouldSkipFunctionBody(D))
9011    return false;
9012
9013  if (isa<ObjCMethodDecl>(D))
9014    return true;
9015
9016  FunctionDecl *FD = 0;
9017  if (FunctionTemplateDecl *FTD = dyn_cast<FunctionTemplateDecl>(D))
9018    FD = FTD->getTemplatedDecl();
9019  else
9020    FD = cast<FunctionDecl>(D);
9021
9022  // We cannot skip the body of a function (or function template) which is
9023  // constexpr, since we may need to evaluate its body in order to parse the
9024  // rest of the file.
9025  // We cannot skip the body of a function with an undeduced return type,
9026  // because any callers of that function need to know the type.
9027  return !FD->isConstexpr() && !FD->getResultType()->isUndeducedType();
9028}
9029
9030Decl *Sema::ActOnSkippedFunctionBody(Decl *Decl) {
9031  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(Decl))
9032    FD->setHasSkippedBody();
9033  else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(Decl))
9034    MD->setHasSkippedBody();
9035  return ActOnFinishFunctionBody(Decl, 0);
9036}
9037
9038Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
9039  return ActOnFinishFunctionBody(D, BodyArg, false);
9040}
9041
9042Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
9043                                    bool IsInstantiation) {
9044  FunctionDecl *FD = 0;
9045  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
9046  if (FunTmpl)
9047    FD = FunTmpl->getTemplatedDecl();
9048  else
9049    FD = dyn_cast_or_null<FunctionDecl>(dcl);
9050
9051  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
9052  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
9053
9054  if (FD) {
9055    FD->setBody(Body);
9056
9057    if (getLangOpts().CPlusPlus1y && !FD->isInvalidDecl() && Body &&
9058        !FD->isDependentContext() && FD->getResultType()->isUndeducedType()) {
9059      // If the function has a deduced result type but contains no 'return'
9060      // statements, the result type as written must be exactly 'auto', and
9061      // the deduced result type is 'void'.
9062      if (!FD->getResultType()->getAs<AutoType>()) {
9063        Diag(dcl->getLocation(), diag::err_auto_fn_no_return_but_not_auto)
9064          << FD->getResultType();
9065        FD->setInvalidDecl();
9066      } else {
9067        // Substitute 'void' for the 'auto' in the type.
9068        TypeLoc ResultType = FD->getTypeSourceInfo()->getTypeLoc().
9069            IgnoreParens().castAs<FunctionProtoTypeLoc>().getResultLoc();
9070        Context.adjustDeducedFunctionResultType(
9071            FD, SubstAutoType(ResultType.getType(), Context.VoidTy));
9072      }
9073    }
9074
9075    // The only way to be included in UndefinedButUsed is if there is an
9076    // ODR use before the definition. Avoid the expensive map lookup if this
9077    // is the first declaration.
9078    if (FD->getPreviousDecl() != 0 && FD->getPreviousDecl()->isUsed()) {
9079      if (!FD->isExternallyVisible())
9080        UndefinedButUsed.erase(FD);
9081      else if (FD->isInlined() &&
9082               (LangOpts.CPlusPlus || !LangOpts.GNUInline) &&
9083               (!FD->getPreviousDecl()->hasAttr<GNUInlineAttr>()))
9084        UndefinedButUsed.erase(FD);
9085    }
9086
9087    // If the function implicitly returns zero (like 'main') or is naked,
9088    // don't complain about missing return statements.
9089    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
9090      WP.disableCheckFallThrough();
9091
9092    // MSVC permits the use of pure specifier (=0) on function definition,
9093    // defined at class scope, warn about this non standard construct.
9094    if (getLangOpts().MicrosoftExt && FD->isPure())
9095      Diag(FD->getLocation(), diag::warn_pure_function_definition);
9096
9097    if (!FD->isInvalidDecl()) {
9098      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
9099      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
9100                                             FD->getResultType(), FD);
9101
9102      // If this is a constructor, we need a vtable.
9103      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
9104        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
9105
9106      // Try to apply the named return value optimization. We have to check
9107      // if we can do this here because lambdas keep return statements around
9108      // to deduce an implicit return type.
9109      if (getLangOpts().CPlusPlus && FD->getResultType()->isRecordType() &&
9110          !FD->isDependentContext())
9111        computeNRVO(Body, getCurFunction());
9112    }
9113
9114    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
9115           "Function parsing confused");
9116  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
9117    assert(MD == getCurMethodDecl() && "Method parsing confused");
9118    MD->setBody(Body);
9119    if (!MD->isInvalidDecl()) {
9120      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
9121      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
9122                                             MD->getResultType(), MD);
9123
9124      if (Body)
9125        computeNRVO(Body, getCurFunction());
9126    }
9127    if (getCurFunction()->ObjCShouldCallSuper) {
9128      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_call)
9129        << MD->getSelector().getAsString();
9130      getCurFunction()->ObjCShouldCallSuper = false;
9131    }
9132  } else {
9133    return 0;
9134  }
9135
9136  assert(!getCurFunction()->ObjCShouldCallSuper &&
9137         "This should only be set for ObjC methods, which should have been "
9138         "handled in the block above.");
9139
9140  // Verify and clean out per-function state.
9141  if (Body) {
9142    // C++ constructors that have function-try-blocks can't have return
9143    // statements in the handlers of that block. (C++ [except.handle]p14)
9144    // Verify this.
9145    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
9146      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
9147
9148    // Verify that gotos and switch cases don't jump into scopes illegally.
9149    if (getCurFunction()->NeedsScopeChecking() &&
9150        !dcl->isInvalidDecl() &&
9151        !hasAnyUnrecoverableErrorsInThisFunction() &&
9152        !PP.isCodeCompletionEnabled())
9153      DiagnoseInvalidJumps(Body);
9154
9155    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
9156      if (!Destructor->getParent()->isDependentType())
9157        CheckDestructor(Destructor);
9158
9159      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
9160                                             Destructor->getParent());
9161    }
9162
9163    // If any errors have occurred, clear out any temporaries that may have
9164    // been leftover. This ensures that these temporaries won't be picked up for
9165    // deletion in some later function.
9166    if (PP.getDiagnostics().hasErrorOccurred() ||
9167        PP.getDiagnostics().getSuppressAllDiagnostics()) {
9168      DiscardCleanupsInEvaluationContext();
9169    }
9170    if (!PP.getDiagnostics().hasUncompilableErrorOccurred() &&
9171        !isa<FunctionTemplateDecl>(dcl)) {
9172      // Since the body is valid, issue any analysis-based warnings that are
9173      // enabled.
9174      ActivePolicy = &WP;
9175    }
9176
9177    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
9178        (!CheckConstexprFunctionDecl(FD) ||
9179         !CheckConstexprFunctionBody(FD, Body)))
9180      FD->setInvalidDecl();
9181
9182    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
9183    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
9184    assert(MaybeODRUseExprs.empty() &&
9185           "Leftover expressions for odr-use checking");
9186  }
9187
9188  if (!IsInstantiation)
9189    PopDeclContext();
9190
9191  PopFunctionScopeInfo(ActivePolicy, dcl);
9192
9193  // If any errors have occurred, clear out any temporaries that may have
9194  // been leftover. This ensures that these temporaries won't be picked up for
9195  // deletion in some later function.
9196  if (getDiagnostics().hasErrorOccurred()) {
9197    DiscardCleanupsInEvaluationContext();
9198  }
9199
9200  return dcl;
9201}
9202
9203
9204/// When we finish delayed parsing of an attribute, we must attach it to the
9205/// relevant Decl.
9206void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
9207                                       ParsedAttributes &Attrs) {
9208  // Always attach attributes to the underlying decl.
9209  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
9210    D = TD->getTemplatedDecl();
9211  ProcessDeclAttributeList(S, D, Attrs.getList());
9212
9213  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
9214    if (Method->isStatic())
9215      checkThisInStaticMemberFunctionAttributes(Method);
9216}
9217
9218
9219/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
9220/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
9221NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
9222                                          IdentifierInfo &II, Scope *S) {
9223  // Before we produce a declaration for an implicitly defined
9224  // function, see whether there was a locally-scoped declaration of
9225  // this name as a function or variable. If so, use that
9226  // (non-visible) declaration, and complain about it.
9227  if (NamedDecl *ExternCPrev = findLocallyScopedExternCDecl(&II)) {
9228    Diag(Loc, diag::warn_use_out_of_scope_declaration) << ExternCPrev;
9229    Diag(ExternCPrev->getLocation(), diag::note_previous_declaration);
9230    return ExternCPrev;
9231  }
9232
9233  // Extension in C99.  Legal in C90, but warn about it.
9234  unsigned diag_id;
9235  if (II.getName().startswith("__builtin_"))
9236    diag_id = diag::warn_builtin_unknown;
9237  else if (getLangOpts().C99)
9238    diag_id = diag::ext_implicit_function_decl;
9239  else
9240    diag_id = diag::warn_implicit_function_decl;
9241  Diag(Loc, diag_id) << &II;
9242
9243  // Because typo correction is expensive, only do it if the implicit
9244  // function declaration is going to be treated as an error.
9245  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
9246    TypoCorrection Corrected;
9247    DeclFilterCCC<FunctionDecl> Validator;
9248    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
9249                                      LookupOrdinaryName, S, 0, Validator))) {
9250      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
9251      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
9252      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
9253
9254      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
9255          << FixItHint::CreateReplacement(Loc, CorrectedStr);
9256
9257      if (Func->getLocation().isValid()
9258          && !II.getName().startswith("__builtin_"))
9259        Diag(Func->getLocation(), diag::note_previous_decl)
9260            << CorrectedQuotedStr;
9261    }
9262  }
9263
9264  // Set a Declarator for the implicit definition: int foo();
9265  const char *Dummy;
9266  AttributeFactory attrFactory;
9267  DeclSpec DS(attrFactory);
9268  unsigned DiagID;
9269  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
9270  (void)Error; // Silence warning.
9271  assert(!Error && "Error setting up implicit decl!");
9272  SourceLocation NoLoc;
9273  Declarator D(DS, Declarator::BlockContext);
9274  D.AddTypeInfo(DeclaratorChunk::getFunction(/*HasProto=*/false,
9275                                             /*IsAmbiguous=*/false,
9276                                             /*RParenLoc=*/NoLoc,
9277                                             /*ArgInfo=*/0,
9278                                             /*NumArgs=*/0,
9279                                             /*EllipsisLoc=*/NoLoc,
9280                                             /*RParenLoc=*/NoLoc,
9281                                             /*TypeQuals=*/0,
9282                                             /*RefQualifierIsLvalueRef=*/true,
9283                                             /*RefQualifierLoc=*/NoLoc,
9284                                             /*ConstQualifierLoc=*/NoLoc,
9285                                             /*VolatileQualifierLoc=*/NoLoc,
9286                                             /*MutableLoc=*/NoLoc,
9287                                             EST_None,
9288                                             /*ESpecLoc=*/NoLoc,
9289                                             /*Exceptions=*/0,
9290                                             /*ExceptionRanges=*/0,
9291                                             /*NumExceptions=*/0,
9292                                             /*NoexceptExpr=*/0,
9293                                             Loc, Loc, D),
9294                DS.getAttributes(),
9295                SourceLocation());
9296  D.SetIdentifier(&II, Loc);
9297
9298  // Insert this function into translation-unit scope.
9299
9300  DeclContext *PrevDC = CurContext;
9301  CurContext = Context.getTranslationUnitDecl();
9302
9303  FunctionDecl *FD = cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
9304  FD->setImplicit();
9305
9306  CurContext = PrevDC;
9307
9308  AddKnownFunctionAttributes(FD);
9309
9310  return FD;
9311}
9312
9313/// \brief Adds any function attributes that we know a priori based on
9314/// the declaration of this function.
9315///
9316/// These attributes can apply both to implicitly-declared builtins
9317/// (like __builtin___printf_chk) or to library-declared functions
9318/// like NSLog or printf.
9319///
9320/// We need to check for duplicate attributes both here and where user-written
9321/// attributes are applied to declarations.
9322void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
9323  if (FD->isInvalidDecl())
9324    return;
9325
9326  // If this is a built-in function, map its builtin attributes to
9327  // actual attributes.
9328  if (unsigned BuiltinID = FD->getBuiltinID()) {
9329    // Handle printf-formatting attributes.
9330    unsigned FormatIdx;
9331    bool HasVAListArg;
9332    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
9333      if (!FD->getAttr<FormatAttr>()) {
9334        const char *fmt = "printf";
9335        unsigned int NumParams = FD->getNumParams();
9336        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
9337            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
9338          fmt = "NSString";
9339        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9340                                               fmt, FormatIdx+1,
9341                                               HasVAListArg ? 0 : FormatIdx+2));
9342      }
9343    }
9344    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
9345                                             HasVAListArg)) {
9346     if (!FD->getAttr<FormatAttr>())
9347       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9348                                              "scanf", FormatIdx+1,
9349                                              HasVAListArg ? 0 : FormatIdx+2));
9350    }
9351
9352    // Mark const if we don't care about errno and that is the only
9353    // thing preventing the function from being const. This allows
9354    // IRgen to use LLVM intrinsics for such functions.
9355    if (!getLangOpts().MathErrno &&
9356        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
9357      if (!FD->getAttr<ConstAttr>())
9358        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9359    }
9360
9361    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
9362        !FD->getAttr<ReturnsTwiceAttr>())
9363      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
9364    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
9365      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
9366    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
9367      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
9368  }
9369
9370  IdentifierInfo *Name = FD->getIdentifier();
9371  if (!Name)
9372    return;
9373  if ((!getLangOpts().CPlusPlus &&
9374       FD->getDeclContext()->isTranslationUnit()) ||
9375      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
9376       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
9377       LinkageSpecDecl::lang_c)) {
9378    // Okay: this could be a libc/libm/Objective-C function we know
9379    // about.
9380  } else
9381    return;
9382
9383  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
9384    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
9385    // target-specific builtins, perhaps?
9386    if (!FD->getAttr<FormatAttr>())
9387      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
9388                                             "printf", 2,
9389                                             Name->isStr("vasprintf") ? 0 : 3));
9390  }
9391
9392  if (Name->isStr("__CFStringMakeConstantString")) {
9393    // We already have a __builtin___CFStringMakeConstantString,
9394    // but builds that use -fno-constant-cfstrings don't go through that.
9395    if (!FD->getAttr<FormatArgAttr>())
9396      FD->addAttr(::new (Context) FormatArgAttr(FD->getLocation(), Context, 1));
9397  }
9398}
9399
9400TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
9401                                    TypeSourceInfo *TInfo) {
9402  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
9403  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
9404
9405  if (!TInfo) {
9406    assert(D.isInvalidType() && "no declarator info for valid type");
9407    TInfo = Context.getTrivialTypeSourceInfo(T);
9408  }
9409
9410  // Scope manipulation handled by caller.
9411  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
9412                                           D.getLocStart(),
9413                                           D.getIdentifierLoc(),
9414                                           D.getIdentifier(),
9415                                           TInfo);
9416
9417  // Bail out immediately if we have an invalid declaration.
