SemaDecl.cpp revision aa9c3503867bc52e1f61c4da676116db1b1cdf01
1e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//
3e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//                     The LLVM Compiler Infrastructure
4e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//
5fc001bbfc360ab828e5a4b0cbe4bb7db87361b85Chris Lattner// This file is distributed under the University of Illinois Open Source
6fc001bbfc360ab828e5a4b0cbe4bb7db87361b85Chris Lattner// License. See LICENSE.TXT for details.
7e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//
8e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//===----------------------------------------------------------------------===//
9e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//
10e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//  This file implements semantic analysis for declarations.
11e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer//
1200b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen//===----------------------------------------------------------------------===//
13e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
14e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/SemaInternal.h"
15e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/Initialization.h"
16e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/Lookup.h"
17e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/CXXFieldCollector.h"
18e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/Scope.h"
19e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/ScopeInfo.h"
20e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "TypeLocBuilder.h"
218b477ed579794ba6d76915d56b3f448a7dd20120Owen Anderson#include "clang/AST/ASTConsumer.h"
22e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/AST/ASTContext.h"
23e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/AST/CXXInheritance.h"
2456427031f60a34f8388a0facf14bea0558b8320eReid Spencer#include "clang/AST/DeclCXX.h"
25e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/AST/DeclObjC.h"
26e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/AST/DeclTemplate.h"
27afebb449283ada1b44f423e698b30672606fdc54Jeff Cohen#include "clang/AST/EvaluatedExprVisitor.h"
28afebb449283ada1b44f423e698b30672606fdc54Jeff Cohen#include "clang/AST/ExprCXX.h"
29e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/AST/StmtCXX.h"
30da06288aeb28393b937e17dcd180658c3737a6e5Chris Lattner#include "clang/AST/CharUnits.h"
31e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/DeclSpec.h"
32e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/ParsedTemplate.h"
33e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Parse/ParseDiagnostic.h"
346a98754ebbc211958297b0d20a77e8c3261c3708Chris Lattner#include "clang/Basic/PartialDiagnostic.h"
35e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Sema/DelayedDiagnostic.h"
36e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Basic/SourceManager.h"
37e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include "clang/Basic/TargetInfo.h"
386a98754ebbc211958297b0d20a77e8c3261c3708Chris Lattner// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
391d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson#include "clang/Lex/Preprocessor.h"
401d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson#include "clang/Lex/HeaderSearch.h"
411d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson#include "clang/Lex/ModuleLoader.h"
426a98754ebbc211958297b0d20a77e8c3261c3708Chris Lattner#include "llvm/ADT/Triple.h"
4300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen#include <algorithm>
44e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include <cstring>
45e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer#include <functional>
461d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Andersonusing namespace clang;
4700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohenusing namespace sema;
48e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
491d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen AndersonSema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
5000b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  if (OwnedType) {
51e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    Decl *Group[2] = { OwnedType, Ptr };
52e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  }
54e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
5500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer}
577cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif
5800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen/// \brief If the identifier refers to a type name within this scope,
59e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// return the declaration of that type.
601d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson///
6100b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen/// This routine performs ordinary name lookup of the identifier II
6200b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen/// within the given scope, with optional C++ scope specifier SS, to
63e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// determine whether the name refers to a type. If so, returns an
64e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// opaque pointer (actually a QualType) corresponding to that
65e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// type. Otherwise, returns NULL.
666a98754ebbc211958297b0d20a77e8c3261c3708Chris Lattner///
67e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// If name lookup results in an ambiguity, this routine will complain
68e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// and then return NULL.
696a98754ebbc211958297b0d20a77e8c3261c3708Chris LattnerParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
701d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                             Scope *S, CXXScopeSpec *SS,
711d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                             bool isClassName, bool HasTrailingDot,
721d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson                             ParsedType ObjectTypePtr,
736a98754ebbc211958297b0d20a77e8c3261c3708Chris Lattner                             bool WantNontrivialTypeSourceInfo,
7400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen                             IdentifierInfo **CorrectedII) {
75e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  // Determine where we will perform name lookup.
761d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson  DeclContext *LookupCtx = 0;
7700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  if (ObjectTypePtr) {
78e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    QualType ObjectType = ObjectTypePtr.get();
791d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson    if (ObjectType->isRecordType())
801d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      LookupCtx = computeDeclContext(ObjectType);
8100b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  } else if (SS && SS->isNotEmpty()) {
82e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    LookupCtx = computeDeclContext(*SS, false);
83e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
84e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (!LookupCtx) {
8500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      if (isDependentScopeSpecifier(*SS)) {
86e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        // C++ [temp.res]p3:
871d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson        //   A qualified-id that refers to a type and in which the
88e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        //   nested-name-specifier depends on a template-parameter (14.6.2)
891d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson        //   shall be prefixed by the keyword typename to indicate that the
9000b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen        //   qualified-id denotes a type, forming an
91e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        //   elaborated-type-specifier (7.1.5.3).
92333c40096561218bc3597cf153c0a3895274414cOwen Anderson        //
93051a950000e21935165db56695e35bade668193bGabor Greif        // We therefore do not perform any name lookup if the result would
9400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen        // refer to a member of an unknown specialization.
95e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        if (!isClassName)
961d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson          return ParsedType();
9700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
98e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        // We know from the grammar that this name refers to a type,
997cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        // so build a dependent node to describe the type.
100051a950000e21935165db56695e35bade668193bGabor Greif        if (WantNontrivialTypeSourceInfo)
10100b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
1037cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104051a950000e21935165db56695e35bade668193bGabor Greif        QualType T =
10500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                            II, NameLoc);
10700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
1087cbd8a3e92221437048b484d5ef9c0a22d0f8c58Gabor Greif          return ParsedType::make(T);
10900b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      }
110e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
1111d0be15f89cb5056e20e2d24faa8d6afb1573bcaOwen Anderson      return ParsedType();
11200b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen    }
113e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
114e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (!LookupCtx->isDependentContext() &&
115e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        RequireCompleteDeclContext(*SS, LookupCtx))
116e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      return ParsedType();
117e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  }
118e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
119e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  // lookup for class-names.
121e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                      LookupOrdinaryName;
123e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  LookupResult Result(*this, &II, NameLoc, Kind);
124e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  if (LookupCtx) {
125e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // Perform "qualified" name lookup into the declaration context we
126e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // computed, which is either the type of the base of a member access
127e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // expression or the declaration context associated with a prior
128e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // nested-name-specifier.
129e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    LookupQualifiedName(Result, LookupCtx);
130e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
131e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (ObjectTypePtr && Result.empty()) {
13200b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      // C++ [basic.lookup.classref]p3:
133e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      //   If the unqualified-id is ~type-name, the type-name is looked up
134e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      //   in the context of the entire postfix-expression. If the type T of
13500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      //   the object expression is of a class type C, the type-name is also
136e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      //   looked up in the scope of class C. At least one of the lookups shall
137e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      //   find a name that refers to (possibly cv-qualified) T.
138e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      LookupName(Result, S);
13900b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen    }
140e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  } else {
141e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // Perform unqualified name lookup.
142e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    LookupName(Result, S);
143e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  }
14400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
145e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  NamedDecl *IIDecl = 0;
146e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  switch (Result.getResultKind()) {
147e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  case LookupResult::NotFound:
14800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  case LookupResult::NotFoundInCurrentInstantiation:
149e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (CorrectedII) {
150e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                              Kind, S, SS, 0, false,
152e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                              Sema::CTC_Type);
153e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      TemplateTy Template;
155e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      bool MemberOfUnknownSpecialization;
15600b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      UnqualifiedId TemplateName;
157e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      TemplateName.setIdentifier(NewII, NameLoc);
15800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      CXXScopeSpec NewSS, *NewSSPtr = SS;
160e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      if (SS && NNS) {
161e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        NewSSPtr = &NewSS;
16300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      }
16400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      if (Correction && (NNS || NewII != &II) &&
165e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          // Ignore a correction to a template type as the to-be-corrected
166e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          // identifier is not a template (typo correction for template names
167e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          // is handled elsewhere).
168e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          !(getLangOptions().CPlusPlus && NewSSPtr &&
169e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
17000b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen                           false, Template, MemberOfUnknownSpecialization))) {
171e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                    isClassName, HasTrailingDot, ObjectTypePtr,
173e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                    WantNontrivialTypeSourceInfo);
174e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        if (Ty) {
17500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          std::string CorrectedQuotedStr(
177e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer              Correction.getQuoted(getLangOptions()));
178e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          Diag(NameLoc, diag::err_unknown_typename_suggest)
179e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer              << Result.getLookupName() << CorrectedQuotedStr
180e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer                                              CorrectedStr);
182e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
18300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer              << CorrectedQuotedStr;
185e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
186e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          if (SS && NNS)
18700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
18800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen          *CorrectedII = NewII;
189e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          return Ty;
190e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        }
191e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      }
192e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    }
19300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen    // If typo correction failed or was not performed, fall through
194e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  case LookupResult::FoundOverloaded:
195e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  case LookupResult::FoundUnresolvedValue:
196e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    Result.suppressDiagnostics();
197e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    return ParsedType();
19800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
199e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  case LookupResult::Ambiguous:
200e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // Recover from type-hiding ambiguities by hiding the type.  We'll
201e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // do the lookup again when looking for an object, and we can
202e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // diagnose the error then.  If we don't do this, then the error
203e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // about hiding the type will be immediately followed by an error
204e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // that only makes sense if the identifier was treated like a type.
205e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
20600b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      Result.suppressDiagnostics();
207e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      return ParsedType();
208e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    }
209e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
210e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // Look to see if we have a type anywhere in the list of results.
211e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer         Res != ResEnd; ++Res) {
213709877243661b2b450402d4911de892af5c74f43Chris Lattner      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        if (!IIDecl ||
21500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen            (*Res)->getLocation().getRawEncoding() <
216e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer              IIDecl->getLocation().getRawEncoding())
217e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer          IIDecl = *Res;
218e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      }
219e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    }
220e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
221e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (!IIDecl) {
222e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      // None of the entities we found is a type, so there is no way
223e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      // to even assume that the result is a type. In this case, don't
224e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      // complain about the ambiguity. The parser will either try to
225e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      // perform this lookup again (e.g., as an object name), which
226e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      // will produce the ambiguity, or will complain that it expected
22700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      // a type name.
228e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      Result.suppressDiagnostics();
229e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      return ParsedType();
23034bd70de3c344034b82dc9a964a6b6893efa3e82Reid Spencer    }
23100b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
232e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // We found a type within the ambiguous lookup; diagnose the
233e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // ambiguity and then return that type. This might be the right
23400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen    // answer, or it might not be, but it suppresses any attempt to
23534bd70de3c344034b82dc9a964a6b6893efa3e82Reid Spencer    // perform the name lookup again.
236e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    break;
237e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
238da06288aeb28393b937e17dcd180658c3737a6e5Chris Lattner  case LookupResult::Found:
239da06288aeb28393b937e17dcd180658c3737a6e5Chris Lattner    IIDecl = Result.getFoundDecl();
2408b477ed579794ba6d76915d56b3f448a7dd20120Owen Anderson    break;
241da06288aeb28393b937e17dcd180658c3737a6e5Chris Lattner  }
242e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
24331895e73591d3c9ceae731a1274c8f56194b9616Owen Anderson  assert(IIDecl && "Didn't find decl");
24400b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
245e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  QualType T;
246e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
24700b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen    DiagnoseUseOfDecl(IIDecl, NameLoc);
248e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
2494b1511b027ce0b648b3379f2891816c25b46f515Reid Kleckner    if (T.isNull())
25000b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      T = Context.getTypeDeclType(TD);
251e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
252e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (SS && SS->isNotEmpty()) {
25300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      if (WantNontrivialTypeSourceInfo) {
254e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        // Construct a type with type-source information.
255e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        TypeLocBuilder Builder;
256e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
25800b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen        T = getElaboratedType(ETK_None, *SS, T);
259e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        ElabTL.setKeywordLoc(SourceLocation());
261e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      } else {
264e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer        T = getElaboratedType(ETK_None, *SS, T);
26500b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      }
266e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    }
267e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (!HasTrailingDot)
270e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      T = Context.getObjCInterfaceType(IDecl);
271e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  }
27200b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen
273e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  if (T.isNull()) {
274e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    // If it's not plausibly a type, suppress diagnostics.
275e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    Result.suppressDiagnostics();
276e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    return ParsedType();
277e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  }
278e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  return ParsedType::make(T);
27900b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen}
280e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
28100b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen/// isTagName() - This method is called *for error recovery purposes only*
282e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// to determine if the specified name is a valid tag name ("struct foo").  If
283e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// so, this returns the TST for the tag corresponding to it (TST_enum,
284e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// where the user forgot to specify the tag.
286e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid SpencerDeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  // Do a tag name lookup in this scope.
2886fb0d735f0ffdf4cd1b0a1fa04bd436586097448Reid Spencer  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
28900b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen  LookupName(R, S, false);
290e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  R.suppressDiagnostics();
291e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer  if (R.getResultKind() == LookupResult::Found)
292e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      switch (TD->getTagKind()) {
294e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      default:         return DeclSpec::TST_unspecified;
2956fb0d735f0ffdf4cd1b0a1fa04bd436586097448Reid Spencer      case TTK_Struct: return DeclSpec::TST_struct;
29600b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen      case TTK_Union:  return DeclSpec::TST_union;
297e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      case TTK_Class:  return DeclSpec::TST_class;
298e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      case TTK_Enum:   return DeclSpec::TST_enum;
299e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer      }
300e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer    }
301e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
3026fb0d735f0ffdf4cd1b0a1fa04bd436586097448Reid Spencer  return DeclSpec::TST_unspecified;
30300b16889ab461b7ecef1c91ade101186b7f1fce2Jeff Cohen}
304e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer
305e8cdc8b3a372015728bfbe494e4a8949fb66f6a6Reid Spencer/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        // FIXME: Checking for the presence of a user-declared constructor
1133        // isn't completely accurate; we'd prefer to check that the initializer
1134        // has no side effects.
1135        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1136          return false;
1137      }
1138    }
1139
1140    // TODO: __attribute__((unused)) templates?
1141  }
1142
1143  return true;
1144}
1145
1146static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1147                                     FixItHint &Hint) {
1148  if (isa<LabelDecl>(D)) {
1149    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1150                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1151    if (AfterColon.isInvalid())
1152      return;
1153    Hint = FixItHint::CreateRemoval(CharSourceRange::
1154                                    getCharRange(D->getLocStart(), AfterColon));
1155  }
1156  return;
1157}
1158
1159/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1160/// unless they are marked attr(unused).
1161void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1162  FixItHint Hint;
1163  if (!ShouldDiagnoseUnusedDecl(D))
1164    return;
1165
1166  GenerateFixForUnusedDecl(D, Context, Hint);
1167
1168  unsigned DiagID;
1169  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1170    DiagID = diag::warn_unused_exception_param;
1171  else if (isa<LabelDecl>(D))
1172    DiagID = diag::warn_unused_label;
1173  else
1174    DiagID = diag::warn_unused_variable;
1175
1176  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1177}
1178
1179static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1180  // Verify that we have no forward references left.  If so, there was a goto
1181  // or address of a label taken, but no definition of it.  Label fwd
1182  // definitions are indicated with a null substmt.
1183  if (L->getStmt() == 0)
1184    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1185}
1186
1187void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1188  if (S->decl_empty()) return;
1189  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1190         "Scope shouldn't contain decls!");
1191
1192  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1193       I != E; ++I) {
1194    Decl *TmpD = (*I);
1195    assert(TmpD && "This decl didn't get pushed??");
1196
1197    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1198    NamedDecl *D = cast<NamedDecl>(TmpD);
1199
1200    if (!D->getDeclName()) continue;
1201
1202    // Diagnose unused variables in this scope.
1203    if (!S->hasErrorOccurred())
1204      DiagnoseUnusedDecl(D);
1205
1206    // If this was a forward reference to a label, verify it was defined.
1207    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1208      CheckPoppedLabel(LD, *this);
1209
1210    // Remove this name from our lexical scope.
1211    IdResolver.RemoveDecl(D);
1212  }
1213}
1214
1215/// \brief Look for an Objective-C class in the translation unit.
1216///
1217/// \param Id The name of the Objective-C class we're looking for. If
1218/// typo-correction fixes this name, the Id will be updated
1219/// to the fixed name.
1220///
1221/// \param IdLoc The location of the name in the translation unit.
1222///
1223/// \param TypoCorrection If true, this routine will attempt typo correction
1224/// if there is no class with the given name.
1225///
1226/// \returns The declaration of the named Objective-C class, or NULL if the
1227/// class could not be found.
1228ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1229                                              SourceLocation IdLoc,
1230                                              bool DoTypoCorrection) {
1231  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1232  // creation from this context.
1233  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1234
1235  if (!IDecl && DoTypoCorrection) {
1236    // Perform typo correction at the given location, but only if we
1237    // find an Objective-C class name.
1238    TypoCorrection C;
1239    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1240                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1241        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1242      Diag(IdLoc, diag::err_undef_interface_suggest)
1243        << Id << IDecl->getDeclName()
1244        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1245      Diag(IDecl->getLocation(), diag::note_previous_decl)
1246        << IDecl->getDeclName();
1247
1248      Id = IDecl->getIdentifier();
1249    }
1250  }
1251
1252  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1253}
1254
1255/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1256/// from S, where a non-field would be declared. This routine copes
1257/// with the difference between C and C++ scoping rules in structs and
1258/// unions. For example, the following code is well-formed in C but
1259/// ill-formed in C++:
1260/// @code
1261/// struct S6 {
1262///   enum { BAR } e;
1263/// };
1264///
1265/// void test_S6() {
1266///   struct S6 a;
1267///   a.e = BAR;
1268/// }
1269/// @endcode
1270/// For the declaration of BAR, this routine will return a different
1271/// scope. The scope S will be the scope of the unnamed enumeration
1272/// within S6. In C++, this routine will return the scope associated
1273/// with S6, because the enumeration's scope is a transparent
1274/// context but structures can contain non-field names. In C, this
1275/// routine will return the translation unit scope, since the
1276/// enumeration's scope is a transparent context and structures cannot
1277/// contain non-field names.
1278Scope *Sema::getNonFieldDeclScope(Scope *S) {
1279  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1280         (S->getEntity() &&
1281          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1282         (S->isClassScope() && !getLangOptions().CPlusPlus))
1283    S = S->getParent();
1284  return S;
1285}
1286
1287/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1288/// file scope.  lazily create a decl for it. ForRedeclaration is true
1289/// if we're creating this built-in in anticipation of redeclaring the
1290/// built-in.
1291NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1292                                     Scope *S, bool ForRedeclaration,
1293                                     SourceLocation Loc) {
1294  Builtin::ID BID = (Builtin::ID)bid;
1295
1296  ASTContext::GetBuiltinTypeError Error;
1297  QualType R = Context.GetBuiltinType(BID, Error);
1298  switch (Error) {
1299  case ASTContext::GE_None:
1300    // Okay
1301    break;
1302
1303  case ASTContext::GE_Missing_stdio:
1304    if (ForRedeclaration)
1305      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1306        << Context.BuiltinInfo.GetName(BID);
1307    return 0;
1308
1309  case ASTContext::GE_Missing_setjmp:
1310    if (ForRedeclaration)
1311      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1312        << Context.BuiltinInfo.GetName(BID);
1313    return 0;
1314
1315  case ASTContext::GE_Missing_ucontext:
1316    if (ForRedeclaration)
1317      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1318        << Context.BuiltinInfo.GetName(BID);
1319    return 0;
1320  }
1321
1322  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1323    Diag(Loc, diag::ext_implicit_lib_function_decl)
1324      << Context.BuiltinInfo.GetName(BID)
1325      << R;
1326    if (Context.BuiltinInfo.getHeaderName(BID) &&
1327        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1328          != DiagnosticsEngine::Ignored)
1329      Diag(Loc, diag::note_please_include_header)
1330        << Context.BuiltinInfo.getHeaderName(BID)
1331        << Context.BuiltinInfo.GetName(BID);
1332  }
1333
1334  FunctionDecl *New = FunctionDecl::Create(Context,
1335                                           Context.getTranslationUnitDecl(),
1336                                           Loc, Loc, II, R, /*TInfo=*/0,
1337                                           SC_Extern,
1338                                           SC_None, false,
1339                                           /*hasPrototype=*/true);
1340  New->setImplicit();
1341
1342  // Create Decl objects for each parameter, adding them to the
1343  // FunctionDecl.
1344  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1345    SmallVector<ParmVarDecl*, 16> Params;
1346    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1347      ParmVarDecl *parm =
1348        ParmVarDecl::Create(Context, New, SourceLocation(),
1349                            SourceLocation(), 0,
1350                            FT->getArgType(i), /*TInfo=*/0,
1351                            SC_None, SC_None, 0);
1352      parm->setScopeInfo(0, i);
1353      Params.push_back(parm);
1354    }
1355    New->setParams(Params);
1356  }
1357
1358  AddKnownFunctionAttributes(New);
1359
1360  // TUScope is the translation-unit scope to insert this function into.
1361  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1362  // relate Scopes to DeclContexts, and probably eliminate CurContext
1363  // entirely, but we're not there yet.
1364  DeclContext *SavedContext = CurContext;
1365  CurContext = Context.getTranslationUnitDecl();
1366  PushOnScopeChains(New, TUScope);
1367  CurContext = SavedContext;
1368  return New;
1369}
1370
1371/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1372/// same name and scope as a previous declaration 'Old'.  Figure out
1373/// how to resolve this situation, merging decls or emitting
1374/// diagnostics as appropriate. If there was an error, set New to be invalid.
1375///
1376void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1377  // If the new decl is known invalid already, don't bother doing any
1378  // merging checks.
1379  if (New->isInvalidDecl()) return;
1380
1381  // Allow multiple definitions for ObjC built-in typedefs.
1382  // FIXME: Verify the underlying types are equivalent!
1383  if (getLangOptions().ObjC1) {
1384    const IdentifierInfo *TypeID = New->getIdentifier();
1385    switch (TypeID->getLength()) {
1386    default: break;
1387    case 2:
1388      if (!TypeID->isStr("id"))
1389        break;
1390      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1391      // Install the built-in type for 'id', ignoring the current definition.
1392      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1393      return;
1394    case 5:
1395      if (!TypeID->isStr("Class"))
1396        break;
1397      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1398      // Install the built-in type for 'Class', ignoring the current definition.
1399      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1400      return;
1401    case 3:
1402      if (!TypeID->isStr("SEL"))
1403        break;
1404      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1405      // Install the built-in type for 'SEL', ignoring the current definition.
1406      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1407      return;
1408    }
1409    // Fall through - the typedef name was not a builtin type.
1410  }
1411
1412  // Verify the old decl was also a type.
1413  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1414  if (!Old) {
1415    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1416      << New->getDeclName();
1417
1418    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1419    if (OldD->getLocation().isValid())
1420      Diag(OldD->getLocation(), diag::note_previous_definition);
1421
1422    return New->setInvalidDecl();
1423  }
1424
1425  // If the old declaration is invalid, just give up here.
1426  if (Old->isInvalidDecl())
1427    return New->setInvalidDecl();
1428
1429  // Determine the "old" type we'll use for checking and diagnostics.
1430  QualType OldType;
1431  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1432    OldType = OldTypedef->getUnderlyingType();
1433  else
1434    OldType = Context.getTypeDeclType(Old);
1435
1436  // If the typedef types are not identical, reject them in all languages and
1437  // with any extensions enabled.
1438
1439  if (OldType != New->getUnderlyingType() &&
1440      Context.getCanonicalType(OldType) !=
1441      Context.getCanonicalType(New->getUnderlyingType())) {
1442    int Kind = 0;
1443    if (isa<TypeAliasDecl>(Old))
1444      Kind = 1;
1445    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1446      << Kind << New->getUnderlyingType() << OldType;
1447    if (Old->getLocation().isValid())
1448      Diag(Old->getLocation(), diag::note_previous_definition);
1449    return New->setInvalidDecl();
1450  }
1451
1452  // The types match.  Link up the redeclaration chain if the old
1453  // declaration was a typedef.
1454  // FIXME: this is a potential source of weirdness if the type
1455  // spellings don't match exactly.
1456  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1457    New->setPreviousDeclaration(Typedef);
1458
1459  // __module_private__ is propagated to later declarations.
1460  if (Old->isModulePrivate())
1461    New->setModulePrivate();
1462  else if (New->isModulePrivate())
1463    diagnoseModulePrivateRedeclaration(New, Old);
1464
1465  if (getLangOptions().MicrosoftExt)
1466    return;
1467
1468  if (getLangOptions().CPlusPlus) {
1469    // C++ [dcl.typedef]p2:
1470    //   In a given non-class scope, a typedef specifier can be used to
1471    //   redefine the name of any type declared in that scope to refer
1472    //   to the type to which it already refers.
1473    if (!isa<CXXRecordDecl>(CurContext))
1474      return;
1475
1476    // C++0x [dcl.typedef]p4:
1477    //   In a given class scope, a typedef specifier can be used to redefine
1478    //   any class-name declared in that scope that is not also a typedef-name
1479    //   to refer to the type to which it already refers.
1480    //
1481    // This wording came in via DR424, which was a correction to the
1482    // wording in DR56, which accidentally banned code like:
1483    //
1484    //   struct S {
1485    //     typedef struct A { } A;
1486    //   };
1487    //
1488    // in the C++03 standard. We implement the C++0x semantics, which
1489    // allow the above but disallow
1490    //
1491    //   struct S {
1492    //     typedef int I;
1493    //     typedef int I;
1494    //   };
1495    //
1496    // since that was the intent of DR56.
1497    if (!isa<TypedefNameDecl>(Old))
1498      return;
1499
1500    Diag(New->getLocation(), diag::err_redefinition)
1501      << New->getDeclName();
1502    Diag(Old->getLocation(), diag::note_previous_definition);
1503    return New->setInvalidDecl();
1504  }
1505
1506  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1507  // is normally mapped to an error, but can be controlled with
1508  // -Wtypedef-redefinition.  If either the original or the redefinition is
1509  // in a system header, don't emit this for compatibility with GCC.
1510  if (getDiagnostics().getSuppressSystemWarnings() &&
1511      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1512       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1513    return;
1514
1515  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1516    << New->getDeclName();
1517  Diag(Old->getLocation(), diag::note_previous_definition);
1518  return;
1519}
1520
1521/// DeclhasAttr - returns true if decl Declaration already has the target
1522/// attribute.
1523static bool
1524DeclHasAttr(const Decl *D, const Attr *A) {
1525  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1526  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1527  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1528    if ((*i)->getKind() == A->getKind()) {
1529      if (Ann) {
1530        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1531          return true;
1532        continue;
1533      }
1534      // FIXME: Don't hardcode this check
1535      if (OA && isa<OwnershipAttr>(*i))
1536        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1537      return true;
1538    }
1539
1540  return false;
1541}
1542
1543/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1544static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1545                                ASTContext &C, bool mergeDeprecation = true) {
1546  if (!oldDecl->hasAttrs())
1547    return;
1548
1549  bool foundAny = newDecl->hasAttrs();
1550
1551  // Ensure that any moving of objects within the allocated map is done before
1552  // we process them.
1553  if (!foundAny) newDecl->setAttrs(AttrVec());
1554
1555  for (specific_attr_iterator<InheritableAttr>
1556       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1557       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1558    // Ignore deprecated/unavailable/availability attributes if requested.
1559    if (!mergeDeprecation &&
1560        (isa<DeprecatedAttr>(*i) ||
1561         isa<UnavailableAttr>(*i) ||
1562         isa<AvailabilityAttr>(*i)))
1563      continue;
1564
1565    if (!DeclHasAttr(newDecl, *i)) {
1566      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1567      newAttr->setInherited(true);
1568      newDecl->addAttr(newAttr);
1569      foundAny = true;
1570    }
1571  }
1572
1573  if (!foundAny) newDecl->dropAttrs();
1574}
1575
1576/// mergeParamDeclAttributes - Copy attributes from the old parameter
1577/// to the new one.
1578static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1579                                     const ParmVarDecl *oldDecl,
1580                                     ASTContext &C) {
1581  if (!oldDecl->hasAttrs())
1582    return;
1583
1584  bool foundAny = newDecl->hasAttrs();
1585
1586  // Ensure that any moving of objects within the allocated map is
1587  // done before we process them.
1588  if (!foundAny) newDecl->setAttrs(AttrVec());
1589
1590  for (specific_attr_iterator<InheritableParamAttr>
1591       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1592       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1593    if (!DeclHasAttr(newDecl, *i)) {
1594      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1595      newAttr->setInherited(true);
1596      newDecl->addAttr(newAttr);
1597      foundAny = true;
1598    }
1599  }
1600
1601  if (!foundAny) newDecl->dropAttrs();
1602}
1603
1604namespace {
1605
1606/// Used in MergeFunctionDecl to keep track of function parameters in
1607/// C.
1608struct GNUCompatibleParamWarning {
1609  ParmVarDecl *OldParm;
1610  ParmVarDecl *NewParm;
1611  QualType PromotedType;
1612};
1613
1614}
1615
1616/// getSpecialMember - get the special member enum for a method.
1617Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1618  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1619    if (Ctor->isDefaultConstructor())
1620      return Sema::CXXDefaultConstructor;
1621
1622    if (Ctor->isCopyConstructor())
1623      return Sema::CXXCopyConstructor;
1624
1625    if (Ctor->isMoveConstructor())
1626      return Sema::CXXMoveConstructor;
1627  } else if (isa<CXXDestructorDecl>(MD)) {
1628    return Sema::CXXDestructor;
1629  } else if (MD->isCopyAssignmentOperator()) {
1630    return Sema::CXXCopyAssignment;
1631  } else if (MD->isMoveAssignmentOperator()) {
1632    return Sema::CXXMoveAssignment;
1633  }
1634
1635  return Sema::CXXInvalid;
1636}
1637
1638/// canRedefineFunction - checks if a function can be redefined. Currently,
1639/// only extern inline functions can be redefined, and even then only in
1640/// GNU89 mode.
1641static bool canRedefineFunction(const FunctionDecl *FD,
1642                                const LangOptions& LangOpts) {
1643  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1644          !LangOpts.CPlusPlus &&
1645          FD->isInlineSpecified() &&
1646          FD->getStorageClass() == SC_Extern);
1647}
1648
1649/// MergeFunctionDecl - We just parsed a function 'New' from
1650/// declarator D which has the same name and scope as a previous
1651/// declaration 'Old'.  Figure out how to resolve this situation,
1652/// merging decls or emitting diagnostics as appropriate.
1653///
1654/// In C++, New and Old must be declarations that are not
1655/// overloaded. Use IsOverload to determine whether New and Old are
1656/// overloaded, and to select the Old declaration that New should be
1657/// merged with.
1658///
1659/// Returns true if there was an error, false otherwise.
1660bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1661  // Verify the old decl was also a function.
1662  FunctionDecl *Old = 0;
1663  if (FunctionTemplateDecl *OldFunctionTemplate
1664        = dyn_cast<FunctionTemplateDecl>(OldD))
1665    Old = OldFunctionTemplate->getTemplatedDecl();
1666  else
1667    Old = dyn_cast<FunctionDecl>(OldD);
1668  if (!Old) {
1669    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1670      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1671      Diag(Shadow->getTargetDecl()->getLocation(),
1672           diag::note_using_decl_target);
1673      Diag(Shadow->getUsingDecl()->getLocation(),
1674           diag::note_using_decl) << 0;
1675      return true;
1676    }
1677
1678    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1679      << New->getDeclName();
1680    Diag(OldD->getLocation(), diag::note_previous_definition);
1681    return true;
1682  }
1683
1684  // Determine whether the previous declaration was a definition,
1685  // implicit declaration, or a declaration.
1686  diag::kind PrevDiag;
1687  if (Old->isThisDeclarationADefinition())
1688    PrevDiag = diag::note_previous_definition;
1689  else if (Old->isImplicit())
1690    PrevDiag = diag::note_previous_implicit_declaration;
1691  else
1692    PrevDiag = diag::note_previous_declaration;
1693
1694  QualType OldQType = Context.getCanonicalType(Old->getType());
1695  QualType NewQType = Context.getCanonicalType(New->getType());
1696
1697  // Don't complain about this if we're in GNU89 mode and the old function
1698  // is an extern inline function.
1699  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1700      New->getStorageClass() == SC_Static &&
1701      Old->getStorageClass() != SC_Static &&
1702      !canRedefineFunction(Old, getLangOptions())) {
1703    if (getLangOptions().MicrosoftExt) {
1704      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1705      Diag(Old->getLocation(), PrevDiag);
1706    } else {
1707      Diag(New->getLocation(), diag::err_static_non_static) << New;
1708      Diag(Old->getLocation(), PrevDiag);
1709      return true;
1710    }
1711  }
1712
1713  // If a function is first declared with a calling convention, but is
1714  // later declared or defined without one, the second decl assumes the
1715  // calling convention of the first.
1716  //
1717  // For the new decl, we have to look at the NON-canonical type to tell the
1718  // difference between a function that really doesn't have a calling
1719  // convention and one that is declared cdecl. That's because in
1720  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1721  // because it is the default calling convention.
1722  //
1723  // Note also that we DO NOT return at this point, because we still have
1724  // other tests to run.
1725  const FunctionType *OldType = cast<FunctionType>(OldQType);
1726  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1727  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1728  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1729  bool RequiresAdjustment = false;
1730  if (OldTypeInfo.getCC() != CC_Default &&
1731      NewTypeInfo.getCC() == CC_Default) {
1732    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1733    RequiresAdjustment = true;
1734  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1735                                     NewTypeInfo.getCC())) {
1736    // Calling conventions really aren't compatible, so complain.
1737    Diag(New->getLocation(), diag::err_cconv_change)
1738      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1739      << (OldTypeInfo.getCC() == CC_Default)
1740      << (OldTypeInfo.getCC() == CC_Default ? "" :
1741          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1742    Diag(Old->getLocation(), diag::note_previous_declaration);
1743    return true;
1744  }
1745
1746  // FIXME: diagnose the other way around?
1747  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1748    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1749    RequiresAdjustment = true;
1750  }
1751
1752  // Merge regparm attribute.
1753  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1754      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1755    if (NewTypeInfo.getHasRegParm()) {
1756      Diag(New->getLocation(), diag::err_regparm_mismatch)
1757        << NewType->getRegParmType()
1758        << OldType->getRegParmType();
1759      Diag(Old->getLocation(), diag::note_previous_declaration);
1760      return true;
1761    }
1762
1763    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1764    RequiresAdjustment = true;
1765  }
1766
1767  // Merge ns_returns_retained attribute.
1768  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1769    if (NewTypeInfo.getProducesResult()) {
1770      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1771      Diag(Old->getLocation(), diag::note_previous_declaration);
1772      return true;
1773    }
1774
1775    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1776    RequiresAdjustment = true;
1777  }
1778
1779  if (RequiresAdjustment) {
1780    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1781    New->setType(QualType(NewType, 0));
1782    NewQType = Context.getCanonicalType(New->getType());
1783  }
1784
1785  if (getLangOptions().CPlusPlus) {
1786    // (C++98 13.1p2):
1787    //   Certain function declarations cannot be overloaded:
1788    //     -- Function declarations that differ only in the return type
1789    //        cannot be overloaded.
1790    QualType OldReturnType = OldType->getResultType();
1791    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1792    QualType ResQT;
1793    if (OldReturnType != NewReturnType) {
1794      if (NewReturnType->isObjCObjectPointerType()
1795          && OldReturnType->isObjCObjectPointerType())
1796        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1797      if (ResQT.isNull()) {
1798        if (New->isCXXClassMember() && New->isOutOfLine())
1799          Diag(New->getLocation(),
1800               diag::err_member_def_does_not_match_ret_type) << New;
1801        else
1802          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1803        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1804        return true;
1805      }
1806      else
1807        NewQType = ResQT;
1808    }
1809
1810    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1811    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1812    if (OldMethod && NewMethod) {
1813      // Preserve triviality.
1814      NewMethod->setTrivial(OldMethod->isTrivial());
1815
1816      // MSVC allows explicit template specialization at class scope:
1817      // 2 CXMethodDecls referring to the same function will be injected.
1818      // We don't want a redeclartion error.
1819      bool IsClassScopeExplicitSpecialization =
1820                              OldMethod->isFunctionTemplateSpecialization() &&
1821                              NewMethod->isFunctionTemplateSpecialization();
1822      bool isFriend = NewMethod->getFriendObjectKind();
1823
1824      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1825          !IsClassScopeExplicitSpecialization) {
1826        //    -- Member function declarations with the same name and the
1827        //       same parameter types cannot be overloaded if any of them
1828        //       is a static member function declaration.
1829        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1830          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1831          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1832          return true;
1833        }
1834
1835        // C++ [class.mem]p1:
1836        //   [...] A member shall not be declared twice in the
1837        //   member-specification, except that a nested class or member
1838        //   class template can be declared and then later defined.
1839        unsigned NewDiag;
1840        if (isa<CXXConstructorDecl>(OldMethod))
1841          NewDiag = diag::err_constructor_redeclared;
1842        else if (isa<CXXDestructorDecl>(NewMethod))
1843          NewDiag = diag::err_destructor_redeclared;
1844        else if (isa<CXXConversionDecl>(NewMethod))
1845          NewDiag = diag::err_conv_function_redeclared;
1846        else
1847          NewDiag = diag::err_member_redeclared;
1848
1849        Diag(New->getLocation(), NewDiag);
1850        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1851
1852      // Complain if this is an explicit declaration of a special
1853      // member that was initially declared implicitly.
1854      //
1855      // As an exception, it's okay to befriend such methods in order
1856      // to permit the implicit constructor/destructor/operator calls.
