SemaDecl.cpp revision aef01998af5bbfc1cdfac091248ff7d30ec31456
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/AST/CXXInheritance.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/Parse/DeclSpec.h"
25#include "clang/Parse/ParseDiagnostic.h"
26#include "clang/Parse/Template.h"
27#include "clang/Basic/PartialDiagnostic.h"
28#include "clang/Basic/SourceManager.h"
29#include "clang/Basic/TargetInfo.h"
30// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
31#include "clang/Lex/Preprocessor.h"
32#include "clang/Lex/HeaderSearch.h"
33#include "llvm/ADT/Triple.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, CXXScopeSpec *SS,
65                                bool isClassName,
66                                TypeTy *ObjectTypePtr) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return 0;
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        return CheckTypenameType(ETK_None,
93                                 (NestedNameSpecifier *)SS->getScopeRep(), II,
94                                 SourceLocation(), SS->getRange(), NameLoc
95                                 ).getAsOpaquePtr();
96      }
97
98      return 0;
99    }
100
101    if (!LookupCtx->isDependentContext() &&
102        RequireCompleteDeclContext(*SS, LookupCtx))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    Result.suppressDiagnostics();
139    return 0;
140
141  case LookupResult::Ambiguous:
142    // Recover from type-hiding ambiguities by hiding the type.  We'll
143    // do the lookup again when looking for an object, and we can
144    // diagnose the error then.  If we don't do this, then the error
145    // about hiding the type will be immediately followed by an error
146    // that only makes sense if the identifier was treated like a type.
147    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
148      Result.suppressDiagnostics();
149      return 0;
150    }
151
152    // Look to see if we have a type anywhere in the list of results.
153    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
154         Res != ResEnd; ++Res) {
155      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
156        if (!IIDecl ||
157            (*Res)->getLocation().getRawEncoding() <
158              IIDecl->getLocation().getRawEncoding())
159          IIDecl = *Res;
160      }
161    }
162
163    if (!IIDecl) {
164      // None of the entities we found is a type, so there is no way
165      // to even assume that the result is a type. In this case, don't
166      // complain about the ambiguity. The parser will either try to
167      // perform this lookup again (e.g., as an object name), which
168      // will produce the ambiguity, or will complain that it expected
169      // a type name.
170      Result.suppressDiagnostics();
171      return 0;
172    }
173
174    // We found a type within the ambiguous lookup; diagnose the
175    // ambiguity and then return that type. This might be the right
176    // answer, or it might not be, but it suppresses any attempt to
177    // perform the name lookup again.
178    break;
179
180  case LookupResult::Found:
181    IIDecl = Result.getFoundDecl();
182    break;
183  }
184
185  assert(IIDecl && "Didn't find decl");
186
187  QualType T;
188  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
189    DiagnoseUseOfDecl(IIDecl, NameLoc);
190
191    if (T.isNull())
192      T = Context.getTypeDeclType(TD);
193
194    if (SS)
195      T = getElaboratedType(ETK_None, *SS, T);
196
197  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
198    T = Context.getObjCInterfaceType(IDecl);
199  } else {
200    // If it's not plausibly a type, suppress diagnostics.
201    Result.suppressDiagnostics();
202    return 0;
203  }
204
205  return T.getAsOpaquePtr();
206}
207
208/// isTagName() - This method is called *for error recovery purposes only*
209/// to determine if the specified name is a valid tag name ("struct foo").  If
210/// so, this returns the TST for the tag corresponding to it (TST_enum,
211/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
212/// where the user forgot to specify the tag.
213DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
214  // Do a tag name lookup in this scope.
215  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
216  LookupName(R, S, false);
217  R.suppressDiagnostics();
218  if (R.getResultKind() == LookupResult::Found)
219    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
220      switch (TD->getTagKind()) {
221      default:         return DeclSpec::TST_unspecified;
222      case TTK_Struct: return DeclSpec::TST_struct;
223      case TTK_Union:  return DeclSpec::TST_union;
224      case TTK_Class:  return DeclSpec::TST_class;
225      case TTK_Enum:   return DeclSpec::TST_enum;
226      }
227    }
228
229  return DeclSpec::TST_unspecified;
230}
231
232bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
233                                   SourceLocation IILoc,
234                                   Scope *S,
235                                   CXXScopeSpec *SS,
236                                   TypeTy *&SuggestedType) {
237  // We don't have anything to suggest (yet).
238  SuggestedType = 0;
239
240  // There may have been a typo in the name of the type. Look up typo
241  // results, in case we have something that we can suggest.
242  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
243                      NotForRedeclaration);
244
245  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
246    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
247      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
248          !Result->isInvalidDecl()) {
249        // We found a similarly-named type or interface; suggest that.
250        if (!SS || !SS->isSet())
251          Diag(IILoc, diag::err_unknown_typename_suggest)
252            << &II << Lookup.getLookupName()
253            << FixItHint::CreateReplacement(SourceRange(IILoc),
254                                            Result->getNameAsString());
255        else if (DeclContext *DC = computeDeclContext(*SS, false))
256          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
257            << &II << DC << Lookup.getLookupName() << SS->getRange()
258            << FixItHint::CreateReplacement(SourceRange(IILoc),
259                                            Result->getNameAsString());
260        else
261          llvm_unreachable("could not have corrected a typo here");
262
263        Diag(Result->getLocation(), diag::note_previous_decl)
264          << Result->getDeclName();
265
266        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
267        return true;
268      }
269    } else if (Lookup.empty()) {
270      // We corrected to a keyword.
271      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
272      Diag(IILoc, diag::err_unknown_typename_suggest)
273        << &II << Corrected;
274      return true;
275    }
276  }
277
278  if (getLangOptions().CPlusPlus) {
279    // See if II is a class template that the user forgot to pass arguments to.
280    UnqualifiedId Name;
281    Name.setIdentifier(&II, IILoc);
282    CXXScopeSpec EmptySS;
283    TemplateTy TemplateResult;
284    bool MemberOfUnknownSpecialization;
285    if (isTemplateName(S, SS ? *SS : EmptySS, Name, 0, true, TemplateResult,
286                       MemberOfUnknownSpecialization) == TNK_Type_template) {
287      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
288      Diag(IILoc, diag::err_template_missing_args) << TplName;
289      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
290        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
291          << TplDecl->getTemplateParameters()->getSourceRange();
292      }
293      return true;
294    }
295  }
296
297  // FIXME: Should we move the logic that tries to recover from a missing tag
298  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
299
300  if (!SS || (!SS->isSet() && !SS->isInvalid()))
301    Diag(IILoc, diag::err_unknown_typename) << &II;
302  else if (DeclContext *DC = computeDeclContext(*SS, false))
303    Diag(IILoc, diag::err_typename_nested_not_found)
304      << &II << DC << SS->getRange();
305  else if (isDependentScopeSpecifier(*SS)) {
306    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
307      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
308      << SourceRange(SS->getRange().getBegin(), IILoc)
309      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
310    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
311  } else {
312    assert(SS && SS->isInvalid() &&
313           "Invalid scope specifier has already been diagnosed");
314  }
315
316  return true;
317}
318
319// Determines the context to return to after temporarily entering a
320// context.  This depends in an unnecessarily complicated way on the
321// exact ordering of callbacks from the parser.
322DeclContext *Sema::getContainingDC(DeclContext *DC) {
323
324  // Functions defined inline within classes aren't parsed until we've
325  // finished parsing the top-level class, so the top-level class is
326  // the context we'll need to return to.
327  if (isa<FunctionDecl>(DC)) {
328    DC = DC->getLexicalParent();
329
330    // A function not defined within a class will always return to its
331    // lexical context.
332    if (!isa<CXXRecordDecl>(DC))
333      return DC;
334
335    // A C++ inline method/friend is parsed *after* the topmost class
336    // it was declared in is fully parsed ("complete");  the topmost
337    // class is the context we need to return to.
338    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
339      DC = RD;
340
341    // Return the declaration context of the topmost class the inline method is
342    // declared in.
343    return DC;
344  }
345
346  if (isa<ObjCMethodDecl>(DC))
347    return Context.getTranslationUnitDecl();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363}
364
365/// EnterDeclaratorContext - Used when we must lookup names in the context
366/// of a declarator's nested name specifier.
367///
368void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
369  // C++0x [basic.lookup.unqual]p13:
370  //   A name used in the definition of a static data member of class
371  //   X (after the qualified-id of the static member) is looked up as
372  //   if the name was used in a member function of X.
373  // C++0x [basic.lookup.unqual]p14:
374  //   If a variable member of a namespace is defined outside of the
375  //   scope of its namespace then any name used in the definition of
376  //   the variable member (after the declarator-id) is looked up as
377  //   if the definition of the variable member occurred in its
378  //   namespace.
379  // Both of these imply that we should push a scope whose context
380  // is the semantic context of the declaration.  We can't use
381  // PushDeclContext here because that context is not necessarily
382  // lexically contained in the current context.  Fortunately,
383  // the containing scope should have the appropriate information.
384
385  assert(!S->getEntity() && "scope already has entity");
386
387#ifndef NDEBUG
388  Scope *Ancestor = S->getParent();
389  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
390  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
391#endif
392
393  CurContext = DC;
394  S->setEntity(DC);
395}
396
397void Sema::ExitDeclaratorContext(Scope *S) {
398  assert(S->getEntity() == CurContext && "Context imbalance!");
399
400  // Switch back to the lexical context.  The safety of this is
401  // enforced by an assert in EnterDeclaratorContext.
402  Scope *Ancestor = S->getParent();
403  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
404  CurContext = (DeclContext*) Ancestor->getEntity();
405
406  // We don't need to do anything with the scope, which is going to
407  // disappear.
408}
409
410/// \brief Determine whether we allow overloading of the function
411/// PrevDecl with another declaration.
412///
413/// This routine determines whether overloading is possible, not
414/// whether some new function is actually an overload. It will return
415/// true in C++ (where we can always provide overloads) or, as an
416/// extension, in C when the previous function is already an
417/// overloaded function declaration or has the "overloadable"
418/// attribute.
419static bool AllowOverloadingOfFunction(LookupResult &Previous,
420                                       ASTContext &Context) {
421  if (Context.getLangOptions().CPlusPlus)
422    return true;
423
424  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
425    return true;
426
427  return (Previous.getResultKind() == LookupResult::Found
428          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
429}
430
431/// Add this decl to the scope shadowed decl chains.
432void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
433  // Move up the scope chain until we find the nearest enclosing
434  // non-transparent context. The declaration will be introduced into this
435  // scope.
436  while (S->getEntity() &&
437         ((DeclContext *)S->getEntity())->isTransparentContext())
438    S = S->getParent();
439
440  // Add scoped declarations into their context, so that they can be
441  // found later. Declarations without a context won't be inserted
442  // into any context.
443  if (AddToContext)
444    CurContext->addDecl(D);
445
446  // Out-of-line definitions shouldn't be pushed into scope in C++.
447  // Out-of-line variable and function definitions shouldn't even in C.
448  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
449      D->isOutOfLine())
450    return;
451
452  // Template instantiations should also not be pushed into scope.
453  if (isa<FunctionDecl>(D) &&
454      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
455    return;
456
457  // If this replaces anything in the current scope,
458  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
459                               IEnd = IdResolver.end();
460  for (; I != IEnd; ++I) {
461    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
462      S->RemoveDecl(DeclPtrTy::make(*I));
463      IdResolver.RemoveDecl(*I);
464
465      // Should only need to replace one decl.
466      break;
467    }
468  }
469
470  S->AddDecl(DeclPtrTy::make(D));
471  IdResolver.AddDecl(D);
472}
473
474bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
475  return IdResolver.isDeclInScope(D, Ctx, Context, S);
476}
477
478static bool isOutOfScopePreviousDeclaration(NamedDecl *,
479                                            DeclContext*,
480                                            ASTContext&);
481
482/// Filters out lookup results that don't fall within the given scope
483/// as determined by isDeclInScope.
484static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
485                                 DeclContext *Ctx, Scope *S,
486                                 bool ConsiderLinkage) {
487  LookupResult::Filter F = R.makeFilter();
488  while (F.hasNext()) {
489    NamedDecl *D = F.next();
490
491    if (SemaRef.isDeclInScope(D, Ctx, S))
492      continue;
493
494    if (ConsiderLinkage &&
495        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
496      continue;
497
498    F.erase();
499  }
500
501  F.done();
502}
503
504static bool isUsingDecl(NamedDecl *D) {
505  return isa<UsingShadowDecl>(D) ||
506         isa<UnresolvedUsingTypenameDecl>(D) ||
507         isa<UnresolvedUsingValueDecl>(D);
508}
509
510/// Removes using shadow declarations from the lookup results.
511static void RemoveUsingDecls(LookupResult &R) {
512  LookupResult::Filter F = R.makeFilter();
513  while (F.hasNext())
514    if (isUsingDecl(F.next()))
515      F.erase();
516
517  F.done();
518}
519
520static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
521  if (D->isInvalidDecl())
522    return false;
523
524  if (D->isUsed() || D->hasAttr<UnusedAttr>())
525    return false;
526
527  // White-list anything that isn't a local variable.
528  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
529      !D->getDeclContext()->isFunctionOrMethod())
530    return false;
531
532  // Types of valid local variables should be complete, so this should succeed.
533  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
534
535    // White-list anything with an __attribute__((unused)) type.
536    QualType Ty = VD->getType();
537
538    // Only look at the outermost level of typedef.
539    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
540      if (TT->getDecl()->hasAttr<UnusedAttr>())
541        return false;
542    }
543
544    // If we failed to complete the type for some reason, or if the type is
545    // dependent, don't diagnose the variable.
546    if (Ty->isIncompleteType() || Ty->isDependentType())
547      return false;
548
549    if (const TagType *TT = Ty->getAs<TagType>()) {
550      const TagDecl *Tag = TT->getDecl();
551      if (Tag->hasAttr<UnusedAttr>())
552        return false;
553
554      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
555        // FIXME: Checking for the presence of a user-declared constructor
556        // isn't completely accurate; we'd prefer to check that the initializer
557        // has no side effects.
558        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
559          return false;
560      }
561    }
562
563    // TODO: __attribute__((unused)) templates?
564  }
565
566  return true;
567}
568
569void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
570  if (!ShouldDiagnoseUnusedDecl(D))
571    return;
572
573  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
574    Diag(D->getLocation(), diag::warn_unused_exception_param)
575    << D->getDeclName();
576  else
577    Diag(D->getLocation(), diag::warn_unused_variable)
578    << D->getDeclName();
579}
580
581void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
582  if (S->decl_empty()) return;
583  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
584         "Scope shouldn't contain decls!");
585
586  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
587       I != E; ++I) {
588    Decl *TmpD = (*I).getAs<Decl>();
589    assert(TmpD && "This decl didn't get pushed??");
590
591    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
592    NamedDecl *D = cast<NamedDecl>(TmpD);
593
594    if (!D->getDeclName()) continue;
595
596    // Diagnose unused variables in this scope.
597    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
598      DiagnoseUnusedDecl(D);
599
600    // Remove this name from our lexical scope.
601    IdResolver.RemoveDecl(D);
602  }
603}
604
605/// \brief Look for an Objective-C class in the translation unit.
606///
607/// \param Id The name of the Objective-C class we're looking for. If
608/// typo-correction fixes this name, the Id will be updated
609/// to the fixed name.
610///
611/// \param IdLoc The location of the name in the translation unit.
612///
613/// \param TypoCorrection If true, this routine will attempt typo correction
614/// if there is no class with the given name.
615///
616/// \returns The declaration of the named Objective-C class, or NULL if the
617/// class could not be found.
618ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
619                                              SourceLocation IdLoc,
620                                              bool TypoCorrection) {
621  // The third "scope" argument is 0 since we aren't enabling lazy built-in
622  // creation from this context.
623  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
624
625  if (!IDecl && TypoCorrection) {
626    // Perform typo correction at the given location, but only if we
627    // find an Objective-C class name.
628    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
629    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
630        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
631      Diag(IdLoc, diag::err_undef_interface_suggest)
632        << Id << IDecl->getDeclName()
633        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
634      Diag(IDecl->getLocation(), diag::note_previous_decl)
635        << IDecl->getDeclName();
636
637      Id = IDecl->getIdentifier();
638    }
639  }
640
641  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
642}
643
644/// getNonFieldDeclScope - Retrieves the innermost scope, starting
645/// from S, where a non-field would be declared. This routine copes
646/// with the difference between C and C++ scoping rules in structs and
647/// unions. For example, the following code is well-formed in C but
648/// ill-formed in C++:
649/// @code
650/// struct S6 {
651///   enum { BAR } e;
652/// };
653///
654/// void test_S6() {
655///   struct S6 a;
656///   a.e = BAR;
657/// }
658/// @endcode
659/// For the declaration of BAR, this routine will return a different
660/// scope. The scope S will be the scope of the unnamed enumeration
661/// within S6. In C++, this routine will return the scope associated
662/// with S6, because the enumeration's scope is a transparent
663/// context but structures can contain non-field names. In C, this
664/// routine will return the translation unit scope, since the
665/// enumeration's scope is a transparent context and structures cannot
666/// contain non-field names.
667Scope *Sema::getNonFieldDeclScope(Scope *S) {
668  while (((S->getFlags() & Scope::DeclScope) == 0) ||
669         (S->getEntity() &&
670          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
671         (S->isClassScope() && !getLangOptions().CPlusPlus))
672    S = S->getParent();
673  return S;
674}
675
676void Sema::InitBuiltinVaListType() {
677  if (!Context.getBuiltinVaListType().isNull())
678    return;
679
680  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
681  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
682                                       LookupOrdinaryName, ForRedeclaration);
683  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
684  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
685}
686
687/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
688/// file scope.  lazily create a decl for it. ForRedeclaration is true
689/// if we're creating this built-in in anticipation of redeclaring the
690/// built-in.
691NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
692                                     Scope *S, bool ForRedeclaration,
693                                     SourceLocation Loc) {
694  Builtin::ID BID = (Builtin::ID)bid;
695
696  if (Context.BuiltinInfo.hasVAListUse(BID))
697    InitBuiltinVaListType();
698
699  ASTContext::GetBuiltinTypeError Error;
700  QualType R = Context.GetBuiltinType(BID, Error);
701  switch (Error) {
702  case ASTContext::GE_None:
703    // Okay
704    break;
705
706  case ASTContext::GE_Missing_stdio:
707    if (ForRedeclaration)
708      Diag(Loc, diag::err_implicit_decl_requires_stdio)
709        << Context.BuiltinInfo.GetName(BID);
710    return 0;
711
712  case ASTContext::GE_Missing_setjmp:
713    if (ForRedeclaration)
714      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
715        << Context.BuiltinInfo.GetName(BID);
716    return 0;
717  }
718
719  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
720    Diag(Loc, diag::ext_implicit_lib_function_decl)
721      << Context.BuiltinInfo.GetName(BID)
722      << R;
723    if (Context.BuiltinInfo.getHeaderName(BID) &&
724        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
725          != Diagnostic::Ignored)
726      Diag(Loc, diag::note_please_include_header)
727        << Context.BuiltinInfo.getHeaderName(BID)
728        << Context.BuiltinInfo.GetName(BID);
729  }
730
731  FunctionDecl *New = FunctionDecl::Create(Context,
732                                           Context.getTranslationUnitDecl(),
733                                           Loc, II, R, /*TInfo=*/0,
734                                           FunctionDecl::Extern,
735                                           FunctionDecl::None, false,
736                                           /*hasPrototype=*/true);
737  New->setImplicit();
738
739  // Create Decl objects for each parameter, adding them to the
740  // FunctionDecl.
741  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
742    llvm::SmallVector<ParmVarDecl*, 16> Params;
743    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
744      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
745                                           FT->getArgType(i), /*TInfo=*/0,
746                                           VarDecl::None, VarDecl::None, 0));
747    New->setParams(Params.data(), Params.size());
748  }
749
750  AddKnownFunctionAttributes(New);
751
752  // TUScope is the translation-unit scope to insert this function into.
753  // FIXME: This is hideous. We need to teach PushOnScopeChains to
754  // relate Scopes to DeclContexts, and probably eliminate CurContext
755  // entirely, but we're not there yet.
756  DeclContext *SavedContext = CurContext;
757  CurContext = Context.getTranslationUnitDecl();
758  PushOnScopeChains(New, TUScope);
759  CurContext = SavedContext;
760  return New;
761}
762
763/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
764/// same name and scope as a previous declaration 'Old'.  Figure out
765/// how to resolve this situation, merging decls or emitting
766/// diagnostics as appropriate. If there was an error, set New to be invalid.
767///
768void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
769  // If the new decl is known invalid already, don't bother doing any
770  // merging checks.
771  if (New->isInvalidDecl()) return;
772
773  // Allow multiple definitions for ObjC built-in typedefs.
774  // FIXME: Verify the underlying types are equivalent!
775  if (getLangOptions().ObjC1) {
776    const IdentifierInfo *TypeID = New->getIdentifier();
777    switch (TypeID->getLength()) {
778    default: break;
779    case 2:
780      if (!TypeID->isStr("id"))
781        break;
782      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
783      // Install the built-in type for 'id', ignoring the current definition.
784      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
785      return;
786    case 5:
787      if (!TypeID->isStr("Class"))
788        break;
789      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
790      // Install the built-in type for 'Class', ignoring the current definition.
791      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
792      return;
793    case 3:
794      if (!TypeID->isStr("SEL"))
795        break;
796      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
797      // Install the built-in type for 'SEL', ignoring the current definition.
798      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
799      return;
800    case 8:
801      if (!TypeID->isStr("Protocol"))
802        break;
803      Context.setObjCProtoType(New->getUnderlyingType());
804      return;
805    }
806    // Fall through - the typedef name was not a builtin type.
807  }
808
809  // Verify the old decl was also a type.
810  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
811  if (!Old) {
812    Diag(New->getLocation(), diag::err_redefinition_different_kind)
813      << New->getDeclName();
814
815    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
816    if (OldD->getLocation().isValid())
817      Diag(OldD->getLocation(), diag::note_previous_definition);
818
819    return New->setInvalidDecl();
820  }
821
822  // If the old declaration is invalid, just give up here.
823  if (Old->isInvalidDecl())
824    return New->setInvalidDecl();
825
826  // Determine the "old" type we'll use for checking and diagnostics.
827  QualType OldType;
828  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
829    OldType = OldTypedef->getUnderlyingType();
830  else
831    OldType = Context.getTypeDeclType(Old);
832
833  // If the typedef types are not identical, reject them in all languages and
834  // with any extensions enabled.
835
836  if (OldType != New->getUnderlyingType() &&
837      Context.getCanonicalType(OldType) !=
838      Context.getCanonicalType(New->getUnderlyingType())) {
839    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
840      << New->getUnderlyingType() << OldType;
841    if (Old->getLocation().isValid())
842      Diag(Old->getLocation(), diag::note_previous_definition);
843    return New->setInvalidDecl();
844  }
845
846  // The types match.  Link up the redeclaration chain if the old
847  // declaration was a typedef.
848  // FIXME: this is a potential source of wierdness if the type
849  // spellings don't match exactly.
850  if (isa<TypedefDecl>(Old))
851    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
852
853  if (getLangOptions().Microsoft)
854    return;
855
856  if (getLangOptions().CPlusPlus) {
857    // C++ [dcl.typedef]p2:
858    //   In a given non-class scope, a typedef specifier can be used to
859    //   redefine the name of any type declared in that scope to refer
860    //   to the type to which it already refers.
861    if (!isa<CXXRecordDecl>(CurContext))
862      return;
863
864    // C++0x [dcl.typedef]p4:
865    //   In a given class scope, a typedef specifier can be used to redefine
866    //   any class-name declared in that scope that is not also a typedef-name
867    //   to refer to the type to which it already refers.
868    //
869    // This wording came in via DR424, which was a correction to the
870    // wording in DR56, which accidentally banned code like:
871    //
872    //   struct S {
873    //     typedef struct A { } A;
874    //   };
875    //
876    // in the C++03 standard. We implement the C++0x semantics, which
877    // allow the above but disallow
878    //
879    //   struct S {
880    //     typedef int I;
881    //     typedef int I;
882    //   };
883    //
884    // since that was the intent of DR56.
885    if (!isa<TypedefDecl >(Old))
886      return;
887
888    Diag(New->getLocation(), diag::err_redefinition)
889      << New->getDeclName();
890    Diag(Old->getLocation(), diag::note_previous_definition);
891    return New->setInvalidDecl();
892  }
893
894  // If we have a redefinition of a typedef in C, emit a warning.  This warning
895  // is normally mapped to an error, but can be controlled with
896  // -Wtypedef-redefinition.  If either the original or the redefinition is
897  // in a system header, don't emit this for compatibility with GCC.
898  if (getDiagnostics().getSuppressSystemWarnings() &&
899      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
900       Context.getSourceManager().isInSystemHeader(New->getLocation())))
901    return;
902
903  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
904    << New->getDeclName();
905  Diag(Old->getLocation(), diag::note_previous_definition);
906  return;
907}
908
909/// DeclhasAttr - returns true if decl Declaration already has the target
910/// attribute.
911static bool
912DeclHasAttr(const Decl *decl, const Attr *target) {
913  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
914    if (attr->getKind() == target->getKind())
915      return true;
916
917  return false;
918}
919
920/// MergeAttributes - append attributes from the Old decl to the New one.
921static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
922  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
923    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
924      Attr *NewAttr = attr->clone(C);
925      NewAttr->setInherited(true);
926      New->addAttr(NewAttr);
927    }
928  }
929}
930
931/// Used in MergeFunctionDecl to keep track of function parameters in
932/// C.
933struct GNUCompatibleParamWarning {
934  ParmVarDecl *OldParm;
935  ParmVarDecl *NewParm;
936  QualType PromotedType;
937};
938
939
940/// getSpecialMember - get the special member enum for a method.
941Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
942  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
943    if (Ctor->isCopyConstructor())
944      return Sema::CXXCopyConstructor;
945
946    return Sema::CXXConstructor;
947  }
948
949  if (isa<CXXDestructorDecl>(MD))
950    return Sema::CXXDestructor;
951
952  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
953  return Sema::CXXCopyAssignment;
954}
955
956/// canRedefineFunction - checks if a function can be redefined. Currently,
957/// only extern inline functions can be redefined, and even then only in
958/// GNU89 mode.
959static bool canRedefineFunction(const FunctionDecl *FD,
960                                const LangOptions& LangOpts) {
961  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
962          FD->isInlineSpecified() &&
963          FD->getStorageClass() == FunctionDecl::Extern);
964}
965
966/// MergeFunctionDecl - We just parsed a function 'New' from
967/// declarator D which has the same name and scope as a previous
968/// declaration 'Old'.  Figure out how to resolve this situation,
969/// merging decls or emitting diagnostics as appropriate.
970///
971/// In C++, New and Old must be declarations that are not
972/// overloaded. Use IsOverload to determine whether New and Old are
973/// overloaded, and to select the Old declaration that New should be
974/// merged with.
975///
976/// Returns true if there was an error, false otherwise.
977bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
978  // Verify the old decl was also a function.
979  FunctionDecl *Old = 0;
980  if (FunctionTemplateDecl *OldFunctionTemplate
981        = dyn_cast<FunctionTemplateDecl>(OldD))
982    Old = OldFunctionTemplate->getTemplatedDecl();
983  else
984    Old = dyn_cast<FunctionDecl>(OldD);
985  if (!Old) {
986    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
987      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
988      Diag(Shadow->getTargetDecl()->getLocation(),
989           diag::note_using_decl_target);
990      Diag(Shadow->getUsingDecl()->getLocation(),
991           diag::note_using_decl) << 0;
992      return true;
993    }
994
995    Diag(New->getLocation(), diag::err_redefinition_different_kind)
996      << New->getDeclName();
997    Diag(OldD->getLocation(), diag::note_previous_definition);
998    return true;
999  }
1000
1001  // Determine whether the previous declaration was a definition,
1002  // implicit declaration, or a declaration.