9418  if (D.isInvalidType()) {
9419    NewTD->setInvalidDecl();
9420    return NewTD;
9421  }
9422
9423  if (D.getDeclSpec().isModulePrivateSpecified()) {
9424    if (CurContext->isFunctionOrMethod())
9425      Diag(NewTD->getLocation(), diag::err_module_private_local)
9426        << 2 << NewTD->getDeclName()
9427        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
9428        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
9429    else
9430      NewTD->setModulePrivate();
9431  }
9432
9433  // C++ [dcl.typedef]p8:
9434  //   If the typedef declaration defines an unnamed class (or
9435  //   enum), the first typedef-name declared by the declaration
9436  //   to be that class type (or enum type) is used to denote the
9437  //   class type (or enum type) for linkage purposes only.
9438  // We need to check whether the type was declared in the declaration.
9439  switch (D.getDeclSpec().getTypeSpecType()) {
9440  case TST_enum:
9441  case TST_struct:
9442  case TST_interface:
9443  case TST_union:
9444  case TST_class: {
9445    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
9446
9447    // Do nothing if the tag is not anonymous or already has an
9448    // associated typedef (from an earlier typedef in this decl group).
9449    if (tagFromDeclSpec->getIdentifier()) break;
9450    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
9451
9452    // A well-formed anonymous tag must always be a TUK_Definition.
9453    assert(tagFromDeclSpec->isThisDeclarationADefinition());
9454
9455    // The type must match the tag exactly;  no qualifiers allowed.
9456    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
9457      break;
9458
9459    // Otherwise, set this is the anon-decl typedef for the tag.
9460    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
9461    break;
9462  }
9463
9464  default:
9465    break;
9466  }
9467
9468  return NewTD;
9469}
9470
9471
9472/// \brief Check that this is a valid underlying type for an enum declaration.
9473bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
9474  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
9475  QualType T = TI->getType();
9476
9477  if (T->isDependentType())
9478    return false;
9479
9480  if (const BuiltinType *BT = T->getAs<BuiltinType>())
9481    if (BT->isInteger())
9482      return false;
9483
9484  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
9485  return true;
9486}
9487
9488/// Check whether this is a valid redeclaration of a previous enumeration.
9489/// \return true if the redeclaration was invalid.
9490bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
9491                                  QualType EnumUnderlyingTy,
9492                                  const EnumDecl *Prev) {
9493  bool IsFixed = !EnumUnderlyingTy.isNull();
9494
9495  if (IsScoped != Prev->isScoped()) {
9496    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
9497      << Prev->isScoped();
9498    Diag(Prev->getLocation(), diag::note_previous_use);
9499    return true;
9500  }
9501
9502  if (IsFixed && Prev->isFixed()) {
9503    if (!EnumUnderlyingTy->isDependentType() &&
9504        !Prev->getIntegerType()->isDependentType() &&
9505        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
9506                                        Prev->getIntegerType())) {
9507      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
9508        << EnumUnderlyingTy << Prev->getIntegerType();
9509      Diag(Prev->getLocation(), diag::note_previous_use);
9510      return true;
9511    }
9512  } else if (IsFixed != Prev->isFixed()) {
9513    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
9514      << Prev->isFixed();
9515    Diag(Prev->getLocation(), diag::note_previous_use);
9516    return true;
9517  }
9518
9519  return false;
9520}
9521
9522/// \brief Get diagnostic %select index for tag kind for
9523/// redeclaration diagnostic message.
9524/// WARNING: Indexes apply to particular diagnostics only!
9525///
9526/// \returns diagnostic %select index.
9527static unsigned getRedeclDiagFromTagKind(TagTypeKind Tag) {
9528  switch (Tag) {
9529  case TTK_Struct: return 0;
9530  case TTK_Interface: return 1;
9531  case TTK_Class:  return 2;
9532  default: llvm_unreachable("Invalid tag kind for redecl diagnostic!");
9533  }
9534}
9535
9536/// \brief Determine if tag kind is a class-key compatible with
9537/// class for redeclaration (class, struct, or __interface).
9538///
9539/// \returns true iff the tag kind is compatible.
9540static bool isClassCompatTagKind(TagTypeKind Tag)
9541{
9542  return Tag == TTK_Struct || Tag == TTK_Class || Tag == TTK_Interface;
9543}
9544
9545/// \brief Determine whether a tag with a given kind is acceptable
9546/// as a redeclaration of the given tag declaration.
9547///
9548/// \returns true if the new tag kind is acceptable, false otherwise.
9549bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
9550                                        TagTypeKind NewTag, bool isDefinition,
9551                                        SourceLocation NewTagLoc,
9552                                        const IdentifierInfo &Name) {
9553  // C++ [dcl.type.elab]p3:
9554  //   The class-key or enum keyword present in the
9555  //   elaborated-type-specifier shall agree in kind with the
9556  //   declaration to which the name in the elaborated-type-specifier
9557  //   refers. This rule also applies to the form of
9558  //   elaborated-type-specifier that declares a class-name or
9559  //   friend class since it can be construed as referring to the
9560  //   definition of the class. Thus, in any
9561  //   elaborated-type-specifier, the enum keyword shall be used to
9562  //   refer to an enumeration (7.2), the union class-key shall be
9563  //   used to refer to a union (clause 9), and either the class or
9564  //   struct class-key shall be used to refer to a class (clause 9)
9565  //   declared using the class or struct class-key.
9566  TagTypeKind OldTag = Previous->getTagKind();
9567  if (!isDefinition || !isClassCompatTagKind(NewTag))
9568    if (OldTag == NewTag)
9569      return true;
9570
9571  if (isClassCompatTagKind(OldTag) && isClassCompatTagKind(NewTag)) {
9572    // Warn about the struct/class tag mismatch.
9573    bool isTemplate = false;
9574    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
9575      isTemplate = Record->getDescribedClassTemplate();
9576
9577    if (!ActiveTemplateInstantiations.empty()) {
9578      // In a template instantiation, do not offer fix-its for tag mismatches
9579      // since they usually mess up the template instead of fixing the problem.
9580      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9581        << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9582        << getRedeclDiagFromTagKind(OldTag);
9583      return true;
9584    }
9585
9586    if (isDefinition) {
9587      // On definitions, check previous tags and issue a fix-it for each
9588      // one that doesn't match the current tag.
9589      if (Previous->getDefinition()) {
9590        // Don't suggest fix-its for redefinitions.
9591        return true;
9592      }
9593
9594      bool previousMismatch = false;
9595      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
9596           E(Previous->redecls_end()); I != E; ++I) {
9597        if (I->getTagKind() != NewTag) {
9598          if (!previousMismatch) {
9599            previousMismatch = true;
9600            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
9601              << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9602              << getRedeclDiagFromTagKind(I->getTagKind());
9603          }
9604          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
9605            << getRedeclDiagFromTagKind(NewTag)
9606            << FixItHint::CreateReplacement(I->getInnerLocStart(),
9607                 TypeWithKeyword::getTagTypeKindName(NewTag));
9608        }
9609      }
9610      return true;
9611    }
9612
9613    // Check for a previous definition.  If current tag and definition
9614    // are same type, do nothing.  If no definition, but disagree with
9615    // with previous tag type, give a warning, but no fix-it.
9616    const TagDecl *Redecl = Previous->getDefinition() ?
9617                            Previous->getDefinition() : Previous;
9618    if (Redecl->getTagKind() == NewTag) {
9619      return true;
9620    }
9621
9622    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
9623      << getRedeclDiagFromTagKind(NewTag) << isTemplate << &Name
9624      << getRedeclDiagFromTagKind(OldTag);
9625    Diag(Redecl->getLocation(), diag::note_previous_use);
9626
9627    // If there is a previous defintion, suggest a fix-it.
9628    if (Previous->getDefinition()) {
9629        Diag(NewTagLoc, diag::note_struct_class_suggestion)
9630          << getRedeclDiagFromTagKind(Redecl->getTagKind())
9631          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
9632               TypeWithKeyword::getTagTypeKindName(Redecl->getTagKind()));
9633    }
9634
9635    return true;
9636  }
9637  return false;
9638}
9639
9640/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
9641/// former case, Name will be non-null.  In the later case, Name will be null.
9642/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
9643/// reference/declaration/definition of a tag.
9644Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
9645                     SourceLocation KWLoc, CXXScopeSpec &SS,
9646                     IdentifierInfo *Name, SourceLocation NameLoc,
9647                     AttributeList *Attr, AccessSpecifier AS,
9648                     SourceLocation ModulePrivateLoc,
9649                     MultiTemplateParamsArg TemplateParameterLists,
9650                     bool &OwnedDecl, bool &IsDependent,
9651                     SourceLocation ScopedEnumKWLoc,
9652                     bool ScopedEnumUsesClassTag,
9653                     TypeResult UnderlyingType) {
9654  // If this is not a definition, it must have a name.
9655  IdentifierInfo *OrigName = Name;
9656  assert((Name != 0 || TUK == TUK_Definition) &&
9657         "Nameless record must be a definition!");
9658  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
9659
9660  OwnedDecl = false;
9661  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
9662  bool ScopedEnum = ScopedEnumKWLoc.isValid();
9663
9664  // FIXME: Check explicit specializations more carefully.
9665  bool isExplicitSpecialization = false;
9666  bool Invalid = false;
9667
9668  // We only need to do this matching if we have template parameters
9669  // or a scope specifier, which also conveniently avoids this work
9670  // for non-C++ cases.
9671  if (TemplateParameterLists.size() > 0 ||
9672      (SS.isNotEmpty() && TUK != TUK_Reference)) {
9673    if (TemplateParameterList *TemplateParams
9674          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
9675                                                TemplateParameterLists.data(),
9676                                                TemplateParameterLists.size(),
9677                                                    TUK == TUK_Friend,
9678                                                    isExplicitSpecialization,
9679                                                    Invalid)) {
9680      if (Kind == TTK_Enum) {
9681        Diag(KWLoc, diag::err_enum_template);
9682        return 0;
9683      }
9684
9685      if (TemplateParams->size() > 0) {
9686        // This is a declaration or definition of a class template (which may
9687        // be a member of another template).
9688
9689        if (Invalid)
9690          return 0;
9691
9692        OwnedDecl = false;
9693        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
9694                                               SS, Name, NameLoc, Attr,
9695                                               TemplateParams, AS,
9696                                               ModulePrivateLoc,
9697                                               TemplateParameterLists.size()-1,
9698                                               TemplateParameterLists.data());
9699        return Result.get();
9700      } else {
9701        // The "template<>" header is extraneous.
9702        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
9703          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
9704        isExplicitSpecialization = true;
9705      }
9706    }
9707  }
9708
9709  // Figure out the underlying type if this a enum declaration. We need to do
9710  // this early, because it's needed to detect if this is an incompatible
9711  // redeclaration.
9712  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
9713
9714  if (Kind == TTK_Enum) {
9715    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
9716      // No underlying type explicitly specified, or we failed to parse the
9717      // type, default to int.
9718      EnumUnderlying = Context.IntTy.getTypePtr();
9719    else if (UnderlyingType.get()) {
9720      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
9721      // integral type; any cv-qualification is ignored.
9722      TypeSourceInfo *TI = 0;
9723      GetTypeFromParser(UnderlyingType.get(), &TI);
9724      EnumUnderlying = TI;
9725
9726      if (CheckEnumUnderlyingType(TI))
9727        // Recover by falling back to int.
9728        EnumUnderlying = Context.IntTy.getTypePtr();
9729
9730      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
9731                                          UPPC_FixedUnderlyingType))
9732        EnumUnderlying = Context.IntTy.getTypePtr();
9733
9734    } else if (getLangOpts().MicrosoftMode)
9735      // Microsoft enums are always of int type.
9736      EnumUnderlying = Context.IntTy.getTypePtr();
9737  }
9738
9739  DeclContext *SearchDC = CurContext;
9740  DeclContext *DC = CurContext;
9741  bool isStdBadAlloc = false;
9742
9743  RedeclarationKind Redecl = ForRedeclaration;
9744  if (TUK == TUK_Friend || TUK == TUK_Reference)
9745    Redecl = NotForRedeclaration;
9746
9747  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
9748  bool FriendSawTagOutsideEnclosingNamespace = false;
9749  if (Name && SS.isNotEmpty()) {
9750    // We have a nested-name tag ('struct foo::bar').
9751
9752    // Check for invalid 'foo::'.
9753    if (SS.isInvalid()) {
9754      Name = 0;
9755      goto CreateNewDecl;
9756    }
9757
9758    // If this is a friend or a reference to a class in a dependent
9759    // context, don't try to make a decl for it.
9760    if (TUK == TUK_Friend || TUK == TUK_Reference) {
9761      DC = computeDeclContext(SS, false);
9762      if (!DC) {
9763        IsDependent = true;
9764        return 0;
9765      }
9766    } else {
9767      DC = computeDeclContext(SS, true);
9768      if (!DC) {
9769        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
9770          << SS.getRange();
9771        return 0;
9772      }
9773    }
9774
9775    if (RequireCompleteDeclContext(SS, DC))
9776      return 0;
9777
9778    SearchDC = DC;
9779    // Look-up name inside 'foo::'.
9780    LookupQualifiedName(Previous, DC);
9781
9782    if (Previous.isAmbiguous())
9783      return 0;
9784
9785    if (Previous.empty()) {
9786      // Name lookup did not find anything. However, if the
9787      // nested-name-specifier refers to the current instantiation,
9788      // and that current instantiation has any dependent base
9789      // classes, we might find something at instantiation time: treat
9790      // this as a dependent elaborated-type-specifier.
9791      // But this only makes any sense for reference-like lookups.
9792      if (Previous.wasNotFoundInCurrentInstantiation() &&
9793          (TUK == TUK_Reference || TUK == TUK_Friend)) {
9794        IsDependent = true;
9795        return 0;
9796      }
9797
9798      // A tag 'foo::bar' must already exist.
9799      Diag(NameLoc, diag::err_not_tag_in_scope)
9800        << Kind << Name << DC << SS.getRange();
9801      Name = 0;
9802      Invalid = true;
9803      goto CreateNewDecl;
9804    }
9805  } else if (Name) {
9806    // If this is a named struct, check to see if there was a previous forward
9807    // declaration or definition.
9808    // FIXME: We're looking into outer scopes here, even when we
9809    // shouldn't be. Doing so can result in ambiguities that we
9810    // shouldn't be diagnosing.
9811    LookupName(Previous, S);
9812
9813    // When declaring or defining a tag, ignore ambiguities introduced
9814    // by types using'ed into this scope.
9815    if (Previous.isAmbiguous() &&
9816        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
9817      LookupResult::Filter F = Previous.makeFilter();
9818      while (F.hasNext()) {
9819        NamedDecl *ND = F.next();
9820        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
9821          F.erase();
9822      }
9823      F.done();
9824    }
9825
9826    // C++11 [namespace.memdef]p3:
9827    //   If the name in a friend declaration is neither qualified nor
9828    //   a template-id and the declaration is a function or an
9829    //   elaborated-type-specifier, the lookup to determine whether
9830    //   the entity has been previously declared shall not consider
9831    //   any scopes outside the innermost enclosing namespace.