1857      } else if (OldMethod->isImplicit()) {
1858        if (isFriend) {
1859          NewMethod->setImplicit();
1860        } else {
1861          Diag(NewMethod->getLocation(),
1862               diag::err_definition_of_implicitly_declared_member)
1863            << New << getSpecialMember(OldMethod);
1864          return true;
1865        }
1866      } else if (OldMethod->isExplicitlyDefaulted()) {
1867        Diag(NewMethod->getLocation(),
1868             diag::err_definition_of_explicitly_defaulted_member)
1869          << getSpecialMember(OldMethod);
1870        return true;
1871      }
1872    }
1873
1874    // (C++98 8.3.5p3):
1875    //   All declarations for a function shall agree exactly in both the
1876    //   return type and the parameter-type-list.
1877    // We also want to respect all the extended bits except noreturn.
1878
1879    // noreturn should now match unless the old type info didn't have it.
1880    QualType OldQTypeForComparison = OldQType;
1881    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1882      assert(OldQType == QualType(OldType, 0));
1883      const FunctionType *OldTypeForComparison
1884        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1885      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1886      assert(OldQTypeForComparison.isCanonical());
1887    }
1888
1889    if (OldQTypeForComparison == NewQType)
1890      return MergeCompatibleFunctionDecls(New, Old);
1891
1892    // Fall through for conflicting redeclarations and redefinitions.
1893  }
1894
1895  // C: Function types need to be compatible, not identical. This handles
1896  // duplicate function decls like "void f(int); void f(enum X);" properly.
1897  if (!getLangOptions().CPlusPlus &&
1898      Context.typesAreCompatible(OldQType, NewQType)) {
1899    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1900    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1901    const FunctionProtoType *OldProto = 0;
1902    if (isa<FunctionNoProtoType>(NewFuncType) &&
1903        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1904      // The old declaration provided a function prototype, but the
1905      // new declaration does not. Merge in the prototype.
1906      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1907      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1908                                                 OldProto->arg_type_end());
1909      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1910                                         ParamTypes.data(), ParamTypes.size(),
1911                                         OldProto->getExtProtoInfo());
1912      New->setType(NewQType);
1913      New->setHasInheritedPrototype();
1914
1915      // Synthesize a parameter for each argument type.
1916      SmallVector<ParmVarDecl*, 16> Params;
1917      for (FunctionProtoType::arg_type_iterator
1918             ParamType = OldProto->arg_type_begin(),
1919             ParamEnd = OldProto->arg_type_end();
1920           ParamType != ParamEnd; ++ParamType) {
1921        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1922                                                 SourceLocation(),
1923                                                 SourceLocation(), 0,
1924                                                 *ParamType, /*TInfo=*/0,
1925                                                 SC_None, SC_None,
1926                                                 0);
1927        Param->setScopeInfo(0, Params.size());
1928        Param->setImplicit();
1929        Params.push_back(Param);
1930      }
1931
1932      New->setParams(Params);
1933    }
1934
1935    return MergeCompatibleFunctionDecls(New, Old);
1936  }
1937
1938  // GNU C permits a K&R definition to follow a prototype declaration
1939  // if the declared types of the parameters in the K&R definition
1940  // match the types in the prototype declaration, even when the
1941  // promoted types of the parameters from the K&R definition differ
1942  // from the types in the prototype. GCC then keeps the types from
1943  // the prototype.
1944  //
1945  // If a variadic prototype is followed by a non-variadic K&R definition,
1946  // the K&R definition becomes variadic.  This is sort of an edge case, but
1947  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1948  // C99 6.9.1p8.
1949  if (!getLangOptions().CPlusPlus &&
1950      Old->hasPrototype() && !New->hasPrototype() &&
1951      New->getType()->getAs<FunctionProtoType>() &&
1952      Old->getNumParams() == New->getNumParams()) {
1953    SmallVector<QualType, 16> ArgTypes;
1954    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1955    const FunctionProtoType *OldProto
1956      = Old->getType()->getAs<FunctionProtoType>();
1957    const FunctionProtoType *NewProto
1958      = New->getType()->getAs<FunctionProtoType>();
1959
1960    // Determine whether this is the GNU C extension.
1961    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1962                                               NewProto->getResultType());
1963    bool LooseCompatible = !MergedReturn.isNull();
1964    for (unsigned Idx = 0, End = Old->getNumParams();
1965         LooseCompatible && Idx != End; ++Idx) {
1966      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1967      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1968      if (Context.typesAreCompatible(OldParm->getType(),
1969                                     NewProto->getArgType(Idx))) {
1970        ArgTypes.push_back(NewParm->getType());
1971      } else if (Context.typesAreCompatible(OldParm->getType(),
1972                                            NewParm->getType(),
1973                                            /*CompareUnqualified=*/true)) {
1974        GNUCompatibleParamWarning Warn
1975          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1976        Warnings.push_back(Warn);
1977        ArgTypes.push_back(NewParm->getType());
1978      } else
1979        LooseCompatible = false;
1980    }
1981
1982    if (LooseCompatible) {
1983      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1984        Diag(Warnings[Warn].NewParm->getLocation(),
1985             diag::ext_param_promoted_not_compatible_with_prototype)
1986          << Warnings[Warn].PromotedType
1987          << Warnings[Warn].OldParm->getType();
1988        if (Warnings[Warn].OldParm->getLocation().isValid())
1989          Diag(Warnings[Warn].OldParm->getLocation(),
1990               diag::note_previous_declaration);
1991      }
1992
1993      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1994                                           ArgTypes.size(),
1995                                           OldProto->getExtProtoInfo()));
1996      return MergeCompatibleFunctionDecls(New, Old);
1997    }
1998
1999    // Fall through to diagnose conflicting types.
2000  }
2001
2002  // A function that has already been declared has been redeclared or defined
2003  // with a different type- show appropriate diagnostic
2004  if (unsigned BuiltinID = Old->getBuiltinID()) {
2005    // The user has declared a builtin function with an incompatible
2006    // signature.
2007    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2008      // The function the user is redeclaring is a library-defined
2009      // function like 'malloc' or 'printf'. Warn about the
2010      // redeclaration, then pretend that we don't know about this
2011      // library built-in.
2012      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2013      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2014        << Old << Old->getType();
2015      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2016      Old->setInvalidDecl();
2017      return false;
2018    }
2019
2020    PrevDiag = diag::note_previous_builtin_declaration;
2021  }
2022
2023  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2024  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2025  return true;
2026}
2027
2028/// \brief Completes the merge of two function declarations that are
2029/// known to be compatible.
2030///
2031/// This routine handles the merging of attributes and other
2032/// properties of function declarations form the old declaration to
2033/// the new declaration, once we know that New is in fact a
2034/// redeclaration of Old.
2035///
2036/// \returns false
2037bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2038  // Merge the attributes
2039  mergeDeclAttributes(New, Old, Context);
2040
2041  // Merge the storage class.
2042  if (Old->getStorageClass() != SC_Extern &&
2043      Old->getStorageClass() != SC_None)
2044    New->setStorageClass(Old->getStorageClass());
2045
2046  // Merge "pure" flag.
2047  if (Old->isPure())
2048    New->setPure();
2049
2050  // __module_private__ is propagated to later declarations.
2051  if (Old->isModulePrivate())
2052    New->setModulePrivate();
2053  else if (New->isModulePrivate())
2054    diagnoseModulePrivateRedeclaration(New, Old);
2055
2056  // Merge attributes from the parameters.  These can mismatch with K&R
2057  // declarations.
2058  if (New->getNumParams() == Old->getNumParams())
2059    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2060      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2061                               Context);
2062
2063  if (getLangOptions().CPlusPlus)
2064    return MergeCXXFunctionDecl(New, Old);
2065
2066  return false;
2067}
2068
2069
2070void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2071                                const ObjCMethodDecl *oldMethod) {
2072  // We don't want to merge unavailable and deprecated attributes
2073  // except from interface to implementation.
2074  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2075
2076  // Merge the attributes.
2077  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2078
2079  // Merge attributes from the parameters.
2080  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2081  for (ObjCMethodDecl::param_iterator
2082         ni = newMethod->param_begin(), ne = newMethod->param_end();
2083       ni != ne; ++ni, ++oi)
2084    mergeParamDeclAttributes(*ni, *oi, Context);
2085
2086  CheckObjCMethodOverride(newMethod, oldMethod, true);
2087}
2088
2089/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2090/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2091/// emitting diagnostics as appropriate.
2092///
2093/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2094/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2095/// check them before the initializer is attached.
2096///
2097void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2098  if (New->isInvalidDecl() || Old->isInvalidDecl())
2099    return;
2100
2101  QualType MergedT;
2102  if (getLangOptions().CPlusPlus) {
2103    AutoType *AT = New->getType()->getContainedAutoType();
2104    if (AT && !AT->isDeduced()) {
2105      // We don't know what the new type is until the initializer is attached.
2106      return;
2107    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2108      // These could still be something that needs exception specs checked.
2109      return MergeVarDeclExceptionSpecs(New, Old);
2110    }
2111    // C++ [basic.link]p10:
2112    //   [...] the types specified by all declarations referring to a given
2113    //   object or function shall be identical, except that declarations for an
2114    //   array object can specify array types that differ by the presence or
2115    //   absence of a major array bound (8.3.4).
2116    else if (Old->getType()->isIncompleteArrayType() &&
2117             New->getType()->isArrayType()) {
2118      CanQual<ArrayType> OldArray
2119        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2120      CanQual<ArrayType> NewArray
2121        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2122      if (OldArray->getElementType() == NewArray->getElementType())
2123        MergedT = New->getType();
2124    } else if (Old->getType()->isArrayType() &&
2125             New->getType()->isIncompleteArrayType()) {
2126      CanQual<ArrayType> OldArray
2127        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2128      CanQual<ArrayType> NewArray
2129        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2130      if (OldArray->getElementType() == NewArray->getElementType())
2131        MergedT = Old->getType();
2132    } else if (New->getType()->isObjCObjectPointerType()
2133               && Old->getType()->isObjCObjectPointerType()) {
2134        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2135                                                        Old->getType());
2136    }
2137  } else {
2138    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2139  }
2140  if (MergedT.isNull()) {
2141    Diag(New->getLocation(), diag::err_redefinition_different_type)
2142      << New->getDeclName();
2143    Diag(Old->getLocation(), diag::note_previous_definition);
2144    return New->setInvalidDecl();
2145  }
2146  New->setType(MergedT);
2147}
2148
2149/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2150/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2151/// situation, merging decls or emitting diagnostics as appropriate.
2152///
2153/// Tentative definition rules (C99 6.9.2p2) are checked by
2154/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2155/// definitions here, since the initializer hasn't been attached.
2156///
2157void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2158  // If the new decl is already invalid, don't do any other checking.
2159  if (New->isInvalidDecl())
2160    return;
2161
2162  // Verify the old decl was also a variable.
2163  VarDecl *Old = 0;
2164  if (!Previous.isSingleResult() ||
2165      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2166    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2167      << New->getDeclName();
2168    Diag(Previous.getRepresentativeDecl()->getLocation(),
2169         diag::note_previous_definition);
2170    return New->setInvalidDecl();
2171  }
2172
2173  // C++ [class.mem]p1:
2174  //   A member shall not be declared twice in the member-specification [...]
2175  //
2176  // Here, we need only consider static data members.
2177  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2178    Diag(New->getLocation(), diag::err_duplicate_member)
2179      << New->getIdentifier();
2180    Diag(Old->getLocation(), diag::note_previous_declaration);
2181    New->setInvalidDecl();
2182  }
2183
2184  mergeDeclAttributes(New, Old, Context);
2185  // Warn if an already-declared variable is made a weak_import in a subsequent
2186  // declaration
2187  if (New->getAttr<WeakImportAttr>() &&
2188      Old->getStorageClass() == SC_None &&
2189      !Old->getAttr<WeakImportAttr>()) {
2190    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2191    Diag(Old->getLocation(), diag::note_previous_definition);
2192    // Remove weak_import attribute on new declaration.
2193    New->dropAttr<WeakImportAttr>();
2194  }
2195
2196  // Merge the types.
2197  MergeVarDeclTypes(New, Old);
2198  if (New->isInvalidDecl())
2199    return;
2200
2201  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2202  if (New->getStorageClass() == SC_Static &&
2203      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2204    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2205    Diag(Old->getLocation(), diag::note_previous_definition);
2206    return New->setInvalidDecl();
2207  }
2208  // C99 6.2.2p4:
2209  //   For an identifier declared with the storage-class specifier
2210  //   extern in a scope in which a prior declaration of that
2211  //   identifier is visible,23) if the prior declaration specifies
2212  //   internal or external linkage, the linkage of the identifier at
2213  //   the later declaration is the same as the linkage specified at
2214  //   the prior declaration. If no prior declaration is visible, or
2215  //   if the prior declaration specifies no linkage, then the
2216  //   identifier has external linkage.
2217  if (New->hasExternalStorage() && Old->hasLinkage())
2218    /* Okay */;
2219  else if (New->getStorageClass() != SC_Static &&
2220           Old->getStorageClass() == SC_Static) {
2221    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2222    Diag(Old->getLocation(), diag::note_previous_definition);
2223    return New->setInvalidDecl();
2224  }
2225
2226  // Check if extern is followed by non-extern and vice-versa.
2227  if (New->hasExternalStorage() &&
2228      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2229    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2230    Diag(Old->getLocation(), diag::note_previous_definition);
2231    return New->setInvalidDecl();
2232  }
2233  if (Old->hasExternalStorage() &&
2234      !New->hasLinkage() && New->isLocalVarDecl()) {
2235    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2236    Diag(Old->getLocation(), diag::note_previous_definition);
2237    return New->setInvalidDecl();
2238  }
2239
2240  // __module_private__ is propagated to later declarations.
2241  if (Old->isModulePrivate())
2242    New->setModulePrivate();
2243  else if (New->isModulePrivate())
2244    diagnoseModulePrivateRedeclaration(New, Old);
2245
2246  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2247
2248  // FIXME: The test for external storage here seems wrong? We still
2249  // need to check for mismatches.
2250  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2251      // Don't complain about out-of-line definitions of static members.
2252      !(Old->getLexicalDeclContext()->isRecord() &&
2253        !New->getLexicalDeclContext()->isRecord())) {
2254    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2255    Diag(Old->getLocation(), diag::note_previous_definition);
2256    return New->setInvalidDecl();
2257  }
2258
2259  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2260    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2261    Diag(Old->getLocation(), diag::note_previous_definition);
2262  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2263    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2264    Diag(Old->getLocation(), diag::note_previous_definition);
2265  }
2266
2267  // C++ doesn't have tentative definitions, so go right ahead and check here.
2268  const VarDecl *Def;
2269  if (getLangOptions().CPlusPlus &&
2270      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2271      (Def = Old->getDefinition())) {
2272    Diag(New->getLocation(), diag::err_redefinition)
2273      << New->getDeclName();
2274    Diag(Def->getLocation(), diag::note_previous_definition);
2275    New->setInvalidDecl();
2276    return;
2277  }
2278  // c99 6.2.2 P4.
2279  // For an identifier declared with the storage-class specifier extern in a
2280  // scope in which a prior declaration of that identifier is visible, if
2281  // the prior declaration specifies internal or external linkage, the linkage
2282  // of the identifier at the later declaration is the same as the linkage
2283  // specified at the prior declaration.
2284  // FIXME. revisit this code.
2285  if (New->hasExternalStorage() &&
2286      Old->getLinkage() == InternalLinkage &&
2287      New->getDeclContext() == Old->getDeclContext())
2288    New->setStorageClass(Old->getStorageClass());
2289
2290  // Keep a chain of previous declarations.
2291  New->setPreviousDeclaration(Old);
2292
2293  // Inherit access appropriately.
2294  New->setAccess(Old->getAccess());
2295}
2296
2297/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2298/// no declarator (e.g. "struct foo;") is parsed.
2299Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2300                                       DeclSpec &DS) {
2301  return ParsedFreeStandingDeclSpec(S, AS, DS,
2302                                    MultiTemplateParamsArg(*this, 0, 0));
2303}
2304
2305/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2306/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2307/// parameters to cope with template friend declarations.
2308Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2309                                       DeclSpec &DS,
2310                                       MultiTemplateParamsArg TemplateParams) {
2311  Decl *TagD = 0;
2312  TagDecl *Tag = 0;
2313  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2314      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2315      DS.getTypeSpecType() == DeclSpec::TST_union ||
2316      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2317    TagD = DS.getRepAsDecl();
2318
2319    if (!TagD) // We probably had an error
2320      return 0;
2321
2322    // Note that the above type specs guarantee that the
2323    // type rep is a Decl, whereas in many of the others
2324    // it's a Type.
2325    if (isa<TagDecl>(TagD))
2326      Tag = cast<TagDecl>(TagD);
2327    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2328      Tag = CTD->getTemplatedDecl();
2329  }
2330
2331  if (Tag)
2332    Tag->setFreeStanding();
2333
2334  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2335    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2336    // or incomplete types shall not be restrict-qualified."
2337    if (TypeQuals & DeclSpec::TQ_restrict)
2338      Diag(DS.getRestrictSpecLoc(),
2339           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2340           << DS.getSourceRange();
2341  }
2342
2343  if (DS.isConstexprSpecified()) {
2344    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2345    // and definitions of functions and variables.
2346    if (Tag)
2347      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2348        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2349            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2350            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2351    else
2352      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2353    // Don't emit warnings after this error.
2354    return TagD;
2355  }
2356
2357  if (DS.isFriendSpecified()) {
2358    // If we're dealing with a decl but not a TagDecl, assume that
2359    // whatever routines created it handled the friendship aspect.
2360    if (TagD && !Tag)
2361      return 0;
2362    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2363  }
2364
2365  // Track whether we warned about the fact that there aren't any
2366  // declarators.
2367  bool emittedWarning = false;
2368
2369  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2370    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2371
2372    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2373        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2374      if (getLangOptions().CPlusPlus ||
2375          Record->getDeclContext()->isRecord())
2376        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2377
2378      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2379        << DS.getSourceRange();
2380      emittedWarning = true;
2381    }
2382  }
2383
2384  // Check for Microsoft C extension: anonymous struct.
2385  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2386      CurContext->isRecord() &&
2387      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2388    // Handle 2 kinds of anonymous struct:
2389    //   struct STRUCT;
2390    // and
2391    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2392    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2393    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2394        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2395         DS.getRepAsType().get()->isStructureType())) {
2396      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2397        << DS.getSourceRange();
2398      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2399    }
2400  }
2401
2402  if (getLangOptions().CPlusPlus &&
2403      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2404    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2405      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2406          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2407        Diag(Enum->getLocation(), diag::ext_no_declarators)
2408          << DS.getSourceRange();
2409        emittedWarning = true;
2410      }
2411
2412  // Skip all the checks below if we have a type error.
2413  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2414
2415  if (!DS.isMissingDeclaratorOk()) {
2416    // Warn about typedefs of enums without names, since this is an
2417    // extension in both Microsoft and GNU.
2418    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2419        Tag && isa<EnumDecl>(Tag)) {
2420      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2421        << DS.getSourceRange();
2422      return Tag;
2423    }
2424
2425    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2426      << DS.getSourceRange();
2427    emittedWarning = true;
2428  }
2429
2430  // We're going to complain about a bunch of spurious specifiers;
2431  // only do this if we're declaring a tag, because otherwise we
2432  // should be getting diag::ext_no_declarators.
2433  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2434    return TagD;
2435
2436  // Note that a linkage-specification sets a storage class, but
2437  // 'extern "C" struct foo;' is actually valid and not theoretically
2438  // useless.
2439  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2440    if (!DS.isExternInLinkageSpec())
2441      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2442        << DeclSpec::getSpecifierName(scs);
2443
2444  if (DS.isThreadSpecified())
2445    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2446  if (DS.getTypeQualifiers()) {
2447    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2448      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2449    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2450      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2451    // Restrict is covered above.
2452  }
2453  if (DS.isInlineSpecified())
2454    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2455  if (DS.isVirtualSpecified())
2456    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2457  if (DS.isExplicitSpecified())
2458    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2459
2460  if (DS.isModulePrivateSpecified() &&
2461      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2462    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2463      << Tag->getTagKind()
2464      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2465
2466  // FIXME: Warn on useless attributes
2467
2468  return TagD;
2469}
2470
2471/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2472/// builds a statement for it and returns it so it is evaluated.
2473StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2474  StmtResult R;
2475  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2476    Expr *Exp = DS.getRepAsExpr();
2477    QualType Ty = Exp->getType();
2478    if (Ty->isPointerType()) {
2479      do
2480        Ty = Ty->getAs<PointerType>()->getPointeeType();
2481      while (Ty->isPointerType());
2482    }
2483    if (Ty->isVariableArrayType()) {
2484      R = ActOnExprStmt(MakeFullExpr(Exp));
2485    }
2486  }
2487  return R;
2488}
2489
2490/// We are trying to inject an anonymous member into the given scope;
2491/// check if there's an existing declaration that can't be overloaded.
2492///
2493/// \return true if this is a forbidden redeclaration
2494static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2495                                         Scope *S,
2496                                         DeclContext *Owner,
2497                                         DeclarationName Name,
2498                                         SourceLocation NameLoc,
2499                                         unsigned diagnostic) {
2500  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2501                 Sema::ForRedeclaration);
2502  if (!SemaRef.LookupName(R, S)) return false;
2503
2504  if (R.getAsSingle<TagDecl>())
2505    return false;
2506
2507  // Pick a representative declaration.
2508  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2509  assert(PrevDecl && "Expected a non-null Decl");
2510
2511  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2512    return false;
2513
2514  SemaRef.Diag(NameLoc, diagnostic) << Name;
2515  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2516
2517  return true;
2518}
2519
2520/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2521/// anonymous struct or union AnonRecord into the owning context Owner
2522/// and scope S. This routine will be invoked just after we realize
2523/// that an unnamed union or struct is actually an anonymous union or
2524/// struct, e.g.,
2525///
2526/// @code
2527/// union {
2528///   int i;
2529///   float f;
2530/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2531///    // f into the surrounding scope.x
2532/// @endcode
2533///
2534/// This routine is recursive, injecting the names of nested anonymous
2535/// structs/unions into the owning context and scope as well.
2536static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2537                                                DeclContext *Owner,
2538                                                RecordDecl *AnonRecord,
2539                                                AccessSpecifier AS,
2540                              SmallVector<NamedDecl*, 2> &Chaining,
2541                                                      bool MSAnonStruct) {
2542  unsigned diagKind
2543    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2544                            : diag::err_anonymous_struct_member_redecl;
2545
2546  bool Invalid = false;
2547
2548  // Look every FieldDecl and IndirectFieldDecl with a name.
2549  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2550                               DEnd = AnonRecord->decls_end();
2551       D != DEnd; ++D) {
2552    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2553        cast<NamedDecl>(*D)->getDeclName()) {
2554      ValueDecl *VD = cast<ValueDecl>(*D);
2555      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2556                                       VD->getLocation(), diagKind)) {
2557        // C++ [class.union]p2:
2558        //   The names of the members of an anonymous union shall be
2559        //   distinct from the names of any other entity in the
2560        //   scope in which the anonymous union is declared.
2561        Invalid = true;
2562      } else {
2563        // C++ [class.union]p2:
2564        //   For the purpose of name lookup, after the anonymous union
2565        //   definition, the members of the anonymous union are
2566        //   considered to have been defined in the scope in which the
2567        //   anonymous union is declared.
2568        unsigned OldChainingSize = Chaining.size();
2569        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2570          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2571               PE = IF->chain_end(); PI != PE; ++PI)
2572            Chaining.push_back(*PI);
2573        else
2574          Chaining.push_back(VD);
2575
2576        assert(Chaining.size() >= 2);
2577        NamedDecl **NamedChain =
2578          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2579        for (unsigned i = 0; i < Chaining.size(); i++)
2580          NamedChain[i] = Chaining[i];
2581
2582        IndirectFieldDecl* IndirectField =
2583          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2584                                    VD->getIdentifier(), VD->getType(),
2585                                    NamedChain, Chaining.size());
2586
2587        IndirectField->setAccess(AS);
2588        IndirectField->setImplicit();
2589        SemaRef.PushOnScopeChains(IndirectField, S);
2590
2591        // That includes picking up the appropriate access specifier.
2592        if (AS != AS_none) IndirectField->setAccess(AS);
2593
2594        Chaining.resize(OldChainingSize);
2595      }
2596    }
2597  }
2598
2599  return Invalid;
2600}
2601
2602/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2603/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2604/// illegal input values are mapped to SC_None.
2605static StorageClass
2606StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2607  switch (StorageClassSpec) {
2608  case DeclSpec::SCS_unspecified:    return SC_None;
2609  case DeclSpec::SCS_extern:         return SC_Extern;
2610  case DeclSpec::SCS_static:         return SC_Static;
2611  case DeclSpec::SCS_auto:           return SC_Auto;
2612  case DeclSpec::SCS_register:       return SC_Register;
2613  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2614    // Illegal SCSs map to None: error reporting is up to the caller.
2615  case DeclSpec::SCS_mutable:        // Fall through.
2616  case DeclSpec::SCS_typedef:        return SC_None;
2617  }
2618  llvm_unreachable("unknown storage class specifier");
2619}
2620
2621/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2622/// a StorageClass. Any error reporting is up to the caller:
2623/// illegal input values are mapped to SC_None.
2624static StorageClass
2625StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2626  switch (StorageClassSpec) {
2627  case DeclSpec::SCS_unspecified:    return SC_None;
2628  case DeclSpec::SCS_extern:         return SC_Extern;
2629  case DeclSpec::SCS_static:         return SC_Static;
2630  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2631    // Illegal SCSs map to None: error reporting is up to the caller.
2632  case DeclSpec::SCS_auto:           // Fall through.
2633  case DeclSpec::SCS_mutable:        // Fall through.
2634  case DeclSpec::SCS_register:       // Fall through.
2635  case DeclSpec::SCS_typedef:        return SC_None;
2636  }
2637  llvm_unreachable("unknown storage class specifier");
2638}
2639
2640/// BuildAnonymousStructOrUnion - Handle the declaration of an
2641/// anonymous structure or union. Anonymous unions are a C++ feature
2642/// (C++ [class.union]) and a GNU C extension; anonymous structures
2643/// are a GNU C and GNU C++ extension.
2644Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2645                                             AccessSpecifier AS,
2646                                             RecordDecl *Record) {
2647  DeclContext *Owner = Record->getDeclContext();
2648
2649  // Diagnose whether this anonymous struct/union is an extension.
2650  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2651    Diag(Record->getLocation(), diag::ext_anonymous_union);
2652  else if (!Record->isUnion())
2653    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2654
2655  // C and C++ require different kinds of checks for anonymous
2656  // structs/unions.
2657  bool Invalid = false;
2658  if (getLangOptions().CPlusPlus) {
2659    const char* PrevSpec = 0;
2660    unsigned DiagID;
2661    if (Record->isUnion()) {
2662      // C++ [class.union]p6:
2663      //   Anonymous unions declared in a named namespace or in the
2664      //   global namespace shall be declared static.
2665      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2666          (isa<TranslationUnitDecl>(Owner) ||
2667           (isa<NamespaceDecl>(Owner) &&
2668            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2669        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2670          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2671
2672        // Recover by adding 'static'.
2673        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2674                               PrevSpec, DiagID);
2675      }
2676      // C++ [class.union]p6:
2677      //   A storage class is not allowed in a declaration of an
2678      //   anonymous union in a class scope.
2679      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2680               isa<RecordDecl>(Owner)) {
2681        Diag(DS.getStorageClassSpecLoc(),
2682             diag::err_anonymous_union_with_storage_spec)
2683          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2684
2685        // Recover by removing the storage specifier.
2686        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2687                               SourceLocation(),
2688                               PrevSpec, DiagID);
2689      }
2690    }
2691
2692    // Ignore const/volatile/restrict qualifiers.
2693    if (DS.getTypeQualifiers()) {
2694      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2695        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2696          << Record->isUnion() << 0
2697          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2698      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2699        Diag(DS.getVolatileSpecLoc(),
2700             diag::ext_anonymous_struct_union_qualified)
2701          << Record->isUnion() << 1
2702          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2703      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2704        Diag(DS.getRestrictSpecLoc(),
2705             diag::ext_anonymous_struct_union_qualified)
2706          << Record->isUnion() << 2
2707          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2708
2709      DS.ClearTypeQualifiers();
2710    }
2711
2712    // C++ [class.union]p2:
2713    //   The member-specification of an anonymous union shall only
2714    //   define non-static data members. [Note: nested types and
2715    //   functions cannot be declared within an anonymous union. ]
2716    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2717                                 MemEnd = Record->decls_end();
2718         Mem != MemEnd; ++Mem) {
2719      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2720        // C++ [class.union]p3:
2721        //   An anonymous union shall not have private or protected
2722        //   members (clause 11).
2723        assert(FD->getAccess() != AS_none);
2724        if (FD->getAccess() != AS_public) {
2725          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2726            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2727          Invalid = true;
2728        }
2729
2730        // C++ [class.union]p1
2731        //   An object of a class with a non-trivial constructor, a non-trivial
2732        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2733        //   assignment operator cannot be a member of a union, nor can an
2734        //   array of such objects.
2735        if (CheckNontrivialField(FD))
2736          Invalid = true;
2737      } else if ((*Mem)->isImplicit()) {
2738        // Any implicit members are fine.
2739      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2740        // This is a type that showed up in an
2741        // elaborated-type-specifier inside the anonymous struct or
2742        // union, but which actually declares a type outside of the
2743        // anonymous struct or union. It's okay.
2744      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2745        if (!MemRecord->isAnonymousStructOrUnion() &&
2746            MemRecord->getDeclName()) {
2747          // Visual C++ allows type definition in anonymous struct or union.
2748          if (getLangOptions().MicrosoftExt)
2749            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2750              << (int)Record->isUnion();
2751          else {
2752            // This is a nested type declaration.
2753            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2754              << (int)Record->isUnion();
2755            Invalid = true;
2756          }
2757        }
2758      } else if (isa<AccessSpecDecl>(*Mem)) {
2759        // Any access specifier is fine.
2760      } else {
2761        // We have something that isn't a non-static data
2762        // member. Complain about it.
2763        unsigned DK = diag::err_anonymous_record_bad_member;
2764        if (isa<TypeDecl>(*Mem))
2765          DK = diag::err_anonymous_record_with_type;
2766        else if (isa<FunctionDecl>(*Mem))
2767          DK = diag::err_anonymous_record_with_function;
2768        else if (isa<VarDecl>(*Mem))
2769          DK = diag::err_anonymous_record_with_static;
2770
2771        // Visual C++ allows type definition in anonymous struct or union.
2772        if (getLangOptions().MicrosoftExt &&
2773            DK == diag::err_anonymous_record_with_type)
2774          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2775            << (int)Record->isUnion();
2776        else {
2777          Diag((*Mem)->getLocation(), DK)
2778              << (int)Record->isUnion();
2779          Invalid = true;
2780        }
2781      }
2782    }
2783  }
2784
2785  if (!Record->isUnion() && !Owner->isRecord()) {
2786    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2787      << (int)getLangOptions().CPlusPlus;
2788    Invalid = true;
2789  }
2790
2791  // Mock up a declarator.
2792  Declarator Dc(DS, Declarator::MemberContext);
2793  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2794  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2795
2796  // Create a declaration for this anonymous struct/union.
2797  NamedDecl *Anon = 0;
2798  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2799    Anon = FieldDecl::Create(Context, OwningClass,
2800                             DS.getSourceRange().getBegin(),
2801                             Record->getLocation(),
2802                             /*IdentifierInfo=*/0,
2803                             Context.getTypeDeclType(Record),
2804                             TInfo,
2805                             /*BitWidth=*/0, /*Mutable=*/false,
2806                             /*HasInit=*/false);
2807    Anon->setAccess(AS);
2808    if (getLangOptions().CPlusPlus)
2809      FieldCollector->Add(cast<FieldDecl>(Anon));
2810  } else {
2811    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2812    assert(SCSpec != DeclSpec::SCS_typedef &&
2813           "Parser allowed 'typedef' as storage class VarDecl.");
2814    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2815    if (SCSpec == DeclSpec::SCS_mutable) {
2816      // mutable can only appear on non-static class members, so it's always
2817      // an error here
2818      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2819      Invalid = true;
2820      SC = SC_None;
2821    }
2822    SCSpec = DS.getStorageClassSpecAsWritten();
2823    VarDecl::StorageClass SCAsWritten
2824      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2825
2826    Anon = VarDecl::Create(Context, Owner,
2827                           DS.getSourceRange().getBegin(),
2828                           Record->getLocation(), /*IdentifierInfo=*/0,
2829                           Context.getTypeDeclType(Record),
2830                           TInfo, SC, SCAsWritten);
2831
2832    // Default-initialize the implicit variable. This initialization will be
2833    // trivial in almost all cases, except if a union member has an in-class
2834    // initializer:
2835    //   union { int n = 0; };
2836    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2837  }
2838  Anon->setImplicit();
2839
2840  // Add the anonymous struct/union object to the current
2841  // context. We'll be referencing this object when we refer to one of
2842  // its members.
2843  Owner->addDecl(Anon);
2844
2845  // Inject the members of the anonymous struct/union into the owning
2846  // context and into the identifier resolver chain for name lookup
2847  // purposes.
2848  SmallVector<NamedDecl*, 2> Chain;
2849  Chain.push_back(Anon);
2850
2851  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2852                                          Chain, false))
2853    Invalid = true;
2854
2855  // Mark this as an anonymous struct/union type. Note that we do not
2856  // do this until after we have already checked and injected the
2857  // members of this anonymous struct/union type, because otherwise
2858  // the members could be injected twice: once by DeclContext when it
2859  // builds its lookup table, and once by
2860  // InjectAnonymousStructOrUnionMembers.
2861  Record->setAnonymousStructOrUnion(true);
2862
2863  if (Invalid)
2864    Anon->setInvalidDecl();
2865
2866  return Anon;
2867}
2868
2869/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2870/// Microsoft C anonymous structure.
2871/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2872/// Example:
2873///
2874/// struct A { int a; };
2875/// struct B { struct A; int b; };
2876///
2877/// void foo() {
2878///   B var;
2879///   var.a = 3;
2880/// }
2881///
2882Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2883                                           RecordDecl *Record) {
2884
2885  // If there is no Record, get the record via the typedef.
2886  if (!Record)
2887    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2888
2889  // Mock up a declarator.
2890  Declarator Dc(DS, Declarator::TypeNameContext);
2891  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2892  assert(TInfo && "couldn't build declarator info for anonymous struct");
2893
2894  // Create a declaration for this anonymous struct.
2895  NamedDecl* Anon = FieldDecl::Create(Context,
2896                             cast<RecordDecl>(CurContext),
2897                             DS.getSourceRange().getBegin(),
2898                             DS.getSourceRange().getBegin(),
2899                             /*IdentifierInfo=*/0,
2900                             Context.getTypeDeclType(Record),
2901                             TInfo,
2902                             /*BitWidth=*/0, /*Mutable=*/false,
2903                             /*HasInit=*/false);
2904  Anon->setImplicit();
2905
2906  // Add the anonymous struct object to the current context.
2907  CurContext->addDecl(Anon);
2908
2909  // Inject the members of the anonymous struct into the current
2910  // context and into the identifier resolver chain for name lookup
2911  // purposes.
2912  SmallVector<NamedDecl*, 2> Chain;
2913  Chain.push_back(Anon);
2914
2915  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2916                                          Record->getDefinition(),
2917                                          AS_none, Chain, true))
2918    Anon->setInvalidDecl();
2919
2920  return Anon;
2921}
2922
2923/// GetNameForDeclarator - Determine the full declaration name for the
2924/// given Declarator.
2925DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2926  return GetNameFromUnqualifiedId(D.getName());
2927}
2928
2929/// \brief Retrieves the declaration name from a parsed unqualified-id.
2930DeclarationNameInfo
2931Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2932  DeclarationNameInfo NameInfo;
2933  NameInfo.setLoc(Name.StartLocation);
2934
2935  switch (Name.getKind()) {
2936
2937  case UnqualifiedId::IK_ImplicitSelfParam:
2938  case UnqualifiedId::IK_Identifier:
2939    NameInfo.setName(Name.Identifier);
2940    NameInfo.setLoc(Name.StartLocation);
2941    return NameInfo;
2942
2943  case UnqualifiedId::IK_OperatorFunctionId:
2944    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2945                                           Name.OperatorFunctionId.Operator));
2946    NameInfo.setLoc(Name.StartLocation);
2947    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2948      = Name.OperatorFunctionId.SymbolLocations[0];
2949    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2950      = Name.EndLocation.getRawEncoding();
2951    return NameInfo;
2952
2953  case UnqualifiedId::IK_LiteralOperatorId:
2954    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2955                                                           Name.Identifier));
2956    NameInfo.setLoc(Name.StartLocation);
2957    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2958    return NameInfo;
2959
2960  case UnqualifiedId::IK_ConversionFunctionId: {
2961    TypeSourceInfo *TInfo;
2962    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2963    if (Ty.isNull())
2964      return DeclarationNameInfo();
2965    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2966                                               Context.getCanonicalType(Ty)));
2967    NameInfo.setLoc(Name.StartLocation);
2968    NameInfo.setNamedTypeInfo(TInfo);
2969    return NameInfo;
2970  }
2971
2972  case UnqualifiedId::IK_ConstructorName: {
2973    TypeSourceInfo *TInfo;
2974    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2975    if (Ty.isNull())
2976      return DeclarationNameInfo();
2977    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2978                                              Context.getCanonicalType(Ty)));
2979    NameInfo.setLoc(Name.StartLocation);
2980    NameInfo.setNamedTypeInfo(TInfo);
2981    return NameInfo;
2982  }
2983
2984  case UnqualifiedId::IK_ConstructorTemplateId: {
2985    // In well-formed code, we can only have a constructor
2986    // template-id that refers to the current context, so go there
2987    // to find the actual type being constructed.
2988    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2989    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2990      return DeclarationNameInfo();
2991
2992    // Determine the type of the class being constructed.
2993    QualType CurClassType = Context.getTypeDeclType(CurClass);
2994
2995    // FIXME: Check two things: that the template-id names the same type as
2996    // CurClassType, and that the template-id does not occur when the name
2997    // was qualified.