1003  diag::kind PrevDiag;
1004  if (Old->isThisDeclarationADefinition())
1005    PrevDiag = diag::note_previous_definition;
1006  else if (Old->isImplicit())
1007    PrevDiag = diag::note_previous_implicit_declaration;
1008  else
1009    PrevDiag = diag::note_previous_declaration;
1010
1011  QualType OldQType = Context.getCanonicalType(Old->getType());
1012  QualType NewQType = Context.getCanonicalType(New->getType());
1013
1014  // Don't complain about this if we're in GNU89 mode and the old function
1015  // is an extern inline function.
1016  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1017      New->getStorageClass() == FunctionDecl::Static &&
1018      Old->getStorageClass() != FunctionDecl::Static &&
1019      !canRedefineFunction(Old, getLangOptions())) {
1020    Diag(New->getLocation(), diag::err_static_non_static)
1021      << New;
1022    Diag(Old->getLocation(), PrevDiag);
1023    return true;
1024  }
1025
1026  // If a function is first declared with a calling convention, but is
1027  // later declared or defined without one, the second decl assumes the
1028  // calling convention of the first.
1029  //
1030  // For the new decl, we have to look at the NON-canonical type to tell the
1031  // difference between a function that really doesn't have a calling
1032  // convention and one that is declared cdecl. That's because in
1033  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1034  // because it is the default calling convention.
1035  //
1036  // Note also that we DO NOT return at this point, because we still have
1037  // other tests to run.
1038  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1039  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1040  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1041  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1042  if (OldTypeInfo.getCC() != CC_Default &&
1043      NewTypeInfo.getCC() == CC_Default) {
1044    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1045    New->setType(NewQType);
1046    NewQType = Context.getCanonicalType(NewQType);
1047  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1048                                     NewTypeInfo.getCC())) {
1049    // Calling conventions really aren't compatible, so complain.
1050    Diag(New->getLocation(), diag::err_cconv_change)
1051      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1052      << (OldTypeInfo.getCC() == CC_Default)
1053      << (OldTypeInfo.getCC() == CC_Default ? "" :
1054          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1055    Diag(Old->getLocation(), diag::note_previous_declaration);
1056    return true;
1057  }
1058
1059  // FIXME: diagnose the other way around?
1060  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1061    NewQType = Context.getNoReturnType(NewQType);
1062    New->setType(NewQType);
1063    assert(NewQType.isCanonical());
1064  }
1065
1066  // Merge regparm attribute.
1067  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1068    if (NewType->getRegParmType()) {
1069      Diag(New->getLocation(), diag::err_regparm_mismatch)
1070        << NewType->getRegParmType()
1071        << OldType->getRegParmType();
1072      Diag(Old->getLocation(), diag::note_previous_declaration);
1073      return true;
1074    }
1075
1076    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1077    New->setType(NewQType);
1078    assert(NewQType.isCanonical());
1079  }
1080
1081  if (getLangOptions().CPlusPlus) {
1082    // (C++98 13.1p2):
1083    //   Certain function declarations cannot be overloaded:
1084    //     -- Function declarations that differ only in the return type
1085    //        cannot be overloaded.
1086    QualType OldReturnType
1087      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1088    QualType NewReturnType
1089      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1090    QualType ResQT;
1091    if (OldReturnType != NewReturnType) {
1092      if (NewReturnType->isObjCObjectPointerType()
1093          && OldReturnType->isObjCObjectPointerType())
1094        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1095      if (ResQT.isNull()) {
1096        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1097        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1098        return true;
1099      }
1100      else
1101        NewQType = ResQT;
1102    }
1103
1104    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1105    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1106    if (OldMethod && NewMethod) {
1107      // Preserve triviality.
1108      NewMethod->setTrivial(OldMethod->isTrivial());
1109
1110      bool isFriend = NewMethod->getFriendObjectKind();
1111
1112      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1113        //    -- Member function declarations with the same name and the
1114        //       same parameter types cannot be overloaded if any of them
1115        //       is a static member function declaration.
1116        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1117          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1118          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1119          return true;
1120        }
1121
1122        // C++ [class.mem]p1:
1123        //   [...] A member shall not be declared twice in the
1124        //   member-specification, except that a nested class or member
1125        //   class template can be declared and then later defined.
1126        unsigned NewDiag;
1127        if (isa<CXXConstructorDecl>(OldMethod))
1128          NewDiag = diag::err_constructor_redeclared;
1129        else if (isa<CXXDestructorDecl>(NewMethod))
1130          NewDiag = diag::err_destructor_redeclared;
1131        else if (isa<CXXConversionDecl>(NewMethod))
1132          NewDiag = diag::err_conv_function_redeclared;
1133        else
1134          NewDiag = diag::err_member_redeclared;
1135
1136        Diag(New->getLocation(), NewDiag);
1137        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1138
1139      // Complain if this is an explicit declaration of a special
1140      // member that was initially declared implicitly.
1141      //
1142      // As an exception, it's okay to befriend such methods in order
1143      // to permit the implicit constructor/destructor/operator calls.
1144      } else if (OldMethod->isImplicit()) {
1145        if (isFriend) {
1146          NewMethod->setImplicit();
1147        } else {
1148          Diag(NewMethod->getLocation(),
1149               diag::err_definition_of_implicitly_declared_member)
1150            << New << getSpecialMember(OldMethod);
1151          return true;
1152        }
1153      }
1154    }
1155
1156    // (C++98 8.3.5p3):
1157    //   All declarations for a function shall agree exactly in both the
1158    //   return type and the parameter-type-list.
1159    // attributes should be ignored when comparing.
1160    if (Context.getNoReturnType(OldQType, false) ==
1161        Context.getNoReturnType(NewQType, false))
1162      return MergeCompatibleFunctionDecls(New, Old);
1163
1164    // Fall through for conflicting redeclarations and redefinitions.
1165  }
1166
1167  // C: Function types need to be compatible, not identical. This handles
1168  // duplicate function decls like "void f(int); void f(enum X);" properly.
1169  if (!getLangOptions().CPlusPlus &&
1170      Context.typesAreCompatible(OldQType, NewQType)) {
1171    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1172    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1173    const FunctionProtoType *OldProto = 0;
1174    if (isa<FunctionNoProtoType>(NewFuncType) &&
1175        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1176      // The old declaration provided a function prototype, but the
1177      // new declaration does not. Merge in the prototype.
1178      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1179      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1180                                                 OldProto->arg_type_end());
1181      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1182                                         ParamTypes.data(), ParamTypes.size(),
1183                                         OldProto->isVariadic(),
1184                                         OldProto->getTypeQuals(),
1185                                         false, false, 0, 0,
1186                                         OldProto->getExtInfo());
1187      New->setType(NewQType);
1188      New->setHasInheritedPrototype();
1189
1190      // Synthesize a parameter for each argument type.
1191      llvm::SmallVector<ParmVarDecl*, 16> Params;
1192      for (FunctionProtoType::arg_type_iterator
1193             ParamType = OldProto->arg_type_begin(),
1194             ParamEnd = OldProto->arg_type_end();
1195           ParamType != ParamEnd; ++ParamType) {
1196        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1197                                                 SourceLocation(), 0,
1198                                                 *ParamType, /*TInfo=*/0,
1199                                                 VarDecl::None, VarDecl::None,
1200                                                 0);
1201        Param->setImplicit();
1202        Params.push_back(Param);
1203      }
1204
1205      New->setParams(Params.data(), Params.size());
1206    }
1207
1208    return MergeCompatibleFunctionDecls(New, Old);
1209  }
1210
1211  // GNU C permits a K&R definition to follow a prototype declaration
1212  // if the declared types of the parameters in the K&R definition
1213  // match the types in the prototype declaration, even when the
1214  // promoted types of the parameters from the K&R definition differ
1215  // from the types in the prototype. GCC then keeps the types from
1216  // the prototype.
1217  //
1218  // If a variadic prototype is followed by a non-variadic K&R definition,
1219  // the K&R definition becomes variadic.  This is sort of an edge case, but
1220  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1221  // C99 6.9.1p8.
1222  if (!getLangOptions().CPlusPlus &&
1223      Old->hasPrototype() && !New->hasPrototype() &&
1224      New->getType()->getAs<FunctionProtoType>() &&
1225      Old->getNumParams() == New->getNumParams()) {
1226    llvm::SmallVector<QualType, 16> ArgTypes;
1227    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1228    const FunctionProtoType *OldProto
1229      = Old->getType()->getAs<FunctionProtoType>();
1230    const FunctionProtoType *NewProto
1231      = New->getType()->getAs<FunctionProtoType>();
1232
1233    // Determine whether this is the GNU C extension.
1234    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1235                                               NewProto->getResultType());
1236    bool LooseCompatible = !MergedReturn.isNull();
1237    for (unsigned Idx = 0, End = Old->getNumParams();
1238         LooseCompatible && Idx != End; ++Idx) {
1239      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1240      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1241      if (Context.typesAreCompatible(OldParm->getType(),
1242                                     NewProto->getArgType(Idx))) {
1243        ArgTypes.push_back(NewParm->getType());
1244      } else if (Context.typesAreCompatible(OldParm->getType(),
1245                                            NewParm->getType())) {
1246        GNUCompatibleParamWarning Warn
1247          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1248        Warnings.push_back(Warn);
1249        ArgTypes.push_back(NewParm->getType());
1250      } else
1251        LooseCompatible = false;
1252    }
1253
1254    if (LooseCompatible) {
1255      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1256        Diag(Warnings[Warn].NewParm->getLocation(),
1257             diag::ext_param_promoted_not_compatible_with_prototype)
1258          << Warnings[Warn].PromotedType
1259          << Warnings[Warn].OldParm->getType();
1260        Diag(Warnings[Warn].OldParm->getLocation(),
1261             diag::note_previous_declaration);
1262      }
1263
1264      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1265                                           ArgTypes.size(),
1266                                           OldProto->isVariadic(), 0,
1267                                           false, false, 0, 0,
1268                                           OldProto->getExtInfo()));
1269      return MergeCompatibleFunctionDecls(New, Old);
1270    }
1271
1272    // Fall through to diagnose conflicting types.
1273  }
1274
1275  // A function that has already been declared has been redeclared or defined
1276  // with a different type- show appropriate diagnostic
1277  if (unsigned BuiltinID = Old->getBuiltinID()) {
1278    // The user has declared a builtin function with an incompatible
1279    // signature.
1280    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1281      // The function the user is redeclaring is a library-defined
1282      // function like 'malloc' or 'printf'. Warn about the
1283      // redeclaration, then pretend that we don't know about this
1284      // library built-in.
1285      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1286      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1287        << Old << Old->getType();
1288      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1289      Old->setInvalidDecl();
1290      return false;
1291    }
1292
1293    PrevDiag = diag::note_previous_builtin_declaration;
1294  }
1295
1296  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1297  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1298  return true;
1299}
1300
1301/// \brief Completes the merge of two function declarations that are
1302/// known to be compatible.
1303///
1304/// This routine handles the merging of attributes and other
1305/// properties of function declarations form the old declaration to
1306/// the new declaration, once we know that New is in fact a
1307/// redeclaration of Old.
1308///
1309/// \returns false
1310bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1311  // Merge the attributes
1312  MergeAttributes(New, Old, Context);
1313
1314  // Merge the storage class.
1315  if (Old->getStorageClass() != FunctionDecl::Extern &&
1316      Old->getStorageClass() != FunctionDecl::None)
1317    New->setStorageClass(Old->getStorageClass());
1318
1319  // Merge "pure" flag.
1320  if (Old->isPure())
1321    New->setPure();
1322
1323  // Merge the "deleted" flag.
1324  if (Old->isDeleted())
1325    New->setDeleted();
1326
1327  if (getLangOptions().CPlusPlus)
1328    return MergeCXXFunctionDecl(New, Old);
1329
1330  return false;
1331}
1332
1333/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1334/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1335/// situation, merging decls or emitting diagnostics as appropriate.
1336///
1337/// Tentative definition rules (C99 6.9.2p2) are checked by
1338/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1339/// definitions here, since the initializer hasn't been attached.
1340///
1341void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1342  // If the new decl is already invalid, don't do any other checking.
1343  if (New->isInvalidDecl())
1344    return;
1345
1346  // Verify the old decl was also a variable.
1347  VarDecl *Old = 0;
1348  if (!Previous.isSingleResult() ||
1349      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1350    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1351      << New->getDeclName();
1352    Diag(Previous.getRepresentativeDecl()->getLocation(),
1353         diag::note_previous_definition);
1354    return New->setInvalidDecl();
1355  }
1356
1357  MergeAttributes(New, Old, Context);
1358
1359  // Merge the types
1360  QualType MergedT;
1361  if (getLangOptions().CPlusPlus) {
1362    if (Context.hasSameType(New->getType(), Old->getType()))
1363      MergedT = New->getType();
1364    // C++ [basic.link]p10:
1365    //   [...] the types specified by all declarations referring to a given
1366    //   object or function shall be identical, except that declarations for an
1367    //   array object can specify array types that differ by the presence or
1368    //   absence of a major array bound (8.3.4).
1369    else if (Old->getType()->isIncompleteArrayType() &&
1370             New->getType()->isArrayType()) {
1371      CanQual<ArrayType> OldArray
1372        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1373      CanQual<ArrayType> NewArray
1374        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1375      if (OldArray->getElementType() == NewArray->getElementType())
1376        MergedT = New->getType();
1377    } else if (Old->getType()->isArrayType() &&
1378             New->getType()->isIncompleteArrayType()) {
1379      CanQual<ArrayType> OldArray
1380        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1381      CanQual<ArrayType> NewArray
1382        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1383      if (OldArray->getElementType() == NewArray->getElementType())
1384        MergedT = Old->getType();
1385    } else if (New->getType()->isObjCObjectPointerType()
1386               && Old->getType()->isObjCObjectPointerType()) {
1387        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1388    }
1389  } else {
1390    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1391  }
1392  if (MergedT.isNull()) {
1393    Diag(New->getLocation(), diag::err_redefinition_different_type)
1394      << New->getDeclName();
1395    Diag(Old->getLocation(), diag::note_previous_definition);
1396    return New->setInvalidDecl();
1397  }
1398  New->setType(MergedT);
1399
1400  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1401  if (New->getStorageClass() == VarDecl::Static &&
1402      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1403    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407  // C99 6.2.2p4:
1408  //   For an identifier declared with the storage-class specifier
1409  //   extern in a scope in which a prior declaration of that
1410  //   identifier is visible,23) if the prior declaration specifies
1411  //   internal or external linkage, the linkage of the identifier at
1412  //   the later declaration is the same as the linkage specified at
1413  //   the prior declaration. If no prior declaration is visible, or
1414  //   if the prior declaration specifies no linkage, then the
1415  //   identifier has external linkage.
1416  if (New->hasExternalStorage() && Old->hasLinkage())
1417    /* Okay */;
1418  else if (New->getStorageClass() != VarDecl::Static &&
1419           Old->getStorageClass() == VarDecl::Static) {
1420    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1421    Diag(Old->getLocation(), diag::note_previous_definition);
1422    return New->setInvalidDecl();
1423  }
1424
1425  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1426
1427  // FIXME: The test for external storage here seems wrong? We still
1428  // need to check for mismatches.
1429  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1430      // Don't complain about out-of-line definitions of static members.
1431      !(Old->getLexicalDeclContext()->isRecord() &&
1432        !New->getLexicalDeclContext()->isRecord())) {
1433    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1434    Diag(Old->getLocation(), diag::note_previous_definition);
1435    return New->setInvalidDecl();
1436  }
1437
1438  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1439    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1440    Diag(Old->getLocation(), diag::note_previous_definition);
1441  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1442    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444  }
1445
1446  // C++ doesn't have tentative definitions, so go right ahead and check here.
1447  const VarDecl *Def;
1448  if (getLangOptions().CPlusPlus &&
1449      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1450      (Def = Old->getDefinition())) {
1451    Diag(New->getLocation(), diag::err_redefinition)
1452      << New->getDeclName();
1453    Diag(Def->getLocation(), diag::note_previous_definition);
1454    New->setInvalidDecl();
1455    return;
1456  }
1457  // c99 6.2.2 P4.
1458  // For an identifier declared with the storage-class specifier extern in a
1459  // scope in which a prior declaration of that identifier is visible, if
1460  // the prior declaration specifies internal or external linkage, the linkage
1461  // of the identifier at the later declaration is the same as the linkage
1462  // specified at the prior declaration.
1463  // FIXME. revisit this code.
1464  if (New->hasExternalStorage() &&
1465      Old->getLinkage() == InternalLinkage &&
1466      New->getDeclContext() == Old->getDeclContext())
1467    New->setStorageClass(Old->getStorageClass());
1468
1469  // Keep a chain of previous declarations.
1470  New->setPreviousDeclaration(Old);
1471
1472  // Inherit access appropriately.
1473  New->setAccess(Old->getAccess());
1474}
1475
1476/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1477/// no declarator (e.g. "struct foo;") is parsed.
1478Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1479                                                 DeclSpec &DS) {
1480  // FIXME: Error on auto/register at file scope
1481  // FIXME: Error on inline/virtual/explicit
1482  // FIXME: Warn on useless __thread
1483  // FIXME: Warn on useless const/volatile
1484  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1485  // FIXME: Warn on useless attributes
1486  Decl *TagD = 0;
1487  TagDecl *Tag = 0;
1488  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1489      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1490      DS.getTypeSpecType() == DeclSpec::TST_union ||
1491      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1492    TagD = static_cast<Decl *>(DS.getTypeRep());
1493
1494    if (!TagD) // We probably had an error
1495      return DeclPtrTy();
1496
1497    // Note that the above type specs guarantee that the
1498    // type rep is a Decl, whereas in many of the others
1499    // it's a Type.
1500    Tag = dyn_cast<TagDecl>(TagD);
1501  }
1502
1503  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1504    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1505    // or incomplete types shall not be restrict-qualified."
1506    if (TypeQuals & DeclSpec::TQ_restrict)
1507      Diag(DS.getRestrictSpecLoc(),
1508           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1509           << DS.getSourceRange();
1510  }
1511
1512  if (DS.isFriendSpecified()) {
1513    // If we're dealing with a class template decl, assume that the
1514    // template routines are handling it.
1515    if (TagD && isa<ClassTemplateDecl>(TagD))
1516      return DeclPtrTy();
1517    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1518  }
1519
1520  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1521    // If there are attributes in the DeclSpec, apply them to the record.
1522    if (const AttributeList *AL = DS.getAttributes())
1523      ProcessDeclAttributeList(S, Record, AL);
1524
1525    if (!Record->getDeclName() && Record->isDefinition() &&
1526        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1527      if (getLangOptions().CPlusPlus ||
1528          Record->getDeclContext()->isRecord())
1529        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1530
1531      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1532        << DS.getSourceRange();
1533    }
1534
1535    // Microsoft allows unnamed struct/union fields. Don't complain
1536    // about them.
1537    // FIXME: Should we support Microsoft's extensions in this area?
1538    if (Record->getDeclName() && getLangOptions().Microsoft)
1539      return DeclPtrTy::make(Tag);
1540  }
1541
1542  if (getLangOptions().CPlusPlus &&
1543      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1544    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1545      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1546          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1547        Diag(Enum->getLocation(), diag::ext_no_declarators)
1548          << DS.getSourceRange();
1549
1550  if (!DS.isMissingDeclaratorOk() &&
1551      DS.getTypeSpecType() != DeclSpec::TST_error) {
1552    // Warn about typedefs of enums without names, since this is an
1553    // extension in both Microsoft an GNU.
1554    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1555        Tag && isa<EnumDecl>(Tag)) {
1556      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1557        << DS.getSourceRange();
1558      return DeclPtrTy::make(Tag);
1559    }
1560
1561    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1562      << DS.getSourceRange();
1563  }
1564
1565  return DeclPtrTy::make(Tag);
1566}
1567
1568/// We are trying to inject an anonymous member into the given scope;
1569/// check if there's an existing declaration that can't be overloaded.
1570///
1571/// \return true if this is a forbidden redeclaration
1572static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1573                                         Scope *S,
1574                                         DeclContext *Owner,
1575                                         DeclarationName Name,
1576                                         SourceLocation NameLoc,
1577                                         unsigned diagnostic) {
1578  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1579                 Sema::ForRedeclaration);
1580  if (!SemaRef.LookupName(R, S)) return false;
1581
1582  if (R.getAsSingle<TagDecl>())
1583    return false;
1584
1585  // Pick a representative declaration.
1586  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1587  if (PrevDecl && Owner->isRecord()) {
1588    RecordDecl *Record = cast<RecordDecl>(Owner);
1589    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1590      return false;
1591  }
1592
1593  SemaRef.Diag(NameLoc, diagnostic) << Name;
1594  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1595
1596  return true;
1597}
1598
1599/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1600/// anonymous struct or union AnonRecord into the owning context Owner
1601/// and scope S. This routine will be invoked just after we realize
1602/// that an unnamed union or struct is actually an anonymous union or
1603/// struct, e.g.,
1604///
1605/// @code
1606/// union {
1607///   int i;
1608///   float f;
1609/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1610///    // f into the surrounding scope.x
1611/// @endcode
1612///
1613/// This routine is recursive, injecting the names of nested anonymous
1614/// structs/unions into the owning context and scope as well.
1615static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1616                                                DeclContext *Owner,
1617                                                RecordDecl *AnonRecord,
1618                                                AccessSpecifier AS) {
1619  unsigned diagKind
1620    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1621                            : diag::err_anonymous_struct_member_redecl;
1622
1623  bool Invalid = false;
1624  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1625                               FEnd = AnonRecord->field_end();
1626       F != FEnd; ++F) {
1627    if ((*F)->getDeclName()) {
1628      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1629                                       (*F)->getLocation(), diagKind)) {
1630        // C++ [class.union]p2:
1631        //   The names of the members of an anonymous union shall be
1632        //   distinct from the names of any other entity in the
1633        //   scope in which the anonymous union is declared.
1634        Invalid = true;
1635      } else {
1636        // C++ [class.union]p2:
1637        //   For the purpose of name lookup, after the anonymous union
1638        //   definition, the members of the anonymous union are
1639        //   considered to have been defined in the scope in which the
1640        //   anonymous union is declared.
1641        Owner->makeDeclVisibleInContext(*F);
1642        S->AddDecl(Sema::DeclPtrTy::make(*F));
1643        SemaRef.IdResolver.AddDecl(*F);
1644
1645        // That includes picking up the appropriate access specifier.
1646        if (AS != AS_none) (*F)->setAccess(AS);
1647      }
1648    } else if (const RecordType *InnerRecordType
1649                 = (*F)->getType()->getAs<RecordType>()) {
1650      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1651      if (InnerRecord->isAnonymousStructOrUnion())
1652        Invalid = Invalid ||
1653          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1654                                              InnerRecord, AS);
1655    }
1656  }
1657
1658  return Invalid;
1659}
1660
1661/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1662/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1663/// illegal input values are mapped to VarDecl::None.
1664/// If the input declaration context is a linkage specification
1665/// with no braces, then Extern is mapped to None.
1666static VarDecl::StorageClass
1667StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1668                                      DeclContext *DC) {
1669  switch (StorageClassSpec) {
1670  case DeclSpec::SCS_unspecified:    return VarDecl::None;
1671  case DeclSpec::SCS_extern:
1672    // If the current context is a C++ linkage specification
1673    // having no braces, then the keyword "extern" is properly part
1674    // of the linkage specification itself, rather than being
1675    // the written storage class specifier.
1676    return (DC && isa<LinkageSpecDecl>(DC) &&
1677            !cast<LinkageSpecDecl>(DC)->hasBraces())
1678      ? VarDecl::None : VarDecl::Extern;
1679  case DeclSpec::SCS_static:         return VarDecl::Static;
1680  case DeclSpec::SCS_auto:           return VarDecl::Auto;
1681  case DeclSpec::SCS_register:       return VarDecl::Register;
1682  case DeclSpec::SCS_private_extern: return VarDecl::PrivateExtern;
1683    // Illegal SCSs map to None: error reporting is up to the caller.
1684  case DeclSpec::SCS_mutable:        // Fall through.
1685  case DeclSpec::SCS_typedef:        return VarDecl::None;
1686  }
1687  llvm_unreachable("unknown storage class specifier");
1688}
1689
1690/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1691/// a FunctionDecl::StorageClass. Any error reporting is up to the caller:
1692/// illegal input values are mapped to FunctionDecl::None.
1693/// If the input declaration context is a linkage specification
1694/// with no braces, then Extern is mapped to None.
1695static FunctionDecl::StorageClass
1696StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec,
1697                                           DeclContext *DC) {
1698  switch (StorageClassSpec) {
1699  case DeclSpec::SCS_unspecified:    return FunctionDecl::None;
1700  case DeclSpec::SCS_extern:
1701    // If the current context is a C++ linkage specification
1702    // having no braces, then the keyword "extern" is properly part
1703    // of the linkage specification itself, rather than being
1704    // the written storage class specifier.
1705    return (DC && isa<LinkageSpecDecl>(DC) &&
1706            !cast<LinkageSpecDecl>(DC)->hasBraces())
1707      ? FunctionDecl::None : FunctionDecl::Extern;
1708  case DeclSpec::SCS_static:         return FunctionDecl::Static;
1709  case DeclSpec::SCS_private_extern: return FunctionDecl::PrivateExtern;
1710    // Illegal SCSs map to None: error reporting is up to the caller.
1711  case DeclSpec::SCS_auto:           // Fall through.
1712  case DeclSpec::SCS_mutable:        // Fall through.
1713  case DeclSpec::SCS_register:       // Fall through.
1714  case DeclSpec::SCS_typedef:        return FunctionDecl::None;
1715  }
1716  llvm_unreachable("unknown storage class specifier");
1717}
1718
1719/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1720/// anonymous structure or union. Anonymous unions are a C++ feature
1721/// (C++ [class.union]) and a GNU C extension; anonymous structures
1722/// are a GNU C and GNU C++ extension.
1723Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1724                                                  AccessSpecifier AS,
1725                                                  RecordDecl *Record) {
1726  DeclContext *Owner = Record->getDeclContext();
1727
1728  // Diagnose whether this anonymous struct/union is an extension.
1729  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1730    Diag(Record->getLocation(), diag::ext_anonymous_union);
1731  else if (!Record->isUnion())
1732    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1733
1734  // C and C++ require different kinds of checks for anonymous
1735  // structs/unions.
1736  bool Invalid = false;
1737  if (getLangOptions().CPlusPlus) {
1738    const char* PrevSpec = 0;
1739    unsigned DiagID;
1740    // C++ [class.union]p3:
1741    //   Anonymous unions declared in a named namespace or in the
1742    //   global namespace shall be declared static.
1743    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1744        (isa<TranslationUnitDecl>(Owner) ||
1745         (isa<NamespaceDecl>(Owner) &&
1746          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1747      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1748      Invalid = true;
1749
1750      // Recover by adding 'static'.
1751      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1752                             PrevSpec, DiagID);
1753    }
1754    // C++ [class.union]p3:
1755    //   A storage class is not allowed in a declaration of an
1756    //   anonymous union in a class scope.
1757    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1758             isa<RecordDecl>(Owner)) {
1759      Diag(DS.getStorageClassSpecLoc(),
1760           diag::err_anonymous_union_with_storage_spec);
1761      Invalid = true;
1762
1763      // Recover by removing the storage specifier.
1764      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1765                             PrevSpec, DiagID);
1766    }
1767
1768    // C++ [class.union]p2:
1769    //   The member-specification of an anonymous union shall only
1770    //   define non-static data members. [Note: nested types and
1771    //   functions cannot be declared within an anonymous union. ]
1772    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1773                                 MemEnd = Record->decls_end();
1774         Mem != MemEnd; ++Mem) {
1775      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1776        // C++ [class.union]p3:
1777        //   An anonymous union shall not have private or protected
1778        //   members (clause 11).
1779        assert(FD->getAccess() != AS_none);
1780        if (FD->getAccess() != AS_public) {
1781          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1782            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1783          Invalid = true;
1784        }
1785      } else if ((*Mem)->isImplicit()) {
1786        // Any implicit members are fine.
1787      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1788        // This is a type that showed up in an
1789        // elaborated-type-specifier inside the anonymous struct or
1790        // union, but which actually declares a type outside of the
1791        // anonymous struct or union. It's okay.