9832    //
9833    // Does it matter that this should be by scope instead of by
9834    // semantic context?
9835    if (!Previous.empty() && TUK == TUK_Friend) {
9836      DeclContext *EnclosingNS = SearchDC->getEnclosingNamespaceContext();
9837      LookupResult::Filter F = Previous.makeFilter();
9838      while (F.hasNext()) {
9839        NamedDecl *ND = F.next();
9840        DeclContext *DC = ND->getDeclContext()->getRedeclContext();
9841        if (DC->isFileContext() &&
9842            !EnclosingNS->Encloses(ND->getDeclContext())) {
9843          F.erase();
9844          FriendSawTagOutsideEnclosingNamespace = true;
9845        }
9846      }
9847      F.done();
9848    }
9849
9850    // Note:  there used to be some attempt at recovery here.
9851    if (Previous.isAmbiguous())
9852      return 0;
9853
9854    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
9855      // FIXME: This makes sure that we ignore the contexts associated
9856      // with C structs, unions, and enums when looking for a matching
9857      // tag declaration or definition. See the similar lookup tweak
9858      // in Sema::LookupName; is there a better way to deal with this?
9859      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
9860        SearchDC = SearchDC->getParent();
9861    }
9862  } else if (S->isFunctionPrototypeScope()) {
9863    // If this is an enum declaration in function prototype scope, set its
9864    // initial context to the translation unit.
9865    // FIXME: [citation needed]
9866    SearchDC = Context.getTranslationUnitDecl();
9867  }
9868
9869  if (Previous.isSingleResult() &&
9870      Previous.getFoundDecl()->isTemplateParameter()) {
9871    // Maybe we will complain about the shadowed template parameter.
9872    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
9873    // Just pretend that we didn't see the previous declaration.
9874    Previous.clear();
9875  }
9876
9877  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
9878      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
9879    // This is a declaration of or a reference to "std::bad_alloc".
9880    isStdBadAlloc = true;
9881
9882    if (Previous.empty() && StdBadAlloc) {
9883      // std::bad_alloc has been implicitly declared (but made invisible to
9884      // name lookup). Fill in this implicit declaration as the previous
9885      // declaration, so that the declarations get chained appropriately.
9886      Previous.addDecl(getStdBadAlloc());
9887    }
9888  }
9889
9890  // If we didn't find a previous declaration, and this is a reference
9891  // (or friend reference), move to the correct scope.  In C++, we
9892  // also need to do a redeclaration lookup there, just in case
9893  // there's a shadow friend decl.
9894  if (Name && Previous.empty() &&
9895      (TUK == TUK_Reference || TUK == TUK_Friend)) {
9896    if (Invalid) goto CreateNewDecl;
9897    assert(SS.isEmpty());
9898
9899    if (TUK == TUK_Reference) {
9900      // C++ [basic.scope.pdecl]p5:
9901      //   -- for an elaborated-type-specifier of the form
9902      //
9903      //          class-key identifier
9904      //
9905      //      if the elaborated-type-specifier is used in the
9906      //      decl-specifier-seq or parameter-declaration-clause of a
9907      //      function defined in namespace scope, the identifier is
9908      //      declared as a class-name in the namespace that contains
9909      //      the declaration; otherwise, except as a friend
9910      //      declaration, the identifier is declared in the smallest
9911      //      non-class, non-function-prototype scope that contains the
9912      //      declaration.
9913      //
9914      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
9915      // C structs and unions.
9916      //
9917      // It is an error in C++ to declare (rather than define) an enum
9918      // type, including via an elaborated type specifier.  We'll
9919      // diagnose that later; for now, declare the enum in the same
9920      // scope as we would have picked for any other tag type.
9921      //
9922      // GNU C also supports this behavior as part of its incomplete
9923      // enum types extension, while GNU C++ does not.
9924      //
9925      // Find the context where we'll be declaring the tag.
9926      // FIXME: We would like to maintain the current DeclContext as the
9927      // lexical context,
9928      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
9929        SearchDC = SearchDC->getParent();
9930
9931      // Find the scope where we'll be declaring the tag.
9932      while (S->isClassScope() ||
9933             (getLangOpts().CPlusPlus &&
9934              S->isFunctionPrototypeScope()) ||
9935             ((S->getFlags() & Scope::DeclScope) == 0) ||
9936             (S->getEntity() &&
9937              ((DeclContext *)S->getEntity())->isTransparentContext()))
9938        S = S->getParent();
9939    } else {
9940      assert(TUK == TUK_Friend);
9941      // C++ [namespace.memdef]p3:
9942      //   If a friend declaration in a non-local class first declares a
9943      //   class or function, the friend class or function is a member of
9944      //   the innermost enclosing namespace.
9945      SearchDC = SearchDC->getEnclosingNamespaceContext();
9946    }
9947
9948    // In C++, we need to do a redeclaration lookup to properly
9949    // diagnose some problems.
9950    if (getLangOpts().CPlusPlus) {
9951      Previous.setRedeclarationKind(ForRedeclaration);
9952      LookupQualifiedName(Previous, SearchDC);
9953    }
9954  }
9955
9956  if (!Previous.empty()) {
9957    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
9958
9959    // It's okay to have a tag decl in the same scope as a typedef
9960    // which hides a tag decl in the same scope.  Finding this
9961    // insanity with a redeclaration lookup can only actually happen
9962    // in C++.
9963    //
9964    // This is also okay for elaborated-type-specifiers, which is
9965    // technically forbidden by the current standard but which is
9966    // okay according to the likely resolution of an open issue;
9967    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
9968    if (getLangOpts().CPlusPlus) {
9969      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
9970        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
9971          TagDecl *Tag = TT->getDecl();
9972          if (Tag->getDeclName() == Name &&
9973              Tag->getDeclContext()->getRedeclContext()
9974                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
9975            PrevDecl = Tag;
9976            Previous.clear();
9977            Previous.addDecl(Tag);
9978            Previous.resolveKind();
9979          }
9980        }
9981      }
9982    }
9983
9984    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
9985      // If this is a use of a previous tag, or if the tag is already declared
9986      // in the same scope (so that the definition/declaration completes or
9987      // rementions the tag), reuse the decl.
9988      if (TUK == TUK_Reference || TUK == TUK_Friend ||
9989          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
9990        // Make sure that this wasn't declared as an enum and now used as a
9991        // struct or something similar.
9992        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
9993                                          TUK == TUK_Definition, KWLoc,
9994                                          *Name)) {
9995          bool SafeToContinue
9996            = (PrevTagDecl->getTagKind() != TTK_Enum &&
9997               Kind != TTK_Enum);
9998          if (SafeToContinue)
9999            Diag(KWLoc, diag::err_use_with_wrong_tag)
10000              << Name
10001              << FixItHint::CreateReplacement(SourceRange(KWLoc),
10002                                              PrevTagDecl->getKindName());
10003          else
10004            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
10005          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
10006
10007          if (SafeToContinue)
10008            Kind = PrevTagDecl->getTagKind();
10009          else {
10010            // Recover by making this an anonymous redefinition.
10011            Name = 0;
10012            Previous.clear();
10013            Invalid = true;
10014          }
10015        }
10016
10017        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
10018          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
10019
10020          // If this is an elaborated-type-specifier for a scoped enumeration,
10021          // the 'class' keyword is not necessary and not permitted.
10022          if (TUK == TUK_Reference || TUK == TUK_Friend) {
10023            if (ScopedEnum)
10024              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
10025                << PrevEnum->isScoped()
10026                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
10027            return PrevTagDecl;
10028          }
10029
10030          QualType EnumUnderlyingTy;
10031          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10032            EnumUnderlyingTy = TI->getType();
10033          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
10034            EnumUnderlyingTy = QualType(T, 0);
10035
10036          // All conflicts with previous declarations are recovered by
10037          // returning the previous declaration, unless this is a definition,
10038          // in which case we want the caller to bail out.
10039          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
10040                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
10041            return TUK == TUK_Declaration ? PrevTagDecl : 0;
10042        }
10043
10044        // C++11 [class.mem]p1:
10045        //   A member shall not be declared twice in the member-specification,
10046        //   except that a nested class or member class template can be declared
10047        //   and then later defined.
10048        if (TUK == TUK_Declaration && PrevDecl->isCXXClassMember() &&
10049            S->isDeclScope(PrevDecl)) {
10050          Diag(NameLoc, diag::ext_member_redeclared);
10051          Diag(PrevTagDecl->getLocation(), diag::note_previous_declaration);
10052        }
10053
10054        if (!Invalid) {
10055          // If this is a use, just return the declaration we found.
10056
10057          // FIXME: In the future, return a variant or some other clue
10058          // for the consumer of this Decl to know it doesn't own it.
10059          // For our current ASTs this shouldn't be a problem, but will
10060          // need to be changed with DeclGroups.
10061          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
10062               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
10063            return PrevTagDecl;
10064
10065          // Diagnose attempts to redefine a tag.
10066          if (TUK == TUK_Definition) {
10067            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
10068              // If we're defining a specialization and the previous definition
10069              // is from an implicit instantiation, don't emit an error
10070              // here; we'll catch this in the general case below.
10071              bool IsExplicitSpecializationAfterInstantiation = false;
10072              if (isExplicitSpecialization) {
10073                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
10074                  IsExplicitSpecializationAfterInstantiation =
10075                    RD->getTemplateSpecializationKind() !=
10076                    TSK_ExplicitSpecialization;
10077                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
10078                  IsExplicitSpecializationAfterInstantiation =
10079                    ED->getTemplateSpecializationKind() !=
10080                    TSK_ExplicitSpecialization;
10081              }
10082
10083              if (!IsExplicitSpecializationAfterInstantiation) {
10084                // A redeclaration in function prototype scope in C isn't
10085                // visible elsewhere, so merely issue a warning.
10086                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
10087                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
10088                else
10089                  Diag(NameLoc, diag::err_redefinition) << Name;
10090                Diag(Def->getLocation(), diag::note_previous_definition);
10091                // If this is a redefinition, recover by making this
10092                // struct be anonymous, which will make any later
10093                // references get the previous definition.
10094                Name = 0;
10095                Previous.clear();
10096                Invalid = true;
10097              }
10098            } else {
10099              // If the type is currently being defined, complain
10100              // about a nested redefinition.
10101              const TagType *Tag
10102                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
10103              if (Tag->isBeingDefined()) {
10104                Diag(NameLoc, diag::err_nested_redefinition) << Name;
10105                Diag(PrevTagDecl->getLocation(),
10106                     diag::note_previous_definition);
10107                Name = 0;
10108                Previous.clear();
10109                Invalid = true;
10110              }
10111            }
10112
10113            // Okay, this is definition of a previously declared or referenced
10114            // tag PrevDecl. We're going to create a new Decl for it.
10115          }
10116        }
10117        // If we get here we have (another) forward declaration or we
10118        // have a definition.  Just create a new decl.
10119
10120      } else {
10121        // If we get here, this is a definition of a new tag type in a nested
10122        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
10123        // new decl/type.  We set PrevDecl to NULL so that the entities
10124        // have distinct types.
10125        Previous.clear();
10126      }
10127      // If we get here, we're going to create a new Decl. If PrevDecl
10128      // is non-NULL, it's a definition of the tag declared by
10129      // PrevDecl. If it's NULL, we have a new definition.
10130
10131
10132    // Otherwise, PrevDecl is not a tag, but was found with tag
10133    // lookup.  This is only actually possible in C++, where a few
10134    // things like templates still live in the tag namespace.
10135    } else {
10136      // Use a better diagnostic if an elaborated-type-specifier
10137      // found the wrong kind of type on the first
10138      // (non-redeclaration) lookup.
10139      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
10140          !Previous.isForRedeclaration()) {
10141        unsigned Kind = 0;
10142        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10143        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10144        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10145        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
10146        Diag(PrevDecl->getLocation(), diag::note_declared_at);
10147        Invalid = true;
10148
10149      // Otherwise, only diagnose if the declaration is in scope.
10150      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
10151                                isExplicitSpecialization)) {
10152        // do nothing
10153
10154      // Diagnose implicit declarations introduced by elaborated types.
10155      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
10156        unsigned Kind = 0;
10157        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
10158        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
10159        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
10160        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
10161        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10162        Invalid = true;
10163
10164      // Otherwise it's a declaration.  Call out a particularly common
10165      // case here.
10166      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
10167        unsigned Kind = 0;
10168        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
10169        Diag(NameLoc, diag::err_tag_definition_of_typedef)
10170          << Name << Kind << TND->getUnderlyingType();
10171        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
10172        Invalid = true;
10173
10174      // Otherwise, diagnose.
10175      } else {
10176        // The tag name clashes with something else in the target scope,
10177        // issue an error and recover by making this tag be anonymous.
10178        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
10179        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10180        Name = 0;
10181        Invalid = true;
10182      }
10183
10184      // The existing declaration isn't relevant to us; we're in a
10185      // new scope, so clear out the previous declaration.
10186      Previous.clear();
10187    }
10188  }
10189
10190CreateNewDecl:
10191
10192  TagDecl *PrevDecl = 0;
10193  if (Previous.isSingleResult())
10194    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
10195
10196  // If there is an identifier, use the location of the identifier as the
10197  // location of the decl, otherwise use the location of the struct/union
10198  // keyword.
10199  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
10200
10201  // Otherwise, create a new declaration. If there is a previous
10202  // declaration of the same entity, the two will be linked via
10203  // PrevDecl.
10204  TagDecl *New;
10205
10206  bool IsForwardReference = false;
10207  if (Kind == TTK_Enum) {
10208    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10209    // enum X { A, B, C } D;    D should chain to X.
10210    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
10211                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
10212                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
10213    // If this is an undefined enum, warn.
10214    if (TUK != TUK_Definition && !Invalid) {
10215      TagDecl *Def;
10216      if ((getLangOpts().CPlusPlus11 || getLangOpts().ObjC2) &&
10217          cast<EnumDecl>(New)->isFixed()) {
10218        // C++0x: 7.2p2: opaque-enum-declaration.
10219        // Conflicts are diagnosed above. Do nothing.
10220      }
10221      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
10222        Diag(Loc, diag::ext_forward_ref_enum_def)
10223          << New;
10224        Diag(Def->getLocation(), diag::note_previous_definition);
10225      } else {
10226        unsigned DiagID = diag::ext_forward_ref_enum;
10227        if (getLangOpts().MicrosoftMode)
10228          DiagID = diag::ext_ms_forward_ref_enum;
10229        else if (getLangOpts().CPlusPlus)
10230          DiagID = diag::err_forward_ref_enum;
10231        Diag(Loc, DiagID);
10232
10233        // If this is a forward-declared reference to an enumeration, make a
10234        // note of it; we won't actually be introducing the declaration into
10235        // the declaration context.
10236        if (TUK == TUK_Reference)
10237          IsForwardReference = true;
10238      }
10239    }
10240
10241    if (EnumUnderlying) {
10242      EnumDecl *ED = cast<EnumDecl>(New);
10243      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
10244        ED->setIntegerTypeSourceInfo(TI);
10245      else
10246        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
10247      ED->setPromotionType(ED->getIntegerType());
10248    }
10249
10250  } else {
10251    // struct/union/class
10252
10253    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
10254    // struct X { int A; } D;    D should chain to X.