2998
2999    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3000                                    Context.getCanonicalType(CurClassType)));
3001    NameInfo.setLoc(Name.StartLocation);
3002    // FIXME: should we retrieve TypeSourceInfo?
3003    NameInfo.setNamedTypeInfo(0);
3004    return NameInfo;
3005  }
3006
3007  case UnqualifiedId::IK_DestructorName: {
3008    TypeSourceInfo *TInfo;
3009    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3010    if (Ty.isNull())
3011      return DeclarationNameInfo();
3012    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3013                                              Context.getCanonicalType(Ty)));
3014    NameInfo.setLoc(Name.StartLocation);
3015    NameInfo.setNamedTypeInfo(TInfo);
3016    return NameInfo;
3017  }
3018
3019  case UnqualifiedId::IK_TemplateId: {
3020    TemplateName TName = Name.TemplateId->Template.get();
3021    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3022    return Context.getNameForTemplate(TName, TNameLoc);
3023  }
3024
3025  } // switch (Name.getKind())
3026
3027  llvm_unreachable("Unknown name kind");
3028}
3029
3030static QualType getCoreType(QualType Ty) {
3031  do {
3032    if (Ty->isPointerType() || Ty->isReferenceType())
3033      Ty = Ty->getPointeeType();
3034    else if (Ty->isArrayType())
3035      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3036    else
3037      return Ty.withoutLocalFastQualifiers();
3038  } while (true);
3039}
3040
3041/// hasSimilarParameters - Determine whether the C++ functions Declaration
3042/// and Definition have "nearly" matching parameters. This heuristic is
3043/// used to improve diagnostics in the case where an out-of-line function
3044/// definition doesn't match any declaration within the class or namespace.
3045/// Also sets Params to the list of indices to the parameters that differ
3046/// between the declaration and the definition. If hasSimilarParameters
3047/// returns true and Params is empty, then all of the parameters match.
3048static bool hasSimilarParameters(ASTContext &Context,
3049                                     FunctionDecl *Declaration,
3050                                     FunctionDecl *Definition,
3051                                     llvm::SmallVectorImpl<unsigned> &Params) {
3052  Params.clear();
3053  if (Declaration->param_size() != Definition->param_size())
3054    return false;
3055  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3056    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3057    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3058
3059    // The parameter types are identical
3060    if (Context.hasSameType(DefParamTy, DeclParamTy))
3061      continue;
3062
3063    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3064    QualType DefParamBaseTy = getCoreType(DefParamTy);
3065    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3066    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3067
3068    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3069        (DeclTyName && DeclTyName == DefTyName))
3070      Params.push_back(Idx);
3071    else  // The two parameters aren't even close
3072      return false;
3073  }
3074
3075  return true;
3076}
3077
3078/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3079/// declarator needs to be rebuilt in the current instantiation.
3080/// Any bits of declarator which appear before the name are valid for
3081/// consideration here.  That's specifically the type in the decl spec
3082/// and the base type in any member-pointer chunks.
3083static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3084                                                    DeclarationName Name) {
3085  // The types we specifically need to rebuild are:
3086  //   - typenames, typeofs, and decltypes
3087  //   - types which will become injected class names
3088  // Of course, we also need to rebuild any type referencing such a
3089  // type.  It's safest to just say "dependent", but we call out a
3090  // few cases here.
3091
3092  DeclSpec &DS = D.getMutableDeclSpec();
3093  switch (DS.getTypeSpecType()) {
3094  case DeclSpec::TST_typename:
3095  case DeclSpec::TST_typeofType:
3096  case DeclSpec::TST_decltype:
3097  case DeclSpec::TST_underlyingType:
3098  case DeclSpec::TST_atomic: {
3099    // Grab the type from the parser.
3100    TypeSourceInfo *TSI = 0;
3101    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3102    if (T.isNull() || !T->isDependentType()) break;
3103
3104    // Make sure there's a type source info.  This isn't really much
3105    // of a waste; most dependent types should have type source info
3106    // attached already.
3107    if (!TSI)
3108      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3109
3110    // Rebuild the type in the current instantiation.
3111    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3112    if (!TSI) return true;
3113
3114    // Store the new type back in the decl spec.
3115    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3116    DS.UpdateTypeRep(LocType);
3117    break;
3118  }
3119
3120  case DeclSpec::TST_typeofExpr: {
3121    Expr *E = DS.getRepAsExpr();
3122    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3123    if (Result.isInvalid()) return true;
3124    DS.UpdateExprRep(Result.get());
3125    break;
3126  }
3127
3128  default:
3129    // Nothing to do for these decl specs.
3130    break;
3131  }
3132
3133  // It doesn't matter what order we do this in.
3134  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3135    DeclaratorChunk &Chunk = D.getTypeObject(I);
3136
3137    // The only type information in the declarator which can come
3138    // before the declaration name is the base type of a member
3139    // pointer.
3140    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3141      continue;
3142
3143    // Rebuild the scope specifier in-place.
3144    CXXScopeSpec &SS = Chunk.Mem.Scope();
3145    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3146      return true;
3147  }
3148
3149  return false;
3150}
3151
3152Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3153  D.setFunctionDefinitionKind(FDK_Declaration);
3154  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3155
3156  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3157      Dcl->getDeclContext()->isFileContext())
3158    Dcl->setTopLevelDeclInObjCContainer();
3159
3160  return Dcl;
3161}
3162
3163/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3164///   If T is the name of a class, then each of the following shall have a
3165///   name different from T:
3166///     - every static data member of class T;
3167///     - every member function of class T
3168///     - every member of class T that is itself a type;
3169/// \returns true if the declaration name violates these rules.
3170bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3171                                   DeclarationNameInfo NameInfo) {
3172  DeclarationName Name = NameInfo.getName();
3173
3174  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3175    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3176      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3177      return true;
3178    }
3179
3180  return false;
3181}
3182
3183Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3184                             MultiTemplateParamsArg TemplateParamLists) {
3185  // TODO: consider using NameInfo for diagnostic.
3186  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3187  DeclarationName Name = NameInfo.getName();
3188
3189  // All of these full declarators require an identifier.  If it doesn't have
3190  // one, the ParsedFreeStandingDeclSpec action should be used.
3191  if (!Name) {
3192    if (!D.isInvalidType())  // Reject this if we think it is valid.
3193      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3194           diag::err_declarator_need_ident)
3195        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3196    return 0;
3197  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3198    return 0;
3199
3200  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3201  // we find one that is.
3202  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3203         (S->getFlags() & Scope::TemplateParamScope) != 0)
3204    S = S->getParent();
3205
3206  DeclContext *DC = CurContext;
3207  if (D.getCXXScopeSpec().isInvalid())
3208    D.setInvalidType();
3209  else if (D.getCXXScopeSpec().isSet()) {
3210    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3211                                        UPPC_DeclarationQualifier))
3212      return 0;
3213
3214    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3215    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3216    if (!DC) {
3217      // If we could not compute the declaration context, it's because the
3218      // declaration context is dependent but does not refer to a class,
3219      // class template, or class template partial specialization. Complain
3220      // and return early, to avoid the coming semantic disaster.
3221      Diag(D.getIdentifierLoc(),
3222           diag::err_template_qualified_declarator_no_match)
3223        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3224        << D.getCXXScopeSpec().getRange();
3225      return 0;
3226    }
3227    bool IsDependentContext = DC->isDependentContext();
3228
3229    if (!IsDependentContext &&
3230        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3231      return 0;
3232
3233    if (isa<CXXRecordDecl>(DC)) {
3234      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3235        Diag(D.getIdentifierLoc(),
3236             diag::err_member_def_undefined_record)
3237          << Name << DC << D.getCXXScopeSpec().getRange();
3238        D.setInvalidType();
3239      } else if (isa<CXXRecordDecl>(CurContext) &&
3240                 !D.getDeclSpec().isFriendSpecified()) {
3241        // The user provided a superfluous scope specifier inside a class
3242        // definition:
3243        //
3244        // class X {
3245        //   void X::f();
3246        // };
3247        if (CurContext->Equals(DC)) {
3248          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3249            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3250        } else {
3251          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3252            << Name << D.getCXXScopeSpec().getRange();
3253
3254          // C++ constructors and destructors with incorrect scopes can break
3255          // our AST invariants by having the wrong underlying types. If
3256          // that's the case, then drop this declaration entirely.
3257          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3258               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3259              !Context.hasSameType(Name.getCXXNameType(),
3260                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3261            return 0;
3262        }
3263
3264        // Pretend that this qualifier was not here.
3265        D.getCXXScopeSpec().clear();
3266      }
3267    }
3268
3269    // Check whether we need to rebuild the type of the given
3270    // declaration in the current instantiation.
3271    if (EnteringContext && IsDependentContext &&
3272        TemplateParamLists.size() != 0) {
3273      ContextRAII SavedContext(*this, DC);
3274      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3275        D.setInvalidType();
3276    }
3277  }
3278
3279  if (DiagnoseClassNameShadow(DC, NameInfo))
3280    // If this is a typedef, we'll end up spewing multiple diagnostics.
3281    // Just return early; it's safer.
3282    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3283      return 0;
3284
3285  NamedDecl *New;
3286
3287  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3288  QualType R = TInfo->getType();
3289
3290  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3291                                      UPPC_DeclarationType))
3292    D.setInvalidType();
3293
3294  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3295                        ForRedeclaration);
3296
3297  // See if this is a redefinition of a variable in the same scope.
3298  if (!D.getCXXScopeSpec().isSet()) {
3299    bool IsLinkageLookup = false;
3300
3301    // If the declaration we're planning to build will be a function
3302    // or object with linkage, then look for another declaration with
3303    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3304    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3305      /* Do nothing*/;
3306    else if (R->isFunctionType()) {
3307      if (CurContext->isFunctionOrMethod() ||
3308          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3309        IsLinkageLookup = true;
3310    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3311      IsLinkageLookup = true;
3312    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3313             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3314      IsLinkageLookup = true;
3315
3316    if (IsLinkageLookup)
3317      Previous.clear(LookupRedeclarationWithLinkage);
3318
3319    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3320  } else { // Something like "int foo::x;"
3321    LookupQualifiedName(Previous, DC);
3322
3323    // Don't consider using declarations as previous declarations for
3324    // out-of-line members.
3325    RemoveUsingDecls(Previous);
3326
3327    // C++ 7.3.1.2p2:
3328    // Members (including explicit specializations of templates) of a named
3329    // namespace can also be defined outside that namespace by explicit
3330    // qualification of the name being defined, provided that the entity being
3331    // defined was already declared in the namespace and the definition appears
3332    // after the point of declaration in a namespace that encloses the
3333    // declarations namespace.
3334    //
3335    // Note that we only check the context at this point. We don't yet
3336    // have enough information to make sure that PrevDecl is actually
3337    // the declaration we want to match. For example, given:
3338    //
3339    //   class X {
3340    //     void f();
3341    //     void f(float);
3342    //   };
3343    //
3344    //   void X::f(int) { } // ill-formed
3345    //
3346    // In this case, PrevDecl will point to the overload set
3347    // containing the two f's declared in X, but neither of them
3348    // matches.
3349
3350    // First check whether we named the global scope.
3351    if (isa<TranslationUnitDecl>(DC)) {
3352      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3353        << Name << D.getCXXScopeSpec().getRange();
3354    } else {
3355      DeclContext *Cur = CurContext;
3356      while (isa<LinkageSpecDecl>(Cur))
3357        Cur = Cur->getParent();
3358      if (!Cur->Encloses(DC)) {
3359        // The qualifying scope doesn't enclose the original declaration.
3360        // Emit diagnostic based on current scope.
3361        SourceLocation L = D.getIdentifierLoc();
3362        SourceRange R = D.getCXXScopeSpec().getRange();
3363        if (isa<FunctionDecl>(Cur))
3364          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3365        else
3366          Diag(L, diag::err_invalid_declarator_scope)
3367            << Name << cast<NamedDecl>(DC) << R;
3368        D.setInvalidType();
3369      }
3370    }
3371  }
3372
3373  if (Previous.isSingleResult() &&
3374      Previous.getFoundDecl()->isTemplateParameter()) {
3375    // Maybe we will complain about the shadowed template parameter.
3376    if (!D.isInvalidType())
3377      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3378                                      Previous.getFoundDecl());
3379
3380    // Just pretend that we didn't see the previous declaration.
3381    Previous.clear();
3382  }
3383
3384  // In C++, the previous declaration we find might be a tag type
3385  // (class or enum). In this case, the new declaration will hide the
3386  // tag type. Note that this does does not apply if we're declaring a
3387  // typedef (C++ [dcl.typedef]p4).
3388  if (Previous.isSingleTagDecl() &&
3389      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3390    Previous.clear();
3391
3392  bool AddToScope = true;
3393  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3394    if (TemplateParamLists.size()) {
3395      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3396      return 0;
3397    }
3398
3399    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3400  } else if (R->isFunctionType()) {
3401    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3402                                  move(TemplateParamLists),
3403                                  AddToScope);
3404  } else {
3405    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3406                                  move(TemplateParamLists));
3407  }
3408
3409  if (New == 0)
3410    return 0;
3411
3412  // If this has an identifier and is not an invalid redeclaration or
3413  // function template specialization, add it to the scope stack.
3414  if (New->getDeclName() && AddToScope &&
3415       !(D.isRedeclaration() && New->isInvalidDecl()))
3416    PushOnScopeChains(New, S);
3417
3418  return New;
3419}
3420
3421/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3422/// types into constant array types in certain situations which would otherwise
3423/// be errors (for GCC compatibility).
3424static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3425                                                    ASTContext &Context,
3426                                                    bool &SizeIsNegative,
3427                                                    llvm::APSInt &Oversized) {
3428  // This method tries to turn a variable array into a constant
3429  // array even when the size isn't an ICE.  This is necessary
3430  // for compatibility with code that depends on gcc's buggy
3431  // constant expression folding, like struct {char x[(int)(char*)2];}
3432  SizeIsNegative = false;
3433  Oversized = 0;
3434
3435  if (T->isDependentType())
3436    return QualType();
3437
3438  QualifierCollector Qs;
3439  const Type *Ty = Qs.strip(T);
3440
3441  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3442    QualType Pointee = PTy->getPointeeType();
3443    QualType FixedType =
3444        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3445                                            Oversized);
3446    if (FixedType.isNull()) return FixedType;
3447    FixedType = Context.getPointerType(FixedType);
3448    return Qs.apply(Context, FixedType);
3449  }
3450  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3451    QualType Inner = PTy->getInnerType();
3452    QualType FixedType =
3453        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3454                                            Oversized);
3455    if (FixedType.isNull()) return FixedType;
3456    FixedType = Context.getParenType(FixedType);
3457    return Qs.apply(Context, FixedType);
3458  }
3459
3460  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3461  if (!VLATy)
3462    return QualType();
3463  // FIXME: We should probably handle this case
3464  if (VLATy->getElementType()->isVariablyModifiedType())
3465    return QualType();
3466
3467  llvm::APSInt Res;
3468  if (!VLATy->getSizeExpr() ||
3469      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3470    return QualType();
3471
3472  // Check whether the array size is negative.
3473  if (Res.isSigned() && Res.isNegative()) {
3474    SizeIsNegative = true;
3475    return QualType();
3476  }
3477
3478  // Check whether the array is too large to be addressed.
3479  unsigned ActiveSizeBits
3480    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3481                                              Res);
3482  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3483    Oversized = Res;
3484    return QualType();
3485  }
3486
3487  return Context.getConstantArrayType(VLATy->getElementType(),
3488                                      Res, ArrayType::Normal, 0);
3489}
3490
3491/// \brief Register the given locally-scoped external C declaration so
3492/// that it can be found later for redeclarations
3493void
3494Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3495                                       const LookupResult &Previous,
3496                                       Scope *S) {
3497  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3498         "Decl is not a locally-scoped decl!");
3499  // Note that we have a locally-scoped external with this name.
3500  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3501
3502  if (!Previous.isSingleResult())
3503    return;
3504
3505  NamedDecl *PrevDecl = Previous.getFoundDecl();
3506
3507  // If there was a previous declaration of this variable, it may be
3508  // in our identifier chain. Update the identifier chain with the new
3509  // declaration.
3510  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3511    // The previous declaration was found on the identifer resolver
3512    // chain, so remove it from its scope.
3513
3514    if (S->isDeclScope(PrevDecl)) {
3515      // Special case for redeclarations in the SAME scope.
3516      // Because this declaration is going to be added to the identifier chain
3517      // later, we should temporarily take it OFF the chain.
3518      IdResolver.RemoveDecl(ND);
3519
3520    } else {
3521      // Find the scope for the original declaration.
3522      while (S && !S->isDeclScope(PrevDecl))
3523        S = S->getParent();
3524    }
3525
3526    if (S)
3527      S->RemoveDecl(PrevDecl);
3528  }
3529}
3530
3531llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3532Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3533  if (ExternalSource) {
3534    // Load locally-scoped external decls from the external source.
3535    SmallVector<NamedDecl *, 4> Decls;
3536    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3537    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3538      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3539        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3540      if (Pos == LocallyScopedExternalDecls.end())
3541        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3542    }
3543  }
3544
3545  return LocallyScopedExternalDecls.find(Name);
3546}
3547
3548/// \brief Diagnose function specifiers on a declaration of an identifier that
3549/// does not identify a function.
3550void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3551  // FIXME: We should probably indicate the identifier in question to avoid
3552  // confusion for constructs like "inline int a(), b;"
3553  if (D.getDeclSpec().isInlineSpecified())
3554    Diag(D.getDeclSpec().getInlineSpecLoc(),
3555         diag::err_inline_non_function);
3556
3557  if (D.getDeclSpec().isVirtualSpecified())
3558    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3559         diag::err_virtual_non_function);
3560
3561  if (D.getDeclSpec().isExplicitSpecified())
3562    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3563         diag::err_explicit_non_function);
3564}
3565
3566NamedDecl*
3567Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3568                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3569  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3570  if (D.getCXXScopeSpec().isSet()) {
3571    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3572      << D.getCXXScopeSpec().getRange();
3573    D.setInvalidType();
3574    // Pretend we didn't see the scope specifier.
3575    DC = CurContext;
3576    Previous.clear();
3577  }
3578
3579  if (getLangOptions().CPlusPlus) {
3580    // Check that there are no default arguments (C++ only).
3581    CheckExtraCXXDefaultArguments(D);
3582  }
3583
3584  DiagnoseFunctionSpecifiers(D);
3585
3586  if (D.getDeclSpec().isThreadSpecified())
3587    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3588  if (D.getDeclSpec().isConstexprSpecified())
3589    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3590      << 1;
3591
3592  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3593    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3594      << D.getName().getSourceRange();
3595    return 0;
3596  }
3597
3598  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3599  if (!NewTD) return 0;
3600
3601  // Handle attributes prior to checking for duplicates in MergeVarDecl
3602  ProcessDeclAttributes(S, NewTD, D);
3603
3604  CheckTypedefForVariablyModifiedType(S, NewTD);
3605
3606  bool Redeclaration = D.isRedeclaration();
3607  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3608  D.setRedeclaration(Redeclaration);
3609  return ND;
3610}
3611
3612void
3613Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3614  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3615  // then it shall have block scope.
3616  // Note that variably modified types must be fixed before merging the decl so
3617  // that redeclarations will match.
3618  QualType T = NewTD->getUnderlyingType();
3619  if (T->isVariablyModifiedType()) {
3620    getCurFunction()->setHasBranchProtectedScope();
3621
3622    if (S->getFnParent() == 0) {
3623      bool SizeIsNegative;
3624      llvm::APSInt Oversized;
3625      QualType FixedTy =
3626          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3627                                              Oversized);
3628      if (!FixedTy.isNull()) {
3629        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3630        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3631      } else {
3632        if (SizeIsNegative)
3633          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3634        else if (T->isVariableArrayType())
3635          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3636        else if (Oversized.getBoolValue())
3637          Diag(NewTD->getLocation(), diag::err_array_too_large)
3638            << Oversized.toString(10);
3639        else
3640          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3641        NewTD->setInvalidDecl();
3642      }
3643    }
3644  }
3645}
3646
3647
3648/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3649/// declares a typedef-name, either using the 'typedef' type specifier or via
3650/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3651NamedDecl*
3652Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3653                           LookupResult &Previous, bool &Redeclaration) {
3654  // Merge the decl with the existing one if appropriate. If the decl is
3655  // in an outer scope, it isn't the same thing.
3656  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3657                       /*ExplicitInstantiationOrSpecialization=*/false);
3658  if (!Previous.empty()) {
3659    Redeclaration = true;
3660    MergeTypedefNameDecl(NewTD, Previous);
3661  }
3662
3663  // If this is the C FILE type, notify the AST context.
3664  if (IdentifierInfo *II = NewTD->getIdentifier())
3665    if (!NewTD->isInvalidDecl() &&
3666        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3667      if (II->isStr("FILE"))
3668        Context.setFILEDecl(NewTD);
3669      else if (II->isStr("jmp_buf"))
3670        Context.setjmp_bufDecl(NewTD);
3671      else if (II->isStr("sigjmp_buf"))
3672        Context.setsigjmp_bufDecl(NewTD);
3673      else if (II->isStr("ucontext_t"))
3674        Context.setucontext_tDecl(NewTD);
3675      else if (II->isStr("__builtin_va_list"))
3676        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3677    }
3678
3679  return NewTD;
3680}
3681
3682/// \brief Determines whether the given declaration is an out-of-scope
3683/// previous declaration.
3684///
3685/// This routine should be invoked when name lookup has found a
3686/// previous declaration (PrevDecl) that is not in the scope where a
3687/// new declaration by the same name is being introduced. If the new
3688/// declaration occurs in a local scope, previous declarations with
3689/// linkage may still be considered previous declarations (C99
3690/// 6.2.2p4-5, C++ [basic.link]p6).
3691///
3692/// \param PrevDecl the previous declaration found by name
3693/// lookup
3694///
3695/// \param DC the context in which the new declaration is being
3696/// declared.
3697///
3698/// \returns true if PrevDecl is an out-of-scope previous declaration
3699/// for a new delcaration with the same name.
3700static bool
3701isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3702                                ASTContext &Context) {
3703  if (!PrevDecl)
3704    return false;
3705
3706  if (!PrevDecl->hasLinkage())
3707    return false;
3708
3709  if (Context.getLangOptions().CPlusPlus) {
3710    // C++ [basic.link]p6:
3711    //   If there is a visible declaration of an entity with linkage
3712    //   having the same name and type, ignoring entities declared
3713    //   outside the innermost enclosing namespace scope, the block
3714    //   scope declaration declares that same entity and receives the
3715    //   linkage of the previous declaration.
3716    DeclContext *OuterContext = DC->getRedeclContext();
3717    if (!OuterContext->isFunctionOrMethod())
3718      // This rule only applies to block-scope declarations.
3719      return false;
3720
3721    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3722    if (PrevOuterContext->isRecord())
3723      // We found a member function: ignore it.
3724      return false;
3725
3726    // Find the innermost enclosing namespace for the new and
3727    // previous declarations.
3728    OuterContext = OuterContext->getEnclosingNamespaceContext();
3729    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3730
3731    // The previous declaration is in a different namespace, so it
3732    // isn't the same function.
3733    if (!OuterContext->Equals(PrevOuterContext))
3734      return false;
3735  }
3736
3737  return true;
3738}
3739
3740static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3741  CXXScopeSpec &SS = D.getCXXScopeSpec();
3742  if (!SS.isSet()) return;
3743  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3744}
3745
3746bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3747  QualType type = decl->getType();
3748  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3749  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3750    // Various kinds of declaration aren't allowed to be __autoreleasing.
3751    unsigned kind = -1U;
3752    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3753      if (var->hasAttr<BlocksAttr>())
3754        kind = 0; // __block
3755      else if (!var->hasLocalStorage())
3756        kind = 1; // global
3757    } else if (isa<ObjCIvarDecl>(decl)) {
3758      kind = 3; // ivar
3759    } else if (isa<FieldDecl>(decl)) {
3760      kind = 2; // field
3761    }
3762
3763    if (kind != -1U) {
3764      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3765        << kind;
3766    }
3767  } else if (lifetime == Qualifiers::OCL_None) {
3768    // Try to infer lifetime.
3769    if (!type->isObjCLifetimeType())
3770      return false;
3771
3772    lifetime = type->getObjCARCImplicitLifetime();
3773    type = Context.getLifetimeQualifiedType(type, lifetime);
3774    decl->setType(type);
3775  }
3776
3777  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3778    // Thread-local variables cannot have lifetime.
3779    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3780        var->isThreadSpecified()) {
3781      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3782        << var->getType();
3783      return true;
3784    }
3785  }
3786
3787  return false;
3788}
3789
3790NamedDecl*
3791Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3792                              TypeSourceInfo *TInfo, LookupResult &Previous,
3793                              MultiTemplateParamsArg TemplateParamLists) {
3794  QualType R = TInfo->getType();
3795  DeclarationName Name = GetNameForDeclarator(D).getName();
3796
3797  // Check that there are no default arguments (C++ only).
3798  if (getLangOptions().CPlusPlus)
3799    CheckExtraCXXDefaultArguments(D);
3800
3801  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3802  assert(SCSpec != DeclSpec::SCS_typedef &&
3803         "Parser allowed 'typedef' as storage class VarDecl.");
3804  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3805  if (SCSpec == DeclSpec::SCS_mutable) {
3806    // mutable can only appear on non-static class members, so it's always
3807    // an error here
3808    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3809    D.setInvalidType();
3810    SC = SC_None;
3811  }
3812  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3813  VarDecl::StorageClass SCAsWritten
3814    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3815
3816  IdentifierInfo *II = Name.getAsIdentifierInfo();
3817  if (!II) {
3818    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3819      << Name;
3820    return 0;
3821  }
3822
3823  DiagnoseFunctionSpecifiers(D);
3824
3825  if (!DC->isRecord() && S->getFnParent() == 0) {
3826    // C99 6.9p2: The storage-class specifiers auto and register shall not
3827    // appear in the declaration specifiers in an external declaration.
3828    if (SC == SC_Auto || SC == SC_Register) {
3829
3830      // If this is a register variable with an asm label specified, then this
3831      // is a GNU extension.
3832      if (SC == SC_Register && D.getAsmLabel())
3833        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3834      else
3835        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3836      D.setInvalidType();
3837    }
3838  }
3839
3840  if (getLangOptions().OpenCL) {
3841    // Set up the special work-group-local storage class for variables in the
3842    // OpenCL __local address space.
3843    if (R.getAddressSpace() == LangAS::opencl_local)
3844      SC = SC_OpenCLWorkGroupLocal;
3845  }
3846
3847  bool isExplicitSpecialization = false;
3848  VarDecl *NewVD;
3849  if (!getLangOptions().CPlusPlus) {
3850    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3851                            D.getIdentifierLoc(), II,
3852                            R, TInfo, SC, SCAsWritten);
3853
3854    if (D.isInvalidType())
3855      NewVD->setInvalidDecl();
3856  } else {
3857    if (DC->isRecord() && !CurContext->isRecord()) {
3858      // This is an out-of-line definition of a static data member.
3859      if (SC == SC_Static) {
3860        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3861             diag::err_static_out_of_line)
3862          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3863      } else if (SC == SC_None)
3864        SC = SC_Static;
3865    }
3866    if (SC == SC_Static) {
3867      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3868        if (RD->isLocalClass())
3869          Diag(D.getIdentifierLoc(),
3870               diag::err_static_data_member_not_allowed_in_local_class)
3871            << Name << RD->getDeclName();
3872
3873        // C++ [class.union]p1: If a union contains a static data member,
3874        // the program is ill-formed.
3875        //
3876        // We also disallow static data members in anonymous structs.
3877        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3878          Diag(D.getIdentifierLoc(),
3879               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3880            << Name << RD->isUnion();
3881      }
3882    }
3883
3884    // Match up the template parameter lists with the scope specifier, then
3885    // determine whether we have a template or a template specialization.
3886    isExplicitSpecialization = false;
3887    bool Invalid = false;
3888    if (TemplateParameterList *TemplateParams
3889        = MatchTemplateParametersToScopeSpecifier(
3890                                  D.getDeclSpec().getSourceRange().getBegin(),
3891                                                  D.getIdentifierLoc(),
3892                                                  D.getCXXScopeSpec(),
3893                                                  TemplateParamLists.get(),
3894                                                  TemplateParamLists.size(),
3895                                                  /*never a friend*/ false,
3896                                                  isExplicitSpecialization,
3897                                                  Invalid)) {
3898      if (TemplateParams->size() > 0) {
3899        // There is no such thing as a variable template.
3900        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3901          << II
3902          << SourceRange(TemplateParams->getTemplateLoc(),
3903                         TemplateParams->getRAngleLoc());
3904        return 0;
3905      } else {
3906        // There is an extraneous 'template<>' for this variable. Complain
3907        // about it, but allow the declaration of the variable.
3908        Diag(TemplateParams->getTemplateLoc(),
3909             diag::err_template_variable_noparams)
3910          << II
3911          << SourceRange(TemplateParams->getTemplateLoc(),
3912                         TemplateParams->getRAngleLoc());
3913      }
3914    }
3915
3916    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3917                            D.getIdentifierLoc(), II,
3918                            R, TInfo, SC, SCAsWritten);
3919
3920    // If this decl has an auto type in need of deduction, make a note of the
3921    // Decl so we can diagnose uses of it in its own initializer.
3922    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3923        R->getContainedAutoType())
3924      ParsingInitForAutoVars.insert(NewVD);
3925
3926    if (D.isInvalidType() || Invalid)
3927      NewVD->setInvalidDecl();
3928
3929    SetNestedNameSpecifier(NewVD, D);
3930
3931    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3932      NewVD->setTemplateParameterListsInfo(Context,
3933                                           TemplateParamLists.size(),
3934                                           TemplateParamLists.release());
3935    }
3936
3937    if (D.getDeclSpec().isConstexprSpecified()) {
3938      // FIXME: once we know whether there's an initializer, apply this to
3939      // static data members too.
3940      if (!NewVD->isStaticDataMember() &&
3941          !NewVD->isThisDeclarationADefinition()) {
3942        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3943        // of a variable. Suggest replacing it with 'const' if appropriate.
3944        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3945        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3946        // If the declarator is complex, we need to move the keyword to the
3947        // innermost chunk as we switch it from 'constexpr' to 'const'.
3948        int Kind = DeclaratorChunk::Paren;
3949        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3950          Kind = D.getTypeObject(I).Kind;
3951          if (Kind != DeclaratorChunk::Paren)
3952            break;
3953        }
3954        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3955            Kind == DeclaratorChunk::Reference)
3956          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3957            << FixItHint::CreateRemoval(ConstexprRange);
3958        else if (Kind == DeclaratorChunk::Paren)
3959          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3960            << FixItHint::CreateReplacement(ConstexprRange, "const");
3961        else
3962          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3963            << FixItHint::CreateRemoval(ConstexprRange)
3964            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3965      } else {
3966        NewVD->setConstexpr(true);
3967      }
3968    }
3969  }
3970
3971  // Set the lexical context. If the declarator has a C++ scope specifier, the
3972  // lexical context will be different from the semantic context.
3973  NewVD->setLexicalDeclContext(CurContext);
3974
3975  if (D.getDeclSpec().isThreadSpecified()) {
3976    if (NewVD->hasLocalStorage())
3977      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3978    else if (!Context.getTargetInfo().isTLSSupported())
3979      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3980    else
3981      NewVD->setThreadSpecified(true);
3982  }
3983
3984  if (D.getDeclSpec().isModulePrivateSpecified()) {
3985    if (isExplicitSpecialization)
3986      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3987        << 2
3988        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3989    else if (NewVD->hasLocalStorage())
3990      Diag(NewVD->getLocation(), diag::err_module_private_local)
3991        << 0 << NewVD->getDeclName()
3992        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3993        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3994    else
3995      NewVD->setModulePrivate();
3996  }
3997
3998  // Handle attributes prior to checking for duplicates in MergeVarDecl
3999  ProcessDeclAttributes(S, NewVD, D);
4000
4001  // In auto-retain/release, infer strong retension for variables of
4002  // retainable type.
4003  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4004    NewVD->setInvalidDecl();
4005
4006  // Handle GNU asm-label extension (encoded as an attribute).
4007  if (Expr *E = (Expr*)D.getAsmLabel()) {
4008    // The parser guarantees this is a string.
4009    StringLiteral *SE = cast<StringLiteral>(E);
4010    StringRef Label = SE->getString();
4011    if (S->getFnParent() != 0) {
4012      switch (SC) {
4013      case SC_None:
4014      case SC_Auto:
4015        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4016        break;
4017      case SC_Register:
4018        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4019          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4020        break;
4021      case SC_Static:
4022      case SC_Extern:
4023      case SC_PrivateExtern:
4024      case SC_OpenCLWorkGroupLocal:
4025        break;
4026      }
4027    }
4028
4029    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4030                                                Context, Label));
4031  }
4032
4033  // Diagnose shadowed variables before filtering for scope.
4034  if (!D.getCXXScopeSpec().isSet())
4035    CheckShadow(S, NewVD, Previous);
4036
4037  // Don't consider existing declarations that are in a different
4038  // scope and are out-of-semantic-context declarations (if the new
4039  // declaration has linkage).
4040  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4041                       isExplicitSpecialization);
4042
4043  if (!getLangOptions().CPlusPlus) {
4044    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4045  } else {
4046    // Merge the decl with the existing one if appropriate.
4047    if (!Previous.empty()) {
4048      if (Previous.isSingleResult() &&
4049          isa<FieldDecl>(Previous.getFoundDecl()) &&
4050          D.getCXXScopeSpec().isSet()) {
4051        // The user tried to define a non-static data member
4052        // out-of-line (C++ [dcl.meaning]p1).
4053        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4054          << D.getCXXScopeSpec().getRange();
4055        Previous.clear();
4056        NewVD->setInvalidDecl();
4057      }
4058    } else if (D.getCXXScopeSpec().isSet()) {
4059      // No previous declaration in the qualifying scope.
4060      Diag(D.getIdentifierLoc(), diag::err_no_member)
4061        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4062        << D.getCXXScopeSpec().getRange();
4063      NewVD->setInvalidDecl();
4064    }
4065
4066    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4067
4068    // This is an explicit specialization of a static data member. Check it.
4069    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4070        CheckMemberSpecialization(NewVD, Previous))
4071      NewVD->setInvalidDecl();
4072  }
4073
4074  // attributes declared post-definition are currently ignored
4075  // FIXME: This should be handled in attribute merging, not
4076  // here.
4077  if (Previous.isSingleResult()) {
4078    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4079    if (Def && (Def = Def->getDefinition()) &&
4080        Def != NewVD && D.hasAttributes()) {
4081      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4082      Diag(Def->getLocation(), diag::note_previous_definition);
4083    }
4084  }
4085
4086  // If this is a locally-scoped extern C variable, update the map of
4087  // such variables.
4088  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4089      !NewVD->isInvalidDecl())
4090    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4091
4092  // If there's a #pragma GCC visibility in scope, and this isn't a class
4093  // member, set the visibility of this variable.
4094  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4095    AddPushedVisibilityAttribute(NewVD);
4096
4097  MarkUnusedFileScopedDecl(NewVD);
4098
4099  return NewVD;
4100}
4101
4102/// \brief Diagnose variable or built-in function shadowing.  Implements
4103/// -Wshadow.
4104///
4105/// This method is called whenever a VarDecl is added to a "useful"
4106/// scope.
4107///
4108/// \param S the scope in which the shadowing name is being declared
4109/// \param R the lookup of the name
4110///
4111void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4112  // Return if warning is ignored.
4113  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4114        DiagnosticsEngine::Ignored)
4115    return;
4116
4117  // Don't diagnose declarations at file scope.
4118  if (D->hasGlobalStorage())
4119    return;
4120
4121  DeclContext *NewDC = D->getDeclContext();
4122
4123  // Only diagnose if we're shadowing an unambiguous field or variable.
4124  if (R.getResultKind() != LookupResult::Found)
4125    return;
4126
4127  NamedDecl* ShadowedDecl = R.getFoundDecl();
4128  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4129    return;
4130
4131  // Fields are not shadowed by variables in C++ static methods.
4132  if (isa<FieldDecl>(ShadowedDecl))
4133    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4134      if (MD->isStatic())
4135        return;
4136
4137  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4138    if (shadowedVar->isExternC()) {
4139      // For shadowing external vars, make sure that we point to the global
4140      // declaration, not a locally scoped extern declaration.
4141      for (VarDecl::redecl_iterator
4142             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4143           I != E; ++I)
4144        if (I->isFileVarDecl()) {
4145          ShadowedDecl = *I;
4146          break;
4147        }
4148    }
4149
4150  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4151
4152  // Only warn about certain kinds of shadowing for class members.
4153  if (NewDC && NewDC->isRecord()) {
4154    // In particular, don't warn about shadowing non-class members.
4155    if (!OldDC->isRecord())
4156      return;
4157
4158    // TODO: should we warn about static data members shadowing
4159    // static data members from base classes?
4160
4161    // TODO: don't diagnose for inaccessible shadowed members.
4162    // This is hard to do perfectly because we might friend the
4163    // shadowing context, but that's just a false negative.
4164  }
4165
4166  // Determine what kind of declaration we're shadowing.
4167  unsigned Kind;
4168  if (isa<RecordDecl>(OldDC)) {
4169    if (isa<FieldDecl>(ShadowedDecl))
4170      Kind = 3; // field
4171    else
4172      Kind = 2; // static data member
4173  } else if (OldDC->isFileContext())
4174    Kind = 1; // global
4175  else
4176    Kind = 0; // local
4177
4178  DeclarationName Name = R.getLookupName();
4179
4180  // Emit warning and note.
4181  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4182  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4183}
4184
4185/// \brief Check -Wshadow without the advantage of a previous lookup.
4186void Sema::CheckShadow(Scope *S, VarDecl *D) {
4187  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4188        DiagnosticsEngine::Ignored)
4189    return;
4190
4191  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4192                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4193  LookupName(R, S);
4194  CheckShadow(S, D, R);
4195}
4196
4197/// \brief Perform semantic checking on a newly-created variable
4198/// declaration.