1792      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1793        if (!MemRecord->isAnonymousStructOrUnion() &&
1794            MemRecord->getDeclName()) {
1795          // This is a nested type declaration.
1796          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1797            << (int)Record->isUnion();
1798          Invalid = true;
1799        }
1800      } else if (isa<AccessSpecDecl>(*Mem)) {
1801        // Any access specifier is fine.
1802      } else {
1803        // We have something that isn't a non-static data
1804        // member. Complain about it.
1805        unsigned DK = diag::err_anonymous_record_bad_member;
1806        if (isa<TypeDecl>(*Mem))
1807          DK = diag::err_anonymous_record_with_type;
1808        else if (isa<FunctionDecl>(*Mem))
1809          DK = diag::err_anonymous_record_with_function;
1810        else if (isa<VarDecl>(*Mem))
1811          DK = diag::err_anonymous_record_with_static;
1812        Diag((*Mem)->getLocation(), DK)
1813            << (int)Record->isUnion();
1814          Invalid = true;
1815      }
1816    }
1817  }
1818
1819  if (!Record->isUnion() && !Owner->isRecord()) {
1820    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1821      << (int)getLangOptions().CPlusPlus;
1822    Invalid = true;
1823  }
1824
1825  // Mock up a declarator.
1826  Declarator Dc(DS, Declarator::TypeNameContext);
1827  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1828  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1829
1830  // Create a declaration for this anonymous struct/union.
1831  NamedDecl *Anon = 0;
1832  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1833    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1834                             /*IdentifierInfo=*/0,
1835                             Context.getTypeDeclType(Record),
1836                             TInfo,
1837                             /*BitWidth=*/0, /*Mutable=*/false);
1838    Anon->setAccess(AS);
1839    if (getLangOptions().CPlusPlus) {
1840      FieldCollector->Add(cast<FieldDecl>(Anon));
1841      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1842        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1843    }
1844  } else {
1845    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1846    assert(SCSpec != DeclSpec::SCS_typedef &&
1847           "Parser allowed 'typedef' as storage class VarDecl.");
1848    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1849    if (SCSpec == DeclSpec::SCS_mutable) {
1850      // mutable can only appear on non-static class members, so it's always
1851      // an error here
1852      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1853      Invalid = true;
1854      SC = VarDecl::None;
1855    }
1856    SCSpec = DS.getStorageClassSpecAsWritten();
1857    VarDecl::StorageClass SCAsWritten
1858      = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
1859
1860    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1861                           /*IdentifierInfo=*/0,
1862                           Context.getTypeDeclType(Record),
1863                           TInfo, SC, SCAsWritten);
1864  }
1865  Anon->setImplicit();
1866
1867  // Add the anonymous struct/union object to the current
1868  // context. We'll be referencing this object when we refer to one of
1869  // its members.
1870  Owner->addDecl(Anon);
1871
1872  // Inject the members of the anonymous struct/union into the owning
1873  // context and into the identifier resolver chain for name lookup
1874  // purposes.
1875  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1876    Invalid = true;
1877
1878  // Mark this as an anonymous struct/union type. Note that we do not
1879  // do this until after we have already checked and injected the
1880  // members of this anonymous struct/union type, because otherwise
1881  // the members could be injected twice: once by DeclContext when it
1882  // builds its lookup table, and once by
1883  // InjectAnonymousStructOrUnionMembers.
1884  Record->setAnonymousStructOrUnion(true);
1885
1886  if (Invalid)
1887    Anon->setInvalidDecl();
1888
1889  return DeclPtrTy::make(Anon);
1890}
1891
1892
1893/// GetNameForDeclarator - Determine the full declaration name for the
1894/// given Declarator.
1895DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1896  return GetNameFromUnqualifiedId(D.getName());
1897}
1898
1899/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1900DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1901  switch (Name.getKind()) {
1902    case UnqualifiedId::IK_Identifier:
1903      return DeclarationName(Name.Identifier);
1904
1905    case UnqualifiedId::IK_OperatorFunctionId:
1906      return Context.DeclarationNames.getCXXOperatorName(
1907                                              Name.OperatorFunctionId.Operator);
1908
1909    case UnqualifiedId::IK_LiteralOperatorId:
1910      return Context.DeclarationNames.getCXXLiteralOperatorName(
1911                                                               Name.Identifier);
1912
1913    case UnqualifiedId::IK_ConversionFunctionId: {
1914      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1915      if (Ty.isNull())
1916        return DeclarationName();
1917
1918      return Context.DeclarationNames.getCXXConversionFunctionName(
1919                                                  Context.getCanonicalType(Ty));
1920    }
1921
1922    case UnqualifiedId::IK_ConstructorName: {
1923      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1924      if (Ty.isNull())
1925        return DeclarationName();
1926
1927      return Context.DeclarationNames.getCXXConstructorName(
1928                                                  Context.getCanonicalType(Ty));
1929    }
1930
1931    case UnqualifiedId::IK_ConstructorTemplateId: {
1932      // In well-formed code, we can only have a constructor
1933      // template-id that refers to the current context, so go there
1934      // to find the actual type being constructed.
1935      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1936      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1937        return DeclarationName();
1938
1939      // Determine the type of the class being constructed.
1940      QualType CurClassType = Context.getTypeDeclType(CurClass);
1941
1942      // FIXME: Check two things: that the template-id names the same type as
1943      // CurClassType, and that the template-id does not occur when the name
1944      // was qualified.
1945
1946      return Context.DeclarationNames.getCXXConstructorName(
1947                                       Context.getCanonicalType(CurClassType));
1948    }
1949
1950    case UnqualifiedId::IK_DestructorName: {
1951      QualType Ty = GetTypeFromParser(Name.DestructorName);
1952      if (Ty.isNull())
1953        return DeclarationName();
1954
1955      return Context.DeclarationNames.getCXXDestructorName(
1956                                                           Context.getCanonicalType(Ty));
1957    }
1958
1959    case UnqualifiedId::IK_TemplateId: {
1960      TemplateName TName
1961        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1962      return Context.getNameForTemplate(TName);
1963    }
1964  }
1965
1966  assert(false && "Unknown name kind");
1967  return DeclarationName();
1968}
1969
1970/// isNearlyMatchingFunction - Determine whether the C++ functions
1971/// Declaration and Definition are "nearly" matching. This heuristic
1972/// is used to improve diagnostics in the case where an out-of-line
1973/// function definition doesn't match any declaration within
1974/// the class or namespace.
1975static bool isNearlyMatchingFunction(ASTContext &Context,
1976                                     FunctionDecl *Declaration,
1977                                     FunctionDecl *Definition) {
1978  if (Declaration->param_size() != Definition->param_size())
1979    return false;
1980  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1981    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1982    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1983
1984    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1985                                        DefParamTy.getNonReferenceType()))
1986      return false;
1987  }
1988
1989  return true;
1990}
1991
1992/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
1993/// declarator needs to be rebuilt in the current instantiation.
1994/// Any bits of declarator which appear before the name are valid for
1995/// consideration here.  That's specifically the type in the decl spec
1996/// and the base type in any member-pointer chunks.
1997static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
1998                                                    DeclarationName Name) {
1999  // The types we specifically need to rebuild are:
2000  //   - typenames, typeofs, and decltypes
2001  //   - types which will become injected class names
2002  // Of course, we also need to rebuild any type referencing such a
2003  // type.  It's safest to just say "dependent", but we call out a
2004  // few cases here.
2005
2006  DeclSpec &DS = D.getMutableDeclSpec();
2007  switch (DS.getTypeSpecType()) {
2008  case DeclSpec::TST_typename:
2009  case DeclSpec::TST_typeofType:
2010  case DeclSpec::TST_typeofExpr:
2011  case DeclSpec::TST_decltype: {
2012    // Grab the type from the parser.
2013    TypeSourceInfo *TSI = 0;
2014    QualType T = S.GetTypeFromParser(DS.getTypeRep(), &TSI);
2015    if (T.isNull() || !T->isDependentType()) break;
2016
2017    // Make sure there's a type source info.  This isn't really much
2018    // of a waste; most dependent types should have type source info
2019    // attached already.
2020    if (!TSI)
2021      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2022
2023    // Rebuild the type in the current instantiation.
2024    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2025    if (!TSI) return true;
2026
2027    // Store the new type back in the decl spec.
2028    QualType LocType = S.CreateLocInfoType(TSI->getType(), TSI);
2029    DS.UpdateTypeRep(LocType.getAsOpaquePtr());
2030    break;
2031  }
2032
2033  default:
2034    // Nothing to do for these decl specs.
2035    break;
2036  }
2037
2038  // It doesn't matter what order we do this in.
2039  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2040    DeclaratorChunk &Chunk = D.getTypeObject(I);
2041
2042    // The only type information in the declarator which can come
2043    // before the declaration name is the base type of a member
2044    // pointer.
2045    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2046      continue;
2047
2048    // Rebuild the scope specifier in-place.
2049    CXXScopeSpec &SS = Chunk.Mem.Scope();
2050    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2051      return true;
2052  }
2053
2054  return false;
2055}
2056
2057Sema::DeclPtrTy
2058Sema::HandleDeclarator(Scope *S, Declarator &D,
2059                       MultiTemplateParamsArg TemplateParamLists,
2060                       bool IsFunctionDefinition) {
2061  DeclarationName Name = GetNameForDeclarator(D);
2062
2063  // All of these full declarators require an identifier.  If it doesn't have
2064  // one, the ParsedFreeStandingDeclSpec action should be used.
2065  if (!Name) {
2066    if (!D.isInvalidType())  // Reject this if we think it is valid.
2067      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2068           diag::err_declarator_need_ident)
2069        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2070    return DeclPtrTy();
2071  }
2072
2073  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2074  // we find one that is.
2075  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2076         (S->getFlags() & Scope::TemplateParamScope) != 0)
2077    S = S->getParent();
2078
2079  DeclContext *DC = CurContext;
2080  if (D.getCXXScopeSpec().isInvalid())
2081    D.setInvalidType();
2082  else if (D.getCXXScopeSpec().isSet()) {
2083    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2084    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2085    if (!DC) {
2086      // If we could not compute the declaration context, it's because the
2087      // declaration context is dependent but does not refer to a class,
2088      // class template, or class template partial specialization. Complain
2089      // and return early, to avoid the coming semantic disaster.
2090      Diag(D.getIdentifierLoc(),
2091           diag::err_template_qualified_declarator_no_match)
2092        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2093        << D.getCXXScopeSpec().getRange();
2094      return DeclPtrTy();
2095    }
2096
2097    bool IsDependentContext = DC->isDependentContext();
2098
2099    if (!IsDependentContext &&
2100        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2101      return DeclPtrTy();
2102
2103    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2104      Diag(D.getIdentifierLoc(),
2105           diag::err_member_def_undefined_record)
2106        << Name << DC << D.getCXXScopeSpec().getRange();
2107      D.setInvalidType();
2108    }
2109
2110    // Check whether we need to rebuild the type of the given
2111    // declaration in the current instantiation.
2112    if (EnteringContext && IsDependentContext &&
2113        TemplateParamLists.size() != 0) {
2114      ContextRAII SavedContext(*this, DC);
2115      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2116        D.setInvalidType();
2117    }
2118  }
2119
2120  NamedDecl *New;
2121
2122  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2123  QualType R = TInfo->getType();
2124
2125  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2126                        ForRedeclaration);
2127
2128  // See if this is a redefinition of a variable in the same scope.
2129  if (!D.getCXXScopeSpec().isSet()) {
2130    bool IsLinkageLookup = false;
2131
2132    // If the declaration we're planning to build will be a function
2133    // or object with linkage, then look for another declaration with
2134    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2135    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2136      /* Do nothing*/;
2137    else if (R->isFunctionType()) {
2138      if (CurContext->isFunctionOrMethod() ||
2139          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2140        IsLinkageLookup = true;
2141    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2142      IsLinkageLookup = true;
2143    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2144             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2145      IsLinkageLookup = true;
2146
2147    if (IsLinkageLookup)
2148      Previous.clear(LookupRedeclarationWithLinkage);
2149
2150    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2151  } else { // Something like "int foo::x;"
2152    LookupQualifiedName(Previous, DC);
2153
2154    // Don't consider using declarations as previous declarations for
2155    // out-of-line members.
2156    RemoveUsingDecls(Previous);
2157
2158    // C++ 7.3.1.2p2:
2159    // Members (including explicit specializations of templates) of a named
2160    // namespace can also be defined outside that namespace by explicit
2161    // qualification of the name being defined, provided that the entity being
2162    // defined was already declared in the namespace and the definition appears
2163    // after the point of declaration in a namespace that encloses the
2164    // declarations namespace.
2165    //
2166    // Note that we only check the context at this point. We don't yet
2167    // have enough information to make sure that PrevDecl is actually
2168    // the declaration we want to match. For example, given:
2169    //
2170    //   class X {
2171    //     void f();
2172    //     void f(float);
2173    //   };
2174    //
2175    //   void X::f(int) { } // ill-formed
2176    //
2177    // In this case, PrevDecl will point to the overload set
2178    // containing the two f's declared in X, but neither of them
2179    // matches.
2180
2181    // First check whether we named the global scope.
2182    if (isa<TranslationUnitDecl>(DC)) {
2183      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2184        << Name << D.getCXXScopeSpec().getRange();
2185    } else {
2186      DeclContext *Cur = CurContext;
2187      while (isa<LinkageSpecDecl>(Cur))
2188        Cur = Cur->getParent();
2189      if (!Cur->Encloses(DC)) {
2190        // The qualifying scope doesn't enclose the original declaration.
2191        // Emit diagnostic based on current scope.
2192        SourceLocation L = D.getIdentifierLoc();
2193        SourceRange R = D.getCXXScopeSpec().getRange();
2194        if (isa<FunctionDecl>(Cur))
2195          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2196        else
2197          Diag(L, diag::err_invalid_declarator_scope)
2198            << Name << cast<NamedDecl>(DC) << R;
2199        D.setInvalidType();
2200      }
2201    }
2202  }
2203
2204  if (Previous.isSingleResult() &&
2205      Previous.getFoundDecl()->isTemplateParameter()) {
2206    // Maybe we will complain about the shadowed template parameter.
2207    if (!D.isInvalidType())
2208      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2209                                          Previous.getFoundDecl()))
2210        D.setInvalidType();
2211
2212    // Just pretend that we didn't see the previous declaration.
2213    Previous.clear();
2214  }
2215
2216  // In C++, the previous declaration we find might be a tag type
2217  // (class or enum). In this case, the new declaration will hide the
2218  // tag type. Note that this does does not apply if we're declaring a
2219  // typedef (C++ [dcl.typedef]p4).
2220  if (Previous.isSingleTagDecl() &&
2221      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2222    Previous.clear();
2223
2224  bool Redeclaration = false;
2225  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2226    if (TemplateParamLists.size()) {
2227      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2228      return DeclPtrTy();
2229    }
2230
2231    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2232  } else if (R->isFunctionType()) {
2233    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2234                                  move(TemplateParamLists),
2235                                  IsFunctionDefinition, Redeclaration);
2236  } else {
2237    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2238                                  move(TemplateParamLists),
2239                                  Redeclaration);
2240  }
2241
2242  if (New == 0)
2243    return DeclPtrTy();
2244
2245  // If this has an identifier and is not an invalid redeclaration or
2246  // function template specialization, add it to the scope stack.
2247  if (Name && !(Redeclaration && New->isInvalidDecl()))
2248    PushOnScopeChains(New, S);
2249
2250  return DeclPtrTy::make(New);
2251}
2252
2253/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2254/// types into constant array types in certain situations which would otherwise
2255/// be errors (for GCC compatibility).
2256static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2257                                                    ASTContext &Context,
2258                                                    bool &SizeIsNegative) {
2259  // This method tries to turn a variable array into a constant
2260  // array even when the size isn't an ICE.  This is necessary
2261  // for compatibility with code that depends on gcc's buggy
2262  // constant expression folding, like struct {char x[(int)(char*)2];}
2263  SizeIsNegative = false;
2264
2265  QualifierCollector Qs;
2266  const Type *Ty = Qs.strip(T);
2267
2268  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2269    QualType Pointee = PTy->getPointeeType();
2270    QualType FixedType =
2271        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2272    if (FixedType.isNull()) return FixedType;
2273    FixedType = Context.getPointerType(FixedType);
2274    return Qs.apply(FixedType);
2275  }
2276
2277  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2278  if (!VLATy)
2279    return QualType();
2280  // FIXME: We should probably handle this case
2281  if (VLATy->getElementType()->isVariablyModifiedType())
2282    return QualType();
2283
2284  Expr::EvalResult EvalResult;
2285  if (!VLATy->getSizeExpr() ||
2286      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2287      !EvalResult.Val.isInt())
2288    return QualType();
2289
2290  llvm::APSInt &Res = EvalResult.Val.getInt();
2291  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2292    // TODO: preserve the size expression in declarator info
2293    return Context.getConstantArrayType(VLATy->getElementType(),
2294                                        Res, ArrayType::Normal, 0);
2295  }
2296
2297  SizeIsNegative = true;
2298  return QualType();
2299}
2300
2301/// \brief Register the given locally-scoped external C declaration so
2302/// that it can be found later for redeclarations
2303void
2304Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2305                                       const LookupResult &Previous,
2306                                       Scope *S) {
2307  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2308         "Decl is not a locally-scoped decl!");
2309  // Note that we have a locally-scoped external with this name.
2310  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2311
2312  if (!Previous.isSingleResult())
2313    return;
2314
2315  NamedDecl *PrevDecl = Previous.getFoundDecl();
2316
2317  // If there was a previous declaration of this variable, it may be
2318  // in our identifier chain. Update the identifier chain with the new
2319  // declaration.
2320  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2321    // The previous declaration was found on the identifer resolver
2322    // chain, so remove it from its scope.
2323    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2324      S = S->getParent();
2325
2326    if (S)
2327      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2328  }
2329}
2330
2331/// \brief Diagnose function specifiers on a declaration of an identifier that
2332/// does not identify a function.
2333void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2334  // FIXME: We should probably indicate the identifier in question to avoid
2335  // confusion for constructs like "inline int a(), b;"
2336  if (D.getDeclSpec().isInlineSpecified())
2337    Diag(D.getDeclSpec().getInlineSpecLoc(),
2338         diag::err_inline_non_function);
2339
2340  if (D.getDeclSpec().isVirtualSpecified())
2341    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2342         diag::err_virtual_non_function);
2343
2344  if (D.getDeclSpec().isExplicitSpecified())
2345    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2346         diag::err_explicit_non_function);
2347}
2348
2349NamedDecl*
2350Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2351                             QualType R,  TypeSourceInfo *TInfo,
2352                             LookupResult &Previous, bool &Redeclaration) {
2353  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2354  if (D.getCXXScopeSpec().isSet()) {
2355    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2356      << D.getCXXScopeSpec().getRange();
2357    D.setInvalidType();
2358    // Pretend we didn't see the scope specifier.
2359    DC = CurContext;
2360    Previous.clear();
2361  }
2362
2363  if (getLangOptions().CPlusPlus) {
2364    // Check that there are no default arguments (C++ only).
2365    CheckExtraCXXDefaultArguments(D);
2366  }
2367
2368  DiagnoseFunctionSpecifiers(D);
2369
2370  if (D.getDeclSpec().isThreadSpecified())
2371    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2372
2373  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2374    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2375      << D.getName().getSourceRange();
2376    return 0;
2377  }
2378
2379  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2380  if (!NewTD) return 0;
2381
2382  // Handle attributes prior to checking for duplicates in MergeVarDecl
2383  ProcessDeclAttributes(S, NewTD, D);
2384
2385  // Merge the decl with the existing one if appropriate. If the decl is
2386  // in an outer scope, it isn't the same thing.
2387  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2388  if (!Previous.empty()) {
2389    Redeclaration = true;
2390    MergeTypeDefDecl(NewTD, Previous);
2391  }
2392
2393  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2394  // then it shall have block scope.
2395  QualType T = NewTD->getUnderlyingType();
2396  if (T->isVariablyModifiedType()) {
2397    FunctionNeedsScopeChecking() = true;
2398
2399    if (S->getFnParent() == 0) {
2400      bool SizeIsNegative;
2401      QualType FixedTy =
2402          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2403      if (!FixedTy.isNull()) {
2404        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2405        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2406      } else {
2407        if (SizeIsNegative)
2408          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2409        else if (T->isVariableArrayType())
2410          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2411        else
2412          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2413        NewTD->setInvalidDecl();
2414      }
2415    }
2416  }
2417
2418  // If this is the C FILE type, notify the AST context.
2419  if (IdentifierInfo *II = NewTD->getIdentifier())
2420    if (!NewTD->isInvalidDecl() &&
2421        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2422      if (II->isStr("FILE"))
2423        Context.setFILEDecl(NewTD);
2424      else if (II->isStr("jmp_buf"))
2425        Context.setjmp_bufDecl(NewTD);
2426      else if (II->isStr("sigjmp_buf"))
2427        Context.setsigjmp_bufDecl(NewTD);
2428    }
2429
2430  return NewTD;
2431}
2432
2433/// \brief Determines whether the given declaration is an out-of-scope
2434/// previous declaration.
2435///
2436/// This routine should be invoked when name lookup has found a
2437/// previous declaration (PrevDecl) that is not in the scope where a
2438/// new declaration by the same name is being introduced. If the new
2439/// declaration occurs in a local scope, previous declarations with
2440/// linkage may still be considered previous declarations (C99
2441/// 6.2.2p4-5, C++ [basic.link]p6).
2442///
2443/// \param PrevDecl the previous declaration found by name
2444/// lookup
2445///
2446/// \param DC the context in which the new declaration is being
2447/// declared.
2448///
2449/// \returns true if PrevDecl is an out-of-scope previous declaration
2450/// for a new delcaration with the same name.
2451static bool
2452isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2453                                ASTContext &Context) {
2454  if (!PrevDecl)
2455    return 0;
2456
2457  if (!PrevDecl->hasLinkage())
2458    return false;
2459
2460  if (Context.getLangOptions().CPlusPlus) {
2461    // C++ [basic.link]p6:
2462    //   If there is a visible declaration of an entity with linkage
2463    //   having the same name and type, ignoring entities declared
2464    //   outside the innermost enclosing namespace scope, the block
2465    //   scope declaration declares that same entity and receives the
2466    //   linkage of the previous declaration.
2467    DeclContext *OuterContext = DC->getLookupContext();
2468    if (!OuterContext->isFunctionOrMethod())
2469      // This rule only applies to block-scope declarations.
2470      return false;
2471    else {
2472      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2473      if (PrevOuterContext->isRecord())
2474        // We found a member function: ignore it.
2475        return false;
2476      else {
2477        // Find the innermost enclosing namespace for the new and
2478        // previous declarations.
2479        while (!OuterContext->isFileContext())
2480          OuterContext = OuterContext->getParent();
2481        while (!PrevOuterContext->isFileContext())
2482          PrevOuterContext = PrevOuterContext->getParent();
2483
2484        // The previous declaration is in a different namespace, so it
2485        // isn't the same function.
2486        if (OuterContext->getPrimaryContext() !=
2487            PrevOuterContext->getPrimaryContext())
2488          return false;
2489      }
2490    }
2491  }
2492
2493  return true;
2494}
2495
2496static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2497  CXXScopeSpec &SS = D.getCXXScopeSpec();
2498  if (!SS.isSet()) return;
2499  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2500                       SS.getRange());
2501}
2502
2503NamedDecl*
2504Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2505                              QualType R, TypeSourceInfo *TInfo,
2506                              LookupResult &Previous,
2507                              MultiTemplateParamsArg TemplateParamLists,
2508                              bool &Redeclaration) {
2509  DeclarationName Name = GetNameForDeclarator(D);
2510
2511  // Check that there are no default arguments (C++ only).
2512  if (getLangOptions().CPlusPlus)
2513    CheckExtraCXXDefaultArguments(D);
2514
2515  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2516  assert(SCSpec != DeclSpec::SCS_typedef &&
2517         "Parser allowed 'typedef' as storage class VarDecl.");
2518  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec, 0);
2519  if (SCSpec == DeclSpec::SCS_mutable) {
2520    // mutable can only appear on non-static class members, so it's always
2521    // an error here
2522    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2523    D.setInvalidType();
2524    SC = VarDecl::None;
2525  }
2526  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2527  VarDecl::StorageClass SCAsWritten
2528    = StorageClassSpecToVarDeclStorageClass(SCSpec, DC);
2529
2530  IdentifierInfo *II = Name.getAsIdentifierInfo();
2531  if (!II) {
2532    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2533      << Name.getAsString();
2534    return 0;
2535  }
2536
2537  DiagnoseFunctionSpecifiers(D);
2538
2539  if (!DC->isRecord() && S->getFnParent() == 0) {
2540    // C99 6.9p2: The storage-class specifiers auto and register shall not
2541    // appear in the declaration specifiers in an external declaration.
2542    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2543
2544      // If this is a register variable with an asm label specified, then this
2545      // is a GNU extension.
2546      if (SC == VarDecl::Register && D.getAsmLabel())
2547        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2548      else
2549        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2550      D.setInvalidType();
2551    }
2552  }
2553  if (DC->isRecord() && !CurContext->isRecord()) {
2554    // This is an out-of-line definition of a static data member.
2555    if (SC == VarDecl::Static) {
2556      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2557           diag::err_static_out_of_line)
2558        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2559    } else if (SC == VarDecl::None)
2560      SC = VarDecl::Static;
2561  }
2562  if (SC == VarDecl::Static) {
2563    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2564      if (RD->isLocalClass())
2565        Diag(D.getIdentifierLoc(),
2566             diag::err_static_data_member_not_allowed_in_local_class)
2567          << Name << RD->getDeclName();
2568    }
2569  }
2570
2571  // Match up the template parameter lists with the scope specifier, then
2572  // determine whether we have a template or a template specialization.
2573  bool isExplicitSpecialization = false;
2574  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2575  if (TemplateParameterList *TemplateParams
2576        = MatchTemplateParametersToScopeSpecifier(
2577                                  D.getDeclSpec().getSourceRange().getBegin(),
2578                                                  D.getCXXScopeSpec(),
2579                        (TemplateParameterList**)TemplateParamLists.get(),
2580                                                   TemplateParamLists.size(),
2581                                                  /*never a friend*/ false,
2582                                                  isExplicitSpecialization)) {
2583    // All but one template parameter lists have been matching.
2584    --NumMatchedTemplateParamLists;
2585
2586    if (TemplateParams->size() > 0) {
2587      // There is no such thing as a variable template.
2588      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2589        << II
2590        << SourceRange(TemplateParams->getTemplateLoc(),
2591                       TemplateParams->getRAngleLoc());
2592      return 0;
2593    } else {
2594      // There is an extraneous 'template<>' for this variable. Complain
2595      // about it, but allow the declaration of the variable.
2596      Diag(TemplateParams->getTemplateLoc(),
2597           diag::err_template_variable_noparams)
2598        << II
2599        << SourceRange(TemplateParams->getTemplateLoc(),
2600                       TemplateParams->getRAngleLoc());
2601
2602      isExplicitSpecialization = true;
2603    }
2604  }
2605
2606  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2607                                   II, R, TInfo, SC, SCAsWritten);
2608
2609  if (D.isInvalidType())
2610    NewVD->setInvalidDecl();
2611
2612  SetNestedNameSpecifier(NewVD, D);
2613
2614  if (NumMatchedTemplateParamLists > 0) {
2615    NewVD->setTemplateParameterListsInfo(Context,
2616                                         NumMatchedTemplateParamLists,
2617                        (TemplateParameterList**)TemplateParamLists.release());
2618  }
2619
2620  if (D.getDeclSpec().isThreadSpecified()) {
2621    if (NewVD->hasLocalStorage())
2622      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2623    else if (!Context.Target.isTLSSupported())
2624      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2625    else
2626      NewVD->setThreadSpecified(true);
2627  }
2628
2629  // Set the lexical context. If the declarator has a C++ scope specifier, the
2630  // lexical context will be different from the semantic context.