10255    if (getLangOpts().CPlusPlus) {
10256      // FIXME: Look for a way to use RecordDecl for simple structs.
10257      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10258                                  cast_or_null<CXXRecordDecl>(PrevDecl));
10259
10260      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
10261        StdBadAlloc = cast<CXXRecordDecl>(New);
10262    } else
10263      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
10264                               cast_or_null<RecordDecl>(PrevDecl));
10265  }
10266
10267  // Maybe add qualifier info.
10268  if (SS.isNotEmpty()) {
10269    if (SS.isSet()) {
10270      // If this is either a declaration or a definition, check the
10271      // nested-name-specifier against the current context. We don't do this
10272      // for explicit specializations, because they have similar checking
10273      // (with more specific diagnostics) in the call to
10274      // CheckMemberSpecialization, below.
10275      if (!isExplicitSpecialization &&
10276          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
10277          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
10278        Invalid = true;
10279
10280      New->setQualifierInfo(SS.getWithLocInContext(Context));
10281      if (TemplateParameterLists.size() > 0) {
10282        New->setTemplateParameterListsInfo(Context,
10283                                           TemplateParameterLists.size(),
10284                                           TemplateParameterLists.data());
10285      }
10286    }
10287    else
10288      Invalid = true;
10289  }
10290
10291  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
10292    // Add alignment attributes if necessary; these attributes are checked when
10293    // the ASTContext lays out the structure.
10294    //
10295    // It is important for implementing the correct semantics that this
10296    // happen here (in act on tag decl). The #pragma pack stack is
10297    // maintained as a result of parser callbacks which can occur at
10298    // many points during the parsing of a struct declaration (because
10299    // the #pragma tokens are effectively skipped over during the
10300    // parsing of the struct).
10301    if (TUK == TUK_Definition) {
10302      AddAlignmentAttributesForRecord(RD);
10303      AddMsStructLayoutForRecord(RD);
10304    }
10305  }
10306
10307  if (ModulePrivateLoc.isValid()) {
10308    if (isExplicitSpecialization)
10309      Diag(New->getLocation(), diag::err_module_private_specialization)
10310        << 2
10311        << FixItHint::CreateRemoval(ModulePrivateLoc);
10312    // __module_private__ does not apply to local classes. However, we only
10313    // diagnose this as an error when the declaration specifiers are
10314    // freestanding. Here, we just ignore the __module_private__.
10315    else if (!SearchDC->isFunctionOrMethod())
10316      New->setModulePrivate();
10317  }
10318
10319  // If this is a specialization of a member class (of a class template),
10320  // check the specialization.
10321  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
10322    Invalid = true;
10323
10324  if (Invalid)
10325    New->setInvalidDecl();
10326
10327  if (Attr)
10328    ProcessDeclAttributeList(S, New, Attr);
10329
10330  // If we're declaring or defining a tag in function prototype scope
10331  // in C, note that this type can only be used within the function.
10332  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
10333    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
10334
10335  // Set the lexical context. If the tag has a C++ scope specifier, the
10336  // lexical context will be different from the semantic context.
10337  New->setLexicalDeclContext(CurContext);
10338
10339  // Mark this as a friend decl if applicable.
10340  // In Microsoft mode, a friend declaration also acts as a forward
10341  // declaration so we always pass true to setObjectOfFriendDecl to make
10342  // the tag name visible.
10343  if (TUK == TUK_Friend)
10344    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
10345                               (!FriendSawTagOutsideEnclosingNamespace &&
10346                                getLangOpts().MicrosoftExt));
10347
10348  // Set the access specifier.
10349  if (!Invalid && SearchDC->isRecord())
10350    SetMemberAccessSpecifier(New, PrevDecl, AS);
10351
10352  if (TUK == TUK_Definition)
10353    New->startDefinition();
10354
10355  // If this has an identifier, add it to the scope stack.
10356  if (TUK == TUK_Friend) {
10357    // We might be replacing an existing declaration in the lookup tables;
10358    // if so, borrow its access specifier.
10359    if (PrevDecl)
10360      New->setAccess(PrevDecl->getAccess());
10361
10362    DeclContext *DC = New->getDeclContext()->getRedeclContext();
10363    DC->makeDeclVisibleInContext(New);
10364    if (Name) // can be null along some error paths
10365      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
10366        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
10367  } else if (Name) {
10368    S = getNonFieldDeclScope(S);
10369    PushOnScopeChains(New, S, !IsForwardReference);
10370    if (IsForwardReference)
10371      SearchDC->makeDeclVisibleInContext(New);
10372
10373  } else {
10374    CurContext->addDecl(New);
10375  }
10376
10377  // If this is the C FILE type, notify the AST context.
10378  if (IdentifierInfo *II = New->getIdentifier())
10379    if (!New->isInvalidDecl() &&
10380        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
10381        II->isStr("FILE"))
10382      Context.setFILEDecl(New);
10383
10384  // If we were in function prototype scope (and not in C++ mode), add this
10385  // tag to the list of decls to inject into the function definition scope.
10386  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
10387      InFunctionDeclarator && Name)
10388    DeclsInPrototypeScope.push_back(New);
10389
10390  if (PrevDecl)
10391    mergeDeclAttributes(New, PrevDecl);
10392
10393  // If there's a #pragma GCC visibility in scope, set the visibility of this
10394  // record.
10395  AddPushedVisibilityAttribute(New);
10396
10397  OwnedDecl = true;
10398  // In C++, don't return an invalid declaration. We can't recover well from
10399  // the cases where we make the type anonymous.
10400  return (Invalid && getLangOpts().CPlusPlus) ? 0 : New;
10401}
10402
10403void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
10404  AdjustDeclIfTemplate(TagD);
10405  TagDecl *Tag = cast<TagDecl>(TagD);
10406
10407  // Enter the tag context.
10408  PushDeclContext(S, Tag);
10409
10410  ActOnDocumentableDecl(TagD);
10411
10412  // If there's a #pragma GCC visibility in scope, set the visibility of this
10413  // record.
10414  AddPushedVisibilityAttribute(Tag);
10415}
10416
10417Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
10418  assert(isa<ObjCContainerDecl>(IDecl) &&
10419         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
10420  DeclContext *OCD = cast<DeclContext>(IDecl);
10421  assert(getContainingDC(OCD) == CurContext &&
10422      "The next DeclContext should be lexically contained in the current one.");
10423  CurContext = OCD;
10424  return IDecl;
10425}
10426
10427void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
10428                                           SourceLocation FinalLoc,
10429                                           SourceLocation LBraceLoc) {
10430  AdjustDeclIfTemplate(TagD);
10431  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
10432
10433  FieldCollector->StartClass();
10434
10435  if (!Record->getIdentifier())
10436    return;
10437
10438  if (FinalLoc.isValid())
10439    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
10440
10441  // C++ [class]p2:
10442  //   [...] The class-name is also inserted into the scope of the
10443  //   class itself; this is known as the injected-class-name. For
10444  //   purposes of access checking, the injected-class-name is treated
10445  //   as if it were a public member name.
10446  CXXRecordDecl *InjectedClassName
10447    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
10448                            Record->getLocStart(), Record->getLocation(),
10449                            Record->getIdentifier(),
10450                            /*PrevDecl=*/0,
10451                            /*DelayTypeCreation=*/true);
10452  Context.getTypeDeclType(InjectedClassName, Record);
10453  InjectedClassName->setImplicit();
10454  InjectedClassName->setAccess(AS_public);
10455  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
10456      InjectedClassName->setDescribedClassTemplate(Template);
10457  PushOnScopeChains(InjectedClassName, S);
10458  assert(InjectedClassName->isInjectedClassName() &&
10459         "Broken injected-class-name");
10460}
10461
10462void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
10463                                    SourceLocation RBraceLoc) {
10464  AdjustDeclIfTemplate(TagD);
10465  TagDecl *Tag = cast<TagDecl>(TagD);
10466  Tag->setRBraceLoc(RBraceLoc);
10467
10468  // Make sure we "complete" the definition even it is invalid.
10469  if (Tag->isBeingDefined()) {
10470    assert(Tag->isInvalidDecl() && "We should already have completed it");
10471    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10472      RD->completeDefinition();
10473  }
10474
10475  if (isa<CXXRecordDecl>(Tag))
10476    FieldCollector->FinishClass();
10477
10478  // Exit this scope of this tag's definition.
10479  PopDeclContext();
10480
10481  if (getCurLexicalContext()->isObjCContainer() &&
10482      Tag->getDeclContext()->isFileContext())
10483    Tag->setTopLevelDeclInObjCContainer();
10484
10485  // Notify the consumer that we've defined a tag.
10486  Consumer.HandleTagDeclDefinition(Tag);
10487}
10488
10489void Sema::ActOnObjCContainerFinishDefinition() {
10490  // Exit this scope of this interface definition.
10491  PopDeclContext();
10492}
10493
10494void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
10495  assert(DC == CurContext && "Mismatch of container contexts");
10496  OriginalLexicalContext = DC;
10497  ActOnObjCContainerFinishDefinition();
10498}
10499
10500void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
10501  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
10502  OriginalLexicalContext = 0;
10503}
10504
10505void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
10506  AdjustDeclIfTemplate(TagD);
10507  TagDecl *Tag = cast<TagDecl>(TagD);
10508  Tag->setInvalidDecl();
10509
10510  // Make sure we "complete" the definition even it is invalid.
10511  if (Tag->isBeingDefined()) {
10512    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
10513      RD->completeDefinition();
10514  }
10515
10516  // We're undoing ActOnTagStartDefinition here, not
10517  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
10518  // the FieldCollector.
10519
10520  PopDeclContext();
10521}
10522
10523// Note that FieldName may be null for anonymous bitfields.
10524ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
10525                                IdentifierInfo *FieldName,
10526                                QualType FieldTy, Expr *BitWidth,
10527                                bool *ZeroWidth) {
10528  // Default to true; that shouldn't confuse checks for emptiness
10529  if (ZeroWidth)
10530    *ZeroWidth = true;
10531
10532  // C99 6.7.2.1p4 - verify the field type.
10533  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
10534  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
10535    // Handle incomplete types with specific error.
10536    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
10537      return ExprError();
10538    if (FieldName)
10539      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
10540        << FieldName << FieldTy << BitWidth->getSourceRange();
10541    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
10542      << FieldTy << BitWidth->getSourceRange();
10543  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
10544                                             UPPC_BitFieldWidth))
10545    return ExprError();
10546
10547  // If the bit-width is type- or value-dependent, don't try to check
10548  // it now.
10549  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
10550    return Owned(BitWidth);
10551
10552  llvm::APSInt Value;
10553  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
10554  if (ICE.isInvalid())
10555    return ICE;
10556  BitWidth = ICE.take();
10557
10558  if (Value != 0 && ZeroWidth)
10559    *ZeroWidth = false;
10560
10561  // Zero-width bitfield is ok for anonymous field.
10562  if (Value == 0 && FieldName)
10563    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
10564
10565  if (Value.isSigned() && Value.isNegative()) {
10566    if (FieldName)
10567      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
10568               << FieldName << Value.toString(10);
10569    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
10570      << Value.toString(10);
10571  }
10572
10573  if (!FieldTy->isDependentType()) {
10574    uint64_t TypeSize = Context.getTypeSize(FieldTy);
10575    if (Value.getZExtValue() > TypeSize) {
10576      if (!getLangOpts().CPlusPlus) {
10577        if (FieldName)
10578          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
10579            << FieldName << (unsigned)Value.getZExtValue()
10580            << (unsigned)TypeSize;
10581
10582        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
10583          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10584      }
10585
10586      if (FieldName)
10587        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
10588          << FieldName << (unsigned)Value.getZExtValue()
10589          << (unsigned)TypeSize;
10590      else
10591        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
10592          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
10593    }
10594  }
10595
10596  return Owned(BitWidth);
10597}
10598
10599/// ActOnField - Each field of a C struct/union is passed into this in order
10600/// to create a FieldDecl object for it.
10601Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
10602                       Declarator &D, Expr *BitfieldWidth) {
10603  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
10604                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
10605                               /*InitStyle=*/ICIS_NoInit, AS_public);
10606  return Res;
10607}
10608
10609/// HandleField - Analyze a field of a C struct or a C++ data member.
10610///
10611FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
10612                             SourceLocation DeclStart,
10613                             Declarator &D, Expr *BitWidth,
10614                             InClassInitStyle InitStyle,
10615                             AccessSpecifier AS) {
10616  IdentifierInfo *II = D.getIdentifier();
10617  SourceLocation Loc = DeclStart;
10618  if (II) Loc = D.getIdentifierLoc();
10619
10620  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10621  QualType T = TInfo->getType();
10622  if (getLangOpts().CPlusPlus) {
10623    CheckExtraCXXDefaultArguments(D);
10624
10625    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
10626                                        UPPC_DataMemberType)) {
10627      D.setInvalidType();
10628      T = Context.IntTy;
10629      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
10630    }
10631  }
10632
10633  // TR 18037 does not allow fields to be declared with address spaces.
10634  if (T.getQualifiers().hasAddressSpace()) {
10635    Diag(Loc, diag::err_field_with_address_space);
10636    D.setInvalidType();
10637  }
10638
10639  // OpenCL 1.2 spec, s6.9 r:
10640  // The event type cannot be used to declare a structure or union field.
10641  if (LangOpts.OpenCL && T->isEventT()) {
10642    Diag(Loc, diag::err_event_t_struct_field);
10643    D.setInvalidType();
10644  }
10645
10646  DiagnoseFunctionSpecifiers(D.getDeclSpec());
10647
10648  if (DeclSpec::TSCS TSCS = D.getDeclSpec().getThreadStorageClassSpec())
10649    Diag(D.getDeclSpec().getThreadStorageClassSpecLoc(),
10650         diag::err_invalid_thread)
10651      << DeclSpec::getSpecifierName(TSCS);
10652
10653  // Check to see if this name was declared as a member previously
10654  NamedDecl *PrevDecl = 0;
10655  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
10656  LookupName(Previous, S);
10657  switch (Previous.getResultKind()) {
10658    case LookupResult::Found:
10659    case LookupResult::FoundUnresolvedValue:
10660      PrevDecl = Previous.getAsSingle<NamedDecl>();
10661      break;
10662
10663    case LookupResult::FoundOverloaded:
10664      PrevDecl = Previous.getRepresentativeDecl();
10665      break;
10666
10667    case LookupResult::NotFound:
10668    case LookupResult::NotFoundInCurrentInstantiation:
10669    case LookupResult::Ambiguous:
10670      break;
10671  }
10672  Previous.suppressDiagnostics();
10673
10674  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10675    // Maybe we will complain about the shadowed template parameter.
10676    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
10677    // Just pretend that we didn't see the previous declaration.