4199///
4200/// This routine performs all of the type-checking required for a
4201/// variable declaration once it has been built. It is used both to
4202/// check variables after they have been parsed and their declarators
4203/// have been translated into a declaration, and to check variables
4204/// that have been instantiated from a template.
4205///
4206/// Sets NewVD->isInvalidDecl() if an error was encountered.
4207///
4208/// Returns true if the variable declaration is a redeclaration.
4209bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4210                                    LookupResult &Previous) {
4211  // If the decl is already known invalid, don't check it.
4212  if (NewVD->isInvalidDecl())
4213    return false;
4214
4215  QualType T = NewVD->getType();
4216
4217  if (T->isObjCObjectType()) {
4218    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4219      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4220    T = Context.getObjCObjectPointerType(T);
4221    NewVD->setType(T);
4222  }
4223
4224  // Emit an error if an address space was applied to decl with local storage.
4225  // This includes arrays of objects with address space qualifiers, but not
4226  // automatic variables that point to other address spaces.
4227  // ISO/IEC TR 18037 S5.1.2
4228  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4229    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4230    NewVD->setInvalidDecl();
4231    return false;
4232  }
4233
4234  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4235      && !NewVD->hasAttr<BlocksAttr>()) {
4236    if (getLangOptions().getGC() != LangOptions::NonGC)
4237      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4238    else
4239      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4240  }
4241
4242  bool isVM = T->isVariablyModifiedType();
4243  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4244      NewVD->hasAttr<BlocksAttr>())
4245    getCurFunction()->setHasBranchProtectedScope();
4246
4247  if ((isVM && NewVD->hasLinkage()) ||
4248      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4249    bool SizeIsNegative;
4250    llvm::APSInt Oversized;
4251    QualType FixedTy =
4252        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4253                                            Oversized);
4254
4255    if (FixedTy.isNull() && T->isVariableArrayType()) {
4256      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4257      // FIXME: This won't give the correct result for
4258      // int a[10][n];
4259      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4260
4261      if (NewVD->isFileVarDecl())
4262        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4263        << SizeRange;
4264      else if (NewVD->getStorageClass() == SC_Static)
4265        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4266        << SizeRange;
4267      else
4268        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4269        << SizeRange;
4270      NewVD->setInvalidDecl();
4271      return false;
4272    }
4273
4274    if (FixedTy.isNull()) {
4275      if (NewVD->isFileVarDecl())
4276        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4277      else
4278        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4279      NewVD->setInvalidDecl();
4280      return false;
4281    }
4282
4283    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4284    NewVD->setType(FixedTy);
4285  }
4286
4287  if (Previous.empty() && NewVD->isExternC()) {
4288    // Since we did not find anything by this name and we're declaring
4289    // an extern "C" variable, look for a non-visible extern "C"
4290    // declaration with the same name.
4291    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4292      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4293    if (Pos != LocallyScopedExternalDecls.end())
4294      Previous.addDecl(Pos->second);
4295  }
4296
4297  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4298    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4299      << T;
4300    NewVD->setInvalidDecl();
4301    return false;
4302  }
4303
4304  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4305    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4306    NewVD->setInvalidDecl();
4307    return false;
4308  }
4309
4310  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4311    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4312    NewVD->setInvalidDecl();
4313    return false;
4314  }
4315
4316  // Function pointers and references cannot have qualified function type, only
4317  // function pointer-to-members can do that.
4318  QualType Pointee;
4319  unsigned PtrOrRef = 0;
4320  if (const PointerType *Ptr = T->getAs<PointerType>())
4321    Pointee = Ptr->getPointeeType();
4322  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4323    Pointee = Ref->getPointeeType();
4324    PtrOrRef = 1;
4325  }
4326  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4327      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4328    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4329        << PtrOrRef;
4330    NewVD->setInvalidDecl();
4331    return false;
4332  }
4333
4334  if (!Previous.empty()) {
4335    MergeVarDecl(NewVD, Previous);
4336    return true;
4337  }
4338  return false;
4339}
4340
4341/// \brief Data used with FindOverriddenMethod
4342struct FindOverriddenMethodData {
4343  Sema *S;
4344  CXXMethodDecl *Method;
4345};
4346
4347/// \brief Member lookup function that determines whether a given C++
4348/// method overrides a method in a base class, to be used with
4349/// CXXRecordDecl::lookupInBases().
4350static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4351                                 CXXBasePath &Path,
4352                                 void *UserData) {
4353  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4354
4355  FindOverriddenMethodData *Data
4356    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4357
4358  DeclarationName Name = Data->Method->getDeclName();
4359
4360  // FIXME: Do we care about other names here too?
4361  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4362    // We really want to find the base class destructor here.
4363    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4364    CanQualType CT = Data->S->Context.getCanonicalType(T);
4365
4366    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4367  }
4368
4369  for (Path.Decls = BaseRecord->lookup(Name);
4370       Path.Decls.first != Path.Decls.second;
4371       ++Path.Decls.first) {
4372    NamedDecl *D = *Path.Decls.first;
4373    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4374      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4375        return true;
4376    }
4377  }
4378
4379  return false;
4380}
4381
4382/// AddOverriddenMethods - See if a method overrides any in the base classes,
4383/// and if so, check that it's a valid override and remember it.
4384bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4385  // Look for virtual methods in base classes that this method might override.
4386  CXXBasePaths Paths;
4387  FindOverriddenMethodData Data;
4388  Data.Method = MD;
4389  Data.S = this;
4390  bool AddedAny = false;
4391  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4392    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4393         E = Paths.found_decls_end(); I != E; ++I) {
4394      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4395        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4396        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4397            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4398            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4399          AddedAny = true;
4400        }
4401      }
4402    }
4403  }
4404
4405  return AddedAny;
4406}
4407
4408namespace {
4409  // Struct for holding all of the extra arguments needed by
4410  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4411  struct ActOnFDArgs {
4412    Scope *S;
4413    Declarator &D;
4414    MultiTemplateParamsArg TemplateParamLists;
4415    bool AddToScope;
4416  };
4417}
4418
4419/// \brief Generate diagnostics for an invalid function redeclaration.
4420///
4421/// This routine handles generating the diagnostic messages for an invalid
4422/// function redeclaration, including finding possible similar declarations
4423/// or performing typo correction if there are no previous declarations with
4424/// the same name.
4425///
4426/// Returns a NamedDecl iff typo correction was performed and substituting in
4427/// the new declaration name does not cause new errors.
4428static NamedDecl* DiagnoseInvalidRedeclaration(
4429    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4430    ActOnFDArgs &ExtraArgs) {
4431  NamedDecl *Result = NULL;
4432  DeclarationName Name = NewFD->getDeclName();
4433  DeclContext *NewDC = NewFD->getDeclContext();
4434  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4435                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4436  llvm::SmallVector<unsigned, 1> MismatchedParams;
4437  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4438  TypoCorrection Correction;
4439  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4440                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4441  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4442                                  : diag::err_member_def_does_not_match;
4443
4444  NewFD->setInvalidDecl();
4445  SemaRef.LookupQualifiedName(Prev, NewDC);
4446  assert(!Prev.isAmbiguous() &&
4447         "Cannot have an ambiguity in previous-declaration lookup");
4448  if (!Prev.empty()) {
4449    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4450         Func != FuncEnd; ++Func) {
4451      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4452      if (FD &&
4453          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4454        // Add 1 to the index so that 0 can mean the mismatch didn't
4455        // involve a parameter
4456        unsigned ParamNum =
4457            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4458        NearMatches.push_back(std::make_pair(FD, ParamNum));
4459      }
4460    }
4461  // If the qualified name lookup yielded nothing, try typo correction
4462  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4463                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4464             Correction.getCorrection() != Name) {
4465    // Trap errors.
4466    Sema::SFINAETrap Trap(SemaRef);
4467
4468    // Set up everything for the call to ActOnFunctionDeclarator
4469    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4470                              ExtraArgs.D.getIdentifierLoc());
4471    Previous.clear();
4472    Previous.setLookupName(Correction.getCorrection());
4473    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4474                                    CDeclEnd = Correction.end();
4475         CDecl != CDeclEnd; ++CDecl) {
4476      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4477      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4478                                     MismatchedParams)) {
4479        Previous.addDecl(FD);
4480      }
4481    }
4482    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4483    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4484    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4485    // eliminate the need for the parameter pack ExtraArgs.
4486    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4487                                             NewFD->getDeclContext(),
4488                                             NewFD->getTypeSourceInfo(),
4489                                             Previous,
4490                                             ExtraArgs.TemplateParamLists,
4491                                             ExtraArgs.AddToScope);
4492    if (Trap.hasErrorOccurred()) {
4493      // Pretend the typo correction never occurred
4494      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4495                                ExtraArgs.D.getIdentifierLoc());
4496      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4497      Previous.clear();
4498      Previous.setLookupName(Name);
4499      Result = NULL;
4500    } else {
4501      for (LookupResult::iterator Func = Previous.begin(),
4502                               FuncEnd = Previous.end();
4503           Func != FuncEnd; ++Func) {
4504        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4505          NearMatches.push_back(std::make_pair(FD, 0));
4506      }
4507    }
4508    if (NearMatches.empty()) {
4509      // Ignore the correction if it didn't yield any close FunctionDecl matches
4510      Correction = TypoCorrection();
4511    } else {
4512      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4513                             : diag::err_member_def_does_not_match_suggest;
4514    }
4515  }
4516
4517  if (Correction)
4518    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4519        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4520        << FixItHint::CreateReplacement(
4521            NewFD->getLocation(),
4522            Correction.getAsString(SemaRef.getLangOptions()));
4523  else
4524    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4525        << Name << NewDC << NewFD->getLocation();
4526
4527  bool NewFDisConst = false;
4528  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4529    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4530
4531  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4532       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4533       NearMatch != NearMatchEnd; ++NearMatch) {
4534    FunctionDecl *FD = NearMatch->first;
4535    bool FDisConst = false;
4536    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4537      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4538
4539    if (unsigned Idx = NearMatch->second) {
4540      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4541      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4542             diag::note_member_def_close_param_match)
4543          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4544    } else if (Correction) {
4545      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4546          << Correction.getQuoted(SemaRef.getLangOptions());
4547    } else if (FDisConst != NewFDisConst) {
4548      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4549          << NewFDisConst << FD->getSourceRange().getEnd();
4550    } else
4551      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4552  }
4553  return Result;
4554}
4555
4556static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4557                                                          Declarator &D) {
4558  switch (D.getDeclSpec().getStorageClassSpec()) {
4559  default: llvm_unreachable("Unknown storage class!");
4560  case DeclSpec::SCS_auto:
4561  case DeclSpec::SCS_register:
4562  case DeclSpec::SCS_mutable:
4563    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4564                 diag::err_typecheck_sclass_func);
4565    D.setInvalidType();
4566    break;
4567  case DeclSpec::SCS_unspecified: break;
4568  case DeclSpec::SCS_extern: return SC_Extern;
4569  case DeclSpec::SCS_static: {
4570    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4571      // C99 6.7.1p5:
4572      //   The declaration of an identifier for a function that has
4573      //   block scope shall have no explicit storage-class specifier
4574      //   other than extern
4575      // See also (C++ [dcl.stc]p4).
4576      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4577                   diag::err_static_block_func);
4578      break;
4579    } else
4580      return SC_Static;
4581  }
4582  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4583  }
4584
4585  // No explicit storage class has already been returned
4586  return SC_None;
4587}
4588
4589static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4590                                           DeclContext *DC, QualType &R,
4591                                           TypeSourceInfo *TInfo,
4592                                           FunctionDecl::StorageClass SC,
4593                                           bool &IsVirtualOkay) {
4594  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4595  DeclarationName Name = NameInfo.getName();
4596
4597  FunctionDecl *NewFD = 0;
4598  bool isInline = D.getDeclSpec().isInlineSpecified();
4599  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4600  FunctionDecl::StorageClass SCAsWritten
4601    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4602
4603  if (!SemaRef.getLangOptions().CPlusPlus) {
4604    // Determine whether the function was written with a
4605    // prototype. This true when:
4606    //   - there is a prototype in the declarator, or
4607    //   - the type R of the function is some kind of typedef or other reference
4608    //     to a type name (which eventually refers to a function type).
4609    bool HasPrototype =
4610      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4611      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4612
4613    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4614                                 D.getSourceRange().getBegin(), NameInfo, R,
4615                                 TInfo, SC, SCAsWritten, isInline,
4616                                 HasPrototype);
4617    if (D.isInvalidType())
4618      NewFD->setInvalidDecl();
4619
4620    // Set the lexical context.
4621    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4622
4623    return NewFD;
4624  }
4625
4626  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4627  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4628
4629  // Check that the return type is not an abstract class type.
4630  // For record types, this is done by the AbstractClassUsageDiagnoser once
4631  // the class has been completely parsed.
4632  if (!DC->isRecord() &&
4633      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4634                                     R->getAs<FunctionType>()->getResultType(),
4635                                     diag::err_abstract_type_in_decl,
4636                                     SemaRef.AbstractReturnType))
4637    D.setInvalidType();
4638
4639  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4640    // This is a C++ constructor declaration.
4641    assert(DC->isRecord() &&
4642           "Constructors can only be declared in a member context");
4643
4644    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4645    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4646                                      D.getSourceRange().getBegin(), NameInfo,
4647                                      R, TInfo, isExplicit, isInline,
4648                                      /*isImplicitlyDeclared=*/false,
4649                                      isConstexpr);
4650
4651  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4652    // This is a C++ destructor declaration.
4653    if (DC->isRecord()) {
4654      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4655      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4656      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4657                                        SemaRef.Context, Record,
4658                                        D.getSourceRange().getBegin(),
4659                                        NameInfo, R, TInfo, isInline,
4660                                        /*isImplicitlyDeclared=*/false);
4661
4662      // If the class is complete, then we now create the implicit exception
4663      // specification. If the class is incomplete or dependent, we can't do
4664      // it yet.
4665      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4666          Record->getDefinition() && !Record->isBeingDefined() &&
4667          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4668        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4669      }
4670
4671      IsVirtualOkay = true;
4672      return NewDD;
4673
4674    } else {
4675      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4676      D.setInvalidType();
4677
4678      // Create a FunctionDecl to satisfy the function definition parsing
4679      // code path.
4680      return FunctionDecl::Create(SemaRef.Context, DC,
4681                                  D.getSourceRange().getBegin(),
4682                                  D.getIdentifierLoc(), Name, R, TInfo,
4683                                  SC, SCAsWritten, isInline,
4684                                  /*hasPrototype=*/true, isConstexpr);
4685    }
4686
4687  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4688    if (!DC->isRecord()) {
4689      SemaRef.Diag(D.getIdentifierLoc(),
4690           diag::err_conv_function_not_member);
4691      return 0;
4692    }
4693
4694    SemaRef.CheckConversionDeclarator(D, R, SC);
4695    IsVirtualOkay = true;
4696    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4697                                     D.getSourceRange().getBegin(), NameInfo,
4698                                     R, TInfo, isInline, isExplicit,
4699                                     isConstexpr, SourceLocation());
4700
4701  } else if (DC->isRecord()) {
4702    // If the name of the function is the same as the name of the record,
4703    // then this must be an invalid constructor that has a return type.
4704    // (The parser checks for a return type and makes the declarator a
4705    // constructor if it has no return type).
4706    if (Name.getAsIdentifierInfo() &&
4707        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4708      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4709        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4710        << SourceRange(D.getIdentifierLoc());
4711      return 0;
4712    }
4713
4714    bool isStatic = SC == SC_Static;
4715
4716    // [class.free]p1:
4717    // Any allocation function for a class T is a static member
4718    // (even if not explicitly declared static).
4719    if (Name.getCXXOverloadedOperator() == OO_New ||
4720        Name.getCXXOverloadedOperator() == OO_Array_New)
4721      isStatic = true;
4722
4723    // [class.free]p6 Any deallocation function for a class X is a static member
4724    // (even if not explicitly declared static).
4725    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4726        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4727      isStatic = true;
4728
4729    IsVirtualOkay = !isStatic;
4730
4731    // This is a C++ method declaration.
4732    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4733                                 D.getSourceRange().getBegin(), NameInfo, R,
4734                                 TInfo, isStatic, SCAsWritten, isInline,
4735                                 isConstexpr, SourceLocation());
4736
4737  } else {
4738    // Determine whether the function was written with a
4739    // prototype. This true when:
4740    //   - we're in C++ (where every function has a prototype),
4741    return FunctionDecl::Create(SemaRef.Context, DC,
4742                                D.getSourceRange().getBegin(),
4743                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4744                                true/*HasPrototype*/, isConstexpr);
4745  }
4746}
4747
4748NamedDecl*
4749Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4750                              TypeSourceInfo *TInfo, LookupResult &Previous,
4751                              MultiTemplateParamsArg TemplateParamLists,
4752                              bool &AddToScope) {
4753  QualType R = TInfo->getType();
4754
4755  assert(R.getTypePtr()->isFunctionType());
4756
4757  // TODO: consider using NameInfo for diagnostic.
4758  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4759  DeclarationName Name = NameInfo.getName();
4760  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4761
4762  if (D.getDeclSpec().isThreadSpecified())
4763    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4764
4765  // Do not allow returning a objc interface by-value.
4766  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4767    Diag(D.getIdentifierLoc(),
4768         diag::err_object_cannot_be_passed_returned_by_value) << 0
4769    << R->getAs<FunctionType>()->getResultType()
4770    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4771
4772    QualType T = R->getAs<FunctionType>()->getResultType();
4773    T = Context.getObjCObjectPointerType(T);
4774    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4775      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4776      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4777                                  FPT->getNumArgs(), EPI);
4778    }
4779    else if (isa<FunctionNoProtoType>(R))
4780      R = Context.getFunctionNoProtoType(T);
4781  }
4782
4783  bool isFriend = false;
4784  FunctionTemplateDecl *FunctionTemplate = 0;
4785  bool isExplicitSpecialization = false;
4786  bool isFunctionTemplateSpecialization = false;
4787  bool isDependentClassScopeExplicitSpecialization = false;
4788  bool isVirtualOkay = false;
4789
4790  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4791                                              isVirtualOkay);
4792  if (!NewFD) return 0;
4793
4794  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4795    NewFD->setTopLevelDeclInObjCContainer();
4796
4797  if (getLangOptions().CPlusPlus) {
4798    bool isInline = D.getDeclSpec().isInlineSpecified();
4799    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4800    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4801    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4802    isFriend = D.getDeclSpec().isFriendSpecified();
4803    if (isFriend && !isInline && D.isFunctionDefinition()) {
4804      // C++ [class.friend]p5
4805      //   A function can be defined in a friend declaration of a
4806      //   class . . . . Such a function is implicitly inline.
4807      NewFD->setImplicitlyInline();
4808    }
4809
4810    SetNestedNameSpecifier(NewFD, D);
4811    isExplicitSpecialization = false;
4812    isFunctionTemplateSpecialization = false;
4813    if (D.isInvalidType())
4814      NewFD->setInvalidDecl();
4815
4816    // Set the lexical context. If the declarator has a C++
4817    // scope specifier, or is the object of a friend declaration, the
4818    // lexical context will be different from the semantic context.
4819    NewFD->setLexicalDeclContext(CurContext);
4820
4821    // Match up the template parameter lists with the scope specifier, then
4822    // determine whether we have a template or a template specialization.
4823    bool Invalid = false;
4824    if (TemplateParameterList *TemplateParams
4825          = MatchTemplateParametersToScopeSpecifier(
4826                                  D.getDeclSpec().getSourceRange().getBegin(),
4827                                  D.getIdentifierLoc(),
4828                                  D.getCXXScopeSpec(),
4829                                  TemplateParamLists.get(),
4830                                  TemplateParamLists.size(),
4831                                  isFriend,
4832                                  isExplicitSpecialization,
4833                                  Invalid)) {
4834      if (TemplateParams->size() > 0) {
4835        // This is a function template
4836
4837        // Check that we can declare a template here.
4838        if (CheckTemplateDeclScope(S, TemplateParams))
4839          return 0;
4840
4841        // A destructor cannot be a template.
4842        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4843          Diag(NewFD->getLocation(), diag::err_destructor_template);
4844          return 0;
4845        }
4846
4847        // If we're adding a template to a dependent context, we may need to
4848        // rebuilding some of the types used within the template parameter list,
4849        // now that we know what the current instantiation is.
4850        if (DC->isDependentContext()) {
4851          ContextRAII SavedContext(*this, DC);
4852          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4853            Invalid = true;
4854        }
4855
4856
4857        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4858                                                        NewFD->getLocation(),
4859                                                        Name, TemplateParams,
4860                                                        NewFD);
4861        FunctionTemplate->setLexicalDeclContext(CurContext);
4862        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4863
4864        // For source fidelity, store the other template param lists.
4865        if (TemplateParamLists.size() > 1) {
4866          NewFD->setTemplateParameterListsInfo(Context,
4867                                               TemplateParamLists.size() - 1,
4868                                               TemplateParamLists.release());
4869        }
4870      } else {
4871        // This is a function template specialization.
4872        isFunctionTemplateSpecialization = true;
4873        // For source fidelity, store all the template param lists.
4874        NewFD->setTemplateParameterListsInfo(Context,
4875                                             TemplateParamLists.size(),
4876                                             TemplateParamLists.release());
4877
4878        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4879        if (isFriend) {
4880          // We want to remove the "template<>", found here.
4881          SourceRange RemoveRange = TemplateParams->getSourceRange();
4882
4883          // If we remove the template<> and the name is not a
4884          // template-id, we're actually silently creating a problem:
4885          // the friend declaration will refer to an untemplated decl,
4886          // and clearly the user wants a template specialization.  So
4887          // we need to insert '<>' after the name.
4888          SourceLocation InsertLoc;
4889          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4890            InsertLoc = D.getName().getSourceRange().getEnd();
4891            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4892          }
4893
4894          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4895            << Name << RemoveRange
4896            << FixItHint::CreateRemoval(RemoveRange)
4897            << FixItHint::CreateInsertion(InsertLoc, "<>");
4898        }
4899      }
4900    }
4901    else {
4902      // All template param lists were matched against the scope specifier:
4903      // this is NOT (an explicit specialization of) a template.
4904      if (TemplateParamLists.size() > 0)
4905        // For source fidelity, store all the template param lists.
4906        NewFD->setTemplateParameterListsInfo(Context,
4907                                             TemplateParamLists.size(),
4908                                             TemplateParamLists.release());
4909    }
4910
4911    if (Invalid) {
4912      NewFD->setInvalidDecl();
4913      if (FunctionTemplate)
4914        FunctionTemplate->setInvalidDecl();
4915    }
4916
4917    // C++ [dcl.fct.spec]p5:
4918    //   The virtual specifier shall only be used in declarations of
4919    //   nonstatic class member functions that appear within a
4920    //   member-specification of a class declaration; see 10.3.
4921    //
4922    if (isVirtual && !NewFD->isInvalidDecl()) {
4923      if (!isVirtualOkay) {
4924        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4925             diag::err_virtual_non_function);
4926      } else if (!CurContext->isRecord()) {
4927        // 'virtual' was specified outside of the class.
4928        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4929             diag::err_virtual_out_of_class)
4930          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4931      } else if (NewFD->getDescribedFunctionTemplate()) {
4932        // C++ [temp.mem]p3:
4933        //  A member function template shall not be virtual.
4934        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4935             diag::err_virtual_member_function_template)
4936          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4937      } else {
4938        // Okay: Add virtual to the method.
4939        NewFD->setVirtualAsWritten(true);
4940      }
4941    }
4942
4943    // C++ [dcl.fct.spec]p3:
4944    //  The inline specifier shall not appear on a block scope function
4945    //  declaration.
4946    if (isInline && !NewFD->isInvalidDecl()) {
4947      if (CurContext->isFunctionOrMethod()) {
4948        // 'inline' is not allowed on block scope function declaration.
4949        Diag(D.getDeclSpec().getInlineSpecLoc(),
4950             diag::err_inline_declaration_block_scope) << Name
4951          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4952      }
4953    }
4954
4955    // C++ [dcl.fct.spec]p6:
4956    //  The explicit specifier shall be used only in the declaration of a
4957    //  constructor or conversion function within its class definition;
4958    //  see 12.3.1 and 12.3.2.
4959    if (isExplicit && !NewFD->isInvalidDecl()) {
4960      if (!CurContext->isRecord()) {
4961        // 'explicit' was specified outside of the class.
4962        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4963             diag::err_explicit_out_of_class)
4964          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4965      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4966                 !isa<CXXConversionDecl>(NewFD)) {
4967        // 'explicit' was specified on a function that wasn't a constructor
4968        // or conversion function.
4969        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4970             diag::err_explicit_non_ctor_or_conv_function)
4971          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4972      }
4973    }
4974
4975    if (isConstexpr) {
4976      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4977      // are implicitly inline.
4978      NewFD->setImplicitlyInline();
4979
4980      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4981      // be either constructors or to return a literal type. Therefore,
4982      // destructors cannot be declared constexpr.
4983      if (isa<CXXDestructorDecl>(NewFD))
4984        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4985    }
4986
4987    // If __module_private__ was specified, mark the function accordingly.
4988    if (D.getDeclSpec().isModulePrivateSpecified()) {
4989      if (isFunctionTemplateSpecialization) {
4990        SourceLocation ModulePrivateLoc
4991          = D.getDeclSpec().getModulePrivateSpecLoc();
4992        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4993          << 0
4994          << FixItHint::CreateRemoval(ModulePrivateLoc);
4995      } else {
4996        NewFD->setModulePrivate();
4997        if (FunctionTemplate)
4998          FunctionTemplate->setModulePrivate();
4999      }
5000    }
5001
5002    if (isFriend) {
5003      // For now, claim that the objects have no previous declaration.
5004      if (FunctionTemplate) {
5005        FunctionTemplate->setObjectOfFriendDecl(false);
5006        FunctionTemplate->setAccess(AS_public);
5007      }
5008      NewFD->setObjectOfFriendDecl(false);
5009      NewFD->setAccess(AS_public);
5010    }
5011
5012    // If a function is defined as defaulted or deleted, mark it as such now.
5013    switch (D.getFunctionDefinitionKind()) {
5014      case FDK_Declaration:
5015      case FDK_Definition:
5016        break;
5017
5018      case FDK_Defaulted:
5019        NewFD->setDefaulted();
5020        break;
5021
5022      case FDK_Deleted:
5023        NewFD->setDeletedAsWritten();
5024        break;
5025    }
5026
5027    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5028        D.isFunctionDefinition()) {
5029      // C++ [class.mfct]p2:
5030      //   A member function may be defined (8.4) in its class definition, in
5031      //   which case it is an inline member function (7.1.2)
5032      NewFD->setImplicitlyInline();
5033    }
5034
5035    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5036        !CurContext->isRecord()) {
5037      // C++ [class.static]p1:
5038      //   A data or function member of a class may be declared static
5039      //   in a class definition, in which case it is a static member of
5040      //   the class.
5041
5042      // Complain about the 'static' specifier if it's on an out-of-line
5043      // member function definition.
5044      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5045           diag::err_static_out_of_line)
5046        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5047    }
5048  }
5049
5050  // Filter out previous declarations that don't match the scope.
5051  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5052                       isExplicitSpecialization ||
5053                       isFunctionTemplateSpecialization);
5054
5055  // Handle GNU asm-label extension (encoded as an attribute).
5056  if (Expr *E = (Expr*) D.getAsmLabel()) {
5057    // The parser guarantees this is a string.
5058    StringLiteral *SE = cast<StringLiteral>(E);
5059    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5060                                                SE->getString()));
5061  }
5062
5063  // Copy the parameter declarations from the declarator D to the function
5064  // declaration NewFD, if they are available.  First scavenge them into Params.
5065  SmallVector<ParmVarDecl*, 16> Params;
5066  if (D.isFunctionDeclarator()) {
5067    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5068
5069    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5070    // function that takes no arguments, not a function that takes a
5071    // single void argument.
5072    // We let through "const void" here because Sema::GetTypeForDeclarator
5073    // already checks for that case.
5074    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5075        FTI.ArgInfo[0].Param &&
5076        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5077      // Empty arg list, don't push any params.
5078      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5079
5080      // In C++, the empty parameter-type-list must be spelled "void"; a
5081      // typedef of void is not permitted.
5082      if (getLangOptions().CPlusPlus &&
5083          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5084        bool IsTypeAlias = false;
5085        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5086          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5087        else if (const TemplateSpecializationType *TST =
5088                   Param->getType()->getAs<TemplateSpecializationType>())
5089          IsTypeAlias = TST->isTypeAlias();
5090        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5091          << IsTypeAlias;
5092      }
5093    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5094      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5095        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5096        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5097        Param->setDeclContext(NewFD);
5098        Params.push_back(Param);
5099
5100        if (Param->isInvalidDecl())
5101          NewFD->setInvalidDecl();
5102      }
5103    }
5104
5105  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5106    // When we're declaring a function with a typedef, typeof, etc as in the
5107    // following example, we'll need to synthesize (unnamed)
5108    // parameters for use in the declaration.
5109    //
5110    // @code
5111    // typedef void fn(int);
5112    // fn f;
5113    // @endcode
5114
5115    // Synthesize a parameter for each argument type.
5116    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5117         AE = FT->arg_type_end(); AI != AE; ++AI) {
5118      ParmVarDecl *Param =
5119        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5120      Param->setScopeInfo(0, Params.size());
5121      Params.push_back(Param);
5122    }
5123  } else {
5124    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5125           "Should not need args for typedef of non-prototype fn");
5126  }
5127
5128  // Finally, we know we have the right number of parameters, install them.
5129  NewFD->setParams(Params);
5130
5131  // Process the non-inheritable attributes on this declaration.
5132  ProcessDeclAttributes(S, NewFD, D,
5133                        /*NonInheritable=*/true, /*Inheritable=*/false);
5134
5135  if (!getLangOptions().CPlusPlus) {
5136    // Perform semantic checking on the function declaration.
5137    bool isExplicitSpecialization=false;
5138    if (!NewFD->isInvalidDecl()) {
5139      if (NewFD->getResultType()->isVariablyModifiedType()) {
5140        // Functions returning a variably modified type violate C99 6.7.5.2p2
5141        // because all functions have linkage.
5142        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5143        NewFD->setInvalidDecl();
5144      } else {
5145        if (NewFD->isMain())
5146          CheckMain(NewFD, D.getDeclSpec());
5147        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5148                                                    isExplicitSpecialization));
5149      }
5150    }
5151    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5152            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5153           "previous declaration set still overloaded");
5154  } else {
5155    // If the declarator is a template-id, translate the parser's template
5156    // argument list into our AST format.
5157    bool HasExplicitTemplateArgs = false;
5158    TemplateArgumentListInfo TemplateArgs;
5159    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5160      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5161      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5162      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5163      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5164                                         TemplateId->getTemplateArgs(),
5165                                         TemplateId->NumArgs);
5166      translateTemplateArguments(TemplateArgsPtr,
5167                                 TemplateArgs);
5168      TemplateArgsPtr.release();
5169
5170      HasExplicitTemplateArgs = true;
5171
5172      if (NewFD->isInvalidDecl()) {
5173        HasExplicitTemplateArgs = false;
5174      } else if (FunctionTemplate) {
5175        // Function template with explicit template arguments.
5176        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5177          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5178
5179        HasExplicitTemplateArgs = false;
5180      } else if (!isFunctionTemplateSpecialization &&
5181                 !D.getDeclSpec().isFriendSpecified()) {
5182        // We have encountered something that the user meant to be a
5183        // specialization (because it has explicitly-specified template
5184        // arguments) but that was not introduced with a "template<>" (or had
5185        // too few of them).
5186        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5187          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5188          << FixItHint::CreateInsertion(
5189                                    D.getDeclSpec().getSourceRange().getBegin(),
5190                                        "template<> ");
5191        isFunctionTemplateSpecialization = true;
5192      } else {
5193        // "friend void foo<>(int);" is an implicit specialization decl.
5194        isFunctionTemplateSpecialization = true;
5195      }
5196    } else if (isFriend && isFunctionTemplateSpecialization) {
5197      // This combination is only possible in a recovery case;  the user
5198      // wrote something like:
5199      //   template <> friend void foo(int);
5200      // which we're recovering from as if the user had written:
5201      //   friend void foo<>(int);
5202      // Go ahead and fake up a template id.
5203      HasExplicitTemplateArgs = true;
5204        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5205      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5206    }
5207
5208    // If it's a friend (and only if it's a friend), it's possible
5209    // that either the specialized function type or the specialized
5210    // template is dependent, and therefore matching will fail.  In
5211    // this case, don't check the specialization yet.
5212    bool InstantiationDependent = false;
5213    if (isFunctionTemplateSpecialization && isFriend &&
5214        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5215         TemplateSpecializationType::anyDependentTemplateArguments(
5216            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5217            InstantiationDependent))) {
5218      assert(HasExplicitTemplateArgs &&
5219             "friend function specialization without template args");
5220      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5221                                                       Previous))
5222        NewFD->setInvalidDecl();
5223    } else if (isFunctionTemplateSpecialization) {
5224      if (CurContext->isDependentContext() && CurContext->isRecord()
5225          && !isFriend) {
5226        isDependentClassScopeExplicitSpecialization = true;
5227        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5228          diag::ext_function_specialization_in_class :
5229          diag::err_function_specialization_in_class)
5230          << NewFD->getDeclName();
5231      } else if (CheckFunctionTemplateSpecialization(NewFD,
5232                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5233                                                     Previous))
5234        NewFD->setInvalidDecl();
5235
5236      // C++ [dcl.stc]p1:
5237      //   A storage-class-specifier shall not be specified in an explicit
5238      //   specialization (14.7.3)
5239      if (SC != SC_None) {
5240        if (SC != NewFD->getStorageClass())
5241          Diag(NewFD->getLocation(),
5242               diag::err_explicit_specialization_inconsistent_storage_class)
5243            << SC
5244            << FixItHint::CreateRemoval(
5245                                      D.getDeclSpec().getStorageClassSpecLoc());
5246
5247        else
5248          Diag(NewFD->getLocation(),
5249               diag::ext_explicit_specialization_storage_class)
5250            << FixItHint::CreateRemoval(
5251                                      D.getDeclSpec().getStorageClassSpecLoc());
5252      }
5253
5254    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5255      if (CheckMemberSpecialization(NewFD, Previous))
5256          NewFD->setInvalidDecl();
5257    }
5258
5259    // Perform semantic checking on the function declaration.
5260    if (!isDependentClassScopeExplicitSpecialization) {
5261      if (NewFD->isInvalidDecl()) {
5262        // If this is a class member, mark the class invalid immediately.
5263        // This avoids some consistency errors later.
5264        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5265          methodDecl->getParent()->setInvalidDecl();
5266      } else {
5267        if (NewFD->isMain())
5268          CheckMain(NewFD, D.getDeclSpec());
5269        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5270                                                    isExplicitSpecialization));
5271      }
5272    }
5273
5274    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5275            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5276           "previous declaration set still overloaded");
5277
5278    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5279        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5280      NewFD->setInvalidDecl();
5281
5282    NamedDecl *PrincipalDecl = (FunctionTemplate
5283                                ? cast<NamedDecl>(FunctionTemplate)
5284                                : NewFD);
5285
5286    if (isFriend && D.isRedeclaration()) {
5287      AccessSpecifier Access = AS_public;
5288      if (!NewFD->isInvalidDecl())
5289        Access = NewFD->getPreviousDeclaration()->getAccess();
5290
5291      NewFD->setAccess(Access);
5292      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5293
5294      PrincipalDecl->setObjectOfFriendDecl(true);
5295    }
5296
5297    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5298        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5299      PrincipalDecl->setNonMemberOperator();
5300
5301    // If we have a function template, check the template parameter
5302    // list. This will check and merge default template arguments.
5303    if (FunctionTemplate) {
5304      FunctionTemplateDecl *PrevTemplate =
5305                                     FunctionTemplate->getPreviousDeclaration();
5306      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5307                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5308                            D.getDeclSpec().isFriendSpecified()
5309                              ? (D.isFunctionDefinition()
5310                                   ? TPC_FriendFunctionTemplateDefinition
5311                                   : TPC_FriendFunctionTemplate)
5312                              : (D.getCXXScopeSpec().isSet() &&
5313                                 DC && DC->isRecord() &&
5314                                 DC->isDependentContext())
5315                                  ? TPC_ClassTemplateMember
5316                                  : TPC_FunctionTemplate);
5317    }
5318
5319    if (NewFD->isInvalidDecl()) {
5320      // Ignore all the rest of this.
5321    } else if (!D.isRedeclaration()) {
5322      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5323                                       AddToScope };
5324      // Fake up an access specifier if it's supposed to be a class member.
5325      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5326        NewFD->setAccess(AS_public);
5327
5328      // Qualified decls generally require a previous declaration.
5329      if (D.getCXXScopeSpec().isSet()) {
5330        // ...with the major exception of templated-scope or
5331        // dependent-scope friend declarations.
5332
5333        // TODO: we currently also suppress this check in dependent
5334        // contexts because (1) the parameter depth will be off when
5335        // matching friend templates and (2) we might actually be
5336        // selecting a friend based on a dependent factor.  But there
5337        // are situations where these conditions don't apply and we
5338        // can actually do this check immediately.
5339        if (isFriend &&
5340            (TemplateParamLists.size() ||
5341             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5342             CurContext->isDependentContext())) {
5343          // ignore these
5344        } else {
5345          // The user tried to provide an out-of-line definition for a
5346          // function that is a member of a class or namespace, but there
5347          // was no such member function declared (C++ [class.mfct]p2,
5348          // C++ [namespace.memdef]p2). For example:
5349          //
5350          // class X {
5351          //   void f() const;
5352          // };
5353          //
5354          // void X::f() { } // ill-formed
5355          //
5356          // Complain about this problem, and attempt to suggest close
5357          // matches (e.g., those that differ only in cv-qualifiers and
5358          // whether the parameter types are references).