2631  NewVD->setLexicalDeclContext(CurContext);
2632
2633  // Handle attributes prior to checking for duplicates in MergeVarDecl
2634  ProcessDeclAttributes(S, NewVD, D);
2635
2636  // Handle GNU asm-label extension (encoded as an attribute).
2637  if (Expr *E = (Expr*) D.getAsmLabel()) {
2638    // The parser guarantees this is a string.
2639    StringLiteral *SE = cast<StringLiteral>(E);
2640    NewVD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
2641  }
2642
2643  // Diagnose shadowed variables before filtering for scope.
2644  if (!D.getCXXScopeSpec().isSet())
2645    CheckShadow(S, NewVD, Previous);
2646
2647  // Don't consider existing declarations that are in a different
2648  // scope and are out-of-semantic-context declarations (if the new
2649  // declaration has linkage).
2650  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2651
2652  // Merge the decl with the existing one if appropriate.
2653  if (!Previous.empty()) {
2654    if (Previous.isSingleResult() &&
2655        isa<FieldDecl>(Previous.getFoundDecl()) &&
2656        D.getCXXScopeSpec().isSet()) {
2657      // The user tried to define a non-static data member
2658      // out-of-line (C++ [dcl.meaning]p1).
2659      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2660        << D.getCXXScopeSpec().getRange();
2661      Previous.clear();
2662      NewVD->setInvalidDecl();
2663    }
2664  } else if (D.getCXXScopeSpec().isSet()) {
2665    // No previous declaration in the qualifying scope.
2666    Diag(D.getIdentifierLoc(), diag::err_no_member)
2667      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2668      << D.getCXXScopeSpec().getRange();
2669    NewVD->setInvalidDecl();
2670  }
2671
2672  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2673
2674  // This is an explicit specialization of a static data member. Check it.
2675  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2676      CheckMemberSpecialization(NewVD, Previous))
2677    NewVD->setInvalidDecl();
2678
2679  // attributes declared post-definition are currently ignored
2680  if (Previous.isSingleResult()) {
2681    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2682    if (Def && (Def = Def->getDefinition()) &&
2683        Def != NewVD && D.hasAttributes()) {
2684      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2685      Diag(Def->getLocation(), diag::note_previous_definition);
2686    }
2687  }
2688
2689  // If this is a locally-scoped extern C variable, update the map of
2690  // such variables.
2691  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2692      !NewVD->isInvalidDecl())
2693    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2694
2695  return NewVD;
2696}
2697
2698/// \brief Diagnose variable or built-in function shadowing.  Implements
2699/// -Wshadow.
2700///
2701/// This method is called whenever a VarDecl is added to a "useful"
2702/// scope.
2703///
2704/// \param S the scope in which the shadowing name is being declared
2705/// \param R the lookup of the name
2706///
2707void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2708  // Return if warning is ignored.
2709  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2710    return;
2711
2712  // Don't diagnose declarations at file scope.  The scope might not
2713  // have a DeclContext if (e.g.) we're parsing a function prototype.
2714  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2715  if (NewDC && NewDC->isFileContext())
2716    return;
2717
2718  // Only diagnose if we're shadowing an unambiguous field or variable.
2719  if (R.getResultKind() != LookupResult::Found)
2720    return;
2721
2722  NamedDecl* ShadowedDecl = R.getFoundDecl();
2723  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2724    return;
2725
2726  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2727
2728  // Only warn about certain kinds of shadowing for class members.
2729  if (NewDC && NewDC->isRecord()) {
2730    // In particular, don't warn about shadowing non-class members.
2731    if (!OldDC->isRecord())
2732      return;
2733
2734    // TODO: should we warn about static data members shadowing
2735    // static data members from base classes?
2736
2737    // TODO: don't diagnose for inaccessible shadowed members.
2738    // This is hard to do perfectly because we might friend the
2739    // shadowing context, but that's just a false negative.
2740  }
2741
2742  // Determine what kind of declaration we're shadowing.
2743  unsigned Kind;
2744  if (isa<RecordDecl>(OldDC)) {
2745    if (isa<FieldDecl>(ShadowedDecl))
2746      Kind = 3; // field
2747    else
2748      Kind = 2; // static data member
2749  } else if (OldDC->isFileContext())
2750    Kind = 1; // global
2751  else
2752    Kind = 0; // local
2753
2754  DeclarationName Name = R.getLookupName();
2755
2756  // Emit warning and note.
2757  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2758  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2759}
2760
2761/// \brief Check -Wshadow without the advantage of a previous lookup.
2762void Sema::CheckShadow(Scope *S, VarDecl *D) {
2763  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2764                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2765  LookupName(R, S);
2766  CheckShadow(S, D, R);
2767}
2768
2769/// \brief Perform semantic checking on a newly-created variable
2770/// declaration.
2771///
2772/// This routine performs all of the type-checking required for a
2773/// variable declaration once it has been built. It is used both to
2774/// check variables after they have been parsed and their declarators
2775/// have been translated into a declaration, and to check variables
2776/// that have been instantiated from a template.
2777///
2778/// Sets NewVD->isInvalidDecl() if an error was encountered.
2779void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2780                                    LookupResult &Previous,
2781                                    bool &Redeclaration) {
2782  // If the decl is already known invalid, don't check it.
2783  if (NewVD->isInvalidDecl())
2784    return;
2785
2786  QualType T = NewVD->getType();
2787
2788  if (T->isObjCObjectType()) {
2789    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2790    return NewVD->setInvalidDecl();
2791  }
2792
2793  // Emit an error if an address space was applied to decl with local storage.
2794  // This includes arrays of objects with address space qualifiers, but not
2795  // automatic variables that point to other address spaces.
2796  // ISO/IEC TR 18037 S5.1.2
2797  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2798    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2799    return NewVD->setInvalidDecl();
2800  }
2801
2802  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2803      && !NewVD->hasAttr<BlocksAttr>())
2804    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2805
2806  bool isVM = T->isVariablyModifiedType();
2807  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2808      NewVD->hasAttr<BlocksAttr>() ||
2809      // FIXME: We need to diagnose jumps passed initialized variables in C++.
2810      // However, this turns on the scope checker for everything with a variable
2811      // which may impact compile time.  See if we can find a better solution
2812      // to this, perhaps only checking functions that contain gotos in C++?
2813      (LangOpts.CPlusPlus && NewVD->hasLocalStorage()))
2814    FunctionNeedsScopeChecking() = true;
2815
2816  if ((isVM && NewVD->hasLinkage()) ||
2817      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2818    bool SizeIsNegative;
2819    QualType FixedTy =
2820        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2821
2822    if (FixedTy.isNull() && T->isVariableArrayType()) {
2823      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2824      // FIXME: This won't give the correct result for
2825      // int a[10][n];
2826      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2827
2828      if (NewVD->isFileVarDecl())
2829        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2830        << SizeRange;
2831      else if (NewVD->getStorageClass() == VarDecl::Static)
2832        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2833        << SizeRange;
2834      else
2835        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2836        << SizeRange;
2837      return NewVD->setInvalidDecl();
2838    }
2839
2840    if (FixedTy.isNull()) {
2841      if (NewVD->isFileVarDecl())
2842        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2843      else
2844        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2845      return NewVD->setInvalidDecl();
2846    }
2847
2848    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2849    NewVD->setType(FixedTy);
2850  }
2851
2852  if (Previous.empty() && NewVD->isExternC()) {
2853    // Since we did not find anything by this name and we're declaring
2854    // an extern "C" variable, look for a non-visible extern "C"
2855    // declaration with the same name.
2856    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2857      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2858    if (Pos != LocallyScopedExternalDecls.end())
2859      Previous.addDecl(Pos->second);
2860  }
2861
2862  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2863    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2864      << T;
2865    return NewVD->setInvalidDecl();
2866  }
2867
2868  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2869    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2870    return NewVD->setInvalidDecl();
2871  }
2872
2873  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2874    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2875    return NewVD->setInvalidDecl();
2876  }
2877
2878  // Function pointers and references cannot have qualified function type, only
2879  // function pointer-to-members can do that.
2880  QualType Pointee;
2881  unsigned PtrOrRef = 0;
2882  if (const PointerType *Ptr = T->getAs<PointerType>())
2883    Pointee = Ptr->getPointeeType();
2884  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
2885    Pointee = Ref->getPointeeType();
2886    PtrOrRef = 1;
2887  }
2888  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
2889      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
2890    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
2891        << PtrOrRef;
2892    return NewVD->setInvalidDecl();
2893  }
2894
2895  if (!Previous.empty()) {
2896    Redeclaration = true;
2897    MergeVarDecl(NewVD, Previous);
2898  }
2899}
2900
2901/// \brief Data used with FindOverriddenMethod
2902struct FindOverriddenMethodData {
2903  Sema *S;
2904  CXXMethodDecl *Method;
2905};
2906
2907/// \brief Member lookup function that determines whether a given C++
2908/// method overrides a method in a base class, to be used with
2909/// CXXRecordDecl::lookupInBases().
2910static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2911                                 CXXBasePath &Path,
2912                                 void *UserData) {
2913  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2914
2915  FindOverriddenMethodData *Data
2916    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2917
2918  DeclarationName Name = Data->Method->getDeclName();
2919
2920  // FIXME: Do we care about other names here too?
2921  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2922    // We really want to find the base class destructor here.
2923    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2924    CanQualType CT = Data->S->Context.getCanonicalType(T);
2925
2926    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2927  }
2928
2929  for (Path.Decls = BaseRecord->lookup(Name);
2930       Path.Decls.first != Path.Decls.second;
2931       ++Path.Decls.first) {
2932    NamedDecl *D = *Path.Decls.first;
2933    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
2934      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
2935        return true;
2936    }
2937  }
2938
2939  return false;
2940}
2941
2942/// AddOverriddenMethods - See if a method overrides any in the base classes,
2943/// and if so, check that it's a valid override and remember it.
2944void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2945  // Look for virtual methods in base classes that this method might override.
2946  CXXBasePaths Paths;
2947  FindOverriddenMethodData Data;
2948  Data.Method = MD;
2949  Data.S = this;
2950  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2951    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2952         E = Paths.found_decls_end(); I != E; ++I) {
2953      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2954        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2955            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2956            !CheckOverridingFunctionAttributes(MD, OldMD))
2957          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2958      }
2959    }
2960  }
2961}
2962
2963NamedDecl*
2964Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2965                              QualType R, TypeSourceInfo *TInfo,
2966                              LookupResult &Previous,
2967                              MultiTemplateParamsArg TemplateParamLists,
2968                              bool IsFunctionDefinition, bool &Redeclaration) {
2969  assert(R.getTypePtr()->isFunctionType());
2970
2971  DeclarationName Name = GetNameForDeclarator(D);
2972  FunctionDecl::StorageClass SC = FunctionDecl::None;
2973  switch (D.getDeclSpec().getStorageClassSpec()) {
2974  default: assert(0 && "Unknown storage class!");
2975  case DeclSpec::SCS_auto:
2976  case DeclSpec::SCS_register:
2977  case DeclSpec::SCS_mutable:
2978    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2979         diag::err_typecheck_sclass_func);
2980    D.setInvalidType();
2981    break;
2982  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2983  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2984  case DeclSpec::SCS_static: {
2985    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2986      // C99 6.7.1p5:
2987      //   The declaration of an identifier for a function that has
2988      //   block scope shall have no explicit storage-class specifier
2989      //   other than extern
2990      // See also (C++ [dcl.stc]p4).
2991      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2992           diag::err_static_block_func);
2993      SC = FunctionDecl::None;
2994    } else
2995      SC = FunctionDecl::Static;
2996    break;
2997  }
2998  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2999  }
3000
3001  if (D.getDeclSpec().isThreadSpecified())
3002    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3003
3004  bool isFriend = D.getDeclSpec().isFriendSpecified();
3005  bool isInline = D.getDeclSpec().isInlineSpecified();
3006  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3007  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3008
3009  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3010  FunctionDecl::StorageClass SCAsWritten
3011    = StorageClassSpecToFunctionDeclStorageClass(SCSpec, DC);
3012
3013  // Check that the return type is not an abstract class type.
3014  // For record types, this is done by the AbstractClassUsageDiagnoser once
3015  // the class has been completely parsed.
3016  if (!DC->isRecord() &&
3017      RequireNonAbstractType(D.getIdentifierLoc(),
3018                             R->getAs<FunctionType>()->getResultType(),
3019                             diag::err_abstract_type_in_decl,
3020                             AbstractReturnType))
3021    D.setInvalidType();
3022
3023  // Do not allow returning a objc interface by-value.
3024  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3025    Diag(D.getIdentifierLoc(),
3026         diag::err_object_cannot_be_passed_returned_by_value) << 0
3027      << R->getAs<FunctionType>()->getResultType();
3028    D.setInvalidType();
3029  }
3030
3031  bool isVirtualOkay = false;
3032  FunctionDecl *NewFD;
3033
3034  if (isFriend) {
3035    // C++ [class.friend]p5
3036    //   A function can be defined in a friend declaration of a
3037    //   class . . . . Such a function is implicitly inline.
3038    isInline |= IsFunctionDefinition;
3039  }
3040
3041  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3042    // This is a C++ constructor declaration.
3043    assert(DC->isRecord() &&
3044           "Constructors can only be declared in a member context");
3045
3046    R = CheckConstructorDeclarator(D, R, SC);
3047
3048    // Create the new declaration
3049    NewFD = CXXConstructorDecl::Create(Context,
3050                                       cast<CXXRecordDecl>(DC),
3051                                       D.getIdentifierLoc(), Name, R, TInfo,
3052                                       isExplicit, isInline,
3053                                       /*isImplicitlyDeclared=*/false);
3054  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3055    // This is a C++ destructor declaration.
3056    if (DC->isRecord()) {
3057      R = CheckDestructorDeclarator(D, R, SC);
3058
3059      NewFD = CXXDestructorDecl::Create(Context,
3060                                        cast<CXXRecordDecl>(DC),
3061                                        D.getIdentifierLoc(), Name, R,
3062                                        isInline,
3063                                        /*isImplicitlyDeclared=*/false);
3064      NewFD->setTypeSourceInfo(TInfo);
3065
3066      isVirtualOkay = true;
3067    } else {
3068      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3069
3070      // Create a FunctionDecl to satisfy the function definition parsing
3071      // code path.
3072      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3073                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3074                                   /*hasPrototype=*/true);
3075      D.setInvalidType();
3076    }
3077  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3078    if (!DC->isRecord()) {
3079      Diag(D.getIdentifierLoc(),
3080           diag::err_conv_function_not_member);
3081      return 0;
3082    }
3083
3084    CheckConversionDeclarator(D, R, SC);
3085    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3086                                      D.getIdentifierLoc(), Name, R, TInfo,
3087                                      isInline, isExplicit);
3088
3089    isVirtualOkay = true;
3090  } else if (DC->isRecord()) {
3091    // If the of the function is the same as the name of the record, then this
3092    // must be an invalid constructor that has a return type.
3093    // (The parser checks for a return type and makes the declarator a
3094    // constructor if it has no return type).
3095    // must have an invalid constructor that has a return type
3096    if (Name.getAsIdentifierInfo() &&
3097        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3098      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3099        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3100        << SourceRange(D.getIdentifierLoc());
3101      return 0;
3102    }
3103
3104    bool isStatic = SC == FunctionDecl::Static;
3105
3106    // [class.free]p1:
3107    // Any allocation function for a class T is a static member
3108    // (even if not explicitly declared static).
3109    if (Name.getCXXOverloadedOperator() == OO_New ||
3110        Name.getCXXOverloadedOperator() == OO_Array_New)
3111      isStatic = true;
3112
3113    // [class.free]p6 Any deallocation function for a class X is a static member
3114    // (even if not explicitly declared static).
3115    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3116        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3117      isStatic = true;
3118
3119    // This is a C++ method declaration.
3120    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3121                                  D.getIdentifierLoc(), Name, R, TInfo,
3122                                  isStatic, SCAsWritten, isInline);
3123
3124    isVirtualOkay = !isStatic;
3125  } else {
3126    // Determine whether the function was written with a
3127    // prototype. This true when:
3128    //   - we're in C++ (where every function has a prototype),
3129    //   - there is a prototype in the declarator, or
3130    //   - the type R of the function is some kind of typedef or other reference
3131    //     to a type name (which eventually refers to a function type).
3132    bool HasPrototype =
3133       getLangOptions().CPlusPlus ||
3134       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3135       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3136
3137    NewFD = FunctionDecl::Create(Context, DC,
3138                                 D.getIdentifierLoc(),
3139                                 Name, R, TInfo, SC, SCAsWritten, isInline,
3140                                 HasPrototype);
3141  }
3142
3143  if (D.isInvalidType())
3144    NewFD->setInvalidDecl();
3145
3146  SetNestedNameSpecifier(NewFD, D);
3147
3148  // Set the lexical context. If the declarator has a C++
3149  // scope specifier, or is the object of a friend declaration, the
3150  // lexical context will be different from the semantic context.
3151  NewFD->setLexicalDeclContext(CurContext);
3152
3153  // Match up the template parameter lists with the scope specifier, then
3154  // determine whether we have a template or a template specialization.
3155  FunctionTemplateDecl *FunctionTemplate = 0;
3156  bool isExplicitSpecialization = false;
3157  bool isFunctionTemplateSpecialization = false;
3158  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3159  if (TemplateParameterList *TemplateParams
3160        = MatchTemplateParametersToScopeSpecifier(
3161                                  D.getDeclSpec().getSourceRange().getBegin(),
3162                                  D.getCXXScopeSpec(),
3163                           (TemplateParameterList**)TemplateParamLists.get(),
3164                                                  TemplateParamLists.size(),
3165                                                  isFriend,
3166                                                  isExplicitSpecialization)) {
3167    // All but one template parameter lists have been matching.
3168    --NumMatchedTemplateParamLists;
3169
3170    if (TemplateParams->size() > 0) {
3171      // This is a function template
3172
3173      // Check that we can declare a template here.
3174      if (CheckTemplateDeclScope(S, TemplateParams))
3175        return 0;
3176
3177      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3178                                                      NewFD->getLocation(),
3179                                                      Name, TemplateParams,
3180                                                      NewFD);
3181      FunctionTemplate->setLexicalDeclContext(CurContext);
3182      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3183    } else {
3184      // This is a function template specialization.
3185      isFunctionTemplateSpecialization = true;
3186
3187      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3188      if (isFriend && isFunctionTemplateSpecialization) {
3189        // We want to remove the "template<>", found here.
3190        SourceRange RemoveRange = TemplateParams->getSourceRange();
3191
3192        // If we remove the template<> and the name is not a
3193        // template-id, we're actually silently creating a problem:
3194        // the friend declaration will refer to an untemplated decl,
3195        // and clearly the user wants a template specialization.  So
3196        // we need to insert '<>' after the name.
3197        SourceLocation InsertLoc;
3198        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3199          InsertLoc = D.getName().getSourceRange().getEnd();
3200          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3201        }
3202
3203        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3204          << Name << RemoveRange
3205          << FixItHint::CreateRemoval(RemoveRange)
3206          << FixItHint::CreateInsertion(InsertLoc, "<>");
3207      }
3208    }
3209  }
3210
3211  if (NumMatchedTemplateParamLists > 0) {
3212    NewFD->setTemplateParameterListsInfo(Context,
3213                                         NumMatchedTemplateParamLists,
3214                        (TemplateParameterList**)TemplateParamLists.release());
3215  }
3216
3217  // C++ [dcl.fct.spec]p5:
3218  //   The virtual specifier shall only be used in declarations of
3219  //   nonstatic class member functions that appear within a
3220  //   member-specification of a class declaration; see 10.3.
3221  //
3222  if (isVirtual && !NewFD->isInvalidDecl()) {
3223    if (!isVirtualOkay) {
3224       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3225           diag::err_virtual_non_function);
3226    } else if (!CurContext->isRecord()) {
3227      // 'virtual' was specified outside of the class.
3228      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3229        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3230    } else {
3231      // Okay: Add virtual to the method.
3232      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3233      CurClass->setMethodAsVirtual(NewFD);
3234    }
3235  }
3236
3237  // C++ [dcl.fct.spec]p6:
3238  //  The explicit specifier shall be used only in the declaration of a
3239  //  constructor or conversion function within its class definition; see 12.3.1
3240  //  and 12.3.2.
3241  if (isExplicit && !NewFD->isInvalidDecl()) {
3242    if (!CurContext->isRecord()) {
3243      // 'explicit' was specified outside of the class.
3244      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3245           diag::err_explicit_out_of_class)
3246        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3247    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3248               !isa<CXXConversionDecl>(NewFD)) {
3249      // 'explicit' was specified on a function that wasn't a constructor
3250      // or conversion function.
3251      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3252           diag::err_explicit_non_ctor_or_conv_function)
3253        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3254    }
3255  }
3256
3257  // Filter out previous declarations that don't match the scope.
3258  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3259
3260  if (isFriend) {
3261    // DC is the namespace in which the function is being declared.
3262    assert((DC->isFileContext() || !Previous.empty()) &&
3263           "previously-undeclared friend function being created "
3264           "in a non-namespace context");
3265
3266    // For now, claim that the objects have no previous declaration.
3267    if (FunctionTemplate) {
3268      FunctionTemplate->setObjectOfFriendDecl(false);
3269      FunctionTemplate->setAccess(AS_public);
3270    }
3271    NewFD->setObjectOfFriendDecl(false);
3272    NewFD->setAccess(AS_public);
3273  }
3274
3275  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3276      !CurContext->isRecord()) {
3277    // C++ [class.static]p1:
3278    //   A data or function member of a class may be declared static
3279    //   in a class definition, in which case it is a static member of
3280    //   the class.
3281
3282    // Complain about the 'static' specifier if it's on an out-of-line
3283    // member function definition.
3284    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3285         diag::err_static_out_of_line)
3286      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3287  }
3288
3289  // Handle GNU asm-label extension (encoded as an attribute).
3290  if (Expr *E = (Expr*) D.getAsmLabel()) {
3291    // The parser guarantees this is a string.
3292    StringLiteral *SE = cast<StringLiteral>(E);
3293    NewFD->addAttr(::new (Context) AsmLabelAttr(Context, SE->getString()));
3294  }
3295
3296  // Copy the parameter declarations from the declarator D to the function
3297  // declaration NewFD, if they are available.  First scavenge them into Params.
3298  llvm::SmallVector<ParmVarDecl*, 16> Params;
3299  if (D.getNumTypeObjects() > 0) {
3300    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3301
3302    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3303    // function that takes no arguments, not a function that takes a
3304    // single void argument.
3305    // We let through "const void" here because Sema::GetTypeForDeclarator
3306    // already checks for that case.
3307    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3308        FTI.ArgInfo[0].Param &&
3309        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3310      // Empty arg list, don't push any params.
3311      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3312
3313      // In C++, the empty parameter-type-list must be spelled "void"; a
3314      // typedef of void is not permitted.
3315      if (getLangOptions().CPlusPlus &&
3316          Param->getType().getUnqualifiedType() != Context.VoidTy)
3317        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3318      // FIXME: Leaks decl?
3319    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3320      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3321        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3322        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3323        Param->setDeclContext(NewFD);
3324        Params.push_back(Param);
3325
3326        if (Param->isInvalidDecl())
3327          NewFD->setInvalidDecl();
3328      }
3329    }
3330
3331  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3332    // When we're declaring a function with a typedef, typeof, etc as in the
3333    // following example, we'll need to synthesize (unnamed)
3334    // parameters for use in the declaration.
3335    //
3336    // @code
3337    // typedef void fn(int);
3338    // fn f;
3339    // @endcode
3340
3341    // Synthesize a parameter for each argument type.
3342    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3343         AE = FT->arg_type_end(); AI != AE; ++AI) {
3344      ParmVarDecl *Param =
3345        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3346      Params.push_back(Param);
3347    }
3348  } else {
3349    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3350           "Should not need args for typedef of non-prototype fn");
3351  }
3352  // Finally, we know we have the right number of parameters, install them.
3353  NewFD->setParams(Params.data(), Params.size());
3354
3355  // If the declarator is a template-id, translate the parser's template
3356  // argument list into our AST format.
3357  bool HasExplicitTemplateArgs = false;
3358  TemplateArgumentListInfo TemplateArgs;
3359  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3360    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3361    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3362    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3363    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3364                                       TemplateId->getTemplateArgs(),
3365                                       TemplateId->NumArgs);
3366    translateTemplateArguments(TemplateArgsPtr,
3367                               TemplateArgs);
3368    TemplateArgsPtr.release();
3369
3370    HasExplicitTemplateArgs = true;
3371
3372    if (FunctionTemplate) {
3373      // FIXME: Diagnose function template with explicit template
3374      // arguments.
3375      HasExplicitTemplateArgs = false;
3376    } else if (!isFunctionTemplateSpecialization &&
3377               !D.getDeclSpec().isFriendSpecified()) {
3378      // We have encountered something that the user meant to be a
3379      // specialization (because it has explicitly-specified template
3380      // arguments) but that was not introduced with a "template<>" (or had
3381      // too few of them).
3382      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3383        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3384        << FixItHint::CreateInsertion(
3385                                   D.getDeclSpec().getSourceRange().getBegin(),
3386                                                 "template<> ");
3387      isFunctionTemplateSpecialization = true;
3388    } else {
3389      // "friend void foo<>(int);" is an implicit specialization decl.
3390      isFunctionTemplateSpecialization = true;
3391    }
3392  } else if (isFriend && isFunctionTemplateSpecialization) {
3393    // This combination is only possible in a recovery case;  the user
3394    // wrote something like:
3395    //   template <> friend void foo(int);
3396    // which we're recovering from as if the user had written:
3397    //   friend void foo<>(int);
3398    // Go ahead and fake up a template id.
3399    HasExplicitTemplateArgs = true;
3400    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3401    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3402  }
3403
3404  // If it's a friend (and only if it's a friend), it's possible
3405  // that either the specialized function type or the specialized
3406  // template is dependent, and therefore matching will fail.  In
3407  // this case, don't check the specialization yet.
3408  if (isFunctionTemplateSpecialization && isFriend &&
3409      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3410    assert(HasExplicitTemplateArgs &&
3411           "friend function specialization without template args");
3412    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3413                                                     Previous))
3414      NewFD->setInvalidDecl();
3415  } else if (isFunctionTemplateSpecialization) {
3416    if (CheckFunctionTemplateSpecialization(NewFD,
3417                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3418                                            Previous))
3419      NewFD->setInvalidDecl();
3420  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3421    if (CheckMemberSpecialization(NewFD, Previous))
3422      NewFD->setInvalidDecl();
3423  }
3424
3425  // Perform semantic checking on the function declaration.
3426  bool OverloadableAttrRequired = false; // FIXME: HACK!
3427  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3428                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3429
3430  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3431          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3432         "previous declaration set still overloaded");
3433
3434  NamedDecl *PrincipalDecl = (FunctionTemplate
3435                              ? cast<NamedDecl>(FunctionTemplate)
3436                              : NewFD);
3437
3438  if (isFriend && Redeclaration) {
3439    AccessSpecifier Access = AS_public;
3440    if (!NewFD->isInvalidDecl())
3441      Access = NewFD->getPreviousDeclaration()->getAccess();
3442
3443    NewFD->setAccess(Access);
3444    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3445
3446    PrincipalDecl->setObjectOfFriendDecl(true);
3447  }
3448
3449  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3450      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3451    PrincipalDecl->setNonMemberOperator();
3452
3453  // If we have a function template, check the template parameter
3454  // list. This will check and merge default template arguments.
3455  if (FunctionTemplate) {
3456    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3457    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3458                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3459             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3460                                                : TPC_FunctionTemplate);
3461  }
3462
3463  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3464    // Fake up an access specifier if it's supposed to be a class member.
3465    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3466      NewFD->setAccess(AS_public);
3467
3468    // An out-of-line member function declaration must also be a
3469    // definition (C++ [dcl.meaning]p1).
3470    // Note that this is not the case for explicit specializations of
3471    // function templates or member functions of class templates, per
3472    // C++ [temp.expl.spec]p2.