10678    PrevDecl = 0;
10679  }
10680
10681  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
10682    PrevDecl = 0;
10683
10684  bool Mutable
10685    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
10686  SourceLocation TSSL = D.getLocStart();
10687  FieldDecl *NewFD
10688    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, InitStyle,
10689                     TSSL, AS, PrevDecl, &D);
10690
10691  if (NewFD->isInvalidDecl())
10692    Record->setInvalidDecl();
10693
10694  if (D.getDeclSpec().isModulePrivateSpecified())
10695    NewFD->setModulePrivate();
10696
10697  if (NewFD->isInvalidDecl() && PrevDecl) {
10698    // Don't introduce NewFD into scope; there's already something
10699    // with the same name in the same scope.
10700  } else if (II) {
10701    PushOnScopeChains(NewFD, S);
10702  } else
10703    Record->addDecl(NewFD);
10704
10705  return NewFD;
10706}
10707
10708/// \brief Build a new FieldDecl and check its well-formedness.
10709///
10710/// This routine builds a new FieldDecl given the fields name, type,
10711/// record, etc. \p PrevDecl should refer to any previous declaration
10712/// with the same name and in the same scope as the field to be
10713/// created.
10714///
10715/// \returns a new FieldDecl.
10716///
10717/// \todo The Declarator argument is a hack. It will be removed once
10718FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
10719                                TypeSourceInfo *TInfo,
10720                                RecordDecl *Record, SourceLocation Loc,
10721                                bool Mutable, Expr *BitWidth,
10722                                InClassInitStyle InitStyle,
10723                                SourceLocation TSSL,
10724                                AccessSpecifier AS, NamedDecl *PrevDecl,
10725                                Declarator *D) {
10726  IdentifierInfo *II = Name.getAsIdentifierInfo();
10727  bool InvalidDecl = false;
10728  if (D) InvalidDecl = D->isInvalidType();
10729
10730  // If we receive a broken type, recover by assuming 'int' and
10731  // marking this declaration as invalid.
10732  if (T.isNull()) {
10733    InvalidDecl = true;
10734    T = Context.IntTy;
10735  }
10736
10737  QualType EltTy = Context.getBaseElementType(T);
10738  if (!EltTy->isDependentType()) {
10739    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
10740      // Fields of incomplete type force their record to be invalid.
10741      Record->setInvalidDecl();
10742      InvalidDecl = true;
10743    } else {
10744      NamedDecl *Def;
10745      EltTy->isIncompleteType(&Def);
10746      if (Def && Def->isInvalidDecl()) {
10747        Record->setInvalidDecl();
10748        InvalidDecl = true;
10749      }
10750    }
10751  }
10752
10753  // OpenCL v1.2 s6.9.c: bitfields are not supported.
10754  if (BitWidth && getLangOpts().OpenCL) {
10755    Diag(Loc, diag::err_opencl_bitfields);
10756    InvalidDecl = true;
10757  }
10758
10759  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10760  // than a variably modified type.
10761  if (!InvalidDecl && T->isVariablyModifiedType()) {
10762    bool SizeIsNegative;
10763    llvm::APSInt Oversized;
10764
10765    TypeSourceInfo *FixedTInfo =
10766      TryToFixInvalidVariablyModifiedTypeSourceInfo(TInfo, Context,
10767                                                    SizeIsNegative,
10768                                                    Oversized);
10769    if (FixedTInfo) {
10770      Diag(Loc, diag::warn_illegal_constant_array_size);
10771      TInfo = FixedTInfo;
10772      T = FixedTInfo->getType();
10773    } else {
10774      if (SizeIsNegative)
10775        Diag(Loc, diag::err_typecheck_negative_array_size);
10776      else if (Oversized.getBoolValue())
10777        Diag(Loc, diag::err_array_too_large)
10778          << Oversized.toString(10);
10779      else
10780        Diag(Loc, diag::err_typecheck_field_variable_size);
10781      InvalidDecl = true;
10782    }
10783  }
10784
10785  // Fields can not have abstract class types
10786  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
10787                                             diag::err_abstract_type_in_decl,
10788                                             AbstractFieldType))
10789    InvalidDecl = true;
10790
10791  bool ZeroWidth = false;
10792  // If this is declared as a bit-field, check the bit-field.
10793  if (!InvalidDecl && BitWidth) {
10794    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
10795    if (!BitWidth) {
10796      InvalidDecl = true;
10797      BitWidth = 0;
10798      ZeroWidth = false;
10799    }
10800  }
10801
10802  // Check that 'mutable' is consistent with the type of the declaration.
10803  if (!InvalidDecl && Mutable) {
10804    unsigned DiagID = 0;
10805    if (T->isReferenceType())
10806      DiagID = diag::err_mutable_reference;
10807    else if (T.isConstQualified())
10808      DiagID = diag::err_mutable_const;
10809
10810    if (DiagID) {
10811      SourceLocation ErrLoc = Loc;
10812      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
10813        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
10814      Diag(ErrLoc, DiagID);
10815      Mutable = false;
10816      InvalidDecl = true;
10817    }
10818  }
10819
10820  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
10821                                       BitWidth, Mutable, InitStyle);
10822  if (InvalidDecl)
10823    NewFD->setInvalidDecl();
10824
10825  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
10826    Diag(Loc, diag::err_duplicate_member) << II;
10827    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
10828    NewFD->setInvalidDecl();
10829  }
10830
10831  if (!InvalidDecl && getLangOpts().CPlusPlus) {
10832    if (Record->isUnion()) {
10833      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10834        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
10835        if (RDecl->getDefinition()) {
10836          // C++ [class.union]p1: An object of a class with a non-trivial
10837          // constructor, a non-trivial copy constructor, a non-trivial
10838          // destructor, or a non-trivial copy assignment operator
10839          // cannot be a member of a union, nor can an array of such
10840          // objects.
10841          if (CheckNontrivialField(NewFD))
10842            NewFD->setInvalidDecl();
10843        }
10844      }
10845
10846      // C++ [class.union]p1: If a union contains a member of reference type,
10847      // the program is ill-formed, except when compiling with MSVC extensions
10848      // enabled.
10849      if (EltTy->isReferenceType()) {
10850        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
10851                                    diag::ext_union_member_of_reference_type :
10852                                    diag::err_union_member_of_reference_type)
10853          << NewFD->getDeclName() << EltTy;
10854        if (!getLangOpts().MicrosoftExt)
10855          NewFD->setInvalidDecl();
10856      }
10857    }
10858  }
10859
10860  // FIXME: We need to pass in the attributes given an AST
10861  // representation, not a parser representation.
10862  if (D) {
10863    // FIXME: The current scope is almost... but not entirely... correct here.
10864    ProcessDeclAttributes(getCurScope(), NewFD, *D);
10865
10866    if (NewFD->hasAttrs())
10867      CheckAlignasUnderalignment(NewFD);
10868  }
10869
10870  // In auto-retain/release, infer strong retension for fields of
10871  // retainable type.
10872  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
10873    NewFD->setInvalidDecl();
10874
10875  if (T.isObjCGCWeak())
10876    Diag(Loc, diag::warn_attribute_weak_on_field);
10877
10878  NewFD->setAccess(AS);
10879  return NewFD;
10880}
10881
10882bool Sema::CheckNontrivialField(FieldDecl *FD) {
10883  assert(FD);
10884  assert(getLangOpts().CPlusPlus && "valid check only for C++");
10885
10886  if (FD->isInvalidDecl() || FD->getType()->isDependentType())
10887    return false;
10888
10889  QualType EltTy = Context.getBaseElementType(FD->getType());
10890  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
10891    CXXRecordDecl *RDecl = cast<CXXRecordDecl>(RT->getDecl());
10892    if (RDecl->getDefinition()) {
10893      // We check for copy constructors before constructors
10894      // because otherwise we'll never get complaints about
10895      // copy constructors.
10896
10897      CXXSpecialMember member = CXXInvalid;
10898      // We're required to check for any non-trivial constructors. Since the
10899      // implicit default constructor is suppressed if there are any
10900      // user-declared constructors, we just need to check that there is a
10901      // trivial default constructor and a trivial copy constructor. (We don't
10902      // worry about move constructors here, since this is a C++98 check.)
10903      if (RDecl->hasNonTrivialCopyConstructor())
10904        member = CXXCopyConstructor;
10905      else if (!RDecl->hasTrivialDefaultConstructor())
10906        member = CXXDefaultConstructor;
10907      else if (RDecl->hasNonTrivialCopyAssignment())
10908        member = CXXCopyAssignment;
10909      else if (RDecl->hasNonTrivialDestructor())
10910        member = CXXDestructor;
10911
10912      if (member != CXXInvalid) {
10913        if (!getLangOpts().CPlusPlus11 &&
10914            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
10915          // Objective-C++ ARC: it is an error to have a non-trivial field of
10916          // a union. However, system headers in Objective-C programs
10917          // occasionally have Objective-C lifetime objects within unions,
10918          // and rather than cause the program to fail, we make those
10919          // members unavailable.
10920          SourceLocation Loc = FD->getLocation();
10921          if (getSourceManager().isInSystemHeader(Loc)) {
10922            if (!FD->hasAttr<UnavailableAttr>())
10923              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
10924                                  "this system field has retaining ownership"));
10925            return false;
10926          }
10927        }
10928
10929        Diag(FD->getLocation(), getLangOpts().CPlusPlus11 ?
10930               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
10931               diag::err_illegal_union_or_anon_struct_member)
10932          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
10933        DiagnoseNontrivial(RDecl, member);
10934        return !getLangOpts().CPlusPlus11;
10935      }
10936    }
10937  }
10938
10939  return false;
10940}
10941
10942/// TranslateIvarVisibility - Translate visibility from a token ID to an
10943///  AST enum value.
10944static ObjCIvarDecl::AccessControl
10945TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
10946  switch (ivarVisibility) {
10947  default: llvm_unreachable("Unknown visitibility kind");
10948  case tok::objc_private: return ObjCIvarDecl::Private;
10949  case tok::objc_public: return ObjCIvarDecl::Public;
10950  case tok::objc_protected: return ObjCIvarDecl::Protected;
10951  case tok::objc_package: return ObjCIvarDecl::Package;
10952  }
10953}
10954
10955/// ActOnIvar - Each ivar field of an objective-c class is passed into this
10956/// in order to create an IvarDecl object for it.
10957Decl *Sema::ActOnIvar(Scope *S,
10958                                SourceLocation DeclStart,
10959                                Declarator &D, Expr *BitfieldWidth,
10960                                tok::ObjCKeywordKind Visibility) {
10961
10962  IdentifierInfo *II = D.getIdentifier();
10963  Expr *BitWidth = (Expr*)BitfieldWidth;
10964  SourceLocation Loc = DeclStart;
10965  if (II) Loc = D.getIdentifierLoc();
10966
10967  // FIXME: Unnamed fields can be handled in various different ways, for
10968  // example, unnamed unions inject all members into the struct namespace!
10969
10970  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
10971  QualType T = TInfo->getType();
10972
10973  if (BitWidth) {
10974    // 6.7.2.1p3, 6.7.2.1p4
10975    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
10976    if (!BitWidth)
10977      D.setInvalidType();
10978  } else {
10979    // Not a bitfield.
10980
10981    // validate II.
10982
10983  }
10984  if (T->isReferenceType()) {
10985    Diag(Loc, diag::err_ivar_reference_type);
10986    D.setInvalidType();
10987  }
10988  // C99 6.7.2.1p8: A member of a structure or union may have any type other
10989  // than a variably modified type.
10990  else if (T->isVariablyModifiedType()) {
10991    Diag(Loc, diag::err_typecheck_ivar_variable_size);
10992    D.setInvalidType();
10993  }
10994
10995  // Get the visibility (access control) for this ivar.
10996  ObjCIvarDecl::AccessControl ac =
10997    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
10998                                        : ObjCIvarDecl::None;
10999  // Must set ivar's DeclContext to its enclosing interface.
11000  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
11001  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
11002    return 0;
11003  ObjCContainerDecl *EnclosingContext;
11004  if (ObjCImplementationDecl *IMPDecl =
11005      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11006    if (LangOpts.ObjCRuntime.isFragile()) {
11007    // Case of ivar declared in an implementation. Context is that of its class.
11008      EnclosingContext = IMPDecl->getClassInterface();
11009      assert(EnclosingContext && "Implementation has no class interface!");
11010    }
11011    else
11012      EnclosingContext = EnclosingDecl;
11013  } else {
11014    if (ObjCCategoryDecl *CDecl =
11015        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11016      if (LangOpts.ObjCRuntime.isFragile() || !CDecl->IsClassExtension()) {
11017        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
11018        return 0;
11019      }
11020    }
11021    EnclosingContext = EnclosingDecl;
11022  }
11023
11024  // Construct the decl.
11025  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
11026                                             DeclStart, Loc, II, T,
11027                                             TInfo, ac, (Expr *)BitfieldWidth);
11028
11029  if (II) {
11030    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
11031                                           ForRedeclaration);
11032    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
11033        && !isa<TagDecl>(PrevDecl)) {
11034      Diag(Loc, diag::err_duplicate_member) << II;
11035      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
11036      NewID->setInvalidDecl();
11037    }
11038  }
11039
11040  // Process attributes attached to the ivar.
11041  ProcessDeclAttributes(S, NewID, D);
11042
11043  if (D.isInvalidType())
11044    NewID->setInvalidDecl();
11045
11046  // In ARC, infer 'retaining' for ivars of retainable type.
11047  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
11048    NewID->setInvalidDecl();
11049
11050  if (D.getDeclSpec().isModulePrivateSpecified())
11051    NewID->setModulePrivate();
11052
11053  if (II) {
11054    // FIXME: When interfaces are DeclContexts, we'll need to add
11055    // these to the interface.
11056    S->AddDecl(NewID);
11057    IdResolver.AddDecl(NewID);
11058  }
11059
11060  if (LangOpts.ObjCRuntime.isNonFragile() &&
11061      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
11062    Diag(Loc, diag::warn_ivars_in_interface);
11063
11064  return NewID;
11065}
11066
11067/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
11068/// class and class extensions. For every class \@interface and class
11069/// extension \@interface, if the last ivar is a bitfield of any type,
11070/// then add an implicit `char :0` ivar to the end of that interface.
11071void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
11072                             SmallVectorImpl<Decl *> &AllIvarDecls) {
11073  if (LangOpts.ObjCRuntime.isFragile() || AllIvarDecls.empty())
11074    return;
11075
11076  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
11077  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
11078
11079  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
11080    return;
11081  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
11082  if (!ID) {
11083    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
11084      if (!CD->IsClassExtension())
11085        return;
11086    }
11087    // No need to add this to end of @implementation.
11088    else
11089      return;
11090  }
11091  // All conditions are met. Add a new bitfield to the tail end of ivars.
11092  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
11093  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
11094
11095  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
11096                              DeclLoc, DeclLoc, 0,
11097                              Context.CharTy,
11098                              Context.getTrivialTypeSourceInfo(Context.CharTy,
11099                                                               DeclLoc),
11100                              ObjCIvarDecl::Private, BW,
11101                              true);
11102  AllIvarDecls.push_back(Ivar);
11103}
11104
11105void Sema::ActOnFields(Scope* S,
11106                       SourceLocation RecLoc, Decl *EnclosingDecl,
11107                       llvm::ArrayRef<Decl *> Fields,
11108                       SourceLocation LBrac, SourceLocation RBrac,
11109                       AttributeList *Attr) {
11110  assert(EnclosingDecl && "missing record or interface decl");
11111
11112  // If this is an Objective-C @implementation or category and we have
11113  // new fields here we should reset the layout of the interface since
11114  // it will now change.