5359
5360          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5361                                                               NewFD,
5362                                                               ExtraArgs)) {
5363            AddToScope = ExtraArgs.AddToScope;
5364            return Result;
5365          }
5366        }
5367
5368        // Unqualified local friend declarations are required to resolve
5369        // to something.
5370      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5371        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5372                                                             NewFD,
5373                                                             ExtraArgs)) {
5374          AddToScope = ExtraArgs.AddToScope;
5375          return Result;
5376        }
5377      }
5378
5379    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5380               !isFriend && !isFunctionTemplateSpecialization &&
5381               !isExplicitSpecialization) {
5382      // An out-of-line member function declaration must also be a
5383      // definition (C++ [dcl.meaning]p1).
5384      // Note that this is not the case for explicit specializations of
5385      // function templates or member functions of class templates, per
5386      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5387      // extension for compatibility with old SWIG code which likes to
5388      // generate them.
5389      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5390        << D.getCXXScopeSpec().getRange();
5391    }
5392  }
5393
5394
5395  // Handle attributes. We need to have merged decls when handling attributes
5396  // (for example to check for conflicts, etc).
5397  // FIXME: This needs to happen before we merge declarations. Then,
5398  // let attribute merging cope with attribute conflicts.
5399  ProcessDeclAttributes(S, NewFD, D,
5400                        /*NonInheritable=*/false, /*Inheritable=*/true);
5401
5402  // attributes declared post-definition are currently ignored
5403  // FIXME: This should happen during attribute merging
5404  if (D.isRedeclaration() && Previous.isSingleResult()) {
5405    const FunctionDecl *Def;
5406    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5407    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5408      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5409      Diag(Def->getLocation(), diag::note_previous_definition);
5410    }
5411  }
5412
5413  AddKnownFunctionAttributes(NewFD);
5414
5415  if (NewFD->hasAttr<OverloadableAttr>() &&
5416      !NewFD->getType()->getAs<FunctionProtoType>()) {
5417    Diag(NewFD->getLocation(),
5418         diag::err_attribute_overloadable_no_prototype)
5419      << NewFD;
5420
5421    // Turn this into a variadic function with no parameters.
5422    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5423    FunctionProtoType::ExtProtoInfo EPI;
5424    EPI.Variadic = true;
5425    EPI.ExtInfo = FT->getExtInfo();
5426
5427    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5428    NewFD->setType(R);
5429  }
5430
5431  // If there's a #pragma GCC visibility in scope, and this isn't a class
5432  // member, set the visibility of this function.
5433  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5434    AddPushedVisibilityAttribute(NewFD);
5435
5436  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5437  // marking the function.
5438  AddCFAuditedAttribute(NewFD);
5439
5440  // If this is a locally-scoped extern C function, update the
5441  // map of such names.
5442  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5443      && !NewFD->isInvalidDecl())
5444    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5445
5446  // Set this FunctionDecl's range up to the right paren.
5447  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5448
5449  if (getLangOptions().CPlusPlus) {
5450    if (FunctionTemplate) {
5451      if (NewFD->isInvalidDecl())
5452        FunctionTemplate->setInvalidDecl();
5453      return FunctionTemplate;
5454    }
5455  }
5456
5457  MarkUnusedFileScopedDecl(NewFD);
5458
5459  if (getLangOptions().CUDA)
5460    if (IdentifierInfo *II = NewFD->getIdentifier())
5461      if (!NewFD->isInvalidDecl() &&
5462          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5463        if (II->isStr("cudaConfigureCall")) {
5464          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5465            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5466
5467          Context.setcudaConfigureCallDecl(NewFD);
5468        }
5469      }
5470
5471  // Here we have an function template explicit specialization at class scope.
5472  // The actually specialization will be postponed to template instatiation
5473  // time via the ClassScopeFunctionSpecializationDecl node.
5474  if (isDependentClassScopeExplicitSpecialization) {
5475    ClassScopeFunctionSpecializationDecl *NewSpec =
5476                         ClassScopeFunctionSpecializationDecl::Create(
5477                                Context, CurContext,  SourceLocation(),
5478                                cast<CXXMethodDecl>(NewFD));
5479    CurContext->addDecl(NewSpec);
5480    AddToScope = false;
5481  }
5482
5483  return NewFD;
5484}
5485
5486/// \brief Perform semantic checking of a new function declaration.
5487///
5488/// Performs semantic analysis of the new function declaration
5489/// NewFD. This routine performs all semantic checking that does not
5490/// require the actual declarator involved in the declaration, and is
5491/// used both for the declaration of functions as they are parsed
5492/// (called via ActOnDeclarator) and for the declaration of functions
5493/// that have been instantiated via C++ template instantiation (called
5494/// via InstantiateDecl).
5495///
5496/// \param IsExplicitSpecialiation whether this new function declaration is
5497/// an explicit specialization of the previous declaration.
5498///
5499/// This sets NewFD->isInvalidDecl() to true if there was an error.
5500///
5501/// Returns true if the function declaration is a redeclaration.
5502bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5503                                    LookupResult &Previous,
5504                                    bool IsExplicitSpecialization) {
5505  assert(!NewFD->getResultType()->isVariablyModifiedType()
5506         && "Variably modified return types are not handled here");
5507
5508  // Check for a previous declaration of this name.
5509  if (Previous.empty() && NewFD->isExternC()) {
5510    // Since we did not find anything by this name and we're declaring
5511    // an extern "C" function, look for a non-visible extern "C"
5512    // declaration with the same name.
5513    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5514      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5515    if (Pos != LocallyScopedExternalDecls.end())
5516      Previous.addDecl(Pos->second);
5517  }
5518
5519  bool Redeclaration = false;
5520
5521  // Merge or overload the declaration with an existing declaration of
5522  // the same name, if appropriate.
5523  if (!Previous.empty()) {
5524    // Determine whether NewFD is an overload of PrevDecl or
5525    // a declaration that requires merging. If it's an overload,
5526    // there's no more work to do here; we'll just add the new
5527    // function to the scope.
5528
5529    NamedDecl *OldDecl = 0;
5530    if (!AllowOverloadingOfFunction(Previous, Context)) {
5531      Redeclaration = true;
5532      OldDecl = Previous.getFoundDecl();
5533    } else {
5534      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5535                            /*NewIsUsingDecl*/ false)) {
5536      case Ovl_Match:
5537        Redeclaration = true;
5538        break;
5539
5540      case Ovl_NonFunction:
5541        Redeclaration = true;
5542        break;
5543
5544      case Ovl_Overload:
5545        Redeclaration = false;
5546        break;
5547      }
5548
5549      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5550        // If a function name is overloadable in C, then every function
5551        // with that name must be marked "overloadable".
5552        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5553          << Redeclaration << NewFD;
5554        NamedDecl *OverloadedDecl = 0;
5555        if (Redeclaration)
5556          OverloadedDecl = OldDecl;
5557        else if (!Previous.empty())
5558          OverloadedDecl = Previous.getRepresentativeDecl();
5559        if (OverloadedDecl)
5560          Diag(OverloadedDecl->getLocation(),
5561               diag::note_attribute_overloadable_prev_overload);
5562        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5563                                                        Context));
5564      }
5565    }
5566
5567    if (Redeclaration) {
5568      // NewFD and OldDecl represent declarations that need to be
5569      // merged.
5570      if (MergeFunctionDecl(NewFD, OldDecl)) {
5571        NewFD->setInvalidDecl();
5572        return Redeclaration;
5573      }
5574
5575      Previous.clear();
5576      Previous.addDecl(OldDecl);
5577
5578      if (FunctionTemplateDecl *OldTemplateDecl
5579                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5580        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5581        FunctionTemplateDecl *NewTemplateDecl
5582          = NewFD->getDescribedFunctionTemplate();
5583        assert(NewTemplateDecl && "Template/non-template mismatch");
5584        if (CXXMethodDecl *Method
5585              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5586          Method->setAccess(OldTemplateDecl->getAccess());
5587          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5588        }
5589
5590        // If this is an explicit specialization of a member that is a function
5591        // template, mark it as a member specialization.
5592        if (IsExplicitSpecialization &&
5593            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5594          NewTemplateDecl->setMemberSpecialization();
5595          assert(OldTemplateDecl->isMemberSpecialization());
5596        }
5597
5598        if (OldTemplateDecl->isModulePrivate())
5599          NewTemplateDecl->setModulePrivate();
5600
5601      } else {
5602        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5603          NewFD->setAccess(OldDecl->getAccess());
5604        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5605      }
5606    }
5607  }
5608
5609  // Semantic checking for this function declaration (in isolation).
5610  if (getLangOptions().CPlusPlus) {
5611    // C++-specific checks.
5612    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5613      CheckConstructor(Constructor);
5614    } else if (CXXDestructorDecl *Destructor =
5615                dyn_cast<CXXDestructorDecl>(NewFD)) {
5616      CXXRecordDecl *Record = Destructor->getParent();
5617      QualType ClassType = Context.getTypeDeclType(Record);
5618
5619      // FIXME: Shouldn't we be able to perform this check even when the class
5620      // type is dependent? Both gcc and edg can handle that.
5621      if (!ClassType->isDependentType()) {
5622        DeclarationName Name
5623          = Context.DeclarationNames.getCXXDestructorName(
5624                                        Context.getCanonicalType(ClassType));
5625        if (NewFD->getDeclName() != Name) {
5626          Diag(NewFD->getLocation(), diag::err_destructor_name);
5627          NewFD->setInvalidDecl();
5628          return Redeclaration;
5629        }
5630      }
5631    } else if (CXXConversionDecl *Conversion
5632               = dyn_cast<CXXConversionDecl>(NewFD)) {
5633      ActOnConversionDeclarator(Conversion);
5634    }
5635
5636    // Find any virtual functions that this function overrides.
5637    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5638      if (!Method->isFunctionTemplateSpecialization() &&
5639          !Method->getDescribedFunctionTemplate()) {
5640        if (AddOverriddenMethods(Method->getParent(), Method)) {
5641          // If the function was marked as "static", we have a problem.
5642          if (NewFD->getStorageClass() == SC_Static) {
5643            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5644              << NewFD->getDeclName();
5645            for (CXXMethodDecl::method_iterator
5646                      Overridden = Method->begin_overridden_methods(),
5647                   OverriddenEnd = Method->end_overridden_methods();
5648                 Overridden != OverriddenEnd;
5649                 ++Overridden) {
5650              Diag((*Overridden)->getLocation(),
5651                   diag::note_overridden_virtual_function);
5652            }
5653          }
5654        }
5655      }
5656    }
5657
5658    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5659    if (NewFD->isOverloadedOperator() &&
5660        CheckOverloadedOperatorDeclaration(NewFD)) {
5661      NewFD->setInvalidDecl();
5662      return Redeclaration;
5663    }
5664
5665    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5666    if (NewFD->getLiteralIdentifier() &&
5667        CheckLiteralOperatorDeclaration(NewFD)) {
5668      NewFD->setInvalidDecl();
5669      return Redeclaration;
5670    }
5671
5672    // In C++, check default arguments now that we have merged decls. Unless
5673    // the lexical context is the class, because in this case this is done
5674    // during delayed parsing anyway.
5675    if (!CurContext->isRecord())
5676      CheckCXXDefaultArguments(NewFD);
5677
5678    // If this function declares a builtin function, check the type of this
5679    // declaration against the expected type for the builtin.
5680    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5681      ASTContext::GetBuiltinTypeError Error;
5682      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5683      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5684        // The type of this function differs from the type of the builtin,
5685        // so forget about the builtin entirely.
5686        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5687      }
5688    }
5689  }
5690  return Redeclaration;
5691}
5692
5693void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5694  // C++ [basic.start.main]p3:  A program that declares main to be inline
5695  //   or static is ill-formed.
5696  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5697  //   shall not appear in a declaration of main.
5698  // static main is not an error under C99, but we should warn about it.
5699  if (FD->getStorageClass() == SC_Static)
5700    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5701         ? diag::err_static_main : diag::warn_static_main)
5702      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5703  if (FD->isInlineSpecified())
5704    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5705      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5706
5707  QualType T = FD->getType();
5708  assert(T->isFunctionType() && "function decl is not of function type");
5709  const FunctionType* FT = T->getAs<FunctionType>();
5710
5711  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5712    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5713    FD->setInvalidDecl(true);
5714  }
5715
5716  // Treat protoless main() as nullary.
5717  if (isa<FunctionNoProtoType>(FT)) return;
5718
5719  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5720  unsigned nparams = FTP->getNumArgs();
5721  assert(FD->getNumParams() == nparams);
5722
5723  bool HasExtraParameters = (nparams > 3);
5724
5725  // Darwin passes an undocumented fourth argument of type char**.  If
5726  // other platforms start sprouting these, the logic below will start
5727  // getting shifty.
5728  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5729    HasExtraParameters = false;
5730
5731  if (HasExtraParameters) {
5732    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5733    FD->setInvalidDecl(true);
5734    nparams = 3;
5735  }
5736
5737  // FIXME: a lot of the following diagnostics would be improved
5738  // if we had some location information about types.
5739
5740  QualType CharPP =
5741    Context.getPointerType(Context.getPointerType(Context.CharTy));
5742  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5743
5744  for (unsigned i = 0; i < nparams; ++i) {
5745    QualType AT = FTP->getArgType(i);
5746
5747    bool mismatch = true;
5748
5749    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5750      mismatch = false;
5751    else if (Expected[i] == CharPP) {
5752      // As an extension, the following forms are okay:
5753      //   char const **
5754      //   char const * const *
5755      //   char * const *
5756
5757      QualifierCollector qs;
5758      const PointerType* PT;
5759      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5760          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5761          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5762        qs.removeConst();
5763        mismatch = !qs.empty();
5764      }
5765    }
5766
5767    if (mismatch) {
5768      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5769      // TODO: suggest replacing given type with expected type
5770      FD->setInvalidDecl(true);
5771    }
5772  }
5773
5774  if (nparams == 1 && !FD->isInvalidDecl()) {
5775    Diag(FD->getLocation(), diag::warn_main_one_arg);
5776  }
5777
5778  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5779    Diag(FD->getLocation(), diag::err_main_template_decl);
5780    FD->setInvalidDecl();
5781  }
5782}
5783
5784bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5785  // FIXME: Need strict checking.  In C89, we need to check for
5786  // any assignment, increment, decrement, function-calls, or
5787  // commas outside of a sizeof.  In C99, it's the same list,
5788  // except that the aforementioned are allowed in unevaluated
5789  // expressions.  Everything else falls under the
5790  // "may accept other forms of constant expressions" exception.
5791  // (We never end up here for C++, so the constant expression
5792  // rules there don't matter.)
5793  if (Init->isConstantInitializer(Context, false))
5794    return false;
5795  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5796    << Init->getSourceRange();
5797  return true;
5798}
5799
5800namespace {
5801  // Visits an initialization expression to see if OrigDecl is evaluated in
5802  // its own initialization and throws a warning if it does.
5803  class SelfReferenceChecker
5804      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5805    Sema &S;
5806    Decl *OrigDecl;
5807    bool isRecordType;
5808    bool isPODType;
5809
5810  public:
5811    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5812
5813    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5814                                                    S(S), OrigDecl(OrigDecl) {
5815      isPODType = false;
5816      isRecordType = false;
5817      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5818        isPODType = VD->getType().isPODType(S.Context);
5819        isRecordType = VD->getType()->isRecordType();
5820      }
5821    }
5822
5823    void VisitExpr(Expr *E) {
5824      if (isa<ObjCMessageExpr>(*E)) return;
5825      if (isRecordType) {
5826        Expr *expr = E;
5827        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5828          ValueDecl *VD = ME->getMemberDecl();
5829          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5830          expr = ME->getBase();
5831        }
5832        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5833          HandleDeclRefExpr(DRE);
5834          return;
5835        }
5836      }
5837      Inherited::VisitExpr(E);
5838    }
5839
5840    void VisitMemberExpr(MemberExpr *E) {
5841      if (E->getType()->canDecayToPointerType()) return;
5842      if (isa<FieldDecl>(E->getMemberDecl()))
5843        if (DeclRefExpr *DRE
5844              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5845          HandleDeclRefExpr(DRE);
5846          return;
5847        }
5848      Inherited::VisitMemberExpr(E);
5849    }
5850
5851    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5852      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5853          (isRecordType && E->getCastKind() == CK_NoOp)) {
5854        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5855        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5856          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5857        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5858          HandleDeclRefExpr(DRE);
5859          return;
5860        }
5861      }
5862      Inherited::VisitImplicitCastExpr(E);
5863    }
5864
5865    void VisitUnaryOperator(UnaryOperator *E) {
5866      // For POD record types, addresses of its own members are well-defined.
5867      if (isRecordType && isPODType) return;
5868      Inherited::VisitUnaryOperator(E);
5869    }
5870
5871    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5872      Decl* ReferenceDecl = DRE->getDecl();
5873      if (OrigDecl != ReferenceDecl) return;
5874      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5875                          Sema::NotForRedeclaration);
5876      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5877                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5878                              << Result.getLookupName()
5879                              << OrigDecl->getLocation()
5880                              << DRE->getSourceRange());
5881    }
5882  };
5883}
5884
5885/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5886void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5887  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5888}
5889
5890/// AddInitializerToDecl - Adds the initializer Init to the
5891/// declaration dcl. If DirectInit is true, this is C++ direct
5892/// initialization rather than copy initialization.
5893void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5894                                bool DirectInit, bool TypeMayContainAuto) {
5895  // If there is no declaration, there was an error parsing it.  Just ignore
5896  // the initializer.
5897  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5898    return;
5899
5900  // Check for self-references within variable initializers.
5901  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5902    // Variables declared within a function/method body are handled
5903    // by a dataflow analysis.
5904    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5905      CheckSelfReference(RealDecl, Init);
5906  }
5907  else {
5908    CheckSelfReference(RealDecl, Init);
5909  }
5910
5911  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5912    // With declarators parsed the way they are, the parser cannot
5913    // distinguish between a normal initializer and a pure-specifier.
5914    // Thus this grotesque test.
5915    IntegerLiteral *IL;
5916    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5917        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5918      CheckPureMethod(Method, Init->getSourceRange());
5919    else {
5920      Diag(Method->getLocation(), diag::err_member_function_initialization)
5921        << Method->getDeclName() << Init->getSourceRange();
5922      Method->setInvalidDecl();
5923    }
5924    return;
5925  }
5926
5927  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5928  if (!VDecl) {
5929    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5930    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5931    RealDecl->setInvalidDecl();
5932    return;
5933  }
5934
5935  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5936  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5937    TypeSourceInfo *DeducedType = 0;
5938    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5939      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5940        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5941        << Init->getSourceRange();
5942    if (!DeducedType) {
5943      RealDecl->setInvalidDecl();
5944      return;
5945    }
5946    VDecl->setTypeSourceInfo(DeducedType);
5947    VDecl->setType(DeducedType->getType());
5948
5949    // In ARC, infer lifetime.
5950    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5951      VDecl->setInvalidDecl();
5952
5953    // If this is a redeclaration, check that the type we just deduced matches
5954    // the previously declared type.
5955    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5956      MergeVarDeclTypes(VDecl, Old);
5957  }
5958
5959
5960  // A definition must end up with a complete type, which means it must be
5961  // complete with the restriction that an array type might be completed by the
5962  // initializer; note that later code assumes this restriction.
5963  QualType BaseDeclType = VDecl->getType();
5964  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5965    BaseDeclType = Array->getElementType();
5966  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5967                          diag::err_typecheck_decl_incomplete_type)) {
5968    RealDecl->setInvalidDecl();
5969    return;
5970  }
5971
5972  // The variable can not have an abstract class type.
5973  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5974                             diag::err_abstract_type_in_decl,
5975                             AbstractVariableType))
5976    VDecl->setInvalidDecl();
5977
5978  const VarDecl *Def;
5979  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5980    Diag(VDecl->getLocation(), diag::err_redefinition)
5981      << VDecl->getDeclName();
5982    Diag(Def->getLocation(), diag::note_previous_definition);
5983    VDecl->setInvalidDecl();
5984    return;
5985  }
5986
5987  const VarDecl* PrevInit = 0;
5988  if (getLangOptions().CPlusPlus) {
5989    // C++ [class.static.data]p4
5990    //   If a static data member is of const integral or const
5991    //   enumeration type, its declaration in the class definition can
5992    //   specify a constant-initializer which shall be an integral
5993    //   constant expression (5.19). In that case, the member can appear
5994    //   in integral constant expressions. The member shall still be
5995    //   defined in a namespace scope if it is used in the program and the
5996    //   namespace scope definition shall not contain an initializer.
5997    //
5998    // We already performed a redefinition check above, but for static
5999    // data members we also need to check whether there was an in-class
6000    // declaration with an initializer.
6001    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6002      Diag(VDecl->getLocation(), diag::err_redefinition)
6003        << VDecl->getDeclName();
6004      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6005      return;
6006    }
6007
6008    if (VDecl->hasLocalStorage())
6009      getCurFunction()->setHasBranchProtectedScope();
6010
6011    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6012      VDecl->setInvalidDecl();
6013      return;
6014    }
6015  }
6016
6017  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6018  // a kernel function cannot be initialized."
6019  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6020    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6021    VDecl->setInvalidDecl();
6022    return;
6023  }
6024
6025  // Capture the variable that is being initialized and the style of
6026  // initialization.
6027  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6028
6029  // FIXME: Poor source location information.
6030  InitializationKind Kind
6031    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
6032                                                   Init->getLocStart(),
6033                                                   Init->getLocEnd())
6034                : InitializationKind::CreateCopy(VDecl->getLocation(),
6035                                                 Init->getLocStart());
6036
6037  // Get the decls type and save a reference for later, since
6038  // CheckInitializerTypes may change it.
6039  QualType DclT = VDecl->getType(), SavT = DclT;
6040  if (VDecl->isLocalVarDecl()) {
6041    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
6042      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6043      VDecl->setInvalidDecl();
6044    } else if (!VDecl->isInvalidDecl()) {
6045      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6046      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6047                                                MultiExprArg(*this, &Init, 1),
6048                                                &DclT);
6049      if (Result.isInvalid()) {
6050        VDecl->setInvalidDecl();
6051        return;
6052      }
6053
6054      Init = Result.takeAs<Expr>();
6055
6056      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6057      // Don't check invalid declarations to avoid emitting useless diagnostics.
6058      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6059        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
6060          CheckForConstantInitializer(Init, DclT);
6061      }
6062    }
6063  } else if (VDecl->isStaticDataMember() &&
6064             VDecl->getLexicalDeclContext()->isRecord()) {
6065    // This is an in-class initialization for a static data member, e.g.,
6066    //
6067    // struct S {
6068    //   static const int value = 17;
6069    // };
6070
6071    // Try to perform the initialization regardless.
6072    if (!VDecl->isInvalidDecl()) {
6073      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6074      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6075                                          MultiExprArg(*this, &Init, 1),
6076                                          &DclT);
6077      if (Result.isInvalid()) {
6078        VDecl->setInvalidDecl();
6079        return;
6080      }
6081
6082      Init = Result.takeAs<Expr>();
6083    }
6084
6085    // C++ [class.mem]p4:
6086    //   A member-declarator can contain a constant-initializer only
6087    //   if it declares a static member (9.4) of const integral or
6088    //   const enumeration type, see 9.4.2.
6089    //
6090    // C++0x [class.static.data]p3:
6091    //   If a non-volatile const static data member is of integral or
6092    //   enumeration type, its declaration in the class definition can
6093    //   specify a brace-or-equal-initializer in which every initalizer-clause
6094    //   that is an assignment-expression is a constant expression. A static
6095    //   data member of literal type can be declared in the class definition
6096    //   with the constexpr specifier; if so, its declaration shall specify a
6097    //   brace-or-equal-initializer in which every initializer-clause that is
6098    //   an assignment-expression is a constant expression.
6099    QualType T = VDecl->getType();
6100
6101    // Do nothing on dependent types.
6102    if (T->isDependentType()) {
6103
6104    // Allow any 'static constexpr' members, whether or not they are of literal
6105    // type. We separately check that the initializer is a constant expression,
6106    // which implicitly requires the member to be of literal type.
6107    } else if (VDecl->isConstexpr()) {
6108
6109    // Require constness.
6110    } else if (!T.isConstQualified()) {
6111      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6112        << Init->getSourceRange();
6113      VDecl->setInvalidDecl();
6114
6115    // We allow integer constant expressions in all cases.
6116    } else if (T->isIntegralOrEnumerationType()) {
6117      // Check whether the expression is a constant expression.
6118      SourceLocation Loc;
6119      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
6120        // In C++0x, a non-constexpr const static data member with an
6121        // in-class initializer cannot be volatile.
6122        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6123      else if (Init->isValueDependent())
6124        ; // Nothing to check.
6125      else if (Init->isIntegerConstantExpr(Context, &Loc))
6126        ; // Ok, it's an ICE!
6127      else if (Init->isEvaluatable(Context)) {
6128        // If we can constant fold the initializer through heroics, accept it,
6129        // but report this as a use of an extension for -pedantic.
6130        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6131          << Init->getSourceRange();
6132      } else {
6133        // Otherwise, this is some crazy unknown case.  Report the issue at the
6134        // location provided by the isIntegerConstantExpr failed check.
6135        Diag(Loc, diag::err_in_class_initializer_non_constant)
6136          << Init->getSourceRange();
6137        VDecl->setInvalidDecl();
6138      }
6139
6140    // We allow floating-point constants as an extension.
6141    } else if (T->isFloatingType()) { // also permits complex, which is ok
6142      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6143        << T << Init->getSourceRange();
6144      if (getLangOptions().CPlusPlus0x)
6145        Diag(VDecl->getLocation(),
6146             diag::note_in_class_initializer_float_type_constexpr)
6147          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6148
6149      if (!Init->isValueDependent() &&
6150          !Init->isConstantInitializer(Context, false)) {
6151        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6152          << Init->getSourceRange();
6153        VDecl->setInvalidDecl();
6154      }
6155
6156    // Suggest adding 'constexpr' in C++0x for literal types.
6157    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6158      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6159        << T << Init->getSourceRange()
6160        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6161      VDecl->setConstexpr(true);
6162
6163    } else {
6164      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6165        << T << Init->getSourceRange();
6166      VDecl->setInvalidDecl();
6167    }
6168  } else if (VDecl->isFileVarDecl()) {
6169    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6170        (!getLangOptions().CPlusPlus ||
6171         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6172      Diag(VDecl->getLocation(), diag::warn_extern_init);
6173    if (!VDecl->isInvalidDecl()) {
6174      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6175      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6176                                                MultiExprArg(*this, &Init, 1),
6177                                                &DclT);
6178      if (Result.isInvalid()) {
6179        VDecl->setInvalidDecl();
6180        return;
6181      }
6182
6183      Init = Result.takeAs<Expr>();
6184    }
6185
6186    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6187    // Don't check invalid declarations to avoid emitting useless diagnostics.
6188    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6189      // C99 6.7.8p4. All file scoped initializers need to be constant.
6190      CheckForConstantInitializer(Init, DclT);
6191    }
6192  }
6193  // If the type changed, it means we had an incomplete type that was
6194  // completed by the initializer. For example:
6195  //   int ary[] = { 1, 3, 5 };
6196  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6197  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6198    VDecl->setType(DclT);
6199    Init->setType(DclT.getNonReferenceType());
6200  }
6201
6202  // Check any implicit conversions within the expression.
6203  CheckImplicitConversions(Init, VDecl->getLocation());
6204
6205  if (!VDecl->isInvalidDecl())
6206    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6207
6208  Init = MaybeCreateExprWithCleanups(Init);
6209  // Attach the initializer to the decl.
6210  VDecl->setInit(Init);
6211
6212  CheckCompleteVariableDeclaration(VDecl);
6213}
6214
6215/// ActOnInitializerError - Given that there was an error parsing an
6216/// initializer for the given declaration, try to return to some form
6217/// of sanity.
6218void Sema::ActOnInitializerError(Decl *D) {
6219  // Our main concern here is re-establishing invariants like "a
6220  // variable's type is either dependent or complete".
6221  if (!D || D->isInvalidDecl()) return;
6222
6223  VarDecl *VD = dyn_cast<VarDecl>(D);
6224  if (!VD) return;
6225
6226  // Auto types are meaningless if we can't make sense of the initializer.
6227  if (ParsingInitForAutoVars.count(D)) {
6228    D->setInvalidDecl();
6229    return;
6230  }
6231
6232  QualType Ty = VD->getType();
6233  if (Ty->isDependentType()) return;
6234
6235  // Require a complete type.
6236  if (RequireCompleteType(VD->getLocation(),
6237                          Context.getBaseElementType(Ty),
6238                          diag::err_typecheck_decl_incomplete_type)) {
6239    VD->setInvalidDecl();
6240    return;
6241  }
6242
6243  // Require an abstract type.
6244  if (RequireNonAbstractType(VD->getLocation(), Ty,
6245                             diag::err_abstract_type_in_decl,
6246                             AbstractVariableType)) {
6247    VD->setInvalidDecl();
6248    return;
6249  }
6250
6251  // Don't bother complaining about constructors or destructors,
6252  // though.
6253}
6254
6255void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6256                                  bool TypeMayContainAuto) {
6257  // If there is no declaration, there was an error parsing it. Just ignore it.
6258  if (RealDecl == 0)
6259    return;
6260
6261  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6262    QualType Type = Var->getType();
6263
6264    // C++0x [dcl.spec.auto]p3
6265    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6266      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6267        << Var->getDeclName() << Type;
6268      Var->setInvalidDecl();
6269      return;
6270    }
6271
6272    // C++0x [class.static.data]p3: A static data member can be declared with
6273    // the constexpr specifier; if so, its declaration shall specify
6274    // a brace-or-equal-initializer.
6275    if (Var->isConstexpr() && Var->isStaticDataMember() &&
6276        !Var->isThisDeclarationADefinition()) {
6277      Diag(Var->getLocation(), diag::err_constexpr_static_mem_var_requires_init)
6278        << Var->getDeclName();
6279      Var->setInvalidDecl();
6280      return;
6281    }
6282
6283    switch (Var->isThisDeclarationADefinition()) {
6284    case VarDecl::Definition:
6285      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6286        break;
6287
6288      // We have an out-of-line definition of a static data member
6289      // that has an in-class initializer, so we type-check this like
6290      // a declaration.
6291      //
6292      // Fall through
6293
6294    case VarDecl::DeclarationOnly:
6295      // It's only a declaration.
6296
6297      // Block scope. C99 6.7p7: If an identifier for an object is
6298      // declared with no linkage (C99 6.2.2p6), the type for the
6299      // object shall be complete.
6300      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6301          !Var->getLinkage() && !Var->isInvalidDecl() &&
6302          RequireCompleteType(Var->getLocation(), Type,
6303                              diag::err_typecheck_decl_incomplete_type))
6304        Var->setInvalidDecl();
6305
6306      // Make sure that the type is not abstract.
6307      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6308          RequireNonAbstractType(Var->getLocation(), Type,
6309                                 diag::err_abstract_type_in_decl,
6310                                 AbstractVariableType))
6311        Var->setInvalidDecl();
6312      return;
6313
6314    case VarDecl::TentativeDefinition:
6315      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6316      // object that has file scope without an initializer, and without a
6317      // storage-class specifier or with the storage-class specifier "static",
6318      // constitutes a tentative definition. Note: A tentative definition with
6319      // external linkage is valid (C99 6.2.2p5).
6320      if (!Var->isInvalidDecl()) {
6321        if (const IncompleteArrayType *ArrayT
6322                                    = Context.getAsIncompleteArrayType(Type)) {
6323          if (RequireCompleteType(Var->getLocation(),
6324                                  ArrayT->getElementType(),
6325                                  diag::err_illegal_decl_array_incomplete_type))
6326            Var->setInvalidDecl();
6327        } else if (Var->getStorageClass() == SC_Static) {
6328          // C99 6.9.2p3: If the declaration of an identifier for an object is
6329          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6330          // declared type shall not be an incomplete type.
6331          // NOTE: code such as the following
6332          //     static struct s;
6333          //     struct s { int a; };
6334          // is accepted by gcc. Hence here we issue a warning instead of
6335          // an error and we do not invalidate the static declaration.
6336          // NOTE: to avoid multiple warnings, only check the first declaration.
6337          if (Var->getPreviousDeclaration() == 0)
6338            RequireCompleteType(Var->getLocation(), Type,
6339                                diag::ext_typecheck_decl_incomplete_type);
6340        }
6341      }
6342
6343      // Record the tentative definition; we're done.
6344      if (!Var->isInvalidDecl())
6345        TentativeDefinitions.push_back(Var);
6346      return;
6347    }
6348
6349    // Provide a specific diagnostic for uninitialized variable
6350    // definitions with incomplete array type.
6351    if (Type->isIncompleteArrayType()) {
6352      Diag(Var->getLocation(),
6353           diag::err_typecheck_incomplete_array_needs_initializer);
6354      Var->setInvalidDecl();
6355      return;
6356    }
6357
6358    // Provide a specific diagnostic for uninitialized variable
6359    // definitions with reference type.
6360    if (Type->isReferenceType()) {
6361      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6362        << Var->getDeclName()
6363        << SourceRange(Var->getLocation(), Var->getLocation());
6364      Var->setInvalidDecl();
6365      return;
6366    }
6367
6368    // Do not attempt to type-check the default initializer for a
6369    // variable with dependent type.
6370    if (Type->isDependentType())
6371      return;
6372
6373    if (Var->isInvalidDecl())
6374      return;
6375
6376    if (RequireCompleteType(Var->getLocation(),
6377                            Context.getBaseElementType(Type),
6378                            diag::err_typecheck_decl_incomplete_type)) {
6379      Var->setInvalidDecl();
6380      return;
6381    }
6382
6383    // The variable can not have an abstract class type.
6384    if (RequireNonAbstractType(Var->getLocation(), Type,
6385                               diag::err_abstract_type_in_decl,
6386                               AbstractVariableType)) {
6387      Var->setInvalidDecl();
6388      return;
6389    }
6390
6391    // Check for jumps past the implicit initializer.  C++0x
6392    // clarifies that this applies to a "variable with automatic
6393    // storage duration", not a "local variable".
6394    // C++11 [stmt.dcl]p3
6395    //   A program that jumps from a point where a variable with automatic
6396    //   storage duration is not in scope to a point where it is in scope is
6397    //   ill-formed unless the variable has scalar type, class type with a
6398    //   trivial default constructor and a trivial destructor, a cv-qualified
6399    //   version of one of these types, or an array of one of the preceding
6400    //   types and is declared without an initializer.
6401    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6402      if (const RecordType *Record
6403            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6404        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6405        // Mark the function for further checking even if the looser rules of
6406        // C++11 do not require such checks, so that we can diagnose
6407        // incompatibilities with C++98.
6408        if (!CXXRecord->isPOD())
6409          getCurFunction()->setHasBranchProtectedScope();
6410      }
6411    }
6412
6413    // C++03 [dcl.init]p9:
6414    //   If no initializer is specified for an object, and the
6415    //   object is of (possibly cv-qualified) non-POD class type (or
6416    //   array thereof), the object shall be default-initialized; if
6417    //   the object is of const-qualified type, the underlying class
6418    //   type shall have a user-declared default
6419    //   constructor. Otherwise, if no initializer is specified for
6420    //   a non- static object, the object and its subobjects, if
6421    //   any, have an indeterminate initial value); if the object
6422    //   or any of its subobjects are of const-qualified type, the
6423    //   program is ill-formed.
6424    // C++0x [dcl.init]p11:
6425    //   If no initializer is specified for an object, the object is
6426    //   default-initialized; [...].
6427    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6428    InitializationKind Kind
6429      = InitializationKind::CreateDefault(Var->getLocation());
6430
6431    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6432    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6433                                      MultiExprArg(*this, 0, 0));
6434    if (Init.isInvalid())
6435      Var->setInvalidDecl();
6436    else if (Init.get())
6437      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6438
6439    CheckCompleteVariableDeclaration(Var);
6440  }
6441}
6442
6443void Sema::ActOnCXXForRangeDecl(Decl *D) {
6444  VarDecl *VD = dyn_cast<VarDecl>(D);
6445  if (!VD) {
6446    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6447    D->setInvalidDecl();
6448    return;
6449  }
6450
6451  VD->setCXXForRangeDecl(true);
6452
6453  // for-range-declaration cannot be given a storage class specifier.
6454  int Error = -1;
6455  switch (VD->getStorageClassAsWritten()) {
6456  case SC_None:
6457    break;
6458  case SC_Extern:
6459    Error = 0;
6460    break;
6461  case SC_Static:
6462    Error = 1;
6463    break;
6464  case SC_PrivateExtern:
6465    Error = 2;
6466    break;
6467  case SC_Auto:
6468    Error = 3;
6469    break;
6470  case SC_Register:
6471    Error = 4;
6472    break;
6473  case SC_OpenCLWorkGroupLocal:
6474    llvm_unreachable("Unexpected storage class");
6475  }
6476  if (VD->isConstexpr())
6477    Error = 5;
6478  if (Error != -1) {
6479    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6480      << VD->getDeclName() << Error;
6481    D->setInvalidDecl();
6482  }
6483}
6484
6485void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6486  if (var->isInvalidDecl()) return;
6487
6488  // In ARC, don't allow jumps past the implicit initialization of a
6489  // local retaining variable.
6490  if (getLangOptions().ObjCAutoRefCount &&
6491      var->hasLocalStorage()) {
6492    switch (var->getType().getObjCLifetime()) {
6493    case Qualifiers::OCL_None:
6494    case Qualifiers::OCL_ExplicitNone:
6495    case Qualifiers::OCL_Autoreleasing:
6496      break;
6497
6498    case Qualifiers::OCL_Weak:
6499    case Qualifiers::OCL_Strong:
6500      getCurFunction()->setHasBranchProtectedScope();
6501      break;
6502    }
6503  }
6504
6505  // All the following checks are C++ only.
6506  if (!getLangOptions().CPlusPlus) return;
6507
6508  QualType baseType = Context.getBaseElementType(var->getType());
6509  if (baseType->isDependentType()) return;
6510
6511  // __block variables might require us to capture a copy-initializer.