3473    if (!IsFunctionDefinition && !isFriend &&
3474        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3475      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3476        << D.getCXXScopeSpec().getRange();
3477      NewFD->setInvalidDecl();
3478    } else if (!Redeclaration &&
3479               !(isFriend && CurContext->isDependentContext())) {
3480      // The user tried to provide an out-of-line definition for a
3481      // function that is a member of a class or namespace, but there
3482      // was no such member function declared (C++ [class.mfct]p2,
3483      // C++ [namespace.memdef]p2). For example:
3484      //
3485      // class X {
3486      //   void f() const;
3487      // };
3488      //
3489      // void X::f() { } // ill-formed
3490      //
3491      // Complain about this problem, and attempt to suggest close
3492      // matches (e.g., those that differ only in cv-qualifiers and
3493      // whether the parameter types are references).
3494      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3495        << Name << DC << D.getCXXScopeSpec().getRange();
3496      NewFD->setInvalidDecl();
3497
3498      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3499                        ForRedeclaration);
3500      LookupQualifiedName(Prev, DC);
3501      assert(!Prev.isAmbiguous() &&
3502             "Cannot have an ambiguity in previous-declaration lookup");
3503      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3504           Func != FuncEnd; ++Func) {
3505        if (isa<FunctionDecl>(*Func) &&
3506            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3507          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3508      }
3509    }
3510  }
3511
3512  // Handle attributes. We need to have merged decls when handling attributes
3513  // (for example to check for conflicts, etc).
3514  // FIXME: This needs to happen before we merge declarations. Then,
3515  // let attribute merging cope with attribute conflicts.
3516  ProcessDeclAttributes(S, NewFD, D);
3517
3518  // attributes declared post-definition are currently ignored
3519  if (Redeclaration && Previous.isSingleResult()) {
3520    const FunctionDecl *Def;
3521    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3522    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3523      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3524      Diag(Def->getLocation(), diag::note_previous_definition);
3525    }
3526  }
3527
3528  AddKnownFunctionAttributes(NewFD);
3529
3530  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3531    // If a function name is overloadable in C, then every function
3532    // with that name must be marked "overloadable".
3533    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3534      << Redeclaration << NewFD;
3535    if (!Previous.empty())
3536      Diag(Previous.getRepresentativeDecl()->getLocation(),
3537           diag::note_attribute_overloadable_prev_overload);
3538    NewFD->addAttr(::new (Context) OverloadableAttr());
3539  }
3540
3541  // If this is a locally-scoped extern C function, update the
3542  // map of such names.
3543  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3544      && !NewFD->isInvalidDecl())
3545    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3546
3547  // Set this FunctionDecl's range up to the right paren.
3548  NewFD->setLocEnd(D.getSourceRange().getEnd());
3549
3550  if (FunctionTemplate && NewFD->isInvalidDecl())
3551    FunctionTemplate->setInvalidDecl();
3552
3553  if (FunctionTemplate)
3554    return FunctionTemplate;
3555
3556
3557  // Keep track of static, non-inlined function definitions that
3558  // have not been used. We will warn later.
3559  // FIXME: Also include static functions declared but not defined.
3560  if (!NewFD->isInvalidDecl() && IsFunctionDefinition
3561      && !NewFD->isInlined() && NewFD->getLinkage() == InternalLinkage
3562      && !NewFD->isUsed() && !NewFD->hasAttr<UnusedAttr>()
3563      && !NewFD->hasAttr<ConstructorAttr>()
3564      && !NewFD->hasAttr<DestructorAttr>())
3565    UnusedStaticFuncs.push_back(NewFD);
3566
3567  return NewFD;
3568}
3569
3570/// \brief Perform semantic checking of a new function declaration.
3571///
3572/// Performs semantic analysis of the new function declaration
3573/// NewFD. This routine performs all semantic checking that does not
3574/// require the actual declarator involved in the declaration, and is
3575/// used both for the declaration of functions as they are parsed
3576/// (called via ActOnDeclarator) and for the declaration of functions
3577/// that have been instantiated via C++ template instantiation (called
3578/// via InstantiateDecl).
3579///
3580/// \param IsExplicitSpecialiation whether this new function declaration is
3581/// an explicit specialization of the previous declaration.
3582///
3583/// This sets NewFD->isInvalidDecl() to true if there was an error.
3584void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3585                                    LookupResult &Previous,
3586                                    bool IsExplicitSpecialization,
3587                                    bool &Redeclaration,
3588                                    bool &OverloadableAttrRequired) {
3589  // If NewFD is already known erroneous, don't do any of this checking.
3590  if (NewFD->isInvalidDecl())
3591    return;
3592
3593  if (NewFD->getResultType()->isVariablyModifiedType()) {
3594    // Functions returning a variably modified type violate C99 6.7.5.2p2
3595    // because all functions have linkage.
3596    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3597    return NewFD->setInvalidDecl();
3598  }
3599
3600  if (NewFD->isMain())
3601    CheckMain(NewFD);
3602
3603  // Check for a previous declaration of this name.
3604  if (Previous.empty() && NewFD->isExternC()) {
3605    // Since we did not find anything by this name and we're declaring
3606    // an extern "C" function, look for a non-visible extern "C"
3607    // declaration with the same name.
3608    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3609      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3610    if (Pos != LocallyScopedExternalDecls.end())
3611      Previous.addDecl(Pos->second);
3612  }
3613
3614  // Merge or overload the declaration with an existing declaration of
3615  // the same name, if appropriate.
3616  if (!Previous.empty()) {
3617    // Determine whether NewFD is an overload of PrevDecl or
3618    // a declaration that requires merging. If it's an overload,
3619    // there's no more work to do here; we'll just add the new
3620    // function to the scope.
3621
3622    NamedDecl *OldDecl = 0;
3623    if (!AllowOverloadingOfFunction(Previous, Context)) {
3624      Redeclaration = true;
3625      OldDecl = Previous.getFoundDecl();
3626    } else {
3627      if (!getLangOptions().CPlusPlus) {
3628        OverloadableAttrRequired = true;
3629
3630        // Functions marked "overloadable" must have a prototype (that
3631        // we can't get through declaration merging).
3632        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3633          Diag(NewFD->getLocation(),
3634               diag::err_attribute_overloadable_no_prototype)
3635            << NewFD;
3636          Redeclaration = true;
3637
3638          // Turn this into a variadic function with no parameters.
3639          QualType R = Context.getFunctionType(
3640                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3641                     0, 0, true, 0, false, false, 0, 0,
3642                     FunctionType::ExtInfo());
3643          NewFD->setType(R);
3644          return NewFD->setInvalidDecl();
3645        }
3646      }
3647
3648      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3649                            /*NewIsUsingDecl*/ false)) {
3650      case Ovl_Match:
3651        Redeclaration = true;
3652        break;
3653
3654      case Ovl_NonFunction:
3655        Redeclaration = true;
3656        break;
3657
3658      case Ovl_Overload:
3659        Redeclaration = false;
3660        break;
3661      }
3662    }
3663
3664    if (Redeclaration) {
3665      // NewFD and OldDecl represent declarations that need to be
3666      // merged.
3667      if (MergeFunctionDecl(NewFD, OldDecl))
3668        return NewFD->setInvalidDecl();
3669
3670      Previous.clear();
3671      Previous.addDecl(OldDecl);
3672
3673      if (FunctionTemplateDecl *OldTemplateDecl
3674                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3675        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3676        FunctionTemplateDecl *NewTemplateDecl
3677          = NewFD->getDescribedFunctionTemplate();
3678        assert(NewTemplateDecl && "Template/non-template mismatch");
3679        if (CXXMethodDecl *Method
3680              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3681          Method->setAccess(OldTemplateDecl->getAccess());
3682          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3683        }
3684
3685        // If this is an explicit specialization of a member that is a function
3686        // template, mark it as a member specialization.
3687        if (IsExplicitSpecialization &&
3688            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3689          NewTemplateDecl->setMemberSpecialization();
3690          assert(OldTemplateDecl->isMemberSpecialization());
3691        }
3692      } else {
3693        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3694          NewFD->setAccess(OldDecl->getAccess());
3695        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3696      }
3697    }
3698  }
3699
3700  // Semantic checking for this function declaration (in isolation).
3701  if (getLangOptions().CPlusPlus) {
3702    // C++-specific checks.
3703    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3704      CheckConstructor(Constructor);
3705    } else if (CXXDestructorDecl *Destructor =
3706                dyn_cast<CXXDestructorDecl>(NewFD)) {
3707      CXXRecordDecl *Record = Destructor->getParent();
3708      QualType ClassType = Context.getTypeDeclType(Record);
3709
3710      // FIXME: Shouldn't we be able to perform this check even when the class
3711      // type is dependent? Both gcc and edg can handle that.
3712      if (!ClassType->isDependentType()) {
3713        DeclarationName Name
3714          = Context.DeclarationNames.getCXXDestructorName(
3715                                        Context.getCanonicalType(ClassType));
3716        if (NewFD->getDeclName() != Name) {
3717          Diag(NewFD->getLocation(), diag::err_destructor_name);
3718          return NewFD->setInvalidDecl();
3719        }
3720      }
3721
3722      Record->setUserDeclaredDestructor(true);
3723      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3724      // user-defined destructor.
3725      Record->setPOD(false);
3726
3727      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3728      // declared destructor.
3729      // FIXME: C++0x: don't do this for "= default" destructors
3730      Record->setHasTrivialDestructor(false);
3731    } else if (CXXConversionDecl *Conversion
3732               = dyn_cast<CXXConversionDecl>(NewFD)) {
3733      ActOnConversionDeclarator(Conversion);
3734    }
3735
3736    // Find any virtual functions that this function overrides.
3737    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3738      if (!Method->isFunctionTemplateSpecialization() &&
3739          !Method->getDescribedFunctionTemplate())
3740        AddOverriddenMethods(Method->getParent(), Method);
3741    }
3742
3743    // Additional checks for the destructor; make sure we do this after we
3744    // figure out whether the destructor is virtual.
3745    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3746      if (!Destructor->getParent()->isDependentType())
3747        CheckDestructor(Destructor);
3748
3749    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3750    if (NewFD->isOverloadedOperator() &&
3751        CheckOverloadedOperatorDeclaration(NewFD))
3752      return NewFD->setInvalidDecl();
3753
3754    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3755    if (NewFD->getLiteralIdentifier() &&
3756        CheckLiteralOperatorDeclaration(NewFD))
3757      return NewFD->setInvalidDecl();
3758
3759    // In C++, check default arguments now that we have merged decls. Unless
3760    // the lexical context is the class, because in this case this is done
3761    // during delayed parsing anyway.
3762    if (!CurContext->isRecord())
3763      CheckCXXDefaultArguments(NewFD);
3764  }
3765}
3766
3767void Sema::CheckMain(FunctionDecl* FD) {
3768  // C++ [basic.start.main]p3:  A program that declares main to be inline
3769  //   or static is ill-formed.
3770  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3771  //   shall not appear in a declaration of main.
3772  // static main is not an error under C99, but we should warn about it.
3773  bool isInline = FD->isInlineSpecified();
3774  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3775  if (isInline || isStatic) {
3776    unsigned diagID = diag::warn_unusual_main_decl;
3777    if (isInline || getLangOptions().CPlusPlus)
3778      diagID = diag::err_unusual_main_decl;
3779
3780    int which = isStatic + (isInline << 1) - 1;
3781    Diag(FD->getLocation(), diagID) << which;
3782  }
3783
3784  QualType T = FD->getType();
3785  assert(T->isFunctionType() && "function decl is not of function type");
3786  const FunctionType* FT = T->getAs<FunctionType>();
3787
3788  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3789    // TODO: add a replacement fixit to turn the return type into 'int'.
3790    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3791    FD->setInvalidDecl(true);
3792  }
3793
3794  // Treat protoless main() as nullary.
3795  if (isa<FunctionNoProtoType>(FT)) return;
3796
3797  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3798  unsigned nparams = FTP->getNumArgs();
3799  assert(FD->getNumParams() == nparams);
3800
3801  bool HasExtraParameters = (nparams > 3);
3802
3803  // Darwin passes an undocumented fourth argument of type char**.  If
3804  // other platforms start sprouting these, the logic below will start
3805  // getting shifty.
3806  if (nparams == 4 &&
3807      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3808    HasExtraParameters = false;
3809
3810  if (HasExtraParameters) {
3811    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3812    FD->setInvalidDecl(true);
3813    nparams = 3;
3814  }
3815
3816  // FIXME: a lot of the following diagnostics would be improved
3817  // if we had some location information about types.
3818
3819  QualType CharPP =
3820    Context.getPointerType(Context.getPointerType(Context.CharTy));
3821  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3822
3823  for (unsigned i = 0; i < nparams; ++i) {
3824    QualType AT = FTP->getArgType(i);
3825
3826    bool mismatch = true;
3827
3828    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3829      mismatch = false;
3830    else if (Expected[i] == CharPP) {
3831      // As an extension, the following forms are okay:
3832      //   char const **
3833      //   char const * const *
3834      //   char * const *
3835
3836      QualifierCollector qs;
3837      const PointerType* PT;
3838      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3839          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3840          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3841        qs.removeConst();
3842        mismatch = !qs.empty();
3843      }
3844    }
3845
3846    if (mismatch) {
3847      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3848      // TODO: suggest replacing given type with expected type
3849      FD->setInvalidDecl(true);
3850    }
3851  }
3852
3853  if (nparams == 1 && !FD->isInvalidDecl()) {
3854    Diag(FD->getLocation(), diag::warn_main_one_arg);
3855  }
3856}
3857
3858bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3859  // FIXME: Need strict checking.  In C89, we need to check for
3860  // any assignment, increment, decrement, function-calls, or
3861  // commas outside of a sizeof.  In C99, it's the same list,
3862  // except that the aforementioned are allowed in unevaluated
3863  // expressions.  Everything else falls under the
3864  // "may accept other forms of constant expressions" exception.
3865  // (We never end up here for C++, so the constant expression
3866  // rules there don't matter.)
3867  if (Init->isConstantInitializer(Context))
3868    return false;
3869  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3870    << Init->getSourceRange();
3871  return true;
3872}
3873
3874void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3875  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3876}
3877
3878/// AddInitializerToDecl - Adds the initializer Init to the
3879/// declaration dcl. If DirectInit is true, this is C++ direct
3880/// initialization rather than copy initialization.
3881void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3882  Decl *RealDecl = dcl.getAs<Decl>();
3883  // If there is no declaration, there was an error parsing it.  Just ignore
3884  // the initializer.
3885  if (RealDecl == 0)
3886    return;
3887
3888  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3889    // With declarators parsed the way they are, the parser cannot
3890    // distinguish between a normal initializer and a pure-specifier.
3891    // Thus this grotesque test.
3892    IntegerLiteral *IL;
3893    Expr *Init = static_cast<Expr *>(init.get());
3894    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3895        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3896      CheckPureMethod(Method, Init->getSourceRange());
3897    else {
3898      Diag(Method->getLocation(), diag::err_member_function_initialization)
3899        << Method->getDeclName() << Init->getSourceRange();
3900      Method->setInvalidDecl();
3901    }
3902    return;
3903  }
3904
3905  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3906  if (!VDecl) {
3907    if (getLangOptions().CPlusPlus &&
3908        RealDecl->getLexicalDeclContext()->isRecord() &&
3909        isa<NamedDecl>(RealDecl))
3910      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3911        << cast<NamedDecl>(RealDecl)->getDeclName();
3912    else
3913      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3914    RealDecl->setInvalidDecl();
3915    return;
3916  }
3917
3918  // A definition must end up with a complete type, which means it must be
3919  // complete with the restriction that an array type might be completed by the
3920  // initializer; note that later code assumes this restriction.
3921  QualType BaseDeclType = VDecl->getType();
3922  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3923    BaseDeclType = Array->getElementType();
3924  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3925                          diag::err_typecheck_decl_incomplete_type)) {
3926    RealDecl->setInvalidDecl();
3927    return;
3928  }
3929
3930  // The variable can not have an abstract class type.
3931  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3932                             diag::err_abstract_type_in_decl,
3933                             AbstractVariableType))
3934    VDecl->setInvalidDecl();
3935
3936  const VarDecl *Def;
3937  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
3938    Diag(VDecl->getLocation(), diag::err_redefinition)
3939      << VDecl->getDeclName();
3940    Diag(Def->getLocation(), diag::note_previous_definition);
3941    VDecl->setInvalidDecl();
3942    return;
3943  }
3944
3945  // Take ownership of the expression, now that we're sure we have somewhere
3946  // to put it.
3947  Expr *Init = init.takeAs<Expr>();
3948  assert(Init && "missing initializer");
3949
3950  // Capture the variable that is being initialized and the style of
3951  // initialization.
3952  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3953
3954  // FIXME: Poor source location information.
3955  InitializationKind Kind
3956    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3957                                                   Init->getLocStart(),
3958                                                   Init->getLocEnd())
3959                : InitializationKind::CreateCopy(VDecl->getLocation(),
3960                                                 Init->getLocStart());
3961
3962  // Get the decls type and save a reference for later, since
3963  // CheckInitializerTypes may change it.
3964  QualType DclT = VDecl->getType(), SavT = DclT;
3965  if (VDecl->isBlockVarDecl()) {
3966    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3967      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3968      VDecl->setInvalidDecl();
3969    } else if (!VDecl->isInvalidDecl()) {
3970      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3971      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3972                                          MultiExprArg(*this, (void**)&Init, 1),
3973                                                &DclT);
3974      if (Result.isInvalid()) {
3975        VDecl->setInvalidDecl();
3976        return;
3977      }
3978
3979      Init = Result.takeAs<Expr>();
3980
3981      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3982      // Don't check invalid declarations to avoid emitting useless diagnostics.
3983      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3984        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3985          CheckForConstantInitializer(Init, DclT);
3986      }
3987    }
3988  } else if (VDecl->isStaticDataMember() &&
3989             VDecl->getLexicalDeclContext()->isRecord()) {
3990    // This is an in-class initialization for a static data member, e.g.,
3991    //
3992    // struct S {
3993    //   static const int value = 17;
3994    // };
3995
3996    // Attach the initializer
3997    VDecl->setInit(Init);
3998
3999    // C++ [class.mem]p4:
4000    //   A member-declarator can contain a constant-initializer only
4001    //   if it declares a static member (9.4) of const integral or
4002    //   const enumeration type, see 9.4.2.
4003    QualType T = VDecl->getType();
4004    if (!T->isDependentType() &&
4005        (!Context.getCanonicalType(T).isConstQualified() ||
4006         !T->isIntegralOrEnumerationType())) {
4007      Diag(VDecl->getLocation(), diag::err_member_initialization)
4008        << VDecl->getDeclName() << Init->getSourceRange();
4009      VDecl->setInvalidDecl();
4010    } else {
4011      // C++ [class.static.data]p4:
4012      //   If a static data member is of const integral or const
4013      //   enumeration type, its declaration in the class definition
4014      //   can specify a constant-initializer which shall be an
4015      //   integral constant expression (5.19).
4016      if (!Init->isTypeDependent() &&
4017          !Init->getType()->isIntegralOrEnumerationType()) {
4018        // We have a non-dependent, non-integral or enumeration type.
4019        Diag(Init->getSourceRange().getBegin(),
4020             diag::err_in_class_initializer_non_integral_type)
4021          << Init->getType() << Init->getSourceRange();
4022        VDecl->setInvalidDecl();
4023      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
4024        // Check whether the expression is a constant expression.
4025        llvm::APSInt Value;
4026        SourceLocation Loc;
4027        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4028          Diag(Loc, diag::err_in_class_initializer_non_constant)
4029            << Init->getSourceRange();
4030          VDecl->setInvalidDecl();
4031        } else if (!VDecl->getType()->isDependentType())
4032          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
4033      }
4034    }
4035  } else if (VDecl->isFileVarDecl()) {
4036    if (VDecl->getStorageClass() == VarDecl::Extern &&
4037        (!getLangOptions().CPlusPlus ||
4038         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4039      Diag(VDecl->getLocation(), diag::warn_extern_init);
4040    if (!VDecl->isInvalidDecl()) {
4041      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4042      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4043                                          MultiExprArg(*this, (void**)&Init, 1),
4044                                                &DclT);
4045      if (Result.isInvalid()) {
4046        VDecl->setInvalidDecl();
4047        return;
4048      }
4049
4050      Init = Result.takeAs<Expr>();
4051    }
4052
4053    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4054    // Don't check invalid declarations to avoid emitting useless diagnostics.
4055    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4056      // C99 6.7.8p4. All file scoped initializers need to be constant.
4057      CheckForConstantInitializer(Init, DclT);
4058    }
4059  }
4060  // If the type changed, it means we had an incomplete type that was
4061  // completed by the initializer. For example:
4062  //   int ary[] = { 1, 3, 5 };
4063  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4064  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4065    VDecl->setType(DclT);
4066    Init->setType(DclT);
4067  }
4068
4069  Init = MaybeCreateCXXExprWithTemporaries(Init);
4070  // Attach the initializer to the decl.
4071  VDecl->setInit(Init);
4072
4073  if (getLangOptions().CPlusPlus) {
4074    // Make sure we mark the destructor as used if necessary.
4075    QualType InitType = VDecl->getType();
4076    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4077      InitType = Context.getBaseElementType(Array);
4078    if (const RecordType *Record = InitType->getAs<RecordType>())
4079      FinalizeVarWithDestructor(VDecl, Record);
4080  }
4081
4082  return;
4083}
4084
4085/// ActOnInitializerError - Given that there was an error parsing an
4086/// initializer for the given declaration, try to return to some form
4087/// of sanity.
4088void Sema::ActOnInitializerError(DeclPtrTy dcl) {
4089  // Our main concern here is re-establishing invariants like "a
4090  // variable's type is either dependent or complete".
4091  Decl *D = dcl.getAs<Decl>();
4092  if (!D || D->isInvalidDecl()) return;
4093
4094  VarDecl *VD = dyn_cast<VarDecl>(D);
4095  if (!VD) return;
4096
4097  QualType Ty = VD->getType();
4098  if (Ty->isDependentType()) return;
4099
4100  // Require a complete type.
4101  if (RequireCompleteType(VD->getLocation(),
4102                          Context.getBaseElementType(Ty),
4103                          diag::err_typecheck_decl_incomplete_type)) {
4104    VD->setInvalidDecl();
4105    return;
4106  }
4107
4108  // Require an abstract type.
4109  if (RequireNonAbstractType(VD->getLocation(), Ty,
4110                             diag::err_abstract_type_in_decl,
4111                             AbstractVariableType)) {
4112    VD->setInvalidDecl();
4113    return;
4114  }
4115
4116  // Don't bother complaining about constructors or destructors,
4117  // though.
4118}
4119
4120void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
4121                                  bool TypeContainsUndeducedAuto) {
4122  Decl *RealDecl = dcl.getAs<Decl>();
4123
4124  // If there is no declaration, there was an error parsing it. Just ignore it.
4125  if (RealDecl == 0)
4126    return;
4127
4128  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4129    QualType Type = Var->getType();
4130
4131    // C++0x [dcl.spec.auto]p3
4132    if (TypeContainsUndeducedAuto) {
4133      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4134        << Var->getDeclName() << Type;
4135      Var->setInvalidDecl();
4136      return;
4137    }
4138
4139    switch (Var->isThisDeclarationADefinition()) {
4140    case VarDecl::Definition:
4141      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4142        break;
4143
4144      // We have an out-of-line definition of a static data member
4145      // that has an in-class initializer, so we type-check this like
4146      // a declaration.
4147      //
4148      // Fall through
4149
4150    case VarDecl::DeclarationOnly:
4151      // It's only a declaration.
4152
4153      // Block scope. C99 6.7p7: If an identifier for an object is
4154      // declared with no linkage (C99 6.2.2p6), the type for the
4155      // object shall be complete.
4156      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4157          !Var->getLinkage() && !Var->isInvalidDecl() &&
4158          RequireCompleteType(Var->getLocation(), Type,
4159                              diag::err_typecheck_decl_incomplete_type))
4160        Var->setInvalidDecl();
4161
4162      // Make sure that the type is not abstract.
4163      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4164          RequireNonAbstractType(Var->getLocation(), Type,
4165                                 diag::err_abstract_type_in_decl,
4166                                 AbstractVariableType))
4167        Var->setInvalidDecl();
4168      return;
4169
4170    case VarDecl::TentativeDefinition:
4171      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4172      // object that has file scope without an initializer, and without a
4173      // storage-class specifier or with the storage-class specifier "static",
4174      // constitutes a tentative definition. Note: A tentative definition with
4175      // external linkage is valid (C99 6.2.2p5).
4176      if (!Var->isInvalidDecl()) {
4177        if (const IncompleteArrayType *ArrayT
4178                                    = Context.getAsIncompleteArrayType(Type)) {
4179          if (RequireCompleteType(Var->getLocation(),
4180                                  ArrayT->getElementType(),
4181                                  diag::err_illegal_decl_array_incomplete_type))
4182            Var->setInvalidDecl();
4183        } else if (Var->getStorageClass() == VarDecl::Static) {
4184          // C99 6.9.2p3: If the declaration of an identifier for an object is
4185          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4186          // declared type shall not be an incomplete type.
4187          // NOTE: code such as the following
4188          //     static struct s;
4189          //     struct s { int a; };
4190          // is accepted by gcc. Hence here we issue a warning instead of
4191          // an error and we do not invalidate the static declaration.
4192          // NOTE: to avoid multiple warnings, only check the first declaration.
4193          if (Var->getPreviousDeclaration() == 0)
4194            RequireCompleteType(Var->getLocation(), Type,
4195                                diag::ext_typecheck_decl_incomplete_type);
4196        }
4197      }
4198
4199      // Record the tentative definition; we're done.
4200      if (!Var->isInvalidDecl())
4201        TentativeDefinitions.push_back(Var);
4202      return;
4203    }
4204
4205    // Provide a specific diagnostic for uninitialized variable
4206    // definitions with incomplete array type.
4207    if (Type->isIncompleteArrayType()) {
4208      Diag(Var->getLocation(),
4209           diag::err_typecheck_incomplete_array_needs_initializer);
4210      Var->setInvalidDecl();
4211      return;
4212    }
4213
4214   // Provide a specific diagnostic for uninitialized variable
4215   // definitions with reference type.
4216   if (Type->isReferenceType()) {
4217     Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4218       << Var->getDeclName()
4219       << SourceRange(Var->getLocation(), Var->getLocation());
4220     Var->setInvalidDecl();
4221     return;
4222   }
4223
4224    // Do not attempt to type-check the default initializer for a
4225    // variable with dependent type.
4226    if (Type->isDependentType())
4227      return;
4228
4229    if (Var->isInvalidDecl())
4230      return;
4231
4232    if (RequireCompleteType(Var->getLocation(),
4233                            Context.getBaseElementType(Type),
4234                            diag::err_typecheck_decl_incomplete_type)) {
4235      Var->setInvalidDecl();
4236      return;
4237    }
4238
4239    // The variable can not have an abstract class type.
4240    if (RequireNonAbstractType(Var->getLocation(), Type,
4241                               diag::err_abstract_type_in_decl,
4242                               AbstractVariableType)) {
4243      Var->setInvalidDecl();
4244      return;
4245    }
4246
4247    const RecordType *Record
4248      = Context.getBaseElementType(Type)->getAs<RecordType>();
4249    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4250        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4251      // C++03 [dcl.init]p9:
4252      //   If no initializer is specified for an object, and the
4253      //   object is of (possibly cv-qualified) non-POD class type (or
4254      //   array thereof), the object shall be default-initialized; if
4255      //   the object is of const-qualified type, the underlying class
4256      //   type shall have a user-declared default
4257      //   constructor. Otherwise, if no initializer is specified for
4258      //   a non- static object, the object and its subobjects, if
4259      //   any, have an indeterminate initial value); if the object
4260      //   or any of its subobjects are of const-qualified type, the
4261      //   program is ill-formed.