11115  if (!Fields.empty() && isa<ObjCContainerDecl>(EnclosingDecl)) {
11116    ObjCContainerDecl *DC = cast<ObjCContainerDecl>(EnclosingDecl);
11117    switch (DC->getKind()) {
11118    default: break;
11119    case Decl::ObjCCategory:
11120      Context.ResetObjCLayout(cast<ObjCCategoryDecl>(DC)->getClassInterface());
11121      break;
11122    case Decl::ObjCImplementation:
11123      Context.
11124        ResetObjCLayout(cast<ObjCImplementationDecl>(DC)->getClassInterface());
11125      break;
11126    }
11127  }
11128
11129  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
11130
11131  // Start counting up the number of named members; make sure to include
11132  // members of anonymous structs and unions in the total.
11133  unsigned NumNamedMembers = 0;
11134  if (Record) {
11135    for (RecordDecl::decl_iterator i = Record->decls_begin(),
11136                                   e = Record->decls_end(); i != e; i++) {
11137      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
11138        if (IFD->getDeclName())
11139          ++NumNamedMembers;
11140    }
11141  }
11142
11143  // Verify that all the fields are okay.
11144  SmallVector<FieldDecl*, 32> RecFields;
11145
11146  bool ARCErrReported = false;
11147  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
11148       i != end; ++i) {
11149    FieldDecl *FD = cast<FieldDecl>(*i);
11150
11151    // Get the type for the field.
11152    const Type *FDTy = FD->getType().getTypePtr();
11153
11154    if (!FD->isAnonymousStructOrUnion()) {
11155      // Remember all fields written by the user.
11156      RecFields.push_back(FD);
11157    }
11158
11159    // If the field is already invalid for some reason, don't emit more
11160    // diagnostics about it.
11161    if (FD->isInvalidDecl()) {
11162      EnclosingDecl->setInvalidDecl();
11163      continue;
11164    }
11165
11166    // C99 6.7.2.1p2:
11167    //   A structure or union shall not contain a member with
11168    //   incomplete or function type (hence, a structure shall not
11169    //   contain an instance of itself, but may contain a pointer to
11170    //   an instance of itself), except that the last member of a
11171    //   structure with more than one named member may have incomplete
11172    //   array type; such a structure (and any union containing,
11173    //   possibly recursively, a member that is such a structure)
11174    //   shall not be a member of a structure or an element of an
11175    //   array.
11176    if (FDTy->isFunctionType()) {
11177      // Field declared as a function.
11178      Diag(FD->getLocation(), diag::err_field_declared_as_function)
11179        << FD->getDeclName();
11180      FD->setInvalidDecl();
11181      EnclosingDecl->setInvalidDecl();
11182      continue;
11183    } else if (FDTy->isIncompleteArrayType() && Record &&
11184               ((i + 1 == Fields.end() && !Record->isUnion()) ||
11185                ((getLangOpts().MicrosoftExt ||
11186                  getLangOpts().CPlusPlus) &&
11187                 (i + 1 == Fields.end() || Record->isUnion())))) {
11188      // Flexible array member.
11189      // Microsoft and g++ is more permissive regarding flexible array.
11190      // It will accept flexible array in union and also
11191      // as the sole element of a struct/class.
11192      if (getLangOpts().MicrosoftExt) {
11193        if (Record->isUnion())
11194          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
11195            << FD->getDeclName();
11196        else if (Fields.size() == 1)
11197          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
11198            << FD->getDeclName() << Record->getTagKind();
11199      } else if (getLangOpts().CPlusPlus) {
11200        if (Record->isUnion())
11201          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11202            << FD->getDeclName();
11203        else if (Fields.size() == 1)
11204          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
11205            << FD->getDeclName() << Record->getTagKind();
11206      } else if (!getLangOpts().C99) {
11207      if (Record->isUnion())
11208        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
11209          << FD->getDeclName();
11210      else
11211        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
11212          << FD->getDeclName() << Record->getTagKind();
11213      } else if (NumNamedMembers < 1) {
11214        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
11215          << FD->getDeclName();
11216        FD->setInvalidDecl();
11217        EnclosingDecl->setInvalidDecl();
11218        continue;
11219      }
11220      if (!FD->getType()->isDependentType() &&
11221          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
11222        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
11223          << FD->getDeclName() << FD->getType();
11224        FD->setInvalidDecl();
11225        EnclosingDecl->setInvalidDecl();
11226        continue;
11227      }
11228      // Okay, we have a legal flexible array member at the end of the struct.
11229      if (Record)
11230        Record->setHasFlexibleArrayMember(true);
11231    } else if (!FDTy->isDependentType() &&
11232               RequireCompleteType(FD->getLocation(), FD->getType(),
11233                                   diag::err_field_incomplete)) {
11234      // Incomplete type
11235      FD->setInvalidDecl();
11236      EnclosingDecl->setInvalidDecl();
11237      continue;
11238    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
11239      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
11240        // If this is a member of a union, then entire union becomes "flexible".
11241        if (Record && Record->isUnion()) {
11242          Record->setHasFlexibleArrayMember(true);
11243        } else {
11244          // If this is a struct/class and this is not the last element, reject
11245          // it.  Note that GCC supports variable sized arrays in the middle of
11246          // structures.
11247          if (i + 1 != Fields.end())
11248            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
11249              << FD->getDeclName() << FD->getType();
11250          else {
11251            // We support flexible arrays at the end of structs in
11252            // other structs as an extension.
11253            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
11254              << FD->getDeclName();
11255            if (Record)
11256              Record->setHasFlexibleArrayMember(true);
11257          }
11258        }
11259      }
11260      if (isa<ObjCContainerDecl>(EnclosingDecl) &&
11261          RequireNonAbstractType(FD->getLocation(), FD->getType(),
11262                                 diag::err_abstract_type_in_decl,
11263                                 AbstractIvarType)) {
11264        // Ivars can not have abstract class types
11265        FD->setInvalidDecl();
11266      }
11267      if (Record && FDTTy->getDecl()->hasObjectMember())
11268        Record->setHasObjectMember(true);
11269      if (Record && FDTTy->getDecl()->hasVolatileMember())
11270        Record->setHasVolatileMember(true);
11271    } else if (FDTy->isObjCObjectType()) {
11272      /// A field cannot be an Objective-c object
11273      Diag(FD->getLocation(), diag::err_statically_allocated_object)
11274        << FixItHint::CreateInsertion(FD->getLocation(), "*");
11275      QualType T = Context.getObjCObjectPointerType(FD->getType());
11276      FD->setType(T);
11277    } else if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported &&
11278               (!getLangOpts().CPlusPlus || Record->isUnion())) {
11279      // It's an error in ARC if a field has lifetime.
11280      // We don't want to report this in a system header, though,
11281      // so we just make the field unavailable.
11282      // FIXME: that's really not sufficient; we need to make the type
11283      // itself invalid to, say, initialize or copy.
11284      QualType T = FD->getType();
11285      Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
11286      if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
11287        SourceLocation loc = FD->getLocation();
11288        if (getSourceManager().isInSystemHeader(loc)) {
11289          if (!FD->hasAttr<UnavailableAttr>()) {
11290            FD->addAttr(new (Context) UnavailableAttr(loc, Context,
11291                              "this system field has retaining ownership"));
11292          }
11293        } else {
11294          Diag(FD->getLocation(), diag::err_arc_objc_object_in_tag)
11295            << T->isBlockPointerType() << Record->getTagKind();
11296        }
11297        ARCErrReported = true;
11298      }
11299    } else if (getLangOpts().ObjC1 &&
11300               getLangOpts().getGC() != LangOptions::NonGC &&
11301               Record && !Record->hasObjectMember()) {
11302      if (FD->getType()->isObjCObjectPointerType() ||
11303          FD->getType().isObjCGCStrong())
11304        Record->setHasObjectMember(true);
11305      else if (Context.getAsArrayType(FD->getType())) {
11306        QualType BaseType = Context.getBaseElementType(FD->getType());
11307        if (BaseType->isRecordType() &&
11308            BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
11309          Record->setHasObjectMember(true);
11310        else if (BaseType->isObjCObjectPointerType() ||
11311                 BaseType.isObjCGCStrong())
11312               Record->setHasObjectMember(true);
11313      }
11314    }
11315    if (Record && FD->getType().isVolatileQualified())
11316      Record->setHasVolatileMember(true);
11317    // Keep track of the number of named members.
11318    if (FD->getIdentifier())
11319      ++NumNamedMembers;
11320  }
11321
11322  // Okay, we successfully defined 'Record'.
11323  if (Record) {
11324    bool Completed = false;
11325    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
11326      if (!CXXRecord->isInvalidDecl()) {
11327        // Set access bits correctly on the directly-declared conversions.
11328        for (CXXRecordDecl::conversion_iterator
11329               I = CXXRecord->conversion_begin(),
11330               E = CXXRecord->conversion_end(); I != E; ++I)
11331          I.setAccess((*I)->getAccess());
11332
11333        if (!CXXRecord->isDependentType()) {
11334          if (CXXRecord->hasUserDeclaredDestructor()) {
11335            // Adjust user-defined destructor exception spec.
11336            if (getLangOpts().CPlusPlus11)
11337              AdjustDestructorExceptionSpec(CXXRecord,
11338                                            CXXRecord->getDestructor());
11339
11340            // The Microsoft ABI requires that we perform the destructor body
11341            // checks (i.e. operator delete() lookup) at every declaration, as
11342            // any translation unit may need to emit a deleting destructor.
11343            if (Context.getTargetInfo().getCXXABI().isMicrosoft())
11344              CheckDestructor(CXXRecord->getDestructor());
11345          }
11346
11347          // Add any implicitly-declared members to this class.
11348          AddImplicitlyDeclaredMembersToClass(CXXRecord);
11349
11350          // If we have virtual base classes, we may end up finding multiple
11351          // final overriders for a given virtual function. Check for this
11352          // problem now.
11353          if (CXXRecord->getNumVBases()) {
11354            CXXFinalOverriderMap FinalOverriders;
11355            CXXRecord->getFinalOverriders(FinalOverriders);
11356
11357            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
11358                                             MEnd = FinalOverriders.end();
11359                 M != MEnd; ++M) {
11360              for (OverridingMethods::iterator SO = M->second.begin(),
11361                                            SOEnd = M->second.end();
11362                   SO != SOEnd; ++SO) {
11363                assert(SO->second.size() > 0 &&
11364                       "Virtual function without overridding functions?");
11365                if (SO->second.size() == 1)
11366                  continue;
11367
11368                // C++ [class.virtual]p2:
11369                //   In a derived class, if a virtual member function of a base
11370                //   class subobject has more than one final overrider the
11371                //   program is ill-formed.
11372                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
11373                  << (const NamedDecl *)M->first << Record;
11374                Diag(M->first->getLocation(),
11375                     diag::note_overridden_virtual_function);
11376                for (OverridingMethods::overriding_iterator
11377                          OM = SO->second.begin(),
11378                       OMEnd = SO->second.end();
11379                     OM != OMEnd; ++OM)
11380                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
11381                    << (const NamedDecl *)M->first << OM->Method->getParent();
11382
11383                Record->setInvalidDecl();
11384              }
11385            }
11386            CXXRecord->completeDefinition(&FinalOverriders);
11387            Completed = true;
11388          }
11389        }
11390      }
11391    }
11392
11393    if (!Completed)
11394      Record->completeDefinition();
11395
11396    if (Record->hasAttrs())
11397      CheckAlignasUnderalignment(Record);
11398
11399    // Check if the structure/union declaration is a language extension.
11400    if (!getLangOpts().CPlusPlus) {
11401      bool ZeroSize = true;
11402      bool IsEmpty = true;
11403      unsigned NonBitFields = 0;
11404      for (RecordDecl::field_iterator I = Record->field_begin(),
11405                                      E = Record->field_end();
11406           (NonBitFields == 0 || ZeroSize) && I != E; ++I) {
11407        IsEmpty = false;
11408        if (I->isUnnamedBitfield()) {
11409          if (I->getBitWidthValue(Context) > 0)
11410            ZeroSize = false;
11411        } else {
11412          ++NonBitFields;
11413          QualType FieldType = I->getType();
11414          if (FieldType->isIncompleteType() ||
11415              !Context.getTypeSizeInChars(FieldType).isZero())
11416            ZeroSize = false;
11417        }
11418      }
11419
11420      // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
11421      // C++.
11422      if (ZeroSize)
11423        Diag(RecLoc, diag::warn_zero_size_struct_union_compat) << IsEmpty
11424            << Record->isUnion() << (NonBitFields > 1);
11425
11426      // Structs without named members are extension in C (C99 6.7.2.1p7), but
11427      // are accepted by GCC.
11428      if (NonBitFields == 0) {
11429        if (IsEmpty)
11430          Diag(RecLoc, diag::ext_empty_struct_union) << Record->isUnion();
11431        else
11432          Diag(RecLoc, diag::ext_no_named_members_in_struct_union) << Record->isUnion();
11433      }
11434    }
11435  } else {
11436    ObjCIvarDecl **ClsFields =
11437      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
11438    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
11439      ID->setEndOfDefinitionLoc(RBrac);
11440      // Add ivar's to class's DeclContext.
11441      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11442        ClsFields[i]->setLexicalDeclContext(ID);
11443        ID->addDecl(ClsFields[i]);
11444      }
11445      // Must enforce the rule that ivars in the base classes may not be
11446      // duplicates.
11447      if (ID->getSuperClass())
11448        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
11449    } else if (ObjCImplementationDecl *IMPDecl =
11450                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
11451      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
11452      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
11453        // Ivar declared in @implementation never belongs to the implementation.
11454        // Only it is in implementation's lexical context.
11455        ClsFields[I]->setLexicalDeclContext(IMPDecl);
11456      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
11457      IMPDecl->setIvarLBraceLoc(LBrac);
11458      IMPDecl->setIvarRBraceLoc(RBrac);
11459    } else if (ObjCCategoryDecl *CDecl =
11460                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
11461      // case of ivars in class extension; all other cases have been
11462      // reported as errors elsewhere.
11463      // FIXME. Class extension does not have a LocEnd field.
11464      // CDecl->setLocEnd(RBrac);
11465      // Add ivar's to class extension's DeclContext.
11466      // Diagnose redeclaration of private ivars.