6512  if (var->hasAttr<BlocksAttr>()) {
6513    // It's currently invalid to ever have a __block variable with an
6514    // array type; should we diagnose that here?
6515
6516    // Regardless, we don't want to ignore array nesting when
6517    // constructing this copy.
6518    QualType type = var->getType();
6519
6520    if (type->isStructureOrClassType()) {
6521      SourceLocation poi = var->getLocation();
6522      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6523      ExprResult result =
6524        PerformCopyInitialization(
6525                        InitializedEntity::InitializeBlock(poi, type, false),
6526                                  poi, Owned(varRef));
6527      if (!result.isInvalid()) {
6528        result = MaybeCreateExprWithCleanups(result);
6529        Expr *init = result.takeAs<Expr>();
6530        Context.setBlockVarCopyInits(var, init);
6531      }
6532    }
6533  }
6534
6535  Expr *Init = var->getInit();
6536  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6537
6538  if (!var->getDeclContext()->isDependentContext() &&
6539      (var->isConstexpr() || IsGlobal) && Init &&
6540      !Init->isConstantInitializer(Context, baseType->isReferenceType())) {
6541    // FIXME: Improve this diagnostic to explain why the initializer is not
6542    // a constant expression.
6543    if (var->isConstexpr())
6544      Diag(var->getLocation(), diag::err_constexpr_var_requires_const_init)
6545        << var << Init->getSourceRange();
6546    if (IsGlobal)
6547      Diag(var->getLocation(), diag::warn_global_constructor)
6548        << Init->getSourceRange();
6549  }
6550
6551  // Require the destructor.
6552  if (const RecordType *recordType = baseType->getAs<RecordType>())
6553    FinalizeVarWithDestructor(var, recordType);
6554}
6555
6556/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6557/// any semantic actions necessary after any initializer has been attached.
6558void
6559Sema::FinalizeDeclaration(Decl *ThisDecl) {
6560  // Note that we are no longer parsing the initializer for this declaration.
6561  ParsingInitForAutoVars.erase(ThisDecl);
6562}
6563
6564Sema::DeclGroupPtrTy
6565Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6566                              Decl **Group, unsigned NumDecls) {
6567  SmallVector<Decl*, 8> Decls;
6568
6569  if (DS.isTypeSpecOwned())
6570    Decls.push_back(DS.getRepAsDecl());
6571
6572  for (unsigned i = 0; i != NumDecls; ++i)
6573    if (Decl *D = Group[i])
6574      Decls.push_back(D);
6575
6576  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6577                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6578}
6579
6580/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6581/// group, performing any necessary semantic checking.
6582Sema::DeclGroupPtrTy
6583Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6584                           bool TypeMayContainAuto) {
6585  // C++0x [dcl.spec.auto]p7:
6586  //   If the type deduced for the template parameter U is not the same in each
6587  //   deduction, the program is ill-formed.
6588  // FIXME: When initializer-list support is added, a distinction is needed
6589  // between the deduced type U and the deduced type which 'auto' stands for.
6590  //   auto a = 0, b = { 1, 2, 3 };
6591  // is legal because the deduced type U is 'int' in both cases.
6592  if (TypeMayContainAuto && NumDecls > 1) {
6593    QualType Deduced;
6594    CanQualType DeducedCanon;
6595    VarDecl *DeducedDecl = 0;
6596    for (unsigned i = 0; i != NumDecls; ++i) {
6597      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6598        AutoType *AT = D->getType()->getContainedAutoType();
6599        // Don't reissue diagnostics when instantiating a template.
6600        if (AT && D->isInvalidDecl())
6601          break;
6602        if (AT && AT->isDeduced()) {
6603          QualType U = AT->getDeducedType();
6604          CanQualType UCanon = Context.getCanonicalType(U);
6605          if (Deduced.isNull()) {
6606            Deduced = U;
6607            DeducedCanon = UCanon;
6608            DeducedDecl = D;
6609          } else if (DeducedCanon != UCanon) {
6610            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6611                 diag::err_auto_different_deductions)
6612              << Deduced << DeducedDecl->getDeclName()
6613              << U << D->getDeclName()
6614              << DeducedDecl->getInit()->getSourceRange()
6615              << D->getInit()->getSourceRange();
6616            D->setInvalidDecl();
6617            break;
6618          }
6619        }
6620      }
6621    }
6622  }
6623
6624  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6625}
6626
6627
6628/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6629/// to introduce parameters into function prototype scope.
6630Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6631  const DeclSpec &DS = D.getDeclSpec();
6632
6633  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6634  // C++03 [dcl.stc]p2 also permits 'auto'.
6635  VarDecl::StorageClass StorageClass = SC_None;
6636  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6637  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6638    StorageClass = SC_Register;
6639    StorageClassAsWritten = SC_Register;
6640  } else if (getLangOptions().CPlusPlus &&
6641             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6642    StorageClass = SC_Auto;
6643    StorageClassAsWritten = SC_Auto;
6644  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6645    Diag(DS.getStorageClassSpecLoc(),
6646         diag::err_invalid_storage_class_in_func_decl);
6647    D.getMutableDeclSpec().ClearStorageClassSpecs();
6648  }
6649
6650  if (D.getDeclSpec().isThreadSpecified())
6651    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6652  if (D.getDeclSpec().isConstexprSpecified())
6653    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6654      << 0;
6655
6656  DiagnoseFunctionSpecifiers(D);
6657
6658  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6659  QualType parmDeclType = TInfo->getType();
6660
6661  if (getLangOptions().CPlusPlus) {
6662    // Check that there are no default arguments inside the type of this
6663    // parameter.
6664    CheckExtraCXXDefaultArguments(D);
6665
6666    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6667    if (D.getCXXScopeSpec().isSet()) {
6668      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6669        << D.getCXXScopeSpec().getRange();
6670      D.getCXXScopeSpec().clear();
6671    }
6672  }
6673
6674  // Ensure we have a valid name
6675  IdentifierInfo *II = 0;
6676  if (D.hasName()) {
6677    II = D.getIdentifier();
6678    if (!II) {
6679      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6680        << GetNameForDeclarator(D).getName().getAsString();
6681      D.setInvalidType(true);
6682    }
6683  }
6684
6685  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6686  if (II) {
6687    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6688                   ForRedeclaration);
6689    LookupName(R, S);
6690    if (R.isSingleResult()) {
6691      NamedDecl *PrevDecl = R.getFoundDecl();
6692      if (PrevDecl->isTemplateParameter()) {
6693        // Maybe we will complain about the shadowed template parameter.
6694        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6695        // Just pretend that we didn't see the previous declaration.
6696        PrevDecl = 0;
6697      } else if (S->isDeclScope(PrevDecl)) {
6698        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6699        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6700
6701        // Recover by removing the name
6702        II = 0;
6703        D.SetIdentifier(0, D.getIdentifierLoc());
6704        D.setInvalidType(true);
6705      }
6706    }
6707  }
6708
6709  // Temporarily put parameter variables in the translation unit, not
6710  // the enclosing context.  This prevents them from accidentally
6711  // looking like class members in C++.
6712  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6713                                    D.getSourceRange().getBegin(),
6714                                    D.getIdentifierLoc(), II,
6715                                    parmDeclType, TInfo,
6716                                    StorageClass, StorageClassAsWritten);
6717
6718  if (D.isInvalidType())
6719    New->setInvalidDecl();
6720
6721  assert(S->isFunctionPrototypeScope());
6722  assert(S->getFunctionPrototypeDepth() >= 1);
6723  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6724                    S->getNextFunctionPrototypeIndex());
6725
6726  // Add the parameter declaration into this scope.
6727  S->AddDecl(New);
6728  if (II)
6729    IdResolver.AddDecl(New);
6730
6731  ProcessDeclAttributes(S, New, D);
6732
6733  if (D.getDeclSpec().isModulePrivateSpecified())
6734    Diag(New->getLocation(), diag::err_module_private_local)
6735      << 1 << New->getDeclName()
6736      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6737      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6738
6739  if (New->hasAttr<BlocksAttr>()) {
6740    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6741  }
6742  return New;
6743}
6744
6745/// \brief Synthesizes a variable for a parameter arising from a
6746/// typedef.
6747ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6748                                              SourceLocation Loc,
6749                                              QualType T) {
6750  /* FIXME: setting StartLoc == Loc.
6751     Would it be worth to modify callers so as to provide proper source
6752     location for the unnamed parameters, embedding the parameter's type? */
6753  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6754                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6755                                           SC_None, SC_None, 0);
6756  Param->setImplicit();
6757  return Param;
6758}
6759
6760void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6761                                    ParmVarDecl * const *ParamEnd) {
6762  // Don't diagnose unused-parameter errors in template instantiations; we
6763  // will already have done so in the template itself.
6764  if (!ActiveTemplateInstantiations.empty())
6765    return;
6766
6767  for (; Param != ParamEnd; ++Param) {
6768    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6769        !(*Param)->hasAttr<UnusedAttr>()) {
6770      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6771        << (*Param)->getDeclName();
6772    }
6773  }
6774}
6775
6776void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6777                                                  ParmVarDecl * const *ParamEnd,
6778                                                  QualType ReturnTy,
6779                                                  NamedDecl *D) {
6780  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6781    return;
6782
6783  // Warn if the return value is pass-by-value and larger than the specified
6784  // threshold.
6785  if (ReturnTy.isPODType(Context)) {
6786    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6787    if (Size > LangOpts.NumLargeByValueCopy)
6788      Diag(D->getLocation(), diag::warn_return_value_size)
6789          << D->getDeclName() << Size;
6790  }
6791
6792  // Warn if any parameter is pass-by-value and larger than the specified
6793  // threshold.
6794  for (; Param != ParamEnd; ++Param) {
6795    QualType T = (*Param)->getType();
6796    if (!T.isPODType(Context))
6797      continue;
6798    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6799    if (Size > LangOpts.NumLargeByValueCopy)
6800      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6801          << (*Param)->getDeclName() << Size;
6802  }
6803}
6804
6805ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6806                                  SourceLocation NameLoc, IdentifierInfo *Name,
6807                                  QualType T, TypeSourceInfo *TSInfo,
6808                                  VarDecl::StorageClass StorageClass,
6809                                  VarDecl::StorageClass StorageClassAsWritten) {
6810  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6811  if (getLangOptions().ObjCAutoRefCount &&
6812      T.getObjCLifetime() == Qualifiers::OCL_None &&
6813      T->isObjCLifetimeType()) {
6814
6815    Qualifiers::ObjCLifetime lifetime;
6816
6817    // Special cases for arrays:
6818    //   - if it's const, use __unsafe_unretained
6819    //   - otherwise, it's an error
6820    if (T->isArrayType()) {
6821      if (!T.isConstQualified()) {
6822        DelayedDiagnostics.add(
6823            sema::DelayedDiagnostic::makeForbiddenType(
6824            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6825      }
6826      lifetime = Qualifiers::OCL_ExplicitNone;
6827    } else {
6828      lifetime = T->getObjCARCImplicitLifetime();
6829    }
6830    T = Context.getLifetimeQualifiedType(T, lifetime);
6831  }
6832
6833  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6834                                         Context.getAdjustedParameterType(T),
6835                                         TSInfo,
6836                                         StorageClass, StorageClassAsWritten,
6837                                         0);
6838
6839  // Parameters can not be abstract class types.
6840  // For record types, this is done by the AbstractClassUsageDiagnoser once
6841  // the class has been completely parsed.
6842  if (!CurContext->isRecord() &&
6843      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6844                             AbstractParamType))
6845    New->setInvalidDecl();
6846
6847  // Parameter declarators cannot be interface types. All ObjC objects are
6848  // passed by reference.
6849  if (T->isObjCObjectType()) {
6850    Diag(NameLoc,
6851         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6852      << FixItHint::CreateInsertion(NameLoc, "*");
6853    T = Context.getObjCObjectPointerType(T);
6854    New->setType(T);
6855  }
6856
6857  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6858  // duration shall not be qualified by an address-space qualifier."
6859  // Since all parameters have automatic store duration, they can not have
6860  // an address space.
6861  if (T.getAddressSpace() != 0) {
6862    Diag(NameLoc, diag::err_arg_with_address_space);
6863    New->setInvalidDecl();
6864  }
6865
6866  return New;
6867}
6868
6869void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6870                                           SourceLocation LocAfterDecls) {
6871  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6872
6873  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6874  // for a K&R function.
6875  if (!FTI.hasPrototype) {
6876    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6877      --i;
6878      if (FTI.ArgInfo[i].Param == 0) {
6879        llvm::SmallString<256> Code;
6880        llvm::raw_svector_ostream(Code) << "  int "
6881                                        << FTI.ArgInfo[i].Ident->getName()
6882                                        << ";\n";
6883        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6884          << FTI.ArgInfo[i].Ident
6885          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6886
6887        // Implicitly declare the argument as type 'int' for lack of a better
6888        // type.
6889        AttributeFactory attrs;
6890        DeclSpec DS(attrs);
6891        const char* PrevSpec; // unused
6892        unsigned DiagID; // unused
6893        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6894                           PrevSpec, DiagID);
6895        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6896        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6897        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6898      }
6899    }
6900  }
6901}
6902
6903Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6904                                         Declarator &D) {
6905  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6906  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6907  Scope *ParentScope = FnBodyScope->getParent();
6908
6909  D.setFunctionDefinitionKind(FDK_Definition);
6910  Decl *DP = HandleDeclarator(ParentScope, D,
6911                              MultiTemplateParamsArg(*this));
6912  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6913}
6914
6915static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6916  // Don't warn about invalid declarations.
6917  if (FD->isInvalidDecl())
6918    return false;
6919
6920  // Or declarations that aren't global.
6921  if (!FD->isGlobal())
6922    return false;
6923
6924  // Don't warn about C++ member functions.
6925  if (isa<CXXMethodDecl>(FD))
6926    return false;
6927
6928  // Don't warn about 'main'.
6929  if (FD->isMain())
6930    return false;
6931
6932  // Don't warn about inline functions.
6933  if (FD->isInlined())
6934    return false;
6935
6936  // Don't warn about function templates.
6937  if (FD->getDescribedFunctionTemplate())
6938    return false;
6939
6940  // Don't warn about function template specializations.
6941  if (FD->isFunctionTemplateSpecialization())
6942    return false;
6943
6944  bool MissingPrototype = true;
6945  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6946       Prev; Prev = Prev->getPreviousDeclaration()) {
6947    // Ignore any declarations that occur in function or method
6948    // scope, because they aren't visible from the header.
6949    if (Prev->getDeclContext()->isFunctionOrMethod())
6950      continue;
6951
6952    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6953    break;
6954  }
6955
6956  return MissingPrototype;
6957}
6958
6959void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6960  // Don't complain if we're in GNU89 mode and the previous definition
6961  // was an extern inline function.
6962  const FunctionDecl *Definition;
6963  if (FD->isDefined(Definition) &&
6964      !canRedefineFunction(Definition, getLangOptions())) {
6965    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6966        Definition->getStorageClass() == SC_Extern)
6967      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6968        << FD->getDeclName() << getLangOptions().CPlusPlus;
6969    else
6970      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6971    Diag(Definition->getLocation(), diag::note_previous_definition);
6972  }
6973}
6974
6975Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6976  // Clear the last template instantiation error context.
6977  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6978
6979  if (!D)
6980    return D;
6981  FunctionDecl *FD = 0;
6982
6983  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6984    FD = FunTmpl->getTemplatedDecl();
6985  else
6986    FD = cast<FunctionDecl>(D);
6987
6988  // Enter a new function scope
6989  PushFunctionScope();
6990
6991  // See if this is a redefinition.
6992  if (!FD->isLateTemplateParsed())
6993    CheckForFunctionRedefinition(FD);
6994
6995  // Builtin functions cannot be defined.
6996  if (unsigned BuiltinID = FD->getBuiltinID()) {
6997    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6998      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6999      FD->setInvalidDecl();
7000    }
7001  }
7002
7003  // The return type of a function definition must be complete
7004  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7005  QualType ResultType = FD->getResultType();
7006  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7007      !FD->isInvalidDecl() &&
7008      RequireCompleteType(FD->getLocation(), ResultType,
7009                          diag::err_func_def_incomplete_result))
7010    FD->setInvalidDecl();
7011
7012  // GNU warning -Wmissing-prototypes:
7013  //   Warn if a global function is defined without a previous
7014  //   prototype declaration. This warning is issued even if the
7015  //   definition itself provides a prototype. The aim is to detect
7016  //   global functions that fail to be declared in header files.
7017  if (ShouldWarnAboutMissingPrototype(FD))
7018    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7019
7020  if (FnBodyScope)
7021    PushDeclContext(FnBodyScope, FD);
7022
7023  // Check the validity of our function parameters
7024  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7025                           /*CheckParameterNames=*/true);
7026
7027  // Introduce our parameters into the function scope
7028  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7029    ParmVarDecl *Param = FD->getParamDecl(p);
7030    Param->setOwningFunction(FD);
7031
7032    // If this has an identifier, add it to the scope stack.
7033    if (Param->getIdentifier() && FnBodyScope) {
7034      CheckShadow(FnBodyScope, Param);
7035
7036      PushOnScopeChains(Param, FnBodyScope);
7037    }
7038  }
7039
7040  // Checking attributes of current function definition
7041  // dllimport attribute.
7042  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7043  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7044    // dllimport attribute cannot be directly applied to definition.
7045    // Microsoft accepts dllimport for functions defined within class scope.
7046    if (!DA->isInherited() &&
7047        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7048      Diag(FD->getLocation(),
7049           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7050        << "dllimport";
7051      FD->setInvalidDecl();
7052      return FD;
7053    }
7054
7055    // Visual C++ appears to not think this is an issue, so only issue
7056    // a warning when Microsoft extensions are disabled.
7057    if (!LangOpts.MicrosoftExt) {
7058      // If a symbol previously declared dllimport is later defined, the
7059      // attribute is ignored in subsequent references, and a warning is
7060      // emitted.
7061      Diag(FD->getLocation(),
7062           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7063        << FD->getName() << "dllimport";
7064    }
7065  }
7066  return FD;
7067}
7068
7069/// \brief Given the set of return statements within a function body,
7070/// compute the variables that are subject to the named return value
7071/// optimization.
7072///
7073/// Each of the variables that is subject to the named return value
7074/// optimization will be marked as NRVO variables in the AST, and any
7075/// return statement that has a marked NRVO variable as its NRVO candidate can
7076/// use the named return value optimization.
7077///
7078/// This function applies a very simplistic algorithm for NRVO: if every return
7079/// statement in the function has the same NRVO candidate, that candidate is
7080/// the NRVO variable.
7081///
7082/// FIXME: Employ a smarter algorithm that accounts for multiple return
7083/// statements and the lifetimes of the NRVO candidates. We should be able to
7084/// find a maximal set of NRVO variables.
7085void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7086  ReturnStmt **Returns = Scope->Returns.data();
7087
7088  const VarDecl *NRVOCandidate = 0;
7089  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7090    if (!Returns[I]->getNRVOCandidate())
7091      return;
7092
7093    if (!NRVOCandidate)
7094      NRVOCandidate = Returns[I]->getNRVOCandidate();
7095    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7096      return;
7097  }
7098
7099  if (NRVOCandidate)
7100    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7101}
7102
7103Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7104  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7105}
7106
7107Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7108                                    bool IsInstantiation) {
7109  FunctionDecl *FD = 0;
7110  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7111  if (FunTmpl)
7112    FD = FunTmpl->getTemplatedDecl();
7113  else
7114    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7115
7116  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7117  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7118
7119  if (FD) {
7120    FD->setBody(Body);
7121    if (FD->isMain()) {
7122      // C and C++ allow for main to automagically return 0.
7123      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7124      FD->setHasImplicitReturnZero(true);
7125      WP.disableCheckFallThrough();
7126    } else if (FD->hasAttr<NakedAttr>()) {
7127      // If the function is marked 'naked', don't complain about missing return
7128      // statements.
7129      WP.disableCheckFallThrough();
7130    }
7131
7132    // MSVC permits the use of pure specifier (=0) on function definition,
7133    // defined at class scope, warn about this non standard construct.
7134    if (getLangOptions().MicrosoftExt && FD->isPure())
7135      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7136
7137    if (!FD->isInvalidDecl()) {
7138      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7139      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7140                                             FD->getResultType(), FD);
7141
7142      // If this is a constructor, we need a vtable.
7143      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7144        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7145
7146      computeNRVO(Body, getCurFunction());
7147    }
7148
7149    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7150  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7151    assert(MD == getCurMethodDecl() && "Method parsing confused");
7152    MD->setBody(Body);
7153    if (Body)
7154      MD->setEndLoc(Body->getLocEnd());
7155    if (!MD->isInvalidDecl()) {
7156      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7157      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7158                                             MD->getResultType(), MD);
7159
7160      if (Body)
7161        computeNRVO(Body, getCurFunction());
7162    }
7163    if (ObjCShouldCallSuperDealloc) {
7164      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7165      ObjCShouldCallSuperDealloc = false;
7166    }
7167    if (ObjCShouldCallSuperFinalize) {
7168      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7169      ObjCShouldCallSuperFinalize = false;
7170    }
7171  } else {
7172    return 0;
7173  }
7174
7175  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7176         "ObjC methods, which should have been handled in the block above.");
7177  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7178         "ObjC methods, which should have been handled in the block above.");
7179
7180  // Verify and clean out per-function state.
7181  if (Body) {
7182    // C++ constructors that have function-try-blocks can't have return
7183    // statements in the handlers of that block. (C++ [except.handle]p14)
7184    // Verify this.
7185    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7186      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7187
7188    // Verify that gotos and switch cases don't jump into scopes illegally.
7189    if (getCurFunction()->NeedsScopeChecking() &&
7190        !dcl->isInvalidDecl() &&
7191        !hasAnyUnrecoverableErrorsInThisFunction())
7192      DiagnoseInvalidJumps(Body);
7193
7194    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7195      if (!Destructor->getParent()->isDependentType())
7196        CheckDestructor(Destructor);
7197
7198      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7199                                             Destructor->getParent());
7200    }
7201
7202    // If any errors have occurred, clear out any temporaries that may have
7203    // been leftover. This ensures that these temporaries won't be picked up for
7204    // deletion in some later function.
7205    if (PP.getDiagnostics().hasErrorOccurred() ||
7206        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7207      DiscardCleanupsInEvaluationContext();
7208    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7209      // Since the body is valid, issue any analysis-based warnings that are
7210      // enabled.
7211      ActivePolicy = &WP;
7212    }
7213
7214    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7215        !CheckConstexprFunctionBody(FD, Body))
7216      FD->setInvalidDecl();
7217
7218    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7219    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7220  }
7221
7222  if (!IsInstantiation)
7223    PopDeclContext();
7224
7225  PopFunctionOrBlockScope(ActivePolicy, dcl);
7226
7227  // If any errors have occurred, clear out any temporaries that may have
7228  // been leftover. This ensures that these temporaries won't be picked up for
7229  // deletion in some later function.
7230  if (getDiagnostics().hasErrorOccurred()) {
7231    DiscardCleanupsInEvaluationContext();
7232  }
7233
7234  return dcl;
7235}
7236
7237
7238/// When we finish delayed parsing of an attribute, we must attach it to the
7239/// relevant Decl.
7240void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7241                                       ParsedAttributes &Attrs) {
7242  ProcessDeclAttributeList(S, D, Attrs.getList());
7243}
7244
7245
7246/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7247/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7248NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7249                                          IdentifierInfo &II, Scope *S) {
7250  // Before we produce a declaration for an implicitly defined
7251  // function, see whether there was a locally-scoped declaration of
7252  // this name as a function or variable. If so, use that
7253  // (non-visible) declaration, and complain about it.
7254  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7255    = findLocallyScopedExternalDecl(&II);
7256  if (Pos != LocallyScopedExternalDecls.end()) {
7257    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7258    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7259    return Pos->second;
7260  }
7261
7262  // See if we can find a typo correction.
7263  TypoCorrection Corrected;
7264  FunctionDecl *Func = 0;
7265  std::string CorrectedStr;
7266  std::string CorrectedQuotedStr;
7267  if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7268                                    LookupOrdinaryName, S, 0))) {
7269    // Since this is an implicit function declaration, we are only
7270    // interested in a potential typo for a function name.
7271    if ((Func = dyn_cast_or_null<FunctionDecl>(
7272            Corrected.getCorrectionDecl()))) {
7273      CorrectedStr = Corrected.getAsString(getLangOptions());
7274      CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7275    }
7276  }
7277
7278  // Extension in C99.  Legal in C90, but warn about it.
7279  if (II.getName().startswith("__builtin_"))
7280    Diag(Loc, diag::err_builtin_unknown) << &II;
7281  else if (getLangOptions().C99)
7282    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7283  else
7284    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7285
7286  if (Func) {
7287    // If we found a typo correction, then suggest that.
7288    Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7289        << FixItHint::CreateReplacement(Loc, CorrectedStr);
7290    if (Func->getLocation().isValid() && !II.getName().startswith("__builtin_"))
7291      Diag(Func->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
7292  }
7293
7294  // Set a Declarator for the implicit definition: int foo();
7295  const char *Dummy;
7296  AttributeFactory attrFactory;
7297  DeclSpec DS(attrFactory);
7298  unsigned DiagID;
7299  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7300  (void)Error; // Silence warning.
7301  assert(!Error && "Error setting up implicit decl!");
7302  Declarator D(DS, Declarator::BlockContext);
7303  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7304                                             0, 0, true, SourceLocation(),
7305                                             SourceLocation(), SourceLocation(),
7306                                             SourceLocation(),
7307                                             EST_None, SourceLocation(),
7308                                             0, 0, 0, 0, Loc, Loc, D),
7309                DS.getAttributes(),
7310                SourceLocation());
7311  D.SetIdentifier(&II, Loc);
7312
7313  // Insert this function into translation-unit scope.
7314
7315  DeclContext *PrevDC = CurContext;
7316  CurContext = Context.getTranslationUnitDecl();
7317
7318  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7319  FD->setImplicit();
7320
7321  CurContext = PrevDC;
7322
7323  AddKnownFunctionAttributes(FD);
7324
7325  return FD;
7326}
7327
7328/// \brief Adds any function attributes that we know a priori based on
7329/// the declaration of this function.
7330///
7331/// These attributes can apply both to implicitly-declared builtins
7332/// (like __builtin___printf_chk) or to library-declared functions
7333/// like NSLog or printf.
7334///
7335/// We need to check for duplicate attributes both here and where user-written
7336/// attributes are applied to declarations.
7337void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7338  if (FD->isInvalidDecl())
7339    return;
7340
7341  // If this is a built-in function, map its builtin attributes to
7342  // actual attributes.
7343  if (unsigned BuiltinID = FD->getBuiltinID()) {
7344    // Handle printf-formatting attributes.
7345    unsigned FormatIdx;
7346    bool HasVAListArg;
7347    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7348      if (!FD->getAttr<FormatAttr>())
7349        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7350                                                "printf", FormatIdx+1,
7351                                               HasVAListArg ? 0 : FormatIdx+2));
7352    }
7353    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7354                                             HasVAListArg)) {
7355     if (!FD->getAttr<FormatAttr>())
7356       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7357                                              "scanf", FormatIdx+1,
7358                                              HasVAListArg ? 0 : FormatIdx+2));
7359    }
7360
7361    // Mark const if we don't care about errno and that is the only
7362    // thing preventing the function from being const. This allows
7363    // IRgen to use LLVM intrinsics for such functions.
7364    if (!getLangOptions().MathErrno &&
7365        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7366      if (!FD->getAttr<ConstAttr>())
7367        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7368    }
7369
7370    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7371        !FD->getAttr<ReturnsTwiceAttr>())
7372      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7373    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7374      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7375    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7376      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7377  }
7378
7379  IdentifierInfo *Name = FD->getIdentifier();
7380  if (!Name)
7381    return;
7382  if ((!getLangOptions().CPlusPlus &&
7383       FD->getDeclContext()->isTranslationUnit()) ||
7384      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7385       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7386       LinkageSpecDecl::lang_c)) {
7387    // Okay: this could be a libc/libm/Objective-C function we know
7388    // about.
7389  } else
7390    return;
7391
7392  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7393    // FIXME: NSLog and NSLogv should be target specific
7394    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7395      // FIXME: We known better than our headers.
7396      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7397    } else
7398      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7399                                             "printf", 1,
7400                                             Name->isStr("NSLogv") ? 0 : 2));
7401  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7402    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7403    // target-specific builtins, perhaps?
7404    if (!FD->getAttr<FormatAttr>())
7405      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7406                                             "printf", 2,
7407                                             Name->isStr("vasprintf") ? 0 : 3));
7408  }
7409}
7410
7411TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7412                                    TypeSourceInfo *TInfo) {
7413  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7414  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7415
7416  if (!TInfo) {
7417    assert(D.isInvalidType() && "no declarator info for valid type");
7418    TInfo = Context.getTrivialTypeSourceInfo(T);
7419  }
7420
7421  // Scope manipulation handled by caller.
7422  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7423                                           D.getSourceRange().getBegin(),
7424                                           D.getIdentifierLoc(),
7425                                           D.getIdentifier(),
7426                                           TInfo);
7427
7428  // Bail out immediately if we have an invalid declaration.
7429  if (D.isInvalidType()) {
7430    NewTD->setInvalidDecl();
7431    return NewTD;
7432  }
7433
7434  if (D.getDeclSpec().isModulePrivateSpecified()) {
7435    if (CurContext->isFunctionOrMethod())
7436      Diag(NewTD->getLocation(), diag::err_module_private_local)
7437        << 2 << NewTD->getDeclName()
7438        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7439        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7440    else
7441      NewTD->setModulePrivate();
7442  }
7443
7444  // C++ [dcl.typedef]p8:
7445  //   If the typedef declaration defines an unnamed class (or
7446  //   enum), the first typedef-name declared by the declaration
7447  //   to be that class type (or enum type) is used to denote the
7448  //   class type (or enum type) for linkage purposes only.
7449  // We need to check whether the type was declared in the declaration.
7450  switch (D.getDeclSpec().getTypeSpecType()) {
7451  case TST_enum:
7452  case TST_struct:
7453  case TST_union:
7454  case TST_class: {
7455    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7456
7457    // Do nothing if the tag is not anonymous or already has an
7458    // associated typedef (from an earlier typedef in this decl group).
7459    if (tagFromDeclSpec->getIdentifier()) break;
7460    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7461
7462    // A well-formed anonymous tag must always be a TUK_Definition.
7463    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7464
7465    // The type must match the tag exactly;  no qualifiers allowed.
7466    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7467      break;
7468
7469    // Otherwise, set this is the anon-decl typedef for the tag.
7470    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7471    break;
7472  }
7473
7474  default:
7475    break;
7476  }
7477
7478  return NewTD;
7479}
7480
7481
7482/// \brief Determine whether a tag with a given kind is acceptable
7483/// as a redeclaration of the given tag declaration.
7484///
7485/// \returns true if the new tag kind is acceptable, false otherwise.
7486bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7487                                        TagTypeKind NewTag, bool isDefinition,
7488                                        SourceLocation NewTagLoc,
7489                                        const IdentifierInfo &Name) {
7490  // C++ [dcl.type.elab]p3:
7491  //   The class-key or enum keyword present in the
7492  //   elaborated-type-specifier shall agree in kind with the
7493  //   declaration to which the name in the elaborated-type-specifier
7494  //   refers. This rule also applies to the form of
7495  //   elaborated-type-specifier that declares a class-name or
7496  //   friend class since it can be construed as referring to the
7497  //   definition of the class. Thus, in any
7498  //   elaborated-type-specifier, the enum keyword shall be used to
7499  //   refer to an enumeration (7.2), the union class-key shall be
7500  //   used to refer to a union (clause 9), and either the class or
7501  //   struct class-key shall be used to refer to a class (clause 9)
7502  //   declared using the class or struct class-key.
7503  TagTypeKind OldTag = Previous->getTagKind();
7504  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7505    if (OldTag == NewTag)
7506      return true;
7507
7508  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7509      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7510    // Warn about the struct/class tag mismatch.
7511    bool isTemplate = false;
7512    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7513      isTemplate = Record->getDescribedClassTemplate();
7514
7515    if (!ActiveTemplateInstantiations.empty()) {
7516      // In a template instantiation, do not offer fix-its for tag mismatches
7517      // since they usually mess up the template instead of fixing the problem.
7518      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7519        << (NewTag == TTK_Class) << isTemplate << &Name;
7520      return true;
7521    }
7522
7523    if (isDefinition) {
7524      // On definitions, check previous tags and issue a fix-it for each
7525      // one that doesn't match the current tag.
7526      if (Previous->getDefinition()) {
7527        // Don't suggest fix-its for redefinitions.
7528        return true;
7529      }
7530
7531      bool previousMismatch = false;
7532      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7533           E(Previous->redecls_end()); I != E; ++I) {
7534        if (I->getTagKind() != NewTag) {
7535          if (!previousMismatch) {
7536            previousMismatch = true;
7537            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7538              << (NewTag == TTK_Class) << isTemplate << &Name;
7539          }
7540          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7541            << (NewTag == TTK_Class)
7542            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7543                                            NewTag == TTK_Class?
7544                                            "class" : "struct");
7545        }
7546      }
7547      return true;
7548    }
7549
7550    // Check for a previous definition.  If current tag and definition
7551    // are same type, do nothing.  If no definition, but disagree with
7552    // with previous tag type, give a warning, but no fix-it.
7553    const TagDecl *Redecl = Previous->getDefinition() ?
7554                            Previous->getDefinition() : Previous;
7555    if (Redecl->getTagKind() == NewTag) {
7556      return true;
7557    }
7558
7559    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7560      << (NewTag == TTK_Class)
7561      << isTemplate << &Name;
7562    Diag(Redecl->getLocation(), diag::note_previous_use);
7563
7564    // If there is a previous defintion, suggest a fix-it.
7565    if (Previous->getDefinition()) {
7566        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7567          << (Redecl->getTagKind() == TTK_Class)
7568          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7569                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7570    }
7571
7572    return true;
7573  }
7574  return false;
7575}
7576
7577/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7578/// former case, Name will be non-null.  In the later case, Name will be null.
7579/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7580/// reference/declaration/definition of a tag.
7581Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7582                     SourceLocation KWLoc, CXXScopeSpec &SS,
7583                     IdentifierInfo *Name, SourceLocation NameLoc,
7584                     AttributeList *Attr, AccessSpecifier AS,
7585                     SourceLocation ModulePrivateLoc,
7586                     MultiTemplateParamsArg TemplateParameterLists,
7587                     bool &OwnedDecl, bool &IsDependent,
7588                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7589                     TypeResult UnderlyingType) {
7590  // If this is not a definition, it must have a name.
7591  assert((Name != 0 || TUK == TUK_Definition) &&
7592         "Nameless record must be a definition!");
7593  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7594
7595  OwnedDecl = false;
7596  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7597
7598  // FIXME: Check explicit specializations more carefully.
7599  bool isExplicitSpecialization = false;
7600  bool Invalid = false;
7601
7602  // We only need to do this matching if we have template parameters
7603  // or a scope specifier, which also conveniently avoids this work
7604  // for non-C++ cases.
7605  if (TemplateParameterLists.size() > 0 ||
7606      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7607    if (TemplateParameterList *TemplateParams
7608          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7609                                                TemplateParameterLists.get(),
7610                                                TemplateParameterLists.size(),
7611                                                    TUK == TUK_Friend,
7612                                                    isExplicitSpecialization,
7613                                                    Invalid)) {
7614      if (TemplateParams->size() > 0) {
7615        // This is a declaration or definition of a class template (which may
7616        // be a member of another template).
7617
7618        if (Invalid)
7619          return 0;
7620
7621        OwnedDecl = false;
7622        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7623                                               SS, Name, NameLoc, Attr,
7624                                               TemplateParams, AS,
7625                                               ModulePrivateLoc,
7626                                           TemplateParameterLists.size() - 1,
7627                 (TemplateParameterList**) TemplateParameterLists.release());
7628        return Result.get();
7629      } else {
7630        // The "template<>" header is extraneous.
7631        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7632          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7633        isExplicitSpecialization = true;
7634      }
7635    }
7636  }
7637
7638  // Figure out the underlying type if this a enum declaration. We need to do
7639  // this early, because it's needed to detect if this is an incompatible
7640  // redeclaration.
7641  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7642
7643  if (Kind == TTK_Enum) {
7644    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7645      // No underlying type explicitly specified, or we failed to parse the
7646      // type, default to int.
7647      EnumUnderlying = Context.IntTy.getTypePtr();
7648    else if (UnderlyingType.get()) {
7649      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7650      // integral type; any cv-qualification is ignored.
7651      TypeSourceInfo *TI = 0;
7652      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7653      EnumUnderlying = TI;
7654
7655      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7656
7657      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7658        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7659          << T;
7660        // Recover by falling back to int.
7661        EnumUnderlying = Context.IntTy.getTypePtr();
7662      }
7663
7664      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7665                                          UPPC_FixedUnderlyingType))
7666        EnumUnderlying = Context.IntTy.getTypePtr();
7667
7668    } else if (getLangOptions().MicrosoftExt)
7669      // Microsoft enums are always of int type.
7670      EnumUnderlying = Context.IntTy.getTypePtr();
7671  }
7672
7673  DeclContext *SearchDC = CurContext;
7674  DeclContext *DC = CurContext;
7675  bool isStdBadAlloc = false;
7676
7677  RedeclarationKind Redecl = ForRedeclaration;
7678  if (TUK == TUK_Friend || TUK == TUK_Reference)
7679    Redecl = NotForRedeclaration;
7680
7681  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7682
7683  if (Name && SS.isNotEmpty()) {
7684    // We have a nested-name tag ('struct foo::bar').
7685
7686    // Check for invalid 'foo::'.
7687    if (SS.isInvalid()) {
7688      Name = 0;
7689      goto CreateNewDecl;
7690    }
7691
7692    // If this is a friend or a reference to a class in a dependent
7693    // context, don't try to make a decl for it.