4262      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4263    } else {
4264      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4265      InitializationKind Kind
4266        = InitializationKind::CreateDefault(Var->getLocation());
4267
4268      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4269      OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4270                                              MultiExprArg(*this, 0, 0));
4271      if (Init.isInvalid())
4272        Var->setInvalidDecl();
4273      else if (Init.get())
4274        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4275    }
4276
4277    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4278      FinalizeVarWithDestructor(Var, Record);
4279  }
4280}
4281
4282Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4283                                                   DeclPtrTy *Group,
4284                                                   unsigned NumDecls) {
4285  llvm::SmallVector<Decl*, 8> Decls;
4286
4287  if (DS.isTypeSpecOwned())
4288    Decls.push_back((Decl*)DS.getTypeRep());
4289
4290  for (unsigned i = 0; i != NumDecls; ++i)
4291    if (Decl *D = Group[i].getAs<Decl>())
4292      Decls.push_back(D);
4293
4294  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4295                                                   Decls.data(), Decls.size()));
4296}
4297
4298
4299/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4300/// to introduce parameters into function prototype scope.
4301Sema::DeclPtrTy
4302Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4303  const DeclSpec &DS = D.getDeclSpec();
4304
4305  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4306  VarDecl::StorageClass StorageClass = VarDecl::None;
4307  VarDecl::StorageClass StorageClassAsWritten = VarDecl::None;
4308  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4309    StorageClass = VarDecl::Register;
4310    StorageClassAsWritten = VarDecl::Register;
4311  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4312    Diag(DS.getStorageClassSpecLoc(),
4313         diag::err_invalid_storage_class_in_func_decl);
4314    D.getMutableDeclSpec().ClearStorageClassSpecs();
4315  }
4316
4317  if (D.getDeclSpec().isThreadSpecified())
4318    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4319
4320  DiagnoseFunctionSpecifiers(D);
4321
4322  // Check that there are no default arguments inside the type of this
4323  // parameter (C++ only).
4324  if (getLangOptions().CPlusPlus)
4325    CheckExtraCXXDefaultArguments(D);
4326
4327  TagDecl *OwnedDecl = 0;
4328  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4329  QualType parmDeclType = TInfo->getType();
4330
4331  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4332    // C++ [dcl.fct]p6:
4333    //   Types shall not be defined in return or parameter types.
4334    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4335      << Context.getTypeDeclType(OwnedDecl);
4336  }
4337
4338  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4339  IdentifierInfo *II = D.getIdentifier();
4340  if (II) {
4341    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4342                   ForRedeclaration);
4343    LookupName(R, S);
4344    if (R.isSingleResult()) {
4345      NamedDecl *PrevDecl = R.getFoundDecl();
4346      if (PrevDecl->isTemplateParameter()) {
4347        // Maybe we will complain about the shadowed template parameter.
4348        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4349        // Just pretend that we didn't see the previous declaration.
4350        PrevDecl = 0;
4351      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4352        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4353        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4354
4355        // Recover by removing the name
4356        II = 0;
4357        D.SetIdentifier(0, D.getIdentifierLoc());
4358        D.setInvalidType(true);
4359      }
4360    }
4361  }
4362
4363  // Temporarily put parameter variables in the translation unit, not
4364  // the enclosing context.  This prevents them from accidentally
4365  // looking like class members in C++.
4366  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4367                                    TInfo, parmDeclType, II,
4368                                    D.getIdentifierLoc(),
4369                                    StorageClass, StorageClassAsWritten);
4370
4371  if (D.isInvalidType())
4372    New->setInvalidDecl();
4373
4374  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4375  if (D.getCXXScopeSpec().isSet()) {
4376    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4377      << D.getCXXScopeSpec().getRange();
4378    New->setInvalidDecl();
4379  }
4380
4381  // Add the parameter declaration into this scope.
4382  S->AddDecl(DeclPtrTy::make(New));
4383  if (II)
4384    IdResolver.AddDecl(New);
4385
4386  ProcessDeclAttributes(S, New, D);
4387
4388  if (New->hasAttr<BlocksAttr>()) {
4389    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4390  }
4391  return DeclPtrTy::make(New);
4392}
4393
4394/// \brief Synthesizes a variable for a parameter arising from a
4395/// typedef.
4396ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4397                                              SourceLocation Loc,
4398                                              QualType T) {
4399  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4400                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4401                                           VarDecl::None, VarDecl::None, 0);
4402  Param->setImplicit();
4403  return Param;
4404}
4405
4406ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4407                                  TypeSourceInfo *TSInfo, QualType T,
4408                                  IdentifierInfo *Name,
4409                                  SourceLocation NameLoc,
4410                                  VarDecl::StorageClass StorageClass,
4411                                  VarDecl::StorageClass StorageClassAsWritten) {
4412  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4413                                         adjustParameterType(T), TSInfo,
4414                                         StorageClass, StorageClassAsWritten,
4415                                         0);
4416
4417  // Parameters can not be abstract class types.
4418  // For record types, this is done by the AbstractClassUsageDiagnoser once
4419  // the class has been completely parsed.
4420  if (!CurContext->isRecord() &&
4421      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4422                             AbstractParamType))
4423    New->setInvalidDecl();
4424
4425  // Parameter declarators cannot be interface types. All ObjC objects are
4426  // passed by reference.
4427  if (T->isObjCObjectType()) {
4428    Diag(NameLoc,
4429         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4430    New->setInvalidDecl();
4431  }
4432
4433  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4434  // duration shall not be qualified by an address-space qualifier."
4435  // Since all parameters have automatic store duration, they can not have
4436  // an address space.
4437  if (T.getAddressSpace() != 0) {
4438    Diag(NameLoc, diag::err_arg_with_address_space);
4439    New->setInvalidDecl();
4440  }
4441
4442  return New;
4443}
4444
4445void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4446                                           SourceLocation LocAfterDecls) {
4447  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4448         "Not a function declarator!");
4449  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4450
4451  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4452  // for a K&R function.
4453  if (!FTI.hasPrototype) {
4454    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4455      --i;
4456      if (FTI.ArgInfo[i].Param == 0) {
4457        llvm::SmallString<256> Code;
4458        llvm::raw_svector_ostream(Code) << "  int "
4459                                        << FTI.ArgInfo[i].Ident->getName()
4460                                        << ";\n";
4461        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4462          << FTI.ArgInfo[i].Ident
4463          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4464
4465        // Implicitly declare the argument as type 'int' for lack of a better
4466        // type.
4467        DeclSpec DS;
4468        const char* PrevSpec; // unused
4469        unsigned DiagID; // unused
4470        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4471                           PrevSpec, DiagID);
4472        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4473        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4474        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4475      }
4476    }
4477  }
4478}
4479
4480Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4481                                              Declarator &D) {
4482  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4483  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4484         "Not a function declarator!");
4485  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4486
4487  if (FTI.hasPrototype) {
4488    // FIXME: Diagnose arguments without names in C.
4489  }
4490
4491  Scope *ParentScope = FnBodyScope->getParent();
4492
4493  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4494                                  MultiTemplateParamsArg(*this),
4495                                  /*IsFunctionDefinition=*/true);
4496  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4497}
4498
4499static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4500  // Don't warn about invalid declarations.
4501  if (FD->isInvalidDecl())
4502    return false;
4503
4504  // Or declarations that aren't global.
4505  if (!FD->isGlobal())
4506    return false;
4507
4508  // Don't warn about C++ member functions.
4509  if (isa<CXXMethodDecl>(FD))
4510    return false;
4511
4512  // Don't warn about 'main'.
4513  if (FD->isMain())
4514    return false;
4515
4516  // Don't warn about inline functions.
4517  if (FD->isInlineSpecified())
4518    return false;
4519
4520  // Don't warn about function templates.
4521  if (FD->getDescribedFunctionTemplate())
4522    return false;
4523
4524  // Don't warn about function template specializations.
4525  if (FD->isFunctionTemplateSpecialization())
4526    return false;
4527
4528  bool MissingPrototype = true;
4529  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4530       Prev; Prev = Prev->getPreviousDeclaration()) {
4531    // Ignore any declarations that occur in function or method
4532    // scope, because they aren't visible from the header.
4533    if (Prev->getDeclContext()->isFunctionOrMethod())
4534      continue;
4535
4536    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4537    break;
4538  }
4539
4540  return MissingPrototype;
4541}
4542
4543Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4544  // Clear the last template instantiation error context.
4545  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4546
4547  if (!D)
4548    return D;
4549  FunctionDecl *FD = 0;
4550
4551  if (FunctionTemplateDecl *FunTmpl
4552        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4553    FD = FunTmpl->getTemplatedDecl();
4554  else
4555    FD = cast<FunctionDecl>(D.getAs<Decl>());
4556
4557  // Enter a new function scope
4558  PushFunctionScope();
4559
4560  // See if this is a redefinition.
4561  // But don't complain if we're in GNU89 mode and the previous definition
4562  // was an extern inline function.
4563  const FunctionDecl *Definition;
4564  if (FD->hasBody(Definition) &&
4565      !canRedefineFunction(Definition, getLangOptions())) {
4566    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4567    Diag(Definition->getLocation(), diag::note_previous_definition);
4568  }
4569
4570  // Builtin functions cannot be defined.
4571  if (unsigned BuiltinID = FD->getBuiltinID()) {
4572    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4573      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4574      FD->setInvalidDecl();
4575    }
4576  }
4577
4578  // The return type of a function definition must be complete
4579  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4580  QualType ResultType = FD->getResultType();
4581  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4582      !FD->isInvalidDecl() &&
4583      RequireCompleteType(FD->getLocation(), ResultType,
4584                          diag::err_func_def_incomplete_result))
4585    FD->setInvalidDecl();
4586
4587  // GNU warning -Wmissing-prototypes:
4588  //   Warn if a global function is defined without a previous
4589  //   prototype declaration. This warning is issued even if the
4590  //   definition itself provides a prototype. The aim is to detect
4591  //   global functions that fail to be declared in header files.
4592  if (ShouldWarnAboutMissingPrototype(FD))
4593    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4594
4595  if (FnBodyScope)
4596    PushDeclContext(FnBodyScope, FD);
4597
4598  // Check the validity of our function parameters
4599  CheckParmsForFunctionDef(FD);
4600
4601  bool ShouldCheckShadow =
4602    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4603
4604  // Introduce our parameters into the function scope
4605  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4606    ParmVarDecl *Param = FD->getParamDecl(p);
4607    Param->setOwningFunction(FD);
4608
4609    // If this has an identifier, add it to the scope stack.
4610    if (Param->getIdentifier() && FnBodyScope) {
4611      if (ShouldCheckShadow)
4612        CheckShadow(FnBodyScope, Param);
4613
4614      PushOnScopeChains(Param, FnBodyScope);
4615    }
4616  }
4617
4618  // Checking attributes of current function definition
4619  // dllimport attribute.
4620  if (FD->getAttr<DLLImportAttr>() &&
4621      (!FD->getAttr<DLLExportAttr>())) {
4622    // dllimport attribute cannot be applied to definition.
4623    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4624      Diag(FD->getLocation(),
4625           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4626        << "dllimport";
4627      FD->setInvalidDecl();
4628      return DeclPtrTy::make(FD);
4629    }
4630
4631    // Visual C++ appears to not think this is an issue, so only issue
4632    // a warning when Microsoft extensions are disabled.
4633    if (!LangOpts.Microsoft) {
4634      // If a symbol previously declared dllimport is later defined, the
4635      // attribute is ignored in subsequent references, and a warning is
4636      // emitted.
4637      Diag(FD->getLocation(),
4638           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4639        << FD->getNameAsCString() << "dllimport";
4640    }
4641  }
4642  return DeclPtrTy::make(FD);
4643}
4644
4645/// \brief Given the set of return statements within a function body,
4646/// compute the variables that are subject to the named return value
4647/// optimization.
4648///
4649/// Each of the variables that is subject to the named return value
4650/// optimization will be marked as NRVO variables in the AST, and any
4651/// return statement that has a marked NRVO variable as its NRVO candidate can
4652/// use the named return value optimization.
4653///
4654/// This function applies a very simplistic algorithm for NRVO: if every return
4655/// statement in the function has the same NRVO candidate, that candidate is
4656/// the NRVO variable.
4657///
4658/// FIXME: Employ a smarter algorithm that accounts for multiple return
4659/// statements and the lifetimes of the NRVO candidates. We should be able to
4660/// find a maximal set of NRVO variables.
4661static void ComputeNRVO(Stmt *Body, ReturnStmt **Returns, unsigned NumReturns) {
4662  const VarDecl *NRVOCandidate = 0;
4663  for (unsigned I = 0; I != NumReturns; ++I) {
4664    if (!Returns[I]->getNRVOCandidate())
4665      return;
4666
4667    if (!NRVOCandidate)
4668      NRVOCandidate = Returns[I]->getNRVOCandidate();
4669    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4670      return;
4671  }
4672
4673  if (NRVOCandidate)
4674    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4675}
4676
4677Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4678  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4679}
4680
4681Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4682                                              bool IsInstantiation) {
4683  Decl *dcl = D.getAs<Decl>();
4684  Stmt *Body = BodyArg.takeAs<Stmt>();
4685
4686  FunctionDecl *FD = 0;
4687  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4688  if (FunTmpl)
4689    FD = FunTmpl->getTemplatedDecl();
4690  else
4691    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4692
4693  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4694
4695  if (FD) {
4696    FD->setBody(Body);
4697    if (FD->isMain()) {
4698      // C and C++ allow for main to automagically return 0.
4699      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4700      FD->setHasImplicitReturnZero(true);
4701      WP.disableCheckFallThrough();
4702    }
4703
4704    if (!FD->isInvalidDecl()) {
4705      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4706
4707      // If this is a constructor, we need a vtable.
4708      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
4709        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
4710
4711      ComputeNRVO(Body, FunctionScopes.back()->Returns.data(),
4712                  FunctionScopes.back()->Returns.size());
4713    }
4714
4715    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4716  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4717    assert(MD == getCurMethodDecl() && "Method parsing confused");
4718    MD->setBody(Body);
4719    MD->setEndLoc(Body->getLocEnd());
4720    if (!MD->isInvalidDecl())
4721      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4722  } else {
4723    Body->Destroy(Context);
4724    return DeclPtrTy();
4725  }
4726
4727  // Verify and clean out per-function state.
4728
4729  // Check goto/label use.
4730  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4731       I = getLabelMap().begin(), E = getLabelMap().end(); I != E; ++I) {
4732    LabelStmt *L = I->second;
4733
4734    // Verify that we have no forward references left.  If so, there was a goto
4735    // or address of a label taken, but no definition of it.  Label fwd
4736    // definitions are indicated with a null substmt.
4737    if (L->getSubStmt() != 0)
4738      continue;
4739
4740    // Emit error.
4741    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4742
4743    // At this point, we have gotos that use the bogus label.  Stitch it into
4744    // the function body so that they aren't leaked and that the AST is well
4745    // formed.
4746    if (Body == 0) {
4747      // The whole function wasn't parsed correctly, just delete this.
4748      L->Destroy(Context);
4749      continue;
4750    }
4751
4752    // Otherwise, the body is valid: we want to stitch the label decl into the
4753    // function somewhere so that it is properly owned and so that the goto
4754    // has a valid target.  Do this by creating a new compound stmt with the
4755    // label in it.
4756
4757    // Give the label a sub-statement.
4758    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4759
4760    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4761                               cast<CXXTryStmt>(Body)->getTryBlock() :
4762                               cast<CompoundStmt>(Body);
4763    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
4764                                          Compound->body_end());
4765    Elements.push_back(L);
4766    Compound->setStmts(Context, Elements.data(), Elements.size());
4767  }
4768
4769  if (Body) {
4770    // C++ constructors that have function-try-blocks can't have return
4771    // statements in the handlers of that block. (C++ [except.handle]p14)
4772    // Verify this.
4773    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4774      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4775
4776    // Verify that that gotos and switch cases don't jump into scopes illegally.
4777    // Verify that that gotos and switch cases don't jump into scopes illegally.
4778    if (FunctionNeedsScopeChecking() &&
4779        !dcl->isInvalidDecl() &&
4780        !hasAnyErrorsInThisFunction())
4781      DiagnoseInvalidJumps(Body);
4782
4783    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4784      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
4785                                             Destructor->getParent());
4786
4787    // If any errors have occurred, clear out any temporaries that may have
4788    // been leftover. This ensures that these temporaries won't be picked up for
4789    // deletion in some later function.
4790    if (PP.getDiagnostics().hasErrorOccurred())
4791      ExprTemporaries.clear();
4792    else if (!isa<FunctionTemplateDecl>(dcl)) {
4793      // Since the body is valid, issue any analysis-based warnings that are
4794      // enabled.
4795      QualType ResultType;
4796      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
4797        ResultType = FD->getResultType();
4798      }
4799      else {
4800        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
4801        ResultType = MD->getResultType();
4802      }
4803      AnalysisWarnings.IssueWarnings(WP, dcl);
4804    }
4805
4806    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4807  }
4808
4809  if (!IsInstantiation)
4810    PopDeclContext();
4811
4812  PopFunctionOrBlockScope();
4813
4814  // If any errors have occurred, clear out any temporaries that may have
4815  // been leftover. This ensures that these temporaries won't be picked up for
4816  // deletion in some later function.
4817  if (getDiagnostics().hasErrorOccurred())
4818    ExprTemporaries.clear();
4819
4820  return D;
4821}
4822
4823/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4824/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4825NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4826                                          IdentifierInfo &II, Scope *S) {
4827  // Before we produce a declaration for an implicitly defined
4828  // function, see whether there was a locally-scoped declaration of
4829  // this name as a function or variable. If so, use that
4830  // (non-visible) declaration, and complain about it.
4831  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4832    = LocallyScopedExternalDecls.find(&II);
4833  if (Pos != LocallyScopedExternalDecls.end()) {
4834    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4835    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4836    return Pos->second;
4837  }
4838
4839  // Extension in C99.  Legal in C90, but warn about it.
4840  if (II.getName().startswith("__builtin_"))
4841    Diag(Loc, diag::warn_builtin_unknown) << &II;
4842  else if (getLangOptions().C99)
4843    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4844  else
4845    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4846
4847  // Set a Declarator for the implicit definition: int foo();
4848  const char *Dummy;
4849  DeclSpec DS;
4850  unsigned DiagID;
4851  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4852  Error = Error; // Silence warning.
4853  assert(!Error && "Error setting up implicit decl!");
4854  Declarator D(DS, Declarator::BlockContext);
4855  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4856                                             0, 0, false, SourceLocation(),
4857                                             false, 0,0,0, Loc, Loc, D),
4858                SourceLocation());
4859  D.SetIdentifier(&II, Loc);
4860
4861  // Insert this function into translation-unit scope.
4862
4863  DeclContext *PrevDC = CurContext;
4864  CurContext = Context.getTranslationUnitDecl();
4865
4866  FunctionDecl *FD =
4867 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4868  FD->setImplicit();
4869
4870  CurContext = PrevDC;
4871
4872  AddKnownFunctionAttributes(FD);
4873
4874  return FD;
4875}
4876
4877/// \brief Adds any function attributes that we know a priori based on
4878/// the declaration of this function.
4879///
4880/// These attributes can apply both to implicitly-declared builtins
4881/// (like __builtin___printf_chk) or to library-declared functions
4882/// like NSLog or printf.
4883void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4884  if (FD->isInvalidDecl())
4885    return;
4886
4887  // If this is a built-in function, map its builtin attributes to
4888  // actual attributes.
4889  if (unsigned BuiltinID = FD->getBuiltinID()) {
4890    // Handle printf-formatting attributes.
4891    unsigned FormatIdx;
4892    bool HasVAListArg;
4893    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4894      if (!FD->getAttr<FormatAttr>())
4895        FD->addAttr(::new (Context) FormatAttr(Context, "printf", FormatIdx+1,
4896                                               HasVAListArg ? 0 : FormatIdx+2));
4897    }
4898
4899    // Mark const if we don't care about errno and that is the only
4900    // thing preventing the function from being const. This allows
4901    // IRgen to use LLVM intrinsics for such functions.
4902    if (!getLangOptions().MathErrno &&
4903        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4904      if (!FD->getAttr<ConstAttr>())
4905        FD->addAttr(::new (Context) ConstAttr());
4906    }
4907
4908    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4909      FD->setType(Context.getNoReturnType(FD->getType()));
4910    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4911      FD->addAttr(::new (Context) NoThrowAttr());
4912    if (Context.BuiltinInfo.isConst(BuiltinID))
4913      FD->addAttr(::new (Context) ConstAttr());
4914  }
4915
4916  IdentifierInfo *Name = FD->getIdentifier();
4917  if (!Name)
4918    return;
4919  if ((!getLangOptions().CPlusPlus &&
4920       FD->getDeclContext()->isTranslationUnit()) ||
4921      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4922       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4923       LinkageSpecDecl::lang_c)) {
4924    // Okay: this could be a libc/libm/Objective-C function we know
4925    // about.
4926  } else
4927    return;
4928
4929  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4930    // FIXME: NSLog and NSLogv should be target specific
4931    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4932      // FIXME: We known better than our headers.
4933      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
4934    } else
4935      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 1,
4936                                             Name->isStr("NSLogv") ? 0 : 2));
4937  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4938    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4939    // target-specific builtins, perhaps?
4940    if (!FD->getAttr<FormatAttr>())
4941      FD->addAttr(::new (Context) FormatAttr(Context, "printf", 2,
4942                                             Name->isStr("vasprintf") ? 0 : 3));
4943  }
4944}
4945
4946TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4947                                    TypeSourceInfo *TInfo) {
4948  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4949  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4950
4951  if (!TInfo) {
4952    assert(D.isInvalidType() && "no declarator info for valid type");
4953    TInfo = Context.getTrivialTypeSourceInfo(T);
4954  }
4955
4956  // Scope manipulation handled by caller.
4957  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4958                                           D.getIdentifierLoc(),
4959                                           D.getIdentifier(),
4960                                           TInfo);
4961
4962  if (const TagType *TT = T->getAs<TagType>()) {
4963    TagDecl *TD = TT->getDecl();
4964
4965    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4966    // keep track of the TypedefDecl.
4967    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4968      TD->setTypedefForAnonDecl(NewTD);
4969  }
4970
4971  if (D.isInvalidType())
4972    NewTD->setInvalidDecl();
4973  return NewTD;
4974}
4975
4976
4977/// \brief Determine whether a tag with a given kind is acceptable
4978/// as a redeclaration of the given tag declaration.
4979///
4980/// \returns true if the new tag kind is acceptable, false otherwise.
4981bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4982                                        TagTypeKind NewTag,
4983                                        SourceLocation NewTagLoc,
4984                                        const IdentifierInfo &Name) {
4985  // C++ [dcl.type.elab]p3:
4986  //   The class-key or enum keyword present in the
4987  //   elaborated-type-specifier shall agree in kind with the
4988  //   declaration to which the name in the elaborated-type-specifier
4989  //   refers. This rule also applies to the form of
4990  //   elaborated-type-specifier that declares a class-name or
4991  //   friend class since it can be construed as referring to the
4992  //   definition of the class. Thus, in any
4993  //   elaborated-type-specifier, the enum keyword shall be used to
4994  //   refer to an enumeration (7.2), the union class-key shall be
4995  //   used to refer to a union (clause 9), and either the class or
4996  //   struct class-key shall be used to refer to a class (clause 9)
4997  //   declared using the class or struct class-key.
4998  TagTypeKind OldTag = Previous->getTagKind();
4999  if (OldTag == NewTag)
5000    return true;
5001
5002  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5003      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5004    // Warn about the struct/class tag mismatch.
5005    bool isTemplate = false;
5006    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5007      isTemplate = Record->getDescribedClassTemplate();
5008
5009    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5010      << (NewTag == TTK_Class)
5011      << isTemplate << &Name
5012      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5013                              OldTag == TTK_Class? "class" : "struct");
5014    Diag(Previous->getLocation(), diag::note_previous_use);
5015    return true;
5016  }
5017  return false;
5018}
5019
5020/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5021/// former case, Name will be non-null.  In the later case, Name will be null.
5022/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5023/// reference/declaration/definition of a tag.
5024Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5025                               SourceLocation KWLoc, CXXScopeSpec &SS,
5026                               IdentifierInfo *Name, SourceLocation NameLoc,
5027                               AttributeList *Attr, AccessSpecifier AS,
5028                               MultiTemplateParamsArg TemplateParameterLists,
5029                               bool &OwnedDecl, bool &IsDependent) {
5030  // If this is not a definition, it must have a name.
5031  assert((Name != 0 || TUK == TUK_Definition) &&
5032         "Nameless record must be a definition!");
5033
5034  OwnedDecl = false;
5035  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5036
5037  // FIXME: Check explicit specializations more carefully.
5038  bool isExplicitSpecialization = false;
5039  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5040  if (TUK != TUK_Reference) {
5041    if (TemplateParameterList *TemplateParams
5042          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5043                        (TemplateParameterList**)TemplateParameterLists.get(),
5044                                              TemplateParameterLists.size(),
5045                                                    TUK == TUK_Friend,
5046                                                    isExplicitSpecialization)) {
5047      // All but one template parameter lists have been matching.
5048      --NumMatchedTemplateParamLists;
5049
5050      if (TemplateParams->size() > 0) {
5051        // This is a declaration or definition of a class template (which may
5052        // be a member of another template).
5053        OwnedDecl = false;
5054        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5055                                               SS, Name, NameLoc, Attr,
5056                                               TemplateParams,
5057                                               AS);
5058        TemplateParameterLists.release();
5059        return Result.get();
5060      } else {
5061        // The "template<>" header is extraneous.
5062        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5063          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5064        isExplicitSpecialization = true;
5065      }
5066    }
5067  }
5068
5069  DeclContext *SearchDC = CurContext;
5070  DeclContext *DC = CurContext;
5071  bool isStdBadAlloc = false;
5072  bool Invalid = false;
5073
5074  RedeclarationKind Redecl = ForRedeclaration;
5075  if (TUK == TUK_Friend || TUK == TUK_Reference)
5076    Redecl = NotForRedeclaration;
5077
5078  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5079
5080  if (Name && SS.isNotEmpty()) {
5081    // We have a nested-name tag ('struct foo::bar').
5082
5083    // Check for invalid 'foo::'.
5084    if (SS.isInvalid()) {
5085      Name = 0;
5086      goto CreateNewDecl;
5087    }
5088
5089    // If this is a friend or a reference to a class in a dependent
5090    // context, don't try to make a decl for it.
5091    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5092      DC = computeDeclContext(SS, false);
5093      if (!DC) {
5094        IsDependent = true;
5095        return DeclPtrTy();
5096      }
5097    } else {
5098      DC = computeDeclContext(SS, true);
5099      if (!DC) {
5100        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5101          << SS.getRange();
5102        return DeclPtrTy();
5103      }
5104    }
5105
5106    if (RequireCompleteDeclContext(SS, DC))
5107      return DeclPtrTy::make((Decl *)0);
5108
5109    SearchDC = DC;
5110    // Look-up name inside 'foo::'.
5111    LookupQualifiedName(Previous, DC);
5112
5113    if (Previous.isAmbiguous())
5114      return DeclPtrTy();
5115
5116    if (Previous.empty()) {
5117      // Name lookup did not find anything. However, if the
5118      // nested-name-specifier refers to the current instantiation,
5119      // and that current instantiation has any dependent base
5120      // classes, we might find something at instantiation time: treat
5121      // this as a dependent elaborated-type-specifier.
5122      if (Previous.wasNotFoundInCurrentInstantiation()) {
5123        IsDependent = true;
5124        return DeclPtrTy();
5125      }
5126
5127      // A tag 'foo::bar' must already exist.
5128      Diag(NameLoc, diag::err_not_tag_in_scope)
5129        << Kind << Name << DC << SS.getRange();
5130      Name = 0;
5131      Invalid = true;
5132      goto CreateNewDecl;
5133    }
5134  } else if (Name) {
5135    // If this is a named struct, check to see if there was a previous forward
5136    // declaration or definition.
5137    // FIXME: We're looking into outer scopes here, even when we
5138    // shouldn't be. Doing so can result in ambiguities that we
5139    // shouldn't be diagnosing.
5140    LookupName(Previous, S);
5141
5142    // Note:  there used to be some attempt at recovery here.