11467      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
11468      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
11469        if (IDecl) {
11470          if (const ObjCIvarDecl *ClsIvar =
11471              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
11472            Diag(ClsFields[i]->getLocation(),
11473                 diag::err_duplicate_ivar_declaration);
11474            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
11475            continue;
11476          }
11477          for (ObjCInterfaceDecl::known_extensions_iterator
11478                 Ext = IDecl->known_extensions_begin(),
11479                 ExtEnd = IDecl->known_extensions_end();
11480               Ext != ExtEnd; ++Ext) {
11481            if (const ObjCIvarDecl *ClsExtIvar
11482                  = Ext->getIvarDecl(ClsFields[i]->getIdentifier())) {
11483              Diag(ClsFields[i]->getLocation(),
11484                   diag::err_duplicate_ivar_declaration);
11485              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
11486              continue;
11487            }
11488          }
11489        }
11490        ClsFields[i]->setLexicalDeclContext(CDecl);
11491        CDecl->addDecl(ClsFields[i]);
11492      }
11493      CDecl->setIvarLBraceLoc(LBrac);
11494      CDecl->setIvarRBraceLoc(RBrac);
11495    }
11496  }
11497
11498  if (Attr)
11499    ProcessDeclAttributeList(S, Record, Attr);
11500}
11501
11502/// \brief Determine whether the given integral value is representable within
11503/// the given type T.
11504static bool isRepresentableIntegerValue(ASTContext &Context,
11505                                        llvm::APSInt &Value,
11506                                        QualType T) {
11507  assert(T->isIntegralType(Context) && "Integral type required!");
11508  unsigned BitWidth = Context.getIntWidth(T);
11509
11510  if (Value.isUnsigned() || Value.isNonNegative()) {
11511    if (T->isSignedIntegerOrEnumerationType())
11512      --BitWidth;
11513    return Value.getActiveBits() <= BitWidth;
11514  }
11515  return Value.getMinSignedBits() <= BitWidth;
11516}
11517
11518// \brief Given an integral type, return the next larger integral type
11519// (or a NULL type of no such type exists).
11520static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
11521  // FIXME: Int128/UInt128 support, which also needs to be introduced into
11522  // enum checking below.
11523  assert(T->isIntegralType(Context) && "Integral type required!");
11524  const unsigned NumTypes = 4;
11525  QualType SignedIntegralTypes[NumTypes] = {
11526    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
11527  };
11528  QualType UnsignedIntegralTypes[NumTypes] = {
11529    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
11530    Context.UnsignedLongLongTy
11531  };
11532
11533  unsigned BitWidth = Context.getTypeSize(T);
11534  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
11535                                                        : UnsignedIntegralTypes;
11536  for (unsigned I = 0; I != NumTypes; ++I)
11537    if (Context.getTypeSize(Types[I]) > BitWidth)
11538      return Types[I];
11539
11540  return QualType();
11541}
11542
11543EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
11544                                          EnumConstantDecl *LastEnumConst,
11545                                          SourceLocation IdLoc,
11546                                          IdentifierInfo *Id,
11547                                          Expr *Val) {
11548  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11549  llvm::APSInt EnumVal(IntWidth);
11550  QualType EltTy;
11551
11552  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
11553    Val = 0;
11554
11555  if (Val)
11556    Val = DefaultLvalueConversion(Val).take();
11557
11558  if (Val) {
11559    if (Enum->isDependentType() || Val->isTypeDependent())
11560      EltTy = Context.DependentTy;
11561    else {
11562      SourceLocation ExpLoc;
11563      if (getLangOpts().CPlusPlus11 && Enum->isFixed() &&
11564          !getLangOpts().MicrosoftMode) {
11565        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
11566        // constant-expression in the enumerator-definition shall be a converted
11567        // constant expression of the underlying type.
11568        EltTy = Enum->getIntegerType();
11569        ExprResult Converted =
11570          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
11571                                           CCEK_Enumerator);
11572        if (Converted.isInvalid())
11573          Val = 0;
11574        else
11575          Val = Converted.take();
11576      } else if (!Val->isValueDependent() &&
11577                 !(Val = VerifyIntegerConstantExpression(Val,
11578                                                         &EnumVal).take())) {
11579        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
11580      } else {
11581        if (Enum->isFixed()) {
11582          EltTy = Enum->getIntegerType();
11583
11584          // In Obj-C and Microsoft mode, require the enumeration value to be
11585          // representable in the underlying type of the enumeration. In C++11,
11586          // we perform a non-narrowing conversion as part of converted constant
11587          // expression checking.
11588          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11589            if (getLangOpts().MicrosoftMode) {
11590              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
11591              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11592            } else
11593              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
11594          } else
11595            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
11596        } else if (getLangOpts().CPlusPlus) {
11597          // C++11 [dcl.enum]p5:
11598          //   If the underlying type is not fixed, the type of each enumerator
11599          //   is the type of its initializing value:
11600          //     - If an initializer is specified for an enumerator, the
11601          //       initializing value has the same type as the expression.
11602          EltTy = Val->getType();
11603        } else {
11604          // C99 6.7.2.2p2:
11605          //   The expression that defines the value of an enumeration constant
11606          //   shall be an integer constant expression that has a value
11607          //   representable as an int.
11608
11609          // Complain if the value is not representable in an int.
11610          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
11611            Diag(IdLoc, diag::ext_enum_value_not_int)
11612              << EnumVal.toString(10) << Val->getSourceRange()
11613              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
11614          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
11615            // Force the type of the expression to 'int'.
11616            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
11617          }
11618          EltTy = Val->getType();
11619        }
11620      }
11621    }
11622  }
11623
11624  if (!Val) {
11625    if (Enum->isDependentType())
11626      EltTy = Context.DependentTy;
11627    else if (!LastEnumConst) {
11628      // C++0x [dcl.enum]p5:
11629      //   If the underlying type is not fixed, the type of each enumerator
11630      //   is the type of its initializing value:
11631      //     - If no initializer is specified for the first enumerator, the
11632      //       initializing value has an unspecified integral type.
11633      //
11634      // GCC uses 'int' for its unspecified integral type, as does
11635      // C99 6.7.2.2p3.
11636      if (Enum->isFixed()) {
11637        EltTy = Enum->getIntegerType();
11638      }
11639      else {
11640        EltTy = Context.IntTy;
11641      }
11642    } else {
11643      // Assign the last value + 1.
11644      EnumVal = LastEnumConst->getInitVal();
11645      ++EnumVal;
11646      EltTy = LastEnumConst->getType();
11647
11648      // Check for overflow on increment.
11649      if (EnumVal < LastEnumConst->getInitVal()) {
11650        // C++0x [dcl.enum]p5:
11651        //   If the underlying type is not fixed, the type of each enumerator
11652        //   is the type of its initializing value:
11653        //
11654        //     - Otherwise the type of the initializing value is the same as
11655        //       the type of the initializing value of the preceding enumerator
11656        //       unless the incremented value is not representable in that type,
11657        //       in which case the type is an unspecified integral type
11658        //       sufficient to contain the incremented value. If no such type
11659        //       exists, the program is ill-formed.
11660        QualType T = getNextLargerIntegralType(Context, EltTy);
11661        if (T.isNull() || Enum->isFixed()) {
11662          // There is no integral type larger enough to represent this
11663          // value. Complain, then allow the value to wrap around.
11664          EnumVal = LastEnumConst->getInitVal();
11665          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
11666          ++EnumVal;
11667          if (Enum->isFixed())
11668            // When the underlying type is fixed, this is ill-formed.
11669            Diag(IdLoc, diag::err_enumerator_wrapped)
11670              << EnumVal.toString(10)
11671              << EltTy;
11672          else
11673            Diag(IdLoc, diag::warn_enumerator_too_large)
11674              << EnumVal.toString(10);
11675        } else {
11676          EltTy = T;
11677        }
11678
11679        // Retrieve the last enumerator's value, extent that type to the
11680        // type that is supposed to be large enough to represent the incremented
11681        // value, then increment.
11682        EnumVal = LastEnumConst->getInitVal();
11683        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11684        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
11685        ++EnumVal;
11686
11687        // If we're not in C++, diagnose the overflow of enumerator values,
11688        // which in C99 means that the enumerator value is not representable in
11689        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
11690        // permits enumerator values that are representable in some larger
11691        // integral type.
11692        if (!getLangOpts().CPlusPlus && !T.isNull())
11693          Diag(IdLoc, diag::warn_enum_value_overflow);
11694      } else if (!getLangOpts().CPlusPlus &&
11695                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
11696        // Enforce C99 6.7.2.2p2 even when we compute the next value.
11697        Diag(IdLoc, diag::ext_enum_value_not_int)
11698          << EnumVal.toString(10) << 1;
11699      }
11700    }
11701  }
11702
11703  if (!EltTy->isDependentType()) {
11704    // Make the enumerator value match the signedness and size of the
11705    // enumerator's type.
11706    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
11707    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
11708  }
11709
11710  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
11711                                  Val, EnumVal);
11712}
11713
11714
11715Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
11716                              SourceLocation IdLoc, IdentifierInfo *Id,
11717                              AttributeList *Attr,
11718                              SourceLocation EqualLoc, Expr *Val) {
11719  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
11720  EnumConstantDecl *LastEnumConst =
11721    cast_or_null<EnumConstantDecl>(lastEnumConst);
11722
11723  // The scope passed in may not be a decl scope.  Zip up the scope tree until
11724  // we find one that is.
11725  S = getNonFieldDeclScope(S);
11726
11727  // Verify that there isn't already something declared with this name in this
11728  // scope.
11729  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
11730                                         ForRedeclaration);
11731  if (PrevDecl && PrevDecl->isTemplateParameter()) {
11732    // Maybe we will complain about the shadowed template parameter.
11733    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
11734    // Just pretend that we didn't see the previous declaration.
11735    PrevDecl = 0;
11736  }
11737
11738  if (PrevDecl) {
11739    // When in C++, we may get a TagDecl with the same name; in this case the
11740    // enum constant will 'hide' the tag.
11741    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
11742           "Received TagDecl when not in C++!");
11743    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
11744      if (isa<EnumConstantDecl>(PrevDecl))
11745        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
11746      else
11747        Diag(IdLoc, diag::err_redefinition) << Id;
11748      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
11749      return 0;
11750    }
11751  }
11752
11753  // C++ [class.mem]p15:
11754  // If T is the name of a class, then each of the following shall have a name
11755  // different from T:
11756  // - every enumerator of every member of class T that is an unscoped
11757  // enumerated type
11758  if (CXXRecordDecl *Record
11759                      = dyn_cast<CXXRecordDecl>(
11760                             TheEnumDecl->getDeclContext()->getRedeclContext()))
11761    if (!TheEnumDecl->isScoped() &&
11762        Record->getIdentifier() && Record->getIdentifier() == Id)
11763      Diag(IdLoc, diag::err_member_name_of_class) << Id;
11764
11765  EnumConstantDecl *New =
11766    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
11767
11768  if (New) {
11769    // Process attributes.
11770    if (Attr) ProcessDeclAttributeList(S, New, Attr);
11771
11772    // Register this decl in the current scope stack.
11773    New->setAccess(TheEnumDecl->getAccess());
11774    PushOnScopeChains(New, S);
11775  }
11776
11777  ActOnDocumentableDecl(New);
11778
11779  return New;
11780}
11781
11782// Returns true when the enum initial expression does not trigger the
11783// duplicate enum warning.  A few common cases are exempted as follows:
11784// Element2 = Element1
11785// Element2 = Element1 + 1
11786// Element2 = Element1 - 1
11787// Where Element2 and Element1 are from the same enum.
11788static bool ValidDuplicateEnum(EnumConstantDecl *ECD, EnumDecl *Enum) {
11789  Expr *InitExpr = ECD->getInitExpr();
11790  if (!InitExpr)
11791    return true;
11792  InitExpr = InitExpr->IgnoreImpCasts();
11793
11794  if (BinaryOperator *BO = dyn_cast<BinaryOperator>(InitExpr)) {
11795    if (!BO->isAdditiveOp())
11796      return true;
11797    IntegerLiteral *IL = dyn_cast<IntegerLiteral>(BO->getRHS());
11798    if (!IL)
11799      return true;
11800    if (IL->getValue() != 1)
11801      return true;
11802
11803    InitExpr = BO->getLHS();
11804  }
11805
11806  // This checks if the elements are from the same enum.
11807  DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(InitExpr);
11808  if (!DRE)
11809    return true;
11810
11811  EnumConstantDecl *EnumConstant = dyn_cast<EnumConstantDecl>(DRE->getDecl());
11812  if (!EnumConstant)
11813    return true;
11814
11815  if (cast<EnumDecl>(TagDecl::castFromDeclContext(ECD->getDeclContext())) !=
11816      Enum)
11817    return true;
11818
11819  return false;
11820}
11821
11822struct DupKey {
11823  int64_t val;
11824  bool isTombstoneOrEmptyKey;
11825  DupKey(int64_t val, bool isTombstoneOrEmptyKey)
11826    : val(val), isTombstoneOrEmptyKey(isTombstoneOrEmptyKey) {}
11827};
11828
11829static DupKey GetDupKey(const llvm::APSInt& Val) {
11830  return DupKey(Val.isSigned() ? Val.getSExtValue() : Val.getZExtValue(),
11831                false);
11832}
11833
11834struct DenseMapInfoDupKey {
11835  static DupKey getEmptyKey() { return DupKey(0, true); }
11836  static DupKey getTombstoneKey() { return DupKey(1, true); }
11837  static unsigned getHashValue(const DupKey Key) {
11838    return (unsigned)(Key.val * 37);
11839  }
11840  static bool isEqual(const DupKey& LHS, const DupKey& RHS) {
11841    return LHS.isTombstoneOrEmptyKey == RHS.isTombstoneOrEmptyKey &&
11842           LHS.val == RHS.val;
11843  }
11844};
11845
11846// Emits a warning when an element is implicitly set a value that
11847// a previous element has already been set to.
11848static void CheckForDuplicateEnumValues(Sema &S, ArrayRef<Decl *> Elements,
11849                                        EnumDecl *Enum,
11850                                        QualType EnumType) {
11851  if (S.Diags.getDiagnosticLevel(diag::warn_duplicate_enum_values,
11852                                 Enum->getLocation()) ==
11853      DiagnosticsEngine::Ignored)
11854    return;
11855  // Avoid anonymous enums
11856  if (!Enum->getIdentifier())
11857    return;
11858
11859  // Only check for small enums.
11860  if (Enum->getNumPositiveBits() > 63 || Enum->getNumNegativeBits() > 64)
11861    return;
11862
11863  typedef SmallVector<EnumConstantDecl *, 3> ECDVector;
11864  typedef SmallVector<ECDVector *, 3> DuplicatesVector;
11865
11866  typedef llvm::PointerUnion<EnumConstantDecl*, ECDVector*> DeclOrVector;
11867  typedef llvm::DenseMap<DupKey, DeclOrVector, DenseMapInfoDupKey>
11868          ValueToVectorMap;
11869
11870  DuplicatesVector DupVector;
11871  ValueToVectorMap EnumMap;
11872
11873  // Populate the EnumMap with all values represented by enum constants without
11874  // an initialier.
11875  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11876    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
11877
11878    // Null EnumConstantDecl means a previous diagnostic has been emitted for
11879    // this constant.  Skip this enum since it may be ill-formed.
11880    if (!ECD) {
11881      return;
11882    }
11883
11884    if (ECD->getInitExpr())
11885      continue;
11886
11887    DupKey Key = GetDupKey(ECD->getInitVal());
11888    DeclOrVector &Entry = EnumMap[Key];
11889
11890    // First time encountering this value.