7694    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7695      DC = computeDeclContext(SS, false);
7696      if (!DC) {
7697        IsDependent = true;
7698        return 0;
7699      }
7700    } else {
7701      DC = computeDeclContext(SS, true);
7702      if (!DC) {
7703        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7704          << SS.getRange();
7705        return 0;
7706      }
7707    }
7708
7709    if (RequireCompleteDeclContext(SS, DC))
7710      return 0;
7711
7712    SearchDC = DC;
7713    // Look-up name inside 'foo::'.
7714    LookupQualifiedName(Previous, DC);
7715
7716    if (Previous.isAmbiguous())
7717      return 0;
7718
7719    if (Previous.empty()) {
7720      // Name lookup did not find anything. However, if the
7721      // nested-name-specifier refers to the current instantiation,
7722      // and that current instantiation has any dependent base
7723      // classes, we might find something at instantiation time: treat
7724      // this as a dependent elaborated-type-specifier.
7725      // But this only makes any sense for reference-like lookups.
7726      if (Previous.wasNotFoundInCurrentInstantiation() &&
7727          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7728        IsDependent = true;
7729        return 0;
7730      }
7731
7732      // A tag 'foo::bar' must already exist.
7733      Diag(NameLoc, diag::err_not_tag_in_scope)
7734        << Kind << Name << DC << SS.getRange();
7735      Name = 0;
7736      Invalid = true;
7737      goto CreateNewDecl;
7738    }
7739  } else if (Name) {
7740    // If this is a named struct, check to see if there was a previous forward
7741    // declaration or definition.
7742    // FIXME: We're looking into outer scopes here, even when we
7743    // shouldn't be. Doing so can result in ambiguities that we
7744    // shouldn't be diagnosing.
7745    LookupName(Previous, S);
7746
7747    if (Previous.isAmbiguous() &&
7748        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7749      LookupResult::Filter F = Previous.makeFilter();
7750      while (F.hasNext()) {
7751        NamedDecl *ND = F.next();
7752        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7753          F.erase();
7754      }
7755      F.done();
7756    }
7757
7758    // Note:  there used to be some attempt at recovery here.
7759    if (Previous.isAmbiguous())
7760      return 0;
7761
7762    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7763      // FIXME: This makes sure that we ignore the contexts associated
7764      // with C structs, unions, and enums when looking for a matching
7765      // tag declaration or definition. See the similar lookup tweak
7766      // in Sema::LookupName; is there a better way to deal with this?
7767      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7768        SearchDC = SearchDC->getParent();
7769    }
7770  } else if (S->isFunctionPrototypeScope()) {
7771    // If this is an enum declaration in function prototype scope, set its
7772    // initial context to the translation unit.
7773    SearchDC = Context.getTranslationUnitDecl();
7774  }
7775
7776  if (Previous.isSingleResult() &&
7777      Previous.getFoundDecl()->isTemplateParameter()) {
7778    // Maybe we will complain about the shadowed template parameter.
7779    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7780    // Just pretend that we didn't see the previous declaration.
7781    Previous.clear();
7782  }
7783
7784  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7785      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7786    // This is a declaration of or a reference to "std::bad_alloc".
7787    isStdBadAlloc = true;
7788
7789    if (Previous.empty() && StdBadAlloc) {
7790      // std::bad_alloc has been implicitly declared (but made invisible to
7791      // name lookup). Fill in this implicit declaration as the previous
7792      // declaration, so that the declarations get chained appropriately.
7793      Previous.addDecl(getStdBadAlloc());
7794    }
7795  }
7796
7797  // If we didn't find a previous declaration, and this is a reference
7798  // (or friend reference), move to the correct scope.  In C++, we
7799  // also need to do a redeclaration lookup there, just in case
7800  // there's a shadow friend decl.
7801  if (Name && Previous.empty() &&
7802      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7803    if (Invalid) goto CreateNewDecl;
7804    assert(SS.isEmpty());
7805
7806    if (TUK == TUK_Reference) {
7807      // C++ [basic.scope.pdecl]p5:
7808      //   -- for an elaborated-type-specifier of the form
7809      //
7810      //          class-key identifier
7811      //
7812      //      if the elaborated-type-specifier is used in the
7813      //      decl-specifier-seq or parameter-declaration-clause of a
7814      //      function defined in namespace scope, the identifier is
7815      //      declared as a class-name in the namespace that contains
7816      //      the declaration; otherwise, except as a friend
7817      //      declaration, the identifier is declared in the smallest
7818      //      non-class, non-function-prototype scope that contains the
7819      //      declaration.
7820      //
7821      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7822      // C structs and unions.
7823      //
7824      // It is an error in C++ to declare (rather than define) an enum
7825      // type, including via an elaborated type specifier.  We'll
7826      // diagnose that later; for now, declare the enum in the same
7827      // scope as we would have picked for any other tag type.
7828      //
7829      // GNU C also supports this behavior as part of its incomplete
7830      // enum types extension, while GNU C++ does not.
7831      //
7832      // Find the context where we'll be declaring the tag.
7833      // FIXME: We would like to maintain the current DeclContext as the
7834      // lexical context,
7835      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7836        SearchDC = SearchDC->getParent();
7837
7838      // Find the scope where we'll be declaring the tag.
7839      while (S->isClassScope() ||
7840             (getLangOptions().CPlusPlus &&
7841              S->isFunctionPrototypeScope()) ||
7842             ((S->getFlags() & Scope::DeclScope) == 0) ||
7843             (S->getEntity() &&
7844              ((DeclContext *)S->getEntity())->isTransparentContext()))
7845        S = S->getParent();
7846    } else {
7847      assert(TUK == TUK_Friend);
7848      // C++ [namespace.memdef]p3:
7849      //   If a friend declaration in a non-local class first declares a
7850      //   class or function, the friend class or function is a member of
7851      //   the innermost enclosing namespace.
7852      SearchDC = SearchDC->getEnclosingNamespaceContext();
7853    }
7854
7855    // In C++, we need to do a redeclaration lookup to properly
7856    // diagnose some problems.
7857    if (getLangOptions().CPlusPlus) {
7858      Previous.setRedeclarationKind(ForRedeclaration);
7859      LookupQualifiedName(Previous, SearchDC);
7860    }
7861  }
7862
7863  if (!Previous.empty()) {
7864    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7865
7866    // It's okay to have a tag decl in the same scope as a typedef
7867    // which hides a tag decl in the same scope.  Finding this
7868    // insanity with a redeclaration lookup can only actually happen
7869    // in C++.
7870    //
7871    // This is also okay for elaborated-type-specifiers, which is
7872    // technically forbidden by the current standard but which is
7873    // okay according to the likely resolution of an open issue;
7874    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7875    if (getLangOptions().CPlusPlus) {
7876      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7877        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7878          TagDecl *Tag = TT->getDecl();
7879          if (Tag->getDeclName() == Name &&
7880              Tag->getDeclContext()->getRedeclContext()
7881                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7882            PrevDecl = Tag;
7883            Previous.clear();
7884            Previous.addDecl(Tag);
7885            Previous.resolveKind();
7886          }
7887        }
7888      }
7889    }
7890
7891    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7892      // If this is a use of a previous tag, or if the tag is already declared
7893      // in the same scope (so that the definition/declaration completes or
7894      // rementions the tag), reuse the decl.
7895      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7896          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7897        // Make sure that this wasn't declared as an enum and now used as a
7898        // struct or something similar.
7899        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7900                                          TUK == TUK_Definition, KWLoc,
7901                                          *Name)) {
7902          bool SafeToContinue
7903            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7904               Kind != TTK_Enum);
7905          if (SafeToContinue)
7906            Diag(KWLoc, diag::err_use_with_wrong_tag)
7907              << Name
7908              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7909                                              PrevTagDecl->getKindName());
7910          else
7911            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7912          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7913
7914          if (SafeToContinue)
7915            Kind = PrevTagDecl->getTagKind();
7916          else {
7917            // Recover by making this an anonymous redefinition.
7918            Name = 0;
7919            Previous.clear();
7920            Invalid = true;
7921          }
7922        }
7923
7924        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7925          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7926
7927          // All conflicts with previous declarations are recovered by
7928          // returning the previous declaration.
7929          if (ScopedEnum != PrevEnum->isScoped()) {
7930            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7931              << PrevEnum->isScoped();
7932            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7933            return PrevTagDecl;
7934          }
7935          else if (EnumUnderlying && PrevEnum->isFixed()) {
7936            QualType T;
7937            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7938                T = TI->getType();
7939            else
7940                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7941
7942            if (!Context.hasSameUnqualifiedType(T,
7943                                                PrevEnum->getIntegerType())) {
7944              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7945                   diag::err_enum_redeclare_type_mismatch)
7946                << T
7947                << PrevEnum->getIntegerType();
7948              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7949              return PrevTagDecl;
7950            }
7951          }
7952          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7953            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7954              << PrevEnum->isFixed();
7955            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7956            return PrevTagDecl;
7957          }
7958        }
7959
7960        if (!Invalid) {
7961          // If this is a use, just return the declaration we found.
7962
7963          // FIXME: In the future, return a variant or some other clue
7964          // for the consumer of this Decl to know it doesn't own it.
7965          // For our current ASTs this shouldn't be a problem, but will
7966          // need to be changed with DeclGroups.
7967          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7968               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7969            return PrevTagDecl;
7970
7971          // Diagnose attempts to redefine a tag.
7972          if (TUK == TUK_Definition) {
7973            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7974              // If we're defining a specialization and the previous definition
7975              // is from an implicit instantiation, don't emit an error
7976              // here; we'll catch this in the general case below.
7977              if (!isExplicitSpecialization ||
7978                  !isa<CXXRecordDecl>(Def) ||
7979                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7980                                               == TSK_ExplicitSpecialization) {
7981                Diag(NameLoc, diag::err_redefinition) << Name;
7982                Diag(Def->getLocation(), diag::note_previous_definition);
7983                // If this is a redefinition, recover by making this
7984                // struct be anonymous, which will make any later
7985                // references get the previous definition.
7986                Name = 0;
7987                Previous.clear();
7988                Invalid = true;
7989              }
7990            } else {
7991              // If the type is currently being defined, complain
7992              // about a nested redefinition.
7993              const TagType *Tag
7994                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7995              if (Tag->isBeingDefined()) {
7996                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7997                Diag(PrevTagDecl->getLocation(),
7998                     diag::note_previous_definition);
7999                Name = 0;
8000                Previous.clear();
8001                Invalid = true;
8002              }
8003            }
8004
8005            // Okay, this is definition of a previously declared or referenced
8006            // tag PrevDecl. We're going to create a new Decl for it.
8007          }
8008        }
8009        // If we get here we have (another) forward declaration or we
8010        // have a definition.  Just create a new decl.
8011
8012      } else {
8013        // If we get here, this is a definition of a new tag type in a nested
8014        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8015        // new decl/type.  We set PrevDecl to NULL so that the entities
8016        // have distinct types.
8017        Previous.clear();
8018      }
8019      // If we get here, we're going to create a new Decl. If PrevDecl
8020      // is non-NULL, it's a definition of the tag declared by
8021      // PrevDecl. If it's NULL, we have a new definition.
8022
8023
8024    // Otherwise, PrevDecl is not a tag, but was found with tag
8025    // lookup.  This is only actually possible in C++, where a few
8026    // things like templates still live in the tag namespace.
8027    } else {
8028      assert(getLangOptions().CPlusPlus);
8029
8030      // Use a better diagnostic if an elaborated-type-specifier
8031      // found the wrong kind of type on the first
8032      // (non-redeclaration) lookup.
8033      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8034          !Previous.isForRedeclaration()) {
8035        unsigned Kind = 0;
8036        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8037        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8038        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8039        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8040        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8041        Invalid = true;
8042
8043      // Otherwise, only diagnose if the declaration is in scope.
8044      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8045                                isExplicitSpecialization)) {
8046        // do nothing
8047
8048      // Diagnose implicit declarations introduced by elaborated types.
8049      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8050        unsigned Kind = 0;
8051        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8052        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8053        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8054        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8055        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8056        Invalid = true;
8057
8058      // Otherwise it's a declaration.  Call out a particularly common
8059      // case here.
8060      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8061        unsigned Kind = 0;
8062        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8063        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8064          << Name << Kind << TND->getUnderlyingType();
8065        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8066        Invalid = true;
8067
8068      // Otherwise, diagnose.
8069      } else {
8070        // The tag name clashes with something else in the target scope,
8071        // issue an error and recover by making this tag be anonymous.
8072        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8073        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8074        Name = 0;
8075        Invalid = true;
8076      }
8077
8078      // The existing declaration isn't relevant to us; we're in a
8079      // new scope, so clear out the previous declaration.
8080      Previous.clear();
8081    }
8082  }
8083
8084CreateNewDecl:
8085
8086  TagDecl *PrevDecl = 0;
8087  if (Previous.isSingleResult())
8088    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8089
8090  // If there is an identifier, use the location of the identifier as the
8091  // location of the decl, otherwise use the location of the struct/union
8092  // keyword.
8093  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8094
8095  // Otherwise, create a new declaration. If there is a previous
8096  // declaration of the same entity, the two will be linked via
8097  // PrevDecl.
8098  TagDecl *New;
8099
8100  bool IsForwardReference = false;
8101  if (Kind == TTK_Enum) {
8102    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8103    // enum X { A, B, C } D;    D should chain to X.
8104    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8105                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8106                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8107    // If this is an undefined enum, warn.
8108    if (TUK != TUK_Definition && !Invalid) {
8109      TagDecl *Def;
8110      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8111        // C++0x: 7.2p2: opaque-enum-declaration.
8112        // Conflicts are diagnosed above. Do nothing.
8113      }
8114      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8115        Diag(Loc, diag::ext_forward_ref_enum_def)
8116          << New;
8117        Diag(Def->getLocation(), diag::note_previous_definition);
8118      } else {
8119        unsigned DiagID = diag::ext_forward_ref_enum;
8120        if (getLangOptions().MicrosoftExt)
8121          DiagID = diag::ext_ms_forward_ref_enum;
8122        else if (getLangOptions().CPlusPlus)
8123          DiagID = diag::err_forward_ref_enum;
8124        Diag(Loc, DiagID);
8125
8126        // If this is a forward-declared reference to an enumeration, make a
8127        // note of it; we won't actually be introducing the declaration into
8128        // the declaration context.
8129        if (TUK == TUK_Reference)
8130          IsForwardReference = true;
8131      }
8132    }
8133
8134    if (EnumUnderlying) {
8135      EnumDecl *ED = cast<EnumDecl>(New);
8136      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8137        ED->setIntegerTypeSourceInfo(TI);
8138      else
8139        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8140      ED->setPromotionType(ED->getIntegerType());
8141    }
8142
8143  } else {
8144    // struct/union/class
8145
8146    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8147    // struct X { int A; } D;    D should chain to X.
8148    if (getLangOptions().CPlusPlus) {
8149      // FIXME: Look for a way to use RecordDecl for simple structs.
8150      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8151                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8152
8153      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8154        StdBadAlloc = cast<CXXRecordDecl>(New);
8155    } else
8156      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8157                               cast_or_null<RecordDecl>(PrevDecl));
8158  }
8159
8160  // Maybe add qualifier info.
8161  if (SS.isNotEmpty()) {
8162    if (SS.isSet()) {
8163      New->setQualifierInfo(SS.getWithLocInContext(Context));
8164      if (TemplateParameterLists.size() > 0) {
8165        New->setTemplateParameterListsInfo(Context,
8166                                           TemplateParameterLists.size(),
8167                    (TemplateParameterList**) TemplateParameterLists.release());
8168      }
8169    }
8170    else
8171      Invalid = true;
8172  }
8173
8174  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8175    // Add alignment attributes if necessary; these attributes are checked when
8176    // the ASTContext lays out the structure.
8177    //
8178    // It is important for implementing the correct semantics that this
8179    // happen here (in act on tag decl). The #pragma pack stack is
8180    // maintained as a result of parser callbacks which can occur at
8181    // many points during the parsing of a struct declaration (because
8182    // the #pragma tokens are effectively skipped over during the
8183    // parsing of the struct).
8184    AddAlignmentAttributesForRecord(RD);
8185
8186    AddMsStructLayoutForRecord(RD);
8187  }
8188
8189  if (PrevDecl && PrevDecl->isModulePrivate())
8190    New->setModulePrivate();
8191  else if (ModulePrivateLoc.isValid()) {
8192    if (isExplicitSpecialization)
8193      Diag(New->getLocation(), diag::err_module_private_specialization)
8194        << 2
8195        << FixItHint::CreateRemoval(ModulePrivateLoc);
8196    else if (PrevDecl && !PrevDecl->isModulePrivate())
8197      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8198    // __module_private__ does not apply to local classes. However, we only
8199    // diagnose this as an error when the declaration specifiers are
8200    // freestanding. Here, we just ignore the __module_private__.
8201    // foobar
8202    else if (!SearchDC->isFunctionOrMethod())
8203      New->setModulePrivate();
8204  }
8205
8206  // If this is a specialization of a member class (of a class template),
8207  // check the specialization.
8208  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8209    Invalid = true;
8210
8211  if (Invalid)
8212    New->setInvalidDecl();
8213
8214  if (Attr)
8215    ProcessDeclAttributeList(S, New, Attr);
8216
8217  // If we're declaring or defining a tag in function prototype scope
8218  // in C, note that this type can only be used within the function.
8219  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8220    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8221
8222  // Set the lexical context. If the tag has a C++ scope specifier, the
8223  // lexical context will be different from the semantic context.
8224  New->setLexicalDeclContext(CurContext);
8225
8226  // Mark this as a friend decl if applicable.
8227  // In Microsoft mode, a friend declaration also acts as a forward
8228  // declaration so we always pass true to setObjectOfFriendDecl to make
8229  // the tag name visible.
8230  if (TUK == TUK_Friend)
8231    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8232                               getLangOptions().MicrosoftExt);
8233
8234  // Set the access specifier.
8235  if (!Invalid && SearchDC->isRecord())
8236    SetMemberAccessSpecifier(New, PrevDecl, AS);
8237
8238  if (TUK == TUK_Definition)
8239    New->startDefinition();
8240
8241  // If this has an identifier, add it to the scope stack.
8242  if (TUK == TUK_Friend) {
8243    // We might be replacing an existing declaration in the lookup tables;
8244    // if so, borrow its access specifier.
8245    if (PrevDecl)
8246      New->setAccess(PrevDecl->getAccess());
8247
8248    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8249    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8250    if (Name) // can be null along some error paths
8251      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8252        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8253  } else if (Name) {
8254    S = getNonFieldDeclScope(S);
8255    PushOnScopeChains(New, S, !IsForwardReference);
8256    if (IsForwardReference)
8257      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8258
8259  } else {
8260    CurContext->addDecl(New);
8261  }
8262
8263  // If this is the C FILE type, notify the AST context.
8264  if (IdentifierInfo *II = New->getIdentifier())
8265    if (!New->isInvalidDecl() &&
8266        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8267        II->isStr("FILE"))
8268      Context.setFILEDecl(New);
8269
8270  OwnedDecl = true;
8271  return New;
8272}
8273
8274void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8275  AdjustDeclIfTemplate(TagD);
8276  TagDecl *Tag = cast<TagDecl>(TagD);
8277
8278  // Enter the tag context.
8279  PushDeclContext(S, Tag);
8280}
8281
8282Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8283  assert(isa<ObjCContainerDecl>(IDecl) &&
8284         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8285  DeclContext *OCD = cast<DeclContext>(IDecl);
8286  assert(getContainingDC(OCD) == CurContext &&
8287      "The next DeclContext should be lexically contained in the current one.");
8288  CurContext = OCD;
8289  return IDecl;
8290}
8291
8292void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8293                                           SourceLocation FinalLoc,
8294                                           SourceLocation LBraceLoc) {
8295  AdjustDeclIfTemplate(TagD);
8296  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8297
8298  FieldCollector->StartClass();
8299
8300  if (!Record->getIdentifier())
8301    return;
8302
8303  if (FinalLoc.isValid())
8304    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8305
8306  // C++ [class]p2:
8307  //   [...] The class-name is also inserted into the scope of the
8308  //   class itself; this is known as the injected-class-name. For
8309  //   purposes of access checking, the injected-class-name is treated
8310  //   as if it were a public member name.
8311  CXXRecordDecl *InjectedClassName
8312    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8313                            Record->getLocStart(), Record->getLocation(),
8314                            Record->getIdentifier(),
8315                            /*PrevDecl=*/0,
8316                            /*DelayTypeCreation=*/true);
8317  Context.getTypeDeclType(InjectedClassName, Record);
8318  InjectedClassName->setImplicit();
8319  InjectedClassName->setAccess(AS_public);
8320  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8321      InjectedClassName->setDescribedClassTemplate(Template);
8322  PushOnScopeChains(InjectedClassName, S);
8323  assert(InjectedClassName->isInjectedClassName() &&
8324         "Broken injected-class-name");
8325}
8326
8327void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8328                                    SourceLocation RBraceLoc) {
8329  AdjustDeclIfTemplate(TagD);
8330  TagDecl *Tag = cast<TagDecl>(TagD);
8331  Tag->setRBraceLoc(RBraceLoc);
8332
8333  if (isa<CXXRecordDecl>(Tag))
8334    FieldCollector->FinishClass();
8335
8336  // Exit this scope of this tag's definition.
8337  PopDeclContext();
8338
8339  // Notify the consumer that we've defined a tag.
8340  Consumer.HandleTagDeclDefinition(Tag);
8341}
8342
8343void Sema::ActOnObjCContainerFinishDefinition() {
8344  // Exit this scope of this interface definition.
8345  PopDeclContext();
8346}
8347
8348void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8349  assert(DC == CurContext && "Mismatch of container contexts");
8350  OriginalLexicalContext = DC;
8351  ActOnObjCContainerFinishDefinition();
8352}
8353
8354void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8355  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8356  OriginalLexicalContext = 0;
8357}
8358
8359void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8360  AdjustDeclIfTemplate(TagD);
8361  TagDecl *Tag = cast<TagDecl>(TagD);
8362  Tag->setInvalidDecl();
8363
8364  // We're undoing ActOnTagStartDefinition here, not
8365  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8366  // the FieldCollector.
8367
8368  PopDeclContext();
8369}
8370
8371// Note that FieldName may be null for anonymous bitfields.
8372bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8373                          QualType FieldTy, const Expr *BitWidth,
8374                          bool *ZeroWidth) {
8375  // Default to true; that shouldn't confuse checks for emptiness
8376  if (ZeroWidth)
8377    *ZeroWidth = true;
8378
8379  // C99 6.7.2.1p4 - verify the field type.
8380  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8381  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8382    // Handle incomplete types with specific error.
8383    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8384      return true;
8385    if (FieldName)
8386      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8387        << FieldName << FieldTy << BitWidth->getSourceRange();
8388    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8389      << FieldTy << BitWidth->getSourceRange();
8390  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8391                                             UPPC_BitFieldWidth))
8392    return true;
8393
8394  // If the bit-width is type- or value-dependent, don't try to check
8395  // it now.
8396  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8397    return false;
8398
8399  llvm::APSInt Value;
8400  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8401    return true;
8402
8403  if (Value != 0 && ZeroWidth)
8404    *ZeroWidth = false;
8405
8406  // Zero-width bitfield is ok for anonymous field.
8407  if (Value == 0 && FieldName)
8408    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8409
8410  if (Value.isSigned() && Value.isNegative()) {
8411    if (FieldName)
8412      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8413               << FieldName << Value.toString(10);
8414    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8415      << Value.toString(10);
8416  }
8417
8418  if (!FieldTy->isDependentType()) {
8419    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8420    if (Value.getZExtValue() > TypeSize) {
8421      if (!getLangOptions().CPlusPlus) {
8422        if (FieldName)
8423          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8424            << FieldName << (unsigned)Value.getZExtValue()
8425            << (unsigned)TypeSize;
8426
8427        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8428          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8429      }
8430
8431      if (FieldName)
8432        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8433          << FieldName << (unsigned)Value.getZExtValue()
8434          << (unsigned)TypeSize;
8435      else
8436        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8437          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8438    }
8439  }
8440
8441  return false;
8442}
8443
8444/// ActOnField - Each field of a C struct/union is passed into this in order
8445/// to create a FieldDecl object for it.
8446Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8447                       Declarator &D, Expr *BitfieldWidth) {
8448  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8449                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8450                               /*HasInit=*/false, AS_public);
8451  return Res;
8452}
8453
8454/// HandleField - Analyze a field of a C struct or a C++ data member.
8455///
8456FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8457                             SourceLocation DeclStart,
8458                             Declarator &D, Expr *BitWidth, bool HasInit,
8459                             AccessSpecifier AS) {
8460  IdentifierInfo *II = D.getIdentifier();
8461  SourceLocation Loc = DeclStart;
8462  if (II) Loc = D.getIdentifierLoc();
8463
8464  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8465  QualType T = TInfo->getType();
8466  if (getLangOptions().CPlusPlus) {
8467    CheckExtraCXXDefaultArguments(D);
8468
8469    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8470                                        UPPC_DataMemberType)) {
8471      D.setInvalidType();
8472      T = Context.IntTy;
8473      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8474    }
8475  }
8476
8477  DiagnoseFunctionSpecifiers(D);
8478
8479  if (D.getDeclSpec().isThreadSpecified())
8480    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8481  if (D.getDeclSpec().isConstexprSpecified())
8482    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8483      << 2;
8484
8485  // Check to see if this name was declared as a member previously
8486  NamedDecl *PrevDecl = 0;
8487  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8488  LookupName(Previous, S);
8489  switch (Previous.getResultKind()) {
8490    case LookupResult::Found:
8491    case LookupResult::FoundUnresolvedValue:
8492      PrevDecl = Previous.getAsSingle<NamedDecl>();
8493      break;
8494
8495    case LookupResult::FoundOverloaded:
8496      PrevDecl = Previous.getRepresentativeDecl();
8497      break;
8498
8499    case LookupResult::NotFound:
8500    case LookupResult::NotFoundInCurrentInstantiation:
8501    case LookupResult::Ambiguous:
8502      break;
8503  }
8504  Previous.suppressDiagnostics();
8505
8506  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8507    // Maybe we will complain about the shadowed template parameter.
8508    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8509    // Just pretend that we didn't see the previous declaration.
8510    PrevDecl = 0;
8511  }
8512
8513  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8514    PrevDecl = 0;
8515
8516  bool Mutable
8517    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8518  SourceLocation TSSL = D.getSourceRange().getBegin();
8519  FieldDecl *NewFD
8520    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8521                     TSSL, AS, PrevDecl, &D);
8522
8523  if (NewFD->isInvalidDecl())
8524    Record->setInvalidDecl();
8525
8526  if (D.getDeclSpec().isModulePrivateSpecified())
8527    NewFD->setModulePrivate();
8528
8529  if (NewFD->isInvalidDecl() && PrevDecl) {
8530    // Don't introduce NewFD into scope; there's already something
8531    // with the same name in the same scope.
8532  } else if (II) {
8533    PushOnScopeChains(NewFD, S);
8534  } else
8535    Record->addDecl(NewFD);
8536
8537  return NewFD;
8538}
8539
8540/// \brief Build a new FieldDecl and check its well-formedness.
8541///
8542/// This routine builds a new FieldDecl given the fields name, type,
8543/// record, etc. \p PrevDecl should refer to any previous declaration
8544/// with the same name and in the same scope as the field to be
8545/// created.
8546///
8547/// \returns a new FieldDecl.
8548///
8549/// \todo The Declarator argument is a hack. It will be removed once
8550FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8551                                TypeSourceInfo *TInfo,
8552                                RecordDecl *Record, SourceLocation Loc,
8553                                bool Mutable, Expr *BitWidth, bool HasInit,
8554                                SourceLocation TSSL,
8555                                AccessSpecifier AS, NamedDecl *PrevDecl,
8556                                Declarator *D) {
8557  IdentifierInfo *II = Name.getAsIdentifierInfo();
8558  bool InvalidDecl = false;
8559  if (D) InvalidDecl = D->isInvalidType();
8560
8561  // If we receive a broken type, recover by assuming 'int' and
8562  // marking this declaration as invalid.
8563  if (T.isNull()) {
8564    InvalidDecl = true;
8565    T = Context.IntTy;
8566  }
8567
8568  QualType EltTy = Context.getBaseElementType(T);
8569  if (!EltTy->isDependentType() &&
8570      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8571    // Fields of incomplete type force their record to be invalid.
8572    Record->setInvalidDecl();
8573    InvalidDecl = true;
8574  }
8575
8576  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8577  // than a variably modified type.
8578  if (!InvalidDecl && T->isVariablyModifiedType()) {
8579    bool SizeIsNegative;
8580    llvm::APSInt Oversized;
8581    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8582                                                           SizeIsNegative,
8583                                                           Oversized);
8584    if (!FixedTy.isNull()) {
8585      Diag(Loc, diag::warn_illegal_constant_array_size);
8586      T = FixedTy;
8587    } else {
8588      if (SizeIsNegative)
8589        Diag(Loc, diag::err_typecheck_negative_array_size);
8590      else if (Oversized.getBoolValue())
8591        Diag(Loc, diag::err_array_too_large)
8592          << Oversized.toString(10);
8593      else
8594        Diag(Loc, diag::err_typecheck_field_variable_size);
8595      InvalidDecl = true;
8596    }
8597  }
8598
8599  // Fields can not have abstract class types
8600  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8601                                             diag::err_abstract_type_in_decl,
8602                                             AbstractFieldType))
8603    InvalidDecl = true;
8604
8605  bool ZeroWidth = false;
8606  // If this is declared as a bit-field, check the bit-field.
8607  if (!InvalidDecl && BitWidth &&
8608      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8609    InvalidDecl = true;
8610    BitWidth = 0;
8611    ZeroWidth = false;
8612  }
8613
8614  // Check that 'mutable' is consistent with the type of the declaration.
8615  if (!InvalidDecl && Mutable) {
8616    unsigned DiagID = 0;
8617    if (T->isReferenceType())
8618      DiagID = diag::err_mutable_reference;
8619    else if (T.isConstQualified())
8620      DiagID = diag::err_mutable_const;
8621
8622    if (DiagID) {
8623      SourceLocation ErrLoc = Loc;
8624      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8625        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8626      Diag(ErrLoc, DiagID);
8627      Mutable = false;
8628      InvalidDecl = true;
8629    }
8630  }
8631
8632  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8633                                       BitWidth, Mutable, HasInit);
8634  if (InvalidDecl)
8635    NewFD->setInvalidDecl();
8636
8637  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8638    Diag(Loc, diag::err_duplicate_member) << II;
8639    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8640    NewFD->setInvalidDecl();
8641  }
8642
8643  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8644    if (Record->isUnion()) {
8645      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8646        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8647        if (RDecl->getDefinition()) {
8648          // C++ [class.union]p1: An object of a class with a non-trivial
8649          // constructor, a non-trivial copy constructor, a non-trivial
8650          // destructor, or a non-trivial copy assignment operator
8651          // cannot be a member of a union, nor can an array of such
8652          // objects.
8653          if (CheckNontrivialField(NewFD))
8654            NewFD->setInvalidDecl();
8655        }
8656      }
8657
8658      // C++ [class.union]p1: If a union contains a member of reference type,
8659      // the program is ill-formed.
8660      if (EltTy->isReferenceType()) {
8661        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8662          << NewFD->getDeclName() << EltTy;
8663        NewFD->setInvalidDecl();
8664      }
8665    }
8666  }
8667
8668  // FIXME: We need to pass in the attributes given an AST
8669  // representation, not a parser representation.
8670  if (D)
8671    // FIXME: What to pass instead of TUScope?
8672    ProcessDeclAttributes(TUScope, NewFD, *D);
8673
8674  // In auto-retain/release, infer strong retension for fields of
8675  // retainable type.
8676  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8677    NewFD->setInvalidDecl();
8678
8679  if (T.isObjCGCWeak())
8680    Diag(Loc, diag::warn_attribute_weak_on_field);
8681
8682  NewFD->setAccess(AS);
8683  return NewFD;
8684}
8685
8686bool Sema::CheckNontrivialField(FieldDecl *FD) {
8687  assert(FD);
8688  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8689
8690  if (FD->isInvalidDecl())
8691    return true;
8692
8693  QualType EltTy = Context.getBaseElementType(FD->getType());
8694  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8695    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8696    if (RDecl->getDefinition()) {
8697      // We check for copy constructors before constructors
8698      // because otherwise we'll never get complaints about
8699      // copy constructors.
8700
8701      CXXSpecialMember member = CXXInvalid;
8702      if (!RDecl->hasTrivialCopyConstructor())
8703        member = CXXCopyConstructor;
8704      else if (!RDecl->hasTrivialDefaultConstructor())
8705        member = CXXDefaultConstructor;
8706      else if (!RDecl->hasTrivialCopyAssignment())
8707        member = CXXCopyAssignment;
8708      else if (!RDecl->hasTrivialDestructor())
8709        member = CXXDestructor;
8710
8711      if (member != CXXInvalid) {
8712        if (!getLangOptions().CPlusPlus0x &&
8713            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8714          // Objective-C++ ARC: it is an error to have a non-trivial field of
8715          // a union. However, system headers in Objective-C programs
8716          // occasionally have Objective-C lifetime objects within unions,
8717          // and rather than cause the program to fail, we make those
8718          // members unavailable.
8719          SourceLocation Loc = FD->getLocation();
8720          if (getSourceManager().isInSystemHeader(Loc)) {
8721            if (!FD->hasAttr<UnavailableAttr>())
8722              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8723                                  "this system field has retaining ownership"));
8724            return false;
8725          }
8726        }
8727
8728        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8729               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8730               diag::err_illegal_union_or_anon_struct_member)
8731          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8732        DiagnoseNontrivial(RT, member);
8733        return !getLangOptions().CPlusPlus0x;
8734      }
8735    }
8736  }
8737
8738  return false;
8739}
8740
8741/// DiagnoseNontrivial - Given that a class has a non-trivial
8742/// special member, figure out why.
8743void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8744  QualType QT(T, 0U);
8745  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8746
8747  // Check whether the member was user-declared.
8748  switch (member) {
8749  case CXXInvalid:
8750    break;
8751
8752  case CXXDefaultConstructor:
8753    if (RD->hasUserDeclaredConstructor()) {
8754      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8755      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8756        const FunctionDecl *body = 0;
8757        ci->hasBody(body);
8758        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8759          SourceLocation CtorLoc = ci->getLocation();
8760          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8761          return;
8762        }
8763      }
8764
8765      llvm_unreachable("found no user-declared constructors");
8766    }
8767    break;
8768
8769  case CXXCopyConstructor:
8770    if (RD->hasUserDeclaredCopyConstructor()) {
8771      SourceLocation CtorLoc =
8772        RD->getCopyConstructor(0)->getLocation();
8773      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8774      return;
8775    }
8776    break;
8777
8778  case CXXMoveConstructor:
8779    if (RD->hasUserDeclaredMoveConstructor()) {
8780      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8781      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8782      return;
8783    }
8784    break;
8785
8786  case CXXCopyAssignment:
8787    if (RD->hasUserDeclaredCopyAssignment()) {
8788      // FIXME: this should use the location of the copy
8789      // assignment, not the type.
8790      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8791      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8792      return;
8793    }
8794    break;
8795
8796  case CXXMoveAssignment:
8797    if (RD->hasUserDeclaredMoveAssignment()) {
8798      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8799      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8800      return;
8801    }
8802    break;
8803
8804  case CXXDestructor:
8805    if (RD->hasUserDeclaredDestructor()) {
8806      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8807      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8808      return;
8809    }
8810    break;
8811  }
8812
8813  typedef CXXRecordDecl::base_class_iterator base_iter;
8814
8815  // Virtual bases and members inhibit trivial copying/construction,
8816  // but not trivial destruction.
8817  if (member != CXXDestructor) {
8818    // Check for virtual bases.  vbases includes indirect virtual bases,
8819    // so we just iterate through the direct bases.
8820    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8821      if (bi->isVirtual()) {
8822        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8823        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8824        return;
8825      }
8826
8827    // Check for virtual methods.
8828    typedef CXXRecordDecl::method_iterator meth_iter;
8829    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8830         ++mi) {
8831      if (mi->isVirtual()) {
8832        SourceLocation MLoc = mi->getSourceRange().getBegin();
8833        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8834        return;
8835      }
8836    }
8837  }
8838
8839  bool (CXXRecordDecl::*hasTrivial)() const;
8840  switch (member) {
8841  case CXXDefaultConstructor:
8842    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8843  case CXXCopyConstructor:
8844    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8845  case CXXCopyAssignment:
8846    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8847  case CXXDestructor:
8848    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8849  default:
8850    llvm_unreachable("unexpected special member");
8851  }
8852
8853  // Check for nontrivial bases (and recurse).
8854  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8855    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8856    assert(BaseRT && "Don't know how to handle dependent bases");
8857    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8858    if (!(BaseRecTy->*hasTrivial)()) {
8859      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8860      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8861      DiagnoseNontrivial(BaseRT, member);
8862      return;
8863    }
8864  }
8865
8866  // Check for nontrivial members (and recurse).
8867  typedef RecordDecl::field_iterator field_iter;
8868  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8869       ++fi) {
8870    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8871    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8872      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8873
8874      if (!(EltRD->*hasTrivial)()) {
8875        SourceLocation FLoc = (*fi)->getLocation();
8876        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8877        DiagnoseNontrivial(EltRT, member);
8878        return;
8879      }
8880    }
8881
8882    if (EltTy->isObjCLifetimeType()) {
8883      switch (EltTy.getObjCLifetime()) {
8884      case Qualifiers::OCL_None:
8885      case Qualifiers::OCL_ExplicitNone:
8886        break;
8887
8888      case Qualifiers::OCL_Autoreleasing:
8889      case Qualifiers::OCL_Weak:
8890      case Qualifiers::OCL_Strong:
8891        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8892          << QT << EltTy.getObjCLifetime();
8893        return;
8894      }
8895    }
8896  }
8897
8898  llvm_unreachable("found no explanation for non-trivial member");
8899}
8900
8901/// TranslateIvarVisibility - Translate visibility from a token ID to an
8902///  AST enum value.