5143    if (Previous.isAmbiguous())
5144      return DeclPtrTy();
5145
5146    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5147      // FIXME: This makes sure that we ignore the contexts associated
5148      // with C structs, unions, and enums when looking for a matching
5149      // tag declaration or definition. See the similar lookup tweak
5150      // in Sema::LookupName; is there a better way to deal with this?
5151      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5152        SearchDC = SearchDC->getParent();
5153    }
5154  }
5155
5156  if (Previous.isSingleResult() &&
5157      Previous.getFoundDecl()->isTemplateParameter()) {
5158    // Maybe we will complain about the shadowed template parameter.
5159    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5160    // Just pretend that we didn't see the previous declaration.
5161    Previous.clear();
5162  }
5163
5164  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5165      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
5166    // This is a declaration of or a reference to "std::bad_alloc".
5167    isStdBadAlloc = true;
5168
5169    if (Previous.empty() && StdBadAlloc) {
5170      // std::bad_alloc has been implicitly declared (but made invisible to
5171      // name lookup). Fill in this implicit declaration as the previous
5172      // declaration, so that the declarations get chained appropriately.
5173      Previous.addDecl(StdBadAlloc);
5174    }
5175  }
5176
5177  // If we didn't find a previous declaration, and this is a reference
5178  // (or friend reference), move to the correct scope.  In C++, we
5179  // also need to do a redeclaration lookup there, just in case
5180  // there's a shadow friend decl.
5181  if (Name && Previous.empty() &&
5182      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5183    if (Invalid) goto CreateNewDecl;
5184    assert(SS.isEmpty());
5185
5186    if (TUK == TUK_Reference) {
5187      // C++ [basic.scope.pdecl]p5:
5188      //   -- for an elaborated-type-specifier of the form
5189      //
5190      //          class-key identifier
5191      //
5192      //      if the elaborated-type-specifier is used in the
5193      //      decl-specifier-seq or parameter-declaration-clause of a
5194      //      function defined in namespace scope, the identifier is
5195      //      declared as a class-name in the namespace that contains
5196      //      the declaration; otherwise, except as a friend
5197      //      declaration, the identifier is declared in the smallest
5198      //      non-class, non-function-prototype scope that contains the
5199      //      declaration.
5200      //
5201      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5202      // C structs and unions.
5203      //
5204      // It is an error in C++ to declare (rather than define) an enum
5205      // type, including via an elaborated type specifier.  We'll
5206      // diagnose that later; for now, declare the enum in the same
5207      // scope as we would have picked for any other tag type.
5208      //
5209      // GNU C also supports this behavior as part of its incomplete
5210      // enum types extension, while GNU C++ does not.
5211      //
5212      // Find the context where we'll be declaring the tag.
5213      // FIXME: We would like to maintain the current DeclContext as the
5214      // lexical context,
5215      while (SearchDC->isRecord())
5216        SearchDC = SearchDC->getParent();
5217
5218      // Find the scope where we'll be declaring the tag.
5219      while (S->isClassScope() ||
5220             (getLangOptions().CPlusPlus &&
5221              S->isFunctionPrototypeScope()) ||
5222             ((S->getFlags() & Scope::DeclScope) == 0) ||
5223             (S->getEntity() &&
5224              ((DeclContext *)S->getEntity())->isTransparentContext()))
5225        S = S->getParent();
5226    } else {
5227      assert(TUK == TUK_Friend);
5228      // C++ [namespace.memdef]p3:
5229      //   If a friend declaration in a non-local class first declares a
5230      //   class or function, the friend class or function is a member of
5231      //   the innermost enclosing namespace.
5232      SearchDC = SearchDC->getEnclosingNamespaceContext();
5233    }
5234
5235    // In C++, we need to do a redeclaration lookup to properly
5236    // diagnose some problems.
5237    if (getLangOptions().CPlusPlus) {
5238      Previous.setRedeclarationKind(ForRedeclaration);
5239      LookupQualifiedName(Previous, SearchDC);
5240    }
5241  }
5242
5243  if (!Previous.empty()) {
5244    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5245
5246    // It's okay to have a tag decl in the same scope as a typedef
5247    // which hides a tag decl in the same scope.  Finding this
5248    // insanity with a redeclaration lookup can only actually happen
5249    // in C++.
5250    //
5251    // This is also okay for elaborated-type-specifiers, which is
5252    // technically forbidden by the current standard but which is
5253    // okay according to the likely resolution of an open issue;
5254    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5255    if (getLangOptions().CPlusPlus) {
5256      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5257        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5258          TagDecl *Tag = TT->getDecl();
5259          if (Tag->getDeclName() == Name &&
5260              Tag->getDeclContext()->getLookupContext()
5261                          ->Equals(TD->getDeclContext()->getLookupContext())) {
5262            PrevDecl = Tag;
5263            Previous.clear();
5264            Previous.addDecl(Tag);
5265          }
5266        }
5267      }
5268    }
5269
5270    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5271      // If this is a use of a previous tag, or if the tag is already declared
5272      // in the same scope (so that the definition/declaration completes or
5273      // rementions the tag), reuse the decl.
5274      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5275          isDeclInScope(PrevDecl, SearchDC, S)) {
5276        // Make sure that this wasn't declared as an enum and now used as a
5277        // struct or something similar.
5278        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5279          bool SafeToContinue
5280            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5281               Kind != TTK_Enum);
5282          if (SafeToContinue)
5283            Diag(KWLoc, diag::err_use_with_wrong_tag)
5284              << Name
5285              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5286                                              PrevTagDecl->getKindName());
5287          else
5288            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5289          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5290
5291          if (SafeToContinue)
5292            Kind = PrevTagDecl->getTagKind();
5293          else {
5294            // Recover by making this an anonymous redefinition.
5295            Name = 0;
5296            Previous.clear();
5297            Invalid = true;
5298          }
5299        }
5300
5301        if (!Invalid) {
5302          // If this is a use, just return the declaration we found.
5303
5304          // FIXME: In the future, return a variant or some other clue
5305          // for the consumer of this Decl to know it doesn't own it.
5306          // For our current ASTs this shouldn't be a problem, but will
5307          // need to be changed with DeclGroups.
5308          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5309              TUK == TUK_Friend)
5310            return DeclPtrTy::make(PrevTagDecl);
5311
5312          // Diagnose attempts to redefine a tag.
5313          if (TUK == TUK_Definition) {
5314            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5315              // If we're defining a specialization and the previous definition
5316              // is from an implicit instantiation, don't emit an error
5317              // here; we'll catch this in the general case below.
5318              if (!isExplicitSpecialization ||
5319                  !isa<CXXRecordDecl>(Def) ||
5320                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5321                                               == TSK_ExplicitSpecialization) {
5322                Diag(NameLoc, diag::err_redefinition) << Name;
5323                Diag(Def->getLocation(), diag::note_previous_definition);
5324                // If this is a redefinition, recover by making this
5325                // struct be anonymous, which will make any later
5326                // references get the previous definition.
5327                Name = 0;
5328                Previous.clear();
5329                Invalid = true;
5330              }
5331            } else {
5332              // If the type is currently being defined, complain
5333              // about a nested redefinition.
5334              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5335              if (Tag->isBeingDefined()) {
5336                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5337                Diag(PrevTagDecl->getLocation(),
5338                     diag::note_previous_definition);
5339                Name = 0;
5340                Previous.clear();
5341                Invalid = true;
5342              }
5343            }
5344
5345            // Okay, this is definition of a previously declared or referenced
5346            // tag PrevDecl. We're going to create a new Decl for it.
5347          }
5348        }
5349        // If we get here we have (another) forward declaration or we
5350        // have a definition.  Just create a new decl.
5351
5352      } else {
5353        // If we get here, this is a definition of a new tag type in a nested
5354        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5355        // new decl/type.  We set PrevDecl to NULL so that the entities
5356        // have distinct types.
5357        Previous.clear();
5358      }
5359      // If we get here, we're going to create a new Decl. If PrevDecl
5360      // is non-NULL, it's a definition of the tag declared by
5361      // PrevDecl. If it's NULL, we have a new definition.
5362
5363
5364    // Otherwise, PrevDecl is not a tag, but was found with tag
5365    // lookup.  This is only actually possible in C++, where a few
5366    // things like templates still live in the tag namespace.
5367    } else {
5368      assert(getLangOptions().CPlusPlus);
5369
5370      // Use a better diagnostic if an elaborated-type-specifier
5371      // found the wrong kind of type on the first
5372      // (non-redeclaration) lookup.
5373      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5374          !Previous.isForRedeclaration()) {
5375        unsigned Kind = 0;
5376        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5377        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5378        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5379        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5380        Invalid = true;
5381
5382      // Otherwise, only diagnose if the declaration is in scope.
5383      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5384        // do nothing
5385
5386      // Diagnose implicit declarations introduced by elaborated types.
5387      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5388        unsigned Kind = 0;
5389        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5390        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5391        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5392        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5393        Invalid = true;
5394
5395      // Otherwise it's a declaration.  Call out a particularly common
5396      // case here.
5397      } else if (isa<TypedefDecl>(PrevDecl)) {
5398        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5399          << Name
5400          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5401        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5402        Invalid = true;
5403
5404      // Otherwise, diagnose.
5405      } else {
5406        // The tag name clashes with something else in the target scope,
5407        // issue an error and recover by making this tag be anonymous.
5408        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5409        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5410        Name = 0;
5411        Invalid = true;
5412      }
5413
5414      // The existing declaration isn't relevant to us; we're in a
5415      // new scope, so clear out the previous declaration.
5416      Previous.clear();
5417    }
5418  }
5419
5420CreateNewDecl:
5421
5422  TagDecl *PrevDecl = 0;
5423  if (Previous.isSingleResult())
5424    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5425
5426  // If there is an identifier, use the location of the identifier as the
5427  // location of the decl, otherwise use the location of the struct/union
5428  // keyword.
5429  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5430
5431  // Otherwise, create a new declaration. If there is a previous
5432  // declaration of the same entity, the two will be linked via
5433  // PrevDecl.
5434  TagDecl *New;
5435
5436  if (Kind == TTK_Enum) {
5437    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5438    // enum X { A, B, C } D;    D should chain to X.
5439    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5440                           cast_or_null<EnumDecl>(PrevDecl));
5441    // If this is an undefined enum, warn.
5442    if (TUK != TUK_Definition && !Invalid) {
5443      TagDecl *Def;
5444      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5445        Diag(Loc, diag::ext_forward_ref_enum_def)
5446          << New;
5447        Diag(Def->getLocation(), diag::note_previous_definition);
5448      } else {
5449        Diag(Loc,
5450             getLangOptions().CPlusPlus? diag::err_forward_ref_enum
5451                                       : diag::ext_forward_ref_enum);
5452      }
5453    }
5454  } else {
5455    // struct/union/class
5456
5457    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5458    // struct X { int A; } D;    D should chain to X.
5459    if (getLangOptions().CPlusPlus) {
5460      // FIXME: Look for a way to use RecordDecl for simple structs.
5461      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5462                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5463
5464      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
5465        StdBadAlloc = cast<CXXRecordDecl>(New);
5466    } else
5467      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5468                               cast_or_null<RecordDecl>(PrevDecl));
5469  }
5470
5471  // Maybe add qualifier info.
5472  if (SS.isNotEmpty()) {
5473    if (SS.isSet()) {
5474      NestedNameSpecifier *NNS
5475        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5476      New->setQualifierInfo(NNS, SS.getRange());
5477      if (NumMatchedTemplateParamLists > 0) {
5478        New->setTemplateParameterListsInfo(Context,
5479                                           NumMatchedTemplateParamLists,
5480                    (TemplateParameterList**) TemplateParameterLists.release());
5481      }
5482    }
5483    else
5484      Invalid = true;
5485  }
5486
5487  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5488    // Add alignment attributes if necessary; these attributes are checked when
5489    // the ASTContext lays out the structure.
5490    //
5491    // It is important for implementing the correct semantics that this
5492    // happen here (in act on tag decl). The #pragma pack stack is
5493    // maintained as a result of parser callbacks which can occur at
5494    // many points during the parsing of a struct declaration (because
5495    // the #pragma tokens are effectively skipped over during the
5496    // parsing of the struct).
5497    AddAlignmentAttributesForRecord(RD);
5498  }
5499
5500  // If this is a specialization of a member class (of a class template),
5501  // check the specialization.
5502  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5503    Invalid = true;
5504
5505  if (Invalid)
5506    New->setInvalidDecl();
5507
5508  if (Attr)
5509    ProcessDeclAttributeList(S, New, Attr);
5510
5511  // If we're declaring or defining a tag in function prototype scope
5512  // in C, note that this type can only be used within the function.
5513  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5514    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5515
5516  // Set the lexical context. If the tag has a C++ scope specifier, the
5517  // lexical context will be different from the semantic context.
5518  New->setLexicalDeclContext(CurContext);
5519
5520  // Mark this as a friend decl if applicable.
5521  if (TUK == TUK_Friend)
5522    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5523
5524  // Set the access specifier.
5525  if (!Invalid && SearchDC->isRecord())
5526    SetMemberAccessSpecifier(New, PrevDecl, AS);
5527
5528  if (TUK == TUK_Definition)
5529    New->startDefinition();
5530
5531  // If this has an identifier, add it to the scope stack.
5532  if (TUK == TUK_Friend) {
5533    // We might be replacing an existing declaration in the lookup tables;
5534    // if so, borrow its access specifier.
5535    if (PrevDecl)
5536      New->setAccess(PrevDecl->getAccess());
5537
5538    DeclContext *DC = New->getDeclContext()->getLookupContext();
5539    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5540    if (Name) // can be null along some error paths
5541      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5542        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5543  } else if (Name) {
5544    S = getNonFieldDeclScope(S);
5545    PushOnScopeChains(New, S);
5546  } else {
5547    CurContext->addDecl(New);
5548  }
5549
5550  // If this is the C FILE type, notify the AST context.
5551  if (IdentifierInfo *II = New->getIdentifier())
5552    if (!New->isInvalidDecl() &&
5553        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5554        II->isStr("FILE"))
5555      Context.setFILEDecl(New);
5556
5557  OwnedDecl = true;
5558  return DeclPtrTy::make(New);
5559}
5560
5561void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5562  AdjustDeclIfTemplate(TagD);
5563  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5564
5565  // Enter the tag context.
5566  PushDeclContext(S, Tag);
5567}
5568
5569void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5570                                           SourceLocation LBraceLoc) {
5571  AdjustDeclIfTemplate(TagD);
5572  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5573
5574  FieldCollector->StartClass();
5575
5576  if (!Record->getIdentifier())
5577    return;
5578
5579  // C++ [class]p2:
5580  //   [...] The class-name is also inserted into the scope of the
5581  //   class itself; this is known as the injected-class-name. For
5582  //   purposes of access checking, the injected-class-name is treated
5583  //   as if it were a public member name.
5584  CXXRecordDecl *InjectedClassName
5585    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5586                            CurContext, Record->getLocation(),
5587                            Record->getIdentifier(),
5588                            Record->getTagKeywordLoc(),
5589                            Record);
5590  InjectedClassName->setImplicit();
5591  InjectedClassName->setAccess(AS_public);
5592  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5593      InjectedClassName->setDescribedClassTemplate(Template);
5594  PushOnScopeChains(InjectedClassName, S);
5595  assert(InjectedClassName->isInjectedClassName() &&
5596         "Broken injected-class-name");
5597}
5598
5599void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5600                                    SourceLocation RBraceLoc) {
5601  AdjustDeclIfTemplate(TagD);
5602  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5603  Tag->setRBraceLoc(RBraceLoc);
5604
5605  if (isa<CXXRecordDecl>(Tag))
5606    FieldCollector->FinishClass();
5607
5608  // Exit this scope of this tag's definition.
5609  PopDeclContext();
5610
5611  // Notify the consumer that we've defined a tag.
5612  Consumer.HandleTagDeclDefinition(Tag);
5613}
5614
5615void Sema::ActOnTagDefinitionError(Scope *S, DeclPtrTy TagD) {
5616  AdjustDeclIfTemplate(TagD);
5617  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5618  Tag->setInvalidDecl();
5619
5620  // We're undoing ActOnTagStartDefinition here, not
5621  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5622  // the FieldCollector.
5623
5624  PopDeclContext();
5625}
5626
5627// Note that FieldName may be null for anonymous bitfields.
5628bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5629                          QualType FieldTy, const Expr *BitWidth,
5630                          bool *ZeroWidth) {
5631  // Default to true; that shouldn't confuse checks for emptiness
5632  if (ZeroWidth)
5633    *ZeroWidth = true;
5634
5635  // C99 6.7.2.1p4 - verify the field type.
5636  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5637  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5638    // Handle incomplete types with specific error.
5639    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5640      return true;
5641    if (FieldName)
5642      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5643        << FieldName << FieldTy << BitWidth->getSourceRange();
5644    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5645      << FieldTy << BitWidth->getSourceRange();
5646  }
5647
5648  // If the bit-width is type- or value-dependent, don't try to check
5649  // it now.
5650  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5651    return false;
5652
5653  llvm::APSInt Value;
5654  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5655    return true;
5656
5657  if (Value != 0 && ZeroWidth)
5658    *ZeroWidth = false;
5659
5660  // Zero-width bitfield is ok for anonymous field.
5661  if (Value == 0 && FieldName)
5662    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5663
5664  if (Value.isSigned() && Value.isNegative()) {
5665    if (FieldName)
5666      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5667               << FieldName << Value.toString(10);
5668    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5669      << Value.toString(10);
5670  }
5671
5672  if (!FieldTy->isDependentType()) {
5673    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5674    if (Value.getZExtValue() > TypeSize) {
5675      if (!getLangOptions().CPlusPlus) {
5676        if (FieldName)
5677          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5678            << FieldName << (unsigned)Value.getZExtValue()
5679            << (unsigned)TypeSize;
5680
5681        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5682          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5683      }
5684
5685      if (FieldName)
5686        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
5687          << FieldName << (unsigned)Value.getZExtValue()
5688          << (unsigned)TypeSize;
5689      else
5690        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
5691          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
5692    }
5693  }
5694
5695  return false;
5696}
5697
5698/// ActOnField - Each field of a struct/union/class is passed into this in order
5699/// to create a FieldDecl object for it.
5700Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5701                                 SourceLocation DeclStart,
5702                                 Declarator &D, ExprTy *BitfieldWidth) {
5703  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5704                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5705                               AS_public);
5706  return DeclPtrTy::make(Res);
5707}
5708
5709/// HandleField - Analyze a field of a C struct or a C++ data member.
5710///
5711FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5712                             SourceLocation DeclStart,
5713                             Declarator &D, Expr *BitWidth,
5714                             AccessSpecifier AS) {
5715  IdentifierInfo *II = D.getIdentifier();
5716  SourceLocation Loc = DeclStart;
5717  if (II) Loc = D.getIdentifierLoc();
5718
5719  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5720  QualType T = TInfo->getType();
5721  if (getLangOptions().CPlusPlus)
5722    CheckExtraCXXDefaultArguments(D);
5723
5724  DiagnoseFunctionSpecifiers(D);
5725
5726  if (D.getDeclSpec().isThreadSpecified())
5727    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5728
5729  NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
5730                                         ForRedeclaration);
5731
5732  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5733    // Maybe we will complain about the shadowed template parameter.
5734    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5735    // Just pretend that we didn't see the previous declaration.
5736    PrevDecl = 0;
5737  }
5738
5739  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5740    PrevDecl = 0;
5741
5742  bool Mutable
5743    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5744  SourceLocation TSSL = D.getSourceRange().getBegin();
5745  FieldDecl *NewFD
5746    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5747                     AS, PrevDecl, &D);
5748
5749  if (NewFD->isInvalidDecl())
5750    Record->setInvalidDecl();
5751
5752  if (NewFD->isInvalidDecl() && PrevDecl) {
5753    // Don't introduce NewFD into scope; there's already something
5754    // with the same name in the same scope.
5755  } else if (II) {
5756    PushOnScopeChains(NewFD, S);
5757  } else
5758    Record->addDecl(NewFD);
5759
5760  return NewFD;
5761}
5762
5763/// \brief Build a new FieldDecl and check its well-formedness.
5764///
5765/// This routine builds a new FieldDecl given the fields name, type,
5766/// record, etc. \p PrevDecl should refer to any previous declaration
5767/// with the same name and in the same scope as the field to be
5768/// created.
5769///
5770/// \returns a new FieldDecl.
5771///
5772/// \todo The Declarator argument is a hack. It will be removed once
5773FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5774                                TypeSourceInfo *TInfo,
5775                                RecordDecl *Record, SourceLocation Loc,
5776                                bool Mutable, Expr *BitWidth,
5777                                SourceLocation TSSL,
5778                                AccessSpecifier AS, NamedDecl *PrevDecl,
5779                                Declarator *D) {
5780  IdentifierInfo *II = Name.getAsIdentifierInfo();
5781  bool InvalidDecl = false;
5782  if (D) InvalidDecl = D->isInvalidType();
5783
5784  // If we receive a broken type, recover by assuming 'int' and
5785  // marking this declaration as invalid.
5786  if (T.isNull()) {
5787    InvalidDecl = true;
5788    T = Context.IntTy;
5789  }
5790
5791  QualType EltTy = Context.getBaseElementType(T);
5792  if (!EltTy->isDependentType() &&
5793      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5794    InvalidDecl = true;
5795
5796  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5797  // than a variably modified type.
5798  if (!InvalidDecl && T->isVariablyModifiedType()) {
5799    bool SizeIsNegative;
5800    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5801                                                           SizeIsNegative);
5802    if (!FixedTy.isNull()) {
5803      Diag(Loc, diag::warn_illegal_constant_array_size);
5804      T = FixedTy;
5805    } else {
5806      if (SizeIsNegative)
5807        Diag(Loc, diag::err_typecheck_negative_array_size);
5808      else
5809        Diag(Loc, diag::err_typecheck_field_variable_size);
5810      InvalidDecl = true;
5811    }
5812  }
5813
5814  // Fields can not have abstract class types
5815  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5816                                             diag::err_abstract_type_in_decl,
5817                                             AbstractFieldType))
5818    InvalidDecl = true;
5819
5820  bool ZeroWidth = false;
5821  // If this is declared as a bit-field, check the bit-field.
5822  if (!InvalidDecl && BitWidth &&
5823      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5824    InvalidDecl = true;
5825    DeleteExpr(BitWidth);
5826    BitWidth = 0;
5827    ZeroWidth = false;
5828  }
5829
5830  // Check that 'mutable' is consistent with the type of the declaration.
5831  if (!InvalidDecl && Mutable) {
5832    unsigned DiagID = 0;
5833    if (T->isReferenceType())
5834      DiagID = diag::err_mutable_reference;
5835    else if (T.isConstQualified())
5836      DiagID = diag::err_mutable_const;
5837
5838    if (DiagID) {
5839      SourceLocation ErrLoc = Loc;
5840      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
5841        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
5842      Diag(ErrLoc, DiagID);
5843      Mutable = false;
5844      InvalidDecl = true;
5845    }
5846  }
5847
5848  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5849                                       BitWidth, Mutable);
5850  if (InvalidDecl)
5851    NewFD->setInvalidDecl();
5852
5853  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5854    Diag(Loc, diag::err_duplicate_member) << II;
5855    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5856    NewFD->setInvalidDecl();
5857  }
5858
5859  if (!InvalidDecl && getLangOptions().CPlusPlus) {
5860    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5861
5862    if (!T->isPODType())
5863      CXXRecord->setPOD(false);
5864    if (!ZeroWidth)
5865      CXXRecord->setEmpty(false);
5866
5867    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5868      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5869      if (RDecl->getDefinition()) {
5870        if (!RDecl->hasTrivialConstructor())
5871          CXXRecord->setHasTrivialConstructor(false);
5872        if (!RDecl->hasTrivialCopyConstructor())
5873          CXXRecord->setHasTrivialCopyConstructor(false);
5874        if (!RDecl->hasTrivialCopyAssignment())
5875          CXXRecord->setHasTrivialCopyAssignment(false);
5876        if (!RDecl->hasTrivialDestructor())
5877          CXXRecord->setHasTrivialDestructor(false);
5878
5879        // C++ 9.5p1: An object of a class with a non-trivial
5880        // constructor, a non-trivial copy constructor, a non-trivial
5881        // destructor, or a non-trivial copy assignment operator
5882        // cannot be a member of a union, nor can an array of such
5883        // objects.
5884        // TODO: C++0x alters this restriction significantly.
5885        if (Record->isUnion()) {
5886          // We check for copy constructors before constructors
5887          // because otherwise we'll never get complaints about
5888          // copy constructors.
5889
5890          CXXSpecialMember member = CXXInvalid;
5891          if (!RDecl->hasTrivialCopyConstructor())
5892            member = CXXCopyConstructor;
5893          else if (!RDecl->hasTrivialConstructor())
5894            member = CXXConstructor;
5895          else if (!RDecl->hasTrivialCopyAssignment())
5896            member = CXXCopyAssignment;
5897          else if (!RDecl->hasTrivialDestructor())
5898            member = CXXDestructor;
5899
5900          if (member != CXXInvalid) {
5901            Diag(Loc, diag::err_illegal_union_member) << Name << member;
5902            DiagnoseNontrivial(RT, member);
5903            NewFD->setInvalidDecl();
5904          }
5905        }
5906      }
5907    }
5908  }
5909
5910  // FIXME: We need to pass in the attributes given an AST
5911  // representation, not a parser representation.
5912  if (D)
5913    // FIXME: What to pass instead of TUScope?
5914    ProcessDeclAttributes(TUScope, NewFD, *D);
5915
5916  if (T.isObjCGCWeak())
5917    Diag(Loc, diag::warn_attribute_weak_on_field);
5918
5919  NewFD->setAccess(AS);
5920
5921  // C++ [dcl.init.aggr]p1:
5922  //   An aggregate is an array or a class (clause 9) with [...] no
5923  //   private or protected non-static data members (clause 11).
5924  // A POD must be an aggregate.
5925  if (getLangOptions().CPlusPlus &&
5926      (AS == AS_private || AS == AS_protected)) {
5927    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5928    CXXRecord->setAggregate(false);
5929    CXXRecord->setPOD(false);
5930  }
5931
5932  return NewFD;
5933}
5934
5935/// DiagnoseNontrivial - Given that a class has a non-trivial
5936/// special member, figure out why.
5937void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5938  QualType QT(T, 0U);
5939  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5940
5941  // Check whether the member was user-declared.
5942  switch (member) {
5943  case CXXInvalid:
5944    break;
5945
5946  case CXXConstructor:
5947    if (RD->hasUserDeclaredConstructor()) {
5948      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5949      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5950        const FunctionDecl *body = 0;
5951        ci->hasBody(body);
5952        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
5953          SourceLocation CtorLoc = ci->getLocation();
5954          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5955          return;
5956        }
5957      }
5958
5959      assert(0 && "found no user-declared constructors");
5960      return;
5961    }
5962    break;
5963
5964  case CXXCopyConstructor:
5965    if (RD->hasUserDeclaredCopyConstructor()) {
5966      SourceLocation CtorLoc =
5967        RD->getCopyConstructor(Context, 0)->getLocation();
5968      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5969      return;
5970    }
5971    break;
5972
5973  case CXXCopyAssignment:
5974    if (RD->hasUserDeclaredCopyAssignment()) {
5975      // FIXME: this should use the location of the copy
5976      // assignment, not the type.
5977      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5978      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5979      return;
5980    }
5981    break;
5982
5983  case CXXDestructor:
5984    if (RD->hasUserDeclaredDestructor()) {
5985      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
5986      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5987      return;
5988    }
5989    break;
5990  }
5991
5992  typedef CXXRecordDecl::base_class_iterator base_iter;
5993
5994  // Virtual bases and members inhibit trivial copying/construction,
5995  // but not trivial destruction.
5996  if (member != CXXDestructor) {
5997    // Check for virtual bases.  vbases includes indirect virtual bases,
5998    // so we just iterate through the direct bases.
5999    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6000      if (bi->isVirtual()) {
6001        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6002        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6003        return;
6004      }
6005
6006    // Check for virtual methods.