11891    if (Entry.isNull())
11892      Entry = ECD;
11893  }
11894
11895  // Create vectors for any values that has duplicates.
11896  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11897    EnumConstantDecl *ECD = cast<EnumConstantDecl>(Elements[i]);
11898    if (!ValidDuplicateEnum(ECD, Enum))
11899      continue;
11900
11901    DupKey Key = GetDupKey(ECD->getInitVal());
11902
11903    DeclOrVector& Entry = EnumMap[Key];
11904    if (Entry.isNull())
11905      continue;
11906
11907    if (EnumConstantDecl *D = Entry.dyn_cast<EnumConstantDecl*>()) {
11908      // Ensure constants are different.
11909      if (D == ECD)
11910        continue;
11911
11912      // Create new vector and push values onto it.
11913      ECDVector *Vec = new ECDVector();
11914      Vec->push_back(D);
11915      Vec->push_back(ECD);
11916
11917      // Update entry to point to the duplicates vector.
11918      Entry = Vec;
11919
11920      // Store the vector somewhere we can consult later for quick emission of
11921      // diagnostics.
11922      DupVector.push_back(Vec);
11923      continue;
11924    }
11925
11926    ECDVector *Vec = Entry.get<ECDVector*>();
11927    // Make sure constants are not added more than once.
11928    if (*Vec->begin() == ECD)
11929      continue;
11930
11931    Vec->push_back(ECD);
11932  }
11933
11934  // Emit diagnostics.
11935  for (DuplicatesVector::iterator DupVectorIter = DupVector.begin(),
11936                                  DupVectorEnd = DupVector.end();
11937       DupVectorIter != DupVectorEnd; ++DupVectorIter) {
11938    ECDVector *Vec = *DupVectorIter;
11939    assert(Vec->size() > 1 && "ECDVector should have at least 2 elements.");
11940
11941    // Emit warning for one enum constant.
11942    ECDVector::iterator I = Vec->begin();
11943    S.Diag((*I)->getLocation(), diag::warn_duplicate_enum_values)
11944      << (*I)->getName() << (*I)->getInitVal().toString(10)
11945      << (*I)->getSourceRange();
11946    ++I;
11947
11948    // Emit one note for each of the remaining enum constants with
11949    // the same value.
11950    for (ECDVector::iterator E = Vec->end(); I != E; ++I)
11951      S.Diag((*I)->getLocation(), diag::note_duplicate_element)
11952        << (*I)->getName() << (*I)->getInitVal().toString(10)
11953        << (*I)->getSourceRange();
11954    delete Vec;
11955  }
11956}
11957
11958void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
11959                         SourceLocation RBraceLoc, Decl *EnumDeclX,
11960                         ArrayRef<Decl *> Elements,
11961                         Scope *S, AttributeList *Attr) {
11962  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
11963  QualType EnumType = Context.getTypeDeclType(Enum);
11964
11965  if (Attr)
11966    ProcessDeclAttributeList(S, Enum, Attr);
11967
11968  if (Enum->isDependentType()) {
11969    for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11970      EnumConstantDecl *ECD =
11971        cast_or_null<EnumConstantDecl>(Elements[i]);
11972      if (!ECD) continue;
11973
11974      ECD->setType(EnumType);
11975    }
11976
11977    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
11978    return;
11979  }
11980
11981  // TODO: If the result value doesn't fit in an int, it must be a long or long
11982  // long value.  ISO C does not support this, but GCC does as an extension,
11983  // emit a warning.
11984  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
11985  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
11986  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
11987
11988  // Verify that all the values are okay, compute the size of the values, and
11989  // reverse the list.
11990  unsigned NumNegativeBits = 0;
11991  unsigned NumPositiveBits = 0;
11992
11993  // Keep track of whether all elements have type int.
11994  bool AllElementsInt = true;
11995
11996  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
11997    EnumConstantDecl *ECD =
11998      cast_or_null<EnumConstantDecl>(Elements[i]);
11999    if (!ECD) continue;  // Already issued a diagnostic.
12000
12001    const llvm::APSInt &InitVal = ECD->getInitVal();
12002
12003    // Keep track of the size of positive and negative values.
12004    if (InitVal.isUnsigned() || InitVal.isNonNegative())
12005      NumPositiveBits = std::max(NumPositiveBits,
12006                                 (unsigned)InitVal.getActiveBits());
12007    else
12008      NumNegativeBits = std::max(NumNegativeBits,
12009                                 (unsigned)InitVal.getMinSignedBits());
12010
12011    // Keep track of whether every enum element has type int (very commmon).
12012    if (AllElementsInt)
12013      AllElementsInt = ECD->getType() == Context.IntTy;
12014  }
12015
12016  // Figure out the type that should be used for this enum.
12017  QualType BestType;
12018  unsigned BestWidth;
12019
12020  // C++0x N3000 [conv.prom]p3:
12021  //   An rvalue of an unscoped enumeration type whose underlying
12022  //   type is not fixed can be converted to an rvalue of the first
12023  //   of the following types that can represent all the values of
12024  //   the enumeration: int, unsigned int, long int, unsigned long
12025  //   int, long long int, or unsigned long long int.
12026  // C99 6.4.4.3p2:
12027  //   An identifier declared as an enumeration constant has type int.
12028  // The C99 rule is modified by a gcc extension
12029  QualType BestPromotionType;
12030
12031  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
12032  // -fshort-enums is the equivalent to specifying the packed attribute on all
12033  // enum definitions.
12034  if (LangOpts.ShortEnums)
12035    Packed = true;
12036
12037  if (Enum->isFixed()) {
12038    BestType = Enum->getIntegerType();
12039    if (BestType->isPromotableIntegerType())
12040      BestPromotionType = Context.getPromotedIntegerType(BestType);
12041    else
12042      BestPromotionType = BestType;
12043    // We don't need to set BestWidth, because BestType is going to be the type
12044    // of the enumerators, but we do anyway because otherwise some compilers
12045    // warn that it might be used uninitialized.
12046    BestWidth = CharWidth;
12047  }
12048  else if (NumNegativeBits) {
12049    // If there is a negative value, figure out the smallest integer type (of
12050    // int/long/longlong) that fits.
12051    // If it's packed, check also if it fits a char or a short.
12052    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
12053      BestType = Context.SignedCharTy;
12054      BestWidth = CharWidth;
12055    } else if (Packed && NumNegativeBits <= ShortWidth &&
12056               NumPositiveBits < ShortWidth) {
12057      BestType = Context.ShortTy;
12058      BestWidth = ShortWidth;
12059    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
12060      BestType = Context.IntTy;
12061      BestWidth = IntWidth;
12062    } else {
12063      BestWidth = Context.getTargetInfo().getLongWidth();
12064
12065      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
12066        BestType = Context.LongTy;
12067      } else {
12068        BestWidth = Context.getTargetInfo().getLongLongWidth();
12069
12070        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
12071          Diag(Enum->getLocation(), diag::warn_enum_too_large);
12072        BestType = Context.LongLongTy;
12073      }
12074    }
12075    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
12076  } else {
12077    // If there is no negative value, figure out the smallest type that fits
12078    // all of the enumerator values.
12079    // If it's packed, check also if it fits a char or a short.
12080    if (Packed && NumPositiveBits <= CharWidth) {
12081      BestType = Context.UnsignedCharTy;
12082      BestPromotionType = Context.IntTy;
12083      BestWidth = CharWidth;
12084    } else if (Packed && NumPositiveBits <= ShortWidth) {
12085      BestType = Context.UnsignedShortTy;
12086      BestPromotionType = Context.IntTy;
12087      BestWidth = ShortWidth;
12088    } else if (NumPositiveBits <= IntWidth) {
12089      BestType = Context.UnsignedIntTy;
12090      BestWidth = IntWidth;
12091      BestPromotionType
12092        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12093                           ? Context.UnsignedIntTy : Context.IntTy;
12094    } else if (NumPositiveBits <=
12095               (BestWidth = Context.getTargetInfo().getLongWidth())) {
12096      BestType = Context.UnsignedLongTy;
12097      BestPromotionType
12098        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12099                           ? Context.UnsignedLongTy : Context.LongTy;
12100    } else {
12101      BestWidth = Context.getTargetInfo().getLongLongWidth();
12102      assert(NumPositiveBits <= BestWidth &&
12103             "How could an initializer get larger than ULL?");
12104      BestType = Context.UnsignedLongLongTy;
12105      BestPromotionType
12106        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
12107                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
12108    }
12109  }
12110
12111  // Loop over all of the enumerator constants, changing their types to match
12112  // the type of the enum if needed.
12113  for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
12114    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
12115    if (!ECD) continue;  // Already issued a diagnostic.
12116
12117    // Standard C says the enumerators have int type, but we allow, as an
12118    // extension, the enumerators to be larger than int size.  If each
12119    // enumerator value fits in an int, type it as an int, otherwise type it the
12120    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
12121    // that X has type 'int', not 'unsigned'.
12122
12123    // Determine whether the value fits into an int.
12124    llvm::APSInt InitVal = ECD->getInitVal();
12125
12126    // If it fits into an integer type, force it.  Otherwise force it to match
12127    // the enum decl type.
12128    QualType NewTy;
12129    unsigned NewWidth;
12130    bool NewSign;
12131    if (!getLangOpts().CPlusPlus &&
12132        !Enum->isFixed() &&
12133        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
12134      NewTy = Context.IntTy;
12135      NewWidth = IntWidth;
12136      NewSign = true;
12137    } else if (ECD->getType() == BestType) {
12138      // Already the right type!
12139      if (getLangOpts().CPlusPlus)
12140        // C++ [dcl.enum]p4: Following the closing brace of an
12141        // enum-specifier, each enumerator has the type of its
12142        // enumeration.
12143        ECD->setType(EnumType);
12144      continue;
12145    } else {
12146      NewTy = BestType;
12147      NewWidth = BestWidth;
12148      NewSign = BestType->isSignedIntegerOrEnumerationType();
12149    }
12150
12151    // Adjust the APSInt value.
12152    InitVal = InitVal.extOrTrunc(NewWidth);
12153    InitVal.setIsSigned(NewSign);
12154    ECD->setInitVal(InitVal);
12155
12156    // Adjust the Expr initializer and type.
12157    if (ECD->getInitExpr() &&
12158        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
12159      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
12160                                                CK_IntegralCast,
12161                                                ECD->getInitExpr(),
12162                                                /*base paths*/ 0,
12163                                                VK_RValue));
12164    if (getLangOpts().CPlusPlus)
12165      // C++ [dcl.enum]p4: Following the closing brace of an
12166      // enum-specifier, each enumerator has the type of its
12167      // enumeration.
12168      ECD->setType(EnumType);
12169    else
12170      ECD->setType(NewTy);
12171  }
12172
12173  Enum->completeDefinition(BestType, BestPromotionType,
12174                           NumPositiveBits, NumNegativeBits);
12175
12176  // If we're declaring a function, ensure this decl isn't forgotten about -
12177  // it needs to go into the function scope.
12178  if (InFunctionDeclarator)
12179    DeclsInPrototypeScope.push_back(Enum);
12180
12181  CheckForDuplicateEnumValues(*this, Elements, Enum, EnumType);
12182
12183  // Now that the enum type is defined, ensure it's not been underaligned.
12184  if (Enum->hasAttrs())
12185    CheckAlignasUnderalignment(Enum);
12186}
12187
12188Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
12189                                  SourceLocation StartLoc,
12190                                  SourceLocation EndLoc) {
12191  StringLiteral *AsmString = cast<StringLiteral>(expr);
12192
12193  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
12194                                                   AsmString, StartLoc,
12195                                                   EndLoc);
12196  CurContext->addDecl(New);
12197  return New;
12198}
12199
12200DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
12201                                   SourceLocation ImportLoc,
12202                                   ModuleIdPath Path) {
12203  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
12204                                                Module::AllVisible,
12205                                                /*IsIncludeDirective=*/false);
12206  if (!Mod)
12207    return true;
12208
12209  SmallVector<SourceLocation, 2> IdentifierLocs;
12210  Module *ModCheck = Mod;
12211  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
12212    // If we've run out of module parents, just drop the remaining identifiers.
12213    // We need the length to be consistent.
12214    if (!ModCheck)
12215      break;
12216    ModCheck = ModCheck->Parent;
12217
12218    IdentifierLocs.push_back(Path[I].second);
12219  }
12220
12221  ImportDecl *Import = ImportDecl::Create(Context,
12222                                          Context.getTranslationUnitDecl(),
12223                                          AtLoc.isValid()? AtLoc : ImportLoc,
12224                                          Mod, IdentifierLocs);
12225  Context.getTranslationUnitDecl()->addDecl(Import);
12226  return Import;
12227}
12228
12229void Sema::createImplicitModuleImport(SourceLocation Loc, Module *Mod) {
12230  // Create the implicit import declaration.
12231  TranslationUnitDecl *TU = getASTContext().getTranslationUnitDecl();
12232  ImportDecl *ImportD = ImportDecl::CreateImplicit(getASTContext(), TU,
12233                                                   Loc, Mod, Loc);
12234  TU->addDecl(ImportD);
12235  Consumer.HandleImplicitImportDecl(ImportD);
12236
12237  // Make the module visible.
12238  PP.getModuleLoader().makeModuleVisible(Mod, Module::AllVisible, Loc,
12239                                         /*Complain=*/false);
12240}
12241
12242void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
12243                                      IdentifierInfo* AliasName,
12244                                      SourceLocation PragmaLoc,
12245                                      SourceLocation NameLoc,
12246                                      SourceLocation AliasNameLoc) {
12247  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
12248                                    LookupOrdinaryName);
12249  AsmLabelAttr *Attr =
12250     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
12251
12252  if (PrevDecl)
12253    PrevDecl->addAttr(Attr);
12254  else
12255    (void)ExtnameUndeclaredIdentifiers.insert(
12256      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
12257}
12258
12259void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
12260                             SourceLocation PragmaLoc,
12261                             SourceLocation NameLoc) {
12262  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
12263
12264  if (PrevDecl) {
12265    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
12266  } else {
12267    (void)WeakUndeclaredIdentifiers.insert(
12268      std::pair<IdentifierInfo*,WeakInfo>
12269        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
12270  }
12271}
12272
12273void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
12274                                IdentifierInfo* AliasName,
12275                                SourceLocation PragmaLoc,
12276                                SourceLocation NameLoc,
12277                                SourceLocation AliasNameLoc) {
12278  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
12279                                    LookupOrdinaryName);
12280  WeakInfo W = WeakInfo(Name, NameLoc);
12281
12282  if (PrevDecl) {
12283    if (!PrevDecl->hasAttr<AliasAttr>())
12284      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
12285        DeclApplyPragmaWeak(TUScope, ND, W);
12286  } else {
12287    (void)WeakUndeclaredIdentifiers.insert(
12288      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
12289  }
12290}
12291
12292Decl *Sema::getObjCDeclContext() const {
12293  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
12294}
12295
12296AvailabilityResult Sema::getCurContextAvailability() const {
12297  const Decl *D = cast<Decl>(getCurObjCLexicalContext());
12298  return D->getAvailability();
12299}
12300