8903static ObjCIvarDecl::AccessControl
8904TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8905  switch (ivarVisibility) {
8906  default: llvm_unreachable("Unknown visitibility kind");
8907  case tok::objc_private: return ObjCIvarDecl::Private;
8908  case tok::objc_public: return ObjCIvarDecl::Public;
8909  case tok::objc_protected: return ObjCIvarDecl::Protected;
8910  case tok::objc_package: return ObjCIvarDecl::Package;
8911  }
8912}
8913
8914/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8915/// in order to create an IvarDecl object for it.
8916Decl *Sema::ActOnIvar(Scope *S,
8917                                SourceLocation DeclStart,
8918                                Declarator &D, Expr *BitfieldWidth,
8919                                tok::ObjCKeywordKind Visibility) {
8920
8921  IdentifierInfo *II = D.getIdentifier();
8922  Expr *BitWidth = (Expr*)BitfieldWidth;
8923  SourceLocation Loc = DeclStart;
8924  if (II) Loc = D.getIdentifierLoc();
8925
8926  // FIXME: Unnamed fields can be handled in various different ways, for
8927  // example, unnamed unions inject all members into the struct namespace!
8928
8929  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8930  QualType T = TInfo->getType();
8931
8932  if (BitWidth) {
8933    // 6.7.2.1p3, 6.7.2.1p4
8934    if (VerifyBitField(Loc, II, T, BitWidth)) {
8935      D.setInvalidType();
8936      BitWidth = 0;
8937    }
8938  } else {
8939    // Not a bitfield.
8940
8941    // validate II.
8942
8943  }
8944  if (T->isReferenceType()) {
8945    Diag(Loc, diag::err_ivar_reference_type);
8946    D.setInvalidType();
8947  }
8948  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8949  // than a variably modified type.
8950  else if (T->isVariablyModifiedType()) {
8951    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8952    D.setInvalidType();
8953  }
8954
8955  // Get the visibility (access control) for this ivar.
8956  ObjCIvarDecl::AccessControl ac =
8957    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8958                                        : ObjCIvarDecl::None;
8959  // Must set ivar's DeclContext to its enclosing interface.
8960  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8961  ObjCContainerDecl *EnclosingContext;
8962  if (ObjCImplementationDecl *IMPDecl =
8963      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8964    if (!LangOpts.ObjCNonFragileABI2) {
8965    // Case of ivar declared in an implementation. Context is that of its class.
8966      EnclosingContext = IMPDecl->getClassInterface();
8967      assert(EnclosingContext && "Implementation has no class interface!");
8968    }
8969    else
8970      EnclosingContext = EnclosingDecl;
8971  } else {
8972    if (ObjCCategoryDecl *CDecl =
8973        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8974      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8975        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8976        return 0;
8977      }
8978    }
8979    EnclosingContext = EnclosingDecl;
8980  }
8981
8982  // Construct the decl.
8983  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8984                                             DeclStart, Loc, II, T,
8985                                             TInfo, ac, (Expr *)BitfieldWidth);
8986
8987  if (II) {
8988    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8989                                           ForRedeclaration);
8990    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8991        && !isa<TagDecl>(PrevDecl)) {
8992      Diag(Loc, diag::err_duplicate_member) << II;
8993      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8994      NewID->setInvalidDecl();
8995    }
8996  }
8997
8998  // Process attributes attached to the ivar.
8999  ProcessDeclAttributes(S, NewID, D);
9000
9001  if (D.isInvalidType())
9002    NewID->setInvalidDecl();
9003
9004  // In ARC, infer 'retaining' for ivars of retainable type.
9005  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9006    NewID->setInvalidDecl();
9007
9008  if (D.getDeclSpec().isModulePrivateSpecified())
9009    NewID->setModulePrivate();
9010
9011  if (II) {
9012    // FIXME: When interfaces are DeclContexts, we'll need to add
9013    // these to the interface.
9014    S->AddDecl(NewID);
9015    IdResolver.AddDecl(NewID);
9016  }
9017
9018  return NewID;
9019}
9020
9021/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9022/// class and class extensions. For every class @interface and class
9023/// extension @interface, if the last ivar is a bitfield of any type,
9024/// then add an implicit `char :0` ivar to the end of that interface.
9025void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9026                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9027  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9028    return;
9029
9030  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9031  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9032
9033  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9034    return;
9035  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9036  if (!ID) {
9037    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9038      if (!CD->IsClassExtension())
9039        return;
9040    }
9041    // No need to add this to end of @implementation.
9042    else
9043      return;
9044  }
9045  // All conditions are met. Add a new bitfield to the tail end of ivars.
9046  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9047  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9048
9049  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9050                              DeclLoc, DeclLoc, 0,
9051                              Context.CharTy,
9052                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9053                                                               DeclLoc),
9054                              ObjCIvarDecl::Private, BW,
9055                              true);
9056  AllIvarDecls.push_back(Ivar);
9057}
9058
9059void Sema::ActOnFields(Scope* S,
9060                       SourceLocation RecLoc, Decl *EnclosingDecl,
9061                       llvm::ArrayRef<Decl *> Fields,
9062                       SourceLocation LBrac, SourceLocation RBrac,
9063                       AttributeList *Attr) {
9064  assert(EnclosingDecl && "missing record or interface decl");
9065
9066  // If the decl this is being inserted into is invalid, then it may be a
9067  // redeclaration or some other bogus case.  Don't try to add fields to it.
9068  if (EnclosingDecl->isInvalidDecl())
9069    return;
9070
9071  // Verify that all the fields are okay.
9072  unsigned NumNamedMembers = 0;
9073  SmallVector<FieldDecl*, 32> RecFields;
9074
9075  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9076  bool ARCErrReported = false;
9077  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9078       i != end; ++i) {
9079    FieldDecl *FD = cast<FieldDecl>(*i);
9080
9081    // Get the type for the field.
9082    const Type *FDTy = FD->getType().getTypePtr();
9083
9084    if (!FD->isAnonymousStructOrUnion()) {
9085      // Remember all fields written by the user.
9086      RecFields.push_back(FD);
9087    }
9088
9089    // If the field is already invalid for some reason, don't emit more
9090    // diagnostics about it.
9091    if (FD->isInvalidDecl()) {
9092      EnclosingDecl->setInvalidDecl();
9093      continue;
9094    }
9095
9096    // C99 6.7.2.1p2:
9097    //   A structure or union shall not contain a member with
9098    //   incomplete or function type (hence, a structure shall not
9099    //   contain an instance of itself, but may contain a pointer to
9100    //   an instance of itself), except that the last member of a
9101    //   structure with more than one named member may have incomplete
9102    //   array type; such a structure (and any union containing,
9103    //   possibly recursively, a member that is such a structure)
9104    //   shall not be a member of a structure or an element of an
9105    //   array.
9106    if (FDTy->isFunctionType()) {
9107      // Field declared as a function.
9108      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9109        << FD->getDeclName();
9110      FD->setInvalidDecl();
9111      EnclosingDecl->setInvalidDecl();
9112      continue;
9113    } else if (FDTy->isIncompleteArrayType() && Record &&
9114               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9115                ((getLangOptions().MicrosoftExt ||
9116                  getLangOptions().CPlusPlus) &&
9117                 (i + 1 == Fields.end() || Record->isUnion())))) {
9118      // Flexible array member.
9119      // Microsoft and g++ is more permissive regarding flexible array.
9120      // It will accept flexible array in union and also
9121      // as the sole element of a struct/class.
9122      if (getLangOptions().MicrosoftExt) {
9123        if (Record->isUnion())
9124          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9125            << FD->getDeclName();
9126        else if (Fields.size() == 1)
9127          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9128            << FD->getDeclName() << Record->getTagKind();
9129      } else if (getLangOptions().CPlusPlus) {
9130        if (Record->isUnion())
9131          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9132            << FD->getDeclName();
9133        else if (Fields.size() == 1)
9134          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9135            << FD->getDeclName() << Record->getTagKind();
9136      } else if (NumNamedMembers < 1) {
9137        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9138          << FD->getDeclName();
9139        FD->setInvalidDecl();
9140        EnclosingDecl->setInvalidDecl();
9141        continue;
9142      }
9143      if (!FD->getType()->isDependentType() &&
9144          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9145        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9146          << FD->getDeclName() << FD->getType();
9147        FD->setInvalidDecl();
9148        EnclosingDecl->setInvalidDecl();
9149        continue;
9150      }
9151      // Okay, we have a legal flexible array member at the end of the struct.
9152      if (Record)
9153        Record->setHasFlexibleArrayMember(true);
9154    } else if (!FDTy->isDependentType() &&
9155               RequireCompleteType(FD->getLocation(), FD->getType(),
9156                                   diag::err_field_incomplete)) {
9157      // Incomplete type
9158      FD->setInvalidDecl();
9159      EnclosingDecl->setInvalidDecl();
9160      continue;
9161    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9162      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9163        // If this is a member of a union, then entire union becomes "flexible".
9164        if (Record && Record->isUnion()) {
9165          Record->setHasFlexibleArrayMember(true);
9166        } else {
9167          // If this is a struct/class and this is not the last element, reject
9168          // it.  Note that GCC supports variable sized arrays in the middle of
9169          // structures.
9170          if (i + 1 != Fields.end())
9171            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9172              << FD->getDeclName() << FD->getType();
9173          else {
9174            // We support flexible arrays at the end of structs in
9175            // other structs as an extension.
9176            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9177              << FD->getDeclName();
9178            if (Record)
9179              Record->setHasFlexibleArrayMember(true);
9180          }
9181        }
9182      }
9183      if (Record && FDTTy->getDecl()->hasObjectMember())
9184        Record->setHasObjectMember(true);
9185    } else if (FDTy->isObjCObjectType()) {
9186      /// A field cannot be an Objective-c object
9187      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9188        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9189      QualType T = Context.getObjCObjectPointerType(FD->getType());
9190      FD->setType(T);
9191    }
9192    else if (!getLangOptions().CPlusPlus) {
9193      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9194        // It's an error in ARC if a field has lifetime.
9195        // We don't want to report this in a system header, though,
9196        // so we just make the field unavailable.
9197        // FIXME: that's really not sufficient; we need to make the type
9198        // itself invalid to, say, initialize or copy.
9199        QualType T = FD->getType();
9200        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9201        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9202          SourceLocation loc = FD->getLocation();
9203          if (getSourceManager().isInSystemHeader(loc)) {
9204            if (!FD->hasAttr<UnavailableAttr>()) {
9205              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9206                                "this system field has retaining ownership"));
9207            }
9208          } else {
9209            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9210          }
9211          ARCErrReported = true;
9212        }
9213      }
9214      else if (getLangOptions().ObjC1 &&
9215               getLangOptions().getGC() != LangOptions::NonGC &&
9216               Record && !Record->hasObjectMember()) {
9217        if (FD->getType()->isObjCObjectPointerType() ||
9218            FD->getType().isObjCGCStrong())
9219          Record->setHasObjectMember(true);
9220        else if (Context.getAsArrayType(FD->getType())) {
9221          QualType BaseType = Context.getBaseElementType(FD->getType());
9222          if (BaseType->isRecordType() &&
9223              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9224            Record->setHasObjectMember(true);
9225          else if (BaseType->isObjCObjectPointerType() ||
9226                   BaseType.isObjCGCStrong())
9227                 Record->setHasObjectMember(true);
9228        }
9229      }
9230    }
9231    // Keep track of the number of named members.
9232    if (FD->getIdentifier())
9233      ++NumNamedMembers;
9234  }
9235
9236  // Okay, we successfully defined 'Record'.
9237  if (Record) {
9238    bool Completed = false;
9239    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9240      if (!CXXRecord->isInvalidDecl()) {
9241        // Set access bits correctly on the directly-declared conversions.
9242        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9243        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9244             I != E; ++I)
9245          Convs->setAccess(I, (*I)->getAccess());
9246
9247        if (!CXXRecord->isDependentType()) {
9248          // Objective-C Automatic Reference Counting:
9249          //   If a class has a non-static data member of Objective-C pointer
9250          //   type (or array thereof), it is a non-POD type and its
9251          //   default constructor (if any), copy constructor, copy assignment
9252          //   operator, and destructor are non-trivial.
9253          //
9254          // This rule is also handled by CXXRecordDecl::completeDefinition().
9255          // However, here we check whether this particular class is only
9256          // non-POD because of the presence of an Objective-C pointer member.
9257          // If so, objects of this type cannot be shared between code compiled
9258          // with instant objects and code compiled with manual retain/release.
9259          if (getLangOptions().ObjCAutoRefCount &&
9260              CXXRecord->hasObjectMember() &&
9261              CXXRecord->getLinkage() == ExternalLinkage) {
9262            if (CXXRecord->isPOD()) {
9263              Diag(CXXRecord->getLocation(),
9264                   diag::warn_arc_non_pod_class_with_object_member)
9265               << CXXRecord;
9266            } else {
9267              // FIXME: Fix-Its would be nice here, but finding a good location
9268              // for them is going to be tricky.
9269              if (CXXRecord->hasTrivialCopyConstructor())
9270                Diag(CXXRecord->getLocation(),
9271                     diag::warn_arc_trivial_member_function_with_object_member)
9272                  << CXXRecord << 0;
9273              if (CXXRecord->hasTrivialCopyAssignment())
9274                Diag(CXXRecord->getLocation(),
9275                     diag::warn_arc_trivial_member_function_with_object_member)
9276                << CXXRecord << 1;
9277              if (CXXRecord->hasTrivialDestructor())
9278                Diag(CXXRecord->getLocation(),
9279                     diag::warn_arc_trivial_member_function_with_object_member)
9280                << CXXRecord << 2;
9281            }
9282          }
9283
9284          // Adjust user-defined destructor exception spec.
9285          if (getLangOptions().CPlusPlus0x &&
9286              CXXRecord->hasUserDeclaredDestructor())
9287            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9288
9289          // Add any implicitly-declared members to this class.
9290          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9291
9292          // If we have virtual base classes, we may end up finding multiple
9293          // final overriders for a given virtual function. Check for this
9294          // problem now.
9295          if (CXXRecord->getNumVBases()) {
9296            CXXFinalOverriderMap FinalOverriders;
9297            CXXRecord->getFinalOverriders(FinalOverriders);
9298
9299            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9300                                             MEnd = FinalOverriders.end();
9301                 M != MEnd; ++M) {
9302              for (OverridingMethods::iterator SO = M->second.begin(),
9303                                            SOEnd = M->second.end();
9304                   SO != SOEnd; ++SO) {
9305                assert(SO->second.size() > 0 &&
9306                       "Virtual function without overridding functions?");
9307                if (SO->second.size() == 1)
9308                  continue;
9309
9310                // C++ [class.virtual]p2:
9311                //   In a derived class, if a virtual member function of a base
9312                //   class subobject has more than one final overrider the
9313                //   program is ill-formed.
9314                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9315                  << (NamedDecl *)M->first << Record;
9316                Diag(M->first->getLocation(),
9317                     diag::note_overridden_virtual_function);
9318                for (OverridingMethods::overriding_iterator
9319                          OM = SO->second.begin(),
9320                       OMEnd = SO->second.end();
9321                     OM != OMEnd; ++OM)
9322                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9323                    << (NamedDecl *)M->first << OM->Method->getParent();
9324
9325                Record->setInvalidDecl();
9326              }
9327            }
9328            CXXRecord->completeDefinition(&FinalOverriders);
9329            Completed = true;
9330          }
9331        }
9332      }
9333    }
9334
9335    if (!Completed)
9336      Record->completeDefinition();
9337
9338    // Now that the record is complete, do any delayed exception spec checks
9339    // we were missing.
9340    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9341      const CXXDestructorDecl *Dtor =
9342              DelayedDestructorExceptionSpecChecks.back().first;
9343      if (Dtor->getParent() != Record)
9344        break;
9345
9346      assert(!Dtor->getParent()->isDependentType() &&
9347          "Should not ever add destructors of templates into the list.");
9348      CheckOverridingFunctionExceptionSpec(Dtor,
9349          DelayedDestructorExceptionSpecChecks.back().second);
9350      DelayedDestructorExceptionSpecChecks.pop_back();
9351    }
9352
9353  } else {
9354    ObjCIvarDecl **ClsFields =
9355      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9356    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9357      ID->setLocEnd(RBrac);
9358      // Add ivar's to class's DeclContext.
9359      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9360        ClsFields[i]->setLexicalDeclContext(ID);
9361        ID->addDecl(ClsFields[i]);
9362      }
9363      // Must enforce the rule that ivars in the base classes may not be
9364      // duplicates.
9365      if (ID->getSuperClass())
9366        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9367    } else if (ObjCImplementationDecl *IMPDecl =
9368                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9369      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9370      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9371        // Ivar declared in @implementation never belongs to the implementation.
9372        // Only it is in implementation's lexical context.
9373        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9374      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9375    } else if (ObjCCategoryDecl *CDecl =
9376                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9377      // case of ivars in class extension; all other cases have been
9378      // reported as errors elsewhere.
9379      // FIXME. Class extension does not have a LocEnd field.
9380      // CDecl->setLocEnd(RBrac);
9381      // Add ivar's to class extension's DeclContext.
9382      // Diagnose redeclaration of private ivars.
9383      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9384      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9385        if (IDecl) {
9386          if (const ObjCIvarDecl *ClsIvar =
9387              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9388            Diag(ClsFields[i]->getLocation(),
9389                 diag::err_duplicate_ivar_declaration);
9390            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9391            continue;
9392          }
9393          for (const ObjCCategoryDecl *ClsExtDecl =
9394                IDecl->getFirstClassExtension();
9395               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9396            if (const ObjCIvarDecl *ClsExtIvar =
9397                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9398              Diag(ClsFields[i]->getLocation(),
9399                   diag::err_duplicate_ivar_declaration);
9400              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9401              continue;
9402            }
9403          }
9404        }
9405        ClsFields[i]->setLexicalDeclContext(CDecl);
9406        CDecl->addDecl(ClsFields[i]);
9407      }
9408    }
9409  }
9410
9411  if (Attr)
9412    ProcessDeclAttributeList(S, Record, Attr);
9413
9414  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9415  // set the visibility of this record.
9416  if (Record && !Record->getDeclContext()->isRecord())
9417    AddPushedVisibilityAttribute(Record);
9418}
9419
9420/// \brief Determine whether the given integral value is representable within
9421/// the given type T.
9422static bool isRepresentableIntegerValue(ASTContext &Context,
9423                                        llvm::APSInt &Value,
9424                                        QualType T) {
9425  assert(T->isIntegralType(Context) && "Integral type required!");
9426  unsigned BitWidth = Context.getIntWidth(T);
9427
9428  if (Value.isUnsigned() || Value.isNonNegative()) {
9429    if (T->isSignedIntegerOrEnumerationType())
9430      --BitWidth;
9431    return Value.getActiveBits() <= BitWidth;
9432  }
9433  return Value.getMinSignedBits() <= BitWidth;
9434}
9435
9436// \brief Given an integral type, return the next larger integral type
9437// (or a NULL type of no such type exists).
9438static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9439  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9440  // enum checking below.
9441  assert(T->isIntegralType(Context) && "Integral type required!");
9442  const unsigned NumTypes = 4;
9443  QualType SignedIntegralTypes[NumTypes] = {
9444    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9445  };
9446  QualType UnsignedIntegralTypes[NumTypes] = {
9447    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9448    Context.UnsignedLongLongTy
9449  };
9450
9451  unsigned BitWidth = Context.getTypeSize(T);
9452  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9453                                                        : UnsignedIntegralTypes;
9454  for (unsigned I = 0; I != NumTypes; ++I)
9455    if (Context.getTypeSize(Types[I]) > BitWidth)
9456      return Types[I];
9457
9458  return QualType();
9459}
9460
9461EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9462                                          EnumConstantDecl *LastEnumConst,
9463                                          SourceLocation IdLoc,
9464                                          IdentifierInfo *Id,
9465                                          Expr *Val) {
9466  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9467  llvm::APSInt EnumVal(IntWidth);
9468  QualType EltTy;
9469
9470  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9471    Val = 0;
9472
9473  if (Val)
9474    Val = DefaultLvalueConversion(Val).take();
9475
9476  if (Val) {
9477    if (Enum->isDependentType() || Val->isTypeDependent())
9478      EltTy = Context.DependentTy;
9479    else {
9480      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9481      SourceLocation ExpLoc;
9482      if (!Val->isValueDependent() &&
9483          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9484        Val = 0;
9485      } else {
9486        if (!getLangOptions().CPlusPlus) {
9487          // C99 6.7.2.2p2:
9488          //   The expression that defines the value of an enumeration constant
9489          //   shall be an integer constant expression that has a value
9490          //   representable as an int.
9491
9492          // Complain if the value is not representable in an int.
9493          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9494            Diag(IdLoc, diag::ext_enum_value_not_int)
9495              << EnumVal.toString(10) << Val->getSourceRange()
9496              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9497          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9498            // Force the type of the expression to 'int'.
9499            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9500          }
9501        }
9502
9503        if (Enum->isFixed()) {
9504          EltTy = Enum->getIntegerType();
9505
9506          // C++0x [dcl.enum]p5:
9507          //   ... if the initializing value of an enumerator cannot be
9508          //   represented by the underlying type, the program is ill-formed.
9509          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9510            if (getLangOptions().MicrosoftExt) {
9511              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9512              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9513            } else
9514              Diag(IdLoc, diag::err_enumerator_too_large)
9515                << EltTy;
9516          } else
9517            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9518        }
9519        else {
9520          // C++0x [dcl.enum]p5:
9521          //   If the underlying type is not fixed, the type of each enumerator
9522          //   is the type of its initializing value:
9523          //     - If an initializer is specified for an enumerator, the
9524          //       initializing value has the same type as the expression.
9525          EltTy = Val->getType();
9526        }
9527      }
9528    }
9529  }
9530
9531  if (!Val) {
9532    if (Enum->isDependentType())
9533      EltTy = Context.DependentTy;
9534    else if (!LastEnumConst) {
9535      // C++0x [dcl.enum]p5:
9536      //   If the underlying type is not fixed, the type of each enumerator
9537      //   is the type of its initializing value:
9538      //     - If no initializer is specified for the first enumerator, the
9539      //       initializing value has an unspecified integral type.
9540      //
9541      // GCC uses 'int' for its unspecified integral type, as does
9542      // C99 6.7.2.2p3.
9543      if (Enum->isFixed()) {
9544        EltTy = Enum->getIntegerType();
9545      }
9546      else {
9547        EltTy = Context.IntTy;
9548      }
9549    } else {
9550      // Assign the last value + 1.
9551      EnumVal = LastEnumConst->getInitVal();
9552      ++EnumVal;
9553      EltTy = LastEnumConst->getType();
9554
9555      // Check for overflow on increment.
9556      if (EnumVal < LastEnumConst->getInitVal()) {
9557        // C++0x [dcl.enum]p5:
9558        //   If the underlying type is not fixed, the type of each enumerator
9559        //   is the type of its initializing value:
9560        //
9561        //     - Otherwise the type of the initializing value is the same as
9562        //       the type of the initializing value of the preceding enumerator
9563        //       unless the incremented value is not representable in that type,
9564        //       in which case the type is an unspecified integral type
9565        //       sufficient to contain the incremented value. If no such type
9566        //       exists, the program is ill-formed.
9567        QualType T = getNextLargerIntegralType(Context, EltTy);
9568        if (T.isNull() || Enum->isFixed()) {
9569          // There is no integral type larger enough to represent this
9570          // value. Complain, then allow the value to wrap around.
9571          EnumVal = LastEnumConst->getInitVal();
9572          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9573          ++EnumVal;
9574          if (Enum->isFixed())
9575            // When the underlying type is fixed, this is ill-formed.
9576            Diag(IdLoc, diag::err_enumerator_wrapped)
9577              << EnumVal.toString(10)
9578              << EltTy;
9579          else
9580            Diag(IdLoc, diag::warn_enumerator_too_large)
9581              << EnumVal.toString(10);
9582        } else {
9583          EltTy = T;
9584        }
9585
9586        // Retrieve the last enumerator's value, extent that type to the
9587        // type that is supposed to be large enough to represent the incremented
9588        // value, then increment.
9589        EnumVal = LastEnumConst->getInitVal();
9590        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9591        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9592        ++EnumVal;
9593
9594        // If we're not in C++, diagnose the overflow of enumerator values,
9595        // which in C99 means that the enumerator value is not representable in
9596        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9597        // permits enumerator values that are representable in some larger
9598        // integral type.
9599        if (!getLangOptions().CPlusPlus && !T.isNull())
9600          Diag(IdLoc, diag::warn_enum_value_overflow);
9601      } else if (!getLangOptions().CPlusPlus &&
9602                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9603        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9604        Diag(IdLoc, diag::ext_enum_value_not_int)
9605          << EnumVal.toString(10) << 1;
9606      }
9607    }
9608  }
9609
9610  if (!EltTy->isDependentType()) {
9611    // Make the enumerator value match the signedness and size of the
9612    // enumerator's type.
9613    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9614    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9615  }
9616
9617  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9618                                  Val, EnumVal);
9619}
9620
9621
9622Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9623                              SourceLocation IdLoc, IdentifierInfo *Id,
9624                              AttributeList *Attr,
9625                              SourceLocation EqualLoc, Expr *val) {
9626  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9627  EnumConstantDecl *LastEnumConst =
9628    cast_or_null<EnumConstantDecl>(lastEnumConst);
9629  Expr *Val = static_cast<Expr*>(val);
9630
9631  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9632  // we find one that is.
9633  S = getNonFieldDeclScope(S);
9634
9635  // Verify that there isn't already something declared with this name in this
9636  // scope.
9637  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9638                                         ForRedeclaration);
9639  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9640    // Maybe we will complain about the shadowed template parameter.
9641    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9642    // Just pretend that we didn't see the previous declaration.
9643    PrevDecl = 0;
9644  }
9645
9646  if (PrevDecl) {
9647    // When in C++, we may get a TagDecl with the same name; in this case the
9648    // enum constant will 'hide' the tag.
9649    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9650           "Received TagDecl when not in C++!");
9651    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9652      if (isa<EnumConstantDecl>(PrevDecl))
9653        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9654      else
9655        Diag(IdLoc, diag::err_redefinition) << Id;
9656      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9657      return 0;
9658    }
9659  }
9660
9661  // C++ [class.mem]p13:
9662  //   If T is the name of a class, then each of the following shall have a
9663  //   name different from T:
9664  //     - every enumerator of every member of class T that is an enumerated
9665  //       type
9666  if (CXXRecordDecl *Record
9667                      = dyn_cast<CXXRecordDecl>(
9668                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9669    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9670      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9671
9672  EnumConstantDecl *New =
9673    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9674
9675  if (New) {
9676    // Process attributes.
9677    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9678
9679    // Register this decl in the current scope stack.
9680    New->setAccess(TheEnumDecl->getAccess());
9681    PushOnScopeChains(New, S);
9682  }
9683
9684  return New;
9685}
9686
9687void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9688                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9689                         Decl **Elements, unsigned NumElements,
9690                         Scope *S, AttributeList *Attr) {
9691  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9692  QualType EnumType = Context.getTypeDeclType(Enum);
9693
9694  if (Attr)
9695    ProcessDeclAttributeList(S, Enum, Attr);
9696
9697  if (Enum->isDependentType()) {
9698    for (unsigned i = 0; i != NumElements; ++i) {
9699      EnumConstantDecl *ECD =
9700        cast_or_null<EnumConstantDecl>(Elements[i]);
9701      if (!ECD) continue;
9702
9703      ECD->setType(EnumType);
9704    }
9705
9706    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9707    return;
9708  }
9709
9710  // TODO: If the result value doesn't fit in an int, it must be a long or long
9711  // long value.  ISO C does not support this, but GCC does as an extension,
9712  // emit a warning.
9713  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9714  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9715  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9716
9717  // Verify that all the values are okay, compute the size of the values, and
9718  // reverse the list.
9719  unsigned NumNegativeBits = 0;
9720  unsigned NumPositiveBits = 0;
9721
9722  // Keep track of whether all elements have type int.
9723  bool AllElementsInt = true;
9724
9725  for (unsigned i = 0; i != NumElements; ++i) {
9726    EnumConstantDecl *ECD =
9727      cast_or_null<EnumConstantDecl>(Elements[i]);
9728    if (!ECD) continue;  // Already issued a diagnostic.
9729
9730    const llvm::APSInt &InitVal = ECD->getInitVal();
9731
9732    // Keep track of the size of positive and negative values.
9733    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9734      NumPositiveBits = std::max(NumPositiveBits,
9735                                 (unsigned)InitVal.getActiveBits());
9736    else
9737      NumNegativeBits = std::max(NumNegativeBits,
9738                                 (unsigned)InitVal.getMinSignedBits());
9739
9740    // Keep track of whether every enum element has type int (very commmon).
9741    if (AllElementsInt)
9742      AllElementsInt = ECD->getType() == Context.IntTy;
9743  }
9744
9745  // Figure out the type that should be used for this enum.
9746  QualType BestType;
9747  unsigned BestWidth;
9748
9749  // C++0x N3000 [conv.prom]p3:
9750  //   An rvalue of an unscoped enumeration type whose underlying
9751  //   type is not fixed can be converted to an rvalue of the first
9752  //   of the following types that can represent all the values of
9753  //   the enumeration: int, unsigned int, long int, unsigned long
9754  //   int, long long int, or unsigned long long int.
9755  // C99 6.4.4.3p2:
9756  //   An identifier declared as an enumeration constant has type int.
9757  // The C99 rule is modified by a gcc extension
9758  QualType BestPromotionType;
9759
9760  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9761  // -fshort-enums is the equivalent to specifying the packed attribute on all
9762  // enum definitions.
9763  if (LangOpts.ShortEnums)
9764    Packed = true;
9765
9766  if (Enum->isFixed()) {
9767    BestType = Enum->getIntegerType();
9768    if (BestType->isPromotableIntegerType())
9769      BestPromotionType = Context.getPromotedIntegerType(BestType);
9770    else
9771      BestPromotionType = BestType;
9772    // We don't need to set BestWidth, because BestType is going to be the type
9773    // of the enumerators, but we do anyway because otherwise some compilers
9774    // warn that it might be used uninitialized.
9775    BestWidth = CharWidth;
9776  }
9777  else if (NumNegativeBits) {
9778    // If there is a negative value, figure out the smallest integer type (of
9779    // int/long/longlong) that fits.
9780    // If it's packed, check also if it fits a char or a short.
9781    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9782      BestType = Context.SignedCharTy;
9783      BestWidth = CharWidth;
9784    } else if (Packed && NumNegativeBits <= ShortWidth &&
9785               NumPositiveBits < ShortWidth) {
9786      BestType = Context.ShortTy;
9787      BestWidth = ShortWidth;
9788    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9789      BestType = Context.IntTy;
9790      BestWidth = IntWidth;
9791    } else {
9792      BestWidth = Context.getTargetInfo().getLongWidth();
9793
9794      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9795        BestType = Context.LongTy;
9796      } else {
9797        BestWidth = Context.getTargetInfo().getLongLongWidth();
9798
9799        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9800          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9801        BestType = Context.LongLongTy;
9802      }
9803    }
9804    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9805  } else {
9806    // If there is no negative value, figure out the smallest type that fits
9807    // all of the enumerator values.
9808    // If it's packed, check also if it fits a char or a short.
9809    if (Packed && NumPositiveBits <= CharWidth) {
9810      BestType = Context.UnsignedCharTy;
9811      BestPromotionType = Context.IntTy;
9812      BestWidth = CharWidth;
9813    } else if (Packed && NumPositiveBits <= ShortWidth) {
9814      BestType = Context.UnsignedShortTy;
9815      BestPromotionType = Context.IntTy;
9816      BestWidth = ShortWidth;
9817    } else if (NumPositiveBits <= IntWidth) {
9818      BestType = Context.UnsignedIntTy;
9819      BestWidth = IntWidth;
9820      BestPromotionType
9821        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9822                           ? Context.UnsignedIntTy : Context.IntTy;
9823    } else if (NumPositiveBits <=
9824               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9825      BestType = Context.UnsignedLongTy;
9826      BestPromotionType
9827        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9828                           ? Context.UnsignedLongTy : Context.LongTy;
9829    } else {
9830      BestWidth = Context.getTargetInfo().getLongLongWidth();
9831      assert(NumPositiveBits <= BestWidth &&
9832             "How could an initializer get larger than ULL?");
9833      BestType = Context.UnsignedLongLongTy;
9834      BestPromotionType
9835        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9836                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9837    }
9838  }
9839
9840  // Loop over all of the enumerator constants, changing their types to match
9841  // the type of the enum if needed.
9842  for (unsigned i = 0; i != NumElements; ++i) {
9843    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9844    if (!ECD) continue;  // Already issued a diagnostic.
9845
9846    // Standard C says the enumerators have int type, but we allow, as an
9847    // extension, the enumerators to be larger than int size.  If each
9848    // enumerator value fits in an int, type it as an int, otherwise type it the
9849    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9850    // that X has type 'int', not 'unsigned'.
9851
9852    // Determine whether the value fits into an int.
9853    llvm::APSInt InitVal = ECD->getInitVal();
9854
9855    // If it fits into an integer type, force it.  Otherwise force it to match
9856    // the enum decl type.
9857    QualType NewTy;
9858    unsigned NewWidth;
9859    bool NewSign;
9860    if (!getLangOptions().CPlusPlus &&
9861        !Enum->isFixed() &&
9862        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9863      NewTy = Context.IntTy;
9864      NewWidth = IntWidth;
9865      NewSign = true;
9866    } else if (ECD->getType() == BestType) {
9867      // Already the right type!
9868      if (getLangOptions().CPlusPlus)
9869        // C++ [dcl.enum]p4: Following the closing brace of an
9870        // enum-specifier, each enumerator has the type of its
9871        // enumeration.
9872        ECD->setType(EnumType);
9873      continue;
9874    } else {
9875      NewTy = BestType;
9876      NewWidth = BestWidth;
9877      NewSign = BestType->isSignedIntegerOrEnumerationType();
9878    }
9879
9880    // Adjust the APSInt value.
9881    InitVal = InitVal.extOrTrunc(NewWidth);
9882    InitVal.setIsSigned(NewSign);
9883    ECD->setInitVal(InitVal);
9884
9885    // Adjust the Expr initializer and type.
9886    if (ECD->getInitExpr() &&
9887        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9888      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9889                                                CK_IntegralCast,
9890                                                ECD->getInitExpr(),
9891                                                /*base paths*/ 0,
9892                                                VK_RValue));
9893    if (getLangOptions().CPlusPlus)
9894      // C++ [dcl.enum]p4: Following the closing brace of an
9895      // enum-specifier, each enumerator has the type of its
9896      // enumeration.
9897      ECD->setType(EnumType);
9898    else
9899      ECD->setType(NewTy);
9900  }
9901
9902  Enum->completeDefinition(BestType, BestPromotionType,
9903                           NumPositiveBits, NumNegativeBits);
9904}
9905
9906Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9907                                  SourceLocation StartLoc,
9908                                  SourceLocation EndLoc) {
9909  StringLiteral *AsmString = cast<StringLiteral>(expr);
9910
9911  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9912                                                   AsmString, StartLoc,
9913                                                   EndLoc);
9914  CurContext->addDecl(New);
9915  return New;
9916}
9917
9918DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc, ModuleIdPath Path) {
9919  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9920                                                Module::AllVisible,
9921                                                /*IsIncludeDirective=*/false);
9922  if (!Mod)
9923    return true;
9924
9925  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9926  Module *ModCheck = Mod;
9927  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9928    // If we've run out of module parents, just drop the remaining identifiers.
9929    // We need the length to be consistent.
9930    if (!ModCheck)
9931      break;
9932    ModCheck = ModCheck->Parent;
9933
9934    IdentifierLocs.push_back(Path[I].second);
9935  }
9936
9937  ImportDecl *Import = ImportDecl::Create(Context,
9938                                          Context.getTranslationUnitDecl(),
9939                                          ImportLoc, Mod,
9940                                          IdentifierLocs);
9941  Context.getTranslationUnitDecl()->addDecl(Import);
9942  return Import;
9943}
9944
9945void
9946Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9947                                         SourceLocation ModulePrivateKeyword) {
9948  assert(!Old->isModulePrivate() && "Old is module-private!");
9949
9950  Diag(New->getLocation(), diag::err_module_private_follows_public)
9951    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9952  Diag(Old->getLocation(), diag::note_previous_declaration)
9953    << Old->getDeclName();
9954
9955  // Drop the __module_private__ from the new declaration, since it's invalid.
9956  New->setModulePrivate(false);
9957}
9958
9959void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9960                             SourceLocation PragmaLoc,
9961                             SourceLocation NameLoc) {
9962  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9963
9964  if (PrevDecl) {
9965    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9966  } else {
9967    (void)WeakUndeclaredIdentifiers.insert(
9968      std::pair<IdentifierInfo*,WeakInfo>
9969        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9970  }
9971}
9972
9973void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9974                                IdentifierInfo* AliasName,
9975                                SourceLocation PragmaLoc,
9976                                SourceLocation NameLoc,
9977                                SourceLocation AliasNameLoc) {
9978  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9979                                    LookupOrdinaryName);
9980  WeakInfo W = WeakInfo(Name, NameLoc);
9981
9982  if (PrevDecl) {
9983    if (!PrevDecl->hasAttr<AliasAttr>())
9984      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9985        DeclApplyPragmaWeak(TUScope, ND, W);
9986  } else {
9987    (void)WeakUndeclaredIdentifiers.insert(
9988      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9989  }
9990}
9991
9992Decl *Sema::getObjCDeclContext() const {
9993  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9994}
9995
9996AvailabilityResult Sema::getCurContextAvailability() const {
9997  const Decl *D = cast<Decl>(getCurLexicalContext());
9998  // A category implicitly has the availability of the interface.
9999  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10000    D = CatD->getClassInterface();
10001
10002  return D->getAvailability();
10003}
10004