6007    typedef CXXRecordDecl::method_iterator meth_iter;
6008    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6009         ++mi) {
6010      if (mi->isVirtual()) {
6011        SourceLocation MLoc = mi->getSourceRange().getBegin();
6012        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6013        return;
6014      }
6015    }
6016  }
6017
6018  bool (CXXRecordDecl::*hasTrivial)() const;
6019  switch (member) {
6020  case CXXConstructor:
6021    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6022  case CXXCopyConstructor:
6023    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6024  case CXXCopyAssignment:
6025    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6026  case CXXDestructor:
6027    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6028  default:
6029    assert(0 && "unexpected special member"); return;
6030  }
6031
6032  // Check for nontrivial bases (and recurse).
6033  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6034    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6035    assert(BaseRT && "Don't know how to handle dependent bases");
6036    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6037    if (!(BaseRecTy->*hasTrivial)()) {
6038      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6039      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6040      DiagnoseNontrivial(BaseRT, member);
6041      return;
6042    }
6043  }
6044
6045  // Check for nontrivial members (and recurse).
6046  typedef RecordDecl::field_iterator field_iter;
6047  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6048       ++fi) {
6049    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6050    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6051      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6052
6053      if (!(EltRD->*hasTrivial)()) {
6054        SourceLocation FLoc = (*fi)->getLocation();
6055        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6056        DiagnoseNontrivial(EltRT, member);
6057        return;
6058      }
6059    }
6060  }
6061
6062  assert(0 && "found no explanation for non-trivial member");
6063}
6064
6065/// TranslateIvarVisibility - Translate visibility from a token ID to an
6066///  AST enum value.
6067static ObjCIvarDecl::AccessControl
6068TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6069  switch (ivarVisibility) {
6070  default: assert(0 && "Unknown visitibility kind");
6071  case tok::objc_private: return ObjCIvarDecl::Private;
6072  case tok::objc_public: return ObjCIvarDecl::Public;
6073  case tok::objc_protected: return ObjCIvarDecl::Protected;
6074  case tok::objc_package: return ObjCIvarDecl::Package;
6075  }
6076}
6077
6078/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6079/// in order to create an IvarDecl object for it.
6080Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
6081                                SourceLocation DeclStart,
6082                                DeclPtrTy IntfDecl,
6083                                Declarator &D, ExprTy *BitfieldWidth,
6084                                tok::ObjCKeywordKind Visibility) {
6085
6086  IdentifierInfo *II = D.getIdentifier();
6087  Expr *BitWidth = (Expr*)BitfieldWidth;
6088  SourceLocation Loc = DeclStart;
6089  if (II) Loc = D.getIdentifierLoc();
6090
6091  // FIXME: Unnamed fields can be handled in various different ways, for
6092  // example, unnamed unions inject all members into the struct namespace!
6093
6094  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6095  QualType T = TInfo->getType();
6096
6097  if (BitWidth) {
6098    // 6.7.2.1p3, 6.7.2.1p4
6099    if (VerifyBitField(Loc, II, T, BitWidth)) {
6100      D.setInvalidType();
6101      DeleteExpr(BitWidth);
6102      BitWidth = 0;
6103    }
6104  } else {
6105    // Not a bitfield.
6106
6107    // validate II.
6108
6109  }
6110  if (T->isReferenceType()) {
6111    Diag(Loc, diag::err_ivar_reference_type);
6112    D.setInvalidType();
6113  }
6114  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6115  // than a variably modified type.
6116  else if (T->isVariablyModifiedType()) {
6117    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6118    D.setInvalidType();
6119  }
6120
6121  // Get the visibility (access control) for this ivar.
6122  ObjCIvarDecl::AccessControl ac =
6123    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6124                                        : ObjCIvarDecl::None;
6125  // Must set ivar's DeclContext to its enclosing interface.
6126  ObjCContainerDecl *EnclosingDecl = IntfDecl.getAs<ObjCContainerDecl>();
6127  ObjCContainerDecl *EnclosingContext;
6128  if (ObjCImplementationDecl *IMPDecl =
6129      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6130    // Case of ivar declared in an implementation. Context is that of its class.
6131    EnclosingContext = IMPDecl->getClassInterface();
6132    assert(EnclosingContext && "Implementation has no class interface!");
6133  } else {
6134    if (ObjCCategoryDecl *CDecl =
6135        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6136      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6137        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6138        return DeclPtrTy();
6139      }
6140    }
6141    EnclosingContext = EnclosingDecl;
6142  }
6143
6144  // Construct the decl.
6145  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6146                                             EnclosingContext, Loc, II, T,
6147                                             TInfo, ac, (Expr *)BitfieldWidth);
6148
6149  if (II) {
6150    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6151                                           ForRedeclaration);
6152    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6153        && !isa<TagDecl>(PrevDecl)) {
6154      Diag(Loc, diag::err_duplicate_member) << II;
6155      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6156      NewID->setInvalidDecl();
6157    }
6158  }
6159
6160  // Process attributes attached to the ivar.
6161  ProcessDeclAttributes(S, NewID, D);
6162
6163  if (D.isInvalidType())
6164    NewID->setInvalidDecl();
6165
6166  if (II) {
6167    // FIXME: When interfaces are DeclContexts, we'll need to add
6168    // these to the interface.
6169    S->AddDecl(DeclPtrTy::make(NewID));
6170    IdResolver.AddDecl(NewID);
6171  }
6172
6173  return DeclPtrTy::make(NewID);
6174}
6175
6176void Sema::ActOnFields(Scope* S,
6177                       SourceLocation RecLoc, DeclPtrTy RecDecl,
6178                       DeclPtrTy *Fields, unsigned NumFields,
6179                       SourceLocation LBrac, SourceLocation RBrac,
6180                       AttributeList *Attr) {
6181  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
6182  assert(EnclosingDecl && "missing record or interface decl");
6183
6184  // If the decl this is being inserted into is invalid, then it may be a
6185  // redeclaration or some other bogus case.  Don't try to add fields to it.
6186  if (EnclosingDecl->isInvalidDecl()) {
6187    // FIXME: Deallocate fields?
6188    return;
6189  }
6190
6191
6192  // Verify that all the fields are okay.
6193  unsigned NumNamedMembers = 0;
6194  llvm::SmallVector<FieldDecl*, 32> RecFields;
6195
6196  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6197  for (unsigned i = 0; i != NumFields; ++i) {
6198    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
6199
6200    // Get the type for the field.
6201    Type *FDTy = FD->getType().getTypePtr();
6202
6203    if (!FD->isAnonymousStructOrUnion()) {
6204      // Remember all fields written by the user.
6205      RecFields.push_back(FD);
6206    }
6207
6208    // If the field is already invalid for some reason, don't emit more
6209    // diagnostics about it.
6210    if (FD->isInvalidDecl()) {
6211      EnclosingDecl->setInvalidDecl();
6212      continue;
6213    }
6214
6215    // C99 6.7.2.1p2:
6216    //   A structure or union shall not contain a member with
6217    //   incomplete or function type (hence, a structure shall not
6218    //   contain an instance of itself, but may contain a pointer to
6219    //   an instance of itself), except that the last member of a
6220    //   structure with more than one named member may have incomplete
6221    //   array type; such a structure (and any union containing,
6222    //   possibly recursively, a member that is such a structure)
6223    //   shall not be a member of a structure or an element of an
6224    //   array.
6225    if (FDTy->isFunctionType()) {
6226      // Field declared as a function.
6227      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6228        << FD->getDeclName();
6229      FD->setInvalidDecl();
6230      EnclosingDecl->setInvalidDecl();
6231      continue;
6232    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
6233               Record && Record->isStruct()) {
6234      // Flexible array member.
6235      if (NumNamedMembers < 1) {
6236        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6237          << FD->getDeclName();
6238        FD->setInvalidDecl();
6239        EnclosingDecl->setInvalidDecl();
6240        continue;
6241      }
6242      if (!FD->getType()->isDependentType() &&
6243          !Context.getBaseElementType(FD->getType())->isPODType()) {
6244        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6245          << FD->getDeclName() << FD->getType();
6246        FD->setInvalidDecl();
6247        EnclosingDecl->setInvalidDecl();
6248        continue;
6249      }
6250
6251      // Okay, we have a legal flexible array member at the end of the struct.
6252      if (Record)
6253        Record->setHasFlexibleArrayMember(true);
6254    } else if (!FDTy->isDependentType() &&
6255               RequireCompleteType(FD->getLocation(), FD->getType(),
6256                                   diag::err_field_incomplete)) {
6257      // Incomplete type
6258      FD->setInvalidDecl();
6259      EnclosingDecl->setInvalidDecl();
6260      continue;
6261    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6262      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6263        // If this is a member of a union, then entire union becomes "flexible".
6264        if (Record && Record->isUnion()) {
6265          Record->setHasFlexibleArrayMember(true);
6266        } else {
6267          // If this is a struct/class and this is not the last element, reject
6268          // it.  Note that GCC supports variable sized arrays in the middle of
6269          // structures.
6270          if (i != NumFields-1)
6271            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6272              << FD->getDeclName() << FD->getType();
6273          else {
6274            // We support flexible arrays at the end of structs in
6275            // other structs as an extension.
6276            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6277              << FD->getDeclName();
6278            if (Record)
6279              Record->setHasFlexibleArrayMember(true);
6280          }
6281        }
6282      }
6283      if (Record && FDTTy->getDecl()->hasObjectMember())
6284        Record->setHasObjectMember(true);
6285    } else if (FDTy->isObjCObjectType()) {
6286      /// A field cannot be an Objective-c object
6287      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6288      FD->setInvalidDecl();
6289      EnclosingDecl->setInvalidDecl();
6290      continue;
6291    } else if (getLangOptions().ObjC1 &&
6292               getLangOptions().getGCMode() != LangOptions::NonGC &&
6293               Record &&
6294               (FD->getType()->isObjCObjectPointerType() ||
6295                FD->getType().isObjCGCStrong()))
6296      Record->setHasObjectMember(true);
6297    else if (Context.getAsArrayType(FD->getType())) {
6298      QualType BaseType = Context.getBaseElementType(FD->getType());
6299      if (Record && BaseType->isRecordType() &&
6300          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6301        Record->setHasObjectMember(true);
6302    }
6303    // Keep track of the number of named members.
6304    if (FD->getIdentifier())
6305      ++NumNamedMembers;
6306  }
6307
6308  // Okay, we successfully defined 'Record'.
6309  if (Record) {
6310    Record->completeDefinition();
6311  } else {
6312    ObjCIvarDecl **ClsFields =
6313      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6314    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6315      ID->setLocEnd(RBrac);
6316      // Add ivar's to class's DeclContext.
6317      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6318        ClsFields[i]->setLexicalDeclContext(ID);
6319        ID->addDecl(ClsFields[i]);
6320      }
6321      // Must enforce the rule that ivars in the base classes may not be
6322      // duplicates.
6323      if (ID->getSuperClass())
6324        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6325    } else if (ObjCImplementationDecl *IMPDecl =
6326                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6327      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6328      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6329        // Ivar declared in @implementation never belongs to the implementation.
6330        // Only it is in implementation's lexical context.
6331        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6332      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6333    } else if (ObjCCategoryDecl *CDecl =
6334                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6335      // case of ivars in class extension; all other cases have been
6336      // reported as errors elsewhere.
6337      // FIXME. Class extension does not have a LocEnd field.
6338      // CDecl->setLocEnd(RBrac);
6339      // Add ivar's to class extension's DeclContext.
6340      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6341        ClsFields[i]->setLexicalDeclContext(CDecl);
6342        CDecl->addDecl(ClsFields[i]);
6343      }
6344    }
6345  }
6346
6347  if (Attr)
6348    ProcessDeclAttributeList(S, Record, Attr);
6349}
6350
6351/// \brief Determine whether the given integral value is representable within
6352/// the given type T.
6353static bool isRepresentableIntegerValue(ASTContext &Context,
6354                                        llvm::APSInt &Value,
6355                                        QualType T) {
6356  assert(T->isIntegralType(Context) && "Integral type required!");
6357  unsigned BitWidth = Context.getIntWidth(T);
6358
6359  if (Value.isUnsigned() || Value.isNonNegative())
6360    return Value.getActiveBits() < BitWidth;
6361
6362  return Value.getMinSignedBits() <= BitWidth;
6363}
6364
6365// \brief Given an integral type, return the next larger integral type
6366// (or a NULL type of no such type exists).
6367static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6368  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6369  // enum checking below.
6370  assert(T->isIntegralType(Context) && "Integral type required!");
6371  const unsigned NumTypes = 4;
6372  QualType SignedIntegralTypes[NumTypes] = {
6373    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6374  };
6375  QualType UnsignedIntegralTypes[NumTypes] = {
6376    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6377    Context.UnsignedLongLongTy
6378  };
6379
6380  unsigned BitWidth = Context.getTypeSize(T);
6381  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6382                                            : UnsignedIntegralTypes;
6383  for (unsigned I = 0; I != NumTypes; ++I)
6384    if (Context.getTypeSize(Types[I]) > BitWidth)
6385      return Types[I];
6386
6387  return QualType();
6388}
6389
6390EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6391                                          EnumConstantDecl *LastEnumConst,
6392                                          SourceLocation IdLoc,
6393                                          IdentifierInfo *Id,
6394                                          ExprArg val) {
6395  Expr *Val = (Expr *)val.get();
6396
6397  unsigned IntWidth = Context.Target.getIntWidth();
6398  llvm::APSInt EnumVal(IntWidth);
6399  QualType EltTy;
6400  if (Val) {
6401    if (Enum->isDependentType() || Val->isTypeDependent())
6402      EltTy = Context.DependentTy;
6403    else {
6404      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6405      SourceLocation ExpLoc;
6406      if (!Val->isValueDependent() &&
6407          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6408        Val = 0;
6409      } else {
6410        if (!getLangOptions().CPlusPlus) {
6411          // C99 6.7.2.2p2:
6412          //   The expression that defines the value of an enumeration constant
6413          //   shall be an integer constant expression that has a value
6414          //   representable as an int.
6415
6416          // Complain if the value is not representable in an int.
6417          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6418            Diag(IdLoc, diag::ext_enum_value_not_int)
6419              << EnumVal.toString(10) << Val->getSourceRange()
6420              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6421          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6422            // Force the type of the expression to 'int'.
6423            ImpCastExprToType(Val, Context.IntTy, CastExpr::CK_IntegralCast);
6424
6425            if (Val != val.get()) {
6426              val.release();
6427              val = Val;
6428            }
6429          }
6430        }
6431
6432        // C++0x [dcl.enum]p5:
6433        //   If the underlying type is not fixed, the type of each enumerator
6434        //   is the type of its initializing value:
6435        //     - If an initializer is specified for an enumerator, the
6436        //       initializing value has the same type as the expression.
6437        EltTy = Val->getType();
6438      }
6439    }
6440  }
6441
6442  if (!Val) {
6443    if (Enum->isDependentType())
6444      EltTy = Context.DependentTy;
6445    else if (!LastEnumConst) {
6446      // C++0x [dcl.enum]p5:
6447      //   If the underlying type is not fixed, the type of each enumerator
6448      //   is the type of its initializing value:
6449      //     - If no initializer is specified for the first enumerator, the
6450      //       initializing value has an unspecified integral type.
6451      //
6452      // GCC uses 'int' for its unspecified integral type, as does
6453      // C99 6.7.2.2p3.
6454      EltTy = Context.IntTy;
6455    } else {
6456      // Assign the last value + 1.
6457      EnumVal = LastEnumConst->getInitVal();
6458      ++EnumVal;
6459      EltTy = LastEnumConst->getType();
6460
6461      // Check for overflow on increment.
6462      if (EnumVal < LastEnumConst->getInitVal()) {
6463        // C++0x [dcl.enum]p5:
6464        //   If the underlying type is not fixed, the type of each enumerator
6465        //   is the type of its initializing value:
6466        //
6467        //     - Otherwise the type of the initializing value is the same as
6468        //       the type of the initializing value of the preceding enumerator
6469        //       unless the incremented value is not representable in that type,
6470        //       in which case the type is an unspecified integral type
6471        //       sufficient to contain the incremented value. If no such type
6472        //       exists, the program is ill-formed.
6473        QualType T = getNextLargerIntegralType(Context, EltTy);
6474        if (T.isNull()) {
6475          // There is no integral type larger enough to represent this
6476          // value. Complain, then allow the value to wrap around.
6477          EnumVal = LastEnumConst->getInitVal();
6478          EnumVal.zext(EnumVal.getBitWidth() * 2);
6479          Diag(IdLoc, diag::warn_enumerator_too_large)
6480            << EnumVal.toString(10);
6481        } else {
6482          EltTy = T;
6483        }
6484
6485        // Retrieve the last enumerator's value, extent that type to the
6486        // type that is supposed to be large enough to represent the incremented
6487        // value, then increment.
6488        EnumVal = LastEnumConst->getInitVal();
6489        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6490        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6491        ++EnumVal;
6492
6493        // If we're not in C++, diagnose the overflow of enumerator values,
6494        // which in C99 means that the enumerator value is not representable in
6495        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6496        // permits enumerator values that are representable in some larger
6497        // integral type.
6498        if (!getLangOptions().CPlusPlus && !T.isNull())
6499          Diag(IdLoc, diag::warn_enum_value_overflow);
6500      } else if (!getLangOptions().CPlusPlus &&
6501                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6502        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6503        Diag(IdLoc, diag::ext_enum_value_not_int)
6504          << EnumVal.toString(10) << 1;
6505      }
6506    }
6507  }
6508
6509  if (!EltTy->isDependentType()) {
6510    // Make the enumerator value match the signedness and size of the
6511    // enumerator's type.
6512    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6513    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6514  }
6515
6516  val.release();
6517  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6518                                  Val, EnumVal);
6519}
6520
6521
6522Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
6523                                        DeclPtrTy lastEnumConst,
6524                                        SourceLocation IdLoc,
6525                                        IdentifierInfo *Id,
6526                                        SourceLocation EqualLoc, ExprTy *val) {
6527  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
6528  EnumConstantDecl *LastEnumConst =
6529    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
6530  Expr *Val = static_cast<Expr*>(val);
6531
6532  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6533  // we find one that is.
6534  S = getNonFieldDeclScope(S);
6535
6536  // Verify that there isn't already something declared with this name in this
6537  // scope.
6538  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6539                                         ForRedeclaration);
6540  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6541    // Maybe we will complain about the shadowed template parameter.
6542    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6543    // Just pretend that we didn't see the previous declaration.
6544    PrevDecl = 0;
6545  }
6546
6547  if (PrevDecl) {
6548    // When in C++, we may get a TagDecl with the same name; in this case the
6549    // enum constant will 'hide' the tag.
6550    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6551           "Received TagDecl when not in C++!");
6552    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6553      if (isa<EnumConstantDecl>(PrevDecl))
6554        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6555      else
6556        Diag(IdLoc, diag::err_redefinition) << Id;
6557      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6558      if (Val) Val->Destroy(Context);
6559      return DeclPtrTy();
6560    }
6561  }
6562
6563  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6564                                            IdLoc, Id, Owned(Val));
6565
6566  // Register this decl in the current scope stack.
6567  if (New) {
6568    New->setAccess(TheEnumDecl->getAccess());
6569    PushOnScopeChains(New, S);
6570  }
6571
6572  return DeclPtrTy::make(New);
6573}
6574
6575void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6576                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
6577                         DeclPtrTy *Elements, unsigned NumElements,
6578                         Scope *S, AttributeList *Attr) {
6579  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
6580  QualType EnumType = Context.getTypeDeclType(Enum);
6581
6582  if (Attr)
6583    ProcessDeclAttributeList(S, Enum, Attr);
6584
6585  if (Enum->isDependentType()) {
6586    for (unsigned i = 0; i != NumElements; ++i) {
6587      EnumConstantDecl *ECD =
6588        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6589      if (!ECD) continue;
6590
6591      ECD->setType(EnumType);
6592    }
6593
6594    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
6595    return;
6596  }
6597
6598  // TODO: If the result value doesn't fit in an int, it must be a long or long
6599  // long value.  ISO C does not support this, but GCC does as an extension,
6600  // emit a warning.
6601  unsigned IntWidth = Context.Target.getIntWidth();
6602  unsigned CharWidth = Context.Target.getCharWidth();
6603  unsigned ShortWidth = Context.Target.getShortWidth();
6604
6605  // Verify that all the values are okay, compute the size of the values, and
6606  // reverse the list.
6607  unsigned NumNegativeBits = 0;
6608  unsigned NumPositiveBits = 0;
6609
6610  // Keep track of whether all elements have type int.
6611  bool AllElementsInt = true;
6612
6613  for (unsigned i = 0; i != NumElements; ++i) {
6614    EnumConstantDecl *ECD =
6615      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6616    if (!ECD) continue;  // Already issued a diagnostic.
6617
6618    const llvm::APSInt &InitVal = ECD->getInitVal();
6619
6620    // Keep track of the size of positive and negative values.
6621    if (InitVal.isUnsigned() || InitVal.isNonNegative())
6622      NumPositiveBits = std::max(NumPositiveBits,
6623                                 (unsigned)InitVal.getActiveBits());
6624    else
6625      NumNegativeBits = std::max(NumNegativeBits,
6626                                 (unsigned)InitVal.getMinSignedBits());
6627
6628    // Keep track of whether every enum element has type int (very commmon).
6629    if (AllElementsInt)
6630      AllElementsInt = ECD->getType() == Context.IntTy;
6631  }
6632
6633  // Figure out the type that should be used for this enum.
6634  // FIXME: Support -fshort-enums.
6635  QualType BestType;
6636  unsigned BestWidth;
6637
6638  // C++0x N3000 [conv.prom]p3:
6639  //   An rvalue of an unscoped enumeration type whose underlying
6640  //   type is not fixed can be converted to an rvalue of the first
6641  //   of the following types that can represent all the values of
6642  //   the enumeration: int, unsigned int, long int, unsigned long
6643  //   int, long long int, or unsigned long long int.
6644  // C99 6.4.4.3p2:
6645  //   An identifier declared as an enumeration constant has type int.
6646  // The C99 rule is modified by a gcc extension
6647  QualType BestPromotionType;
6648
6649  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
6650
6651  if (NumNegativeBits) {
6652    // If there is a negative value, figure out the smallest integer type (of
6653    // int/long/longlong) that fits.
6654    // If it's packed, check also if it fits a char or a short.
6655    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
6656      BestType = Context.SignedCharTy;
6657      BestWidth = CharWidth;
6658    } else if (Packed && NumNegativeBits <= ShortWidth &&
6659               NumPositiveBits < ShortWidth) {
6660      BestType = Context.ShortTy;
6661      BestWidth = ShortWidth;
6662    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
6663      BestType = Context.IntTy;
6664      BestWidth = IntWidth;
6665    } else {
6666      BestWidth = Context.Target.getLongWidth();
6667
6668      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
6669        BestType = Context.LongTy;
6670      } else {
6671        BestWidth = Context.Target.getLongLongWidth();
6672
6673        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6674          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6675        BestType = Context.LongLongTy;
6676      }
6677    }
6678    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6679  } else {
6680    // If there is no negative value, figure out the smallest type that fits
6681    // all of the enumerator values.
6682    // If it's packed, check also if it fits a char or a short.
6683    if (Packed && NumPositiveBits <= CharWidth) {
6684      BestType = Context.UnsignedCharTy;
6685      BestPromotionType = Context.IntTy;
6686      BestWidth = CharWidth;
6687    } else if (Packed && NumPositiveBits <= ShortWidth) {
6688      BestType = Context.UnsignedShortTy;
6689      BestPromotionType = Context.IntTy;
6690      BestWidth = ShortWidth;
6691    } else if (NumPositiveBits <= IntWidth) {
6692      BestType = Context.UnsignedIntTy;
6693      BestWidth = IntWidth;
6694      BestPromotionType
6695        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6696                           ? Context.UnsignedIntTy : Context.IntTy;
6697    } else if (NumPositiveBits <=
6698               (BestWidth = Context.Target.getLongWidth())) {
6699      BestType = Context.UnsignedLongTy;
6700      BestPromotionType
6701        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6702                           ? Context.UnsignedLongTy : Context.LongTy;
6703    } else {
6704      BestWidth = Context.Target.getLongLongWidth();
6705      assert(NumPositiveBits <= BestWidth &&
6706             "How could an initializer get larger than ULL?");
6707      BestType = Context.UnsignedLongLongTy;
6708      BestPromotionType
6709        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
6710                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
6711    }
6712  }
6713
6714  // Loop over all of the enumerator constants, changing their types to match
6715  // the type of the enum if needed.
6716  for (unsigned i = 0; i != NumElements; ++i) {
6717    EnumConstantDecl *ECD =
6718      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6719    if (!ECD) continue;  // Already issued a diagnostic.
6720
6721    // Standard C says the enumerators have int type, but we allow, as an
6722    // extension, the enumerators to be larger than int size.  If each
6723    // enumerator value fits in an int, type it as an int, otherwise type it the
6724    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6725    // that X has type 'int', not 'unsigned'.
6726
6727    // Determine whether the value fits into an int.
6728    llvm::APSInt InitVal = ECD->getInitVal();
6729
6730    // If it fits into an integer type, force it.  Otherwise force it to match
6731    // the enum decl type.
6732    QualType NewTy;
6733    unsigned NewWidth;
6734    bool NewSign;
6735    if (!getLangOptions().CPlusPlus &&
6736        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
6737      NewTy = Context.IntTy;
6738      NewWidth = IntWidth;
6739      NewSign = true;
6740    } else if (ECD->getType() == BestType) {
6741      // Already the right type!
6742      if (getLangOptions().CPlusPlus)
6743        // C++ [dcl.enum]p4: Following the closing brace of an
6744        // enum-specifier, each enumerator has the type of its
6745        // enumeration.
6746        ECD->setType(EnumType);
6747      continue;
6748    } else {
6749      NewTy = BestType;
6750      NewWidth = BestWidth;
6751      NewSign = BestType->isSignedIntegerType();
6752    }
6753
6754    // Adjust the APSInt value.
6755    InitVal.extOrTrunc(NewWidth);
6756    InitVal.setIsSigned(NewSign);
6757    ECD->setInitVal(InitVal);
6758
6759    // Adjust the Expr initializer and type.
6760    if (ECD->getInitExpr())
6761      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6762                                                      CastExpr::CK_IntegralCast,
6763                                                      ECD->getInitExpr(),
6764                                                      CXXBaseSpecifierArray(),
6765                                                      /*isLvalue=*/false));
6766    if (getLangOptions().CPlusPlus)
6767      // C++ [dcl.enum]p4: Following the closing brace of an
6768      // enum-specifier, each enumerator has the type of its
6769      // enumeration.
6770      ECD->setType(EnumType);
6771    else
6772      ECD->setType(NewTy);
6773  }
6774
6775  Enum->completeDefinition(BestType, BestPromotionType,
6776                           NumPositiveBits, NumNegativeBits);
6777}
6778
6779Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6780                                            ExprArg expr) {
6781  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6782
6783  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6784                                                   Loc, AsmString);
6785  CurContext->addDecl(New);
6786  return DeclPtrTy::make(New);
6787}
6788
6789void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6790                             SourceLocation PragmaLoc,
6791                             SourceLocation NameLoc) {
6792  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
6793
6794  if (PrevDecl) {
6795    PrevDecl->addAttr(::new (Context) WeakAttr());
6796  } else {
6797    (void)WeakUndeclaredIdentifiers.insert(
6798      std::pair<IdentifierInfo*,WeakInfo>
6799        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6800  }
6801}
6802
6803void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6804                                IdentifierInfo* AliasName,
6805                                SourceLocation PragmaLoc,
6806                                SourceLocation NameLoc,
6807                                SourceLocation AliasNameLoc) {
6808  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
6809                                    LookupOrdinaryName);
6810  WeakInfo W = WeakInfo(Name, NameLoc);
6811
6812  if (PrevDecl) {
6813    if (!PrevDecl->hasAttr<AliasAttr>())
6814      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6815        DeclApplyPragmaWeak(TUScope, ND, W);
6816  } else {
6817    (void)WeakUndeclaredIdentifiers.insert(
6818      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6819  }
6820}
6821